Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
authorLinus Torvalds <torvalds@linux-foundation.org>
Sun, 28 Feb 2010 18:31:01 +0000 (10:31 -0800)
committerLinus Torvalds <torvalds@linux-foundation.org>
Sun, 28 Feb 2010 18:31:01 +0000 (10:31 -0800)
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (25 commits)
  sched: Fix SCHED_MC regression caused by change in sched cpu_power
  sched: Don't use possibly stale sched_class
  kthread, sched: Remove reference to kthread_create_on_cpu
  sched: cpuacct: Use bigger percpu counter batch values for stats counters
  percpu_counter: Make __percpu_counter_add an inline function on UP
  sched: Remove member rt_se from struct rt_rq
  sched: Change usage of rt_rq->rt_se to rt_rq->tg->rt_se[cpu]
  sched: Remove unused update_shares_locked()
  sched: Use for_each_bit
  sched: Queue a deboosted task to the head of the RT prio queue
  sched: Implement head queueing for sched_rt
  sched: Extend enqueue_task to allow head queueing
  sched: Remove USER_SCHED
  sched: Fix the place where group powers are updated
  sched: Assume *balance is valid
  sched: Remove load_balance_newidle()
  sched: Unify load_balance{,_newidle}()
  sched: Add a lock break for PREEMPT=y
  sched: Remove from fwd decls
  sched: Remove rq_iterator from move_one_task
  ...

Fix up trivial conflicts in kernel/sched.c

1  2 
Documentation/feature-removal-schedule.txt
init/Kconfig
kernel/sched.c
kernel/sys.c

@@@ -6,21 -6,6 +6,6 @@@ be removed from this file
  
  ---------------------------
  
- What: USER_SCHED
- When: 2.6.34
- Why:  USER_SCHED was implemented as a proof of concept for group scheduling.
-       The effect of USER_SCHED can already be achieved from userspace with
-       the help of libcgroup. The removal of USER_SCHED will also simplify
-       the scheduler code with the removal of one major ifdef. There are also
-       issues USER_SCHED has with USER_NS. A decision was taken not to fix
-       those and instead remove USER_SCHED. Also new group scheduling
-       features will not be implemented for USER_SCHED.
- Who:  Dhaval Giani <dhaval@linux.vnet.ibm.com>
- ---------------------------
  What: PRISM54
  When: 2.6.34
  
@@@ -64,17 -49,6 +49,17 @@@ Who:        Robin Getz <rgetz@blackfin.uclinux
  
  ---------------------------
  
 +What: Deprecated snapshot ioctls
 +When: 2.6.36
 +
 +Why:  The ioctls in kernel/power/user.c were marked as deprecated long time
 +      ago. Now they notify users about that so that they need to replace
 +      their userspace. After some more time, remove them completely.
 +
 +Who:  Jiri Slaby <jirislaby@gmail.com>
 +
 +---------------------------
 +
  What: The ieee80211_regdom module parameter
  When: March 2010 / desktop catchup
  
diff --combined init/Kconfig
@@@ -396,22 -396,6 +396,22 @@@ config RCU_FANOUT_EXAC
  
          Say N if unsure.
  
 +config RCU_FAST_NO_HZ
 +      bool "Accelerate last non-dyntick-idle CPU's grace periods"
 +      depends on TREE_RCU && NO_HZ && SMP
 +      default n
 +      help
 +        This option causes RCU to attempt to accelerate grace periods
 +        in order to allow the final CPU to enter dynticks-idle state
 +        more quickly.  On the other hand, this option increases the
 +        overhead of the dynticks-idle checking, particularly on systems
 +        with large numbers of CPUs.
 +
 +        Say Y if energy efficiency is critically important, particularly
 +              if you have relatively few CPUs.
 +
 +        Say N if you are unsure.
 +
  config TREE_RCU_TRACE
        def_bool RCU_TRACE && ( TREE_RCU || TREE_PREEMPT_RCU )
        select DEBUG_FS
@@@ -461,57 -445,6 +461,6 @@@ config LOG_BUF_SHIF
  config HAVE_UNSTABLE_SCHED_CLOCK
        bool
  
- config GROUP_SCHED
-       bool "Group CPU scheduler"
-       depends on EXPERIMENTAL
-       default n
-       help
-         This feature lets CPU scheduler recognize task groups and control CPU
-         bandwidth allocation to such task groups.
-         In order to create a group from arbitrary set of processes, use
-         CONFIG_CGROUPS. (See Control Group support.)
- config FAIR_GROUP_SCHED
-       bool "Group scheduling for SCHED_OTHER"
-       depends on GROUP_SCHED
-       default GROUP_SCHED
- config RT_GROUP_SCHED
-       bool "Group scheduling for SCHED_RR/FIFO"
-       depends on EXPERIMENTAL
-       depends on GROUP_SCHED
-       default n
-       help
-         This feature lets you explicitly allocate real CPU bandwidth
-         to users or control groups (depending on the "Basis for grouping tasks"
-         setting below. If enabled, it will also make it impossible to
-         schedule realtime tasks for non-root users until you allocate
-         realtime bandwidth for them.
-         See Documentation/scheduler/sched-rt-group.txt for more information.
- choice
-       depends on GROUP_SCHED
-       prompt "Basis for grouping tasks"
-       default USER_SCHED
- config USER_SCHED
-       bool "user id"
-       help
-         This option will choose userid as the basis for grouping
-         tasks, thus providing equal CPU bandwidth to each user.
- config CGROUP_SCHED
-       bool "Control groups"
-       depends on CGROUPS
-       help
-         This option allows you to create arbitrary task groups
-         using the "cgroup" pseudo filesystem and control
-         the cpu bandwidth allocated to each such task group.
-         Refer to Documentation/cgroups/cgroups.txt for more
-         information on "cgroup" pseudo filesystem.
- endchoice
  menuconfig CGROUPS
        boolean "Control Group support"
        help
@@@ -632,6 -565,36 +581,36 @@@ config CGROUP_MEM_RES_CTLR_SWA
          Now, memory usage of swap_cgroup is 2 bytes per entry. If swap page
          size is 4096bytes, 512k per 1Gbytes of swap.
  
+ menuconfig CGROUP_SCHED
+       bool "Group CPU scheduler"
+       depends on EXPERIMENTAL && CGROUPS
+       default n
+       help
+         This feature lets CPU scheduler recognize task groups and control CPU
+         bandwidth allocation to such task groups. It uses cgroups to group
+         tasks.
+ if CGROUP_SCHED
+ config FAIR_GROUP_SCHED
+       bool "Group scheduling for SCHED_OTHER"
+       depends on CGROUP_SCHED
+       default CGROUP_SCHED
+ config RT_GROUP_SCHED
+       bool "Group scheduling for SCHED_RR/FIFO"
+       depends on EXPERIMENTAL
+       depends on CGROUP_SCHED
+       default n
+       help
+         This feature lets you explicitly allocate real CPU bandwidth
+         to users or control groups (depending on the "Basis for grouping tasks"
+         setting below. If enabled, it will also make it impossible to
+         schedule realtime tasks for non-root users until you allocate
+         realtime bandwidth for them.
+         See Documentation/scheduler/sched-rt-group.txt for more information.
+ endif #CGROUP_SCHED
  endif # CGROUPS
  
  config MM_OWNER
@@@ -992,6 -955,19 +971,6 @@@ config PERF_EVENT
  
          Say Y if unsure.
  
 -config EVENT_PROFILE
 -      bool "Tracepoint profiling sources"
 -      depends on PERF_EVENTS && EVENT_TRACING
 -      default y
 -      help
 -       Allow the use of tracepoints as software performance events.
 -
 -       When this is enabled, you can create perf events based on
 -       tracepoints using PERF_TYPE_TRACEPOINT and the tracepoint ID
 -       found in debugfs://tracing/events/*/*/id. (The -e/--events
 -       option to the perf tool can parse and interpret symbolic
 -       tracepoints, in the subsystem:tracepoint_name format.)
 -
  config PERF_COUNTERS
        bool "Kernel performance counters (old config option)"
        depends on HAVE_PERF_EVENTS
@@@ -1115,7 -1091,7 +1094,7 @@@ config MMAP_ALLOW_UNINITIALIZE
          See Documentation/nommu-mmap.txt for more information.
  
  config PROFILING
 -      bool "Profiling support (EXPERIMENTAL)"
 +      bool "Profiling support"
        help
          Say Y here to enable the extended profiling support mechanisms used
          by profilers such as OProfile.
@@@ -1265,8 -1241,4 +1244,8 @@@ source "block/Kconfig
  config PREEMPT_NOTIFIERS
        bool
  
 +config PADATA
 +      depends on SMP
 +      bool
 +
  source "kernel/Kconfig.locks"
diff --combined kernel/sched.c
@@@ -233,7 -233,7 +233,7 @@@ static void destroy_rt_bandwidth(struc
   */
  static DEFINE_MUTEX(sched_domains_mutex);
  
- #ifdef CONFIG_GROUP_SCHED
+ #ifdef CONFIG_CGROUP_SCHED
  
  #include <linux/cgroup.h>
  
@@@ -243,13 -243,7 +243,7 @@@ static LIST_HEAD(task_groups)
  
  /* task group related information */
  struct task_group {
- #ifdef CONFIG_CGROUP_SCHED
        struct cgroup_subsys_state css;
- #endif
- #ifdef CONFIG_USER_SCHED
-       uid_t uid;
- #endif
  
  #ifdef CONFIG_FAIR_GROUP_SCHED
        /* schedulable entities of this group on each cpu */
        struct list_head children;
  };
  
- #ifdef CONFIG_USER_SCHED
- /* Helper function to pass uid information to create_sched_user() */
- void set_tg_uid(struct user_struct *user)
- {
-       user->tg->uid = user->uid;
- }
- /*
-  * Root task group.
-  *    Every UID task group (including init_task_group aka UID-0) will
-  *    be a child to this group.
-  */
- struct task_group root_task_group;
- #ifdef CONFIG_FAIR_GROUP_SCHED
- /* Default task group's sched entity on each cpu */
- static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
- /* Default task group's cfs_rq on each cpu */
- static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- #ifdef CONFIG_RT_GROUP_SCHED
- static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
- static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
- #endif /* CONFIG_RT_GROUP_SCHED */
- #else /* !CONFIG_USER_SCHED */
  #define root_task_group init_task_group
- #endif /* CONFIG_USER_SCHED */
  
  /* task_group_lock serializes add/remove of task groups and also changes to
   * a task group's cpu shares.
@@@ -318,11 -284,7 +284,7 @@@ static int root_task_group_empty(void
  }
  #endif
  
- #ifdef CONFIG_USER_SCHED
- # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
- #else /* !CONFIG_USER_SCHED */
  # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
- #endif /* CONFIG_USER_SCHED */
  
  /*
   * A weight of 0 or 1 can cause arithmetics problems.
@@@ -348,11 -310,7 +310,7 @@@ static inline struct task_group *task_g
  {
        struct task_group *tg;
  
- #ifdef CONFIG_USER_SCHED
-       rcu_read_lock();
-       tg = __task_cred(p)->user->tg;
-       rcu_read_unlock();
- #elif defined(CONFIG_CGROUP_SCHED)
+ #ifdef CONFIG_CGROUP_SCHED
        tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
                                struct task_group, css);
  #else
@@@ -383,7 -341,7 +341,7 @@@ static inline struct task_group *task_g
        return NULL;
  }
  
- #endif        /* CONFIG_GROUP_SCHED */
+ #endif        /* CONFIG_CGROUP_SCHED */
  
  /* CFS-related fields in a runqueue */
  struct cfs_rq {
@@@ -478,7 -436,6 +436,6 @@@ struct rt_rq 
        struct rq *rq;
        struct list_head leaf_rt_rq_list;
        struct task_group *tg;
-       struct sched_rt_entity *rt_se;
  #endif
  };
  
@@@ -645,11 -602,6 +602,11 @@@ static inline int cpu_of(struct rq *rq
  #endif
  }
  
 +#define rcu_dereference_check_sched_domain(p) \
 +      rcu_dereference_check((p), \
 +                            rcu_read_lock_sched_held() || \
 +                            lockdep_is_held(&sched_domains_mutex))
 +
  /*
   * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
   * See detach_destroy_domains: synchronize_sched for details.
   * preempt-disabled sections.
   */
  #define for_each_domain(cpu, __sd) \
 -      for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
 +      for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  
  #define cpu_rq(cpu)           (&per_cpu(runqueues, (cpu)))
  #define this_rq()             (&__get_cpu_var(runqueues))
@@@ -1414,32 -1366,6 +1371,6 @@@ static const u32 prio_to_wmult[40] = 
   /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  };
  
- static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
- /*
-  * runqueue iterator, to support SMP load-balancing between different
-  * scheduling classes, without having to expose their internal data
-  * structures to the load-balancing proper:
-  */
- struct rq_iterator {
-       void *arg;
-       struct task_struct *(*start)(void *);
-       struct task_struct *(*next)(void *);
- };
- #ifdef CONFIG_SMP
- static unsigned long
- balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
-             unsigned long max_load_move, struct sched_domain *sd,
-             enum cpu_idle_type idle, int *all_pinned,
-             int *this_best_prio, struct rq_iterator *iterator);
- static int
- iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
-                  struct sched_domain *sd, enum cpu_idle_type idle,
-                  struct rq_iterator *iterator);
- #endif
  /* Time spent by the tasks of the cpu accounting group executing in ... */
  enum cpuacct_stat_index {
        CPUACCT_STAT_USER,      /* ... user mode */
@@@ -1555,7 -1481,7 +1486,7 @@@ static unsigned long target_load(int cp
  
  static struct sched_group *group_of(int cpu)
  {
 -      struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
 +      struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
  
        if (!sd)
                return NULL;
@@@ -1725,16 -1651,6 +1656,6 @@@ static void update_shares(struct sched_
        }
  }
  
- static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
- {
-       if (root_task_group_empty())
-               return;
-       raw_spin_unlock(&rq->lock);
-       update_shares(sd);
-       raw_spin_lock(&rq->lock);
- }
  static void update_h_load(long cpu)
  {
        if (root_task_group_empty())
@@@ -1749,10 -1665,6 +1670,6 @@@ static inline void update_shares(struc
  {
  }
  
- static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
- {
- }
  #endif
  
  #ifdef CONFIG_PREEMPT
@@@ -1829,6 -1741,51 +1746,51 @@@ static inline void double_unlock_balanc
        raw_spin_unlock(&busiest->lock);
        lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  }
+ /*
+  * double_rq_lock - safely lock two runqueues
+  *
+  * Note this does not disable interrupts like task_rq_lock,
+  * you need to do so manually before calling.
+  */
+ static void double_rq_lock(struct rq *rq1, struct rq *rq2)
+       __acquires(rq1->lock)
+       __acquires(rq2->lock)
+ {
+       BUG_ON(!irqs_disabled());
+       if (rq1 == rq2) {
+               raw_spin_lock(&rq1->lock);
+               __acquire(rq2->lock);   /* Fake it out ;) */
+       } else {
+               if (rq1 < rq2) {
+                       raw_spin_lock(&rq1->lock);
+                       raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
+               } else {
+                       raw_spin_lock(&rq2->lock);
+                       raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
+               }
+       }
+       update_rq_clock(rq1);
+       update_rq_clock(rq2);
+ }
+ /*
+  * double_rq_unlock - safely unlock two runqueues
+  *
+  * Note this does not restore interrupts like task_rq_unlock,
+  * you need to do so manually after calling.
+  */
+ static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
+       __releases(rq1->lock)
+       __releases(rq2->lock)
+ {
+       raw_spin_unlock(&rq1->lock);
+       if (rq1 != rq2)
+               raw_spin_unlock(&rq2->lock);
+       else
+               __release(rq2->lock);
+ }
  #endif
  
  #ifdef CONFIG_FAIR_GROUP_SCHED
@@@ -1858,18 -1815,14 +1820,14 @@@ static inline void __set_task_cpu(struc
  #endif
  }
  
- #include "sched_stats.h"
- #include "sched_idletask.c"
- #include "sched_fair.c"
- #include "sched_rt.c"
- #ifdef CONFIG_SCHED_DEBUG
- # include "sched_debug.c"
- #endif
+ static const struct sched_class rt_sched_class;
  
  #define sched_class_highest (&rt_sched_class)
  #define for_each_class(class) \
     for (class = sched_class_highest; class; class = class->next)
  
+ #include "sched_stats.h"
  static void inc_nr_running(struct rq *rq)
  {
        rq->nr_running++;
@@@ -1907,13 -1860,14 +1865,14 @@@ static void update_avg(u64 *avg, u64 sa
        *avg += diff >> 3;
  }
  
- static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
+ static void
+ enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
  {
        if (wakeup)
                p->se.start_runtime = p->se.sum_exec_runtime;
  
        sched_info_queued(p);
-       p->sched_class->enqueue_task(rq, p, wakeup);
+       p->sched_class->enqueue_task(rq, p, wakeup, head);
        p->se.on_rq = 1;
  }
  
@@@ -1935,6 -1889,37 +1894,37 @@@ static void dequeue_task(struct rq *rq
        p->se.on_rq = 0;
  }
  
+ /*
+  * activate_task - move a task to the runqueue.
+  */
+ static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
+ {
+       if (task_contributes_to_load(p))
+               rq->nr_uninterruptible--;
+       enqueue_task(rq, p, wakeup, false);
+       inc_nr_running(rq);
+ }
+ /*
+  * deactivate_task - remove a task from the runqueue.
+  */
+ static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
+ {
+       if (task_contributes_to_load(p))
+               rq->nr_uninterruptible++;
+       dequeue_task(rq, p, sleep);
+       dec_nr_running(rq);
+ }
+ #include "sched_idletask.c"
+ #include "sched_fair.c"
+ #include "sched_rt.c"
+ #ifdef CONFIG_SCHED_DEBUG
+ # include "sched_debug.c"
+ #endif
  /*
   * __normal_prio - return the priority that is based on the static prio
   */
@@@ -1981,30 -1966,6 +1971,6 @@@ static int effective_prio(struct task_s
        return p->prio;
  }
  
- /*
-  * activate_task - move a task to the runqueue.
-  */
- static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
- {
-       if (task_contributes_to_load(p))
-               rq->nr_uninterruptible--;
-       enqueue_task(rq, p, wakeup);
-       inc_nr_running(rq);
- }
- /*
-  * deactivate_task - remove a task from the runqueue.
-  */
- static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
- {
-       if (task_contributes_to_load(p))
-               rq->nr_uninterruptible++;
-       dequeue_task(rq, p, sleep);
-       dec_nr_running(rq);
- }
  /**
   * task_curr - is this task currently executing on a CPU?
   * @p: the task in question.
@@@ -2837,13 -2798,7 +2803,13 @@@ static void finish_task_switch(struct r
         */
        prev_state = prev->state;
        finish_arch_switch(prev);
 -      perf_event_task_sched_in(current, cpu_of(rq));
 +#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 +      local_irq_disable();
 +#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
 +      perf_event_task_sched_in(current);
 +#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 +      local_irq_enable();
 +#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
        finish_lock_switch(rq, prev);
  
        fire_sched_in_preempt_notifiers(current);
@@@ -2988,2031 -2943,211 +2954,211 @@@ unsigned long nr_running(void
        for_each_online_cpu(i)
                sum += cpu_rq(i)->nr_running;
  
-       return sum;
- }
- unsigned long nr_uninterruptible(void)
- {
-       unsigned long i, sum = 0;
-       for_each_possible_cpu(i)
-               sum += cpu_rq(i)->nr_uninterruptible;
-       /*
-        * Since we read the counters lockless, it might be slightly
-        * inaccurate. Do not allow it to go below zero though:
-        */
-       if (unlikely((long)sum < 0))
-               sum = 0;
-       return sum;
- }
- unsigned long long nr_context_switches(void)
- {
-       int i;
-       unsigned long long sum = 0;
-       for_each_possible_cpu(i)
-               sum += cpu_rq(i)->nr_switches;
-       return sum;
- }
- unsigned long nr_iowait(void)
- {
-       unsigned long i, sum = 0;
-       for_each_possible_cpu(i)
-               sum += atomic_read(&cpu_rq(i)->nr_iowait);
-       return sum;
- }
- unsigned long nr_iowait_cpu(void)
- {
-       struct rq *this = this_rq();
-       return atomic_read(&this->nr_iowait);
- }
- unsigned long this_cpu_load(void)
- {
-       struct rq *this = this_rq();
-       return this->cpu_load[0];
- }
- /* Variables and functions for calc_load */
- static atomic_long_t calc_load_tasks;
- static unsigned long calc_load_update;
- unsigned long avenrun[3];
- EXPORT_SYMBOL(avenrun);
- /**
-  * get_avenrun - get the load average array
-  * @loads:    pointer to dest load array
-  * @offset:   offset to add
-  * @shift:    shift count to shift the result left
-  *
-  * These values are estimates at best, so no need for locking.
-  */
- void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
- {
-       loads[0] = (avenrun[0] + offset) << shift;
-       loads[1] = (avenrun[1] + offset) << shift;
-       loads[2] = (avenrun[2] + offset) << shift;
- }
- static unsigned long
- calc_load(unsigned long load, unsigned long exp, unsigned long active)
- {
-       load *= exp;
-       load += active * (FIXED_1 - exp);
-       return load >> FSHIFT;
- }
- /*
-  * calc_load - update the avenrun load estimates 10 ticks after the
-  * CPUs have updated calc_load_tasks.
-  */
- void calc_global_load(void)
- {
-       unsigned long upd = calc_load_update + 10;
-       long active;
-       if (time_before(jiffies, upd))
-               return;
-       active = atomic_long_read(&calc_load_tasks);
-       active = active > 0 ? active * FIXED_1 : 0;
-       avenrun[0] = calc_load(avenrun[0], EXP_1, active);
-       avenrun[1] = calc_load(avenrun[1], EXP_5, active);
-       avenrun[2] = calc_load(avenrun[2], EXP_15, active);
-       calc_load_update += LOAD_FREQ;
- }
- /*
-  * Either called from update_cpu_load() or from a cpu going idle
-  */
- static void calc_load_account_active(struct rq *this_rq)
- {
-       long nr_active, delta;
-       nr_active = this_rq->nr_running;
-       nr_active += (long) this_rq->nr_uninterruptible;
-       if (nr_active != this_rq->calc_load_active) {
-               delta = nr_active - this_rq->calc_load_active;
-               this_rq->calc_load_active = nr_active;
-               atomic_long_add(delta, &calc_load_tasks);
-       }
- }
- /*
-  * Update rq->cpu_load[] statistics. This function is usually called every
-  * scheduler tick (TICK_NSEC).
-  */
- static void update_cpu_load(struct rq *this_rq)
- {
-       unsigned long this_load = this_rq->load.weight;
-       int i, scale;
-       this_rq->nr_load_updates++;
-       /* Update our load: */
-       for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
-               unsigned long old_load, new_load;
-               /* scale is effectively 1 << i now, and >> i divides by scale */
-               old_load = this_rq->cpu_load[i];
-               new_load = this_load;
-               /*
-                * Round up the averaging division if load is increasing. This
-                * prevents us from getting stuck on 9 if the load is 10, for
-                * example.
-                */
-               if (new_load > old_load)
-                       new_load += scale-1;
-               this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
-       }
-       if (time_after_eq(jiffies, this_rq->calc_load_update)) {
-               this_rq->calc_load_update += LOAD_FREQ;
-               calc_load_account_active(this_rq);
-       }
- }
- #ifdef CONFIG_SMP
- /*
-  * double_rq_lock - safely lock two runqueues
-  *
-  * Note this does not disable interrupts like task_rq_lock,
-  * you need to do so manually before calling.
-  */
- static void double_rq_lock(struct rq *rq1, struct rq *rq2)
-       __acquires(rq1->lock)
-       __acquires(rq2->lock)
- {
-       BUG_ON(!irqs_disabled());
-       if (rq1 == rq2) {
-               raw_spin_lock(&rq1->lock);
-               __acquire(rq2->lock);   /* Fake it out ;) */
-       } else {
-               if (rq1 < rq2) {
-                       raw_spin_lock(&rq1->lock);
-                       raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
-               } else {
-                       raw_spin_lock(&rq2->lock);
-                       raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
-               }
-       }
-       update_rq_clock(rq1);
-       update_rq_clock(rq2);
- }
- /*
-  * double_rq_unlock - safely unlock two runqueues
-  *
-  * Note this does not restore interrupts like task_rq_unlock,
-  * you need to do so manually after calling.
-  */
- static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
-       __releases(rq1->lock)
-       __releases(rq2->lock)
- {
-       raw_spin_unlock(&rq1->lock);
-       if (rq1 != rq2)
-               raw_spin_unlock(&rq2->lock);
-       else
-               __release(rq2->lock);
- }
- /*
-  * sched_exec - execve() is a valuable balancing opportunity, because at
-  * this point the task has the smallest effective memory and cache footprint.
-  */
- void sched_exec(void)
- {
-       struct task_struct *p = current;
-       struct migration_req req;
-       int dest_cpu, this_cpu;
-       unsigned long flags;
-       struct rq *rq;
- again:
-       this_cpu = get_cpu();
-       dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
-       if (dest_cpu == this_cpu) {
-               put_cpu();
-               return;
-       }
-       rq = task_rq_lock(p, &flags);
-       put_cpu();
-       /*
-        * select_task_rq() can race against ->cpus_allowed
-        */
-       if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
-           || unlikely(!cpu_active(dest_cpu))) {
-               task_rq_unlock(rq, &flags);
-               goto again;
-       }
-       /* force the process onto the specified CPU */
-       if (migrate_task(p, dest_cpu, &req)) {
-               /* Need to wait for migration thread (might exit: take ref). */
-               struct task_struct *mt = rq->migration_thread;
-               get_task_struct(mt);
-               task_rq_unlock(rq, &flags);
-               wake_up_process(mt);
-               put_task_struct(mt);
-               wait_for_completion(&req.done);
-               return;
-       }
-       task_rq_unlock(rq, &flags);
- }
- /*
-  * pull_task - move a task from a remote runqueue to the local runqueue.
-  * Both runqueues must be locked.
-  */
- static void pull_task(struct rq *src_rq, struct task_struct *p,
-                     struct rq *this_rq, int this_cpu)
- {
-       deactivate_task(src_rq, p, 0);
-       set_task_cpu(p, this_cpu);
-       activate_task(this_rq, p, 0);
-       check_preempt_curr(this_rq, p, 0);
- }
- /*
-  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
-  */
- static
- int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
-                    struct sched_domain *sd, enum cpu_idle_type idle,
-                    int *all_pinned)
- {
-       int tsk_cache_hot = 0;
-       /*
-        * We do not migrate tasks that are:
-        * 1) running (obviously), or
-        * 2) cannot be migrated to this CPU due to cpus_allowed, or
-        * 3) are cache-hot on their current CPU.
-        */
-       if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
-               schedstat_inc(p, se.nr_failed_migrations_affine);
-               return 0;
-       }
-       *all_pinned = 0;
-       if (task_running(rq, p)) {
-               schedstat_inc(p, se.nr_failed_migrations_running);
-               return 0;
-       }
-       /*
-        * Aggressive migration if:
-        * 1) task is cache cold, or
-        * 2) too many balance attempts have failed.
-        */
-       tsk_cache_hot = task_hot(p, rq->clock, sd);
-       if (!tsk_cache_hot ||
-               sd->nr_balance_failed > sd->cache_nice_tries) {
- #ifdef CONFIG_SCHEDSTATS
-               if (tsk_cache_hot) {
-                       schedstat_inc(sd, lb_hot_gained[idle]);
-                       schedstat_inc(p, se.nr_forced_migrations);
-               }
- #endif
-               return 1;
-       }
-       if (tsk_cache_hot) {
-               schedstat_inc(p, se.nr_failed_migrations_hot);
-               return 0;
-       }
-       return 1;
- }
- static unsigned long
- balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
-             unsigned long max_load_move, struct sched_domain *sd,
-             enum cpu_idle_type idle, int *all_pinned,
-             int *this_best_prio, struct rq_iterator *iterator)
- {
-       int loops = 0, pulled = 0, pinned = 0;
-       struct task_struct *p;
-       long rem_load_move = max_load_move;
-       if (max_load_move == 0)
-               goto out;
-       pinned = 1;
-       /*
-        * Start the load-balancing iterator:
-        */
-       p = iterator->start(iterator->arg);
- next:
-       if (!p || loops++ > sysctl_sched_nr_migrate)
-               goto out;
-       if ((p->se.load.weight >> 1) > rem_load_move ||
-           !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
-               p = iterator->next(iterator->arg);
-               goto next;
-       }
-       pull_task(busiest, p, this_rq, this_cpu);
-       pulled++;
-       rem_load_move -= p->se.load.weight;
- #ifdef CONFIG_PREEMPT
-       /*
-        * NEWIDLE balancing is a source of latency, so preemptible kernels
-        * will stop after the first task is pulled to minimize the critical
-        * section.
-        */
-       if (idle == CPU_NEWLY_IDLE)
-               goto out;
- #endif
-       /*
-        * We only want to steal up to the prescribed amount of weighted load.
-        */
-       if (rem_load_move > 0) {
-               if (p->prio < *this_best_prio)
-                       *this_best_prio = p->prio;
-               p = iterator->next(iterator->arg);
-               goto next;
-       }
- out:
-       /*
-        * Right now, this is one of only two places pull_task() is called,
-        * so we can safely collect pull_task() stats here rather than
-        * inside pull_task().
-        */
-       schedstat_add(sd, lb_gained[idle], pulled);
-       if (all_pinned)
-               *all_pinned = pinned;
-       return max_load_move - rem_load_move;
- }
- /*
-  * move_tasks tries to move up to max_load_move weighted load from busiest to
-  * this_rq, as part of a balancing operation within domain "sd".
-  * Returns 1 if successful and 0 otherwise.
-  *
-  * Called with both runqueues locked.
-  */
- static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
-                     unsigned long max_load_move,
-                     struct sched_domain *sd, enum cpu_idle_type idle,
-                     int *all_pinned)
- {
-       const struct sched_class *class = sched_class_highest;
-       unsigned long total_load_moved = 0;
-       int this_best_prio = this_rq->curr->prio;
-       do {
-               total_load_moved +=
-                       class->load_balance(this_rq, this_cpu, busiest,
-                               max_load_move - total_load_moved,
-                               sd, idle, all_pinned, &this_best_prio);
-               class = class->next;
- #ifdef CONFIG_PREEMPT
-               /*
-                * NEWIDLE balancing is a source of latency, so preemptible
-                * kernels will stop after the first task is pulled to minimize
-                * the critical section.
-                */
-               if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
-                       break;
- #endif
-       } while (class && max_load_move > total_load_moved);
-       return total_load_moved > 0;
- }
- static int
- iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
-                  struct sched_domain *sd, enum cpu_idle_type idle,
-                  struct rq_iterator *iterator)
- {
-       struct task_struct *p = iterator->start(iterator->arg);
-       int pinned = 0;
-       while (p) {
-               if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
-                       pull_task(busiest, p, this_rq, this_cpu);
-                       /*
-                        * Right now, this is only the second place pull_task()
-                        * is called, so we can safely collect pull_task()
-                        * stats here rather than inside pull_task().
-                        */
-                       schedstat_inc(sd, lb_gained[idle]);
-                       return 1;
-               }
-               p = iterator->next(iterator->arg);
-       }
-       return 0;
- }
- /*
-  * move_one_task tries to move exactly one task from busiest to this_rq, as
-  * part of active balancing operations within "domain".
-  * Returns 1 if successful and 0 otherwise.
-  *
-  * Called with both runqueues locked.
-  */
- static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
-                        struct sched_domain *sd, enum cpu_idle_type idle)
- {
-       const struct sched_class *class;
-       for_each_class(class) {
-               if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
-                       return 1;
-       }
-       return 0;
- }
- /********** Helpers for find_busiest_group ************************/
- /*
-  * sd_lb_stats - Structure to store the statistics of a sched_domain
-  *            during load balancing.
-  */
- struct sd_lb_stats {
-       struct sched_group *busiest; /* Busiest group in this sd */
-       struct sched_group *this;  /* Local group in this sd */
-       unsigned long total_load;  /* Total load of all groups in sd */
-       unsigned long total_pwr;   /*   Total power of all groups in sd */
-       unsigned long avg_load;    /* Average load across all groups in sd */
-       /** Statistics of this group */
-       unsigned long this_load;
-       unsigned long this_load_per_task;
-       unsigned long this_nr_running;
-       /* Statistics of the busiest group */
-       unsigned long max_load;
-       unsigned long busiest_load_per_task;
-       unsigned long busiest_nr_running;
-       int group_imb; /* Is there imbalance in this sd */
- #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
-       int power_savings_balance; /* Is powersave balance needed for this sd */
-       struct sched_group *group_min; /* Least loaded group in sd */
-       struct sched_group *group_leader; /* Group which relieves group_min */
-       unsigned long min_load_per_task; /* load_per_task in group_min */
-       unsigned long leader_nr_running; /* Nr running of group_leader */
-       unsigned long min_nr_running; /* Nr running of group_min */
- #endif
- };
- /*
-  * sg_lb_stats - stats of a sched_group required for load_balancing
-  */
- struct sg_lb_stats {
-       unsigned long avg_load; /*Avg load across the CPUs of the group */
-       unsigned long group_load; /* Total load over the CPUs of the group */
-       unsigned long sum_nr_running; /* Nr tasks running in the group */
-       unsigned long sum_weighted_load; /* Weighted load of group's tasks */
-       unsigned long group_capacity;
-       int group_imb; /* Is there an imbalance in the group ? */
- };
- /**
-  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
-  * @group: The group whose first cpu is to be returned.
-  */
- static inline unsigned int group_first_cpu(struct sched_group *group)
- {
-       return cpumask_first(sched_group_cpus(group));
- }
- /**
-  * get_sd_load_idx - Obtain the load index for a given sched domain.
-  * @sd: The sched_domain whose load_idx is to be obtained.
-  * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
-  */
- static inline int get_sd_load_idx(struct sched_domain *sd,
-                                       enum cpu_idle_type idle)
- {
-       int load_idx;
-       switch (idle) {
-       case CPU_NOT_IDLE:
-               load_idx = sd->busy_idx;
-               break;
-       case CPU_NEWLY_IDLE:
-               load_idx = sd->newidle_idx;
-               break;
-       default:
-               load_idx = sd->idle_idx;
-               break;
-       }
-       return load_idx;
- }
- #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
- /**
-  * init_sd_power_savings_stats - Initialize power savings statistics for
-  * the given sched_domain, during load balancing.
-  *
-  * @sd: Sched domain whose power-savings statistics are to be initialized.
-  * @sds: Variable containing the statistics for sd.
-  * @idle: Idle status of the CPU at which we're performing load-balancing.
-  */
- static inline void init_sd_power_savings_stats(struct sched_domain *sd,
-       struct sd_lb_stats *sds, enum cpu_idle_type idle)
- {
-       /*
-        * Busy processors will not participate in power savings
-        * balance.
-        */
-       if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
-               sds->power_savings_balance = 0;
-       else {
-               sds->power_savings_balance = 1;
-               sds->min_nr_running = ULONG_MAX;
-               sds->leader_nr_running = 0;
-       }
- }
- /**
-  * update_sd_power_savings_stats - Update the power saving stats for a
-  * sched_domain while performing load balancing.
-  *
-  * @group: sched_group belonging to the sched_domain under consideration.
-  * @sds: Variable containing the statistics of the sched_domain
-  * @local_group: Does group contain the CPU for which we're performing
-  *            load balancing ?
-  * @sgs: Variable containing the statistics of the group.
-  */
- static inline void update_sd_power_savings_stats(struct sched_group *group,
-       struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
- {
-       if (!sds->power_savings_balance)
-               return;
-       /*
-        * If the local group is idle or completely loaded
-        * no need to do power savings balance at this domain
-        */
-       if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
-                               !sds->this_nr_running))
-               sds->power_savings_balance = 0;
-       /*
-        * If a group is already running at full capacity or idle,
-        * don't include that group in power savings calculations
-        */
-       if (!sds->power_savings_balance ||
-               sgs->sum_nr_running >= sgs->group_capacity ||
-               !sgs->sum_nr_running)
-               return;
-       /*
-        * Calculate the group which has the least non-idle load.
-        * This is the group from where we need to pick up the load
-        * for saving power
-        */
-       if ((sgs->sum_nr_running < sds->min_nr_running) ||
-           (sgs->sum_nr_running == sds->min_nr_running &&
-            group_first_cpu(group) > group_first_cpu(sds->group_min))) {
-               sds->group_min = group;
-               sds->min_nr_running = sgs->sum_nr_running;
-               sds->min_load_per_task = sgs->sum_weighted_load /
-                                               sgs->sum_nr_running;
-       }
-       /*
-        * Calculate the group which is almost near its
-        * capacity but still has some space to pick up some load
-        * from other group and save more power
-        */
-       if (sgs->sum_nr_running + 1 > sgs->group_capacity)
-               return;
-       if (sgs->sum_nr_running > sds->leader_nr_running ||
-           (sgs->sum_nr_running == sds->leader_nr_running &&
-            group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
-               sds->group_leader = group;
-               sds->leader_nr_running = sgs->sum_nr_running;
-       }
- }
- /**
-  * check_power_save_busiest_group - see if there is potential for some power-savings balance
-  * @sds: Variable containing the statistics of the sched_domain
-  *    under consideration.
-  * @this_cpu: Cpu at which we're currently performing load-balancing.
-  * @imbalance: Variable to store the imbalance.
-  *
-  * Description:
-  * Check if we have potential to perform some power-savings balance.
-  * If yes, set the busiest group to be the least loaded group in the
-  * sched_domain, so that it's CPUs can be put to idle.
-  *
-  * Returns 1 if there is potential to perform power-savings balance.
-  * Else returns 0.
-  */
- static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
-                                       int this_cpu, unsigned long *imbalance)
- {
-       if (!sds->power_savings_balance)
-               return 0;
-       if (sds->this != sds->group_leader ||
-                       sds->group_leader == sds->group_min)
-               return 0;
-       *imbalance = sds->min_load_per_task;
-       sds->busiest = sds->group_min;
-       return 1;
- }
- #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
- static inline void init_sd_power_savings_stats(struct sched_domain *sd,
-       struct sd_lb_stats *sds, enum cpu_idle_type idle)
- {
-       return;
- }
- static inline void update_sd_power_savings_stats(struct sched_group *group,
-       struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
- {
-       return;
- }
- static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
-                                       int this_cpu, unsigned long *imbalance)
- {
-       return 0;
- }
- #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
- unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
- {
-       return SCHED_LOAD_SCALE;
- }
- unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
- {
-       return default_scale_freq_power(sd, cpu);
- }
- unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
- {
-       unsigned long weight = cpumask_weight(sched_domain_span(sd));
-       unsigned long smt_gain = sd->smt_gain;
-       smt_gain /= weight;
-       return smt_gain;
- }
- unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
- {
-       return default_scale_smt_power(sd, cpu);
- }
- unsigned long scale_rt_power(int cpu)
- {
-       struct rq *rq = cpu_rq(cpu);
-       u64 total, available;
-       sched_avg_update(rq);
-       total = sched_avg_period() + (rq->clock - rq->age_stamp);
-       available = total - rq->rt_avg;
-       if (unlikely((s64)total < SCHED_LOAD_SCALE))
-               total = SCHED_LOAD_SCALE;
-       total >>= SCHED_LOAD_SHIFT;
-       return div_u64(available, total);
- }
- static void update_cpu_power(struct sched_domain *sd, int cpu)
- {
-       unsigned long weight = cpumask_weight(sched_domain_span(sd));
-       unsigned long power = SCHED_LOAD_SCALE;
-       struct sched_group *sdg = sd->groups;
-       if (sched_feat(ARCH_POWER))
-               power *= arch_scale_freq_power(sd, cpu);
-       else
-               power *= default_scale_freq_power(sd, cpu);
-       power >>= SCHED_LOAD_SHIFT;
-       if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
-               if (sched_feat(ARCH_POWER))
-                       power *= arch_scale_smt_power(sd, cpu);
-               else
-                       power *= default_scale_smt_power(sd, cpu);
-               power >>= SCHED_LOAD_SHIFT;
-       }
-       power *= scale_rt_power(cpu);
-       power >>= SCHED_LOAD_SHIFT;
-       if (!power)
-               power = 1;
-       sdg->cpu_power = power;
- }
- static void update_group_power(struct sched_domain *sd, int cpu)
- {
-       struct sched_domain *child = sd->child;
-       struct sched_group *group, *sdg = sd->groups;
-       unsigned long power;
-       if (!child) {
-               update_cpu_power(sd, cpu);
-               return;
-       }
-       power = 0;
-       group = child->groups;
-       do {
-               power += group->cpu_power;
-               group = group->next;
-       } while (group != child->groups);
-       sdg->cpu_power = power;
- }
- /**
-  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
-  * @sd: The sched_domain whose statistics are to be updated.
-  * @group: sched_group whose statistics are to be updated.
-  * @this_cpu: Cpu for which load balance is currently performed.
-  * @idle: Idle status of this_cpu
-  * @load_idx: Load index of sched_domain of this_cpu for load calc.
-  * @sd_idle: Idle status of the sched_domain containing group.
-  * @local_group: Does group contain this_cpu.
-  * @cpus: Set of cpus considered for load balancing.
-  * @balance: Should we balance.
-  * @sgs: variable to hold the statistics for this group.
-  */
- static inline void update_sg_lb_stats(struct sched_domain *sd,
-                       struct sched_group *group, int this_cpu,
-                       enum cpu_idle_type idle, int load_idx, int *sd_idle,
-                       int local_group, const struct cpumask *cpus,
-                       int *balance, struct sg_lb_stats *sgs)
- {
-       unsigned long load, max_cpu_load, min_cpu_load;
-       int i;
-       unsigned int balance_cpu = -1, first_idle_cpu = 0;
-       unsigned long sum_avg_load_per_task;
-       unsigned long avg_load_per_task;
-       if (local_group) {
-               balance_cpu = group_first_cpu(group);
-               if (balance_cpu == this_cpu)
-                       update_group_power(sd, this_cpu);
-       }
-       /* Tally up the load of all CPUs in the group */
-       sum_avg_load_per_task = avg_load_per_task = 0;
-       max_cpu_load = 0;
-       min_cpu_load = ~0UL;
-       for_each_cpu_and(i, sched_group_cpus(group), cpus) {
-               struct rq *rq = cpu_rq(i);
-               if (*sd_idle && rq->nr_running)
-                       *sd_idle = 0;
-               /* Bias balancing toward cpus of our domain */
-               if (local_group) {
-                       if (idle_cpu(i) && !first_idle_cpu) {
-                               first_idle_cpu = 1;
-                               balance_cpu = i;
-                       }
-                       load = target_load(i, load_idx);
-               } else {
-                       load = source_load(i, load_idx);
-                       if (load > max_cpu_load)
-                               max_cpu_load = load;
-                       if (min_cpu_load > load)
-                               min_cpu_load = load;
-               }
-               sgs->group_load += load;
-               sgs->sum_nr_running += rq->nr_running;
-               sgs->sum_weighted_load += weighted_cpuload(i);
-               sum_avg_load_per_task += cpu_avg_load_per_task(i);
-       }
-       /*
-        * First idle cpu or the first cpu(busiest) in this sched group
-        * is eligible for doing load balancing at this and above
-        * domains. In the newly idle case, we will allow all the cpu's
-        * to do the newly idle load balance.
-        */
-       if (idle != CPU_NEWLY_IDLE && local_group &&
-           balance_cpu != this_cpu && balance) {
-               *balance = 0;
-               return;
-       }
-       /* Adjust by relative CPU power of the group */
-       sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
-       /*
-        * Consider the group unbalanced when the imbalance is larger
-        * than the average weight of two tasks.
-        *
-        * APZ: with cgroup the avg task weight can vary wildly and
-        *      might not be a suitable number - should we keep a
-        *      normalized nr_running number somewhere that negates
-        *      the hierarchy?
-        */
-       avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
-               group->cpu_power;
-       if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
-               sgs->group_imb = 1;
-       sgs->group_capacity =
-               DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
- }
- /**
-  * update_sd_lb_stats - Update sched_group's statistics for load balancing.
-  * @sd: sched_domain whose statistics are to be updated.
-  * @this_cpu: Cpu for which load balance is currently performed.
-  * @idle: Idle status of this_cpu
-  * @sd_idle: Idle status of the sched_domain containing group.
-  * @cpus: Set of cpus considered for load balancing.
-  * @balance: Should we balance.
-  * @sds: variable to hold the statistics for this sched_domain.
-  */
- static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
-                       enum cpu_idle_type idle, int *sd_idle,
-                       const struct cpumask *cpus, int *balance,
-                       struct sd_lb_stats *sds)
- {
-       struct sched_domain *child = sd->child;
-       struct sched_group *group = sd->groups;
-       struct sg_lb_stats sgs;
-       int load_idx, prefer_sibling = 0;
-       if (child && child->flags & SD_PREFER_SIBLING)
-               prefer_sibling = 1;
-       init_sd_power_savings_stats(sd, sds, idle);
-       load_idx = get_sd_load_idx(sd, idle);
-       do {
-               int local_group;
-               local_group = cpumask_test_cpu(this_cpu,
-                                              sched_group_cpus(group));
-               memset(&sgs, 0, sizeof(sgs));
-               update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
-                               local_group, cpus, balance, &sgs);
-               if (local_group && balance && !(*balance))
-                       return;
-               sds->total_load += sgs.group_load;
-               sds->total_pwr += group->cpu_power;
-               /*
-                * In case the child domain prefers tasks go to siblings
-                * first, lower the group capacity to one so that we'll try
-                * and move all the excess tasks away.
-                */
-               if (prefer_sibling)
-                       sgs.group_capacity = min(sgs.group_capacity, 1UL);
-               if (local_group) {
-                       sds->this_load = sgs.avg_load;
-                       sds->this = group;
-                       sds->this_nr_running = sgs.sum_nr_running;
-                       sds->this_load_per_task = sgs.sum_weighted_load;
-               } else if (sgs.avg_load > sds->max_load &&
-                          (sgs.sum_nr_running > sgs.group_capacity ||
-                               sgs.group_imb)) {
-                       sds->max_load = sgs.avg_load;
-                       sds->busiest = group;
-                       sds->busiest_nr_running = sgs.sum_nr_running;
-                       sds->busiest_load_per_task = sgs.sum_weighted_load;
-                       sds->group_imb = sgs.group_imb;
-               }
-               update_sd_power_savings_stats(group, sds, local_group, &sgs);
-               group = group->next;
-       } while (group != sd->groups);
- }
- /**
-  * fix_small_imbalance - Calculate the minor imbalance that exists
-  *                    amongst the groups of a sched_domain, during
-  *                    load balancing.
-  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
-  * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
-  * @imbalance: Variable to store the imbalance.
-  */
- static inline void fix_small_imbalance(struct sd_lb_stats *sds,
-                               int this_cpu, unsigned long *imbalance)
- {
-       unsigned long tmp, pwr_now = 0, pwr_move = 0;
-       unsigned int imbn = 2;
-       if (sds->this_nr_running) {
-               sds->this_load_per_task /= sds->this_nr_running;
-               if (sds->busiest_load_per_task >
-                               sds->this_load_per_task)
-                       imbn = 1;
-       } else
-               sds->this_load_per_task =
-                       cpu_avg_load_per_task(this_cpu);
-       if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
-                       sds->busiest_load_per_task * imbn) {
-               *imbalance = sds->busiest_load_per_task;
-               return;
-       }
-       /*
-        * OK, we don't have enough imbalance to justify moving tasks,
-        * however we may be able to increase total CPU power used by
-        * moving them.
-        */
-       pwr_now += sds->busiest->cpu_power *
-                       min(sds->busiest_load_per_task, sds->max_load);
-       pwr_now += sds->this->cpu_power *
-                       min(sds->this_load_per_task, sds->this_load);
-       pwr_now /= SCHED_LOAD_SCALE;
-       /* Amount of load we'd subtract */
-       tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
-               sds->busiest->cpu_power;
-       if (sds->max_load > tmp)
-               pwr_move += sds->busiest->cpu_power *
-                       min(sds->busiest_load_per_task, sds->max_load - tmp);
-       /* Amount of load we'd add */
-       if (sds->max_load * sds->busiest->cpu_power <
-               sds->busiest_load_per_task * SCHED_LOAD_SCALE)
-               tmp = (sds->max_load * sds->busiest->cpu_power) /
-                       sds->this->cpu_power;
-       else
-               tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
-                       sds->this->cpu_power;
-       pwr_move += sds->this->cpu_power *
-                       min(sds->this_load_per_task, sds->this_load + tmp);
-       pwr_move /= SCHED_LOAD_SCALE;
-       /* Move if we gain throughput */
-       if (pwr_move > pwr_now)
-               *imbalance = sds->busiest_load_per_task;
- }
- /**
-  * calculate_imbalance - Calculate the amount of imbalance present within the
-  *                     groups of a given sched_domain during load balance.
-  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
-  * @this_cpu: Cpu for which currently load balance is being performed.
-  * @imbalance: The variable to store the imbalance.
-  */
- static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
-               unsigned long *imbalance)
- {
-       unsigned long max_pull;
-       /*
-        * In the presence of smp nice balancing, certain scenarios can have
-        * max load less than avg load(as we skip the groups at or below
-        * its cpu_power, while calculating max_load..)
-        */
-       if (sds->max_load < sds->avg_load) {
-               *imbalance = 0;
-               return fix_small_imbalance(sds, this_cpu, imbalance);
-       }
-       /* Don't want to pull so many tasks that a group would go idle */
-       max_pull = min(sds->max_load - sds->avg_load,
-                       sds->max_load - sds->busiest_load_per_task);
-       /* How much load to actually move to equalise the imbalance */
-       *imbalance = min(max_pull * sds->busiest->cpu_power,
-               (sds->avg_load - sds->this_load) * sds->this->cpu_power)
-                       / SCHED_LOAD_SCALE;
-       /*
-        * if *imbalance is less than the average load per runnable task
-        * there is no gaurantee that any tasks will be moved so we'll have
-        * a think about bumping its value to force at least one task to be
-        * moved
-        */
-       if (*imbalance < sds->busiest_load_per_task)
-               return fix_small_imbalance(sds, this_cpu, imbalance);
- }
- /******* find_busiest_group() helpers end here *********************/
- /**
-  * find_busiest_group - Returns the busiest group within the sched_domain
-  * if there is an imbalance. If there isn't an imbalance, and
-  * the user has opted for power-savings, it returns a group whose
-  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
-  * such a group exists.
-  *
-  * Also calculates the amount of weighted load which should be moved
-  * to restore balance.
-  *
-  * @sd: The sched_domain whose busiest group is to be returned.
-  * @this_cpu: The cpu for which load balancing is currently being performed.
-  * @imbalance: Variable which stores amount of weighted load which should
-  *            be moved to restore balance/put a group to idle.
-  * @idle: The idle status of this_cpu.
-  * @sd_idle: The idleness of sd
-  * @cpus: The set of CPUs under consideration for load-balancing.
-  * @balance: Pointer to a variable indicating if this_cpu
-  *    is the appropriate cpu to perform load balancing at this_level.
-  *
-  * Returns:   - the busiest group if imbalance exists.
-  *            - If no imbalance and user has opted for power-savings balance,
-  *               return the least loaded group whose CPUs can be
-  *               put to idle by rebalancing its tasks onto our group.
-  */
- static struct sched_group *
- find_busiest_group(struct sched_domain *sd, int this_cpu,
-                  unsigned long *imbalance, enum cpu_idle_type idle,
-                  int *sd_idle, const struct cpumask *cpus, int *balance)
- {
-       struct sd_lb_stats sds;
-       memset(&sds, 0, sizeof(sds));
-       /*
-        * Compute the various statistics relavent for load balancing at
-        * this level.
-        */
-       update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
-                                       balance, &sds);
-       /* Cases where imbalance does not exist from POV of this_cpu */
-       /* 1) this_cpu is not the appropriate cpu to perform load balancing
-        *    at this level.
-        * 2) There is no busy sibling group to pull from.
-        * 3) This group is the busiest group.
-        * 4) This group is more busy than the avg busieness at this
-        *    sched_domain.
-        * 5) The imbalance is within the specified limit.
-        * 6) Any rebalance would lead to ping-pong
-        */
-       if (balance && !(*balance))
-               goto ret;
-       if (!sds.busiest || sds.busiest_nr_running == 0)
-               goto out_balanced;
-       if (sds.this_load >= sds.max_load)
-               goto out_balanced;
-       sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
-       if (sds.this_load >= sds.avg_load)
-               goto out_balanced;
-       if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
-               goto out_balanced;
-       sds.busiest_load_per_task /= sds.busiest_nr_running;
-       if (sds.group_imb)
-               sds.busiest_load_per_task =
-                       min(sds.busiest_load_per_task, sds.avg_load);
-       /*
-        * We're trying to get all the cpus to the average_load, so we don't
-        * want to push ourselves above the average load, nor do we wish to
-        * reduce the max loaded cpu below the average load, as either of these
-        * actions would just result in more rebalancing later, and ping-pong
-        * tasks around. Thus we look for the minimum possible imbalance.
-        * Negative imbalances (*we* are more loaded than anyone else) will
-        * be counted as no imbalance for these purposes -- we can't fix that
-        * by pulling tasks to us. Be careful of negative numbers as they'll
-        * appear as very large values with unsigned longs.
-        */
-       if (sds.max_load <= sds.busiest_load_per_task)
-               goto out_balanced;
-       /* Looks like there is an imbalance. Compute it */
-       calculate_imbalance(&sds, this_cpu, imbalance);
-       return sds.busiest;
- out_balanced:
-       /*
-        * There is no obvious imbalance. But check if we can do some balancing
-        * to save power.
-        */
-       if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
-               return sds.busiest;
- ret:
-       *imbalance = 0;
-       return NULL;
- }
- /*
-  * find_busiest_queue - find the busiest runqueue among the cpus in group.
-  */
- static struct rq *
- find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
-                  unsigned long imbalance, const struct cpumask *cpus)
- {
-       struct rq *busiest = NULL, *rq;
-       unsigned long max_load = 0;
-       int i;
-       for_each_cpu(i, sched_group_cpus(group)) {
-               unsigned long power = power_of(i);
-               unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
-               unsigned long wl;
-               if (!cpumask_test_cpu(i, cpus))
-                       continue;
-               rq = cpu_rq(i);
-               wl = weighted_cpuload(i);
-               /*
-                * When comparing with imbalance, use weighted_cpuload()
-                * which is not scaled with the cpu power.
-                */
-               if (capacity && rq->nr_running == 1 && wl > imbalance)
-                       continue;
-               /*
-                * For the load comparisons with the other cpu's, consider
-                * the weighted_cpuload() scaled with the cpu power, so that
-                * the load can be moved away from the cpu that is potentially
-                * running at a lower capacity.
-                */
-               wl = (wl * SCHED_LOAD_SCALE) / power;
-               if (wl > max_load) {
-                       max_load = wl;
-                       busiest = rq;
-               }
-       }
-       return busiest;
- }
- /*
-  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
-  * so long as it is large enough.
-  */
- #define MAX_PINNED_INTERVAL   512
- /* Working cpumask for load_balance and load_balance_newidle. */
- static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
- /*
-  * Check this_cpu to ensure it is balanced within domain. Attempt to move
-  * tasks if there is an imbalance.
-  */
- static int load_balance(int this_cpu, struct rq *this_rq,
-                       struct sched_domain *sd, enum cpu_idle_type idle,
-                       int *balance)
- {
-       int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
-       struct sched_group *group;
-       unsigned long imbalance;
-       struct rq *busiest;
-       unsigned long flags;
-       struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
-       cpumask_copy(cpus, cpu_active_mask);
-       /*
-        * When power savings policy is enabled for the parent domain, idle
-        * sibling can pick up load irrespective of busy siblings. In this case,
-        * let the state of idle sibling percolate up as CPU_IDLE, instead of
-        * portraying it as CPU_NOT_IDLE.
-        */
-       if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
-           !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
-               sd_idle = 1;
-       schedstat_inc(sd, lb_count[idle]);
- redo:
-       update_shares(sd);
-       group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
-                                  cpus, balance);
-       if (*balance == 0)
-               goto out_balanced;
-       if (!group) {
-               schedstat_inc(sd, lb_nobusyg[idle]);
-               goto out_balanced;
-       }
-       busiest = find_busiest_queue(group, idle, imbalance, cpus);
-       if (!busiest) {
-               schedstat_inc(sd, lb_nobusyq[idle]);
-               goto out_balanced;
-       }
-       BUG_ON(busiest == this_rq);
-       schedstat_add(sd, lb_imbalance[idle], imbalance);
-       ld_moved = 0;
-       if (busiest->nr_running > 1) {
-               /*
-                * Attempt to move tasks. If find_busiest_group has found
-                * an imbalance but busiest->nr_running <= 1, the group is
-                * still unbalanced. ld_moved simply stays zero, so it is
-                * correctly treated as an imbalance.
-                */
-               local_irq_save(flags);
-               double_rq_lock(this_rq, busiest);
-               ld_moved = move_tasks(this_rq, this_cpu, busiest,
-                                     imbalance, sd, idle, &all_pinned);
-               double_rq_unlock(this_rq, busiest);
-               local_irq_restore(flags);
-               /*
-                * some other cpu did the load balance for us.
-                */
-               if (ld_moved && this_cpu != smp_processor_id())
-                       resched_cpu(this_cpu);
-               /* All tasks on this runqueue were pinned by CPU affinity */
-               if (unlikely(all_pinned)) {
-                       cpumask_clear_cpu(cpu_of(busiest), cpus);
-                       if (!cpumask_empty(cpus))
-                               goto redo;
-                       goto out_balanced;
-               }
-       }
-       if (!ld_moved) {
-               schedstat_inc(sd, lb_failed[idle]);
-               sd->nr_balance_failed++;
-               if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
-                       raw_spin_lock_irqsave(&busiest->lock, flags);
-                       /* don't kick the migration_thread, if the curr
-                        * task on busiest cpu can't be moved to this_cpu
-                        */
-                       if (!cpumask_test_cpu(this_cpu,
-                                             &busiest->curr->cpus_allowed)) {
-                               raw_spin_unlock_irqrestore(&busiest->lock,
-                                                           flags);
-                               all_pinned = 1;
-                               goto out_one_pinned;
-                       }
-                       if (!busiest->active_balance) {
-                               busiest->active_balance = 1;
-                               busiest->push_cpu = this_cpu;
-                               active_balance = 1;
-                       }
-                       raw_spin_unlock_irqrestore(&busiest->lock, flags);
-                       if (active_balance)
-                               wake_up_process(busiest->migration_thread);
-                       /*
-                        * We've kicked active balancing, reset the failure
-                        * counter.
-                        */
-                       sd->nr_balance_failed = sd->cache_nice_tries+1;
-               }
-       } else
-               sd->nr_balance_failed = 0;
-       if (likely(!active_balance)) {
-               /* We were unbalanced, so reset the balancing interval */
-               sd->balance_interval = sd->min_interval;
-       } else {
-               /*
-                * If we've begun active balancing, start to back off. This
-                * case may not be covered by the all_pinned logic if there
-                * is only 1 task on the busy runqueue (because we don't call
-                * move_tasks).
-                */
-               if (sd->balance_interval < sd->max_interval)
-                       sd->balance_interval *= 2;
-       }
-       if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
-           !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
-               ld_moved = -1;
-       goto out;
- out_balanced:
-       schedstat_inc(sd, lb_balanced[idle]);
-       sd->nr_balance_failed = 0;
- out_one_pinned:
-       /* tune up the balancing interval */
-       if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
-                       (sd->balance_interval < sd->max_interval))
-               sd->balance_interval *= 2;
-       if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
-           !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
-               ld_moved = -1;
-       else
-               ld_moved = 0;
- out:
-       if (ld_moved)
-               update_shares(sd);
-       return ld_moved;
- }
- /*
-  * Check this_cpu to ensure it is balanced within domain. Attempt to move
-  * tasks if there is an imbalance.
-  *
-  * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
-  * this_rq is locked.
-  */
- static int
- load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
- {
-       struct sched_group *group;
-       struct rq *busiest = NULL;
-       unsigned long imbalance;
-       int ld_moved = 0;
-       int sd_idle = 0;
-       int all_pinned = 0;
-       struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
-       cpumask_copy(cpus, cpu_active_mask);
-       /*
-        * When power savings policy is enabled for the parent domain, idle
-        * sibling can pick up load irrespective of busy siblings. In this case,
-        * let the state of idle sibling percolate up as IDLE, instead of
-        * portraying it as CPU_NOT_IDLE.
-        */
-       if (sd->flags & SD_SHARE_CPUPOWER &&
-           !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
-               sd_idle = 1;
-       schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
- redo:
-       update_shares_locked(this_rq, sd);
-       group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
-                                  &sd_idle, cpus, NULL);
-       if (!group) {
-               schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
-               goto out_balanced;
-       }
-       busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
-       if (!busiest) {
-               schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
-               goto out_balanced;
-       }
-       BUG_ON(busiest == this_rq);
-       schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
-       ld_moved = 0;
-       if (busiest->nr_running > 1) {
-               /* Attempt to move tasks */
-               double_lock_balance(this_rq, busiest);
-               /* this_rq->clock is already updated */
-               update_rq_clock(busiest);
-               ld_moved = move_tasks(this_rq, this_cpu, busiest,
-                                       imbalance, sd, CPU_NEWLY_IDLE,
-                                       &all_pinned);
-               double_unlock_balance(this_rq, busiest);
-               if (unlikely(all_pinned)) {
-                       cpumask_clear_cpu(cpu_of(busiest), cpus);
-                       if (!cpumask_empty(cpus))
-                               goto redo;
-               }
-       }
-       if (!ld_moved) {
-               int active_balance = 0;
-               schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
-               if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
-                   !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
-                       return -1;
-               if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
-                       return -1;
-               if (sd->nr_balance_failed++ < 2)
-                       return -1;
-               /*
-                * The only task running in a non-idle cpu can be moved to this
-                * cpu in an attempt to completely freeup the other CPU
-                * package. The same method used to move task in load_balance()
-                * have been extended for load_balance_newidle() to speedup
-                * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
-                *
-                * The package power saving logic comes from
-                * find_busiest_group().  If there are no imbalance, then
-                * f_b_g() will return NULL.  However when sched_mc={1,2} then
-                * f_b_g() will select a group from which a running task may be
-                * pulled to this cpu in order to make the other package idle.
-                * If there is no opportunity to make a package idle and if
-                * there are no imbalance, then f_b_g() will return NULL and no
-                * action will be taken in load_balance_newidle().
-                *
-                * Under normal task pull operation due to imbalance, there
-                * will be more than one task in the source run queue and
-                * move_tasks() will succeed.  ld_moved will be true and this
-                * active balance code will not be triggered.
-                */
-               /* Lock busiest in correct order while this_rq is held */
-               double_lock_balance(this_rq, busiest);
-               /*
-                * don't kick the migration_thread, if the curr
-                * task on busiest cpu can't be moved to this_cpu
-                */
-               if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
-                       double_unlock_balance(this_rq, busiest);
-                       all_pinned = 1;
-                       return ld_moved;
-               }
-               if (!busiest->active_balance) {
-                       busiest->active_balance = 1;
-                       busiest->push_cpu = this_cpu;
-                       active_balance = 1;
-               }
-               double_unlock_balance(this_rq, busiest);
-               /*
-                * Should not call ttwu while holding a rq->lock
-                */
-               raw_spin_unlock(&this_rq->lock);
-               if (active_balance)
-                       wake_up_process(busiest->migration_thread);
-               raw_spin_lock(&this_rq->lock);
-       } else
-               sd->nr_balance_failed = 0;
-       update_shares_locked(this_rq, sd);
-       return ld_moved;
- out_balanced:
-       schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
-       if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
-           !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
-               return -1;
-       sd->nr_balance_failed = 0;
-       return 0;
- }
- /*
-  * idle_balance is called by schedule() if this_cpu is about to become
-  * idle. Attempts to pull tasks from other CPUs.
-  */
- static void idle_balance(int this_cpu, struct rq *this_rq)
- {
-       struct sched_domain *sd;
-       int pulled_task = 0;
-       unsigned long next_balance = jiffies + HZ;
-       this_rq->idle_stamp = this_rq->clock;
-       if (this_rq->avg_idle < sysctl_sched_migration_cost)
-               return;
-       for_each_domain(this_cpu, sd) {
-               unsigned long interval;
-               if (!(sd->flags & SD_LOAD_BALANCE))
-                       continue;
-               if (sd->flags & SD_BALANCE_NEWIDLE)
-                       /* If we've pulled tasks over stop searching: */
-                       pulled_task = load_balance_newidle(this_cpu, this_rq,
-                                                          sd);
-               interval = msecs_to_jiffies(sd->balance_interval);
-               if (time_after(next_balance, sd->last_balance + interval))
-                       next_balance = sd->last_balance + interval;
-               if (pulled_task) {
-                       this_rq->idle_stamp = 0;
-                       break;
-               }
-       }
-       if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
-               /*
-                * We are going idle. next_balance may be set based on
-                * a busy processor. So reset next_balance.
-                */
-               this_rq->next_balance = next_balance;
-       }
- }
- /*
-  * active_load_balance is run by migration threads. It pushes running tasks
-  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
-  * running on each physical CPU where possible, and avoids physical /
-  * logical imbalances.
-  *
-  * Called with busiest_rq locked.
-  */
- static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
- {
-       int target_cpu = busiest_rq->push_cpu;
-       struct sched_domain *sd;
-       struct rq *target_rq;
-       /* Is there any task to move? */
-       if (busiest_rq->nr_running <= 1)
-               return;
-       target_rq = cpu_rq(target_cpu);
-       /*
-        * This condition is "impossible", if it occurs
-        * we need to fix it. Originally reported by
-        * Bjorn Helgaas on a 128-cpu setup.
-        */
-       BUG_ON(busiest_rq == target_rq);
-       /* move a task from busiest_rq to target_rq */
-       double_lock_balance(busiest_rq, target_rq);
-       update_rq_clock(busiest_rq);
-       update_rq_clock(target_rq);
-       /* Search for an sd spanning us and the target CPU. */
-       for_each_domain(target_cpu, sd) {
-               if ((sd->flags & SD_LOAD_BALANCE) &&
-                   cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
-                               break;
-       }
-       if (likely(sd)) {
-               schedstat_inc(sd, alb_count);
-               if (move_one_task(target_rq, target_cpu, busiest_rq,
-                                 sd, CPU_IDLE))
-                       schedstat_inc(sd, alb_pushed);
-               else
-                       schedstat_inc(sd, alb_failed);
-       }
-       double_unlock_balance(busiest_rq, target_rq);
- }
- #ifdef CONFIG_NO_HZ
- static struct {
-       atomic_t load_balancer;
-       cpumask_var_t cpu_mask;
-       cpumask_var_t ilb_grp_nohz_mask;
- } nohz ____cacheline_aligned = {
-       .load_balancer = ATOMIC_INIT(-1),
- };
- int get_nohz_load_balancer(void)
- {
-       return atomic_read(&nohz.load_balancer);
- }
- #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
- /**
-  * lowest_flag_domain - Return lowest sched_domain containing flag.
-  * @cpu:      The cpu whose lowest level of sched domain is to
-  *            be returned.
-  * @flag:     The flag to check for the lowest sched_domain
-  *            for the given cpu.
-  *
-  * Returns the lowest sched_domain of a cpu which contains the given flag.
-  */
- static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
- {
-       struct sched_domain *sd;
-       for_each_domain(cpu, sd)
-               if (sd && (sd->flags & flag))
-                       break;
-       return sd;
- }
- /**
-  * for_each_flag_domain - Iterates over sched_domains containing the flag.
-  * @cpu:      The cpu whose domains we're iterating over.
-  * @sd:               variable holding the value of the power_savings_sd
-  *            for cpu.
-  * @flag:     The flag to filter the sched_domains to be iterated.
-  *
-  * Iterates over all the scheduler domains for a given cpu that has the 'flag'
-  * set, starting from the lowest sched_domain to the highest.
-  */
- #define for_each_flag_domain(cpu, sd, flag) \
-       for (sd = lowest_flag_domain(cpu, flag); \
-               (sd && (sd->flags & flag)); sd = sd->parent)
- /**
-  * is_semi_idle_group - Checks if the given sched_group is semi-idle.
-  * @ilb_group:        group to be checked for semi-idleness
-  *
-  * Returns:   1 if the group is semi-idle. 0 otherwise.
-  *
-  * We define a sched_group to be semi idle if it has atleast one idle-CPU
-  * and atleast one non-idle CPU. This helper function checks if the given
-  * sched_group is semi-idle or not.
-  */
- static inline int is_semi_idle_group(struct sched_group *ilb_group)
- {
-       cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
-                                       sched_group_cpus(ilb_group));
-       /*
-        * A sched_group is semi-idle when it has atleast one busy cpu
-        * and atleast one idle cpu.
-        */
-       if (cpumask_empty(nohz.ilb_grp_nohz_mask))
-               return 0;
-       if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
-               return 0;
-       return 1;
+       return sum;
  }
- /**
-  * find_new_ilb - Finds the optimum idle load balancer for nomination.
-  * @cpu:      The cpu which is nominating a new idle_load_balancer.
-  *
-  * Returns:   Returns the id of the idle load balancer if it exists,
-  *            Else, returns >= nr_cpu_ids.
-  *
-  * This algorithm picks the idle load balancer such that it belongs to a
-  * semi-idle powersavings sched_domain. The idea is to try and avoid
-  * completely idle packages/cores just for the purpose of idle load balancing
-  * when there are other idle cpu's which are better suited for that job.
-  */
- static int find_new_ilb(int cpu)
+ unsigned long nr_uninterruptible(void)
  {
-       struct sched_domain *sd;
-       struct sched_group *ilb_group;
+       unsigned long i, sum = 0;
  
-       /*
-        * Have idle load balancer selection from semi-idle packages only
-        * when power-aware load balancing is enabled
-        */
-       if (!(sched_smt_power_savings || sched_mc_power_savings))
-               goto out_done;
+       for_each_possible_cpu(i)
+               sum += cpu_rq(i)->nr_uninterruptible;
  
        /*
-        * Optimize for the case when we have no idle CPUs or only one
-        * idle CPU. Don't walk the sched_domain hierarchy in such cases
+        * Since we read the counters lockless, it might be slightly
+        * inaccurate. Do not allow it to go below zero though:
         */
-       if (cpumask_weight(nohz.cpu_mask) < 2)
-               goto out_done;
-       for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
-               ilb_group = sd->groups;
-               do {
-                       if (is_semi_idle_group(ilb_group))
-                               return cpumask_first(nohz.ilb_grp_nohz_mask);
-                       ilb_group = ilb_group->next;
-               } while (ilb_group != sd->groups);
-       }
+       if (unlikely((long)sum < 0))
+               sum = 0;
  
- out_done:
-       return cpumask_first(nohz.cpu_mask);
- }
- #else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
- static inline int find_new_ilb(int call_cpu)
- {
-       return cpumask_first(nohz.cpu_mask);
+       return sum;
  }
- #endif
  
- /*
-  * This routine will try to nominate the ilb (idle load balancing)
-  * owner among the cpus whose ticks are stopped. ilb owner will do the idle
-  * load balancing on behalf of all those cpus. If all the cpus in the system
-  * go into this tickless mode, then there will be no ilb owner (as there is
-  * no need for one) and all the cpus will sleep till the next wakeup event
-  * arrives...
-  *
-  * For the ilb owner, tick is not stopped. And this tick will be used
-  * for idle load balancing. ilb owner will still be part of
-  * nohz.cpu_mask..
-  *
-  * While stopping the tick, this cpu will become the ilb owner if there
-  * is no other owner. And will be the owner till that cpu becomes busy
-  * or if all cpus in the system stop their ticks at which point
-  * there is no need for ilb owner.
-  *
-  * When the ilb owner becomes busy, it nominates another owner, during the
-  * next busy scheduler_tick()
-  */
- int select_nohz_load_balancer(int stop_tick)
+ unsigned long long nr_context_switches(void)
  {
-       int cpu = smp_processor_id();
+       int i;
+       unsigned long long sum = 0;
  
-       if (stop_tick) {
-               cpu_rq(cpu)->in_nohz_recently = 1;
+       for_each_possible_cpu(i)
+               sum += cpu_rq(i)->nr_switches;
  
-               if (!cpu_active(cpu)) {
-                       if (atomic_read(&nohz.load_balancer) != cpu)
-                               return 0;
+       return sum;
+ }
  
-                       /*
-                        * If we are going offline and still the leader,
-                        * give up!
-                        */
-                       if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
-                               BUG();
+ unsigned long nr_iowait(void)
+ {
+       unsigned long i, sum = 0;
  
-                       return 0;
-               }
+       for_each_possible_cpu(i)
+               sum += atomic_read(&cpu_rq(i)->nr_iowait);
  
-               cpumask_set_cpu(cpu, nohz.cpu_mask);
+       return sum;
+ }
  
-               /* time for ilb owner also to sleep */
-               if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
-                       if (atomic_read(&nohz.load_balancer) == cpu)
-                               atomic_set(&nohz.load_balancer, -1);
-                       return 0;
-               }
+ unsigned long nr_iowait_cpu(void)
+ {
+       struct rq *this = this_rq();
+       return atomic_read(&this->nr_iowait);
+ }
  
-               if (atomic_read(&nohz.load_balancer) == -1) {
-                       /* make me the ilb owner */
-                       if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
-                               return 1;
-               } else if (atomic_read(&nohz.load_balancer) == cpu) {
-                       int new_ilb;
+ unsigned long this_cpu_load(void)
+ {
+       struct rq *this = this_rq();
+       return this->cpu_load[0];
+ }
  
-                       if (!(sched_smt_power_savings ||
-                                               sched_mc_power_savings))
-                               return 1;
-                       /*
-                        * Check to see if there is a more power-efficient
-                        * ilb.
-                        */
-                       new_ilb = find_new_ilb(cpu);
-                       if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
-                               atomic_set(&nohz.load_balancer, -1);
-                               resched_cpu(new_ilb);
-                               return 0;
-                       }
-                       return 1;
-               }
-       } else {
-               if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
-                       return 0;
  
-               cpumask_clear_cpu(cpu, nohz.cpu_mask);
+ /* Variables and functions for calc_load */
+ static atomic_long_t calc_load_tasks;
+ static unsigned long calc_load_update;
+ unsigned long avenrun[3];
+ EXPORT_SYMBOL(avenrun);
  
-               if (atomic_read(&nohz.load_balancer) == cpu)
-                       if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
-                               BUG();
-       }
-       return 0;
+ /**
+  * get_avenrun - get the load average array
+  * @loads:    pointer to dest load array
+  * @offset:   offset to add
+  * @shift:    shift count to shift the result left
+  *
+  * These values are estimates at best, so no need for locking.
+  */
+ void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
+ {
+       loads[0] = (avenrun[0] + offset) << shift;
+       loads[1] = (avenrun[1] + offset) << shift;
+       loads[2] = (avenrun[2] + offset) << shift;
  }
- #endif
  
- static DEFINE_SPINLOCK(balancing);
+ static unsigned long
+ calc_load(unsigned long load, unsigned long exp, unsigned long active)
+ {
+       load *= exp;
+       load += active * (FIXED_1 - exp);
+       return load >> FSHIFT;
+ }
  
  /*
-  * It checks each scheduling domain to see if it is due to be balanced,
-  * and initiates a balancing operation if so.
-  *
-  * Balancing parameters are set up in arch_init_sched_domains.
+  * calc_load - update the avenrun load estimates 10 ticks after the
+  * CPUs have updated calc_load_tasks.
   */
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
void calc_global_load(void)
  {
-       int balance = 1;
-       struct rq *rq = cpu_rq(cpu);
-       unsigned long interval;
-       struct sched_domain *sd;
-       /* Earliest time when we have to do rebalance again */
-       unsigned long next_balance = jiffies + 60*HZ;
-       int update_next_balance = 0;
-       int need_serialize;
+       unsigned long upd = calc_load_update + 10;
+       long active;
  
-       for_each_domain(cpu, sd) {
-               if (!(sd->flags & SD_LOAD_BALANCE))
-                       continue;
+       if (time_before(jiffies, upd))
+               return;
  
-               interval = sd->balance_interval;
-               if (idle != CPU_IDLE)
-                       interval *= sd->busy_factor;
+       active = atomic_long_read(&calc_load_tasks);
+       active = active > 0 ? active * FIXED_1 : 0;
  
-               /* scale ms to jiffies */
-               interval = msecs_to_jiffies(interval);
-               if (unlikely(!interval))
-                       interval = 1;
-               if (interval > HZ*NR_CPUS/10)
-                       interval = HZ*NR_CPUS/10;
+       avenrun[0] = calc_load(avenrun[0], EXP_1, active);
+       avenrun[1] = calc_load(avenrun[1], EXP_5, active);
+       avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  
-               need_serialize = sd->flags & SD_SERIALIZE;
+       calc_load_update += LOAD_FREQ;
+ }
  
-               if (need_serialize) {
-                       if (!spin_trylock(&balancing))
-                               goto out;
-               }
+ /*
+  * Either called from update_cpu_load() or from a cpu going idle
+  */
+ static void calc_load_account_active(struct rq *this_rq)
+ {
+       long nr_active, delta;
  
-               if (time_after_eq(jiffies, sd->last_balance + interval)) {
-                       if (load_balance(cpu, rq, sd, idle, &balance)) {
-                               /*
-                                * We've pulled tasks over so either we're no
-                                * longer idle, or one of our SMT siblings is
-                                * not idle.
-                                */
-                               idle = CPU_NOT_IDLE;
-                       }
-                       sd->last_balance = jiffies;
-               }
-               if (need_serialize)
-                       spin_unlock(&balancing);
- out:
-               if (time_after(next_balance, sd->last_balance + interval)) {
-                       next_balance = sd->last_balance + interval;
-                       update_next_balance = 1;
-               }
+       nr_active = this_rq->nr_running;
+       nr_active += (long) this_rq->nr_uninterruptible;
  
-               /*
-                * Stop the load balance at this level. There is another
-                * CPU in our sched group which is doing load balancing more
-                * actively.
-                */
-               if (!balance)
-                       break;
+       if (nr_active != this_rq->calc_load_active) {
+               delta = nr_active - this_rq->calc_load_active;
+               this_rq->calc_load_active = nr_active;
+               atomic_long_add(delta, &calc_load_tasks);
        }
-       /*
-        * next_balance will be updated only when there is a need.
-        * When the cpu is attached to null domain for ex, it will not be
-        * updated.
-        */
-       if (likely(update_next_balance))
-               rq->next_balance = next_balance;
  }
  
  /*
-  * run_rebalance_domains is triggered when needed from the scheduler tick.
-  * In CONFIG_NO_HZ case, the idle load balance owner will do the
-  * rebalancing for all the cpus for whom scheduler ticks are stopped.
+  * Update rq->cpu_load[] statistics. This function is usually called every
+  * scheduler tick (TICK_NSEC).
   */
- static void run_rebalance_domains(struct softirq_action *h)
+ static void update_cpu_load(struct rq *this_rq)
  {
-       int this_cpu = smp_processor_id();
-       struct rq *this_rq = cpu_rq(this_cpu);
-       enum cpu_idle_type idle = this_rq->idle_at_tick ?
-                                               CPU_IDLE : CPU_NOT_IDLE;
-       rebalance_domains(this_cpu, idle);
+       unsigned long this_load = this_rq->load.weight;
+       int i, scale;
  
- #ifdef CONFIG_NO_HZ
-       /*
-        * If this cpu is the owner for idle load balancing, then do the
-        * balancing on behalf of the other idle cpus whose ticks are
-        * stopped.
-        */
-       if (this_rq->idle_at_tick &&
-           atomic_read(&nohz.load_balancer) == this_cpu) {
-               struct rq *rq;
-               int balance_cpu;
+       this_rq->nr_load_updates++;
  
-               for_each_cpu(balance_cpu, nohz.cpu_mask) {
-                       if (balance_cpu == this_cpu)
-                               continue;
+       /* Update our load: */
+       for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
+               unsigned long old_load, new_load;
  
-                       /*
-                        * If this cpu gets work to do, stop the load balancing
-                        * work being done for other cpus. Next load
-                        * balancing owner will pick it up.
-                        */
-                       if (need_resched())
-                               break;
+               /* scale is effectively 1 << i now, and >> i divides by scale */
  
-                       rebalance_domains(balance_cpu, CPU_IDLE);
+               old_load = this_rq->cpu_load[i];
+               new_load = this_load;
+               /*
+                * Round up the averaging division if load is increasing. This
+                * prevents us from getting stuck on 9 if the load is 10, for
+                * example.
+                */
+               if (new_load > old_load)
+                       new_load += scale-1;
+               this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
+       }
  
-                       rq = cpu_rq(balance_cpu);
-                       if (time_after(this_rq->next_balance, rq->next_balance))
-                               this_rq->next_balance = rq->next_balance;
-               }
+       if (time_after_eq(jiffies, this_rq->calc_load_update)) {
+               this_rq->calc_load_update += LOAD_FREQ;
+               calc_load_account_active(this_rq);
        }
- #endif
  }
  
- static inline int on_null_domain(int cpu)
- {
-       return !rcu_dereference_sched(cpu_rq(cpu)->sd);
- }
+ #ifdef CONFIG_SMP
  
  /*
-  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
-  *
-  * In case of CONFIG_NO_HZ, this is the place where we nominate a new
-  * idle load balancing owner or decide to stop the periodic load balancing,
-  * if the whole system is idle.
+  * sched_exec - execve() is a valuable balancing opportunity, because at
+  * this point the task has the smallest effective memory and cache footprint.
   */
static inline void trigger_load_balance(struct rq *rq, int cpu)
void sched_exec(void)
  {
- #ifdef CONFIG_NO_HZ
-       /*
-        * If we were in the nohz mode recently and busy at the current
-        * scheduler tick, then check if we need to nominate new idle
-        * load balancer.
-        */
-       if (rq->in_nohz_recently && !rq->idle_at_tick) {
-               rq->in_nohz_recently = 0;
-               if (atomic_read(&nohz.load_balancer) == cpu) {
-                       cpumask_clear_cpu(cpu, nohz.cpu_mask);
-                       atomic_set(&nohz.load_balancer, -1);
-               }
-               if (atomic_read(&nohz.load_balancer) == -1) {
-                       int ilb = find_new_ilb(cpu);
+       struct task_struct *p = current;
+       struct migration_req req;
+       int dest_cpu, this_cpu;
+       unsigned long flags;
+       struct rq *rq;
  
-                       if (ilb < nr_cpu_ids)
-                               resched_cpu(ilb);
-               }
+ again:
+       this_cpu = get_cpu();
+       dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
+       if (dest_cpu == this_cpu) {
+               put_cpu();
+               return;
        }
  
+       rq = task_rq_lock(p, &flags);
+       put_cpu();
        /*
-        * If this cpu is idle and doing idle load balancing for all the
-        * cpus with ticks stopped, is it time for that to stop?
+        * select_task_rq() can race against ->cpus_allowed
         */
-       if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
-           cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
-               resched_cpu(cpu);
-               return;
+       if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
+           || unlikely(!cpu_active(dest_cpu))) {
+               task_rq_unlock(rq, &flags);
+               goto again;
        }
  
-       /*
-        * If this cpu is idle and the idle load balancing is done by
-        * someone else, then no need raise the SCHED_SOFTIRQ
-        */
-       if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
-           cpumask_test_cpu(cpu, nohz.cpu_mask))
-               return;
- #endif
-       /* Don't need to rebalance while attached to NULL domain */
-       if (time_after_eq(jiffies, rq->next_balance) &&
-           likely(!on_null_domain(cpu)))
-               raise_softirq(SCHED_SOFTIRQ);
- }
+       /* force the process onto the specified CPU */
+       if (migrate_task(p, dest_cpu, &req)) {
+               /* Need to wait for migration thread (might exit: take ref). */
+               struct task_struct *mt = rq->migration_thread;
  
- #else /* CONFIG_SMP */
+               get_task_struct(mt);
+               task_rq_unlock(rq, &flags);
+               wake_up_process(mt);
+               put_task_struct(mt);
+               wait_for_completion(&req.done);
  
- /*
-  * on UP we do not need to balance between CPUs:
-  */
- static inline void idle_balance(int cpu, struct rq *rq)
- {
+               return;
+       }
+       task_rq_unlock(rq, &flags);
  }
  
  #endif
@@@ -5369,7 -3504,7 +3515,7 @@@ void scheduler_tick(void
        curr->sched_class->task_tick(rq, curr, 0);
        raw_spin_unlock(&rq->lock);
  
 -      perf_event_task_tick(curr, cpu);
 +      perf_event_task_tick(curr);
  
  #ifdef CONFIG_SMP
        rq->idle_at_tick = idle_cpu(cpu);
@@@ -5583,7 -3718,7 +3729,7 @@@ need_resched_nonpreemptible
  
        if (likely(prev != next)) {
                sched_info_switch(prev, next);
 -              perf_event_task_sched_out(prev, next, cpu);
 +              perf_event_task_sched_out(prev, next);
  
                rq->nr_switches++;
                rq->curr = next;
@@@ -6114,7 -4249,7 +4260,7 @@@ void rt_mutex_setprio(struct task_struc
        unsigned long flags;
        int oldprio, on_rq, running;
        struct rq *rq;
-       const struct sched_class *prev_class = p->sched_class;
+       const struct sched_class *prev_class;
  
        BUG_ON(prio < 0 || prio > MAX_PRIO);
  
        update_rq_clock(rq);
  
        oldprio = p->prio;
+       prev_class = p->sched_class;
        on_rq = p->se.on_rq;
        running = task_current(rq, p);
        if (on_rq)
        if (running)
                p->sched_class->set_curr_task(rq);
        if (on_rq) {
-               enqueue_task(rq, p, 0);
+               enqueue_task(rq, p, 0, oldprio < prio);
  
                check_class_changed(rq, p, prev_class, oldprio, running);
        }
@@@ -6183,7 -4319,7 +4330,7 @@@ void set_user_nice(struct task_struct *
        delta = p->prio - old_prio;
  
        if (on_rq) {
-               enqueue_task(rq, p, 0);
+               enqueue_task(rq, p, 0, false);
                /*
                 * If the task increased its priority or is running and
                 * lowered its priority, then reschedule its CPU:
@@@ -6341,7 -4477,7 +4488,7 @@@ static int __sched_setscheduler(struct 
  {
        int retval, oldprio, oldpolicy = -1, on_rq, running;
        unsigned long flags;
-       const struct sched_class *prev_class = p->sched_class;
+       const struct sched_class *prev_class;
        struct rq *rq;
        int reset_on_fork;
  
@@@ -6455,6 -4591,7 +4602,7 @@@ recheck
        p->sched_reset_on_fork = reset_on_fork;
  
        oldprio = p->prio;
+       prev_class = p->sched_class;
        __setscheduler(rq, p, policy, param->sched_priority);
  
        if (running)
@@@ -9493,7 -7630,6 +7641,6 @@@ static void init_tg_rt_entry(struct tas
        tg->rt_rq[cpu] = rt_rq;
        init_rt_rq(rt_rq, rq);
        rt_rq->tg = tg;
-       rt_rq->rt_se = rt_se;
        rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
        if (add)
                list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
@@@ -9524,9 -7660,6 +7671,6 @@@ void __init sched_init(void
  #ifdef CONFIG_RT_GROUP_SCHED
        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  #endif
- #ifdef CONFIG_USER_SCHED
-       alloc_size *= 2;
- #endif
  #ifdef CONFIG_CPUMASK_OFFSTACK
        alloc_size += num_possible_cpus() * cpumask_size();
  #endif
                init_task_group.cfs_rq = (struct cfs_rq **)ptr;
                ptr += nr_cpu_ids * sizeof(void **);
  
- #ifdef CONFIG_USER_SCHED
-               root_task_group.se = (struct sched_entity **)ptr;
-               ptr += nr_cpu_ids * sizeof(void **);
-               root_task_group.cfs_rq = (struct cfs_rq **)ptr;
-               ptr += nr_cpu_ids * sizeof(void **);
- #endif /* CONFIG_USER_SCHED */
  #endif /* CONFIG_FAIR_GROUP_SCHED */
  #ifdef CONFIG_RT_GROUP_SCHED
                init_task_group.rt_se = (struct sched_rt_entity **)ptr;
                init_task_group.rt_rq = (struct rt_rq **)ptr;
                ptr += nr_cpu_ids * sizeof(void **);
  
- #ifdef CONFIG_USER_SCHED
-               root_task_group.rt_se = (struct sched_rt_entity **)ptr;
-               ptr += nr_cpu_ids * sizeof(void **);
-               root_task_group.rt_rq = (struct rt_rq **)ptr;
-               ptr += nr_cpu_ids * sizeof(void **);
- #endif /* CONFIG_USER_SCHED */
  #endif /* CONFIG_RT_GROUP_SCHED */
  #ifdef CONFIG_CPUMASK_OFFSTACK
                for_each_possible_cpu(i) {
  #ifdef CONFIG_RT_GROUP_SCHED
        init_rt_bandwidth(&init_task_group.rt_bandwidth,
                        global_rt_period(), global_rt_runtime());
- #ifdef CONFIG_USER_SCHED
-       init_rt_bandwidth(&root_task_group.rt_bandwidth,
-                       global_rt_period(), RUNTIME_INF);
- #endif /* CONFIG_USER_SCHED */
  #endif /* CONFIG_RT_GROUP_SCHED */
  
- #ifdef CONFIG_GROUP_SCHED
+ #ifdef CONFIG_CGROUP_SCHED
        list_add(&init_task_group.list, &task_groups);
        INIT_LIST_HEAD(&init_task_group.children);
  
- #ifdef CONFIG_USER_SCHED
-       INIT_LIST_HEAD(&root_task_group.children);
-       init_task_group.parent = &root_task_group;
-       list_add(&init_task_group.siblings, &root_task_group.children);
- #endif /* CONFIG_USER_SCHED */
- #endif /* CONFIG_GROUP_SCHED */
+ #endif /* CONFIG_CGROUP_SCHED */
  
  #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
        update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
                 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
                 */
                init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
- #elif defined CONFIG_USER_SCHED
-               root_task_group.shares = NICE_0_LOAD;
-               init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
-               /*
-                * In case of task-groups formed thr' the user id of tasks,
-                * init_task_group represents tasks belonging to root user.
-                * Hence it forms a sibling of all subsequent groups formed.
-                * In this case, init_task_group gets only a fraction of overall
-                * system cpu resource, based on the weight assigned to root
-                * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
-                * by letting tasks of init_task_group sit in a separate cfs_rq
-                * (init_tg_cfs_rq) and having one entity represent this group of
-                * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
-                */
-               init_tg_cfs_entry(&init_task_group,
-                               &per_cpu(init_tg_cfs_rq, i),
-                               &per_cpu(init_sched_entity, i), i, 1,
-                               root_task_group.se[i]);
  #endif
  #endif /* CONFIG_FAIR_GROUP_SCHED */
  
                INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  #ifdef CONFIG_CGROUP_SCHED
                init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
- #elif defined CONFIG_USER_SCHED
-               init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
-               init_tg_rt_entry(&init_task_group,
-                               &per_cpu(init_rt_rq_var, i),
-                               &per_cpu(init_sched_rt_entity, i), i, 1,
-                               root_task_group.rt_se[i]);
  #endif
  #endif
  
@@@ -9753,7 -7838,7 +7849,7 @@@ static inline int preempt_count_equals(
        return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  }
  
- void __might_sleep(char *file, int line, int preempt_offset)
+ void __might_sleep(const char *file, int line, int preempt_offset)
  {
  #ifdef in_atomic
        static unsigned long prev_jiffy;        /* ratelimiting */
@@@ -10064,7 -8149,7 +8160,7 @@@ static inline void unregister_rt_sched_
  }
  #endif /* CONFIG_RT_GROUP_SCHED */
  
- #ifdef CONFIG_GROUP_SCHED
+ #ifdef CONFIG_CGROUP_SCHED
  static void free_sched_group(struct task_group *tg)
  {
        free_fair_sched_group(tg);
@@@ -10169,11 -8254,11 +8265,11 @@@ void sched_move_task(struct task_struc
        if (unlikely(running))
                tsk->sched_class->set_curr_task(rq);
        if (on_rq)
-               enqueue_task(rq, tsk, 0);
+               enqueue_task(rq, tsk, 0, false);
  
        task_rq_unlock(rq, &flags);
  }
- #endif /* CONFIG_GROUP_SCHED */
+ #endif /* CONFIG_CGROUP_SCHED */
  
  #ifdef CONFIG_FAIR_GROUP_SCHED
  static void __set_se_shares(struct sched_entity *se, unsigned long shares)
@@@ -10315,13 -8400,6 +8411,6 @@@ static int tg_schedulable(struct task_g
                runtime = d->rt_runtime;
        }
  
- #ifdef CONFIG_USER_SCHED
-       if (tg == &root_task_group) {
-               period = global_rt_period();
-               runtime = global_rt_runtime();
-       }
- #endif
        /*
         * Cannot have more runtime than the period.
         */
@@@ -10940,6 -9018,23 +9029,23 @@@ static void cpuacct_charge(struct task_
        rcu_read_unlock();
  }
  
+ /*
+  * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
+  * in cputime_t units. As a result, cpuacct_update_stats calls
+  * percpu_counter_add with values large enough to always overflow the
+  * per cpu batch limit causing bad SMP scalability.
+  *
+  * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
+  * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
+  * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
+  */
+ #ifdef CONFIG_SMP
+ #define CPUACCT_BATCH \
+       min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
+ #else
+ #define CPUACCT_BATCH 0
+ #endif
  /*
   * Charge the system/user time to the task's accounting group.
   */
@@@ -10947,6 -9042,7 +9053,7 @@@ static void cpuacct_update_stats(struc
                enum cpuacct_stat_index idx, cputime_t val)
  {
        struct cpuacct *ca;
+       int batch = CPUACCT_BATCH;
  
        if (unlikely(!cpuacct_subsys.active))
                return;
        ca = task_ca(tsk);
  
        do {
-               percpu_counter_add(&ca->cpustat[idx], val);
+               __percpu_counter_add(&ca->cpustat[idx], val, batch);
                ca = ca->parent;
        } while (ca);
        rcu_read_unlock();
diff --combined kernel/sys.c
@@@ -222,7 -222,6 +222,7 @@@ SYSCALL_DEFINE2(getpriority, int, which
        if (which > PRIO_USER || which < PRIO_PROCESS)
                return -EINVAL;
  
 +      rcu_read_lock();
        read_lock(&tasklist_lock);
        switch (which) {
                case PRIO_PROCESS:
        }
  out_unlock:
        read_unlock(&tasklist_lock);
 +      rcu_read_unlock();
  
        return retval;
  }
@@@ -571,11 -569,6 +571,6 @@@ static int set_user(struct cred *new
        if (!new_user)
                return -EAGAIN;
  
-       if (!task_can_switch_user(new_user, current)) {
-               free_uid(new_user);
-               return -EINVAL;
-       }
        if (atomic_read(&new_user->processes) >=
                                current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
                        new_user != INIT_USER) {