48b9ee2f7e0bacb516ae671f0ae050bf2d80c6e8
[pandora-u-boot.git] / cpu / ppc4xx / 44x_spd_ddr2.c
1 /*
2  * cpu/ppc4xx/44x_spd_ddr2.c
3  * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
4  * DDR2 controller (non Denali Core). Those are 440SP/SPe.
5  *
6  * (C) Copyright 2007
7  * Stefan Roese, DENX Software Engineering, sr@denx.de.
8  *
9  * COPYRIGHT   AMCC   CORPORATION 2004
10  *
11  * See file CREDITS for list of people who contributed to this
12  * project.
13  *
14  * This program is free software; you can redistribute it and/or
15  * modify it under the terms of the GNU General Public License as
16  * published by the Free Software Foundation; either version 2 of
17  * the License, or (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with this program; if not, write to the Free Software
26  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
27  * MA 02111-1307 USA
28  *
29  */
30
31 /* define DEBUG for debugging output (obviously ;-)) */
32 #if 0
33 #define DEBUG
34 #endif
35
36 #include <common.h>
37 #include <command.h>
38 #include <ppc4xx.h>
39 #include <i2c.h>
40 #include <asm/io.h>
41 #include <asm/processor.h>
42 #include <asm/mmu.h>
43
44 #if defined(CONFIG_SPD_EEPROM) &&                               \
45         (defined(CONFIG_440SP) || defined(CONFIG_440SPE))
46
47 /*-----------------------------------------------------------------------------+
48  * Defines
49  *-----------------------------------------------------------------------------*/
50 #ifndef TRUE
51 #define TRUE            1
52 #endif
53 #ifndef FALSE
54 #define FALSE           0
55 #endif
56
57 #define SDRAM_DDR1      1
58 #define SDRAM_DDR2      2
59 #define SDRAM_NONE      0
60
61 #define MAXDIMMS        2
62 #define MAXRANKS        4
63 #define MAXBXCF         4
64 #define MAX_SPD_BYTES   256   /* Max number of bytes on the DIMM's SPD EEPROM */
65
66 #define ONE_BILLION     1000000000
67
68 #define MULDIV64(m1, m2, d)     (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
69
70 #define CMD_NOP         (7 << 19)
71 #define CMD_PRECHARGE   (2 << 19)
72 #define CMD_REFRESH     (1 << 19)
73 #define CMD_EMR         (0 << 19)
74 #define CMD_READ        (5 << 19)
75 #define CMD_WRITE       (4 << 19)
76
77 #define SELECT_MR       (0 << 16)
78 #define SELECT_EMR      (1 << 16)
79 #define SELECT_EMR2     (2 << 16)
80 #define SELECT_EMR3     (3 << 16)
81
82 /* MR */
83 #define DLL_RESET       0x00000100
84
85 #define WRITE_RECOV_2   (1 << 9)
86 #define WRITE_RECOV_3   (2 << 9)
87 #define WRITE_RECOV_4   (3 << 9)
88 #define WRITE_RECOV_5   (4 << 9)
89 #define WRITE_RECOV_6   (5 << 9)
90
91 #define BURST_LEN_4     0x00000002
92
93 /* EMR */
94 #define ODT_0_OHM       0x00000000
95 #define ODT_50_OHM      0x00000044
96 #define ODT_75_OHM      0x00000004
97 #define ODT_150_OHM     0x00000040
98
99 #define ODS_FULL        0x00000000
100 #define ODS_REDUCED     0x00000002
101
102 /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
103 #define ODT_EB0R        (0x80000000 >> 8)
104 #define ODT_EB0W        (0x80000000 >> 7)
105 #define CALC_ODT_R(n)   (ODT_EB0R << (n << 1))
106 #define CALC_ODT_W(n)   (ODT_EB0W << (n << 1))
107 #define CALC_ODT_RW(n)  (CALC_ODT_R(n) | CALC_ODT_W(n))
108
109 /* Defines for the Read Cycle Delay test */
110 #define NUMMEMTESTS     8
111 #define NUMMEMWORDS     8
112 #define NUMLOOPS        256             /* memory test loops */
113
114 #undef CONFIG_ECC_ERROR_RESET           /* test-only: see description below, at check_ecc() */
115
116 /*
117  * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
118  * region. Right now the cache should still be disabled in U-Boot because of the
119  * EMAC driver, that need it's buffer descriptor to be located in non cached
120  * memory.
121  *
122  * If at some time this restriction doesn't apply anymore, just define
123  * CFG_ENABLE_SDRAM_CACHE in the board config file and this code should setup
124  * everything correctly.
125  */
126 #ifdef CFG_ENABLE_SDRAM_CACHE
127 #define MY_TLB_WORD2_I_ENABLE   0                       /* enable caching on SDRAM */
128 #else
129 #define MY_TLB_WORD2_I_ENABLE   TLB_WORD2_I_ENABLE      /* disable caching on SDRAM */
130 #endif
131
132 /* Private Structure Definitions */
133
134 /* enum only to ease code for cas latency setting */
135 typedef enum ddr_cas_id {
136         DDR_CAS_2      = 20,
137         DDR_CAS_2_5    = 25,
138         DDR_CAS_3      = 30,
139         DDR_CAS_4      = 40,
140         DDR_CAS_5      = 50
141 } ddr_cas_id_t;
142
143 /*-----------------------------------------------------------------------------+
144  * Prototypes
145  *-----------------------------------------------------------------------------*/
146 static unsigned long sdram_memsize(void);
147 void program_tlb(u32 start, u32 size, u32 tlb_word2_i_value);
148 static void get_spd_info(unsigned long *dimm_populated,
149                          unsigned char *iic0_dimm_addr,
150                          unsigned long num_dimm_banks);
151 static void check_mem_type(unsigned long *dimm_populated,
152                            unsigned char *iic0_dimm_addr,
153                            unsigned long num_dimm_banks);
154 static void check_frequency(unsigned long *dimm_populated,
155                             unsigned char *iic0_dimm_addr,
156                             unsigned long num_dimm_banks);
157 static void check_rank_number(unsigned long *dimm_populated,
158                               unsigned char *iic0_dimm_addr,
159                               unsigned long num_dimm_banks);
160 static void check_voltage_type(unsigned long *dimm_populated,
161                                unsigned char *iic0_dimm_addr,
162                                unsigned long num_dimm_banks);
163 static void program_memory_queue(unsigned long *dimm_populated,
164                                  unsigned char *iic0_dimm_addr,
165                                  unsigned long num_dimm_banks);
166 static void program_codt(unsigned long *dimm_populated,
167                          unsigned char *iic0_dimm_addr,
168                          unsigned long num_dimm_banks);
169 static void program_mode(unsigned long *dimm_populated,
170                          unsigned char *iic0_dimm_addr,
171                          unsigned long num_dimm_banks,
172                          ddr_cas_id_t *selected_cas,
173                          int *write_recovery);
174 static void program_tr(unsigned long *dimm_populated,
175                        unsigned char *iic0_dimm_addr,
176                        unsigned long num_dimm_banks);
177 static void program_rtr(unsigned long *dimm_populated,
178                         unsigned char *iic0_dimm_addr,
179                         unsigned long num_dimm_banks);
180 static void program_bxcf(unsigned long *dimm_populated,
181                          unsigned char *iic0_dimm_addr,
182                          unsigned long num_dimm_banks);
183 static void program_copt1(unsigned long *dimm_populated,
184                           unsigned char *iic0_dimm_addr,
185                           unsigned long num_dimm_banks);
186 static void program_initplr(unsigned long *dimm_populated,
187                             unsigned char *iic0_dimm_addr,
188                             unsigned long num_dimm_banks,
189                             ddr_cas_id_t selected_cas,
190                             int write_recovery);
191 static unsigned long is_ecc_enabled(void);
192 #ifdef CONFIG_DDR_ECC
193 static void program_ecc(unsigned long *dimm_populated,
194                         unsigned char *iic0_dimm_addr,
195                         unsigned long num_dimm_banks,
196                         unsigned long tlb_word2_i_value);
197 static void program_ecc_addr(unsigned long start_address,
198                              unsigned long num_bytes,
199                              unsigned long tlb_word2_i_value);
200 #endif
201 static void program_DQS_calibration(unsigned long *dimm_populated,
202                                     unsigned char *iic0_dimm_addr,
203                                     unsigned long num_dimm_banks);
204 #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
205 static void     test(void);
206 #else
207 static void     DQS_calibration_process(void);
208 #endif
209 #if defined(DEBUG)
210 static void ppc440sp_sdram_register_dump(void);
211 #endif
212 int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
213 void dcbz_area(u32 start_address, u32 num_bytes);
214 void dflush(void);
215
216 static u32 mfdcr_any(u32 dcr)
217 {
218         u32 val;
219
220         switch (dcr) {
221         case SDRAM_R0BAS + 0:
222                 val = mfdcr(SDRAM_R0BAS + 0);
223                 break;
224         case SDRAM_R0BAS + 1:
225                 val = mfdcr(SDRAM_R0BAS + 1);
226                 break;
227         case SDRAM_R0BAS + 2:
228                 val = mfdcr(SDRAM_R0BAS + 2);
229                 break;
230         case SDRAM_R0BAS + 3:
231                 val = mfdcr(SDRAM_R0BAS + 3);
232                 break;
233         default:
234                 printf("DCR %d not defined in case statement!!!\n", dcr);
235                 val = 0; /* just to satisfy the compiler */
236         }
237
238         return val;
239 }
240
241 static void mtdcr_any(u32 dcr, u32 val)
242 {
243         switch (dcr) {
244         case SDRAM_R0BAS + 0:
245                 mtdcr(SDRAM_R0BAS + 0, val);
246                 break;
247         case SDRAM_R0BAS + 1:
248                 mtdcr(SDRAM_R0BAS + 1, val);
249                 break;
250         case SDRAM_R0BAS + 2:
251                 mtdcr(SDRAM_R0BAS + 2, val);
252                 break;
253         case SDRAM_R0BAS + 3:
254                 mtdcr(SDRAM_R0BAS + 3, val);
255                 break;
256         default:
257                 printf("DCR %d not defined in case statement!!!\n", dcr);
258         }
259 }
260
261 static unsigned char spd_read(uchar chip, uint addr)
262 {
263         unsigned char data[2];
264
265         if (i2c_probe(chip) == 0)
266                 if (i2c_read(chip, addr, 1, data, 1) == 0)
267                         return data[0];
268
269         return 0;
270 }
271
272 /*-----------------------------------------------------------------------------+
273  * sdram_memsize
274  *-----------------------------------------------------------------------------*/
275 static unsigned long sdram_memsize(void)
276 {
277         unsigned long mem_size;
278         unsigned long mcopt2;
279         unsigned long mcstat;
280         unsigned long mb0cf;
281         unsigned long sdsz;
282         unsigned long i;
283
284         mem_size = 0;
285
286         mfsdram(SDRAM_MCOPT2, mcopt2);
287         mfsdram(SDRAM_MCSTAT, mcstat);
288
289         /* DDR controller must be enabled and not in self-refresh. */
290         /* Otherwise memsize is zero. */
291         if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
292             && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
293             && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
294                 == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
295                 for (i = 0; i < MAXBXCF; i++) {
296                         mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
297                         /* Banks enabled */
298                         if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
299                                 sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
300
301                                 switch(sdsz) {
302                                 case SDRAM_RXBAS_SDSZ_8:
303                                         mem_size+=8;
304                                         break;
305                                 case SDRAM_RXBAS_SDSZ_16:
306                                         mem_size+=16;
307                                         break;
308                                 case SDRAM_RXBAS_SDSZ_32:
309                                         mem_size+=32;
310                                         break;
311                                 case SDRAM_RXBAS_SDSZ_64:
312                                         mem_size+=64;
313                                         break;
314                                 case SDRAM_RXBAS_SDSZ_128:
315                                         mem_size+=128;
316                                         break;
317                                 case SDRAM_RXBAS_SDSZ_256:
318                                         mem_size+=256;
319                                         break;
320                                 case SDRAM_RXBAS_SDSZ_512:
321                                         mem_size+=512;
322                                         break;
323                                 case SDRAM_RXBAS_SDSZ_1024:
324                                         mem_size+=1024;
325                                         break;
326                                 case SDRAM_RXBAS_SDSZ_2048:
327                                         mem_size+=2048;
328                                         break;
329                                 case SDRAM_RXBAS_SDSZ_4096:
330                                         mem_size+=4096;
331                                         break;
332                                 default:
333                                         mem_size=0;
334                                         break;
335                                 }
336                         }
337                 }
338         }
339
340         mem_size *= 1024 * 1024;
341         return(mem_size);
342 }
343
344 /*-----------------------------------------------------------------------------+
345  * initdram.  Initializes the 440SP Memory Queue and DDR SDRAM controller.
346  * Note: This routine runs from flash with a stack set up in the chip's
347  * sram space.  It is important that the routine does not require .sbss, .bss or
348  * .data sections.  It also cannot call routines that require these sections.
349  *-----------------------------------------------------------------------------*/
350 /*-----------------------------------------------------------------------------
351  * Function:     initdram
352  * Description:  Configures SDRAM memory banks for DDR operation.
353  *               Auto Memory Configuration option reads the DDR SDRAM EEPROMs
354  *               via the IIC bus and then configures the DDR SDRAM memory
355  *               banks appropriately. If Auto Memory Configuration is
356  *               not used, it is assumed that no DIMM is plugged
357  *-----------------------------------------------------------------------------*/
358 long int initdram(int board_type)
359 {
360         unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
361         unsigned char spd0[MAX_SPD_BYTES];
362         unsigned char spd1[MAX_SPD_BYTES];
363         unsigned char *dimm_spd[MAXDIMMS];
364         unsigned long dimm_populated[MAXDIMMS];
365         unsigned long num_dimm_banks;               /* on board dimm banks */
366         unsigned long val;
367         ddr_cas_id_t  selected_cas;
368         int write_recovery;
369         unsigned long dram_size = 0;
370
371         num_dimm_banks = sizeof(iic0_dimm_addr);
372
373         /*------------------------------------------------------------------
374          * Set up an array of SPD matrixes.
375          *-----------------------------------------------------------------*/
376         dimm_spd[0] = spd0;
377         dimm_spd[1] = spd1;
378
379         /*------------------------------------------------------------------
380          * Reset the DDR-SDRAM controller.
381          *-----------------------------------------------------------------*/
382         mtsdr(SDR0_SRST, (0x80000000 >> 10));
383         mtsdr(SDR0_SRST, 0x00000000);
384
385         /*
386          * Make sure I2C controller is initialized
387          * before continuing.
388          */
389
390         /* switch to correct I2C bus */
391         I2C_SET_BUS(CFG_SPD_BUS_NUM);
392         i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
393
394         /*------------------------------------------------------------------
395          * Clear out the serial presence detect buffers.
396          * Perform IIC reads from the dimm.  Fill in the spds.
397          * Check to see if the dimm slots are populated
398          *-----------------------------------------------------------------*/
399         get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
400
401         /*------------------------------------------------------------------
402          * Check the memory type for the dimms plugged.
403          *-----------------------------------------------------------------*/
404         check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
405
406         /*------------------------------------------------------------------
407          * Check the frequency supported for the dimms plugged.
408          *-----------------------------------------------------------------*/
409         check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
410
411         /*------------------------------------------------------------------
412          * Check the total rank number.
413          *-----------------------------------------------------------------*/
414         check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
415
416         /*------------------------------------------------------------------
417          * Check the voltage type for the dimms plugged.
418          *-----------------------------------------------------------------*/
419         check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
420
421         /*------------------------------------------------------------------
422          * Program SDRAM controller options 2 register
423          * Except Enabling of the memory controller.
424          *-----------------------------------------------------------------*/
425         mfsdram(SDRAM_MCOPT2, val);
426         mtsdram(SDRAM_MCOPT2,
427                 (val &
428                  ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
429                    SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
430                    SDRAM_MCOPT2_ISIE_MASK))
431                 | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
432                    SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
433                    SDRAM_MCOPT2_ISIE_ENABLE));
434
435         /*------------------------------------------------------------------
436          * Program SDRAM controller options 1 register
437          * Note: Does not enable the memory controller.
438          *-----------------------------------------------------------------*/
439         program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
440
441         /*------------------------------------------------------------------
442          * Set the SDRAM Controller On Die Termination Register
443          *-----------------------------------------------------------------*/
444         program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
445
446         /*------------------------------------------------------------------
447          * Program SDRAM refresh register.
448          *-----------------------------------------------------------------*/
449         program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
450
451         /*------------------------------------------------------------------
452          * Program SDRAM mode register.
453          *-----------------------------------------------------------------*/
454         program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
455                      &selected_cas, &write_recovery);
456
457         /*------------------------------------------------------------------
458          * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
459          *-----------------------------------------------------------------*/
460         mfsdram(SDRAM_WRDTR, val);
461         mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
462                 (SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
463
464         /*------------------------------------------------------------------
465          * Set the SDRAM Clock Timing Register
466          *-----------------------------------------------------------------*/
467         mfsdram(SDRAM_CLKTR, val);
468 #ifdef CFG_44x_DDR2_CKTR_180
469         mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | SDRAM_CLKTR_CLKP_180_DEG_ADV);
470 #else
471         mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | SDRAM_CLKTR_CLKP_0_DEG);
472 #endif
473
474         /*------------------------------------------------------------------
475          * Program the BxCF registers.
476          *-----------------------------------------------------------------*/
477         program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
478
479         /*------------------------------------------------------------------
480          * Program SDRAM timing registers.
481          *-----------------------------------------------------------------*/
482         program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
483
484         /*------------------------------------------------------------------
485          * Set the Extended Mode register
486          *-----------------------------------------------------------------*/
487         mfsdram(SDRAM_MEMODE, val);
488         mtsdram(SDRAM_MEMODE,
489                 (val & ~(SDRAM_MEMODE_DIC_MASK  | SDRAM_MEMODE_DLL_MASK |
490                          SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
491                 (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
492                  | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
493
494         /*------------------------------------------------------------------
495          * Program Initialization preload registers.
496          *-----------------------------------------------------------------*/
497         program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
498                         selected_cas, write_recovery);
499
500         /*------------------------------------------------------------------
501          * Delay to ensure 200usec have elapsed since reset.
502          *-----------------------------------------------------------------*/
503         udelay(400);
504
505         /*------------------------------------------------------------------
506          * Set the memory queue core base addr.
507          *-----------------------------------------------------------------*/
508         program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
509
510         /*------------------------------------------------------------------
511          * Program SDRAM controller options 2 register
512          * Enable the memory controller.
513          *-----------------------------------------------------------------*/
514         mfsdram(SDRAM_MCOPT2, val);
515         mtsdram(SDRAM_MCOPT2,
516                 (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
517                          SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
518                 (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
519
520         /*------------------------------------------------------------------
521          * Wait for SDRAM_CFG0_DC_EN to complete.
522          *-----------------------------------------------------------------*/
523         do {
524                 mfsdram(SDRAM_MCSTAT, val);
525         } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
526
527         /* get installed memory size */
528         dram_size = sdram_memsize();
529
530         /* and program tlb entries for this size (dynamic) */
531         program_tlb(0, dram_size, MY_TLB_WORD2_I_ENABLE);
532
533         /*------------------------------------------------------------------
534          * DQS calibration.
535          *-----------------------------------------------------------------*/
536         program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
537
538 #ifdef CONFIG_DDR_ECC
539         /*------------------------------------------------------------------
540          * If ecc is enabled, initialize the parity bits.
541          *-----------------------------------------------------------------*/
542         program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, MY_TLB_WORD2_I_ENABLE);
543 #endif
544
545 #ifdef DEBUG
546         ppc440sp_sdram_register_dump();
547 #endif
548
549         return dram_size;
550 }
551
552 static void get_spd_info(unsigned long *dimm_populated,
553                          unsigned char *iic0_dimm_addr,
554                          unsigned long num_dimm_banks)
555 {
556         unsigned long dimm_num;
557         unsigned long dimm_found;
558         unsigned char num_of_bytes;
559         unsigned char total_size;
560
561         dimm_found = FALSE;
562         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
563                 num_of_bytes = 0;
564                 total_size = 0;
565
566                 num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
567                 debug("\nspd_read(0x%x) returned %d\n",
568                       iic0_dimm_addr[dimm_num], num_of_bytes);
569                 total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
570                 debug("spd_read(0x%x) returned %d\n",
571                       iic0_dimm_addr[dimm_num], total_size);
572
573                 if ((num_of_bytes != 0) && (total_size != 0)) {
574                         dimm_populated[dimm_num] = TRUE;
575                         dimm_found = TRUE;
576                         debug("DIMM slot %lu: populated\n", dimm_num);
577                 } else {
578                         dimm_populated[dimm_num] = FALSE;
579                         debug("DIMM slot %lu: Not populated\n", dimm_num);
580                 }
581         }
582
583         if (dimm_found == FALSE) {
584                 printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
585                 hang();
586         }
587 }
588
589 #ifdef CONFIG_ADD_RAM_INFO
590 void board_add_ram_info(int use_default)
591 {
592         PPC440_SYS_INFO board_cfg;
593         u32 val;
594
595         if (is_ecc_enabled())
596                 puts(" (ECC");
597         else
598                 puts(" (ECC not");
599
600         get_sys_info(&board_cfg);
601
602         mfsdr(SDR0_DDR0, val);
603         val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
604         printf(" enabled, %d MHz", (val * 2) / 1000000);
605
606         mfsdram(SDRAM_MMODE, val);
607         val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
608         printf(", CL%d)", val);
609 }
610 #endif
611
612 /*------------------------------------------------------------------
613  * For the memory DIMMs installed, this routine verifies that they
614  * really are DDR specific DIMMs.
615  *-----------------------------------------------------------------*/
616 static void check_mem_type(unsigned long *dimm_populated,
617                            unsigned char *iic0_dimm_addr,
618                            unsigned long num_dimm_banks)
619 {
620         unsigned long dimm_num;
621         unsigned long dimm_type;
622
623         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
624                 if (dimm_populated[dimm_num] == TRUE) {
625                         dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
626                         switch (dimm_type) {
627                         case 1:
628                                 printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
629                                        "slot %d.\n", (unsigned int)dimm_num);
630                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
631                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
632                                 hang();
633                                 break;
634                         case 2:
635                                 printf("ERROR: EDO DIMM detected in slot %d.\n",
636                                        (unsigned int)dimm_num);
637                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
638                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
639                                 hang();
640                                 break;
641                         case 3:
642                                 printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
643                                        (unsigned int)dimm_num);
644                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
645                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
646                                 hang();
647                                 break;
648                         case 4:
649                                 printf("ERROR: SDRAM DIMM detected in slot %d.\n",
650                                        (unsigned int)dimm_num);
651                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
652                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
653                                 hang();
654                                 break;
655                         case 5:
656                                 printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
657                                        (unsigned int)dimm_num);
658                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
659                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
660                                 hang();
661                                 break;
662                         case 6:
663                                 printf("ERROR: SGRAM DIMM detected in slot %d.\n",
664                                        (unsigned int)dimm_num);
665                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
666                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
667                                 hang();
668                                 break;
669                         case 7:
670                                 debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
671                                 dimm_populated[dimm_num] = SDRAM_DDR1;
672                                 break;
673                         case 8:
674                                 debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
675                                 dimm_populated[dimm_num] = SDRAM_DDR2;
676                                 break;
677                         default:
678                                 printf("ERROR: Unknown DIMM detected in slot %d.\n",
679                                        (unsigned int)dimm_num);
680                                 printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
681                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
682                                 hang();
683                                 break;
684                         }
685                 }
686         }
687         for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
688                 if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
689                     && (dimm_populated[dimm_num]   != SDRAM_NONE)
690                     && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
691                         printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
692                         hang();
693                 }
694         }
695 }
696
697 /*------------------------------------------------------------------
698  * For the memory DIMMs installed, this routine verifies that
699  * frequency previously calculated is supported.
700  *-----------------------------------------------------------------*/
701 static void check_frequency(unsigned long *dimm_populated,
702                             unsigned char *iic0_dimm_addr,
703                             unsigned long num_dimm_banks)
704 {
705         unsigned long dimm_num;
706         unsigned long tcyc_reg;
707         unsigned long cycle_time;
708         unsigned long calc_cycle_time;
709         unsigned long sdram_freq;
710         unsigned long sdr_ddrpll;
711         PPC440_SYS_INFO board_cfg;
712
713         /*------------------------------------------------------------------
714          * Get the board configuration info.
715          *-----------------------------------------------------------------*/
716         get_sys_info(&board_cfg);
717
718         mfsdr(SDR0_DDR0, sdr_ddrpll);
719         sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
720
721         /*
722          * calc_cycle_time is calculated from DDR frequency set by board/chip
723          * and is expressed in multiple of 10 picoseconds
724          * to match the way DIMM cycle time is calculated below.
725          */
726         calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
727
728         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
729                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
730                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
731                         /*
732                          * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
733                          * the higher order nibble (bits 4-7) designates the cycle time
734                          * to a granularity of 1ns;
735                          * the value presented by the lower order nibble (bits 0-3)
736                          * has a granularity of .1ns and is added to the value designated
737                          * by the higher nibble. In addition, four lines of the lower order
738                          * nibble are assigned to support +.25,+.33, +.66 and +.75.
739                          */
740                          /* Convert from hex to decimal */
741                         if ((tcyc_reg & 0x0F) == 0x0D)
742                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
743                         else if ((tcyc_reg & 0x0F) == 0x0C)
744                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
745                         else if ((tcyc_reg & 0x0F) == 0x0B)
746                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
747                         else if ((tcyc_reg & 0x0F) == 0x0A)
748                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
749                         else
750                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
751                                         ((tcyc_reg & 0x0F)*10);
752                         debug("cycle_time=%d [10 picoseconds]\n", cycle_time);
753
754                         if  (cycle_time > (calc_cycle_time + 10)) {
755                                 /*
756                                  * the provided sdram cycle_time is too small
757                                  * for the available DIMM cycle_time.
758                                  * The additionnal 100ps is here to accept a small incertainty.
759                                  */
760                                 printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
761                                        "slot %d \n while calculated cycle time is %d ps.\n",
762                                        (unsigned int)(cycle_time*10),
763                                        (unsigned int)dimm_num,
764                                        (unsigned int)(calc_cycle_time*10));
765                                 printf("Replace the DIMM, or change DDR frequency via "
766                                        "strapping bits.\n\n");
767                                 hang();
768                         }
769                 }
770         }
771 }
772
773 /*------------------------------------------------------------------
774  * For the memory DIMMs installed, this routine verifies two
775  * ranks/banks maximum are availables.
776  *-----------------------------------------------------------------*/
777 static void check_rank_number(unsigned long *dimm_populated,
778                               unsigned char *iic0_dimm_addr,
779                               unsigned long num_dimm_banks)
780 {
781         unsigned long dimm_num;
782         unsigned long dimm_rank;
783         unsigned long total_rank = 0;
784
785         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
786                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
787                         dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
788                         if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
789                                 dimm_rank = (dimm_rank & 0x0F) +1;
790                         else
791                                 dimm_rank = dimm_rank & 0x0F;
792
793
794                         if (dimm_rank > MAXRANKS) {
795                                 printf("ERROR: DRAM DIMM detected with %d ranks in "
796                                        "slot %d is not supported.\n", dimm_rank, dimm_num);
797                                 printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
798                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
799                                 hang();
800                         } else
801                                 total_rank += dimm_rank;
802                 }
803                 if (total_rank > MAXRANKS) {
804                         printf("ERROR: DRAM DIMM detected with a total of %d ranks "
805                                "for all slots.\n", (unsigned int)total_rank);
806                         printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
807                         printf("Remove one of the DIMM modules.\n\n");
808                         hang();
809                 }
810         }
811 }
812
813 /*------------------------------------------------------------------
814  * only support 2.5V modules.
815  * This routine verifies this.
816  *-----------------------------------------------------------------*/
817 static void check_voltage_type(unsigned long *dimm_populated,
818                                unsigned char *iic0_dimm_addr,
819                                unsigned long num_dimm_banks)
820 {
821         unsigned long dimm_num;
822         unsigned long voltage_type;
823
824         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
825                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
826                         voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
827                         switch (voltage_type) {
828                         case 0x00:
829                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
830                                 printf("This DIMM is 5.0 Volt/TTL.\n");
831                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
832                                        (unsigned int)dimm_num);
833                                 hang();
834                                 break;
835                         case 0x01:
836                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
837                                 printf("This DIMM is LVTTL.\n");
838                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
839                                        (unsigned int)dimm_num);
840                                 hang();
841                                 break;
842                         case 0x02:
843                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
844                                 printf("This DIMM is 1.5 Volt.\n");
845                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
846                                        (unsigned int)dimm_num);
847                                 hang();
848                                 break;
849                         case 0x03:
850                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
851                                 printf("This DIMM is 3.3 Volt/TTL.\n");
852                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
853                                        (unsigned int)dimm_num);
854                                 hang();
855                                 break;
856                         case 0x04:
857                                 /* 2.5 Voltage only for DDR1 */
858                                 break;
859                         case 0x05:
860                                 /* 1.8 Voltage only for DDR2 */
861                                 break;
862                         default:
863                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
864                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
865                                        (unsigned int)dimm_num);
866                                 hang();
867                                 break;
868                         }
869                 }
870         }
871 }
872
873 /*-----------------------------------------------------------------------------+
874  * program_copt1.
875  *-----------------------------------------------------------------------------*/
876 static void program_copt1(unsigned long *dimm_populated,
877                           unsigned char *iic0_dimm_addr,
878                           unsigned long num_dimm_banks)
879 {
880         unsigned long dimm_num;
881         unsigned long mcopt1;
882         unsigned long ecc_enabled;
883         unsigned long ecc = 0;
884         unsigned long data_width = 0;
885         unsigned long dimm_32bit;
886         unsigned long dimm_64bit;
887         unsigned long registered = 0;
888         unsigned long attribute = 0;
889         unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
890         unsigned long bankcount;
891         unsigned long ddrtype;
892         unsigned long val;
893
894 #ifdef CONFIG_DDR_ECC
895         ecc_enabled = TRUE;
896 #else
897         ecc_enabled = FALSE;
898 #endif
899         dimm_32bit = FALSE;
900         dimm_64bit = FALSE;
901         buf0 = FALSE;
902         buf1 = FALSE;
903
904         /*------------------------------------------------------------------
905          * Set memory controller options reg 1, SDRAM_MCOPT1.
906          *-----------------------------------------------------------------*/
907         mfsdram(SDRAM_MCOPT1, val);
908         mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
909                          SDRAM_MCOPT1_PMU_MASK  | SDRAM_MCOPT1_DMWD_MASK |
910                          SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
911                          SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
912                          SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
913                          SDRAM_MCOPT1_DREF_MASK);
914
915         mcopt1 |= SDRAM_MCOPT1_QDEP;
916         mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
917         mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
918         mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
919         mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
920         mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
921
922         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
923                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
924                         /* test ecc support */
925                         ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
926                         if (ecc != 0x02) /* ecc not supported */
927                                 ecc_enabled = FALSE;
928
929                         /* test bank count */
930                         bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
931                         if (bankcount == 0x04) /* bank count = 4 */
932                                 mcopt1 |= SDRAM_MCOPT1_4_BANKS;
933                         else /* bank count = 8 */
934                                 mcopt1 |= SDRAM_MCOPT1_8_BANKS;
935
936                         /* test DDR type */
937                         ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
938                         /* test for buffered/unbuffered, registered, differential clocks */
939                         registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
940                         attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
941
942                         /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
943                         if (dimm_num == 0) {
944                                 if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
945                                         mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
946                                 if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
947                                         mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
948                                 if (registered == 1) { /* DDR2 always buffered */
949                                         /* TODO: what about above  comments ? */
950                                         mcopt1 |= SDRAM_MCOPT1_RDEN;
951                                         buf0 = TRUE;
952                                 } else {
953                                         /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
954                                         if ((attribute & 0x02) == 0x00) {
955                                                 /* buffered not supported */
956                                                 buf0 = FALSE;
957                                         } else {
958                                                 mcopt1 |= SDRAM_MCOPT1_RDEN;
959                                                 buf0 = TRUE;
960                                         }
961                                 }
962                         }
963                         else if (dimm_num == 1) {
964                                 if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
965                                         mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
966                                 if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
967                                         mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
968                                 if (registered == 1) {
969                                         /* DDR2 always buffered */
970                                         mcopt1 |= SDRAM_MCOPT1_RDEN;
971                                         buf1 = TRUE;
972                                 } else {
973                                         if ((attribute & 0x02) == 0x00) {
974                                                 /* buffered not supported */
975                                                 buf1 = FALSE;
976                                         } else {
977                                                 mcopt1 |= SDRAM_MCOPT1_RDEN;
978                                                 buf1 = TRUE;
979                                         }
980                                 }
981                         }
982
983                         /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
984                         data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
985                                 (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
986
987                         switch (data_width) {
988                         case 72:
989                         case 64:
990                                 dimm_64bit = TRUE;
991                                 break;
992                         case 40:
993                         case 32:
994                                 dimm_32bit = TRUE;
995                                 break;
996                         default:
997                                 printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
998                                        data_width);
999                                 printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
1000                                 break;
1001                         }
1002                 }
1003         }
1004
1005         /* verify matching properties */
1006         if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
1007                 if (buf0 != buf1) {
1008                         printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
1009                         hang();
1010                 }
1011         }
1012
1013         if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
1014                 printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
1015                 hang();
1016         }
1017         else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
1018                 mcopt1 |= SDRAM_MCOPT1_DMWD_64;
1019         } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
1020                 mcopt1 |= SDRAM_MCOPT1_DMWD_32;
1021         } else {
1022                 printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
1023                 hang();
1024         }
1025
1026         if (ecc_enabled == TRUE)
1027                 mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
1028         else
1029                 mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
1030
1031         mtsdram(SDRAM_MCOPT1, mcopt1);
1032 }
1033
1034 /*-----------------------------------------------------------------------------+
1035  * program_codt.
1036  *-----------------------------------------------------------------------------*/
1037 static void program_codt(unsigned long *dimm_populated,
1038                          unsigned char *iic0_dimm_addr,
1039                          unsigned long num_dimm_banks)
1040 {
1041         unsigned long codt;
1042         unsigned long modt0 = 0;
1043         unsigned long modt1 = 0;
1044         unsigned long modt2 = 0;
1045         unsigned long modt3 = 0;
1046         unsigned char dimm_num;
1047         unsigned char dimm_rank;
1048         unsigned char total_rank = 0;
1049         unsigned char total_dimm = 0;
1050         unsigned char dimm_type = 0;
1051         unsigned char firstSlot = 0;
1052
1053         /*------------------------------------------------------------------
1054          * Set the SDRAM Controller On Die Termination Register
1055          *-----------------------------------------------------------------*/
1056         mfsdram(SDRAM_CODT, codt);
1057         codt |= (SDRAM_CODT_IO_NMODE
1058                  & (~SDRAM_CODT_DQS_SINGLE_END
1059                     & ~SDRAM_CODT_CKSE_SINGLE_END
1060                     & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
1061                     & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
1062
1063         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1064                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1065                         dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
1066                         if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
1067                                 dimm_rank = (dimm_rank & 0x0F) + 1;
1068                                 dimm_type = SDRAM_DDR2;
1069                         } else {
1070                                 dimm_rank = dimm_rank & 0x0F;
1071                                 dimm_type = SDRAM_DDR1;
1072                         }
1073
1074                         total_rank += dimm_rank;
1075                         total_dimm++;
1076                         if ((dimm_num == 0) && (total_dimm == 1))
1077                                 firstSlot = TRUE;
1078                         else
1079                                 firstSlot = FALSE;
1080                 }
1081         }
1082         if (dimm_type == SDRAM_DDR2) {
1083                 codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
1084                 if ((total_dimm == 1) && (firstSlot == TRUE)) {
1085                         if (total_rank == 1) {
1086                                 codt |= CALC_ODT_R(0);
1087                                 modt0 = CALC_ODT_W(0);
1088                                 modt1 = 0x00000000;
1089                                 modt2 = 0x00000000;
1090                                 modt3 = 0x00000000;
1091                         }
1092                         if (total_rank == 2) {
1093                                 codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
1094                                 modt0 = CALC_ODT_W(0);
1095                                 modt1 = CALC_ODT_W(0);
1096                                 modt2 = 0x00000000;
1097                                 modt3 = 0x00000000;
1098                         }
1099                 } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
1100                         if (total_rank == 1) {
1101                                 codt |= CALC_ODT_R(2);
1102                                 modt0 = 0x00000000;
1103                                 modt1 = 0x00000000;
1104                                 modt2 = CALC_ODT_W(2);
1105                                 modt3 = 0x00000000;
1106                         }
1107                         if (total_rank == 2) {
1108                                 codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
1109                                 modt0 = 0x00000000;
1110                                 modt1 = 0x00000000;
1111                                 modt2 = CALC_ODT_W(2);
1112                                 modt3 = CALC_ODT_W(2);
1113                         }
1114                 }
1115                 if (total_dimm == 2) {
1116                         if (total_rank == 2) {
1117                                 codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
1118                                 modt0 = CALC_ODT_RW(2);
1119                                 modt1 = 0x00000000;
1120                                 modt2 = CALC_ODT_RW(0);
1121                                 modt3 = 0x00000000;
1122                         }
1123                         if (total_rank == 4) {
1124                                 codt |= CALC_ODT_R(0) | CALC_ODT_R(1) |
1125                                         CALC_ODT_R(2) | CALC_ODT_R(3);
1126                                 modt0 = CALC_ODT_RW(2);
1127                                 modt1 = 0x00000000;
1128                                 modt2 = CALC_ODT_RW(0);
1129                                 modt3 = 0x00000000;
1130                         }
1131                 }
1132         } else {
1133                 codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
1134                 modt0 = 0x00000000;
1135                 modt1 = 0x00000000;
1136                 modt2 = 0x00000000;
1137                 modt3 = 0x00000000;
1138
1139                 if (total_dimm == 1) {
1140                         if (total_rank == 1)
1141                                 codt |= 0x00800000;
1142                         if (total_rank == 2)
1143                                 codt |= 0x02800000;
1144                 }
1145                 if (total_dimm == 2) {
1146                         if (total_rank == 2)
1147                                 codt |= 0x08800000;
1148                         if (total_rank == 4)
1149                                 codt |= 0x2a800000;
1150                 }
1151         }
1152
1153         debug("nb of dimm %d\n", total_dimm);
1154         debug("nb of rank %d\n", total_rank);
1155         if (total_dimm == 1)
1156                 debug("dimm in slot %d\n", firstSlot);
1157
1158         mtsdram(SDRAM_CODT, codt);
1159         mtsdram(SDRAM_MODT0, modt0);
1160         mtsdram(SDRAM_MODT1, modt1);
1161         mtsdram(SDRAM_MODT2, modt2);
1162         mtsdram(SDRAM_MODT3, modt3);
1163 }
1164
1165 /*-----------------------------------------------------------------------------+
1166  * program_initplr.
1167  *-----------------------------------------------------------------------------*/
1168 static void program_initplr(unsigned long *dimm_populated,
1169                             unsigned char *iic0_dimm_addr,
1170                             unsigned long num_dimm_banks,
1171                             ddr_cas_id_t selected_cas,
1172                             int write_recovery)
1173 {
1174         u32 cas = 0;
1175         u32 odt = 0;
1176         u32 ods = 0;
1177         u32 mr;
1178         u32 wr;
1179         u32 emr;
1180         u32 emr2;
1181         u32 emr3;
1182         int dimm_num;
1183         int total_dimm = 0;
1184
1185         /******************************************************
1186          ** Assumption: if more than one DIMM, all DIMMs are the same
1187          **             as already checked in check_memory_type
1188          ******************************************************/
1189
1190         if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
1191                 mtsdram(SDRAM_INITPLR0, 0x81B80000);
1192                 mtsdram(SDRAM_INITPLR1, 0x81900400);
1193                 mtsdram(SDRAM_INITPLR2, 0x81810000);
1194                 mtsdram(SDRAM_INITPLR3, 0xff800162);
1195                 mtsdram(SDRAM_INITPLR4, 0x81900400);
1196                 mtsdram(SDRAM_INITPLR5, 0x86080000);
1197                 mtsdram(SDRAM_INITPLR6, 0x86080000);
1198                 mtsdram(SDRAM_INITPLR7, 0x81000062);
1199         } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
1200                 switch (selected_cas) {
1201                 case DDR_CAS_3:
1202                         cas = 3 << 4;
1203                         break;
1204                 case DDR_CAS_4:
1205                         cas = 4 << 4;
1206                         break;
1207                 case DDR_CAS_5:
1208                         cas = 5 << 4;
1209                         break;
1210                 default:
1211                         printf("ERROR: ucode error on selected_cas value %d", selected_cas);
1212                         hang();
1213                         break;
1214                 }
1215
1216 #if 0
1217                 /*
1218                  * ToDo - Still a problem with the write recovery:
1219                  * On the Corsair CM2X512-5400C4 module, setting write recovery
1220                  * in the INITPLR reg to the value calculated in program_mode()
1221                  * results in not correctly working DDR2 memory (crash after
1222                  * relocation).
1223                  *
1224                  * So for now, set the write recovery to 3. This seems to work
1225                  * on the Corair module too.
1226                  *
1227                  * 2007-03-01, sr
1228                  */
1229                 switch (write_recovery) {
1230                 case 3:
1231                         wr = WRITE_RECOV_3;
1232                         break;
1233                 case 4:
1234                         wr = WRITE_RECOV_4;
1235                         break;
1236                 case 5:
1237                         wr = WRITE_RECOV_5;
1238                         break;
1239                 case 6:
1240                         wr = WRITE_RECOV_6;
1241                         break;
1242                 default:
1243                         printf("ERROR: write recovery not support (%d)", write_recovery);
1244                         hang();
1245                         break;
1246                 }
1247 #else
1248                 wr = WRITE_RECOV_3; /* test-only, see description above */
1249 #endif
1250
1251                 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
1252                         if (dimm_populated[dimm_num] != SDRAM_NONE)
1253                                 total_dimm++;
1254                 if (total_dimm == 1) {
1255                         odt = ODT_150_OHM;
1256                         ods = ODS_FULL;
1257                 } else if (total_dimm == 2) {
1258                         odt = ODT_75_OHM;
1259                         ods = ODS_REDUCED;
1260                 } else {
1261                         printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
1262                         hang();
1263                 }
1264
1265                 mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
1266                 emr = CMD_EMR | SELECT_EMR | odt | ods;
1267                 emr2 = CMD_EMR | SELECT_EMR2;
1268                 emr3 = CMD_EMR | SELECT_EMR3;
1269                 mtsdram(SDRAM_INITPLR0,  0xB5000000 | CMD_NOP);         /* NOP */
1270                 udelay(1000);
1271                 mtsdram(SDRAM_INITPLR1,  0x82000400 | CMD_PRECHARGE);   /* precharge 8 DDR clock cycle */
1272                 mtsdram(SDRAM_INITPLR2,  0x80800000 | emr2);            /* EMR2 */
1273                 mtsdram(SDRAM_INITPLR3,  0x80800000 | emr3);            /* EMR3 */
1274                 mtsdram(SDRAM_INITPLR4,  0x80800000 | emr);             /* EMR DLL ENABLE */
1275                 mtsdram(SDRAM_INITPLR5,  0x80800000 | mr | DLL_RESET);  /* MR w/ DLL reset */
1276                 udelay(1000);
1277                 mtsdram(SDRAM_INITPLR6,  0x82000400 | CMD_PRECHARGE);   /* precharge 8 DDR clock cycle */
1278                 mtsdram(SDRAM_INITPLR7,  0x8a000000 | CMD_REFRESH);     /* Refresh  50 DDR clock cycle */
1279                 mtsdram(SDRAM_INITPLR8,  0x8a000000 | CMD_REFRESH);     /* Refresh  50 DDR clock cycle */
1280                 mtsdram(SDRAM_INITPLR9,  0x8a000000 | CMD_REFRESH);     /* Refresh  50 DDR clock cycle */
1281                 mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH);     /* Refresh  50 DDR clock cycle */
1282                 mtsdram(SDRAM_INITPLR11, 0x80000000 | mr);              /* MR w/o DLL reset */
1283                 mtsdram(SDRAM_INITPLR12, 0x80800380 | emr);             /* EMR OCD Default */
1284                 mtsdram(SDRAM_INITPLR13, 0x80800000 | emr);             /* EMR OCD Exit */
1285         } else {
1286                 printf("ERROR: ucode error as unknown DDR type in program_initplr");
1287                 hang();
1288         }
1289 }
1290
1291 /*------------------------------------------------------------------
1292  * This routine programs the SDRAM_MMODE register.
1293  * the selected_cas is an output parameter, that will be passed
1294  * by caller to call the above program_initplr( )
1295  *-----------------------------------------------------------------*/
1296 static void program_mode(unsigned long *dimm_populated,
1297                          unsigned char *iic0_dimm_addr,
1298                          unsigned long num_dimm_banks,
1299                          ddr_cas_id_t *selected_cas,
1300                          int *write_recovery)
1301 {
1302         unsigned long dimm_num;
1303         unsigned long sdram_ddr1;
1304         unsigned long t_wr_ns;
1305         unsigned long t_wr_clk;
1306         unsigned long cas_bit;
1307         unsigned long cas_index;
1308         unsigned long sdram_freq;
1309         unsigned long ddr_check;
1310         unsigned long mmode;
1311         unsigned long tcyc_reg;
1312         unsigned long cycle_2_0_clk;
1313         unsigned long cycle_2_5_clk;
1314         unsigned long cycle_3_0_clk;
1315         unsigned long cycle_4_0_clk;
1316         unsigned long cycle_5_0_clk;
1317         unsigned long max_2_0_tcyc_ns_x_100;
1318         unsigned long max_2_5_tcyc_ns_x_100;
1319         unsigned long max_3_0_tcyc_ns_x_100;
1320         unsigned long max_4_0_tcyc_ns_x_100;
1321         unsigned long max_5_0_tcyc_ns_x_100;
1322         unsigned long cycle_time_ns_x_100[3];
1323         PPC440_SYS_INFO board_cfg;
1324         unsigned char cas_2_0_available;
1325         unsigned char cas_2_5_available;
1326         unsigned char cas_3_0_available;
1327         unsigned char cas_4_0_available;
1328         unsigned char cas_5_0_available;
1329         unsigned long sdr_ddrpll;
1330
1331         /*------------------------------------------------------------------
1332          * Get the board configuration info.
1333          *-----------------------------------------------------------------*/
1334         get_sys_info(&board_cfg);
1335
1336         mfsdr(SDR0_DDR0, sdr_ddrpll);
1337         sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
1338         debug("sdram_freq=%d\n", sdram_freq);
1339
1340         /*------------------------------------------------------------------
1341          * Handle the timing.  We need to find the worst case timing of all
1342          * the dimm modules installed.
1343          *-----------------------------------------------------------------*/
1344         t_wr_ns = 0;
1345         cas_2_0_available = TRUE;
1346         cas_2_5_available = TRUE;
1347         cas_3_0_available = TRUE;
1348         cas_4_0_available = TRUE;
1349         cas_5_0_available = TRUE;
1350         max_2_0_tcyc_ns_x_100 = 10;
1351         max_2_5_tcyc_ns_x_100 = 10;
1352         max_3_0_tcyc_ns_x_100 = 10;
1353         max_4_0_tcyc_ns_x_100 = 10;
1354         max_5_0_tcyc_ns_x_100 = 10;
1355         sdram_ddr1 = TRUE;
1356
1357         /* loop through all the DIMM slots on the board */
1358         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1359                 /* If a dimm is installed in a particular slot ... */
1360                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1361                         if (dimm_populated[dimm_num] == SDRAM_DDR1)
1362                                 sdram_ddr1 = TRUE;
1363                         else
1364                                 sdram_ddr1 = FALSE;
1365
1366                         /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /*  not used in this loop. */
1367                         cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
1368                         debug("cas_bit[SPD byte 18]=%02x\n", cas_bit);
1369
1370                         /* For a particular DIMM, grab the three CAS values it supports */
1371                         for (cas_index = 0; cas_index < 3; cas_index++) {
1372                                 switch (cas_index) {
1373                                 case 0:
1374                                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
1375                                         break;
1376                                 case 1:
1377                                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
1378                                         break;
1379                                 default:
1380                                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
1381                                         break;
1382                                 }
1383
1384                                 if ((tcyc_reg & 0x0F) >= 10) {
1385                                         if ((tcyc_reg & 0x0F) == 0x0D) {
1386                                                 /* Convert from hex to decimal */
1387                                                 cycle_time_ns_x_100[cas_index] =
1388                                                         (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
1389                                         } else {
1390                                                 printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
1391                                                        "in slot %d\n", (unsigned int)dimm_num);
1392                                                 hang();
1393                                         }
1394                                 } else {
1395                                         /* Convert from hex to decimal */
1396                                         cycle_time_ns_x_100[cas_index] =
1397                                                 (((tcyc_reg & 0xF0) >> 4) * 100) +
1398                                                 ((tcyc_reg & 0x0F)*10);
1399                                 }
1400                                 debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index,
1401                                       cycle_time_ns_x_100[cas_index]);
1402                         }
1403
1404                         /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
1405                         /* supported for a particular DIMM. */
1406                         cas_index = 0;
1407
1408                         if (sdram_ddr1) {
1409                                 /*
1410                                  * DDR devices use the following bitmask for CAS latency:
1411                                  *  Bit   7    6    5    4    3    2    1    0
1412                                  *       TBD  4.0  3.5  3.0  2.5  2.0  1.5  1.0
1413                                  */
1414                                 if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
1415                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1416                                         max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
1417                                                                     cycle_time_ns_x_100[cas_index]);
1418                                         cas_index++;
1419                                 } else {
1420                                         if (cas_index != 0)
1421                                                 cas_index++;
1422                                         cas_4_0_available = FALSE;
1423                                 }
1424
1425                                 if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
1426                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1427                                         max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
1428                                                                     cycle_time_ns_x_100[cas_index]);
1429                                         cas_index++;
1430                                 } else {
1431                                         if (cas_index != 0)
1432                                                 cas_index++;
1433                                         cas_3_0_available = FALSE;
1434                                 }
1435
1436                                 if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
1437                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1438                                         max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
1439                                                                     cycle_time_ns_x_100[cas_index]);
1440                                         cas_index++;
1441                                 } else {
1442                                         if (cas_index != 0)
1443                                                 cas_index++;
1444                                         cas_2_5_available = FALSE;
1445                                 }
1446
1447                                 if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
1448                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1449                                         max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
1450                                                                     cycle_time_ns_x_100[cas_index]);
1451                                         cas_index++;
1452                                 } else {
1453                                         if (cas_index != 0)
1454                                                 cas_index++;
1455                                         cas_2_0_available = FALSE;
1456                                 }
1457                         } else {
1458                                 /*
1459                                  * DDR2 devices use the following bitmask for CAS latency:
1460                                  *  Bit   7    6    5    4    3    2    1    0
1461                                  *       TBD  6.0  5.0  4.0  3.0  2.0  TBD  TBD
1462                                  */
1463                                 if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
1464                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1465                                         max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
1466                                                                     cycle_time_ns_x_100[cas_index]);
1467                                         cas_index++;
1468                                 } else {
1469                                         if (cas_index != 0)
1470                                                 cas_index++;
1471                                         cas_5_0_available = FALSE;
1472                                 }
1473
1474                                 if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
1475                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1476                                         max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
1477                                                                     cycle_time_ns_x_100[cas_index]);
1478                                         cas_index++;
1479                                 } else {
1480                                         if (cas_index != 0)
1481                                                 cas_index++;
1482                                         cas_4_0_available = FALSE;
1483                                 }
1484
1485                                 if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
1486                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1487                                         max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
1488                                                                     cycle_time_ns_x_100[cas_index]);
1489                                         cas_index++;
1490                                 } else {
1491                                         if (cas_index != 0)
1492                                                 cas_index++;
1493                                         cas_3_0_available = FALSE;
1494                                 }
1495                         }
1496                 }
1497         }
1498
1499         /*------------------------------------------------------------------
1500          * Set the SDRAM mode, SDRAM_MMODE
1501          *-----------------------------------------------------------------*/
1502         mfsdram(SDRAM_MMODE, mmode);
1503         mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
1504
1505         /* add 10 here because of rounding problems */
1506         cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
1507         cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
1508         cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
1509         cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
1510         cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
1511         debug("cycle_3_0_clk=%d\n", cycle_3_0_clk);
1512         debug("cycle_4_0_clk=%d\n", cycle_4_0_clk);
1513         debug("cycle_5_0_clk=%d\n", cycle_5_0_clk);
1514
1515         if (sdram_ddr1 == TRUE) { /* DDR1 */
1516                 if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
1517                         mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
1518                         *selected_cas = DDR_CAS_2;
1519                 } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
1520                         mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
1521                         *selected_cas = DDR_CAS_2_5;
1522                 } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
1523                         mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
1524                         *selected_cas = DDR_CAS_3;
1525                 } else {
1526                         printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
1527                         printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
1528                         printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
1529                         hang();
1530                 }
1531         } else { /* DDR2 */
1532                 debug("cas_3_0_available=%d\n", cas_3_0_available);
1533                 debug("cas_4_0_available=%d\n", cas_4_0_available);
1534                 debug("cas_5_0_available=%d\n", cas_5_0_available);
1535                 if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
1536                         mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
1537                         *selected_cas = DDR_CAS_3;
1538                 } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
1539                         mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
1540                         *selected_cas = DDR_CAS_4;
1541                 } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
1542                         mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
1543                         *selected_cas = DDR_CAS_5;
1544                 } else {
1545                         printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
1546                         printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
1547                         printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
1548                         printf("cas3=%d cas4=%d cas5=%d\n",
1549                                cas_3_0_available, cas_4_0_available, cas_5_0_available);
1550                         printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n",
1551                                sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
1552                         hang();
1553                 }
1554         }
1555
1556         if (sdram_ddr1 == TRUE)
1557                 mmode |= SDRAM_MMODE_WR_DDR1;
1558         else {
1559
1560                 /* loop through all the DIMM slots on the board */
1561                 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1562                         /* If a dimm is installed in a particular slot ... */
1563                         if (dimm_populated[dimm_num] != SDRAM_NONE)
1564                                 t_wr_ns = max(t_wr_ns,
1565                                               spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
1566                 }
1567
1568                 /*
1569                  * convert from nanoseconds to ddr clocks
1570                  * round up if necessary
1571                  */
1572                 t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
1573                 ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
1574                 if (sdram_freq != ddr_check)
1575                         t_wr_clk++;
1576
1577                 switch (t_wr_clk) {
1578                 case 0:
1579                 case 1:
1580                 case 2:
1581                 case 3:
1582                         mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
1583                         break;
1584                 case 4:
1585                         mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
1586                         break;
1587                 case 5:
1588                         mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
1589                         break;
1590                 default:
1591                         mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
1592                         break;
1593                 }
1594                 *write_recovery = t_wr_clk;
1595         }
1596
1597         debug("CAS latency = %d\n", *selected_cas);
1598         debug("Write recovery = %d\n", *write_recovery);
1599
1600         mtsdram(SDRAM_MMODE, mmode);
1601 }
1602
1603 /*-----------------------------------------------------------------------------+
1604  * program_rtr.
1605  *-----------------------------------------------------------------------------*/
1606 static void program_rtr(unsigned long *dimm_populated,
1607                         unsigned char *iic0_dimm_addr,
1608                         unsigned long num_dimm_banks)
1609 {
1610         PPC440_SYS_INFO board_cfg;
1611         unsigned long max_refresh_rate;
1612         unsigned long dimm_num;
1613         unsigned long refresh_rate_type;
1614         unsigned long refresh_rate;
1615         unsigned long rint;
1616         unsigned long sdram_freq;
1617         unsigned long sdr_ddrpll;
1618         unsigned long val;
1619
1620         /*------------------------------------------------------------------
1621          * Get the board configuration info.
1622          *-----------------------------------------------------------------*/
1623         get_sys_info(&board_cfg);
1624
1625         /*------------------------------------------------------------------
1626          * Set the SDRAM Refresh Timing Register, SDRAM_RTR
1627          *-----------------------------------------------------------------*/
1628         mfsdr(SDR0_DDR0, sdr_ddrpll);
1629         sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
1630
1631         max_refresh_rate = 0;
1632         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1633                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1634
1635                         refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
1636                         refresh_rate_type &= 0x7F;
1637                         switch (refresh_rate_type) {
1638                         case 0:
1639                                 refresh_rate =  15625;
1640                                 break;
1641                         case 1:
1642                                 refresh_rate =   3906;
1643                                 break;
1644                         case 2:
1645                                 refresh_rate =   7812;
1646                                 break;
1647                         case 3:
1648                                 refresh_rate =  31250;
1649                                 break;
1650                         case 4:
1651                                 refresh_rate =  62500;
1652                                 break;
1653                         case 5:
1654                                 refresh_rate = 125000;
1655                                 break;
1656                         default:
1657                                 refresh_rate = 0;
1658                                 printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
1659                                        (unsigned int)dimm_num);
1660                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
1661                                 hang();
1662                                 break;
1663                         }
1664
1665                         max_refresh_rate = max(max_refresh_rate, refresh_rate);
1666                 }
1667         }
1668
1669         rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
1670         mfsdram(SDRAM_RTR, val);
1671         mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
1672                 (SDRAM_RTR_RINT_ENCODE(rint)));
1673 }
1674
1675 /*------------------------------------------------------------------
1676  * This routine programs the SDRAM_TRx registers.
1677  *-----------------------------------------------------------------*/
1678 static void program_tr(unsigned long *dimm_populated,
1679                        unsigned char *iic0_dimm_addr,
1680                        unsigned long num_dimm_banks)
1681 {
1682         unsigned long dimm_num;
1683         unsigned long sdram_ddr1;
1684         unsigned long t_rp_ns;
1685         unsigned long t_rcd_ns;
1686         unsigned long t_rrd_ns;
1687         unsigned long t_ras_ns;
1688         unsigned long t_rc_ns;
1689         unsigned long t_rfc_ns;
1690         unsigned long t_wpc_ns;
1691         unsigned long t_wtr_ns;
1692         unsigned long t_rpc_ns;
1693         unsigned long t_rp_clk;
1694         unsigned long t_rcd_clk;
1695         unsigned long t_rrd_clk;
1696         unsigned long t_ras_clk;
1697         unsigned long t_rc_clk;
1698         unsigned long t_rfc_clk;
1699         unsigned long t_wpc_clk;
1700         unsigned long t_wtr_clk;
1701         unsigned long t_rpc_clk;
1702         unsigned long sdtr1, sdtr2, sdtr3;
1703         unsigned long ddr_check;
1704         unsigned long sdram_freq;
1705         unsigned long sdr_ddrpll;
1706
1707         PPC440_SYS_INFO board_cfg;
1708
1709         /*------------------------------------------------------------------
1710          * Get the board configuration info.
1711          *-----------------------------------------------------------------*/
1712         get_sys_info(&board_cfg);
1713
1714         mfsdr(SDR0_DDR0, sdr_ddrpll);
1715         sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
1716
1717         /*------------------------------------------------------------------
1718          * Handle the timing.  We need to find the worst case timing of all
1719          * the dimm modules installed.
1720          *-----------------------------------------------------------------*/
1721         t_rp_ns = 0;
1722         t_rrd_ns = 0;
1723         t_rcd_ns = 0;
1724         t_ras_ns = 0;
1725         t_rc_ns = 0;
1726         t_rfc_ns = 0;
1727         t_wpc_ns = 0;
1728         t_wtr_ns = 0;
1729         t_rpc_ns = 0;
1730         sdram_ddr1 = TRUE;
1731
1732         /* loop through all the DIMM slots on the board */
1733         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1734                 /* If a dimm is installed in a particular slot ... */
1735                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1736                         if (dimm_populated[dimm_num] == SDRAM_DDR2)
1737                                 sdram_ddr1 = TRUE;
1738                         else
1739                                 sdram_ddr1 = FALSE;
1740
1741                         t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
1742                         t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
1743                         t_rp_ns  = max(t_rp_ns,  spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
1744                         t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
1745                         t_rc_ns  = max(t_rc_ns,  spd_read(iic0_dimm_addr[dimm_num], 41));
1746                         t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
1747                 }
1748         }
1749
1750         /*------------------------------------------------------------------
1751          * Set the SDRAM Timing Reg 1, SDRAM_TR1
1752          *-----------------------------------------------------------------*/
1753         mfsdram(SDRAM_SDTR1, sdtr1);
1754         sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
1755                    SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
1756
1757         /* default values */
1758         sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
1759         sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
1760
1761         /* normal operations */
1762         sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
1763         sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
1764
1765         mtsdram(SDRAM_SDTR1, sdtr1);
1766
1767         /*------------------------------------------------------------------
1768          * Set the SDRAM Timing Reg 2, SDRAM_TR2
1769          *-----------------------------------------------------------------*/
1770         mfsdram(SDRAM_SDTR2, sdtr2);
1771         sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK  | SDRAM_SDTR2_WTR_MASK |
1772                    SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
1773                    SDRAM_SDTR2_RPC_MASK  | SDRAM_SDTR2_RP_MASK  |
1774                    SDRAM_SDTR2_RRD_MASK);
1775
1776         /*
1777          * convert t_rcd from nanoseconds to ddr clocks
1778          * round up if necessary
1779          */
1780         t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
1781         ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
1782         if (sdram_freq != ddr_check)
1783                 t_rcd_clk++;
1784
1785         switch (t_rcd_clk) {
1786         case 0:
1787         case 1:
1788                 sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
1789                 break;
1790         case 2:
1791                 sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
1792                 break;
1793         case 3:
1794                 sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
1795                 break;
1796         case 4:
1797                 sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
1798                 break;
1799         default:
1800                 sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
1801                 break;
1802         }
1803
1804         if (sdram_ddr1 == TRUE) { /* DDR1 */
1805                 if (sdram_freq < 200000000) {
1806                         sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
1807                         sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
1808                         sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1809                 } else {
1810                         sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
1811                         sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
1812                         sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1813                 }
1814         } else { /* DDR2 */
1815                 /* loop through all the DIMM slots on the board */
1816                 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1817                         /* If a dimm is installed in a particular slot ... */
1818                         if (dimm_populated[dimm_num] != SDRAM_NONE) {
1819                                 t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
1820                                 t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
1821                                 t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
1822                         }
1823                 }
1824
1825                 /*
1826                  * convert from nanoseconds to ddr clocks
1827                  * round up if necessary
1828                  */
1829                 t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
1830                 ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
1831                 if (sdram_freq != ddr_check)
1832                         t_wpc_clk++;
1833
1834                 switch (t_wpc_clk) {
1835                 case 0:
1836                 case 1:
1837                 case 2:
1838                         sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
1839                         break;
1840                 case 3:
1841                         sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
1842                         break;
1843                 case 4:
1844                         sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
1845                         break;
1846                 case 5:
1847                         sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
1848                         break;
1849                 default:
1850                         sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
1851                         break;
1852                 }
1853
1854                 /*
1855                  * convert from nanoseconds to ddr clocks
1856                  * round up if necessary
1857                  */
1858                 t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
1859                 ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
1860                 if (sdram_freq != ddr_check)
1861                         t_wtr_clk++;
1862
1863                 switch (t_wtr_clk) {
1864                 case 0:
1865                 case 1:
1866                         sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
1867                         break;
1868                 case 2:
1869                         sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
1870                         break;
1871                 case 3:
1872                         sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
1873                         break;
1874                 default:
1875                         sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
1876                         break;
1877                 }
1878
1879                 /*
1880                  * convert from nanoseconds to ddr clocks
1881                  * round up if necessary
1882                  */
1883                 t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
1884                 ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
1885                 if (sdram_freq != ddr_check)
1886                         t_rpc_clk++;
1887
1888                 switch (t_rpc_clk) {
1889                 case 0:
1890                 case 1:
1891                 case 2:
1892                         sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1893                         break;
1894                 case 3:
1895                         sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
1896                         break;
1897                 default:
1898                         sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
1899                         break;
1900                 }
1901         }
1902
1903         /* default value */
1904         sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
1905
1906         /*
1907          * convert t_rrd from nanoseconds to ddr clocks
1908          * round up if necessary
1909          */
1910         t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
1911         ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
1912         if (sdram_freq != ddr_check)
1913                 t_rrd_clk++;
1914
1915         if (t_rrd_clk == 3)
1916                 sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
1917         else
1918                 sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
1919
1920         /*
1921          * convert t_rp from nanoseconds to ddr clocks
1922          * round up if necessary
1923          */
1924         t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
1925         ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
1926         if (sdram_freq != ddr_check)
1927                 t_rp_clk++;
1928
1929         switch (t_rp_clk) {
1930         case 0:
1931         case 1:
1932         case 2:
1933         case 3:
1934                 sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
1935                 break;
1936         case 4:
1937                 sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
1938                 break;
1939         case 5:
1940                 sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
1941                 break;
1942         case 6:
1943                 sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
1944                 break;
1945         default:
1946                 sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
1947                 break;
1948         }
1949
1950         mtsdram(SDRAM_SDTR2, sdtr2);
1951
1952         /*------------------------------------------------------------------
1953          * Set the SDRAM Timing Reg 3, SDRAM_TR3
1954          *-----------------------------------------------------------------*/
1955         mfsdram(SDRAM_SDTR3, sdtr3);
1956         sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK  | SDRAM_SDTR3_RC_MASK |
1957                    SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
1958
1959         /*
1960          * convert t_ras from nanoseconds to ddr clocks
1961          * round up if necessary
1962          */
1963         t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
1964         ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
1965         if (sdram_freq != ddr_check)
1966                 t_ras_clk++;
1967
1968         sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
1969
1970         /*
1971          * convert t_rc from nanoseconds to ddr clocks
1972          * round up if necessary
1973          */
1974         t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
1975         ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
1976         if (sdram_freq != ddr_check)
1977                 t_rc_clk++;
1978
1979         sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
1980
1981         /* default xcs value */
1982         sdtr3 |= SDRAM_SDTR3_XCS;
1983
1984         /*
1985          * convert t_rfc from nanoseconds to ddr clocks
1986          * round up if necessary
1987          */
1988         t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
1989         ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
1990         if (sdram_freq != ddr_check)
1991                 t_rfc_clk++;
1992
1993         sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
1994
1995         mtsdram(SDRAM_SDTR3, sdtr3);
1996 }
1997
1998 /*-----------------------------------------------------------------------------+
1999  * program_bxcf.
2000  *-----------------------------------------------------------------------------*/
2001 static void program_bxcf(unsigned long *dimm_populated,
2002                          unsigned char *iic0_dimm_addr,
2003                          unsigned long num_dimm_banks)
2004 {
2005         unsigned long dimm_num;
2006         unsigned long num_col_addr;
2007         unsigned long num_ranks;
2008         unsigned long num_banks;
2009         unsigned long mode;
2010         unsigned long ind_rank;
2011         unsigned long ind;
2012         unsigned long ind_bank;
2013         unsigned long bank_0_populated;
2014
2015         /*------------------------------------------------------------------
2016          * Set the BxCF regs.  First, wipe out the bank config registers.
2017          *-----------------------------------------------------------------*/
2018         mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF);
2019         mtdcr(SDRAMC_CFGDATA, 0x00000000);
2020         mtdcr(SDRAMC_CFGADDR, SDRAM_MB1CF);
2021         mtdcr(SDRAMC_CFGDATA, 0x00000000);
2022         mtdcr(SDRAMC_CFGADDR, SDRAM_MB2CF);
2023         mtdcr(SDRAMC_CFGDATA, 0x00000000);
2024         mtdcr(SDRAMC_CFGADDR, SDRAM_MB3CF);
2025         mtdcr(SDRAMC_CFGDATA, 0x00000000);
2026
2027         mode = SDRAM_BXCF_M_BE_ENABLE;
2028
2029         bank_0_populated = 0;
2030
2031         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
2032                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
2033                         num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
2034                         num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
2035                         if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
2036                                 num_ranks = (num_ranks & 0x0F) +1;
2037                         else
2038                                 num_ranks = num_ranks & 0x0F;
2039
2040                         num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
2041
2042                         for (ind_bank = 0; ind_bank < 2; ind_bank++) {
2043                                 if (num_banks == 4)
2044                                         ind = 0;
2045                                 else
2046                                         ind = 5;
2047                                 switch (num_col_addr) {
2048                                 case 0x08:
2049                                         mode |= (SDRAM_BXCF_M_AM_0 + ind);
2050                                         break;
2051                                 case 0x09:
2052                                         mode |= (SDRAM_BXCF_M_AM_1 + ind);
2053                                         break;
2054                                 case 0x0A:
2055                                         mode |= (SDRAM_BXCF_M_AM_2 + ind);
2056                                         break;
2057                                 case 0x0B:
2058                                         mode |= (SDRAM_BXCF_M_AM_3 + ind);
2059                                         break;
2060                                 case 0x0C:
2061                                         mode |= (SDRAM_BXCF_M_AM_4 + ind);
2062                                         break;
2063                                 default:
2064                                         printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
2065                                                (unsigned int)dimm_num);
2066                                         printf("ERROR: Unsupported value for number of "
2067                                                "column addresses: %d.\n", (unsigned int)num_col_addr);
2068                                         printf("Replace the DIMM module with a supported DIMM.\n\n");
2069                                         hang();
2070                                 }
2071                         }
2072
2073                         if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
2074                                 bank_0_populated = 1;
2075
2076                         for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
2077                                 mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF + ((dimm_num + bank_0_populated + ind_rank) << 2));
2078                                 mtdcr(SDRAMC_CFGDATA, mode);
2079                         }
2080                 }
2081         }
2082 }
2083
2084 /*------------------------------------------------------------------
2085  * program memory queue.
2086  *-----------------------------------------------------------------*/
2087 static void program_memory_queue(unsigned long *dimm_populated,
2088                                  unsigned char *iic0_dimm_addr,
2089                                  unsigned long num_dimm_banks)
2090 {
2091         unsigned long dimm_num;
2092         unsigned long rank_base_addr;
2093         unsigned long rank_reg;
2094         unsigned long rank_size_bytes;
2095         unsigned long rank_size_id;
2096         unsigned long num_ranks;
2097         unsigned long baseadd_size;
2098         unsigned long i;
2099         unsigned long bank_0_populated = 0;
2100
2101         /*------------------------------------------------------------------
2102          * Reset the rank_base_address.
2103          *-----------------------------------------------------------------*/
2104         rank_reg   = SDRAM_R0BAS;
2105
2106         rank_base_addr = 0x00000000;
2107
2108         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
2109                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
2110                         num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
2111                         if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
2112                                 num_ranks = (num_ranks & 0x0F) + 1;
2113                         else
2114                                 num_ranks = num_ranks & 0x0F;
2115
2116                         rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
2117
2118                         /*------------------------------------------------------------------
2119                          * Set the sizes
2120                          *-----------------------------------------------------------------*/
2121                         baseadd_size = 0;
2122                         rank_size_bytes = 4 * 1024 * 1024 * rank_size_id;
2123                         switch (rank_size_id) {
2124                         case 0x02:
2125                                 baseadd_size |= SDRAM_RXBAS_SDSZ_8;
2126                                 break;
2127                         case 0x04:
2128                                 baseadd_size |= SDRAM_RXBAS_SDSZ_16;
2129                                 break;
2130                         case 0x08:
2131                                 baseadd_size |= SDRAM_RXBAS_SDSZ_32;
2132                                 break;
2133                         case 0x10:
2134                                 baseadd_size |= SDRAM_RXBAS_SDSZ_64;
2135                                 break;
2136                         case 0x20:
2137                                 baseadd_size |= SDRAM_RXBAS_SDSZ_128;
2138                                 break;
2139                         case 0x40:
2140                                 baseadd_size |= SDRAM_RXBAS_SDSZ_256;
2141                                 break;
2142                         case 0x80:
2143                                 baseadd_size |= SDRAM_RXBAS_SDSZ_512;
2144                                 break;
2145                         default:
2146                                 printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
2147                                        (unsigned int)dimm_num);
2148                                 printf("ERROR: Unsupported value for the banksize: %d.\n",
2149                                        (unsigned int)rank_size_id);
2150                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
2151                                 hang();
2152                         }
2153
2154                         if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
2155                                 bank_0_populated = 1;
2156
2157                         for (i = 0; i < num_ranks; i++) {
2158                                 mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
2159                                           (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
2160                                            baseadd_size));
2161                                 rank_base_addr += rank_size_bytes;
2162                         }
2163                 }
2164         }
2165 }
2166
2167 /*-----------------------------------------------------------------------------+
2168  * is_ecc_enabled.
2169  *-----------------------------------------------------------------------------*/
2170 static unsigned long is_ecc_enabled(void)
2171 {
2172         unsigned long dimm_num;
2173         unsigned long ecc;
2174         unsigned long val;
2175
2176         ecc = 0;
2177         /* loop through all the DIMM slots on the board */
2178         for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2179                 mfsdram(SDRAM_MCOPT1, val);
2180                 ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
2181         }
2182
2183         return ecc;
2184 }
2185
2186 static void blank_string(int size)
2187 {
2188         int i;
2189
2190         for (i=0; i<size; i++)
2191                 putc('\b');
2192         for (i=0; i<size; i++)
2193                 putc(' ');
2194         for (i=0; i<size; i++)
2195                 putc('\b');
2196 }
2197
2198 #ifdef CONFIG_DDR_ECC
2199 /*-----------------------------------------------------------------------------+
2200  * program_ecc.
2201  *-----------------------------------------------------------------------------*/
2202 static void program_ecc(unsigned long *dimm_populated,
2203                         unsigned char *iic0_dimm_addr,
2204                         unsigned long num_dimm_banks,
2205                         unsigned long tlb_word2_i_value)
2206 {
2207         unsigned long mcopt1;
2208         unsigned long mcopt2;
2209         unsigned long mcstat;
2210         unsigned long dimm_num;
2211         unsigned long ecc;
2212
2213         ecc = 0;
2214         /* loop through all the DIMM slots on the board */
2215         for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2216                 /* If a dimm is installed in a particular slot ... */
2217                 if (dimm_populated[dimm_num] != SDRAM_NONE)
2218                         ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
2219         }
2220         if (ecc == 0)
2221                 return;
2222
2223         mfsdram(SDRAM_MCOPT1, mcopt1);
2224         mfsdram(SDRAM_MCOPT2, mcopt2);
2225
2226         if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
2227                 /* DDR controller must be enabled and not in self-refresh. */
2228                 mfsdram(SDRAM_MCSTAT, mcstat);
2229                 if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
2230                     && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
2231                     && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
2232                         == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
2233
2234                         program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
2235                 }
2236         }
2237
2238         return;
2239 }
2240
2241 #ifdef CONFIG_ECC_ERROR_RESET
2242 /*
2243  * Check for ECC errors and reset board upon any error here
2244  *
2245  * On the Katmai 440SPe eval board, from time to time, the first
2246  * lword write access after DDR2 initializazion with ECC checking
2247  * enabled, leads to an ECC error. I couldn't find a configuration
2248  * without this happening. On my board with the current setup it
2249  * happens about 1 from 10 times.
2250  *
2251  * The ECC modules used for testing are:
2252  * - Kingston ValueRAM KVR667D2E5/512 (tested with 1 and 2 DIMM's)
2253  *
2254  * This has to get fixed for the Katmai and tested for the other
2255  * board (440SP/440SPe) that will eventually use this code in the
2256  * future.
2257  *
2258  * 2007-03-01, sr
2259  */
2260 static void check_ecc(void)
2261 {
2262         u32 val;
2263
2264         mfsdram(SDRAM_ECCCR, val);
2265         if (val != 0) {
2266                 printf("\nECC error: MCIF0_ECCES=%08lx MQ0_ESL=%08lx address=%08lx\n",
2267                        val, mfdcr(0x4c), mfdcr(0x4e));
2268                 printf("ECC error occured, resetting board...\n");
2269                 do_reset(NULL, 0, 0, NULL);
2270         }
2271 }
2272 #endif
2273
2274 static void wait_ddr_idle(void)
2275 {
2276         u32 val;
2277
2278         do {
2279                 mfsdram(SDRAM_MCSTAT, val);
2280         } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
2281 }
2282
2283 /*-----------------------------------------------------------------------------+
2284  * program_ecc_addr.
2285  *-----------------------------------------------------------------------------*/
2286 static void program_ecc_addr(unsigned long start_address,
2287                              unsigned long num_bytes,
2288                              unsigned long tlb_word2_i_value)
2289 {
2290         unsigned long current_address;
2291         unsigned long end_address;
2292         unsigned long address_increment;
2293         unsigned long mcopt1;
2294         char str[] = "ECC generation -";
2295         char slash[] = "\\|/-\\|/-";
2296         int loop = 0;
2297         int loopi = 0;
2298
2299         current_address = start_address;
2300         mfsdram(SDRAM_MCOPT1, mcopt1);
2301         if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
2302                 mtsdram(SDRAM_MCOPT1,
2303                         (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
2304                 sync();
2305                 eieio();
2306                 wait_ddr_idle();
2307
2308                 puts(str);
2309                 if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
2310                         /* ECC bit set method for non-cached memory */
2311                         if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
2312                                 address_increment = 4;
2313                         else
2314                                 address_increment = 8;
2315                         end_address = current_address + num_bytes;
2316
2317                         while (current_address < end_address) {
2318                                 *((unsigned long *)current_address) = 0x00000000;
2319                                 current_address += address_increment;
2320
2321                                 if ((loop++ % (2 << 20)) == 0) {
2322                                         putc('\b');
2323                                         putc(slash[loopi++ % 8]);
2324                                 }
2325                         }
2326
2327                 } else {
2328                         /* ECC bit set method for cached memory */
2329                         dcbz_area(start_address, num_bytes);
2330                         dflush();
2331                 }
2332
2333                 blank_string(strlen(str));
2334
2335                 sync();
2336                 eieio();
2337                 wait_ddr_idle();
2338
2339                 /* clear ECC error repoting registers */
2340                 mtsdram(SDRAM_ECCCR, 0xffffffff);
2341                 mtdcr(0x4c, 0xffffffff);
2342
2343                 mtsdram(SDRAM_MCOPT1,
2344                         (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
2345                 sync();
2346                 eieio();
2347                 wait_ddr_idle();
2348
2349 #ifdef CONFIG_ECC_ERROR_RESET
2350                 /*
2351                  * One write to 0 is enough to trigger this ECC error
2352                  * (see description above)
2353                  */
2354                 out_be32(0, 0x12345678);
2355                 check_ecc();
2356 #endif
2357         }
2358 }
2359 #endif
2360
2361 /*-----------------------------------------------------------------------------+
2362  * program_DQS_calibration.
2363  *-----------------------------------------------------------------------------*/
2364 static void program_DQS_calibration(unsigned long *dimm_populated,
2365                                     unsigned char *iic0_dimm_addr,
2366                                     unsigned long num_dimm_banks)
2367 {
2368         unsigned long val;
2369
2370 #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
2371         mtsdram(SDRAM_RQDC, 0x80000037);
2372         mtsdram(SDRAM_RDCC, 0x40000000);
2373         mtsdram(SDRAM_RFDC, 0x000001DF);
2374
2375         test();
2376 #else
2377         /*------------------------------------------------------------------
2378          * Program RDCC register
2379          * Read sample cycle auto-update enable
2380          *-----------------------------------------------------------------*/
2381
2382         /*
2383          * Modified for the Katmai platform:  with some DIMMs, the DDR2
2384          * controller automatically selects the T2 read cycle, but this
2385          * proves unreliable.  Go ahead and force the DDR2 controller
2386          * to use the T4 sample and disable the automatic update of the
2387          * RDSS field.
2388          */
2389         mfsdram(SDRAM_RDCC, val);
2390         mtsdram(SDRAM_RDCC,
2391                 (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
2392                 | (SDRAM_RDCC_RDSS_T4 | SDRAM_RDCC_RSAE_DISABLE));
2393
2394         /*------------------------------------------------------------------
2395          * Program RQDC register
2396          * Internal DQS delay mechanism enable
2397          *-----------------------------------------------------------------*/
2398         mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
2399
2400         /*------------------------------------------------------------------
2401          * Program RFDC register
2402          * Set Feedback Fractional Oversample
2403          * Auto-detect read sample cycle enable
2404          *-----------------------------------------------------------------*/
2405         mfsdram(SDRAM_RFDC, val);
2406         mtsdram(SDRAM_RFDC,
2407                 (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
2408                          SDRAM_RFDC_RFFD_MASK))
2409                 | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
2410                    SDRAM_RFDC_RFFD_ENCODE(0)));
2411
2412         DQS_calibration_process();
2413 #endif
2414 }
2415
2416 static int short_mem_test(void)
2417 {
2418         u32 *membase;
2419         u32 bxcr_num;
2420         u32 bxcf;
2421         int i;
2422         int j;
2423         u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
2424                 {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
2425                  0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
2426                 {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
2427                  0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
2428                 {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
2429                  0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
2430                 {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
2431                  0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
2432                 {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
2433                  0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
2434                 {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
2435                  0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
2436                 {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
2437                  0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
2438                 {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
2439                  0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
2440         int l;
2441
2442         for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
2443                 mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
2444
2445                 /* Banks enabled */
2446                 if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
2447                         /* Bank is enabled */
2448
2449                         /*------------------------------------------------------------------
2450                          * Run the short memory test.
2451                          *-----------------------------------------------------------------*/
2452                         membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
2453
2454                         for (i = 0; i < NUMMEMTESTS; i++) {
2455                                 for (j = 0; j < NUMMEMWORDS; j++) {
2456                                         membase[j] = test[i][j];
2457                                         ppcDcbf((u32)&(membase[j]));
2458                                 }
2459                                 sync();
2460                                 for (l=0; l<NUMLOOPS; l++) {
2461                                         for (j = 0; j < NUMMEMWORDS; j++) {
2462                                                 if (membase[j] != test[i][j]) {
2463                                                         ppcDcbf((u32)&(membase[j]));
2464                                                         return 0;
2465                                                 }
2466                                                 ppcDcbf((u32)&(membase[j]));
2467                                         }
2468                                         sync();
2469                                 }
2470                         }
2471                 }       /* if bank enabled */
2472         }               /* for bxcf_num */
2473
2474         return 1;
2475 }
2476
2477 #ifndef HARD_CODED_DQS
2478 /*-----------------------------------------------------------------------------+
2479  * DQS_calibration_process.
2480  *-----------------------------------------------------------------------------*/
2481 static void DQS_calibration_process(void)
2482 {
2483         unsigned long rfdc_reg;
2484         unsigned long rffd;
2485         unsigned long rqdc_reg;
2486         unsigned long rqfd;
2487         unsigned long val;
2488         long rqfd_average;
2489         long rffd_average;
2490         long max_start;
2491         long min_end;
2492         unsigned long begin_rqfd[MAXRANKS];
2493         unsigned long begin_rffd[MAXRANKS];
2494         unsigned long end_rqfd[MAXRANKS];
2495         unsigned long end_rffd[MAXRANKS];
2496         char window_found;
2497         unsigned long dlycal;
2498         unsigned long dly_val;
2499         unsigned long max_pass_length;
2500         unsigned long current_pass_length;
2501         unsigned long current_fail_length;
2502         unsigned long current_start;
2503         long max_end;
2504         unsigned char fail_found;
2505         unsigned char pass_found;
2506         u32 rqfd_start;
2507         char str[] = "Auto calibration -";
2508         char slash[] = "\\|/-\\|/-";
2509         int loopi = 0;
2510
2511         /*------------------------------------------------------------------
2512          * Test to determine the best read clock delay tuning bits.
2513          *
2514          * Before the DDR controller can be used, the read clock delay needs to be
2515          * set.  This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
2516          * This value cannot be hardcoded into the program because it changes
2517          * depending on the board's setup and environment.
2518          * To do this, all delay values are tested to see if they
2519          * work or not.  By doing this, you get groups of fails with groups of
2520          * passing values.  The idea is to find the start and end of a passing
2521          * window and take the center of it to use as the read clock delay.
2522          *
2523          * A failure has to be seen first so that when we hit a pass, we know
2524          * that it is truely the start of the window.  If we get passing values
2525          * to start off with, we don't know if we are at the start of the window.
2526          *
2527          * The code assumes that a failure will always be found.
2528          * If a failure is not found, there is no easy way to get the middle
2529          * of the passing window.  I guess we can pretty much pick any value
2530          * but some values will be better than others.  Since the lowest speed
2531          * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
2532          * from experimentation it is safe to say you will always have a failure.
2533          *-----------------------------------------------------------------*/
2534
2535         /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
2536         rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
2537
2538         puts(str);
2539
2540 calibration_loop:
2541         mfsdram(SDRAM_RQDC, rqdc_reg);
2542         mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
2543                 SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
2544
2545         max_start = 0;
2546         min_end = 0;
2547         begin_rqfd[0] = 0;
2548         begin_rffd[0] = 0;
2549         begin_rqfd[1] = 0;
2550         begin_rffd[1] = 0;
2551         end_rqfd[0] = 0;
2552         end_rffd[0] = 0;
2553         end_rqfd[1] = 0;
2554         end_rffd[1] = 0;
2555         window_found = FALSE;
2556
2557         max_pass_length = 0;
2558         max_start = 0;
2559         max_end = 0;
2560         current_pass_length = 0;
2561         current_fail_length = 0;
2562         current_start = 0;
2563         window_found = FALSE;
2564         fail_found = FALSE;
2565         pass_found = FALSE;
2566
2567         /*
2568          * get the delay line calibration register value
2569          */
2570         mfsdram(SDRAM_DLCR, dlycal);
2571         dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
2572
2573         for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
2574                 mfsdram(SDRAM_RFDC, rfdc_reg);
2575                 rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
2576
2577                 /*------------------------------------------------------------------
2578                  * Set the timing reg for the test.
2579                  *-----------------------------------------------------------------*/
2580                 mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
2581
2582                 /*------------------------------------------------------------------
2583                  * See if the rffd value passed.
2584                  *-----------------------------------------------------------------*/
2585                 if (short_mem_test()) {
2586                         if (fail_found == TRUE) {
2587                                 pass_found = TRUE;
2588                                 if (current_pass_length == 0)
2589                                         current_start = rffd;
2590
2591                                 current_fail_length = 0;
2592                                 current_pass_length++;
2593
2594                                 if (current_pass_length > max_pass_length) {
2595                                         max_pass_length = current_pass_length;
2596                                         max_start = current_start;
2597                                         max_end = rffd;
2598                                 }
2599                         }
2600                 } else {
2601                         current_pass_length = 0;
2602                         current_fail_length++;
2603
2604                         if (current_fail_length >= (dly_val >> 2)) {
2605                                 if (fail_found == FALSE) {
2606                                         fail_found = TRUE;
2607                                 } else if (pass_found == TRUE) {
2608                                         window_found = TRUE;
2609                                         break;
2610                                 }
2611                         }
2612                 }
2613         }               /* for rffd */
2614
2615         /*------------------------------------------------------------------
2616          * Set the average RFFD value
2617          *-----------------------------------------------------------------*/
2618         rffd_average = ((max_start + max_end) >> 1);
2619
2620         if (rffd_average < 0)
2621                 rffd_average = 0;
2622
2623         if (rffd_average > SDRAM_RFDC_RFFD_MAX)
2624                 rffd_average = SDRAM_RFDC_RFFD_MAX;
2625         /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
2626         mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
2627
2628         max_pass_length = 0;
2629         max_start = 0;
2630         max_end = 0;
2631         current_pass_length = 0;
2632         current_fail_length = 0;
2633         current_start = 0;
2634         window_found = FALSE;
2635         fail_found = FALSE;
2636         pass_found = FALSE;
2637
2638         for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
2639                 mfsdram(SDRAM_RQDC, rqdc_reg);
2640                 rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
2641
2642                 /*------------------------------------------------------------------
2643                  * Set the timing reg for the test.
2644                  *-----------------------------------------------------------------*/
2645                 mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
2646
2647                 /*------------------------------------------------------------------
2648                  * See if the rffd value passed.
2649                  *-----------------------------------------------------------------*/
2650                 if (short_mem_test()) {
2651                         if (fail_found == TRUE) {
2652                                 pass_found = TRUE;
2653                                 if (current_pass_length == 0)
2654                                         current_start = rqfd;
2655
2656                                 current_fail_length = 0;
2657                                 current_pass_length++;
2658
2659                                 if (current_pass_length > max_pass_length) {
2660                                         max_pass_length = current_pass_length;
2661                                         max_start = current_start;
2662                                         max_end = rqfd;
2663                                 }
2664                         }
2665                 } else {
2666                         current_pass_length = 0;
2667                         current_fail_length++;
2668
2669                         if (fail_found == FALSE) {
2670                                 fail_found = TRUE;
2671                         } else if (pass_found == TRUE) {
2672                                 window_found = TRUE;
2673                                 break;
2674                         }
2675                 }
2676         }
2677
2678         rqfd_average = ((max_start + max_end) >> 1);
2679
2680         /*------------------------------------------------------------------
2681          * Make sure we found the valid read passing window.  Halt if not
2682          *-----------------------------------------------------------------*/
2683         if (window_found == FALSE) {
2684                 if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
2685                         putc('\b');
2686                         putc(slash[loopi++ % 8]);
2687
2688                         /* try again from with a different RQFD start value */
2689                         rqfd_start++;
2690                         goto calibration_loop;
2691                 }
2692
2693                 printf("\nERROR: Cannot determine a common read delay for the "
2694                        "DIMM(s) installed.\n");
2695                 debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
2696                 hang();
2697         }
2698
2699         blank_string(strlen(str));
2700
2701         if (rqfd_average < 0)
2702                 rqfd_average = 0;
2703
2704         if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
2705                 rqfd_average = SDRAM_RQDC_RQFD_MAX;
2706
2707         mtsdram(SDRAM_RQDC,
2708                 (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
2709                 SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
2710
2711         mfsdram(SDRAM_DLCR, val);
2712         debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
2713         mfsdram(SDRAM_RQDC, val);
2714         debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
2715         mfsdram(SDRAM_RFDC, val);
2716         debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
2717 }
2718 #else /* calibration test with hardvalues */
2719 /*-----------------------------------------------------------------------------+
2720  * DQS_calibration_process.
2721  *-----------------------------------------------------------------------------*/
2722 static void test(void)
2723 {
2724         unsigned long dimm_num;
2725         unsigned long ecc_temp;
2726         unsigned long i, j;
2727         unsigned long *membase;
2728         unsigned long bxcf[MAXRANKS];
2729         unsigned long val;
2730         char window_found;
2731         char begin_found[MAXDIMMS];
2732         char end_found[MAXDIMMS];
2733         char search_end[MAXDIMMS];
2734         unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
2735                 {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
2736                  0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
2737                 {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
2738                  0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
2739                 {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
2740                  0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
2741                 {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
2742                  0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
2743                 {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
2744                  0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
2745                 {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
2746                  0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
2747                 {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
2748                  0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
2749                 {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
2750                  0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
2751
2752         /*------------------------------------------------------------------
2753          * Test to determine the best read clock delay tuning bits.
2754          *
2755          * Before the DDR controller can be used, the read clock delay needs to be
2756          * set.  This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
2757          * This value cannot be hardcoded into the program because it changes
2758          * depending on the board's setup and environment.
2759          * To do this, all delay values are tested to see if they
2760          * work or not.  By doing this, you get groups of fails with groups of
2761          * passing values.  The idea is to find the start and end of a passing
2762          * window and take the center of it to use as the read clock delay.
2763          *
2764          * A failure has to be seen first so that when we hit a pass, we know
2765          * that it is truely the start of the window.  If we get passing values
2766          * to start off with, we don't know if we are at the start of the window.
2767          *
2768          * The code assumes that a failure will always be found.
2769          * If a failure is not found, there is no easy way to get the middle
2770          * of the passing window.  I guess we can pretty much pick any value
2771          * but some values will be better than others.  Since the lowest speed
2772          * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
2773          * from experimentation it is safe to say you will always have a failure.
2774          *-----------------------------------------------------------------*/
2775         mfsdram(SDRAM_MCOPT1, ecc_temp);
2776         ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
2777         mfsdram(SDRAM_MCOPT1, val);
2778         mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
2779                 SDRAM_MCOPT1_MCHK_NON);
2780
2781         window_found = FALSE;
2782         begin_found[0] = FALSE;
2783         end_found[0] = FALSE;
2784         search_end[0] = FALSE;
2785         begin_found[1] = FALSE;
2786         end_found[1] = FALSE;
2787         search_end[1] = FALSE;
2788
2789         for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2790                 mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
2791
2792                 /* Banks enabled */
2793                 if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
2794
2795                         /* Bank is enabled */
2796                         membase =
2797                                 (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
2798
2799                         /*------------------------------------------------------------------
2800                          * Run the short memory test.
2801                          *-----------------------------------------------------------------*/
2802                         for (i = 0; i < NUMMEMTESTS; i++) {
2803                                 for (j = 0; j < NUMMEMWORDS; j++) {
2804                                         membase[j] = test[i][j];
2805                                         ppcDcbf((u32)&(membase[j]));
2806                                 }
2807                                 sync();
2808                                 for (j = 0; j < NUMMEMWORDS; j++) {
2809                                         if (membase[j] != test[i][j]) {
2810                                                 ppcDcbf((u32)&(membase[j]));
2811                                                 break;
2812                                         }
2813                                         ppcDcbf((u32)&(membase[j]));
2814                                 }
2815                                 sync();
2816                                 if (j < NUMMEMWORDS)
2817                                         break;
2818                         }
2819
2820                         /*------------------------------------------------------------------
2821                          * See if the rffd value passed.
2822                          *-----------------------------------------------------------------*/
2823                         if (i < NUMMEMTESTS) {
2824                                 if ((end_found[dimm_num] == FALSE) &&
2825                                     (search_end[dimm_num] == TRUE)) {
2826                                         end_found[dimm_num] = TRUE;
2827                                 }
2828                                 if ((end_found[0] == TRUE) &&
2829                                     (end_found[1] == TRUE))
2830                                         break;
2831                         } else {
2832                                 if (begin_found[dimm_num] == FALSE) {
2833                                         begin_found[dimm_num] = TRUE;
2834                                         search_end[dimm_num] = TRUE;
2835                                 }
2836                         }
2837                 } else {
2838                         begin_found[dimm_num] = TRUE;
2839                         end_found[dimm_num] = TRUE;
2840                 }
2841         }
2842
2843         if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
2844                 window_found = TRUE;
2845
2846         /*------------------------------------------------------------------
2847          * Make sure we found the valid read passing window.  Halt if not
2848          *-----------------------------------------------------------------*/
2849         if (window_found == FALSE) {
2850                 printf("ERROR: Cannot determine a common read delay for the "
2851                        "DIMM(s) installed.\n");
2852                 hang();
2853         }
2854
2855         /*------------------------------------------------------------------
2856          * Restore the ECC variable to what it originally was
2857          *-----------------------------------------------------------------*/
2858         mtsdram(SDRAM_MCOPT1,
2859                 (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
2860                 | ecc_temp);
2861 }
2862 #endif
2863
2864 #if defined(DEBUG)
2865 static void ppc440sp_sdram_register_dump(void)
2866 {
2867         unsigned int sdram_reg;
2868         unsigned int sdram_data;
2869         unsigned int dcr_data;
2870
2871         printf("\n  Register Dump:\n");
2872         sdram_reg = SDRAM_MCSTAT;
2873         mfsdram(sdram_reg, sdram_data);
2874         printf("        SDRAM_MCSTAT    = 0x%08X", sdram_data);
2875         sdram_reg = SDRAM_MCOPT1;
2876         mfsdram(sdram_reg, sdram_data);
2877         printf("        SDRAM_MCOPT1    = 0x%08X\n", sdram_data);
2878         sdram_reg = SDRAM_MCOPT2;
2879         mfsdram(sdram_reg, sdram_data);
2880         printf("        SDRAM_MCOPT2    = 0x%08X", sdram_data);
2881         sdram_reg = SDRAM_MODT0;
2882         mfsdram(sdram_reg, sdram_data);
2883         printf("        SDRAM_MODT0     = 0x%08X\n", sdram_data);
2884         sdram_reg = SDRAM_MODT1;
2885         mfsdram(sdram_reg, sdram_data);
2886         printf("        SDRAM_MODT1     = 0x%08X", sdram_data);
2887         sdram_reg = SDRAM_MODT2;
2888         mfsdram(sdram_reg, sdram_data);
2889         printf("        SDRAM_MODT2     = 0x%08X\n", sdram_data);
2890         sdram_reg = SDRAM_MODT3;
2891         mfsdram(sdram_reg, sdram_data);
2892         printf("        SDRAM_MODT3     = 0x%08X", sdram_data);
2893         sdram_reg = SDRAM_CODT;
2894         mfsdram(sdram_reg, sdram_data);
2895         printf("        SDRAM_CODT      = 0x%08X\n", sdram_data);
2896         sdram_reg = SDRAM_VVPR;
2897         mfsdram(sdram_reg, sdram_data);
2898         printf("        SDRAM_VVPR      = 0x%08X", sdram_data);
2899         sdram_reg = SDRAM_OPARS;
2900         mfsdram(sdram_reg, sdram_data);
2901         printf("        SDRAM_OPARS     = 0x%08X\n", sdram_data);
2902         /*
2903          * OPAR2 is only used as a trigger register.
2904          * No data is contained in this register, and reading or writing
2905          * to is can cause bad things to happen (hangs).  Just skip it
2906          * and report NA
2907          * sdram_reg = SDRAM_OPAR2;
2908          * mfsdram(sdram_reg, sdram_data);
2909          * printf("        SDRAM_OPAR2     = 0x%08X\n", sdram_data);
2910          */
2911         printf("        SDRAM_OPART     = N/A       ");
2912         sdram_reg = SDRAM_RTR;
2913         mfsdram(sdram_reg, sdram_data);
2914         printf("        SDRAM_RTR       = 0x%08X\n", sdram_data);
2915         sdram_reg = SDRAM_MB0CF;
2916         mfsdram(sdram_reg, sdram_data);
2917         printf("        SDRAM_MB0CF     = 0x%08X", sdram_data);
2918         sdram_reg = SDRAM_MB1CF;
2919         mfsdram(sdram_reg, sdram_data);
2920         printf("        SDRAM_MB1CF     = 0x%08X\n", sdram_data);
2921         sdram_reg = SDRAM_MB2CF;
2922         mfsdram(sdram_reg, sdram_data);
2923         printf("        SDRAM_MB2CF     = 0x%08X", sdram_data);
2924         sdram_reg = SDRAM_MB3CF;
2925         mfsdram(sdram_reg, sdram_data);
2926         printf("        SDRAM_MB3CF     = 0x%08X\n", sdram_data);
2927         sdram_reg = SDRAM_INITPLR0;
2928         mfsdram(sdram_reg, sdram_data);
2929         printf("        SDRAM_INITPLR0  = 0x%08X", sdram_data);
2930         sdram_reg = SDRAM_INITPLR1;
2931         mfsdram(sdram_reg, sdram_data);
2932         printf("        SDRAM_INITPLR1  = 0x%08X\n", sdram_data);
2933         sdram_reg = SDRAM_INITPLR2;
2934         mfsdram(sdram_reg, sdram_data);
2935         printf("        SDRAM_INITPLR2  = 0x%08X", sdram_data);
2936         sdram_reg = SDRAM_INITPLR3;
2937         mfsdram(sdram_reg, sdram_data);
2938         printf("        SDRAM_INITPLR3  = 0x%08X\n", sdram_data);
2939         sdram_reg = SDRAM_INITPLR4;
2940         mfsdram(sdram_reg, sdram_data);
2941         printf("        SDRAM_INITPLR4  = 0x%08X", sdram_data);
2942         sdram_reg = SDRAM_INITPLR5;
2943         mfsdram(sdram_reg, sdram_data);
2944         printf("        SDRAM_INITPLR5  = 0x%08X\n", sdram_data);
2945         sdram_reg = SDRAM_INITPLR6;
2946         mfsdram(sdram_reg, sdram_data);
2947         printf("        SDRAM_INITPLR6  = 0x%08X", sdram_data);
2948         sdram_reg = SDRAM_INITPLR7;
2949         mfsdram(sdram_reg, sdram_data);
2950         printf("        SDRAM_INITPLR7  = 0x%08X\n", sdram_data);
2951         sdram_reg = SDRAM_INITPLR8;
2952         mfsdram(sdram_reg, sdram_data);
2953         printf("        SDRAM_INITPLR8  = 0x%08X", sdram_data);
2954         sdram_reg = SDRAM_INITPLR9;
2955         mfsdram(sdram_reg, sdram_data);
2956         printf("        SDRAM_INITPLR9  = 0x%08X\n", sdram_data);
2957         sdram_reg = SDRAM_INITPLR10;
2958         mfsdram(sdram_reg, sdram_data);
2959         printf("        SDRAM_INITPLR10 = 0x%08X", sdram_data);
2960         sdram_reg = SDRAM_INITPLR11;
2961         mfsdram(sdram_reg, sdram_data);
2962         printf("        SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
2963         sdram_reg = SDRAM_INITPLR12;
2964         mfsdram(sdram_reg, sdram_data);
2965         printf("        SDRAM_INITPLR12 = 0x%08X", sdram_data);
2966         sdram_reg = SDRAM_INITPLR13;
2967         mfsdram(sdram_reg, sdram_data);
2968         printf("        SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
2969         sdram_reg = SDRAM_INITPLR14;
2970         mfsdram(sdram_reg, sdram_data);
2971         printf("        SDRAM_INITPLR14 = 0x%08X", sdram_data);
2972         sdram_reg = SDRAM_INITPLR15;
2973         mfsdram(sdram_reg, sdram_data);
2974         printf("        SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
2975         sdram_reg = SDRAM_RQDC;
2976         mfsdram(sdram_reg, sdram_data);
2977         printf("        SDRAM_RQDC      = 0x%08X", sdram_data);
2978         sdram_reg = SDRAM_RFDC;
2979         mfsdram(sdram_reg, sdram_data);
2980         printf("        SDRAM_RFDC      = 0x%08X\n", sdram_data);
2981         sdram_reg = SDRAM_RDCC;
2982         mfsdram(sdram_reg, sdram_data);
2983         printf("        SDRAM_RDCC      = 0x%08X", sdram_data);
2984         sdram_reg = SDRAM_DLCR;
2985         mfsdram(sdram_reg, sdram_data);
2986         printf("        SDRAM_DLCR      = 0x%08X\n", sdram_data);
2987         sdram_reg = SDRAM_CLKTR;
2988         mfsdram(sdram_reg, sdram_data);
2989         printf("        SDRAM_CLKTR     = 0x%08X", sdram_data);
2990         sdram_reg = SDRAM_WRDTR;
2991         mfsdram(sdram_reg, sdram_data);
2992         printf("        SDRAM_WRDTR     = 0x%08X\n", sdram_data);
2993         sdram_reg = SDRAM_SDTR1;
2994         mfsdram(sdram_reg, sdram_data);
2995         printf("        SDRAM_SDTR1     = 0x%08X", sdram_data);
2996         sdram_reg = SDRAM_SDTR2;
2997         mfsdram(sdram_reg, sdram_data);
2998         printf("        SDRAM_SDTR2     = 0x%08X\n", sdram_data);
2999         sdram_reg = SDRAM_SDTR3;
3000         mfsdram(sdram_reg, sdram_data);
3001         printf("        SDRAM_SDTR3     = 0x%08X", sdram_data);
3002         sdram_reg = SDRAM_MMODE;
3003         mfsdram(sdram_reg, sdram_data);
3004         printf("        SDRAM_MMODE     = 0x%08X\n", sdram_data);
3005         sdram_reg = SDRAM_MEMODE;
3006         mfsdram(sdram_reg, sdram_data);
3007         printf("        SDRAM_MEMODE    = 0x%08X", sdram_data);
3008         sdram_reg = SDRAM_ECCCR;
3009         mfsdram(sdram_reg, sdram_data);
3010         printf("        SDRAM_ECCCR     = 0x%08X\n\n", sdram_data);
3011
3012         dcr_data = mfdcr(SDRAM_R0BAS);
3013         printf("        MQ0_B0BAS       = 0x%08X", dcr_data);
3014         dcr_data = mfdcr(SDRAM_R1BAS);
3015         printf("        MQ1_B0BAS       = 0x%08X\n", dcr_data);
3016         dcr_data = mfdcr(SDRAM_R2BAS);
3017         printf("        MQ2_B0BAS       = 0x%08X", dcr_data);
3018         dcr_data = mfdcr(SDRAM_R3BAS);
3019         printf("        MQ3_B0BAS       = 0x%08X\n", dcr_data);
3020 }
3021 #endif
3022 #endif /* CONFIG_SPD_EEPROM */