wl1251: fix ELP_CTRL register reads
[pandora-wifi.git] / drivers / net / atlx / atl1.c
1 /*
2  * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
3  * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
4  * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
5  *
6  * Derived from Intel e1000 driver
7  * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * You should have received a copy of the GNU General Public License along with
20  * this program; if not, write to the Free Software Foundation, Inc., 59
21  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
22  *
23  * The full GNU General Public License is included in this distribution in the
24  * file called COPYING.
25  *
26  * Contact Information:
27  * Xiong Huang <xiong.huang@atheros.com>
28  * Jie Yang <jie.yang@atheros.com>
29  * Chris Snook <csnook@redhat.com>
30  * Jay Cliburn <jcliburn@gmail.com>
31  *
32  * This version is adapted from the Attansic reference driver.
33  *
34  * TODO:
35  * Add more ethtool functions.
36  * Fix abstruse irq enable/disable condition described here:
37  *      http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
38  *
39  * NEEDS TESTING:
40  * VLAN
41  * multicast
42  * promiscuous mode
43  * interrupt coalescing
44  * SMP torture testing
45  */
46
47 #include <asm/atomic.h>
48 #include <asm/byteorder.h>
49
50 #include <linux/compiler.h>
51 #include <linux/crc32.h>
52 #include <linux/delay.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/etherdevice.h>
55 #include <linux/hardirq.h>
56 #include <linux/if_ether.h>
57 #include <linux/if_vlan.h>
58 #include <linux/in.h>
59 #include <linux/interrupt.h>
60 #include <linux/ip.h>
61 #include <linux/irqflags.h>
62 #include <linux/irqreturn.h>
63 #include <linux/jiffies.h>
64 #include <linux/mii.h>
65 #include <linux/module.h>
66 #include <linux/moduleparam.h>
67 #include <linux/net.h>
68 #include <linux/netdevice.h>
69 #include <linux/pci.h>
70 #include <linux/pci_ids.h>
71 #include <linux/pm.h>
72 #include <linux/skbuff.h>
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/string.h>
76 #include <linux/tcp.h>
77 #include <linux/timer.h>
78 #include <linux/types.h>
79 #include <linux/workqueue.h>
80
81 #include <net/checksum.h>
82
83 #include "atl1.h"
84
85 #define ATLX_DRIVER_VERSION "2.1.3"
86 MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, \
87         Chris Snook <csnook@redhat.com>, Jay Cliburn <jcliburn@gmail.com>");
88 MODULE_LICENSE("GPL");
89 MODULE_VERSION(ATLX_DRIVER_VERSION);
90
91 /* Temporary hack for merging atl1 and atl2 */
92 #include "atlx.c"
93
94 /*
95  * This is the only thing that needs to be changed to adjust the
96  * maximum number of ports that the driver can manage.
97  */
98 #define ATL1_MAX_NIC 4
99
100 #define OPTION_UNSET    -1
101 #define OPTION_DISABLED 0
102 #define OPTION_ENABLED  1
103
104 #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
105
106 /*
107  * Interrupt Moderate Timer in units of 2 us
108  *
109  * Valid Range: 10-65535
110  *
111  * Default Value: 100 (200us)
112  */
113 static int __devinitdata int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
114 static unsigned int num_int_mod_timer;
115 module_param_array_named(int_mod_timer, int_mod_timer, int,
116         &num_int_mod_timer, 0);
117 MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
118
119 #define DEFAULT_INT_MOD_CNT     100     /* 200us */
120 #define MAX_INT_MOD_CNT         65000
121 #define MIN_INT_MOD_CNT         50
122
123 struct atl1_option {
124         enum { enable_option, range_option, list_option } type;
125         char *name;
126         char *err;
127         int def;
128         union {
129                 struct {        /* range_option info */
130                         int min;
131                         int max;
132                 } r;
133                 struct {        /* list_option info */
134                         int nr;
135                         struct atl1_opt_list {
136                                 int i;
137                                 char *str;
138                         } *p;
139                 } l;
140         } arg;
141 };
142
143 static int __devinit atl1_validate_option(int *value, struct atl1_option *opt,
144         struct pci_dev *pdev)
145 {
146         if (*value == OPTION_UNSET) {
147                 *value = opt->def;
148                 return 0;
149         }
150
151         switch (opt->type) {
152         case enable_option:
153                 switch (*value) {
154                 case OPTION_ENABLED:
155                         dev_info(&pdev->dev, "%s enabled\n", opt->name);
156                         return 0;
157                 case OPTION_DISABLED:
158                         dev_info(&pdev->dev, "%s disabled\n", opt->name);
159                         return 0;
160                 }
161                 break;
162         case range_option:
163                 if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
164                         dev_info(&pdev->dev, "%s set to %i\n", opt->name,
165                                 *value);
166                         return 0;
167                 }
168                 break;
169         case list_option:{
170                         int i;
171                         struct atl1_opt_list *ent;
172
173                         for (i = 0; i < opt->arg.l.nr; i++) {
174                                 ent = &opt->arg.l.p[i];
175                                 if (*value == ent->i) {
176                                         if (ent->str[0] != '\0')
177                                                 dev_info(&pdev->dev, "%s\n",
178                                                         ent->str);
179                                         return 0;
180                                 }
181                         }
182                 }
183                 break;
184
185         default:
186                 break;
187         }
188
189         dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
190                 opt->name, *value, opt->err);
191         *value = opt->def;
192         return -1;
193 }
194
195 /*
196  * atl1_check_options - Range Checking for Command Line Parameters
197  * @adapter: board private structure
198  *
199  * This routine checks all command line parameters for valid user
200  * input.  If an invalid value is given, or if no user specified
201  * value exists, a default value is used.  The final value is stored
202  * in a variable in the adapter structure.
203  */
204 static void __devinit atl1_check_options(struct atl1_adapter *adapter)
205 {
206         struct pci_dev *pdev = adapter->pdev;
207         int bd = adapter->bd_number;
208         if (bd >= ATL1_MAX_NIC) {
209                 dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
210                 dev_notice(&pdev->dev, "using defaults for all values\n");
211         }
212         {                       /* Interrupt Moderate Timer */
213                 struct atl1_option opt = {
214                         .type = range_option,
215                         .name = "Interrupt Moderator Timer",
216                         .err = "using default of "
217                                 __MODULE_STRING(DEFAULT_INT_MOD_CNT),
218                         .def = DEFAULT_INT_MOD_CNT,
219                         .arg = {.r = {.min = MIN_INT_MOD_CNT,
220                                         .max = MAX_INT_MOD_CNT} }
221                 };
222                 int val;
223                 if (num_int_mod_timer > bd) {
224                         val = int_mod_timer[bd];
225                         atl1_validate_option(&val, &opt, pdev);
226                         adapter->imt = (u16) val;
227                 } else
228                         adapter->imt = (u16) (opt.def);
229         }
230 }
231
232 /*
233  * atl1_pci_tbl - PCI Device ID Table
234  */
235 static DEFINE_PCI_DEVICE_TABLE(atl1_pci_tbl) = {
236         {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
237         /* required last entry */
238         {0,}
239 };
240 MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
241
242 static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
243         NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
244
245 static int debug = -1;
246 module_param(debug, int, 0);
247 MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
248
249 /*
250  * Reset the transmit and receive units; mask and clear all interrupts.
251  * hw - Struct containing variables accessed by shared code
252  * return : 0  or  idle status (if error)
253  */
254 static s32 atl1_reset_hw(struct atl1_hw *hw)
255 {
256         struct pci_dev *pdev = hw->back->pdev;
257         struct atl1_adapter *adapter = hw->back;
258         u32 icr;
259         int i;
260
261         /*
262          * Clear Interrupt mask to stop board from generating
263          * interrupts & Clear any pending interrupt events
264          */
265         /*
266          * iowrite32(0, hw->hw_addr + REG_IMR);
267          * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
268          */
269
270         /*
271          * Issue Soft Reset to the MAC.  This will reset the chip's
272          * transmit, receive, DMA.  It will not effect
273          * the current PCI configuration.  The global reset bit is self-
274          * clearing, and should clear within a microsecond.
275          */
276         iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
277         ioread32(hw->hw_addr + REG_MASTER_CTRL);
278
279         iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
280         ioread16(hw->hw_addr + REG_PHY_ENABLE);
281
282         /* delay about 1ms */
283         msleep(1);
284
285         /* Wait at least 10ms for All module to be Idle */
286         for (i = 0; i < 10; i++) {
287                 icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
288                 if (!icr)
289                         break;
290                 /* delay 1 ms */
291                 msleep(1);
292                 /* FIXME: still the right way to do this? */
293                 cpu_relax();
294         }
295
296         if (icr) {
297                 if (netif_msg_hw(adapter))
298                         dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
299                 return icr;
300         }
301
302         return 0;
303 }
304
305 /* function about EEPROM
306  *
307  * check_eeprom_exist
308  * return 0 if eeprom exist
309  */
310 static int atl1_check_eeprom_exist(struct atl1_hw *hw)
311 {
312         u32 value;
313         value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
314         if (value & SPI_FLASH_CTRL_EN_VPD) {
315                 value &= ~SPI_FLASH_CTRL_EN_VPD;
316                 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
317         }
318
319         value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
320         return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
321 }
322
323 static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
324 {
325         int i;
326         u32 control;
327
328         if (offset & 3)
329                 /* address do not align */
330                 return false;
331
332         iowrite32(0, hw->hw_addr + REG_VPD_DATA);
333         control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
334         iowrite32(control, hw->hw_addr + REG_VPD_CAP);
335         ioread32(hw->hw_addr + REG_VPD_CAP);
336
337         for (i = 0; i < 10; i++) {
338                 msleep(2);
339                 control = ioread32(hw->hw_addr + REG_VPD_CAP);
340                 if (control & VPD_CAP_VPD_FLAG)
341                         break;
342         }
343         if (control & VPD_CAP_VPD_FLAG) {
344                 *p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
345                 return true;
346         }
347         /* timeout */
348         return false;
349 }
350
351 /*
352  * Reads the value from a PHY register
353  * hw - Struct containing variables accessed by shared code
354  * reg_addr - address of the PHY register to read
355  */
356 s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
357 {
358         u32 val;
359         int i;
360
361         val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
362                 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
363                 MDIO_CLK_SEL_SHIFT;
364         iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
365         ioread32(hw->hw_addr + REG_MDIO_CTRL);
366
367         for (i = 0; i < MDIO_WAIT_TIMES; i++) {
368                 udelay(2);
369                 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
370                 if (!(val & (MDIO_START | MDIO_BUSY)))
371                         break;
372         }
373         if (!(val & (MDIO_START | MDIO_BUSY))) {
374                 *phy_data = (u16) val;
375                 return 0;
376         }
377         return ATLX_ERR_PHY;
378 }
379
380 #define CUSTOM_SPI_CS_SETUP     2
381 #define CUSTOM_SPI_CLK_HI       2
382 #define CUSTOM_SPI_CLK_LO       2
383 #define CUSTOM_SPI_CS_HOLD      2
384 #define CUSTOM_SPI_CS_HI        3
385
386 static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
387 {
388         int i;
389         u32 value;
390
391         iowrite32(0, hw->hw_addr + REG_SPI_DATA);
392         iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
393
394         value = SPI_FLASH_CTRL_WAIT_READY |
395             (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
396             SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
397                                              SPI_FLASH_CTRL_CLK_HI_MASK) <<
398             SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
399                                            SPI_FLASH_CTRL_CLK_LO_MASK) <<
400             SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
401                                            SPI_FLASH_CTRL_CS_HOLD_MASK) <<
402             SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
403                                             SPI_FLASH_CTRL_CS_HI_MASK) <<
404             SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
405             SPI_FLASH_CTRL_INS_SHIFT;
406
407         iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
408
409         value |= SPI_FLASH_CTRL_START;
410         iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
411         ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
412
413         for (i = 0; i < 10; i++) {
414                 msleep(1);
415                 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
416                 if (!(value & SPI_FLASH_CTRL_START))
417                         break;
418         }
419
420         if (value & SPI_FLASH_CTRL_START)
421                 return false;
422
423         *buf = ioread32(hw->hw_addr + REG_SPI_DATA);
424
425         return true;
426 }
427
428 /*
429  * get_permanent_address
430  * return 0 if get valid mac address,
431  */
432 static int atl1_get_permanent_address(struct atl1_hw *hw)
433 {
434         u32 addr[2];
435         u32 i, control;
436         u16 reg;
437         u8 eth_addr[ETH_ALEN];
438         bool key_valid;
439
440         if (is_valid_ether_addr(hw->perm_mac_addr))
441                 return 0;
442
443         /* init */
444         addr[0] = addr[1] = 0;
445
446         if (!atl1_check_eeprom_exist(hw)) {
447                 reg = 0;
448                 key_valid = false;
449                 /* Read out all EEPROM content */
450                 i = 0;
451                 while (1) {
452                         if (atl1_read_eeprom(hw, i + 0x100, &control)) {
453                                 if (key_valid) {
454                                         if (reg == REG_MAC_STA_ADDR)
455                                                 addr[0] = control;
456                                         else if (reg == (REG_MAC_STA_ADDR + 4))
457                                                 addr[1] = control;
458                                         key_valid = false;
459                                 } else if ((control & 0xff) == 0x5A) {
460                                         key_valid = true;
461                                         reg = (u16) (control >> 16);
462                                 } else
463                                         break;
464                         } else
465                                 /* read error */
466                                 break;
467                         i += 4;
468                 }
469
470                 *(u32 *) &eth_addr[2] = swab32(addr[0]);
471                 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
472                 if (is_valid_ether_addr(eth_addr)) {
473                         memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
474                         return 0;
475                 }
476         }
477
478         /* see if SPI FLAGS exist ? */
479         addr[0] = addr[1] = 0;
480         reg = 0;
481         key_valid = false;
482         i = 0;
483         while (1) {
484                 if (atl1_spi_read(hw, i + 0x1f000, &control)) {
485                         if (key_valid) {
486                                 if (reg == REG_MAC_STA_ADDR)
487                                         addr[0] = control;
488                                 else if (reg == (REG_MAC_STA_ADDR + 4))
489                                         addr[1] = control;
490                                 key_valid = false;
491                         } else if ((control & 0xff) == 0x5A) {
492                                 key_valid = true;
493                                 reg = (u16) (control >> 16);
494                         } else
495                                 /* data end */
496                                 break;
497                 } else
498                         /* read error */
499                         break;
500                 i += 4;
501         }
502
503         *(u32 *) &eth_addr[2] = swab32(addr[0]);
504         *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
505         if (is_valid_ether_addr(eth_addr)) {
506                 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
507                 return 0;
508         }
509
510         /*
511          * On some motherboards, the MAC address is written by the
512          * BIOS directly to the MAC register during POST, and is
513          * not stored in eeprom.  If all else thus far has failed
514          * to fetch the permanent MAC address, try reading it directly.
515          */
516         addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
517         addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
518         *(u32 *) &eth_addr[2] = swab32(addr[0]);
519         *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
520         if (is_valid_ether_addr(eth_addr)) {
521                 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
522                 return 0;
523         }
524
525         return 1;
526 }
527
528 /*
529  * Reads the adapter's MAC address from the EEPROM
530  * hw - Struct containing variables accessed by shared code
531  */
532 static s32 atl1_read_mac_addr(struct atl1_hw *hw)
533 {
534         u16 i;
535
536         if (atl1_get_permanent_address(hw))
537                 random_ether_addr(hw->perm_mac_addr);
538
539         for (i = 0; i < ETH_ALEN; i++)
540                 hw->mac_addr[i] = hw->perm_mac_addr[i];
541         return 0;
542 }
543
544 /*
545  * Hashes an address to determine its location in the multicast table
546  * hw - Struct containing variables accessed by shared code
547  * mc_addr - the multicast address to hash
548  *
549  * atl1_hash_mc_addr
550  *  purpose
551  *      set hash value for a multicast address
552  *      hash calcu processing :
553  *          1. calcu 32bit CRC for multicast address
554  *          2. reverse crc with MSB to LSB
555  */
556 u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
557 {
558         u32 crc32, value = 0;
559         int i;
560
561         crc32 = ether_crc_le(6, mc_addr);
562         for (i = 0; i < 32; i++)
563                 value |= (((crc32 >> i) & 1) << (31 - i));
564
565         return value;
566 }
567
568 /*
569  * Sets the bit in the multicast table corresponding to the hash value.
570  * hw - Struct containing variables accessed by shared code
571  * hash_value - Multicast address hash value
572  */
573 void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
574 {
575         u32 hash_bit, hash_reg;
576         u32 mta;
577
578         /*
579          * The HASH Table  is a register array of 2 32-bit registers.
580          * It is treated like an array of 64 bits.  We want to set
581          * bit BitArray[hash_value]. So we figure out what register
582          * the bit is in, read it, OR in the new bit, then write
583          * back the new value.  The register is determined by the
584          * upper 7 bits of the hash value and the bit within that
585          * register are determined by the lower 5 bits of the value.
586          */
587         hash_reg = (hash_value >> 31) & 0x1;
588         hash_bit = (hash_value >> 26) & 0x1F;
589         mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
590         mta |= (1 << hash_bit);
591         iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
592 }
593
594 /*
595  * Writes a value to a PHY register
596  * hw - Struct containing variables accessed by shared code
597  * reg_addr - address of the PHY register to write
598  * data - data to write to the PHY
599  */
600 static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
601 {
602         int i;
603         u32 val;
604
605         val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
606             (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
607             MDIO_SUP_PREAMBLE |
608             MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
609         iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
610         ioread32(hw->hw_addr + REG_MDIO_CTRL);
611
612         for (i = 0; i < MDIO_WAIT_TIMES; i++) {
613                 udelay(2);
614                 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
615                 if (!(val & (MDIO_START | MDIO_BUSY)))
616                         break;
617         }
618
619         if (!(val & (MDIO_START | MDIO_BUSY)))
620                 return 0;
621
622         return ATLX_ERR_PHY;
623 }
624
625 /*
626  * Make L001's PHY out of Power Saving State (bug)
627  * hw - Struct containing variables accessed by shared code
628  * when power on, L001's PHY always on Power saving State
629  * (Gigabit Link forbidden)
630  */
631 static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
632 {
633         s32 ret;
634         ret = atl1_write_phy_reg(hw, 29, 0x0029);
635         if (ret)
636                 return ret;
637         return atl1_write_phy_reg(hw, 30, 0);
638 }
639
640 /*
641  * Resets the PHY and make all config validate
642  * hw - Struct containing variables accessed by shared code
643  *
644  * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
645  */
646 static s32 atl1_phy_reset(struct atl1_hw *hw)
647 {
648         struct pci_dev *pdev = hw->back->pdev;
649         struct atl1_adapter *adapter = hw->back;
650         s32 ret_val;
651         u16 phy_data;
652
653         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
654             hw->media_type == MEDIA_TYPE_1000M_FULL)
655                 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
656         else {
657                 switch (hw->media_type) {
658                 case MEDIA_TYPE_100M_FULL:
659                         phy_data =
660                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
661                             MII_CR_RESET;
662                         break;
663                 case MEDIA_TYPE_100M_HALF:
664                         phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
665                         break;
666                 case MEDIA_TYPE_10M_FULL:
667                         phy_data =
668                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
669                         break;
670                 default:
671                         /* MEDIA_TYPE_10M_HALF: */
672                         phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
673                         break;
674                 }
675         }
676
677         ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
678         if (ret_val) {
679                 u32 val;
680                 int i;
681                 /* pcie serdes link may be down! */
682                 if (netif_msg_hw(adapter))
683                         dev_dbg(&pdev->dev, "pcie phy link down\n");
684
685                 for (i = 0; i < 25; i++) {
686                         msleep(1);
687                         val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
688                         if (!(val & (MDIO_START | MDIO_BUSY)))
689                                 break;
690                 }
691
692                 if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
693                         if (netif_msg_hw(adapter))
694                                 dev_warn(&pdev->dev,
695                                         "pcie link down at least 25ms\n");
696                         return ret_val;
697                 }
698         }
699         return 0;
700 }
701
702 /*
703  * Configures PHY autoneg and flow control advertisement settings
704  * hw - Struct containing variables accessed by shared code
705  */
706 static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
707 {
708         s32 ret_val;
709         s16 mii_autoneg_adv_reg;
710         s16 mii_1000t_ctrl_reg;
711
712         /* Read the MII Auto-Neg Advertisement Register (Address 4). */
713         mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
714
715         /* Read the MII 1000Base-T Control Register (Address 9). */
716         mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
717
718         /*
719          * First we clear all the 10/100 mb speed bits in the Auto-Neg
720          * Advertisement Register (Address 4) and the 1000 mb speed bits in
721          * the  1000Base-T Control Register (Address 9).
722          */
723         mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
724         mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
725
726         /*
727          * Need to parse media_type  and set up
728          * the appropriate PHY registers.
729          */
730         switch (hw->media_type) {
731         case MEDIA_TYPE_AUTO_SENSOR:
732                 mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
733                                         MII_AR_10T_FD_CAPS |
734                                         MII_AR_100TX_HD_CAPS |
735                                         MII_AR_100TX_FD_CAPS);
736                 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
737                 break;
738
739         case MEDIA_TYPE_1000M_FULL:
740                 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
741                 break;
742
743         case MEDIA_TYPE_100M_FULL:
744                 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
745                 break;
746
747         case MEDIA_TYPE_100M_HALF:
748                 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
749                 break;
750
751         case MEDIA_TYPE_10M_FULL:
752                 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
753                 break;
754
755         default:
756                 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
757                 break;
758         }
759
760         /* flow control fixed to enable all */
761         mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
762
763         hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
764         hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
765
766         ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
767         if (ret_val)
768                 return ret_val;
769
770         ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
771         if (ret_val)
772                 return ret_val;
773
774         return 0;
775 }
776
777 /*
778  * Configures link settings.
779  * hw - Struct containing variables accessed by shared code
780  * Assumes the hardware has previously been reset and the
781  * transmitter and receiver are not enabled.
782  */
783 static s32 atl1_setup_link(struct atl1_hw *hw)
784 {
785         struct pci_dev *pdev = hw->back->pdev;
786         struct atl1_adapter *adapter = hw->back;
787         s32 ret_val;
788
789         /*
790          * Options:
791          *  PHY will advertise value(s) parsed from
792          *  autoneg_advertised and fc
793          *  no matter what autoneg is , We will not wait link result.
794          */
795         ret_val = atl1_phy_setup_autoneg_adv(hw);
796         if (ret_val) {
797                 if (netif_msg_link(adapter))
798                         dev_dbg(&pdev->dev,
799                                 "error setting up autonegotiation\n");
800                 return ret_val;
801         }
802         /* SW.Reset , En-Auto-Neg if needed */
803         ret_val = atl1_phy_reset(hw);
804         if (ret_val) {
805                 if (netif_msg_link(adapter))
806                         dev_dbg(&pdev->dev, "error resetting phy\n");
807                 return ret_val;
808         }
809         hw->phy_configured = true;
810         return ret_val;
811 }
812
813 static void atl1_init_flash_opcode(struct atl1_hw *hw)
814 {
815         if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
816                 /* Atmel */
817                 hw->flash_vendor = 0;
818
819         /* Init OP table */
820         iowrite8(flash_table[hw->flash_vendor].cmd_program,
821                 hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
822         iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
823                 hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
824         iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
825                 hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
826         iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
827                 hw->hw_addr + REG_SPI_FLASH_OP_RDID);
828         iowrite8(flash_table[hw->flash_vendor].cmd_wren,
829                 hw->hw_addr + REG_SPI_FLASH_OP_WREN);
830         iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
831                 hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
832         iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
833                 hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
834         iowrite8(flash_table[hw->flash_vendor].cmd_read,
835                 hw->hw_addr + REG_SPI_FLASH_OP_READ);
836 }
837
838 /*
839  * Performs basic configuration of the adapter.
840  * hw - Struct containing variables accessed by shared code
841  * Assumes that the controller has previously been reset and is in a
842  * post-reset uninitialized state. Initializes multicast table,
843  * and  Calls routines to setup link
844  * Leaves the transmit and receive units disabled and uninitialized.
845  */
846 static s32 atl1_init_hw(struct atl1_hw *hw)
847 {
848         u32 ret_val = 0;
849
850         /* Zero out the Multicast HASH table */
851         iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
852         /* clear the old settings from the multicast hash table */
853         iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
854
855         atl1_init_flash_opcode(hw);
856
857         if (!hw->phy_configured) {
858                 /* enable GPHY LinkChange Interrrupt */
859                 ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
860                 if (ret_val)
861                         return ret_val;
862                 /* make PHY out of power-saving state */
863                 ret_val = atl1_phy_leave_power_saving(hw);
864                 if (ret_val)
865                         return ret_val;
866                 /* Call a subroutine to configure the link */
867                 ret_val = atl1_setup_link(hw);
868         }
869         return ret_val;
870 }
871
872 /*
873  * Detects the current speed and duplex settings of the hardware.
874  * hw - Struct containing variables accessed by shared code
875  * speed - Speed of the connection
876  * duplex - Duplex setting of the connection
877  */
878 static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
879 {
880         struct pci_dev *pdev = hw->back->pdev;
881         struct atl1_adapter *adapter = hw->back;
882         s32 ret_val;
883         u16 phy_data;
884
885         /* ; --- Read   PHY Specific Status Register (17) */
886         ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
887         if (ret_val)
888                 return ret_val;
889
890         if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
891                 return ATLX_ERR_PHY_RES;
892
893         switch (phy_data & MII_ATLX_PSSR_SPEED) {
894         case MII_ATLX_PSSR_1000MBS:
895                 *speed = SPEED_1000;
896                 break;
897         case MII_ATLX_PSSR_100MBS:
898                 *speed = SPEED_100;
899                 break;
900         case MII_ATLX_PSSR_10MBS:
901                 *speed = SPEED_10;
902                 break;
903         default:
904                 if (netif_msg_hw(adapter))
905                         dev_dbg(&pdev->dev, "error getting speed\n");
906                 return ATLX_ERR_PHY_SPEED;
907                 break;
908         }
909         if (phy_data & MII_ATLX_PSSR_DPLX)
910                 *duplex = FULL_DUPLEX;
911         else
912                 *duplex = HALF_DUPLEX;
913
914         return 0;
915 }
916
917 void atl1_set_mac_addr(struct atl1_hw *hw)
918 {
919         u32 value;
920         /*
921          * 00-0B-6A-F6-00-DC
922          * 0:  6AF600DC   1: 000B
923          * low dword
924          */
925         value = (((u32) hw->mac_addr[2]) << 24) |
926             (((u32) hw->mac_addr[3]) << 16) |
927             (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
928         iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
929         /* high dword */
930         value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
931         iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
932 }
933
934 /*
935  * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
936  * @adapter: board private structure to initialize
937  *
938  * atl1_sw_init initializes the Adapter private data structure.
939  * Fields are initialized based on PCI device information and
940  * OS network device settings (MTU size).
941  */
942 static int __devinit atl1_sw_init(struct atl1_adapter *adapter)
943 {
944         struct atl1_hw *hw = &adapter->hw;
945         struct net_device *netdev = adapter->netdev;
946
947         hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
948         hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
949
950         adapter->wol = 0;
951         adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
952         adapter->ict = 50000;           /* 100ms */
953         adapter->link_speed = SPEED_0;  /* hardware init */
954         adapter->link_duplex = FULL_DUPLEX;
955
956         hw->phy_configured = false;
957         hw->preamble_len = 7;
958         hw->ipgt = 0x60;
959         hw->min_ifg = 0x50;
960         hw->ipgr1 = 0x40;
961         hw->ipgr2 = 0x60;
962         hw->max_retry = 0xf;
963         hw->lcol = 0x37;
964         hw->jam_ipg = 7;
965         hw->rfd_burst = 8;
966         hw->rrd_burst = 8;
967         hw->rfd_fetch_gap = 1;
968         hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
969         hw->rx_jumbo_lkah = 1;
970         hw->rrd_ret_timer = 16;
971         hw->tpd_burst = 4;
972         hw->tpd_fetch_th = 16;
973         hw->txf_burst = 0x100;
974         hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
975         hw->tpd_fetch_gap = 1;
976         hw->rcb_value = atl1_rcb_64;
977         hw->dma_ord = atl1_dma_ord_enh;
978         hw->dmar_block = atl1_dma_req_256;
979         hw->dmaw_block = atl1_dma_req_256;
980         hw->cmb_rrd = 4;
981         hw->cmb_tpd = 4;
982         hw->cmb_rx_timer = 1;   /* about 2us */
983         hw->cmb_tx_timer = 1;   /* about 2us */
984         hw->smb_timer = 100000; /* about 200ms */
985
986         spin_lock_init(&adapter->lock);
987         spin_lock_init(&adapter->mb_lock);
988
989         return 0;
990 }
991
992 static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
993 {
994         struct atl1_adapter *adapter = netdev_priv(netdev);
995         u16 result;
996
997         atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
998
999         return result;
1000 }
1001
1002 static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
1003         int val)
1004 {
1005         struct atl1_adapter *adapter = netdev_priv(netdev);
1006
1007         atl1_write_phy_reg(&adapter->hw, reg_num, val);
1008 }
1009
1010 /*
1011  * atl1_mii_ioctl -
1012  * @netdev:
1013  * @ifreq:
1014  * @cmd:
1015  */
1016 static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1017 {
1018         struct atl1_adapter *adapter = netdev_priv(netdev);
1019         unsigned long flags;
1020         int retval;
1021
1022         if (!netif_running(netdev))
1023                 return -EINVAL;
1024
1025         spin_lock_irqsave(&adapter->lock, flags);
1026         retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1027         spin_unlock_irqrestore(&adapter->lock, flags);
1028
1029         return retval;
1030 }
1031
1032 /*
1033  * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
1034  * @adapter: board private structure
1035  *
1036  * Return 0 on success, negative on failure
1037  */
1038 static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1039 {
1040         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1041         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1042         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1043         struct atl1_ring_header *ring_header = &adapter->ring_header;
1044         struct pci_dev *pdev = adapter->pdev;
1045         int size;
1046         u8 offset = 0;
1047
1048         size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1049         tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1050         if (unlikely(!tpd_ring->buffer_info)) {
1051                 if (netif_msg_drv(adapter))
1052                         dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1053                                 size);
1054                 goto err_nomem;
1055         }
1056         rfd_ring->buffer_info =
1057                 (struct atl1_buffer *)(tpd_ring->buffer_info + tpd_ring->count);
1058
1059         /*
1060          * real ring DMA buffer
1061          * each ring/block may need up to 8 bytes for alignment, hence the
1062          * additional 40 bytes tacked onto the end.
1063          */
1064         ring_header->size = size =
1065                 sizeof(struct tx_packet_desc) * tpd_ring->count
1066                 + sizeof(struct rx_free_desc) * rfd_ring->count
1067                 + sizeof(struct rx_return_desc) * rrd_ring->count
1068                 + sizeof(struct coals_msg_block)
1069                 + sizeof(struct stats_msg_block)
1070                 + 40;
1071
1072         ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
1073                 &ring_header->dma);
1074         if (unlikely(!ring_header->desc)) {
1075                 if (netif_msg_drv(adapter))
1076                         dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
1077                 goto err_nomem;
1078         }
1079
1080         memset(ring_header->desc, 0, ring_header->size);
1081
1082         /* init TPD ring */
1083         tpd_ring->dma = ring_header->dma;
1084         offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1085         tpd_ring->dma += offset;
1086         tpd_ring->desc = (u8 *) ring_header->desc + offset;
1087         tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1088
1089         /* init RFD ring */
1090         rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1091         offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1092         rfd_ring->dma += offset;
1093         rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1094         rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1095
1096
1097         /* init RRD ring */
1098         rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1099         offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1100         rrd_ring->dma += offset;
1101         rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1102         rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1103
1104
1105         /* init CMB */
1106         adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1107         offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1108         adapter->cmb.dma += offset;
1109         adapter->cmb.cmb = (struct coals_msg_block *)
1110                 ((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1111
1112         /* init SMB */
1113         adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1114         offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1115         adapter->smb.dma += offset;
1116         adapter->smb.smb = (struct stats_msg_block *)
1117                 ((u8 *) adapter->cmb.cmb +
1118                 (sizeof(struct coals_msg_block) + offset));
1119
1120         return 0;
1121
1122 err_nomem:
1123         kfree(tpd_ring->buffer_info);
1124         return -ENOMEM;
1125 }
1126
1127 static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1128 {
1129         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1130         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1131         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1132
1133         atomic_set(&tpd_ring->next_to_use, 0);
1134         atomic_set(&tpd_ring->next_to_clean, 0);
1135
1136         rfd_ring->next_to_clean = 0;
1137         atomic_set(&rfd_ring->next_to_use, 0);
1138
1139         rrd_ring->next_to_use = 0;
1140         atomic_set(&rrd_ring->next_to_clean, 0);
1141 }
1142
1143 /*
1144  * atl1_clean_rx_ring - Free RFD Buffers
1145  * @adapter: board private structure
1146  */
1147 static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1148 {
1149         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1150         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1151         struct atl1_buffer *buffer_info;
1152         struct pci_dev *pdev = adapter->pdev;
1153         unsigned long size;
1154         unsigned int i;
1155
1156         /* Free all the Rx ring sk_buffs */
1157         for (i = 0; i < rfd_ring->count; i++) {
1158                 buffer_info = &rfd_ring->buffer_info[i];
1159                 if (buffer_info->dma) {
1160                         pci_unmap_page(pdev, buffer_info->dma,
1161                                 buffer_info->length, PCI_DMA_FROMDEVICE);
1162                         buffer_info->dma = 0;
1163                 }
1164                 if (buffer_info->skb) {
1165                         dev_kfree_skb(buffer_info->skb);
1166                         buffer_info->skb = NULL;
1167                 }
1168         }
1169
1170         size = sizeof(struct atl1_buffer) * rfd_ring->count;
1171         memset(rfd_ring->buffer_info, 0, size);
1172
1173         /* Zero out the descriptor ring */
1174         memset(rfd_ring->desc, 0, rfd_ring->size);
1175
1176         rfd_ring->next_to_clean = 0;
1177         atomic_set(&rfd_ring->next_to_use, 0);
1178
1179         rrd_ring->next_to_use = 0;
1180         atomic_set(&rrd_ring->next_to_clean, 0);
1181 }
1182
1183 /*
1184  * atl1_clean_tx_ring - Free Tx Buffers
1185  * @adapter: board private structure
1186  */
1187 static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1188 {
1189         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1190         struct atl1_buffer *buffer_info;
1191         struct pci_dev *pdev = adapter->pdev;
1192         unsigned long size;
1193         unsigned int i;
1194
1195         /* Free all the Tx ring sk_buffs */
1196         for (i = 0; i < tpd_ring->count; i++) {
1197                 buffer_info = &tpd_ring->buffer_info[i];
1198                 if (buffer_info->dma) {
1199                         pci_unmap_page(pdev, buffer_info->dma,
1200                                 buffer_info->length, PCI_DMA_TODEVICE);
1201                         buffer_info->dma = 0;
1202                 }
1203         }
1204
1205         for (i = 0; i < tpd_ring->count; i++) {
1206                 buffer_info = &tpd_ring->buffer_info[i];
1207                 if (buffer_info->skb) {
1208                         dev_kfree_skb_any(buffer_info->skb);
1209                         buffer_info->skb = NULL;
1210                 }
1211         }
1212
1213         size = sizeof(struct atl1_buffer) * tpd_ring->count;
1214         memset(tpd_ring->buffer_info, 0, size);
1215
1216         /* Zero out the descriptor ring */
1217         memset(tpd_ring->desc, 0, tpd_ring->size);
1218
1219         atomic_set(&tpd_ring->next_to_use, 0);
1220         atomic_set(&tpd_ring->next_to_clean, 0);
1221 }
1222
1223 /*
1224  * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1225  * @adapter: board private structure
1226  *
1227  * Free all transmit software resources
1228  */
1229 static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1230 {
1231         struct pci_dev *pdev = adapter->pdev;
1232         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1233         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1234         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1235         struct atl1_ring_header *ring_header = &adapter->ring_header;
1236
1237         atl1_clean_tx_ring(adapter);
1238         atl1_clean_rx_ring(adapter);
1239
1240         kfree(tpd_ring->buffer_info);
1241         pci_free_consistent(pdev, ring_header->size, ring_header->desc,
1242                 ring_header->dma);
1243
1244         tpd_ring->buffer_info = NULL;
1245         tpd_ring->desc = NULL;
1246         tpd_ring->dma = 0;
1247
1248         rfd_ring->buffer_info = NULL;
1249         rfd_ring->desc = NULL;
1250         rfd_ring->dma = 0;
1251
1252         rrd_ring->desc = NULL;
1253         rrd_ring->dma = 0;
1254 }
1255
1256 static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1257 {
1258         u32 value;
1259         struct atl1_hw *hw = &adapter->hw;
1260         struct net_device *netdev = adapter->netdev;
1261         /* Config MAC CTRL Register */
1262         value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1263         /* duplex */
1264         if (FULL_DUPLEX == adapter->link_duplex)
1265                 value |= MAC_CTRL_DUPLX;
1266         /* speed */
1267         value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1268                          MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1269                   MAC_CTRL_SPEED_SHIFT);
1270         /* flow control */
1271         value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1272         /* PAD & CRC */
1273         value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1274         /* preamble length */
1275         value |= (((u32) adapter->hw.preamble_len
1276                    & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1277         /* vlan */
1278         if (adapter->vlgrp)
1279                 value |= MAC_CTRL_RMV_VLAN;
1280         /* rx checksum
1281            if (adapter->rx_csum)
1282            value |= MAC_CTRL_RX_CHKSUM_EN;
1283          */
1284         /* filter mode */
1285         value |= MAC_CTRL_BC_EN;
1286         if (netdev->flags & IFF_PROMISC)
1287                 value |= MAC_CTRL_PROMIS_EN;
1288         else if (netdev->flags & IFF_ALLMULTI)
1289                 value |= MAC_CTRL_MC_ALL_EN;
1290         /* value |= MAC_CTRL_LOOPBACK; */
1291         iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1292 }
1293
1294 static u32 atl1_check_link(struct atl1_adapter *adapter)
1295 {
1296         struct atl1_hw *hw = &adapter->hw;
1297         struct net_device *netdev = adapter->netdev;
1298         u32 ret_val;
1299         u16 speed, duplex, phy_data;
1300         int reconfig = 0;
1301
1302         /* MII_BMSR must read twice */
1303         atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1304         atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1305         if (!(phy_data & BMSR_LSTATUS)) {
1306                 /* link down */
1307                 if (netif_carrier_ok(netdev)) {
1308                         /* old link state: Up */
1309                         if (netif_msg_link(adapter))
1310                                 dev_info(&adapter->pdev->dev, "link is down\n");
1311                         adapter->link_speed = SPEED_0;
1312                         netif_carrier_off(netdev);
1313                 }
1314                 return 0;
1315         }
1316
1317         /* Link Up */
1318         ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1319         if (ret_val)
1320                 return ret_val;
1321
1322         switch (hw->media_type) {
1323         case MEDIA_TYPE_1000M_FULL:
1324                 if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1325                         reconfig = 1;
1326                 break;
1327         case MEDIA_TYPE_100M_FULL:
1328                 if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1329                         reconfig = 1;
1330                 break;
1331         case MEDIA_TYPE_100M_HALF:
1332                 if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1333                         reconfig = 1;
1334                 break;
1335         case MEDIA_TYPE_10M_FULL:
1336                 if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1337                         reconfig = 1;
1338                 break;
1339         case MEDIA_TYPE_10M_HALF:
1340                 if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1341                         reconfig = 1;
1342                 break;
1343         }
1344
1345         /* link result is our setting */
1346         if (!reconfig) {
1347                 if (adapter->link_speed != speed ||
1348                     adapter->link_duplex != duplex) {
1349                         adapter->link_speed = speed;
1350                         adapter->link_duplex = duplex;
1351                         atl1_setup_mac_ctrl(adapter);
1352                         if (netif_msg_link(adapter))
1353                                 dev_info(&adapter->pdev->dev,
1354                                         "%s link is up %d Mbps %s\n",
1355                                         netdev->name, adapter->link_speed,
1356                                         adapter->link_duplex == FULL_DUPLEX ?
1357                                         "full duplex" : "half duplex");
1358                 }
1359                 if (!netif_carrier_ok(netdev)) {
1360                         /* Link down -> Up */
1361                         netif_carrier_on(netdev);
1362                 }
1363                 return 0;
1364         }
1365
1366         /* change original link status */
1367         if (netif_carrier_ok(netdev)) {
1368                 adapter->link_speed = SPEED_0;
1369                 netif_carrier_off(netdev);
1370                 netif_stop_queue(netdev);
1371         }
1372
1373         if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1374             hw->media_type != MEDIA_TYPE_1000M_FULL) {
1375                 switch (hw->media_type) {
1376                 case MEDIA_TYPE_100M_FULL:
1377                         phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1378                                    MII_CR_RESET;
1379                         break;
1380                 case MEDIA_TYPE_100M_HALF:
1381                         phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1382                         break;
1383                 case MEDIA_TYPE_10M_FULL:
1384                         phy_data =
1385                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1386                         break;
1387                 default:
1388                         /* MEDIA_TYPE_10M_HALF: */
1389                         phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1390                         break;
1391                 }
1392                 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1393                 return 0;
1394         }
1395
1396         /* auto-neg, insert timer to re-config phy */
1397         if (!adapter->phy_timer_pending) {
1398                 adapter->phy_timer_pending = true;
1399                 mod_timer(&adapter->phy_config_timer,
1400                           round_jiffies(jiffies + 3 * HZ));
1401         }
1402
1403         return 0;
1404 }
1405
1406 static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1407 {
1408         u32 hi, lo, value;
1409
1410         /* RFD Flow Control */
1411         value = adapter->rfd_ring.count;
1412         hi = value / 16;
1413         if (hi < 2)
1414                 hi = 2;
1415         lo = value * 7 / 8;
1416
1417         value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1418                 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1419         iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1420
1421         /* RRD Flow Control */
1422         value = adapter->rrd_ring.count;
1423         lo = value / 16;
1424         hi = value * 7 / 8;
1425         if (lo < 2)
1426                 lo = 2;
1427         value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1428                 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1429         iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1430 }
1431
1432 static void set_flow_ctrl_new(struct atl1_hw *hw)
1433 {
1434         u32 hi, lo, value;
1435
1436         /* RXF Flow Control */
1437         value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1438         lo = value / 16;
1439         if (lo < 192)
1440                 lo = 192;
1441         hi = value * 7 / 8;
1442         if (hi < lo)
1443                 hi = lo + 16;
1444         value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1445                 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1446         iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1447
1448         /* RRD Flow Control */
1449         value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1450         lo = value / 8;
1451         hi = value * 7 / 8;
1452         if (lo < 2)
1453                 lo = 2;
1454         if (hi < lo)
1455                 hi = lo + 3;
1456         value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1457                 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1458         iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1459 }
1460
1461 /*
1462  * atl1_configure - Configure Transmit&Receive Unit after Reset
1463  * @adapter: board private structure
1464  *
1465  * Configure the Tx /Rx unit of the MAC after a reset.
1466  */
1467 static u32 atl1_configure(struct atl1_adapter *adapter)
1468 {
1469         struct atl1_hw *hw = &adapter->hw;
1470         u32 value;
1471
1472         /* clear interrupt status */
1473         iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1474
1475         /* set MAC Address */
1476         value = (((u32) hw->mac_addr[2]) << 24) |
1477                 (((u32) hw->mac_addr[3]) << 16) |
1478                 (((u32) hw->mac_addr[4]) << 8) |
1479                 (((u32) hw->mac_addr[5]));
1480         iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1481         value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1482         iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1483
1484         /* tx / rx ring */
1485
1486         /* HI base address */
1487         iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1488                 hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1489         /* LO base address */
1490         iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1491                 hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1492         iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1493                 hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1494         iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1495                 hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1496         iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1497                 hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1498         iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1499                 hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1500
1501         /* element count */
1502         value = adapter->rrd_ring.count;
1503         value <<= 16;
1504         value += adapter->rfd_ring.count;
1505         iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1506         iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1507                 REG_DESC_TPD_RING_SIZE);
1508
1509         /* Load Ptr */
1510         iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1511
1512         /* config Mailbox */
1513         value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1514                   & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1515                 ((atomic_read(&adapter->rrd_ring.next_to_clean)
1516                 & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1517                 ((atomic_read(&adapter->rfd_ring.next_to_use)
1518                 & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1519         iowrite32(value, hw->hw_addr + REG_MAILBOX);
1520
1521         /* config IPG/IFG */
1522         value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1523                  << MAC_IPG_IFG_IPGT_SHIFT) |
1524                 (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1525                 << MAC_IPG_IFG_MIFG_SHIFT) |
1526                 (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1527                 << MAC_IPG_IFG_IPGR1_SHIFT) |
1528                 (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1529                 << MAC_IPG_IFG_IPGR2_SHIFT);
1530         iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1531
1532         /* config  Half-Duplex Control */
1533         value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1534                 (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1535                 << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1536                 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1537                 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1538                 (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1539                 << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1540         iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1541
1542         /* set Interrupt Moderator Timer */
1543         iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1544         iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1545
1546         /* set Interrupt Clear Timer */
1547         iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1548
1549         /* set max frame size hw will accept */
1550         iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1551
1552         /* jumbo size & rrd retirement timer */
1553         value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1554                  << RXQ_JMBOSZ_TH_SHIFT) |
1555                 (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1556                 << RXQ_JMBO_LKAH_SHIFT) |
1557                 (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1558                 << RXQ_RRD_TIMER_SHIFT);
1559         iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1560
1561         /* Flow Control */
1562         switch (hw->dev_rev) {
1563         case 0x8001:
1564         case 0x9001:
1565         case 0x9002:
1566         case 0x9003:
1567                 set_flow_ctrl_old(adapter);
1568                 break;
1569         default:
1570                 set_flow_ctrl_new(hw);
1571                 break;
1572         }
1573
1574         /* config TXQ */
1575         value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1576                  << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1577                 (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1578                 << TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1579                 (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1580                 << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1581                 TXQ_CTRL_EN;
1582         iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1583
1584         /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1585         value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1586                 << TX_JUMBO_TASK_TH_SHIFT) |
1587                 (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1588                 << TX_TPD_MIN_IPG_SHIFT);
1589         iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1590
1591         /* config RXQ */
1592         value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1593                 << RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1594                 (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1595                 << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1596                 (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1597                 << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1598                 RXQ_CTRL_EN;
1599         iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1600
1601         /* config DMA Engine */
1602         value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1603                 << DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1604                 ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1605                 << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1606                 DMA_CTRL_DMAW_EN;
1607         value |= (u32) hw->dma_ord;
1608         if (atl1_rcb_128 == hw->rcb_value)
1609                 value |= DMA_CTRL_RCB_VALUE;
1610         iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1611
1612         /* config CMB / SMB */
1613         value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1614                 hw->cmb_tpd : adapter->tpd_ring.count;
1615         value <<= 16;
1616         value |= hw->cmb_rrd;
1617         iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1618         value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1619         iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1620         iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1621
1622         /* --- enable CMB / SMB */
1623         value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1624         iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1625
1626         value = ioread32(adapter->hw.hw_addr + REG_ISR);
1627         if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1628                 value = 1;      /* config failed */
1629         else
1630                 value = 0;
1631
1632         /* clear all interrupt status */
1633         iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1634         iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1635         return value;
1636 }
1637
1638 /*
1639  * atl1_pcie_patch - Patch for PCIE module
1640  */
1641 static void atl1_pcie_patch(struct atl1_adapter *adapter)
1642 {
1643         u32 value;
1644
1645         /* much vendor magic here */
1646         value = 0x6500;
1647         iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1648         /* pcie flow control mode change */
1649         value = ioread32(adapter->hw.hw_addr + 0x1008);
1650         value |= 0x8000;
1651         iowrite32(value, adapter->hw.hw_addr + 0x1008);
1652 }
1653
1654 /*
1655  * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1656  * on PCI Command register is disable.
1657  * The function enable this bit.
1658  * Brackett, 2006/03/15
1659  */
1660 static void atl1_via_workaround(struct atl1_adapter *adapter)
1661 {
1662         unsigned long value;
1663
1664         value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1665         if (value & PCI_COMMAND_INTX_DISABLE)
1666                 value &= ~PCI_COMMAND_INTX_DISABLE;
1667         iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1668 }
1669
1670 static void atl1_inc_smb(struct atl1_adapter *adapter)
1671 {
1672         struct net_device *netdev = adapter->netdev;
1673         struct stats_msg_block *smb = adapter->smb.smb;
1674
1675         /* Fill out the OS statistics structure */
1676         adapter->soft_stats.rx_packets += smb->rx_ok;
1677         adapter->soft_stats.tx_packets += smb->tx_ok;
1678         adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1679         adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1680         adapter->soft_stats.multicast += smb->rx_mcast;
1681         adapter->soft_stats.collisions += (smb->tx_1_col + smb->tx_2_col * 2 +
1682                 smb->tx_late_col + smb->tx_abort_col * adapter->hw.max_retry);
1683
1684         /* Rx Errors */
1685         adapter->soft_stats.rx_errors += (smb->rx_frag + smb->rx_fcs_err +
1686                 smb->rx_len_err + smb->rx_sz_ov + smb->rx_rxf_ov +
1687                 smb->rx_rrd_ov + smb->rx_align_err);
1688         adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1689         adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1690         adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1691         adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1692         adapter->soft_stats.rx_missed_errors += (smb->rx_rrd_ov +
1693                 smb->rx_rxf_ov);
1694
1695         adapter->soft_stats.rx_pause += smb->rx_pause;
1696         adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1697         adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1698
1699         /* Tx Errors */
1700         adapter->soft_stats.tx_errors += (smb->tx_late_col +
1701                 smb->tx_abort_col + smb->tx_underrun + smb->tx_trunc);
1702         adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1703         adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1704         adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1705
1706         adapter->soft_stats.excecol += smb->tx_abort_col;
1707         adapter->soft_stats.deffer += smb->tx_defer;
1708         adapter->soft_stats.scc += smb->tx_1_col;
1709         adapter->soft_stats.mcc += smb->tx_2_col;
1710         adapter->soft_stats.latecol += smb->tx_late_col;
1711         adapter->soft_stats.tx_underun += smb->tx_underrun;
1712         adapter->soft_stats.tx_trunc += smb->tx_trunc;
1713         adapter->soft_stats.tx_pause += smb->tx_pause;
1714
1715         netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1716         netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1717         netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1718         netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1719         netdev->stats.multicast = adapter->soft_stats.multicast;
1720         netdev->stats.collisions = adapter->soft_stats.collisions;
1721         netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1722         netdev->stats.rx_over_errors =
1723                 adapter->soft_stats.rx_missed_errors;
1724         netdev->stats.rx_length_errors =
1725                 adapter->soft_stats.rx_length_errors;
1726         netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1727         netdev->stats.rx_frame_errors =
1728                 adapter->soft_stats.rx_frame_errors;
1729         netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1730         netdev->stats.rx_missed_errors =
1731                 adapter->soft_stats.rx_missed_errors;
1732         netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1733         netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1734         netdev->stats.tx_aborted_errors =
1735                 adapter->soft_stats.tx_aborted_errors;
1736         netdev->stats.tx_window_errors =
1737                 adapter->soft_stats.tx_window_errors;
1738         netdev->stats.tx_carrier_errors =
1739                 adapter->soft_stats.tx_carrier_errors;
1740 }
1741
1742 static void atl1_update_mailbox(struct atl1_adapter *adapter)
1743 {
1744         unsigned long flags;
1745         u32 tpd_next_to_use;
1746         u32 rfd_next_to_use;
1747         u32 rrd_next_to_clean;
1748         u32 value;
1749
1750         spin_lock_irqsave(&adapter->mb_lock, flags);
1751
1752         tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1753         rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1754         rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1755
1756         value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1757                 MB_RFD_PROD_INDX_SHIFT) |
1758                 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1759                 MB_RRD_CONS_INDX_SHIFT) |
1760                 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1761                 MB_TPD_PROD_INDX_SHIFT);
1762         iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1763
1764         spin_unlock_irqrestore(&adapter->mb_lock, flags);
1765 }
1766
1767 static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1768         struct rx_return_desc *rrd, u16 offset)
1769 {
1770         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1771
1772         while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1773                 rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1774                 if (++rfd_ring->next_to_clean == rfd_ring->count) {
1775                         rfd_ring->next_to_clean = 0;
1776                 }
1777         }
1778 }
1779
1780 static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1781         struct rx_return_desc *rrd)
1782 {
1783         u16 num_buf;
1784
1785         num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1786                 adapter->rx_buffer_len;
1787         if (rrd->num_buf == num_buf)
1788                 /* clean alloc flag for bad rrd */
1789                 atl1_clean_alloc_flag(adapter, rrd, num_buf);
1790 }
1791
1792 static void atl1_rx_checksum(struct atl1_adapter *adapter,
1793         struct rx_return_desc *rrd, struct sk_buff *skb)
1794 {
1795         struct pci_dev *pdev = adapter->pdev;
1796
1797         /*
1798          * The L1 hardware contains a bug that erroneously sets the
1799          * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1800          * fragmented IP packet is received, even though the packet
1801          * is perfectly valid and its checksum is correct. There's
1802          * no way to distinguish between one of these good packets
1803          * and a packet that actually contains a TCP/UDP checksum
1804          * error, so all we can do is allow it to be handed up to
1805          * the higher layers and let it be sorted out there.
1806          */
1807
1808         skb->ip_summed = CHECKSUM_NONE;
1809
1810         if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1811                 if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1812                                         ERR_FLAG_CODE | ERR_FLAG_OV)) {
1813                         adapter->hw_csum_err++;
1814                         if (netif_msg_rx_err(adapter))
1815                                 dev_printk(KERN_DEBUG, &pdev->dev,
1816                                         "rx checksum error\n");
1817                         return;
1818                 }
1819         }
1820
1821         /* not IPv4 */
1822         if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1823                 /* checksum is invalid, but it's not an IPv4 pkt, so ok */
1824                 return;
1825
1826         /* IPv4 packet */
1827         if (likely(!(rrd->err_flg &
1828                 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1829                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1830                 adapter->hw_csum_good++;
1831                 return;
1832         }
1833
1834         return;
1835 }
1836
1837 /*
1838  * atl1_alloc_rx_buffers - Replace used receive buffers
1839  * @adapter: address of board private structure
1840  */
1841 static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1842 {
1843         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1844         struct pci_dev *pdev = adapter->pdev;
1845         struct page *page;
1846         unsigned long offset;
1847         struct atl1_buffer *buffer_info, *next_info;
1848         struct sk_buff *skb;
1849         u16 num_alloc = 0;
1850         u16 rfd_next_to_use, next_next;
1851         struct rx_free_desc *rfd_desc;
1852
1853         next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1854         if (++next_next == rfd_ring->count)
1855                 next_next = 0;
1856         buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1857         next_info = &rfd_ring->buffer_info[next_next];
1858
1859         while (!buffer_info->alloced && !next_info->alloced) {
1860                 if (buffer_info->skb) {
1861                         buffer_info->alloced = 1;
1862                         goto next;
1863                 }
1864
1865                 rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1866
1867                 skb = netdev_alloc_skb_ip_align(adapter->netdev,
1868                                                 adapter->rx_buffer_len);
1869                 if (unlikely(!skb)) {
1870                         /* Better luck next round */
1871                         adapter->netdev->stats.rx_dropped++;
1872                         break;
1873                 }
1874
1875                 buffer_info->alloced = 1;
1876                 buffer_info->skb = skb;
1877                 buffer_info->length = (u16) adapter->rx_buffer_len;
1878                 page = virt_to_page(skb->data);
1879                 offset = (unsigned long)skb->data & ~PAGE_MASK;
1880                 buffer_info->dma = pci_map_page(pdev, page, offset,
1881                                                 adapter->rx_buffer_len,
1882                                                 PCI_DMA_FROMDEVICE);
1883                 rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1884                 rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1885                 rfd_desc->coalese = 0;
1886
1887 next:
1888                 rfd_next_to_use = next_next;
1889                 if (unlikely(++next_next == rfd_ring->count))
1890                         next_next = 0;
1891
1892                 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1893                 next_info = &rfd_ring->buffer_info[next_next];
1894                 num_alloc++;
1895         }
1896
1897         if (num_alloc) {
1898                 /*
1899                  * Force memory writes to complete before letting h/w
1900                  * know there are new descriptors to fetch.  (Only
1901                  * applicable for weak-ordered memory model archs,
1902                  * such as IA-64).
1903                  */
1904                 wmb();
1905                 atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1906         }
1907         return num_alloc;
1908 }
1909
1910 static void atl1_intr_rx(struct atl1_adapter *adapter)
1911 {
1912         int i, count;
1913         u16 length;
1914         u16 rrd_next_to_clean;
1915         u32 value;
1916         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1917         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1918         struct atl1_buffer *buffer_info;
1919         struct rx_return_desc *rrd;
1920         struct sk_buff *skb;
1921
1922         count = 0;
1923
1924         rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1925
1926         while (1) {
1927                 rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1928                 i = 1;
1929                 if (likely(rrd->xsz.valid)) {   /* packet valid */
1930 chk_rrd:
1931                         /* check rrd status */
1932                         if (likely(rrd->num_buf == 1))
1933                                 goto rrd_ok;
1934                         else if (netif_msg_rx_err(adapter)) {
1935                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1936                                         "unexpected RRD buffer count\n");
1937                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1938                                         "rx_buf_len = %d\n",
1939                                         adapter->rx_buffer_len);
1940                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1941                                         "RRD num_buf = %d\n",
1942                                         rrd->num_buf);
1943                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1944                                         "RRD pkt_len = %d\n",
1945                                         rrd->xsz.xsum_sz.pkt_size);
1946                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1947                                         "RRD pkt_flg = 0x%08X\n",
1948                                         rrd->pkt_flg);
1949                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1950                                         "RRD err_flg = 0x%08X\n",
1951                                         rrd->err_flg);
1952                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1953                                         "RRD vlan_tag = 0x%08X\n",
1954                                         rrd->vlan_tag);
1955                         }
1956
1957                         /* rrd seems to be bad */
1958                         if (unlikely(i-- > 0)) {
1959                                 /* rrd may not be DMAed completely */
1960                                 udelay(1);
1961                                 goto chk_rrd;
1962                         }
1963                         /* bad rrd */
1964                         if (netif_msg_rx_err(adapter))
1965                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1966                                         "bad RRD\n");
1967                         /* see if update RFD index */
1968                         if (rrd->num_buf > 1)
1969                                 atl1_update_rfd_index(adapter, rrd);
1970
1971                         /* update rrd */
1972                         rrd->xsz.valid = 0;
1973                         if (++rrd_next_to_clean == rrd_ring->count)
1974                                 rrd_next_to_clean = 0;
1975                         count++;
1976                         continue;
1977                 } else {        /* current rrd still not be updated */
1978
1979                         break;
1980                 }
1981 rrd_ok:
1982                 /* clean alloc flag for bad rrd */
1983                 atl1_clean_alloc_flag(adapter, rrd, 0);
1984
1985                 buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1986                 if (++rfd_ring->next_to_clean == rfd_ring->count)
1987                         rfd_ring->next_to_clean = 0;
1988
1989                 /* update rrd next to clean */
1990                 if (++rrd_next_to_clean == rrd_ring->count)
1991                         rrd_next_to_clean = 0;
1992                 count++;
1993
1994                 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1995                         if (!(rrd->err_flg &
1996                                 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
1997                                 | ERR_FLAG_LEN))) {
1998                                 /* packet error, don't need upstream */
1999                                 buffer_info->alloced = 0;
2000                                 rrd->xsz.valid = 0;
2001                                 continue;
2002                         }
2003                 }
2004
2005                 /* Good Receive */
2006                 pci_unmap_page(adapter->pdev, buffer_info->dma,
2007                                buffer_info->length, PCI_DMA_FROMDEVICE);
2008                 buffer_info->dma = 0;
2009                 skb = buffer_info->skb;
2010                 length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2011
2012                 skb_put(skb, length - ETH_FCS_LEN);
2013
2014                 /* Receive Checksum Offload */
2015                 atl1_rx_checksum(adapter, rrd, skb);
2016                 skb->protocol = eth_type_trans(skb, adapter->netdev);
2017
2018                 if (adapter->vlgrp && (rrd->pkt_flg & PACKET_FLAG_VLAN_INS)) {
2019                         u16 vlan_tag = (rrd->vlan_tag >> 4) |
2020                                         ((rrd->vlan_tag & 7) << 13) |
2021                                         ((rrd->vlan_tag & 8) << 9);
2022                         vlan_hwaccel_rx(skb, adapter->vlgrp, vlan_tag);
2023                 } else
2024                         netif_rx(skb);
2025
2026                 /* let protocol layer free skb */
2027                 buffer_info->skb = NULL;
2028                 buffer_info->alloced = 0;
2029                 rrd->xsz.valid = 0;
2030         }
2031
2032         atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2033
2034         atl1_alloc_rx_buffers(adapter);
2035
2036         /* update mailbox ? */
2037         if (count) {
2038                 u32 tpd_next_to_use;
2039                 u32 rfd_next_to_use;
2040
2041                 spin_lock(&adapter->mb_lock);
2042
2043                 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2044                 rfd_next_to_use =
2045                     atomic_read(&adapter->rfd_ring.next_to_use);
2046                 rrd_next_to_clean =
2047                     atomic_read(&adapter->rrd_ring.next_to_clean);
2048                 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2049                         MB_RFD_PROD_INDX_SHIFT) |
2050                         ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2051                         MB_RRD_CONS_INDX_SHIFT) |
2052                         ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2053                         MB_TPD_PROD_INDX_SHIFT);
2054                 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2055                 spin_unlock(&adapter->mb_lock);
2056         }
2057 }
2058
2059 static void atl1_intr_tx(struct atl1_adapter *adapter)
2060 {
2061         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2062         struct atl1_buffer *buffer_info;
2063         u16 sw_tpd_next_to_clean;
2064         u16 cmb_tpd_next_to_clean;
2065
2066         sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2067         cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2068
2069         while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2070                 struct tx_packet_desc *tpd;
2071
2072                 tpd = ATL1_TPD_DESC(tpd_ring, sw_tpd_next_to_clean);
2073                 buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2074                 if (buffer_info->dma) {
2075                         pci_unmap_page(adapter->pdev, buffer_info->dma,
2076                                        buffer_info->length, PCI_DMA_TODEVICE);
2077                         buffer_info->dma = 0;
2078                 }
2079
2080                 if (buffer_info->skb) {
2081                         dev_kfree_skb_irq(buffer_info->skb);
2082                         buffer_info->skb = NULL;
2083                 }
2084
2085                 if (++sw_tpd_next_to_clean == tpd_ring->count)
2086                         sw_tpd_next_to_clean = 0;
2087         }
2088         atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2089
2090         if (netif_queue_stopped(adapter->netdev) &&
2091             netif_carrier_ok(adapter->netdev))
2092                 netif_wake_queue(adapter->netdev);
2093 }
2094
2095 static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2096 {
2097         u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2098         u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2099         return ((next_to_clean > next_to_use) ?
2100                 next_to_clean - next_to_use - 1 :
2101                 tpd_ring->count + next_to_clean - next_to_use - 1);
2102 }
2103
2104 static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2105         struct tx_packet_desc *ptpd)
2106 {
2107         u8 hdr_len, ip_off;
2108         u32 real_len;
2109         int err;
2110
2111         if (skb_shinfo(skb)->gso_size) {
2112                 if (skb_header_cloned(skb)) {
2113                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2114                         if (unlikely(err))
2115                                 return -1;
2116                 }
2117
2118                 if (skb->protocol == htons(ETH_P_IP)) {
2119                         struct iphdr *iph = ip_hdr(skb);
2120
2121                         real_len = (((unsigned char *)iph - skb->data) +
2122                                 ntohs(iph->tot_len));
2123                         if (real_len < skb->len)
2124                                 pskb_trim(skb, real_len);
2125                         hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
2126                         if (skb->len == hdr_len) {
2127                                 iph->check = 0;
2128                                 tcp_hdr(skb)->check =
2129                                         ~csum_tcpudp_magic(iph->saddr,
2130                                         iph->daddr, tcp_hdrlen(skb),
2131                                         IPPROTO_TCP, 0);
2132                                 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2133                                         TPD_IPHL_SHIFT;
2134                                 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2135                                         TPD_TCPHDRLEN_MASK) <<
2136                                         TPD_TCPHDRLEN_SHIFT;
2137                                 ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2138                                 ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2139                                 return 1;
2140                         }
2141
2142                         iph->check = 0;
2143                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2144                                         iph->daddr, 0, IPPROTO_TCP, 0);
2145                         ip_off = (unsigned char *)iph -
2146                                 (unsigned char *) skb_network_header(skb);
2147                         if (ip_off == 8) /* 802.3-SNAP frame */
2148                                 ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2149                         else if (ip_off != 0)
2150                                 return -2;
2151
2152                         ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2153                                 TPD_IPHL_SHIFT;
2154                         ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2155                                 TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2156                         ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2157                                 TPD_MSS_MASK) << TPD_MSS_SHIFT;
2158                         ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2159                         return 3;
2160                 }
2161         }
2162         return false;
2163 }
2164
2165 static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2166         struct tx_packet_desc *ptpd)
2167 {
2168         u8 css, cso;
2169
2170         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2171                 css = (u8) (skb->csum_start - skb_headroom(skb));
2172                 cso = css + (u8) skb->csum_offset;
2173                 if (unlikely(css & 0x1)) {
2174                         /* L1 hardware requires an even number here */
2175                         if (netif_msg_tx_err(adapter))
2176                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2177                                         "payload offset not an even number\n");
2178                         return -1;
2179                 }
2180                 ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2181                         TPD_PLOADOFFSET_SHIFT;
2182                 ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2183                         TPD_CCSUMOFFSET_SHIFT;
2184                 ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2185                 return true;
2186         }
2187         return 0;
2188 }
2189
2190 static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2191         struct tx_packet_desc *ptpd)
2192 {
2193         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2194         struct atl1_buffer *buffer_info;
2195         u16 buf_len = skb->len;
2196         struct page *page;
2197         unsigned long offset;
2198         unsigned int nr_frags;
2199         unsigned int f;
2200         int retval;
2201         u16 next_to_use;
2202         u16 data_len;
2203         u8 hdr_len;
2204
2205         buf_len -= skb->data_len;
2206         nr_frags = skb_shinfo(skb)->nr_frags;
2207         next_to_use = atomic_read(&tpd_ring->next_to_use);
2208         buffer_info = &tpd_ring->buffer_info[next_to_use];
2209         BUG_ON(buffer_info->skb);
2210         /* put skb in last TPD */
2211         buffer_info->skb = NULL;
2212
2213         retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2214         if (retval) {
2215                 /* TSO */
2216                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2217                 buffer_info->length = hdr_len;
2218                 page = virt_to_page(skb->data);
2219                 offset = (unsigned long)skb->data & ~PAGE_MASK;
2220                 buffer_info->dma = pci_map_page(adapter->pdev, page,
2221                                                 offset, hdr_len,
2222                                                 PCI_DMA_TODEVICE);
2223
2224                 if (++next_to_use == tpd_ring->count)
2225                         next_to_use = 0;
2226
2227                 if (buf_len > hdr_len) {
2228                         int i, nseg;
2229
2230                         data_len = buf_len - hdr_len;
2231                         nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2232                                 ATL1_MAX_TX_BUF_LEN;
2233                         for (i = 0; i < nseg; i++) {
2234                                 buffer_info =
2235                                     &tpd_ring->buffer_info[next_to_use];
2236                                 buffer_info->skb = NULL;
2237                                 buffer_info->length =
2238                                     (ATL1_MAX_TX_BUF_LEN >=
2239                                      data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2240                                 data_len -= buffer_info->length;
2241                                 page = virt_to_page(skb->data +
2242                                         (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2243                                 offset = (unsigned long)(skb->data +
2244                                         (hdr_len + i * ATL1_MAX_TX_BUF_LEN)) &
2245                                         ~PAGE_MASK;
2246                                 buffer_info->dma = pci_map_page(adapter->pdev,
2247                                         page, offset, buffer_info->length,
2248                                         PCI_DMA_TODEVICE);
2249                                 if (++next_to_use == tpd_ring->count)
2250                                         next_to_use = 0;
2251                         }
2252                 }
2253         } else {
2254                 /* not TSO */
2255                 buffer_info->length = buf_len;
2256                 page = virt_to_page(skb->data);
2257                 offset = (unsigned long)skb->data & ~PAGE_MASK;
2258                 buffer_info->dma = pci_map_page(adapter->pdev, page,
2259                         offset, buf_len, PCI_DMA_TODEVICE);
2260                 if (++next_to_use == tpd_ring->count)
2261                         next_to_use = 0;
2262         }
2263
2264         for (f = 0; f < nr_frags; f++) {
2265                 struct skb_frag_struct *frag;
2266                 u16 i, nseg;
2267
2268                 frag = &skb_shinfo(skb)->frags[f];
2269                 buf_len = frag->size;
2270
2271                 nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2272                         ATL1_MAX_TX_BUF_LEN;
2273                 for (i = 0; i < nseg; i++) {
2274                         buffer_info = &tpd_ring->buffer_info[next_to_use];
2275                         BUG_ON(buffer_info->skb);
2276
2277                         buffer_info->skb = NULL;
2278                         buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2279                                 ATL1_MAX_TX_BUF_LEN : buf_len;
2280                         buf_len -= buffer_info->length;
2281                         buffer_info->dma = pci_map_page(adapter->pdev,
2282                                 frag->page,
2283                                 frag->page_offset + (i * ATL1_MAX_TX_BUF_LEN),
2284                                 buffer_info->length, PCI_DMA_TODEVICE);
2285
2286                         if (++next_to_use == tpd_ring->count)
2287                                 next_to_use = 0;
2288                 }
2289         }
2290
2291         /* last tpd's buffer-info */
2292         buffer_info->skb = skb;
2293 }
2294
2295 static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2296        struct tx_packet_desc *ptpd)
2297 {
2298         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2299         struct atl1_buffer *buffer_info;
2300         struct tx_packet_desc *tpd;
2301         u16 j;
2302         u32 val;
2303         u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2304
2305         for (j = 0; j < count; j++) {
2306                 buffer_info = &tpd_ring->buffer_info[next_to_use];
2307                 tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2308                 if (tpd != ptpd)
2309                         memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2310                 tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2311                 tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2312                 tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2313                         TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2314
2315                 /*
2316                  * if this is the first packet in a TSO chain, set
2317                  * TPD_HDRFLAG, otherwise, clear it.
2318                  */
2319                 val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2320                         TPD_SEGMENT_EN_MASK;
2321                 if (val) {
2322                         if (!j)
2323                                 tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2324                         else
2325                                 tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2326                 }
2327
2328                 if (j == (count - 1))
2329                         tpd->word3 |= 1 << TPD_EOP_SHIFT;
2330
2331                 if (++next_to_use == tpd_ring->count)
2332                         next_to_use = 0;
2333         }
2334         /*
2335          * Force memory writes to complete before letting h/w
2336          * know there are new descriptors to fetch.  (Only
2337          * applicable for weak-ordered memory model archs,
2338          * such as IA-64).
2339          */
2340         wmb();
2341
2342         atomic_set(&tpd_ring->next_to_use, next_to_use);
2343 }
2344
2345 static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2346                                          struct net_device *netdev)
2347 {
2348         struct atl1_adapter *adapter = netdev_priv(netdev);
2349         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2350         int len = skb->len;
2351         int tso;
2352         int count = 1;
2353         int ret_val;
2354         struct tx_packet_desc *ptpd;
2355         u16 frag_size;
2356         u16 vlan_tag;
2357         unsigned int nr_frags = 0;
2358         unsigned int mss = 0;
2359         unsigned int f;
2360         unsigned int proto_hdr_len;
2361
2362         len -= skb->data_len;
2363
2364         if (unlikely(skb->len <= 0)) {
2365                 dev_kfree_skb_any(skb);
2366                 return NETDEV_TX_OK;
2367         }
2368
2369         nr_frags = skb_shinfo(skb)->nr_frags;
2370         for (f = 0; f < nr_frags; f++) {
2371                 frag_size = skb_shinfo(skb)->frags[f].size;
2372                 if (frag_size)
2373                         count += (frag_size + ATL1_MAX_TX_BUF_LEN - 1) /
2374                                 ATL1_MAX_TX_BUF_LEN;
2375         }
2376
2377         mss = skb_shinfo(skb)->gso_size;
2378         if (mss) {
2379                 if (skb->protocol == htons(ETH_P_IP)) {
2380                         proto_hdr_len = (skb_transport_offset(skb) +
2381                                          tcp_hdrlen(skb));
2382                         if (unlikely(proto_hdr_len > len)) {
2383                                 dev_kfree_skb_any(skb);
2384                                 return NETDEV_TX_OK;
2385                         }
2386                         /* need additional TPD ? */
2387                         if (proto_hdr_len != len)
2388                                 count += (len - proto_hdr_len +
2389                                         ATL1_MAX_TX_BUF_LEN - 1) /
2390                                         ATL1_MAX_TX_BUF_LEN;
2391                 }
2392         }
2393
2394         if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2395                 /* not enough descriptors */
2396                 netif_stop_queue(netdev);
2397                 if (netif_msg_tx_queued(adapter))
2398                         dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2399                                 "tx busy\n");
2400                 return NETDEV_TX_BUSY;
2401         }
2402
2403         ptpd = ATL1_TPD_DESC(tpd_ring,
2404                 (u16) atomic_read(&tpd_ring->next_to_use));
2405         memset(ptpd, 0, sizeof(struct tx_packet_desc));
2406
2407         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2408                 vlan_tag = vlan_tx_tag_get(skb);
2409                 vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2410                         ((vlan_tag >> 9) & 0x8);
2411                 ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2412                 ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2413                         TPD_VLANTAG_SHIFT;
2414         }
2415
2416         tso = atl1_tso(adapter, skb, ptpd);
2417         if (tso < 0) {
2418                 dev_kfree_skb_any(skb);
2419                 return NETDEV_TX_OK;
2420         }
2421
2422         if (!tso) {
2423                 ret_val = atl1_tx_csum(adapter, skb, ptpd);
2424                 if (ret_val < 0) {
2425                         dev_kfree_skb_any(skb);
2426                         return NETDEV_TX_OK;
2427                 }
2428         }
2429
2430         atl1_tx_map(adapter, skb, ptpd);
2431         atl1_tx_queue(adapter, count, ptpd);
2432         atl1_update_mailbox(adapter);
2433         mmiowb();
2434         return NETDEV_TX_OK;
2435 }
2436
2437 /*
2438  * atl1_intr - Interrupt Handler
2439  * @irq: interrupt number
2440  * @data: pointer to a network interface device structure
2441  * @pt_regs: CPU registers structure
2442  */
2443 static irqreturn_t atl1_intr(int irq, void *data)
2444 {
2445         struct atl1_adapter *adapter = netdev_priv(data);
2446         u32 status;
2447         int max_ints = 10;
2448
2449         status = adapter->cmb.cmb->int_stats;
2450         if (!status)
2451                 return IRQ_NONE;
2452
2453         do {
2454                 /* clear CMB interrupt status at once */
2455                 adapter->cmb.cmb->int_stats = 0;
2456
2457                 if (status & ISR_GPHY)  /* clear phy status */
2458                         atlx_clear_phy_int(adapter);
2459
2460                 /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2461                 iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2462
2463                 /* check if SMB intr */
2464                 if (status & ISR_SMB)
2465                         atl1_inc_smb(adapter);
2466
2467                 /* check if PCIE PHY Link down */
2468                 if (status & ISR_PHY_LINKDOWN) {
2469                         if (netif_msg_intr(adapter))
2470                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2471                                         "pcie phy link down %x\n", status);
2472                         if (netif_running(adapter->netdev)) {   /* reset MAC */
2473                                 iowrite32(0, adapter->hw.hw_addr + REG_IMR);
2474                                 schedule_work(&adapter->pcie_dma_to_rst_task);
2475                                 return IRQ_HANDLED;
2476                         }
2477                 }
2478
2479                 /* check if DMA read/write error ? */
2480                 if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2481                         if (netif_msg_intr(adapter))
2482                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2483                                         "pcie DMA r/w error (status = 0x%x)\n",
2484                                         status);
2485                         iowrite32(0, adapter->hw.hw_addr + REG_IMR);
2486                         schedule_work(&adapter->pcie_dma_to_rst_task);
2487                         return IRQ_HANDLED;
2488                 }
2489
2490                 /* link event */
2491                 if (status & ISR_GPHY) {
2492                         adapter->soft_stats.tx_carrier_errors++;
2493                         atl1_check_for_link(adapter);
2494                 }
2495
2496                 /* transmit event */
2497                 if (status & ISR_CMB_TX)
2498                         atl1_intr_tx(adapter);
2499
2500                 /* rx exception */
2501                 if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2502                         ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2503                         ISR_HOST_RRD_OV | ISR_CMB_RX))) {
2504                         if (status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2505                                 ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2506                                 ISR_HOST_RRD_OV))
2507                                 if (netif_msg_intr(adapter))
2508                                         dev_printk(KERN_DEBUG,
2509                                                 &adapter->pdev->dev,
2510                                                 "rx exception, ISR = 0x%x\n",
2511                                                 status);
2512                         atl1_intr_rx(adapter);
2513                 }
2514
2515                 if (--max_ints < 0)
2516                         break;
2517
2518         } while ((status = adapter->cmb.cmb->int_stats));
2519
2520         /* re-enable Interrupt */
2521         iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2522         return IRQ_HANDLED;
2523 }
2524
2525
2526 /*
2527  * atl1_phy_config - Timer Call-back
2528  * @data: pointer to netdev cast into an unsigned long
2529  */
2530 static void atl1_phy_config(unsigned long data)
2531 {
2532         struct atl1_adapter *adapter = (struct atl1_adapter *)data;
2533         struct atl1_hw *hw = &adapter->hw;
2534         unsigned long flags;
2535
2536         spin_lock_irqsave(&adapter->lock, flags);
2537         adapter->phy_timer_pending = false;
2538         atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2539         atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2540         atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2541         spin_unlock_irqrestore(&adapter->lock, flags);
2542 }
2543
2544 /*
2545  * Orphaned vendor comment left intact here:
2546  * <vendor comment>
2547  * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2548  * will assert. We do soft reset <0x1400=1> according
2549  * with the SPEC. BUT, it seemes that PCIE or DMA
2550  * state-machine will not be reset. DMAR_TO_INT will
2551  * assert again and again.
2552  * </vendor comment>
2553  */
2554
2555 static int atl1_reset(struct atl1_adapter *adapter)
2556 {
2557         int ret;
2558         ret = atl1_reset_hw(&adapter->hw);
2559         if (ret)
2560                 return ret;
2561         return atl1_init_hw(&adapter->hw);
2562 }
2563
2564 static s32 atl1_up(struct atl1_adapter *adapter)
2565 {
2566         struct net_device *netdev = adapter->netdev;
2567         int err;
2568         int irq_flags = IRQF_SAMPLE_RANDOM;
2569
2570         /* hardware has been reset, we need to reload some things */
2571         atlx_set_multi(netdev);
2572         atl1_init_ring_ptrs(adapter);
2573         atlx_restore_vlan(adapter);
2574         err = atl1_alloc_rx_buffers(adapter);
2575         if (unlikely(!err))
2576                 /* no RX BUFFER allocated */
2577                 return -ENOMEM;
2578
2579         if (unlikely(atl1_configure(adapter))) {
2580                 err = -EIO;
2581                 goto err_up;
2582         }
2583
2584         err = pci_enable_msi(adapter->pdev);
2585         if (err) {
2586                 if (netif_msg_ifup(adapter))
2587                         dev_info(&adapter->pdev->dev,
2588                                 "Unable to enable MSI: %d\n", err);
2589                 irq_flags |= IRQF_SHARED;
2590         }
2591
2592         err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
2593                         netdev->name, netdev);
2594         if (unlikely(err))
2595                 goto err_up;
2596
2597         atlx_irq_enable(adapter);
2598         atl1_check_link(adapter);
2599         netif_start_queue(netdev);
2600         return 0;
2601
2602 err_up:
2603         pci_disable_msi(adapter->pdev);
2604         /* free rx_buffers */
2605         atl1_clean_rx_ring(adapter);
2606         return err;
2607 }
2608
2609 static void atl1_down(struct atl1_adapter *adapter)
2610 {
2611         struct net_device *netdev = adapter->netdev;
2612
2613         netif_stop_queue(netdev);
2614         del_timer_sync(&adapter->phy_config_timer);
2615         adapter->phy_timer_pending = false;
2616
2617         atlx_irq_disable(adapter);
2618         free_irq(adapter->pdev->irq, netdev);
2619         pci_disable_msi(adapter->pdev);
2620         atl1_reset_hw(&adapter->hw);
2621         adapter->cmb.cmb->int_stats = 0;
2622
2623         adapter->link_speed = SPEED_0;
2624         adapter->link_duplex = -1;
2625         netif_carrier_off(netdev);
2626
2627         atl1_clean_tx_ring(adapter);
2628         atl1_clean_rx_ring(adapter);
2629 }
2630
2631 static void atl1_tx_timeout_task(struct work_struct *work)
2632 {
2633         struct atl1_adapter *adapter =
2634                 container_of(work, struct atl1_adapter, tx_timeout_task);
2635         struct net_device *netdev = adapter->netdev;
2636
2637         netif_device_detach(netdev);
2638         atl1_down(adapter);
2639         atl1_up(adapter);
2640         netif_device_attach(netdev);
2641 }
2642
2643 /*
2644  * atl1_change_mtu - Change the Maximum Transfer Unit
2645  * @netdev: network interface device structure
2646  * @new_mtu: new value for maximum frame size
2647  *
2648  * Returns 0 on success, negative on failure
2649  */
2650 static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2651 {
2652         struct atl1_adapter *adapter = netdev_priv(netdev);
2653         int old_mtu = netdev->mtu;
2654         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2655
2656         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2657             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2658                 if (netif_msg_link(adapter))
2659                         dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
2660                 return -EINVAL;
2661         }
2662
2663         adapter->hw.max_frame_size = max_frame;
2664         adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2665         adapter->rx_buffer_len = (max_frame + 7) & ~7;
2666         adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2667
2668         netdev->mtu = new_mtu;
2669         if ((old_mtu != new_mtu) && netif_running(netdev)) {
2670                 atl1_down(adapter);
2671                 atl1_up(adapter);
2672         }
2673
2674         return 0;
2675 }
2676
2677 /*
2678  * atl1_open - Called when a network interface is made active
2679  * @netdev: network interface device structure
2680  *
2681  * Returns 0 on success, negative value on failure
2682  *
2683  * The open entry point is called when a network interface is made
2684  * active by the system (IFF_UP).  At this point all resources needed
2685  * for transmit and receive operations are allocated, the interrupt
2686  * handler is registered with the OS, the watchdog timer is started,
2687  * and the stack is notified that the interface is ready.
2688  */
2689 static int atl1_open(struct net_device *netdev)
2690 {
2691         struct atl1_adapter *adapter = netdev_priv(netdev);
2692         int err;
2693
2694         netif_carrier_off(netdev);
2695
2696         /* allocate transmit descriptors */
2697         err = atl1_setup_ring_resources(adapter);
2698         if (err)
2699                 return err;
2700
2701         err = atl1_up(adapter);
2702         if (err)
2703                 goto err_up;
2704
2705         return 0;
2706
2707 err_up:
2708         atl1_reset(adapter);
2709         return err;
2710 }
2711
2712 /*
2713  * atl1_close - Disables a network interface
2714  * @netdev: network interface device structure
2715  *
2716  * Returns 0, this is not allowed to fail
2717  *
2718  * The close entry point is called when an interface is de-activated
2719  * by the OS.  The hardware is still under the drivers control, but
2720  * needs to be disabled.  A global MAC reset is issued to stop the
2721  * hardware, and all transmit and receive resources are freed.
2722  */
2723 static int atl1_close(struct net_device *netdev)
2724 {
2725         struct atl1_adapter *adapter = netdev_priv(netdev);
2726         atl1_down(adapter);
2727         atl1_free_ring_resources(adapter);
2728         return 0;
2729 }
2730
2731 #ifdef CONFIG_PM
2732 static int atl1_suspend(struct pci_dev *pdev, pm_message_t state)
2733 {
2734         struct net_device *netdev = pci_get_drvdata(pdev);
2735         struct atl1_adapter *adapter = netdev_priv(netdev);
2736         struct atl1_hw *hw = &adapter->hw;
2737         u32 ctrl = 0;
2738         u32 wufc = adapter->wol;
2739         u32 val;
2740         int retval;
2741         u16 speed;
2742         u16 duplex;
2743
2744         netif_device_detach(netdev);
2745         if (netif_running(netdev))
2746                 atl1_down(adapter);
2747
2748         retval = pci_save_state(pdev);
2749         if (retval)
2750                 return retval;
2751
2752         atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2753         atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2754         val = ctrl & BMSR_LSTATUS;
2755         if (val)
2756                 wufc &= ~ATLX_WUFC_LNKC;
2757
2758         if (val && wufc) {
2759                 val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2760                 if (val) {
2761                         if (netif_msg_ifdown(adapter))
2762                                 dev_printk(KERN_DEBUG, &pdev->dev,
2763                                         "error getting speed/duplex\n");
2764                         goto disable_wol;
2765                 }
2766
2767                 ctrl = 0;
2768
2769                 /* enable magic packet WOL */
2770                 if (wufc & ATLX_WUFC_MAG)
2771                         ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2772                 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2773                 ioread32(hw->hw_addr + REG_WOL_CTRL);
2774
2775                 /* configure the mac */
2776                 ctrl = MAC_CTRL_RX_EN;
2777                 ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2778                         MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2779                 if (duplex == FULL_DUPLEX)
2780                         ctrl |= MAC_CTRL_DUPLX;
2781                 ctrl |= (((u32)adapter->hw.preamble_len &
2782                         MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2783                 if (adapter->vlgrp)
2784                         ctrl |= MAC_CTRL_RMV_VLAN;
2785                 if (wufc & ATLX_WUFC_MAG)
2786                         ctrl |= MAC_CTRL_BC_EN;
2787                 iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2788                 ioread32(hw->hw_addr + REG_MAC_CTRL);
2789
2790                 /* poke the PHY */
2791                 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2792                 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2793                 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2794                 ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2795
2796                 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
2797                 goto exit;
2798         }
2799
2800         if (!val && wufc) {
2801                 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2802                 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2803                 ioread32(hw->hw_addr + REG_WOL_CTRL);
2804                 iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2805                 ioread32(hw->hw_addr + REG_MAC_CTRL);
2806                 hw->phy_configured = false;
2807                 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
2808                 goto exit;
2809         }
2810
2811 disable_wol:
2812         iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2813         ioread32(hw->hw_addr + REG_WOL_CTRL);
2814         ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2815         ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2816         iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2817         ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2818         hw->phy_configured = false;
2819         pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
2820 exit:
2821         if (netif_running(netdev))
2822                 pci_disable_msi(adapter->pdev);
2823         pci_disable_device(pdev);
2824         pci_set_power_state(pdev, pci_choose_state(pdev, state));
2825
2826         return 0;
2827 }
2828
2829 static int atl1_resume(struct pci_dev *pdev)
2830 {
2831         struct net_device *netdev = pci_get_drvdata(pdev);
2832         struct atl1_adapter *adapter = netdev_priv(netdev);
2833         u32 err;
2834
2835         pci_set_power_state(pdev, PCI_D0);
2836         pci_restore_state(pdev);
2837
2838         err = pci_enable_device(pdev);
2839         if (err) {
2840                 if (netif_msg_ifup(adapter))
2841                         dev_printk(KERN_DEBUG, &pdev->dev,
2842                                 "error enabling pci device\n");
2843                 return err;
2844         }
2845
2846         pci_set_master(pdev);
2847         iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2848         pci_enable_wake(pdev, PCI_D3hot, 0);
2849         pci_enable_wake(pdev, PCI_D3cold, 0);
2850
2851         atl1_reset_hw(&adapter->hw);
2852         adapter->cmb.cmb->int_stats = 0;
2853
2854         if (netif_running(netdev))
2855                 atl1_up(adapter);
2856         netif_device_attach(netdev);
2857
2858         return 0;
2859 }
2860 #else
2861 #define atl1_suspend NULL
2862 #define atl1_resume NULL
2863 #endif
2864
2865 static void atl1_shutdown(struct pci_dev *pdev)
2866 {
2867 #ifdef CONFIG_PM
2868         atl1_suspend(pdev, PMSG_SUSPEND);
2869 #endif
2870 }
2871
2872 #ifdef CONFIG_NET_POLL_CONTROLLER
2873 static void atl1_poll_controller(struct net_device *netdev)
2874 {
2875         disable_irq(netdev->irq);
2876         atl1_intr(netdev->irq, netdev);
2877         enable_irq(netdev->irq);
2878 }
2879 #endif
2880
2881 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,29))
2882 static const struct net_device_ops atl1_netdev_ops = {
2883         .ndo_open               = atl1_open,
2884         .ndo_stop               = atl1_close,
2885         .ndo_start_xmit         = atl1_xmit_frame,
2886         .ndo_set_multicast_list = atlx_set_multi,
2887         .ndo_validate_addr      = eth_validate_addr,
2888         .ndo_set_mac_address    = atl1_set_mac,
2889         .ndo_change_mtu         = atl1_change_mtu,
2890         .ndo_do_ioctl           = atlx_ioctl,
2891         .ndo_tx_timeout         = atlx_tx_timeout,
2892         .ndo_vlan_rx_register   = atlx_vlan_rx_register,
2893 #ifdef CONFIG_NET_POLL_CONTROLLER
2894         .ndo_poll_controller    = atl1_poll_controller,
2895 #endif
2896 };
2897 #endif
2898
2899 /*
2900  * atl1_probe - Device Initialization Routine
2901  * @pdev: PCI device information struct
2902  * @ent: entry in atl1_pci_tbl
2903  *
2904  * Returns 0 on success, negative on failure
2905  *
2906  * atl1_probe initializes an adapter identified by a pci_dev structure.
2907  * The OS initialization, configuring of the adapter private structure,
2908  * and a hardware reset occur.
2909  */
2910 static int __devinit atl1_probe(struct pci_dev *pdev,
2911         const struct pci_device_id *ent)
2912 {
2913         struct net_device *netdev;
2914         struct atl1_adapter *adapter;
2915         static int cards_found = 0;
2916         int err;
2917
2918         err = pci_enable_device(pdev);
2919         if (err)
2920                 return err;
2921
2922         /*
2923          * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2924          * shared register for the high 32 bits, so only a single, aligned,
2925          * 4 GB physical address range can be used at a time.
2926          *
2927          * Supporting 64-bit DMA on this hardware is more trouble than it's
2928          * worth.  It is far easier to limit to 32-bit DMA than update
2929          * various kernel subsystems to support the mechanics required by a
2930          * fixed-high-32-bit system.
2931          */
2932         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2933         if (err) {
2934                 dev_err(&pdev->dev, "no usable DMA configuration\n");
2935                 goto err_dma;
2936         }
2937         /*
2938          * Mark all PCI regions associated with PCI device
2939          * pdev as being reserved by owner atl1_driver_name
2940          */
2941         err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2942         if (err)
2943                 goto err_request_regions;
2944
2945         /*
2946          * Enables bus-mastering on the device and calls
2947          * pcibios_set_master to do the needed arch specific settings
2948          */
2949         pci_set_master(pdev);
2950
2951         netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2952         if (!netdev) {
2953                 err = -ENOMEM;
2954                 goto err_alloc_etherdev;
2955         }
2956         SET_NETDEV_DEV(netdev, &pdev->dev);
2957
2958         pci_set_drvdata(pdev, netdev);
2959         adapter = netdev_priv(netdev);
2960         adapter->netdev = netdev;
2961         adapter->pdev = pdev;
2962         adapter->hw.back = adapter;
2963         adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2964
2965         adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2966         if (!adapter->hw.hw_addr) {
2967                 err = -EIO;
2968                 goto err_pci_iomap;
2969         }
2970         /* get device revision number */
2971         adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2972                 (REG_MASTER_CTRL + 2));
2973         if (netif_msg_probe(adapter))
2974                 dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
2975
2976         /* set default ring resource counts */
2977         adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
2978         adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
2979
2980         adapter->mii.dev = netdev;
2981         adapter->mii.mdio_read = mdio_read;
2982         adapter->mii.mdio_write = mdio_write;
2983         adapter->mii.phy_id_mask = 0x1f;
2984         adapter->mii.reg_num_mask = 0x1f;
2985
2986 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,29))
2987         netdev->netdev_ops = &atl1_netdev_ops;
2988 #else
2989         netdev->change_mtu = atl1_change_mtu;
2990         netdev->hard_start_xmit = atl1_xmit_frame;
2991         netdev->open = atl1_open;
2992         netdev->stop = atl1_close;
2993         netdev->tx_timeout = atlx_tx_timeout;
2994         netdev->set_mac_address = atl1_set_mac;
2995         netdev->do_ioctl = atlx_ioctl;
2996         netdev->set_multicast_list = atlx_set_multi;
2997         netdev->vlan_rx_register = atlx_vlan_rx_register;
2998 #ifdef CONFIG_NET_POLL_CONTROLLER
2999         netdev->poll_controller = atl1_poll_controller;
3000 #endif
3001 #endif
3002         netdev->watchdog_timeo = 5 * HZ;
3003
3004         netdev->ethtool_ops = &atl1_ethtool_ops;
3005         adapter->bd_number = cards_found;
3006
3007         /* setup the private structure */
3008         err = atl1_sw_init(adapter);
3009         if (err)
3010                 goto err_common;
3011
3012         netdev->features = NETIF_F_HW_CSUM;
3013         netdev->features |= NETIF_F_SG;
3014         netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
3015
3016         /*
3017          * patch for some L1 of old version,
3018          * the final version of L1 may not need these
3019          * patches
3020          */
3021         /* atl1_pcie_patch(adapter); */
3022
3023         /* really reset GPHY core */
3024         iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3025
3026         /*
3027          * reset the controller to
3028          * put the device in a known good starting state
3029          */
3030         if (atl1_reset_hw(&adapter->hw)) {
3031                 err = -EIO;
3032                 goto err_common;
3033         }
3034
3035         /* copy the MAC address out of the EEPROM */
3036         atl1_read_mac_addr(&adapter->hw);
3037         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
3038
3039         if (!is_valid_ether_addr(netdev->dev_addr)) {
3040                 err = -EIO;
3041                 goto err_common;
3042         }
3043
3044         atl1_check_options(adapter);
3045
3046         /* pre-init the MAC, and setup link */
3047         err = atl1_init_hw(&adapter->hw);
3048         if (err) {
3049                 err = -EIO;
3050                 goto err_common;
3051         }
3052
3053         atl1_pcie_patch(adapter);
3054         /* assume we have no link for now */
3055         netif_carrier_off(netdev);
3056         netif_stop_queue(netdev);
3057
3058         setup_timer(&adapter->phy_config_timer, &atl1_phy_config,
3059                     (unsigned long)adapter);
3060         adapter->phy_timer_pending = false;
3061
3062         INIT_WORK(&adapter->tx_timeout_task, atl1_tx_timeout_task);
3063
3064         INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3065
3066         INIT_WORK(&adapter->pcie_dma_to_rst_task, atl1_tx_timeout_task);
3067
3068         err = register_netdev(netdev);
3069         if (err)
3070                 goto err_common;
3071
3072         cards_found++;
3073         atl1_via_workaround(adapter);
3074         return 0;
3075
3076 err_common:
3077         pci_iounmap(pdev, adapter->hw.hw_addr);
3078 err_pci_iomap:
3079         free_netdev(netdev);
3080 err_alloc_etherdev:
3081         pci_release_regions(pdev);
3082 err_dma:
3083 err_request_regions:
3084         pci_disable_device(pdev);
3085         return err;
3086 }
3087
3088 /*
3089  * atl1_remove - Device Removal Routine
3090  * @pdev: PCI device information struct
3091  *
3092  * atl1_remove is called by the PCI subsystem to alert the driver
3093  * that it should release a PCI device.  The could be caused by a
3094  * Hot-Plug event, or because the driver is going to be removed from
3095  * memory.
3096  */
3097 static void __devexit atl1_remove(struct pci_dev *pdev)
3098 {
3099         struct net_device *netdev = pci_get_drvdata(pdev);
3100         struct atl1_adapter *adapter;
3101         /* Device not available. Return. */
3102         if (!netdev)
3103                 return;
3104
3105         adapter = netdev_priv(netdev);
3106
3107         /*
3108          * Some atl1 boards lack persistent storage for their MAC, and get it
3109          * from the BIOS during POST.  If we've been messing with the MAC
3110          * address, we need to save the permanent one.
3111          */
3112         if (memcmp(adapter->hw.mac_addr, adapter->hw.perm_mac_addr, ETH_ALEN)) {
3113                 memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3114                         ETH_ALEN);
3115                 atl1_set_mac_addr(&adapter->hw);
3116         }
3117
3118         iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3119         unregister_netdev(netdev);
3120         pci_iounmap(pdev, adapter->hw.hw_addr);
3121         pci_release_regions(pdev);
3122         free_netdev(netdev);
3123         pci_disable_device(pdev);
3124 }
3125
3126 static struct pci_driver atl1_driver = {
3127         .name = ATLX_DRIVER_NAME,
3128         .id_table = atl1_pci_tbl,
3129         .probe = atl1_probe,
3130         .remove = __devexit_p(atl1_remove),
3131         .suspend = atl1_suspend,
3132         .resume = atl1_resume,
3133         .shutdown = atl1_shutdown
3134 };
3135
3136 /*
3137  * atl1_exit_module - Driver Exit Cleanup Routine
3138  *
3139  * atl1_exit_module is called just before the driver is removed
3140  * from memory.
3141  */
3142 static void __exit atl1_exit_module(void)
3143 {
3144         pci_unregister_driver(&atl1_driver);
3145 }
3146
3147 /*
3148  * atl1_init_module - Driver Registration Routine
3149  *
3150  * atl1_init_module is the first routine called when the driver is
3151  * loaded. All it does is register with the PCI subsystem.
3152  */
3153 static int __init atl1_init_module(void)
3154 {
3155         return pci_register_driver(&atl1_driver);
3156 }
3157
3158 module_init(atl1_init_module);
3159 module_exit(atl1_exit_module);
3160
3161 struct atl1_stats {
3162         char stat_string[ETH_GSTRING_LEN];
3163         int sizeof_stat;
3164         int stat_offset;
3165 };
3166
3167 #define ATL1_STAT(m) \
3168         sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3169
3170 static struct atl1_stats atl1_gstrings_stats[] = {
3171         {"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3172         {"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3173         {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3174         {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3175         {"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3176         {"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3177         {"multicast", ATL1_STAT(soft_stats.multicast)},
3178         {"collisions", ATL1_STAT(soft_stats.collisions)},
3179         {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3180         {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3181         {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3182         {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3183         {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3184         {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3185         {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3186         {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3187         {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3188         {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3189         {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3190         {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3191         {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3192         {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3193         {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3194         {"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
3195         {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3196         {"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3197         {"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3198         {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3199         {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3200 };
3201
3202 static void atl1_get_ethtool_stats(struct net_device *netdev,
3203         struct ethtool_stats *stats, u64 *data)
3204 {
3205         struct atl1_adapter *adapter = netdev_priv(netdev);
3206         int i;
3207         char *p;
3208
3209         for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3210                 p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3211                 data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3212                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3213         }
3214
3215 }
3216
3217 static int atl1_get_sset_count(struct net_device *netdev, int sset)
3218 {
3219         switch (sset) {
3220         case ETH_SS_STATS:
3221                 return ARRAY_SIZE(atl1_gstrings_stats);
3222         default:
3223                 return -EOPNOTSUPP;
3224         }
3225 }
3226
3227 static int atl1_get_settings(struct net_device *netdev,
3228         struct ethtool_cmd *ecmd)
3229 {
3230         struct atl1_adapter *adapter = netdev_priv(netdev);
3231         struct atl1_hw *hw = &adapter->hw;
3232
3233         ecmd->supported = (SUPPORTED_10baseT_Half |
3234                            SUPPORTED_10baseT_Full |
3235                            SUPPORTED_100baseT_Half |
3236                            SUPPORTED_100baseT_Full |
3237                            SUPPORTED_1000baseT_Full |
3238                            SUPPORTED_Autoneg | SUPPORTED_TP);
3239         ecmd->advertising = ADVERTISED_TP;
3240         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3241             hw->media_type == MEDIA_TYPE_1000M_FULL) {
3242                 ecmd->advertising |= ADVERTISED_Autoneg;
3243                 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3244                         ecmd->advertising |= ADVERTISED_Autoneg;
3245                         ecmd->advertising |=
3246                             (ADVERTISED_10baseT_Half |
3247                              ADVERTISED_10baseT_Full |
3248                              ADVERTISED_100baseT_Half |
3249                              ADVERTISED_100baseT_Full |
3250                              ADVERTISED_1000baseT_Full);
3251                 } else
3252                         ecmd->advertising |= (ADVERTISED_1000baseT_Full);
3253         }
3254         ecmd->port = PORT_TP;
3255         ecmd->phy_address = 0;
3256         ecmd->transceiver = XCVR_INTERNAL;
3257
3258         if (netif_carrier_ok(adapter->netdev)) {
3259                 u16 link_speed, link_duplex;
3260                 atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3261                 ecmd->speed = link_speed;
3262                 if (link_duplex == FULL_DUPLEX)
3263                         ecmd->duplex = DUPLEX_FULL;
3264                 else
3265                         ecmd->duplex = DUPLEX_HALF;
3266         } else {
3267                 ecmd->speed = -1;
3268                 ecmd->duplex = -1;
3269         }
3270         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3271             hw->media_type == MEDIA_TYPE_1000M_FULL)
3272                 ecmd->autoneg = AUTONEG_ENABLE;
3273         else
3274                 ecmd->autoneg = AUTONEG_DISABLE;
3275
3276         return 0;
3277 }
3278
3279 static int atl1_set_settings(struct net_device *netdev,
3280         struct ethtool_cmd *ecmd)
3281 {
3282         struct atl1_adapter *adapter = netdev_priv(netdev);
3283         struct atl1_hw *hw = &adapter->hw;
3284         u16 phy_data;
3285         int ret_val = 0;
3286         u16 old_media_type = hw->media_type;
3287
3288         if (netif_running(adapter->netdev)) {
3289                 if (netif_msg_link(adapter))
3290                         dev_dbg(&adapter->pdev->dev,
3291                                 "ethtool shutting down adapter\n");
3292                 atl1_down(adapter);
3293         }
3294
3295         if (ecmd->autoneg == AUTONEG_ENABLE)
3296                 hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3297         else {
3298                 if (ecmd->speed == SPEED_1000) {
3299                         if (ecmd->duplex != DUPLEX_FULL) {
3300                                 if (netif_msg_link(adapter))
3301                                         dev_warn(&adapter->pdev->dev,
3302                                                 "1000M half is invalid\n");
3303                                 ret_val = -EINVAL;
3304                                 goto exit_sset;
3305                         }
3306                         hw->media_type = MEDIA_TYPE_1000M_FULL;
3307                 } else if (ecmd->speed == SPEED_100) {
3308                         if (ecmd->duplex == DUPLEX_FULL)
3309                                 hw->media_type = MEDIA_TYPE_100M_FULL;
3310                         else
3311                                 hw->media_type = MEDIA_TYPE_100M_HALF;
3312                 } else {
3313                         if (ecmd->duplex == DUPLEX_FULL)
3314                                 hw->media_type = MEDIA_TYPE_10M_FULL;
3315                         else
3316                                 hw->media_type = MEDIA_TYPE_10M_HALF;
3317                 }
3318         }
3319         switch (hw->media_type) {
3320         case MEDIA_TYPE_AUTO_SENSOR:
3321                 ecmd->advertising =
3322                     ADVERTISED_10baseT_Half |
3323                     ADVERTISED_10baseT_Full |
3324                     ADVERTISED_100baseT_Half |
3325                     ADVERTISED_100baseT_Full |
3326                     ADVERTISED_1000baseT_Full |
3327                     ADVERTISED_Autoneg | ADVERTISED_TP;
3328                 break;
3329         case MEDIA_TYPE_1000M_FULL:
3330                 ecmd->advertising =
3331                     ADVERTISED_1000baseT_Full |
3332                     ADVERTISED_Autoneg | ADVERTISED_TP;
3333                 break;
3334         default:
3335                 ecmd->advertising = 0;
3336                 break;
3337         }
3338         if (atl1_phy_setup_autoneg_adv(hw)) {
3339                 ret_val = -EINVAL;
3340                 if (netif_msg_link(adapter))
3341                         dev_warn(&adapter->pdev->dev,
3342                                 "invalid ethtool speed/duplex setting\n");
3343                 goto exit_sset;
3344         }
3345         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3346             hw->media_type == MEDIA_TYPE_1000M_FULL)
3347                 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3348         else {
3349                 switch (hw->media_type) {
3350                 case MEDIA_TYPE_100M_FULL:
3351                         phy_data =
3352                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3353                             MII_CR_RESET;
3354                         break;
3355                 case MEDIA_TYPE_100M_HALF:
3356                         phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3357                         break;
3358                 case MEDIA_TYPE_10M_FULL:
3359                         phy_data =
3360                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3361                         break;
3362                 default:
3363                         /* MEDIA_TYPE_10M_HALF: */
3364                         phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3365                         break;
3366                 }
3367         }
3368         atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3369 exit_sset:
3370         if (ret_val)
3371                 hw->media_type = old_media_type;
3372
3373         if (netif_running(adapter->netdev)) {
3374                 if (netif_msg_link(adapter))
3375                         dev_dbg(&adapter->pdev->dev,
3376                                 "ethtool starting adapter\n");
3377                 atl1_up(adapter);
3378         } else if (!ret_val) {
3379                 if (netif_msg_link(adapter))
3380                         dev_dbg(&adapter->pdev->dev,
3381                                 "ethtool resetting adapter\n");
3382                 atl1_reset(adapter);
3383         }
3384         return ret_val;
3385 }
3386
3387 static void atl1_get_drvinfo(struct net_device *netdev,
3388         struct ethtool_drvinfo *drvinfo)
3389 {
3390         struct atl1_adapter *adapter = netdev_priv(netdev);
3391
3392         strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3393         strlcpy(drvinfo->version, ATLX_DRIVER_VERSION,
3394                 sizeof(drvinfo->version));
3395         strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
3396         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
3397                 sizeof(drvinfo->bus_info));
3398         drvinfo->eedump_len = ATL1_EEDUMP_LEN;
3399 }
3400
3401 static void atl1_get_wol(struct net_device *netdev,
3402         struct ethtool_wolinfo *wol)
3403 {
3404         struct atl1_adapter *adapter = netdev_priv(netdev);
3405
3406         wol->supported = WAKE_MAGIC;
3407         wol->wolopts = 0;
3408         if (adapter->wol & ATLX_WUFC_MAG)
3409                 wol->wolopts |= WAKE_MAGIC;
3410         return;
3411 }
3412
3413 static int atl1_set_wol(struct net_device *netdev,
3414         struct ethtool_wolinfo *wol)
3415 {
3416         struct atl1_adapter *adapter = netdev_priv(netdev);
3417
3418         if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3419                 WAKE_ARP | WAKE_MAGICSECURE))
3420                 return -EOPNOTSUPP;
3421         adapter->wol = 0;
3422         if (wol->wolopts & WAKE_MAGIC)
3423                 adapter->wol |= ATLX_WUFC_MAG;
3424         return 0;
3425 }
3426
3427 static u32 atl1_get_msglevel(struct net_device *netdev)
3428 {
3429         struct atl1_adapter *adapter = netdev_priv(netdev);
3430         return adapter->msg_enable;
3431 }
3432
3433 static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3434 {
3435         struct atl1_adapter *adapter = netdev_priv(netdev);
3436         adapter->msg_enable = value;
3437 }
3438
3439 static int atl1_get_regs_len(struct net_device *netdev)
3440 {
3441         return ATL1_REG_COUNT * sizeof(u32);
3442 }
3443
3444 static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3445         void *p)
3446 {
3447         struct atl1_adapter *adapter = netdev_priv(netdev);
3448         struct atl1_hw *hw = &adapter->hw;
3449         unsigned int i;
3450         u32 *regbuf = p;
3451
3452         for (i = 0; i < ATL1_REG_COUNT; i++) {
3453                 /*
3454                  * This switch statement avoids reserved regions
3455                  * of register space.
3456                  */
3457                 switch (i) {
3458                 case 6 ... 9:
3459                 case 14:
3460                 case 29 ... 31:
3461                 case 34 ... 63:
3462                 case 75 ... 127:
3463                 case 136 ... 1023:
3464                 case 1027 ... 1087:
3465                 case 1091 ... 1151:
3466                 case 1194 ... 1195:
3467                 case 1200 ... 1201:
3468                 case 1206 ... 1213:
3469                 case 1216 ... 1279:
3470                 case 1290 ... 1311:
3471                 case 1323 ... 1343:
3472                 case 1358 ... 1359:
3473                 case 1368 ... 1375:
3474                 case 1378 ... 1383:
3475                 case 1388 ... 1391:
3476                 case 1393 ... 1395:
3477                 case 1402 ... 1403:
3478                 case 1410 ... 1471:
3479                 case 1522 ... 1535:
3480                         /* reserved region; don't read it */
3481                         regbuf[i] = 0;
3482                         break;
3483                 default:
3484                         /* unreserved region */
3485                         regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3486                 }
3487         }
3488 }
3489
3490 static void atl1_get_ringparam(struct net_device *netdev,
3491         struct ethtool_ringparam *ring)
3492 {
3493         struct atl1_adapter *adapter = netdev_priv(netdev);
3494         struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3495         struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3496
3497         ring->rx_max_pending = ATL1_MAX_RFD;
3498         ring->tx_max_pending = ATL1_MAX_TPD;
3499         ring->rx_mini_max_pending = 0;
3500         ring->rx_jumbo_max_pending = 0;
3501         ring->rx_pending = rxdr->count;
3502         ring->tx_pending = txdr->count;
3503         ring->rx_mini_pending = 0;
3504         ring->rx_jumbo_pending = 0;
3505 }
3506
3507 static int atl1_set_ringparam(struct net_device *netdev,
3508         struct ethtool_ringparam *ring)
3509 {
3510         struct atl1_adapter *adapter = netdev_priv(netdev);
3511         struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3512         struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3513         struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3514
3515         struct atl1_tpd_ring tpd_old, tpd_new;
3516         struct atl1_rfd_ring rfd_old, rfd_new;
3517         struct atl1_rrd_ring rrd_old, rrd_new;
3518         struct atl1_ring_header rhdr_old, rhdr_new;
3519         int err;
3520
3521         tpd_old = adapter->tpd_ring;
3522         rfd_old = adapter->rfd_ring;
3523         rrd_old = adapter->rrd_ring;
3524         rhdr_old = adapter->ring_header;
3525
3526         if (netif_running(adapter->netdev))
3527                 atl1_down(adapter);
3528
3529         rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3530         rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3531                         rfdr->count;
3532         rfdr->count = (rfdr->count + 3) & ~3;
3533         rrdr->count = rfdr->count;
3534
3535         tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3536         tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3537                         tpdr->count;
3538         tpdr->count = (tpdr->count + 3) & ~3;
3539
3540         if (netif_running(adapter->netdev)) {
3541                 /* try to get new resources before deleting old */
3542                 err = atl1_setup_ring_resources(adapter);
3543                 if (err)
3544                         goto err_setup_ring;
3545
3546                 /*
3547                  * save the new, restore the old in order to free it,
3548                  * then restore the new back again
3549                  */
3550
3551                 rfd_new = adapter->rfd_ring;
3552                 rrd_new = adapter->rrd_ring;
3553                 tpd_new = adapter->tpd_ring;
3554                 rhdr_new = adapter->ring_header;
3555                 adapter->rfd_ring = rfd_old;
3556                 adapter->rrd_ring = rrd_old;
3557                 adapter->tpd_ring = tpd_old;
3558                 adapter->ring_header = rhdr_old;
3559                 atl1_free_ring_resources(adapter);
3560                 adapter->rfd_ring = rfd_new;
3561                 adapter->rrd_ring = rrd_new;
3562                 adapter->tpd_ring = tpd_new;
3563                 adapter->ring_header = rhdr_new;
3564
3565                 err = atl1_up(adapter);
3566                 if (err)
3567                         return err;
3568         }
3569         return 0;
3570
3571 err_setup_ring:
3572         adapter->rfd_ring = rfd_old;
3573         adapter->rrd_ring = rrd_old;
3574         adapter->tpd_ring = tpd_old;
3575         adapter->ring_header = rhdr_old;
3576         atl1_up(adapter);
3577         return err;
3578 }
3579
3580 static void atl1_get_pauseparam(struct net_device *netdev,
3581         struct ethtool_pauseparam *epause)
3582 {
3583         struct atl1_adapter *adapter = netdev_priv(netdev);
3584         struct atl1_hw *hw = &adapter->hw;
3585
3586         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3587             hw->media_type == MEDIA_TYPE_1000M_FULL) {
3588                 epause->autoneg = AUTONEG_ENABLE;
3589         } else {
3590                 epause->autoneg = AUTONEG_DISABLE;
3591         }
3592         epause->rx_pause = 1;
3593         epause->tx_pause = 1;
3594 }
3595
3596 static int atl1_set_pauseparam(struct net_device *netdev,
3597         struct ethtool_pauseparam *epause)
3598 {
3599         struct atl1_adapter *adapter = netdev_priv(netdev);
3600         struct atl1_hw *hw = &adapter->hw;
3601
3602         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3603             hw->media_type == MEDIA_TYPE_1000M_FULL) {
3604                 epause->autoneg = AUTONEG_ENABLE;
3605         } else {
3606                 epause->autoneg = AUTONEG_DISABLE;
3607         }
3608
3609         epause->rx_pause = 1;
3610         epause->tx_pause = 1;
3611
3612         return 0;
3613 }
3614
3615 /* FIXME: is this right? -- CHS */
3616 static u32 atl1_get_rx_csum(struct net_device *netdev)
3617 {
3618         return 1;
3619 }
3620
3621 static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3622         u8 *data)
3623 {
3624         u8 *p = data;
3625         int i;
3626
3627         switch (stringset) {
3628         case ETH_SS_STATS:
3629                 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3630                         memcpy(p, atl1_gstrings_stats[i].stat_string,
3631                                 ETH_GSTRING_LEN);
3632                         p += ETH_GSTRING_LEN;
3633                 }
3634                 break;
3635         }
3636 }
3637
3638 static int atl1_nway_reset(struct net_device *netdev)
3639 {
3640         struct atl1_adapter *adapter = netdev_priv(netdev);
3641         struct atl1_hw *hw = &adapter->hw;
3642
3643         if (netif_running(netdev)) {
3644                 u16 phy_data;
3645                 atl1_down(adapter);
3646
3647                 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3648                         hw->media_type == MEDIA_TYPE_1000M_FULL) {
3649                         phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3650                 } else {
3651                         switch (hw->media_type) {
3652                         case MEDIA_TYPE_100M_FULL:
3653                                 phy_data = MII_CR_FULL_DUPLEX |
3654                                         MII_CR_SPEED_100 | MII_CR_RESET;
3655                                 break;
3656                         case MEDIA_TYPE_100M_HALF:
3657                                 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3658                                 break;
3659                         case MEDIA_TYPE_10M_FULL:
3660                                 phy_data = MII_CR_FULL_DUPLEX |
3661                                         MII_CR_SPEED_10 | MII_CR_RESET;
3662                                 break;
3663                         default:
3664                                 /* MEDIA_TYPE_10M_HALF */
3665                                 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3666                         }
3667                 }
3668                 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3669                 atl1_up(adapter);
3670         }
3671         return 0;
3672 }
3673
3674 const struct ethtool_ops atl1_ethtool_ops = {
3675         .get_settings           = atl1_get_settings,
3676         .set_settings           = atl1_set_settings,
3677         .get_drvinfo            = atl1_get_drvinfo,
3678         .get_wol                = atl1_get_wol,
3679         .set_wol                = atl1_set_wol,
3680         .get_msglevel           = atl1_get_msglevel,
3681         .set_msglevel           = atl1_set_msglevel,
3682         .get_regs_len           = atl1_get_regs_len,
3683         .get_regs               = atl1_get_regs,
3684         .get_ringparam          = atl1_get_ringparam,
3685         .set_ringparam          = atl1_set_ringparam,
3686         .get_pauseparam         = atl1_get_pauseparam,
3687         .set_pauseparam         = atl1_set_pauseparam,
3688         .get_rx_csum            = atl1_get_rx_csum,
3689         .set_tx_csum            = ethtool_op_set_tx_hw_csum,
3690         .get_link               = ethtool_op_get_link,
3691         .set_sg                 = ethtool_op_set_sg,
3692         .get_strings            = atl1_get_strings,
3693         .nway_reset             = atl1_nway_reset,
3694         .get_ethtool_stats      = atl1_get_ethtool_stats,
3695         .get_sset_count         = atl1_get_sset_count,
3696         .set_tso                = ethtool_op_set_tso,
3697 };