wl1251: prevent scan when connected
[pandora-wifi.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/cfg80211.h>
41 #include "core.h"
42 #include "reg.h"
43 #include "regdb.h"
44 #include "nl80211.h"
45
46 #ifdef CONFIG_CFG80211_REG_DEBUG
47 #define REG_DBG_PRINT(format, args...) \
48         do { \
49                 printk(KERN_DEBUG format , ## args); \
50         } while (0)
51 #else
52 #define REG_DBG_PRINT(args...)
53 #endif
54
55 /* Receipt of information from last regulatory request */
56 static struct regulatory_request *last_request;
57
58 /* To trigger userspace events */
59 static struct platform_device *reg_pdev;
60
61 /*
62  * Central wireless core regulatory domains, we only need two,
63  * the current one and a world regulatory domain in case we have no
64  * information to give us an alpha2
65  */
66 const struct ieee80211_regdomain *cfg80211_regdomain;
67
68 /*
69  * We use this as a place for the rd structure built from the
70  * last parsed country IE to rest until CRDA gets back to us with
71  * what it thinks should apply for the same country
72  */
73 static const struct ieee80211_regdomain *country_ie_regdomain;
74
75 /*
76  * Protects static reg.c components:
77  *     - cfg80211_world_regdom
78  *     - cfg80211_regdom
79  *     - country_ie_regdomain
80  *     - last_request
81  */
82 DEFINE_MUTEX(reg_mutex);
83 #define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))
84
85 /* Used to queue up regulatory hints */
86 static LIST_HEAD(reg_requests_list);
87 static spinlock_t reg_requests_lock;
88
89 /* Used to queue up beacon hints for review */
90 static LIST_HEAD(reg_pending_beacons);
91 static spinlock_t reg_pending_beacons_lock;
92
93 /* Used to keep track of processed beacon hints */
94 static LIST_HEAD(reg_beacon_list);
95
96 struct reg_beacon {
97         struct list_head list;
98         struct ieee80211_channel chan;
99 };
100
101 /* We keep a static world regulatory domain in case of the absence of CRDA */
102 static const struct ieee80211_regdomain world_regdom = {
103         .n_reg_rules = 5,
104         .alpha2 =  "00",
105         .reg_rules = {
106                 /* IEEE 802.11b/g, channels 1..11 */
107                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
108                 /* IEEE 802.11b/g, channels 12..13. No HT40
109                  * channel fits here. */
110                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
111                         NL80211_RRF_PASSIVE_SCAN |
112                         NL80211_RRF_NO_IBSS),
113                 /* IEEE 802.11 channel 14 - Only JP enables
114                  * this and for 802.11b only */
115                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
116                         NL80211_RRF_PASSIVE_SCAN |
117                         NL80211_RRF_NO_IBSS |
118                         NL80211_RRF_NO_OFDM),
119                 /* IEEE 802.11a, channel 36..48 */
120                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
121                         NL80211_RRF_PASSIVE_SCAN |
122                         NL80211_RRF_NO_IBSS),
123
124                 /* NB: 5260 MHz - 5700 MHz requies DFS */
125
126                 /* IEEE 802.11a, channel 149..165 */
127                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
128                         NL80211_RRF_PASSIVE_SCAN |
129                         NL80211_RRF_NO_IBSS),
130         }
131 };
132
133 static const struct ieee80211_regdomain *cfg80211_world_regdom =
134         &world_regdom;
135
136 static char *ieee80211_regdom = "00";
137 static char user_alpha2[2];
138
139 module_param(ieee80211_regdom, charp, 0444);
140 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
141
142 static void reset_regdomains(void)
143 {
144         /* avoid freeing static information or freeing something twice */
145         if (cfg80211_regdomain == cfg80211_world_regdom)
146                 cfg80211_regdomain = NULL;
147         if (cfg80211_world_regdom == &world_regdom)
148                 cfg80211_world_regdom = NULL;
149         if (cfg80211_regdomain == &world_regdom)
150                 cfg80211_regdomain = NULL;
151
152         kfree(cfg80211_regdomain);
153         kfree(cfg80211_world_regdom);
154
155         cfg80211_world_regdom = &world_regdom;
156         cfg80211_regdomain = NULL;
157 }
158
159 /*
160  * Dynamic world regulatory domain requested by the wireless
161  * core upon initialization
162  */
163 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
164 {
165         BUG_ON(!last_request);
166
167         reset_regdomains();
168
169         cfg80211_world_regdom = rd;
170         cfg80211_regdomain = rd;
171 }
172
173 bool is_world_regdom(const char *alpha2)
174 {
175         if (!alpha2)
176                 return false;
177         if (alpha2[0] == '0' && alpha2[1] == '0')
178                 return true;
179         return false;
180 }
181
182 static bool is_alpha2_set(const char *alpha2)
183 {
184         if (!alpha2)
185                 return false;
186         if (alpha2[0] != 0 && alpha2[1] != 0)
187                 return true;
188         return false;
189 }
190
191 static bool is_alpha_upper(char letter)
192 {
193         /* ASCII A - Z */
194         if (letter >= 65 && letter <= 90)
195                 return true;
196         return false;
197 }
198
199 static bool is_unknown_alpha2(const char *alpha2)
200 {
201         if (!alpha2)
202                 return false;
203         /*
204          * Special case where regulatory domain was built by driver
205          * but a specific alpha2 cannot be determined
206          */
207         if (alpha2[0] == '9' && alpha2[1] == '9')
208                 return true;
209         return false;
210 }
211
212 static bool is_intersected_alpha2(const char *alpha2)
213 {
214         if (!alpha2)
215                 return false;
216         /*
217          * Special case where regulatory domain is the
218          * result of an intersection between two regulatory domain
219          * structures
220          */
221         if (alpha2[0] == '9' && alpha2[1] == '8')
222                 return true;
223         return false;
224 }
225
226 static bool is_an_alpha2(const char *alpha2)
227 {
228         if (!alpha2)
229                 return false;
230         if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
231                 return true;
232         return false;
233 }
234
235 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
236 {
237         if (!alpha2_x || !alpha2_y)
238                 return false;
239         if (alpha2_x[0] == alpha2_y[0] &&
240                 alpha2_x[1] == alpha2_y[1])
241                 return true;
242         return false;
243 }
244
245 static bool regdom_changes(const char *alpha2)
246 {
247         assert_cfg80211_lock();
248
249         if (!cfg80211_regdomain)
250                 return true;
251         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
252                 return false;
253         return true;
254 }
255
256 /*
257  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
258  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
259  * has ever been issued.
260  */
261 static bool is_user_regdom_saved(void)
262 {
263         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
264                 return false;
265
266         /* This would indicate a mistake on the design */
267         if (WARN((!is_world_regdom(user_alpha2) &&
268                   !is_an_alpha2(user_alpha2)),
269                  "Unexpected user alpha2: %c%c\n",
270                  user_alpha2[0],
271                  user_alpha2[1]))
272                 return false;
273
274         return true;
275 }
276
277 /**
278  * country_ie_integrity_changes - tells us if the country IE has changed
279  * @checksum: checksum of country IE of fields we are interested in
280  *
281  * If the country IE has not changed you can ignore it safely. This is
282  * useful to determine if two devices are seeing two different country IEs
283  * even on the same alpha2. Note that this will return false if no IE has
284  * been set on the wireless core yet.
285  */
286 static bool country_ie_integrity_changes(u32 checksum)
287 {
288         /* If no IE has been set then the checksum doesn't change */
289         if (unlikely(!last_request->country_ie_checksum))
290                 return false;
291         if (unlikely(last_request->country_ie_checksum != checksum))
292                 return true;
293         return false;
294 }
295
296 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
297                          const struct ieee80211_regdomain *src_regd)
298 {
299         struct ieee80211_regdomain *regd;
300         int size_of_regd = 0;
301         unsigned int i;
302
303         size_of_regd = sizeof(struct ieee80211_regdomain) +
304           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
305
306         regd = kzalloc(size_of_regd, GFP_KERNEL);
307         if (!regd)
308                 return -ENOMEM;
309
310         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
311
312         for (i = 0; i < src_regd->n_reg_rules; i++)
313                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
314                         sizeof(struct ieee80211_reg_rule));
315
316         *dst_regd = regd;
317         return 0;
318 }
319
320 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
321 struct reg_regdb_search_request {
322         char alpha2[2];
323         struct list_head list;
324 };
325
326 static LIST_HEAD(reg_regdb_search_list);
327 static DEFINE_SPINLOCK(reg_regdb_search_lock);
328
329 static void reg_regdb_search(struct work_struct *work)
330 {
331         struct reg_regdb_search_request *request;
332         const struct ieee80211_regdomain *curdom, *regdom;
333         int i, r;
334
335         spin_lock(&reg_regdb_search_lock);
336         while (!list_empty(&reg_regdb_search_list)) {
337                 request = list_first_entry(&reg_regdb_search_list,
338                                            struct reg_regdb_search_request,
339                                            list);
340                 list_del(&request->list);
341
342                 for (i=0; i<reg_regdb_size; i++) {
343                         curdom = reg_regdb[i];
344
345                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
346                                 r = reg_copy_regd(&regdom, curdom);
347                                 if (r)
348                                         break;
349                                 spin_unlock(&reg_regdb_search_lock);
350                                 mutex_lock(&cfg80211_mutex);
351                                 set_regdom(regdom);
352                                 mutex_unlock(&cfg80211_mutex);
353                                 spin_lock(&reg_regdb_search_lock);
354                                 break;
355                         }
356                 }
357
358                 kfree(request);
359         }
360         spin_unlock(&reg_regdb_search_lock);
361 }
362
363 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
364
365 static void reg_regdb_query(const char *alpha2)
366 {
367         struct reg_regdb_search_request *request;
368
369         if (!alpha2)
370                 return;
371
372         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
373         if (!request)
374                 return;
375
376         memcpy(request->alpha2, alpha2, 2);
377
378         spin_lock(&reg_regdb_search_lock);
379         list_add_tail(&request->list, &reg_regdb_search_list);
380         spin_unlock(&reg_regdb_search_lock);
381
382         schedule_work(&reg_regdb_work);
383 }
384 #else
385 static inline void reg_regdb_query(const char *alpha2) {}
386 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
387
388 /*
389  * This lets us keep regulatory code which is updated on a regulatory
390  * basis in userspace.
391  */
392 static int call_crda(const char *alpha2)
393 {
394         char country_env[9 + 2] = "COUNTRY=";
395         char *envp[] = {
396                 country_env,
397                 NULL
398         };
399
400         if (!is_world_regdom((char *) alpha2))
401                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
402                         alpha2[0], alpha2[1]);
403         else
404                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
405                         "regulatory domain\n");
406
407         /* query internal regulatory database (if it exists) */
408         reg_regdb_query(alpha2);
409
410         country_env[8] = alpha2[0];
411         country_env[9] = alpha2[1];
412
413         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
414 }
415
416 /* Used by nl80211 before kmalloc'ing our regulatory domain */
417 bool reg_is_valid_request(const char *alpha2)
418 {
419         assert_cfg80211_lock();
420
421         if (!last_request)
422                 return false;
423
424         return alpha2_equal(last_request->alpha2, alpha2);
425 }
426
427 /* Sanity check on a regulatory rule */
428 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
429 {
430         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
431         u32 freq_diff;
432
433         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
434                 return false;
435
436         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
437                 return false;
438
439         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
440
441         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
442                         freq_range->max_bandwidth_khz > freq_diff)
443                 return false;
444
445         return true;
446 }
447
448 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
449 {
450         const struct ieee80211_reg_rule *reg_rule = NULL;
451         unsigned int i;
452
453         if (!rd->n_reg_rules)
454                 return false;
455
456         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
457                 return false;
458
459         for (i = 0; i < rd->n_reg_rules; i++) {
460                 reg_rule = &rd->reg_rules[i];
461                 if (!is_valid_reg_rule(reg_rule))
462                         return false;
463         }
464
465         return true;
466 }
467
468 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
469                             u32 center_freq_khz,
470                             u32 bw_khz)
471 {
472         u32 start_freq_khz, end_freq_khz;
473
474         start_freq_khz = center_freq_khz - (bw_khz/2);
475         end_freq_khz = center_freq_khz + (bw_khz/2);
476
477         if (start_freq_khz >= freq_range->start_freq_khz &&
478             end_freq_khz <= freq_range->end_freq_khz)
479                 return true;
480
481         return false;
482 }
483
484 /**
485  * freq_in_rule_band - tells us if a frequency is in a frequency band
486  * @freq_range: frequency rule we want to query
487  * @freq_khz: frequency we are inquiring about
488  *
489  * This lets us know if a specific frequency rule is or is not relevant to
490  * a specific frequency's band. Bands are device specific and artificial
491  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
492  * safe for now to assume that a frequency rule should not be part of a
493  * frequency's band if the start freq or end freq are off by more than 2 GHz.
494  * This resolution can be lowered and should be considered as we add
495  * regulatory rule support for other "bands".
496  **/
497 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
498         u32 freq_khz)
499 {
500 #define ONE_GHZ_IN_KHZ  1000000
501         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
502                 return true;
503         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
504                 return true;
505         return false;
506 #undef ONE_GHZ_IN_KHZ
507 }
508
509 /*
510  * This is a work around for sanity checking ieee80211_channel_to_frequency()'s
511  * work. ieee80211_channel_to_frequency() can for example currently provide a
512  * 2 GHz channel when in fact a 5 GHz channel was desired. An example would be
513  * an AP providing channel 8 on a country IE triplet when it sent this on the
514  * 5 GHz band, that channel is designed to be channel 8 on 5 GHz, not a 2 GHz
515  * channel.
516  *
517  * This can be removed once ieee80211_channel_to_frequency() takes in a band.
518  */
519 static bool chan_in_band(int chan, enum ieee80211_band band)
520 {
521         int center_freq = ieee80211_channel_to_frequency(chan);
522
523         switch (band) {
524         case IEEE80211_BAND_2GHZ:
525                 if (center_freq <= 2484)
526                         return true;
527                 return false;
528         case IEEE80211_BAND_5GHZ:
529                 if (center_freq >= 5005)
530                         return true;
531                 return false;
532         default:
533                 return false;
534         }
535 }
536
537 /*
538  * Some APs may send a country IE triplet for each channel they
539  * support and while this is completely overkill and silly we still
540  * need to support it. We avoid making a single rule for each channel
541  * though and to help us with this we use this helper to find the
542  * actual subband end channel. These type of country IE triplet
543  * scenerios are handled then, all yielding two regulaotry rules from
544  * parsing a country IE:
545  *
546  * [1]
547  * [2]
548  * [36]
549  * [40]
550  *
551  * [1]
552  * [2-4]
553  * [5-12]
554  * [36]
555  * [40-44]
556  *
557  * [1-4]
558  * [5-7]
559  * [36-44]
560  * [48-64]
561  *
562  * [36-36]
563  * [40-40]
564  * [44-44]
565  * [48-48]
566  * [52-52]
567  * [56-56]
568  * [60-60]
569  * [64-64]
570  * [100-100]
571  * [104-104]
572  * [108-108]
573  * [112-112]
574  * [116-116]
575  * [120-120]
576  * [124-124]
577  * [128-128]
578  * [132-132]
579  * [136-136]
580  * [140-140]
581  *
582  * Returns 0 if the IE has been found to be invalid in the middle
583  * somewhere.
584  */
585 static int max_subband_chan(enum ieee80211_band band,
586                             int orig_cur_chan,
587                             int orig_end_channel,
588                             s8 orig_max_power,
589                             u8 **country_ie,
590                             u8 *country_ie_len)
591 {
592         u8 *triplets_start = *country_ie;
593         u8 len_at_triplet = *country_ie_len;
594         int end_subband_chan = orig_end_channel;
595
596         /*
597          * We'll deal with padding for the caller unless
598          * its not immediate and we don't process any channels
599          */
600         if (*country_ie_len == 1) {
601                 *country_ie += 1;
602                 *country_ie_len -= 1;
603                 return orig_end_channel;
604         }
605
606         /* Move to the next triplet and then start search */
607         *country_ie += 3;
608         *country_ie_len -= 3;
609
610         if (!chan_in_band(orig_cur_chan, band))
611                 return 0;
612
613         while (*country_ie_len >= 3) {
614                 int end_channel = 0;
615                 struct ieee80211_country_ie_triplet *triplet =
616                         (struct ieee80211_country_ie_triplet *) *country_ie;
617                 int cur_channel = 0, next_expected_chan;
618
619                 /* means last triplet is completely unrelated to this one */
620                 if (triplet->ext.reg_extension_id >=
621                                 IEEE80211_COUNTRY_EXTENSION_ID) {
622                         *country_ie -= 3;
623                         *country_ie_len += 3;
624                         break;
625                 }
626
627                 if (triplet->chans.first_channel == 0) {
628                         *country_ie += 1;
629                         *country_ie_len -= 1;
630                         if (*country_ie_len != 0)
631                                 return 0;
632                         break;
633                 }
634
635                 if (triplet->chans.num_channels == 0)
636                         return 0;
637
638                 /* Monitonically increasing channel order */
639                 if (triplet->chans.first_channel <= end_subband_chan)
640                         return 0;
641
642                 if (!chan_in_band(triplet->chans.first_channel, band))
643                         return 0;
644
645                 /* 2 GHz */
646                 if (triplet->chans.first_channel <= 14) {
647                         end_channel = triplet->chans.first_channel +
648                                 triplet->chans.num_channels - 1;
649                 }
650                 else {
651                         end_channel =  triplet->chans.first_channel +
652                                 (4 * (triplet->chans.num_channels - 1));
653                 }
654
655                 if (!chan_in_band(end_channel, band))
656                         return 0;
657
658                 if (orig_max_power != triplet->chans.max_power) {
659                         *country_ie -= 3;
660                         *country_ie_len += 3;
661                         break;
662                 }
663
664                 cur_channel = triplet->chans.first_channel;
665
666                 /* The key is finding the right next expected channel */
667                 if (band == IEEE80211_BAND_2GHZ)
668                         next_expected_chan = end_subband_chan + 1;
669                  else
670                         next_expected_chan = end_subband_chan + 4;
671
672                 if (cur_channel != next_expected_chan) {
673                         *country_ie -= 3;
674                         *country_ie_len += 3;
675                         break;
676                 }
677
678                 end_subband_chan = end_channel;
679
680                 /* Move to the next one */
681                 *country_ie += 3;
682                 *country_ie_len -= 3;
683
684                 /*
685                  * Padding needs to be dealt with if we processed
686                  * some channels.
687                  */
688                 if (*country_ie_len == 1) {
689                         *country_ie += 1;
690                         *country_ie_len -= 1;
691                         break;
692                 }
693
694                 /* If seen, the IE is invalid */
695                 if (*country_ie_len == 2)
696                         return 0;
697         }
698
699         if (end_subband_chan == orig_end_channel) {
700                 *country_ie = triplets_start;
701                 *country_ie_len = len_at_triplet;
702                 return orig_end_channel;
703         }
704
705         return end_subband_chan;
706 }
707
708 /*
709  * Converts a country IE to a regulatory domain. A regulatory domain
710  * structure has a lot of information which the IE doesn't yet have,
711  * so for the other values we use upper max values as we will intersect
712  * with our userspace regulatory agent to get lower bounds.
713  */
714 static struct ieee80211_regdomain *country_ie_2_rd(
715                                 enum ieee80211_band band,
716                                 u8 *country_ie,
717                                 u8 country_ie_len,
718                                 u32 *checksum)
719 {
720         struct ieee80211_regdomain *rd = NULL;
721         unsigned int i = 0;
722         char alpha2[2];
723         u32 flags = 0;
724         u32 num_rules = 0, size_of_regd = 0;
725         u8 *triplets_start = NULL;
726         u8 len_at_triplet = 0;
727         /* the last channel we have registered in a subband (triplet) */
728         int last_sub_max_channel = 0;
729
730         *checksum = 0xDEADBEEF;
731
732         /* Country IE requirements */
733         BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
734                 country_ie_len & 0x01);
735
736         alpha2[0] = country_ie[0];
737         alpha2[1] = country_ie[1];
738
739         /*
740          * Third octet can be:
741          *    'I' - Indoor
742          *    'O' - Outdoor
743          *
744          *  anything else we assume is no restrictions
745          */
746         if (country_ie[2] == 'I')
747                 flags = NL80211_RRF_NO_OUTDOOR;
748         else if (country_ie[2] == 'O')
749                 flags = NL80211_RRF_NO_INDOOR;
750
751         country_ie += 3;
752         country_ie_len -= 3;
753
754         triplets_start = country_ie;
755         len_at_triplet = country_ie_len;
756
757         *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
758
759         /*
760          * We need to build a reg rule for each triplet, but first we must
761          * calculate the number of reg rules we will need. We will need one
762          * for each channel subband
763          */
764         while (country_ie_len >= 3) {
765                 int end_channel = 0;
766                 struct ieee80211_country_ie_triplet *triplet =
767                         (struct ieee80211_country_ie_triplet *) country_ie;
768                 int cur_sub_max_channel = 0, cur_channel = 0;
769
770                 if (triplet->ext.reg_extension_id >=
771                                 IEEE80211_COUNTRY_EXTENSION_ID) {
772                         country_ie += 3;
773                         country_ie_len -= 3;
774                         continue;
775                 }
776
777                 /*
778                  * APs can add padding to make length divisible
779                  * by two, required by the spec.
780                  */
781                 if (triplet->chans.first_channel == 0) {
782                         country_ie++;
783                         country_ie_len--;
784                         /* This is expected to be at the very end only */
785                         if (country_ie_len != 0)
786                                 return NULL;
787                         break;
788                 }
789
790                 if (triplet->chans.num_channels == 0)
791                         return NULL;
792
793                 if (!chan_in_band(triplet->chans.first_channel, band))
794                         return NULL;
795
796                 /* 2 GHz */
797                 if (band == IEEE80211_BAND_2GHZ)
798                         end_channel = triplet->chans.first_channel +
799                                 triplet->chans.num_channels - 1;
800                 else
801                         /*
802                          * 5 GHz -- For example in country IEs if the first
803                          * channel given is 36 and the number of channels is 4
804                          * then the individual channel numbers defined for the
805                          * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
806                          * and not 36, 37, 38, 39.
807                          *
808                          * See: http://tinyurl.com/11d-clarification
809                          */
810                         end_channel =  triplet->chans.first_channel +
811                                 (4 * (triplet->chans.num_channels - 1));
812
813                 cur_channel = triplet->chans.first_channel;
814
815                 /*
816                  * Enhancement for APs that send a triplet for every channel
817                  * or for whatever reason sends triplets with multiple channels
818                  * separated when in fact they should be together.
819                  */
820                 end_channel = max_subband_chan(band,
821                                                cur_channel,
822                                                end_channel,
823                                                triplet->chans.max_power,
824                                                &country_ie,
825                                                &country_ie_len);
826                 if (!end_channel)
827                         return NULL;
828
829                 if (!chan_in_band(end_channel, band))
830                         return NULL;
831
832                 cur_sub_max_channel = end_channel;
833
834                 /* Basic sanity check */
835                 if (cur_sub_max_channel < cur_channel)
836                         return NULL;
837
838                 /*
839                  * Do not allow overlapping channels. Also channels
840                  * passed in each subband must be monotonically
841                  * increasing
842                  */
843                 if (last_sub_max_channel) {
844                         if (cur_channel <= last_sub_max_channel)
845                                 return NULL;
846                         if (cur_sub_max_channel <= last_sub_max_channel)
847                                 return NULL;
848                 }
849
850                 /*
851                  * When dot11RegulatoryClassesRequired is supported
852                  * we can throw ext triplets as part of this soup,
853                  * for now we don't care when those change as we
854                  * don't support them
855                  */
856                 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
857                   ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
858                   ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
859
860                 last_sub_max_channel = cur_sub_max_channel;
861
862                 num_rules++;
863
864                 if (country_ie_len >= 3) {
865                         country_ie += 3;
866                         country_ie_len -= 3;
867                 }
868
869                 /*
870                  * Note: this is not a IEEE requirement but
871                  * simply a memory requirement
872                  */
873                 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
874                         return NULL;
875         }
876
877         country_ie = triplets_start;
878         country_ie_len = len_at_triplet;
879
880         size_of_regd = sizeof(struct ieee80211_regdomain) +
881                 (num_rules * sizeof(struct ieee80211_reg_rule));
882
883         rd = kzalloc(size_of_regd, GFP_KERNEL);
884         if (!rd)
885                 return NULL;
886
887         rd->n_reg_rules = num_rules;
888         rd->alpha2[0] = alpha2[0];
889         rd->alpha2[1] = alpha2[1];
890
891         /* This time around we fill in the rd */
892         while (country_ie_len >= 3) {
893                 int end_channel = 0;
894                 struct ieee80211_country_ie_triplet *triplet =
895                         (struct ieee80211_country_ie_triplet *) country_ie;
896                 struct ieee80211_reg_rule *reg_rule = NULL;
897                 struct ieee80211_freq_range *freq_range = NULL;
898                 struct ieee80211_power_rule *power_rule = NULL;
899
900                 /*
901                  * Must parse if dot11RegulatoryClassesRequired is true,
902                  * we don't support this yet
903                  */
904                 if (triplet->ext.reg_extension_id >=
905                                 IEEE80211_COUNTRY_EXTENSION_ID) {
906                         country_ie += 3;
907                         country_ie_len -= 3;
908                         continue;
909                 }
910
911                 if (triplet->chans.first_channel == 0) {
912                         country_ie++;
913                         country_ie_len--;
914                         break;
915                 }
916
917                 reg_rule = &rd->reg_rules[i];
918                 freq_range = &reg_rule->freq_range;
919                 power_rule = &reg_rule->power_rule;
920
921                 reg_rule->flags = flags;
922
923                 /* 2 GHz */
924                 if (band == IEEE80211_BAND_2GHZ)
925                         end_channel = triplet->chans.first_channel +
926                                 triplet->chans.num_channels -1;
927                 else
928                         end_channel =  triplet->chans.first_channel +
929                                 (4 * (triplet->chans.num_channels - 1));
930
931                 end_channel = max_subband_chan(band,
932                                                triplet->chans.first_channel,
933                                                end_channel,
934                                                triplet->chans.max_power,
935                                                &country_ie,
936                                                &country_ie_len);
937
938                 /*
939                  * The +10 is since the regulatory domain expects
940                  * the actual band edge, not the center of freq for
941                  * its start and end freqs, assuming 20 MHz bandwidth on
942                  * the channels passed
943                  */
944                 freq_range->start_freq_khz =
945                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
946                                 triplet->chans.first_channel) - 10);
947                 freq_range->end_freq_khz =
948                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
949                                 end_channel) + 10);
950
951                 /*
952                  * These are large arbitrary values we use to intersect later.
953                  * Increment this if we ever support >= 40 MHz channels
954                  * in IEEE 802.11
955                  */
956                 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
957                 power_rule->max_antenna_gain = DBI_TO_MBI(100);
958                 power_rule->max_eirp = DBM_TO_MBM(triplet->chans.max_power);
959
960                 i++;
961
962                 if (country_ie_len >= 3) {
963                         country_ie += 3;
964                         country_ie_len -= 3;
965                 }
966
967                 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
968         }
969
970         return rd;
971 }
972
973
974 /*
975  * Helper for regdom_intersect(), this does the real
976  * mathematical intersection fun
977  */
978 static int reg_rules_intersect(
979         const struct ieee80211_reg_rule *rule1,
980         const struct ieee80211_reg_rule *rule2,
981         struct ieee80211_reg_rule *intersected_rule)
982 {
983         const struct ieee80211_freq_range *freq_range1, *freq_range2;
984         struct ieee80211_freq_range *freq_range;
985         const struct ieee80211_power_rule *power_rule1, *power_rule2;
986         struct ieee80211_power_rule *power_rule;
987         u32 freq_diff;
988
989         freq_range1 = &rule1->freq_range;
990         freq_range2 = &rule2->freq_range;
991         freq_range = &intersected_rule->freq_range;
992
993         power_rule1 = &rule1->power_rule;
994         power_rule2 = &rule2->power_rule;
995         power_rule = &intersected_rule->power_rule;
996
997         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
998                 freq_range2->start_freq_khz);
999         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1000                 freq_range2->end_freq_khz);
1001         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
1002                 freq_range2->max_bandwidth_khz);
1003
1004         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1005         if (freq_range->max_bandwidth_khz > freq_diff)
1006                 freq_range->max_bandwidth_khz = freq_diff;
1007
1008         power_rule->max_eirp = min(power_rule1->max_eirp,
1009                 power_rule2->max_eirp);
1010         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1011                 power_rule2->max_antenna_gain);
1012
1013         intersected_rule->flags = (rule1->flags | rule2->flags);
1014
1015         if (!is_valid_reg_rule(intersected_rule))
1016                 return -EINVAL;
1017
1018         return 0;
1019 }
1020
1021 /**
1022  * regdom_intersect - do the intersection between two regulatory domains
1023  * @rd1: first regulatory domain
1024  * @rd2: second regulatory domain
1025  *
1026  * Use this function to get the intersection between two regulatory domains.
1027  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1028  * as no one single alpha2 can represent this regulatory domain.
1029  *
1030  * Returns a pointer to the regulatory domain structure which will hold the
1031  * resulting intersection of rules between rd1 and rd2. We will
1032  * kzalloc() this structure for you.
1033  */
1034 static struct ieee80211_regdomain *regdom_intersect(
1035         const struct ieee80211_regdomain *rd1,
1036         const struct ieee80211_regdomain *rd2)
1037 {
1038         int r, size_of_regd;
1039         unsigned int x, y;
1040         unsigned int num_rules = 0, rule_idx = 0;
1041         const struct ieee80211_reg_rule *rule1, *rule2;
1042         struct ieee80211_reg_rule *intersected_rule;
1043         struct ieee80211_regdomain *rd;
1044         /* This is just a dummy holder to help us count */
1045         struct ieee80211_reg_rule irule;
1046
1047         /* Uses the stack temporarily for counter arithmetic */
1048         intersected_rule = &irule;
1049
1050         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
1051
1052         if (!rd1 || !rd2)
1053                 return NULL;
1054
1055         /*
1056          * First we get a count of the rules we'll need, then we actually
1057          * build them. This is to so we can malloc() and free() a
1058          * regdomain once. The reason we use reg_rules_intersect() here
1059          * is it will return -EINVAL if the rule computed makes no sense.
1060          * All rules that do check out OK are valid.
1061          */
1062
1063         for (x = 0; x < rd1->n_reg_rules; x++) {
1064                 rule1 = &rd1->reg_rules[x];
1065                 for (y = 0; y < rd2->n_reg_rules; y++) {
1066                         rule2 = &rd2->reg_rules[y];
1067                         if (!reg_rules_intersect(rule1, rule2,
1068                                         intersected_rule))
1069                                 num_rules++;
1070                         memset(intersected_rule, 0,
1071                                         sizeof(struct ieee80211_reg_rule));
1072                 }
1073         }
1074
1075         if (!num_rules)
1076                 return NULL;
1077
1078         size_of_regd = sizeof(struct ieee80211_regdomain) +
1079                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
1080
1081         rd = kzalloc(size_of_regd, GFP_KERNEL);
1082         if (!rd)
1083                 return NULL;
1084
1085         for (x = 0; x < rd1->n_reg_rules; x++) {
1086                 rule1 = &rd1->reg_rules[x];
1087                 for (y = 0; y < rd2->n_reg_rules; y++) {
1088                         rule2 = &rd2->reg_rules[y];
1089                         /*
1090                          * This time around instead of using the stack lets
1091                          * write to the target rule directly saving ourselves
1092                          * a memcpy()
1093                          */
1094                         intersected_rule = &rd->reg_rules[rule_idx];
1095                         r = reg_rules_intersect(rule1, rule2,
1096                                 intersected_rule);
1097                         /*
1098                          * No need to memset here the intersected rule here as
1099                          * we're not using the stack anymore
1100                          */
1101                         if (r)
1102                                 continue;
1103                         rule_idx++;
1104                 }
1105         }
1106
1107         if (rule_idx != num_rules) {
1108                 kfree(rd);
1109                 return NULL;
1110         }
1111
1112         rd->n_reg_rules = num_rules;
1113         rd->alpha2[0] = '9';
1114         rd->alpha2[1] = '8';
1115
1116         return rd;
1117 }
1118
1119 /*
1120  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1121  * want to just have the channel structure use these
1122  */
1123 static u32 map_regdom_flags(u32 rd_flags)
1124 {
1125         u32 channel_flags = 0;
1126         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
1127                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
1128         if (rd_flags & NL80211_RRF_NO_IBSS)
1129                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
1130         if (rd_flags & NL80211_RRF_DFS)
1131                 channel_flags |= IEEE80211_CHAN_RADAR;
1132         return channel_flags;
1133 }
1134
1135 static int freq_reg_info_regd(struct wiphy *wiphy,
1136                               u32 center_freq,
1137                               u32 desired_bw_khz,
1138                               const struct ieee80211_reg_rule **reg_rule,
1139                               const struct ieee80211_regdomain *custom_regd)
1140 {
1141         int i;
1142         bool band_rule_found = false;
1143         const struct ieee80211_regdomain *regd;
1144         bool bw_fits = false;
1145
1146         if (!desired_bw_khz)
1147                 desired_bw_khz = MHZ_TO_KHZ(20);
1148
1149         regd = custom_regd ? custom_regd : cfg80211_regdomain;
1150
1151         /*
1152          * Follow the driver's regulatory domain, if present, unless a country
1153          * IE has been processed or a user wants to help complaince further
1154          */
1155         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1156             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
1157             wiphy->regd)
1158                 regd = wiphy->regd;
1159
1160         if (!regd)
1161                 return -EINVAL;
1162
1163         for (i = 0; i < regd->n_reg_rules; i++) {
1164                 const struct ieee80211_reg_rule *rr;
1165                 const struct ieee80211_freq_range *fr = NULL;
1166                 const struct ieee80211_power_rule *pr = NULL;
1167
1168                 rr = &regd->reg_rules[i];
1169                 fr = &rr->freq_range;
1170                 pr = &rr->power_rule;
1171
1172                 /*
1173                  * We only need to know if one frequency rule was
1174                  * was in center_freq's band, that's enough, so lets
1175                  * not overwrite it once found
1176                  */
1177                 if (!band_rule_found)
1178                         band_rule_found = freq_in_rule_band(fr, center_freq);
1179
1180                 bw_fits = reg_does_bw_fit(fr,
1181                                           center_freq,
1182                                           desired_bw_khz);
1183
1184                 if (band_rule_found && bw_fits) {
1185                         *reg_rule = rr;
1186                         return 0;
1187                 }
1188         }
1189
1190         if (!band_rule_found)
1191                 return -ERANGE;
1192
1193         return -EINVAL;
1194 }
1195 EXPORT_SYMBOL(freq_reg_info);
1196
1197 int freq_reg_info(struct wiphy *wiphy,
1198                   u32 center_freq,
1199                   u32 desired_bw_khz,
1200                   const struct ieee80211_reg_rule **reg_rule)
1201 {
1202         assert_cfg80211_lock();
1203         return freq_reg_info_regd(wiphy,
1204                                   center_freq,
1205                                   desired_bw_khz,
1206                                   reg_rule,
1207                                   NULL);
1208 }
1209
1210 /*
1211  * Note that right now we assume the desired channel bandwidth
1212  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1213  * per channel, the primary and the extension channel). To support
1214  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
1215  * new ieee80211_channel.target_bw and re run the regulatory check
1216  * on the wiphy with the target_bw specified. Then we can simply use
1217  * that below for the desired_bw_khz below.
1218  */
1219 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
1220                            unsigned int chan_idx)
1221 {
1222         int r;
1223         u32 flags, bw_flags = 0;
1224         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1225         const struct ieee80211_reg_rule *reg_rule = NULL;
1226         const struct ieee80211_power_rule *power_rule = NULL;
1227         const struct ieee80211_freq_range *freq_range = NULL;
1228         struct ieee80211_supported_band *sband;
1229         struct ieee80211_channel *chan;
1230         struct wiphy *request_wiphy = NULL;
1231
1232         assert_cfg80211_lock();
1233
1234         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1235
1236         sband = wiphy->bands[band];
1237         BUG_ON(chan_idx >= sband->n_channels);
1238         chan = &sband->channels[chan_idx];
1239
1240         flags = chan->orig_flags;
1241
1242         r = freq_reg_info(wiphy,
1243                           MHZ_TO_KHZ(chan->center_freq),
1244                           desired_bw_khz,
1245                           &reg_rule);
1246
1247         if (r) {
1248                 /*
1249                  * This means no regulatory rule was found in the country IE
1250                  * with a frequency range on the center_freq's band, since
1251                  * IEEE-802.11 allows for a country IE to have a subset of the
1252                  * regulatory information provided in a country we ignore
1253                  * disabling the channel unless at least one reg rule was
1254                  * found on the center_freq's band. For details see this
1255                  * clarification:
1256                  *
1257                  * http://tinyurl.com/11d-clarification
1258                  */
1259                 if (r == -ERANGE &&
1260                     last_request->initiator ==
1261                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1262                         REG_DBG_PRINT("cfg80211: Leaving channel %d MHz "
1263                                 "intact on %s - no rule found in band on "
1264                                 "Country IE\n",
1265                         chan->center_freq, wiphy_name(wiphy));
1266                 } else {
1267                 /*
1268                  * In this case we know the country IE has at least one reg rule
1269                  * for the band so we respect its band definitions
1270                  */
1271                         if (last_request->initiator ==
1272                             NL80211_REGDOM_SET_BY_COUNTRY_IE)
1273                                 REG_DBG_PRINT("cfg80211: Disabling "
1274                                         "channel %d MHz on %s due to "
1275                                         "Country IE\n",
1276                                         chan->center_freq, wiphy_name(wiphy));
1277                         flags |= IEEE80211_CHAN_DISABLED;
1278                         chan->flags = flags;
1279                 }
1280                 return;
1281         }
1282
1283         power_rule = &reg_rule->power_rule;
1284         freq_range = &reg_rule->freq_range;
1285
1286         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1287                 bw_flags = IEEE80211_CHAN_NO_HT40;
1288
1289         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1290             request_wiphy && request_wiphy == wiphy &&
1291             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1292                 /*
1293                  * This gaurantees the driver's requested regulatory domain
1294                  * will always be used as a base for further regulatory
1295                  * settings
1296                  */
1297                 chan->flags = chan->orig_flags =
1298                         map_regdom_flags(reg_rule->flags) | bw_flags;
1299                 chan->max_antenna_gain = chan->orig_mag =
1300                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1301                 chan->max_power = chan->orig_mpwr =
1302                         (int) MBM_TO_DBM(power_rule->max_eirp);
1303                 return;
1304         }
1305
1306         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1307         chan->max_antenna_gain = min(chan->orig_mag,
1308                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
1309         if (chan->orig_mpwr)
1310                 chan->max_power = min(chan->orig_mpwr,
1311                         (int) MBM_TO_DBM(power_rule->max_eirp));
1312         else
1313                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1314 }
1315
1316 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1317 {
1318         unsigned int i;
1319         struct ieee80211_supported_band *sband;
1320
1321         BUG_ON(!wiphy->bands[band]);
1322         sband = wiphy->bands[band];
1323
1324         for (i = 0; i < sband->n_channels; i++)
1325                 handle_channel(wiphy, band, i);
1326 }
1327
1328 static bool ignore_reg_update(struct wiphy *wiphy,
1329                               enum nl80211_reg_initiator initiator)
1330 {
1331         if (!last_request)
1332                 return true;
1333         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1334             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1335                 return true;
1336         /*
1337          * wiphy->regd will be set once the device has its own
1338          * desired regulatory domain set
1339          */
1340         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1341             !is_world_regdom(last_request->alpha2))
1342                 return true;
1343         return false;
1344 }
1345
1346 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1347 {
1348         struct cfg80211_registered_device *rdev;
1349
1350         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1351                 wiphy_update_regulatory(&rdev->wiphy, initiator);
1352 }
1353
1354 static void handle_reg_beacon(struct wiphy *wiphy,
1355                               unsigned int chan_idx,
1356                               struct reg_beacon *reg_beacon)
1357 {
1358         struct ieee80211_supported_band *sband;
1359         struct ieee80211_channel *chan;
1360         bool channel_changed = false;
1361         struct ieee80211_channel chan_before;
1362
1363         assert_cfg80211_lock();
1364
1365         sband = wiphy->bands[reg_beacon->chan.band];
1366         chan = &sband->channels[chan_idx];
1367
1368         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1369                 return;
1370
1371         if (chan->beacon_found)
1372                 return;
1373
1374         chan->beacon_found = true;
1375
1376         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1377                 return;
1378
1379         chan_before.center_freq = chan->center_freq;
1380         chan_before.flags = chan->flags;
1381
1382         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1383                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1384                 channel_changed = true;
1385         }
1386
1387         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1388                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1389                 channel_changed = true;
1390         }
1391
1392         if (channel_changed)
1393                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1394 }
1395
1396 /*
1397  * Called when a scan on a wiphy finds a beacon on
1398  * new channel
1399  */
1400 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1401                                     struct reg_beacon *reg_beacon)
1402 {
1403         unsigned int i;
1404         struct ieee80211_supported_band *sband;
1405
1406         assert_cfg80211_lock();
1407
1408         if (!wiphy->bands[reg_beacon->chan.band])
1409                 return;
1410
1411         sband = wiphy->bands[reg_beacon->chan.band];
1412
1413         for (i = 0; i < sband->n_channels; i++)
1414                 handle_reg_beacon(wiphy, i, reg_beacon);
1415 }
1416
1417 /*
1418  * Called upon reg changes or a new wiphy is added
1419  */
1420 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1421 {
1422         unsigned int i;
1423         struct ieee80211_supported_band *sband;
1424         struct reg_beacon *reg_beacon;
1425
1426         assert_cfg80211_lock();
1427
1428         if (list_empty(&reg_beacon_list))
1429                 return;
1430
1431         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1432                 if (!wiphy->bands[reg_beacon->chan.band])
1433                         continue;
1434                 sband = wiphy->bands[reg_beacon->chan.band];
1435                 for (i = 0; i < sband->n_channels; i++)
1436                         handle_reg_beacon(wiphy, i, reg_beacon);
1437         }
1438 }
1439
1440 static bool reg_is_world_roaming(struct wiphy *wiphy)
1441 {
1442         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1443             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1444                 return true;
1445         if (last_request &&
1446             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1447             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1448                 return true;
1449         return false;
1450 }
1451
1452 /* Reap the advantages of previously found beacons */
1453 static void reg_process_beacons(struct wiphy *wiphy)
1454 {
1455         /*
1456          * Means we are just firing up cfg80211, so no beacons would
1457          * have been processed yet.
1458          */
1459         if (!last_request)
1460                 return;
1461         if (!reg_is_world_roaming(wiphy))
1462                 return;
1463         wiphy_update_beacon_reg(wiphy);
1464 }
1465
1466 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1467 {
1468         if (!chan)
1469                 return true;
1470         if (chan->flags & IEEE80211_CHAN_DISABLED)
1471                 return true;
1472         /* This would happen when regulatory rules disallow HT40 completely */
1473         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1474                 return true;
1475         return false;
1476 }
1477
1478 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1479                                          enum ieee80211_band band,
1480                                          unsigned int chan_idx)
1481 {
1482         struct ieee80211_supported_band *sband;
1483         struct ieee80211_channel *channel;
1484         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1485         unsigned int i;
1486
1487         assert_cfg80211_lock();
1488
1489         sband = wiphy->bands[band];
1490         BUG_ON(chan_idx >= sband->n_channels);
1491         channel = &sband->channels[chan_idx];
1492
1493         if (is_ht40_not_allowed(channel)) {
1494                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1495                 return;
1496         }
1497
1498         /*
1499          * We need to ensure the extension channels exist to
1500          * be able to use HT40- or HT40+, this finds them (or not)
1501          */
1502         for (i = 0; i < sband->n_channels; i++) {
1503                 struct ieee80211_channel *c = &sband->channels[i];
1504                 if (c->center_freq == (channel->center_freq - 20))
1505                         channel_before = c;
1506                 if (c->center_freq == (channel->center_freq + 20))
1507                         channel_after = c;
1508         }
1509
1510         /*
1511          * Please note that this assumes target bandwidth is 20 MHz,
1512          * if that ever changes we also need to change the below logic
1513          * to include that as well.
1514          */
1515         if (is_ht40_not_allowed(channel_before))
1516                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1517         else
1518                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1519
1520         if (is_ht40_not_allowed(channel_after))
1521                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1522         else
1523                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1524 }
1525
1526 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1527                                       enum ieee80211_band band)
1528 {
1529         unsigned int i;
1530         struct ieee80211_supported_band *sband;
1531
1532         BUG_ON(!wiphy->bands[band]);
1533         sband = wiphy->bands[band];
1534
1535         for (i = 0; i < sband->n_channels; i++)
1536                 reg_process_ht_flags_channel(wiphy, band, i);
1537 }
1538
1539 static void reg_process_ht_flags(struct wiphy *wiphy)
1540 {
1541         enum ieee80211_band band;
1542
1543         if (!wiphy)
1544                 return;
1545
1546         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1547                 if (wiphy->bands[band])
1548                         reg_process_ht_flags_band(wiphy, band);
1549         }
1550
1551 }
1552
1553 void wiphy_update_regulatory(struct wiphy *wiphy,
1554                              enum nl80211_reg_initiator initiator)
1555 {
1556         enum ieee80211_band band;
1557
1558         if (ignore_reg_update(wiphy, initiator))
1559                 goto out;
1560         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1561                 if (wiphy->bands[band])
1562                         handle_band(wiphy, band);
1563         }
1564 out:
1565         reg_process_beacons(wiphy);
1566         reg_process_ht_flags(wiphy);
1567         if (wiphy->reg_notifier)
1568                 wiphy->reg_notifier(wiphy, last_request);
1569 }
1570
1571 static void handle_channel_custom(struct wiphy *wiphy,
1572                                   enum ieee80211_band band,
1573                                   unsigned int chan_idx,
1574                                   const struct ieee80211_regdomain *regd)
1575 {
1576         int r;
1577         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1578         u32 bw_flags = 0;
1579         const struct ieee80211_reg_rule *reg_rule = NULL;
1580         const struct ieee80211_power_rule *power_rule = NULL;
1581         const struct ieee80211_freq_range *freq_range = NULL;
1582         struct ieee80211_supported_band *sband;
1583         struct ieee80211_channel *chan;
1584
1585         assert_reg_lock();
1586
1587         sband = wiphy->bands[band];
1588         BUG_ON(chan_idx >= sband->n_channels);
1589         chan = &sband->channels[chan_idx];
1590
1591         r = freq_reg_info_regd(wiphy,
1592                                MHZ_TO_KHZ(chan->center_freq),
1593                                desired_bw_khz,
1594                                &reg_rule,
1595                                regd);
1596
1597         if (r) {
1598                 chan->flags = IEEE80211_CHAN_DISABLED;
1599                 return;
1600         }
1601
1602         power_rule = &reg_rule->power_rule;
1603         freq_range = &reg_rule->freq_range;
1604
1605         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1606                 bw_flags = IEEE80211_CHAN_NO_HT40;
1607
1608         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1609         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1610         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1611 }
1612
1613 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1614                                const struct ieee80211_regdomain *regd)
1615 {
1616         unsigned int i;
1617         struct ieee80211_supported_band *sband;
1618
1619         BUG_ON(!wiphy->bands[band]);
1620         sband = wiphy->bands[band];
1621
1622         for (i = 0; i < sband->n_channels; i++)
1623                 handle_channel_custom(wiphy, band, i, regd);
1624 }
1625
1626 /* Used by drivers prior to wiphy registration */
1627 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1628                                    const struct ieee80211_regdomain *regd)
1629 {
1630         enum ieee80211_band band;
1631         unsigned int bands_set = 0;
1632
1633         mutex_lock(&reg_mutex);
1634         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1635                 if (!wiphy->bands[band])
1636                         continue;
1637                 handle_band_custom(wiphy, band, regd);
1638                 bands_set++;
1639         }
1640         mutex_unlock(&reg_mutex);
1641
1642         /*
1643          * no point in calling this if it won't have any effect
1644          * on your device's supportd bands.
1645          */
1646         WARN_ON(!bands_set);
1647 }
1648 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1649
1650 /*
1651  * Return value which can be used by ignore_request() to indicate
1652  * it has been determined we should intersect two regulatory domains
1653  */
1654 #define REG_INTERSECT   1
1655
1656 /* This has the logic which determines when a new request
1657  * should be ignored. */
1658 static int ignore_request(struct wiphy *wiphy,
1659                           struct regulatory_request *pending_request)
1660 {
1661         struct wiphy *last_wiphy = NULL;
1662
1663         assert_cfg80211_lock();
1664
1665         /* All initial requests are respected */
1666         if (!last_request)
1667                 return 0;
1668
1669         switch (pending_request->initiator) {
1670         case NL80211_REGDOM_SET_BY_CORE:
1671                 return 0;
1672         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1673
1674                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1675
1676                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1677                         return -EINVAL;
1678                 if (last_request->initiator ==
1679                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1680                         if (last_wiphy != wiphy) {
1681                                 /*
1682                                  * Two cards with two APs claiming different
1683                                  * Country IE alpha2s. We could
1684                                  * intersect them, but that seems unlikely
1685                                  * to be correct. Reject second one for now.
1686                                  */
1687                                 if (regdom_changes(pending_request->alpha2))
1688                                         return -EOPNOTSUPP;
1689                                 return -EALREADY;
1690                         }
1691                         /*
1692                          * Two consecutive Country IE hints on the same wiphy.
1693                          * This should be picked up early by the driver/stack
1694                          */
1695                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1696                                 return 0;
1697                         return -EALREADY;
1698                 }
1699                 return REG_INTERSECT;
1700         case NL80211_REGDOM_SET_BY_DRIVER:
1701                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1702                         if (regdom_changes(pending_request->alpha2))
1703                                 return 0;
1704                         return -EALREADY;
1705                 }
1706
1707                 /*
1708                  * This would happen if you unplug and plug your card
1709                  * back in or if you add a new device for which the previously
1710                  * loaded card also agrees on the regulatory domain.
1711                  */
1712                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1713                     !regdom_changes(pending_request->alpha2))
1714                         return -EALREADY;
1715
1716                 return REG_INTERSECT;
1717         case NL80211_REGDOM_SET_BY_USER:
1718                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1719                         return REG_INTERSECT;
1720                 /*
1721                  * If the user knows better the user should set the regdom
1722                  * to their country before the IE is picked up
1723                  */
1724                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1725                           last_request->intersect)
1726                         return -EOPNOTSUPP;
1727                 /*
1728                  * Process user requests only after previous user/driver/core
1729                  * requests have been processed
1730                  */
1731                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1732                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1733                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1734                         if (regdom_changes(last_request->alpha2))
1735                                 return -EAGAIN;
1736                 }
1737
1738                 if (!regdom_changes(pending_request->alpha2))
1739                         return -EALREADY;
1740
1741                 return 0;
1742         }
1743
1744         return -EINVAL;
1745 }
1746
1747 /**
1748  * __regulatory_hint - hint to the wireless core a regulatory domain
1749  * @wiphy: if the hint comes from country information from an AP, this
1750  *      is required to be set to the wiphy that received the information
1751  * @pending_request: the regulatory request currently being processed
1752  *
1753  * The Wireless subsystem can use this function to hint to the wireless core
1754  * what it believes should be the current regulatory domain.
1755  *
1756  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1757  * already been set or other standard error codes.
1758  *
1759  * Caller must hold &cfg80211_mutex and &reg_mutex
1760  */
1761 static int __regulatory_hint(struct wiphy *wiphy,
1762                              struct regulatory_request *pending_request)
1763 {
1764         bool intersect = false;
1765         int r = 0;
1766
1767         assert_cfg80211_lock();
1768
1769         r = ignore_request(wiphy, pending_request);
1770
1771         if (r == REG_INTERSECT) {
1772                 if (pending_request->initiator ==
1773                     NL80211_REGDOM_SET_BY_DRIVER) {
1774                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1775                         if (r) {
1776                                 kfree(pending_request);
1777                                 return r;
1778                         }
1779                 }
1780                 intersect = true;
1781         } else if (r) {
1782                 /*
1783                  * If the regulatory domain being requested by the
1784                  * driver has already been set just copy it to the
1785                  * wiphy
1786                  */
1787                 if (r == -EALREADY &&
1788                     pending_request->initiator ==
1789                     NL80211_REGDOM_SET_BY_DRIVER) {
1790                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1791                         if (r) {
1792                                 kfree(pending_request);
1793                                 return r;
1794                         }
1795                         r = -EALREADY;
1796                         goto new_request;
1797                 }
1798                 kfree(pending_request);
1799                 return r;
1800         }
1801
1802 new_request:
1803         kfree(last_request);
1804
1805         last_request = pending_request;
1806         last_request->intersect = intersect;
1807
1808         pending_request = NULL;
1809
1810         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1811                 user_alpha2[0] = last_request->alpha2[0];
1812                 user_alpha2[1] = last_request->alpha2[1];
1813         }
1814
1815         /* When r == REG_INTERSECT we do need to call CRDA */
1816         if (r < 0) {
1817                 /*
1818                  * Since CRDA will not be called in this case as we already
1819                  * have applied the requested regulatory domain before we just
1820                  * inform userspace we have processed the request
1821                  */
1822                 if (r == -EALREADY)
1823                         nl80211_send_reg_change_event(last_request);
1824                 return r;
1825         }
1826
1827         return call_crda(last_request->alpha2);
1828 }
1829
1830 /* This processes *all* regulatory hints */
1831 static void reg_process_hint(struct regulatory_request *reg_request)
1832 {
1833         int r = 0;
1834         struct wiphy *wiphy = NULL;
1835
1836         BUG_ON(!reg_request->alpha2);
1837
1838         mutex_lock(&cfg80211_mutex);
1839         mutex_lock(&reg_mutex);
1840
1841         if (wiphy_idx_valid(reg_request->wiphy_idx))
1842                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1843
1844         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1845             !wiphy) {
1846                 kfree(reg_request);
1847                 goto out;
1848         }
1849
1850         r = __regulatory_hint(wiphy, reg_request);
1851         /* This is required so that the orig_* parameters are saved */
1852         if (r == -EALREADY && wiphy &&
1853             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1854                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1855 out:
1856         mutex_unlock(&reg_mutex);
1857         mutex_unlock(&cfg80211_mutex);
1858 }
1859
1860 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1861 static void reg_process_pending_hints(void)
1862         {
1863         struct regulatory_request *reg_request;
1864
1865         spin_lock(&reg_requests_lock);
1866         while (!list_empty(&reg_requests_list)) {
1867                 reg_request = list_first_entry(&reg_requests_list,
1868                                                struct regulatory_request,
1869                                                list);
1870                 list_del_init(&reg_request->list);
1871
1872                 spin_unlock(&reg_requests_lock);
1873                 reg_process_hint(reg_request);
1874                 spin_lock(&reg_requests_lock);
1875         }
1876         spin_unlock(&reg_requests_lock);
1877 }
1878
1879 /* Processes beacon hints -- this has nothing to do with country IEs */
1880 static void reg_process_pending_beacon_hints(void)
1881 {
1882         struct cfg80211_registered_device *rdev;
1883         struct reg_beacon *pending_beacon, *tmp;
1884
1885         /*
1886          * No need to hold the reg_mutex here as we just touch wiphys
1887          * and do not read or access regulatory variables.
1888          */
1889         mutex_lock(&cfg80211_mutex);
1890
1891         /* This goes through the _pending_ beacon list */
1892         spin_lock_bh(&reg_pending_beacons_lock);
1893
1894         if (list_empty(&reg_pending_beacons)) {
1895                 spin_unlock_bh(&reg_pending_beacons_lock);
1896                 goto out;
1897         }
1898
1899         list_for_each_entry_safe(pending_beacon, tmp,
1900                                  &reg_pending_beacons, list) {
1901
1902                 list_del_init(&pending_beacon->list);
1903
1904                 /* Applies the beacon hint to current wiphys */
1905                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1906                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1907
1908                 /* Remembers the beacon hint for new wiphys or reg changes */
1909                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1910         }
1911
1912         spin_unlock_bh(&reg_pending_beacons_lock);
1913 out:
1914         mutex_unlock(&cfg80211_mutex);
1915 }
1916
1917 static void reg_todo(struct work_struct *work)
1918 {
1919         reg_process_pending_hints();
1920         reg_process_pending_beacon_hints();
1921 }
1922
1923 static DECLARE_WORK(reg_work, reg_todo);
1924
1925 static void queue_regulatory_request(struct regulatory_request *request)
1926 {
1927         spin_lock(&reg_requests_lock);
1928         list_add_tail(&request->list, &reg_requests_list);
1929         spin_unlock(&reg_requests_lock);
1930
1931         schedule_work(&reg_work);
1932 }
1933
1934 /*
1935  * Core regulatory hint -- happens during cfg80211_init()
1936  * and when we restore regulatory settings.
1937  */
1938 static int regulatory_hint_core(const char *alpha2)
1939 {
1940         struct regulatory_request *request;
1941
1942         kfree(last_request);
1943         last_request = NULL;
1944
1945         request = kzalloc(sizeof(struct regulatory_request),
1946                           GFP_KERNEL);
1947         if (!request)
1948                 return -ENOMEM;
1949
1950         request->alpha2[0] = alpha2[0];
1951         request->alpha2[1] = alpha2[1];
1952         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1953
1954         /*
1955          * This ensures last_request is populated once modules
1956          * come swinging in and calling regulatory hints and
1957          * wiphy_apply_custom_regulatory().
1958          */
1959         reg_process_hint(request);
1960
1961         return 0;
1962 }
1963
1964 /* User hints */
1965 int regulatory_hint_user(const char *alpha2)
1966 {
1967         struct regulatory_request *request;
1968
1969         BUG_ON(!alpha2);
1970
1971         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1972         if (!request)
1973                 return -ENOMEM;
1974
1975         request->wiphy_idx = WIPHY_IDX_STALE;
1976         request->alpha2[0] = alpha2[0];
1977         request->alpha2[1] = alpha2[1];
1978         request->initiator = NL80211_REGDOM_SET_BY_USER;
1979
1980         queue_regulatory_request(request);
1981
1982         return 0;
1983 }
1984
1985 /* Driver hints */
1986 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1987 {
1988         struct regulatory_request *request;
1989
1990         BUG_ON(!alpha2);
1991         BUG_ON(!wiphy);
1992
1993         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1994         if (!request)
1995                 return -ENOMEM;
1996
1997         request->wiphy_idx = get_wiphy_idx(wiphy);
1998
1999         /* Must have registered wiphy first */
2000         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
2001
2002         request->alpha2[0] = alpha2[0];
2003         request->alpha2[1] = alpha2[1];
2004         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2005
2006         queue_regulatory_request(request);
2007
2008         return 0;
2009 }
2010 EXPORT_SYMBOL(regulatory_hint);
2011
2012 /* Caller must hold reg_mutex */
2013 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
2014                         u32 country_ie_checksum)
2015 {
2016         struct wiphy *request_wiphy;
2017
2018         assert_reg_lock();
2019
2020         if (unlikely(last_request->initiator !=
2021             NL80211_REGDOM_SET_BY_COUNTRY_IE))
2022                 return false;
2023
2024         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2025
2026         if (!request_wiphy)
2027                 return false;
2028
2029         if (likely(request_wiphy != wiphy))
2030                 return !country_ie_integrity_changes(country_ie_checksum);
2031         /*
2032          * We should not have let these through at this point, they
2033          * should have been picked up earlier by the first alpha2 check
2034          * on the device
2035          */
2036         if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
2037                 return true;
2038         return false;
2039 }
2040
2041 /*
2042  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
2043  * therefore cannot iterate over the rdev list here.
2044  */
2045 void regulatory_hint_11d(struct wiphy *wiphy,
2046                          enum ieee80211_band band,
2047                          u8 *country_ie,
2048                          u8 country_ie_len)
2049 {
2050         struct ieee80211_regdomain *rd = NULL;
2051         char alpha2[2];
2052         u32 checksum = 0;
2053         enum environment_cap env = ENVIRON_ANY;
2054         struct regulatory_request *request;
2055
2056         mutex_lock(&reg_mutex);
2057
2058         if (unlikely(!last_request))
2059                 goto out;
2060
2061         /* IE len must be evenly divisible by 2 */
2062         if (country_ie_len & 0x01)
2063                 goto out;
2064
2065         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2066                 goto out;
2067
2068         /*
2069          * Pending country IE processing, this can happen after we
2070          * call CRDA and wait for a response if a beacon was received before
2071          * we were able to process the last regulatory_hint_11d() call
2072          */
2073         if (country_ie_regdomain)
2074                 goto out;
2075
2076         alpha2[0] = country_ie[0];
2077         alpha2[1] = country_ie[1];
2078
2079         if (country_ie[2] == 'I')
2080                 env = ENVIRON_INDOOR;
2081         else if (country_ie[2] == 'O')
2082                 env = ENVIRON_OUTDOOR;
2083
2084         /*
2085          * We will run this only upon a successful connection on cfg80211.
2086          * We leave conflict resolution to the workqueue, where can hold
2087          * cfg80211_mutex.
2088          */
2089         if (likely(last_request->initiator ==
2090             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2091             wiphy_idx_valid(last_request->wiphy_idx)))
2092                 goto out;
2093
2094         rd = country_ie_2_rd(band, country_ie, country_ie_len, &checksum);
2095         if (!rd) {
2096                 REG_DBG_PRINT("cfg80211: Ignoring bogus country IE\n");
2097                 goto out;
2098         }
2099
2100         /*
2101          * This will not happen right now but we leave it here for the
2102          * the future when we want to add suspend/resume support and having
2103          * the user move to another country after doing so, or having the user
2104          * move to another AP. Right now we just trust the first AP.
2105          *
2106          * If we hit this before we add this support we want to be informed of
2107          * it as it would indicate a mistake in the current design
2108          */
2109         if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
2110                 goto free_rd_out;
2111
2112         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2113         if (!request)
2114                 goto free_rd_out;
2115
2116         /*
2117          * We keep this around for when CRDA comes back with a response so
2118          * we can intersect with that
2119          */
2120         country_ie_regdomain = rd;
2121
2122         request->wiphy_idx = get_wiphy_idx(wiphy);
2123         request->alpha2[0] = rd->alpha2[0];
2124         request->alpha2[1] = rd->alpha2[1];
2125         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2126         request->country_ie_checksum = checksum;
2127         request->country_ie_env = env;
2128
2129         mutex_unlock(&reg_mutex);
2130
2131         queue_regulatory_request(request);
2132
2133         return;
2134
2135 free_rd_out:
2136         kfree(rd);
2137 out:
2138         mutex_unlock(&reg_mutex);
2139 }
2140
2141 static void restore_alpha2(char *alpha2, bool reset_user)
2142 {
2143         /* indicates there is no alpha2 to consider for restoration */
2144         alpha2[0] = '9';
2145         alpha2[1] = '7';
2146
2147         /* The user setting has precedence over the module parameter */
2148         if (is_user_regdom_saved()) {
2149                 /* Unless we're asked to ignore it and reset it */
2150                 if (reset_user) {
2151                         REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
2152                                "including user preference\n");
2153                         user_alpha2[0] = '9';
2154                         user_alpha2[1] = '7';
2155
2156                         /*
2157                          * If we're ignoring user settings, we still need to
2158                          * check the module parameter to ensure we put things
2159                          * back as they were for a full restore.
2160                          */
2161                         if (!is_world_regdom(ieee80211_regdom)) {
2162                                 REG_DBG_PRINT("cfg80211: Keeping preference on "
2163                                        "module parameter ieee80211_regdom: %c%c\n",
2164                                        ieee80211_regdom[0],
2165                                        ieee80211_regdom[1]);
2166                                 alpha2[0] = ieee80211_regdom[0];
2167                                 alpha2[1] = ieee80211_regdom[1];
2168                         }
2169                 } else {
2170                         REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
2171                                "while preserving user preference for: %c%c\n",
2172                                user_alpha2[0],
2173                                user_alpha2[1]);
2174                         alpha2[0] = user_alpha2[0];
2175                         alpha2[1] = user_alpha2[1];
2176                 }
2177         } else if (!is_world_regdom(ieee80211_regdom)) {
2178                 REG_DBG_PRINT("cfg80211: Keeping preference on "
2179                        "module parameter ieee80211_regdom: %c%c\n",
2180                        ieee80211_regdom[0],
2181                        ieee80211_regdom[1]);
2182                 alpha2[0] = ieee80211_regdom[0];
2183                 alpha2[1] = ieee80211_regdom[1];
2184         } else
2185                 REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
2186 }
2187
2188 /*
2189  * Restoring regulatory settings involves ingoring any
2190  * possibly stale country IE information and user regulatory
2191  * settings if so desired, this includes any beacon hints
2192  * learned as we could have traveled outside to another country
2193  * after disconnection. To restore regulatory settings we do
2194  * exactly what we did at bootup:
2195  *
2196  *   - send a core regulatory hint
2197  *   - send a user regulatory hint if applicable
2198  *
2199  * Device drivers that send a regulatory hint for a specific country
2200  * keep their own regulatory domain on wiphy->regd so that does does
2201  * not need to be remembered.
2202  */
2203 static void restore_regulatory_settings(bool reset_user)
2204 {
2205         char alpha2[2];
2206         struct reg_beacon *reg_beacon, *btmp;
2207
2208         mutex_lock(&cfg80211_mutex);
2209         mutex_lock(&reg_mutex);
2210
2211         reset_regdomains();
2212         restore_alpha2(alpha2, reset_user);
2213
2214         /* Clear beacon hints */
2215         spin_lock_bh(&reg_pending_beacons_lock);
2216         if (!list_empty(&reg_pending_beacons)) {
2217                 list_for_each_entry_safe(reg_beacon, btmp,
2218                                          &reg_pending_beacons, list) {
2219                         list_del(&reg_beacon->list);
2220                         kfree(reg_beacon);
2221                 }
2222         }
2223         spin_unlock_bh(&reg_pending_beacons_lock);
2224
2225         if (!list_empty(&reg_beacon_list)) {
2226                 list_for_each_entry_safe(reg_beacon, btmp,
2227                                          &reg_beacon_list, list) {
2228                         list_del(&reg_beacon->list);
2229                         kfree(reg_beacon);
2230                 }
2231         }
2232
2233         /* First restore to the basic regulatory settings */
2234         cfg80211_regdomain = cfg80211_world_regdom;
2235
2236         mutex_unlock(&reg_mutex);
2237         mutex_unlock(&cfg80211_mutex);
2238
2239         regulatory_hint_core(cfg80211_regdomain->alpha2);
2240
2241         /*
2242          * This restores the ieee80211_regdom module parameter
2243          * preference or the last user requested regulatory
2244          * settings, user regulatory settings takes precedence.
2245          */
2246         if (is_an_alpha2(alpha2))
2247                 regulatory_hint_user(user_alpha2);
2248 }
2249
2250
2251 void regulatory_hint_disconnect(void)
2252 {
2253         REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
2254                       "restore regulatory settings\n");
2255         restore_regulatory_settings(false);
2256 }
2257
2258 static bool freq_is_chan_12_13_14(u16 freq)
2259 {
2260         if (freq == ieee80211_channel_to_frequency(12) ||
2261             freq == ieee80211_channel_to_frequency(13) ||
2262             freq == ieee80211_channel_to_frequency(14))
2263                 return true;
2264         return false;
2265 }
2266
2267 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2268                                  struct ieee80211_channel *beacon_chan,
2269                                  gfp_t gfp)
2270 {
2271         struct reg_beacon *reg_beacon;
2272
2273         if (likely((beacon_chan->beacon_found ||
2274             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
2275             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2276              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
2277                 return 0;
2278
2279         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2280         if (!reg_beacon)
2281                 return -ENOMEM;
2282
2283         REG_DBG_PRINT("cfg80211: Found new beacon on "
2284                       "frequency: %d MHz (Ch %d) on %s\n",
2285                       beacon_chan->center_freq,
2286                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2287                       wiphy_name(wiphy));
2288
2289         memcpy(&reg_beacon->chan, beacon_chan,
2290                 sizeof(struct ieee80211_channel));
2291
2292
2293         /*
2294          * Since we can be called from BH or and non-BH context
2295          * we must use spin_lock_bh()
2296          */
2297         spin_lock_bh(&reg_pending_beacons_lock);
2298         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2299         spin_unlock_bh(&reg_pending_beacons_lock);
2300
2301         schedule_work(&reg_work);
2302
2303         return 0;
2304 }
2305
2306 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2307 {
2308         unsigned int i;
2309         const struct ieee80211_reg_rule *reg_rule = NULL;
2310         const struct ieee80211_freq_range *freq_range = NULL;
2311         const struct ieee80211_power_rule *power_rule = NULL;
2312
2313         printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
2314                 "(max_antenna_gain, max_eirp)\n");
2315
2316         for (i = 0; i < rd->n_reg_rules; i++) {
2317                 reg_rule = &rd->reg_rules[i];
2318                 freq_range = &reg_rule->freq_range;
2319                 power_rule = &reg_rule->power_rule;
2320
2321                 /*
2322                  * There may not be documentation for max antenna gain
2323                  * in certain regions
2324                  */
2325                 if (power_rule->max_antenna_gain)
2326                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
2327                                 "(%d mBi, %d mBm)\n",
2328                                 freq_range->start_freq_khz,
2329                                 freq_range->end_freq_khz,
2330                                 freq_range->max_bandwidth_khz,
2331                                 power_rule->max_antenna_gain,
2332                                 power_rule->max_eirp);
2333                 else
2334                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
2335                                 "(N/A, %d mBm)\n",
2336                                 freq_range->start_freq_khz,
2337                                 freq_range->end_freq_khz,
2338                                 freq_range->max_bandwidth_khz,
2339                                 power_rule->max_eirp);
2340         }
2341 }
2342
2343 static void print_regdomain(const struct ieee80211_regdomain *rd)
2344 {
2345
2346         if (is_intersected_alpha2(rd->alpha2)) {
2347
2348                 if (last_request->initiator ==
2349                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2350                         struct cfg80211_registered_device *rdev;
2351                         rdev = cfg80211_rdev_by_wiphy_idx(
2352                                 last_request->wiphy_idx);
2353                         if (rdev) {
2354                                 printk(KERN_INFO "cfg80211: Current regulatory "
2355                                         "domain updated by AP to: %c%c\n",
2356                                         rdev->country_ie_alpha2[0],
2357                                         rdev->country_ie_alpha2[1]);
2358                         } else
2359                                 printk(KERN_INFO "cfg80211: Current regulatory "
2360                                         "domain intersected: \n");
2361                 } else
2362                                 printk(KERN_INFO "cfg80211: Current regulatory "
2363                                         "domain intersected: \n");
2364         } else if (is_world_regdom(rd->alpha2))
2365                 printk(KERN_INFO "cfg80211: World regulatory "
2366                         "domain updated:\n");
2367         else {
2368                 if (is_unknown_alpha2(rd->alpha2))
2369                         printk(KERN_INFO "cfg80211: Regulatory domain "
2370                                 "changed to driver built-in settings "
2371                                 "(unknown country)\n");
2372                 else
2373                         printk(KERN_INFO "cfg80211: Regulatory domain "
2374                                 "changed to country: %c%c\n",
2375                                 rd->alpha2[0], rd->alpha2[1]);
2376         }
2377         print_rd_rules(rd);
2378 }
2379
2380 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2381 {
2382         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
2383                 rd->alpha2[0], rd->alpha2[1]);
2384         print_rd_rules(rd);
2385 }
2386
2387 #ifdef CONFIG_CFG80211_REG_DEBUG
2388 static void reg_country_ie_process_debug(
2389         const struct ieee80211_regdomain *rd,
2390         const struct ieee80211_regdomain *country_ie_regdomain,
2391         const struct ieee80211_regdomain *intersected_rd)
2392 {
2393         printk(KERN_DEBUG "cfg80211: Received country IE:\n");
2394         print_regdomain_info(country_ie_regdomain);
2395         printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
2396         print_regdomain_info(rd);
2397         if (intersected_rd) {
2398                 printk(KERN_DEBUG "cfg80211: We intersect both of these "
2399                         "and get:\n");
2400                 print_regdomain_info(intersected_rd);
2401                 return;
2402         }
2403         printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
2404 }
2405 #else
2406 static inline void reg_country_ie_process_debug(
2407         const struct ieee80211_regdomain *rd,
2408         const struct ieee80211_regdomain *country_ie_regdomain,
2409         const struct ieee80211_regdomain *intersected_rd)
2410 {
2411 }
2412 #endif
2413
2414 /* Takes ownership of rd only if it doesn't fail */
2415 static int __set_regdom(const struct ieee80211_regdomain *rd)
2416 {
2417         const struct ieee80211_regdomain *intersected_rd = NULL;
2418         struct cfg80211_registered_device *rdev = NULL;
2419         struct wiphy *request_wiphy;
2420         /* Some basic sanity checks first */
2421
2422         if (is_world_regdom(rd->alpha2)) {
2423                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2424                         return -EINVAL;
2425                 update_world_regdomain(rd);
2426                 return 0;
2427         }
2428
2429         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2430                         !is_unknown_alpha2(rd->alpha2))
2431                 return -EINVAL;
2432
2433         if (!last_request)
2434                 return -EINVAL;
2435
2436         /*
2437          * Lets only bother proceeding on the same alpha2 if the current
2438          * rd is non static (it means CRDA was present and was used last)
2439          * and the pending request came in from a country IE
2440          */
2441         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2442                 /*
2443                  * If someone else asked us to change the rd lets only bother
2444                  * checking if the alpha2 changes if CRDA was already called
2445                  */
2446                 if (!regdom_changes(rd->alpha2))
2447                         return -EINVAL;
2448         }
2449
2450         /*
2451          * Now lets set the regulatory domain, update all driver channels
2452          * and finally inform them of what we have done, in case they want
2453          * to review or adjust their own settings based on their own
2454          * internal EEPROM data
2455          */
2456
2457         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2458                 return -EINVAL;
2459
2460         if (!is_valid_rd(rd)) {
2461                 printk(KERN_ERR "cfg80211: Invalid "
2462                         "regulatory domain detected:\n");
2463                 print_regdomain_info(rd);
2464                 return -EINVAL;
2465         }
2466
2467         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2468
2469         if (!last_request->intersect) {
2470                 int r;
2471
2472                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2473                         reset_regdomains();
2474                         cfg80211_regdomain = rd;
2475                         return 0;
2476                 }
2477
2478                 /*
2479                  * For a driver hint, lets copy the regulatory domain the
2480                  * driver wanted to the wiphy to deal with conflicts
2481                  */
2482
2483                 /*
2484                  * Userspace could have sent two replies with only
2485                  * one kernel request.
2486                  */
2487                 if (request_wiphy->regd)
2488                         return -EALREADY;
2489
2490                 r = reg_copy_regd(&request_wiphy->regd, rd);
2491                 if (r)
2492                         return r;
2493
2494                 reset_regdomains();
2495                 cfg80211_regdomain = rd;
2496                 return 0;
2497         }
2498
2499         /* Intersection requires a bit more work */
2500
2501         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2502
2503                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2504                 if (!intersected_rd)
2505                         return -EINVAL;
2506
2507                 /*
2508                  * We can trash what CRDA provided now.
2509                  * However if a driver requested this specific regulatory
2510                  * domain we keep it for its private use
2511                  */
2512                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2513                         request_wiphy->regd = rd;
2514                 else
2515                         kfree(rd);
2516
2517                 rd = NULL;
2518
2519                 reset_regdomains();
2520                 cfg80211_regdomain = intersected_rd;
2521
2522                 return 0;
2523         }
2524
2525         /*
2526          * Country IE requests are handled a bit differently, we intersect
2527          * the country IE rd with what CRDA believes that country should have
2528          */
2529
2530         /*
2531          * Userspace could have sent two replies with only
2532          * one kernel request. By the second reply we would have
2533          * already processed and consumed the country_ie_regdomain.
2534          */
2535         if (!country_ie_regdomain)
2536                 return -EALREADY;
2537         BUG_ON(rd == country_ie_regdomain);
2538
2539         /*
2540          * Intersect what CRDA returned and our what we
2541          * had built from the Country IE received
2542          */
2543
2544         intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2545
2546         reg_country_ie_process_debug(rd,
2547                                      country_ie_regdomain,
2548                                      intersected_rd);
2549
2550         kfree(country_ie_regdomain);
2551         country_ie_regdomain = NULL;
2552
2553         if (!intersected_rd)
2554                 return -EINVAL;
2555
2556         rdev = wiphy_to_dev(request_wiphy);
2557
2558         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2559         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2560         rdev->env = last_request->country_ie_env;
2561
2562         BUG_ON(intersected_rd == rd);
2563
2564         kfree(rd);
2565         rd = NULL;
2566
2567         reset_regdomains();
2568         cfg80211_regdomain = intersected_rd;
2569
2570         return 0;
2571 }
2572
2573
2574 /*
2575  * Use this call to set the current regulatory domain. Conflicts with
2576  * multiple drivers can be ironed out later. Caller must've already
2577  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2578  */
2579 int set_regdom(const struct ieee80211_regdomain *rd)
2580 {
2581         int r;
2582
2583         assert_cfg80211_lock();
2584
2585         mutex_lock(&reg_mutex);
2586
2587         /* Note that this doesn't update the wiphys, this is done below */
2588         r = __set_regdom(rd);
2589         if (r) {
2590                 kfree(rd);
2591                 mutex_unlock(&reg_mutex);
2592                 return r;
2593         }
2594
2595         /* This would make this whole thing pointless */
2596         if (!last_request->intersect)
2597                 BUG_ON(rd != cfg80211_regdomain);
2598
2599         /* update all wiphys now with the new established regulatory domain */
2600         update_all_wiphy_regulatory(last_request->initiator);
2601
2602         print_regdomain(cfg80211_regdomain);
2603
2604         nl80211_send_reg_change_event(last_request);
2605
2606         mutex_unlock(&reg_mutex);
2607
2608         return r;
2609 }
2610
2611 /* Caller must hold cfg80211_mutex */
2612 void reg_device_remove(struct wiphy *wiphy)
2613 {
2614         struct wiphy *request_wiphy = NULL;
2615
2616         assert_cfg80211_lock();
2617
2618         mutex_lock(&reg_mutex);
2619
2620         kfree(wiphy->regd);
2621
2622         if (last_request)
2623                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2624
2625         if (!request_wiphy || request_wiphy != wiphy)
2626                 goto out;
2627
2628         last_request->wiphy_idx = WIPHY_IDX_STALE;
2629         last_request->country_ie_env = ENVIRON_ANY;
2630 out:
2631         mutex_unlock(&reg_mutex);
2632 }
2633
2634 int regulatory_init(void)
2635 {
2636         int err = 0;
2637
2638         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2639         if (IS_ERR(reg_pdev))
2640                 return PTR_ERR(reg_pdev);
2641
2642         spin_lock_init(&reg_requests_lock);
2643         spin_lock_init(&reg_pending_beacons_lock);
2644
2645         cfg80211_regdomain = cfg80211_world_regdom;
2646
2647         user_alpha2[0] = '9';
2648         user_alpha2[1] = '7';
2649
2650         /* We always try to get an update for the static regdomain */
2651         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2652         if (err) {
2653                 if (err == -ENOMEM)
2654                         return err;
2655                 /*
2656                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2657                  * memory which is handled and propagated appropriately above
2658                  * but it can also fail during a netlink_broadcast() or during
2659                  * early boot for call_usermodehelper(). For now treat these
2660                  * errors as non-fatal.
2661                  */
2662                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2663                         "to call CRDA during init");
2664 #ifdef CONFIG_CFG80211_REG_DEBUG
2665                 /* We want to find out exactly why when debugging */
2666                 WARN_ON(err);
2667 #endif
2668         }
2669
2670         /*
2671          * Finally, if the user set the module parameter treat it
2672          * as a user hint.
2673          */
2674         if (!is_world_regdom(ieee80211_regdom))
2675                 regulatory_hint_user(ieee80211_regdom);
2676
2677         return 0;
2678 }
2679
2680 void regulatory_exit(void)
2681 {
2682         struct regulatory_request *reg_request, *tmp;
2683         struct reg_beacon *reg_beacon, *btmp;
2684
2685         cancel_work_sync(&reg_work);
2686
2687         mutex_lock(&cfg80211_mutex);
2688         mutex_lock(&reg_mutex);
2689
2690         reset_regdomains();
2691
2692         kfree(country_ie_regdomain);
2693         country_ie_regdomain = NULL;
2694
2695         kfree(last_request);
2696
2697         platform_device_unregister(reg_pdev);
2698
2699         spin_lock_bh(&reg_pending_beacons_lock);
2700         if (!list_empty(&reg_pending_beacons)) {
2701                 list_for_each_entry_safe(reg_beacon, btmp,
2702                                          &reg_pending_beacons, list) {
2703                         list_del(&reg_beacon->list);
2704                         kfree(reg_beacon);
2705                 }
2706         }
2707         spin_unlock_bh(&reg_pending_beacons_lock);
2708
2709         if (!list_empty(&reg_beacon_list)) {
2710                 list_for_each_entry_safe(reg_beacon, btmp,
2711                                          &reg_beacon_list, list) {
2712                         list_del(&reg_beacon->list);
2713                         kfree(reg_beacon);
2714                 }
2715         }
2716
2717         spin_lock(&reg_requests_lock);
2718         if (!list_empty(&reg_requests_list)) {
2719                 list_for_each_entry_safe(reg_request, tmp,
2720                                          &reg_requests_list, list) {
2721                         list_del(&reg_request->list);
2722                         kfree(reg_request);
2723                 }
2724         }
2725         spin_unlock(&reg_requests_lock);
2726
2727         mutex_unlock(&reg_mutex);
2728         mutex_unlock(&cfg80211_mutex);
2729 }