Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
authorLinus Torvalds <torvalds@linux-foundation.org>
Thu, 20 May 2010 16:02:49 +0000 (09:02 -0700)
committerLinus Torvalds <torvalds@linux-foundation.org>
Thu, 20 May 2010 16:02:49 +0000 (09:02 -0700)
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
  ia64: add sparse annotation to __ia64_per_cpu_var()
  percpu: implement kernel memory based chunk allocation
  percpu: move vmalloc based chunk management into percpu-vm.c
  percpu: misc preparations for nommu support
  percpu: reorganize chunk creation and destruction
  percpu: factor out pcpu_addr_in_first/reserved_chunk() and update per_cpu_ptr_to_phys()

arch/ia64/include/asm/percpu.h
mm/percpu-km.c [new file with mode: 0644]
mm/percpu-vm.c [new file with mode: 0644]
mm/percpu.c

index f7c00a5..1bd4082 100644 (file)
@@ -39,7 +39,10 @@ extern void *per_cpu_init(void);
  * On the positive side, using __ia64_per_cpu_var() instead of __get_cpu_var() is slightly
  * more efficient.
  */
-#define __ia64_per_cpu_var(var)        var
+#define __ia64_per_cpu_var(var) (*({                                   \
+       __verify_pcpu_ptr(&(var));                                      \
+       ((typeof(var) __kernel __force *)&(var));                       \
+}))
 
 #include <asm-generic/percpu.h>
 
diff --git a/mm/percpu-km.c b/mm/percpu-km.c
new file mode 100644 (file)
index 0000000..df68085
--- /dev/null
@@ -0,0 +1,104 @@
+/*
+ * mm/percpu-km.c - kernel memory based chunk allocation
+ *
+ * Copyright (C) 2010          SUSE Linux Products GmbH
+ * Copyright (C) 2010          Tejun Heo <tj@kernel.org>
+ *
+ * This file is released under the GPLv2.
+ *
+ * Chunks are allocated as a contiguous kernel memory using gfp
+ * allocation.  This is to be used on nommu architectures.
+ *
+ * To use percpu-km,
+ *
+ * - define CONFIG_NEED_PER_CPU_KM from the arch Kconfig.
+ *
+ * - CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK must not be defined.  It's
+ *   not compatible with PER_CPU_KM.  EMBED_FIRST_CHUNK should work
+ *   fine.
+ *
+ * - NUMA is not supported.  When setting up the first chunk,
+ *   @cpu_distance_fn should be NULL or report all CPUs to be nearer
+ *   than or at LOCAL_DISTANCE.
+ *
+ * - It's best if the chunk size is power of two multiple of
+ *   PAGE_SIZE.  Because each chunk is allocated as a contiguous
+ *   kernel memory block using alloc_pages(), memory will be wasted if
+ *   chunk size is not aligned.  percpu-km code will whine about it.
+ */
+
+#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
+#error "contiguous percpu allocation is incompatible with paged first chunk"
+#endif
+
+#include <linux/log2.h>
+
+static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
+{
+       /* noop */
+       return 0;
+}
+
+static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
+{
+       /* nada */
+}
+
+static struct pcpu_chunk *pcpu_create_chunk(void)
+{
+       const int nr_pages = pcpu_group_sizes[0] >> PAGE_SHIFT;
+       struct pcpu_chunk *chunk;
+       struct page *pages;
+       int i;
+
+       chunk = pcpu_alloc_chunk();
+       if (!chunk)
+               return NULL;
+
+       pages = alloc_pages(GFP_KERNEL, order_base_2(nr_pages));
+       if (!pages) {
+               pcpu_free_chunk(chunk);
+               return NULL;
+       }
+
+       for (i = 0; i < nr_pages; i++)
+               pcpu_set_page_chunk(nth_page(pages, i), chunk);
+
+       chunk->data = pages;
+       chunk->base_addr = page_address(pages) - pcpu_group_offsets[0];
+       return chunk;
+}
+
+static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
+{
+       const int nr_pages = pcpu_group_sizes[0] >> PAGE_SHIFT;
+
+       if (chunk && chunk->data)
+               __free_pages(chunk->data, order_base_2(nr_pages));
+       pcpu_free_chunk(chunk);
+}
+
+static struct page *pcpu_addr_to_page(void *addr)
+{
+       return virt_to_page(addr);
+}
+
+static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
+{
+       size_t nr_pages, alloc_pages;
+
+       /* all units must be in a single group */
+       if (ai->nr_groups != 1) {
+               printk(KERN_CRIT "percpu: can't handle more than one groups\n");
+               return -EINVAL;
+       }
+
+       nr_pages = (ai->groups[0].nr_units * ai->unit_size) >> PAGE_SHIFT;
+       alloc_pages = roundup_pow_of_two(nr_pages);
+
+       if (alloc_pages > nr_pages)
+               printk(KERN_WARNING "percpu: wasting %zu pages per chunk\n",
+                      alloc_pages - nr_pages);
+
+       return 0;
+}
diff --git a/mm/percpu-vm.c b/mm/percpu-vm.c
new file mode 100644 (file)
index 0000000..7d9c1d0
--- /dev/null
@@ -0,0 +1,451 @@
+/*
+ * mm/percpu-vm.c - vmalloc area based chunk allocation
+ *
+ * Copyright (C) 2010          SUSE Linux Products GmbH
+ * Copyright (C) 2010          Tejun Heo <tj@kernel.org>
+ *
+ * This file is released under the GPLv2.
+ *
+ * Chunks are mapped into vmalloc areas and populated page by page.
+ * This is the default chunk allocator.
+ */
+
+static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
+                                   unsigned int cpu, int page_idx)
+{
+       /* must not be used on pre-mapped chunk */
+       WARN_ON(chunk->immutable);
+
+       return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
+}
+
+/**
+ * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
+ * @chunk: chunk of interest
+ * @bitmapp: output parameter for bitmap
+ * @may_alloc: may allocate the array
+ *
+ * Returns pointer to array of pointers to struct page and bitmap,
+ * both of which can be indexed with pcpu_page_idx().  The returned
+ * array is cleared to zero and *@bitmapp is copied from
+ * @chunk->populated.  Note that there is only one array and bitmap
+ * and access exclusion is the caller's responsibility.
+ *
+ * CONTEXT:
+ * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
+ * Otherwise, don't care.
+ *
+ * RETURNS:
+ * Pointer to temp pages array on success, NULL on failure.
+ */
+static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
+                                              unsigned long **bitmapp,
+                                              bool may_alloc)
+{
+       static struct page **pages;
+       static unsigned long *bitmap;
+       size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
+       size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
+                            sizeof(unsigned long);
+
+       if (!pages || !bitmap) {
+               if (may_alloc && !pages)
+                       pages = pcpu_mem_alloc(pages_size);
+               if (may_alloc && !bitmap)
+                       bitmap = pcpu_mem_alloc(bitmap_size);
+               if (!pages || !bitmap)
+                       return NULL;
+       }
+
+       memset(pages, 0, pages_size);
+       bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
+
+       *bitmapp = bitmap;
+       return pages;
+}
+
+/**
+ * pcpu_free_pages - free pages which were allocated for @chunk
+ * @chunk: chunk pages were allocated for
+ * @pages: array of pages to be freed, indexed by pcpu_page_idx()
+ * @populated: populated bitmap
+ * @page_start: page index of the first page to be freed
+ * @page_end: page index of the last page to be freed + 1
+ *
+ * Free pages [@page_start and @page_end) in @pages for all units.
+ * The pages were allocated for @chunk.
+ */
+static void pcpu_free_pages(struct pcpu_chunk *chunk,
+                           struct page **pages, unsigned long *populated,
+                           int page_start, int page_end)
+{
+       unsigned int cpu;
+       int i;
+
+       for_each_possible_cpu(cpu) {
+               for (i = page_start; i < page_end; i++) {
+                       struct page *page = pages[pcpu_page_idx(cpu, i)];
+
+                       if (page)
+                               __free_page(page);
+               }
+       }
+}
+
+/**
+ * pcpu_alloc_pages - allocates pages for @chunk
+ * @chunk: target chunk
+ * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
+ * @populated: populated bitmap
+ * @page_start: page index of the first page to be allocated
+ * @page_end: page index of the last page to be allocated + 1
+ *
+ * Allocate pages [@page_start,@page_end) into @pages for all units.
+ * The allocation is for @chunk.  Percpu core doesn't care about the
+ * content of @pages and will pass it verbatim to pcpu_map_pages().
+ */
+static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
+                           struct page **pages, unsigned long *populated,
+                           int page_start, int page_end)
+{
+       const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
+       unsigned int cpu;
+       int i;
+
+       for_each_possible_cpu(cpu) {
+               for (i = page_start; i < page_end; i++) {
+                       struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
+
+                       *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
+                       if (!*pagep) {
+                               pcpu_free_pages(chunk, pages, populated,
+                                               page_start, page_end);
+                               return -ENOMEM;
+                       }
+               }
+       }
+       return 0;
+}
+
+/**
+ * pcpu_pre_unmap_flush - flush cache prior to unmapping
+ * @chunk: chunk the regions to be flushed belongs to
+ * @page_start: page index of the first page to be flushed
+ * @page_end: page index of the last page to be flushed + 1
+ *
+ * Pages in [@page_start,@page_end) of @chunk are about to be
+ * unmapped.  Flush cache.  As each flushing trial can be very
+ * expensive, issue flush on the whole region at once rather than
+ * doing it for each cpu.  This could be an overkill but is more
+ * scalable.
+ */
+static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
+                                int page_start, int page_end)
+{
+       flush_cache_vunmap(
+               pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
+               pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
+}
+
+static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
+{
+       unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
+}
+
+/**
+ * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
+ * @chunk: chunk of interest
+ * @pages: pages array which can be used to pass information to free
+ * @populated: populated bitmap
+ * @page_start: page index of the first page to unmap
+ * @page_end: page index of the last page to unmap + 1
+ *
+ * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
+ * Corresponding elements in @pages were cleared by the caller and can
+ * be used to carry information to pcpu_free_pages() which will be
+ * called after all unmaps are finished.  The caller should call
+ * proper pre/post flush functions.
+ */
+static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
+                            struct page **pages, unsigned long *populated,
+                            int page_start, int page_end)
+{
+       unsigned int cpu;
+       int i;
+
+       for_each_possible_cpu(cpu) {
+               for (i = page_start; i < page_end; i++) {
+                       struct page *page;
+
+                       page = pcpu_chunk_page(chunk, cpu, i);
+                       WARN_ON(!page);
+                       pages[pcpu_page_idx(cpu, i)] = page;
+               }
+               __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
+                                  page_end - page_start);
+       }
+
+       for (i = page_start; i < page_end; i++)
+               __clear_bit(i, populated);
+}
+
+/**
+ * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
+ * @chunk: pcpu_chunk the regions to be flushed belong to
+ * @page_start: page index of the first page to be flushed
+ * @page_end: page index of the last page to be flushed + 1
+ *
+ * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
+ * TLB for the regions.  This can be skipped if the area is to be
+ * returned to vmalloc as vmalloc will handle TLB flushing lazily.
+ *
+ * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
+ * for the whole region.
+ */
+static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
+                                     int page_start, int page_end)
+{
+       flush_tlb_kernel_range(
+               pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
+               pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
+}
+
+static int __pcpu_map_pages(unsigned long addr, struct page **pages,
+                           int nr_pages)
+{
+       return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
+                                       PAGE_KERNEL, pages);
+}
+
+/**
+ * pcpu_map_pages - map pages into a pcpu_chunk
+ * @chunk: chunk of interest
+ * @pages: pages array containing pages to be mapped
+ * @populated: populated bitmap
+ * @page_start: page index of the first page to map
+ * @page_end: page index of the last page to map + 1
+ *
+ * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
+ * caller is responsible for calling pcpu_post_map_flush() after all
+ * mappings are complete.
+ *
+ * This function is responsible for setting corresponding bits in
+ * @chunk->populated bitmap and whatever is necessary for reverse
+ * lookup (addr -> chunk).
+ */
+static int pcpu_map_pages(struct pcpu_chunk *chunk,
+                         struct page **pages, unsigned long *populated,
+                         int page_start, int page_end)
+{
+       unsigned int cpu, tcpu;
+       int i, err;
+
+       for_each_possible_cpu(cpu) {
+               err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
+                                      &pages[pcpu_page_idx(cpu, page_start)],
+                                      page_end - page_start);
+               if (err < 0)
+                       goto err;
+       }
+
+       /* mapping successful, link chunk and mark populated */
+       for (i = page_start; i < page_end; i++) {
+               for_each_possible_cpu(cpu)
+                       pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
+                                           chunk);
+               __set_bit(i, populated);
+       }
+
+       return 0;
+
+err:
+       for_each_possible_cpu(tcpu) {
+               if (tcpu == cpu)
+                       break;
+               __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
+                                  page_end - page_start);
+       }
+       return err;
+}
+
+/**
+ * pcpu_post_map_flush - flush cache after mapping
+ * @chunk: pcpu_chunk the regions to be flushed belong to
+ * @page_start: page index of the first page to be flushed
+ * @page_end: page index of the last page to be flushed + 1
+ *
+ * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
+ * cache.
+ *
+ * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
+ * for the whole region.
+ */
+static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
+                               int page_start, int page_end)
+{
+       flush_cache_vmap(
+               pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
+               pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
+}
+
+/**
+ * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
+ * @chunk: chunk of interest
+ * @off: offset to the area to populate
+ * @size: size of the area to populate in bytes
+ *
+ * For each cpu, populate and map pages [@page_start,@page_end) into
+ * @chunk.  The area is cleared on return.
+ *
+ * CONTEXT:
+ * pcpu_alloc_mutex, does GFP_KERNEL allocation.
+ */
+static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
+{
+       int page_start = PFN_DOWN(off);
+       int page_end = PFN_UP(off + size);
+       int free_end = page_start, unmap_end = page_start;
+       struct page **pages;
+       unsigned long *populated;
+       unsigned int cpu;
+       int rs, re, rc;
+
+       /* quick path, check whether all pages are already there */
+       rs = page_start;
+       pcpu_next_pop(chunk, &rs, &re, page_end);
+       if (rs == page_start && re == page_end)
+               goto clear;
+
+       /* need to allocate and map pages, this chunk can't be immutable */
+       WARN_ON(chunk->immutable);
+
+       pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
+       if (!pages)
+               return -ENOMEM;
+
+       /* alloc and map */
+       pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
+               rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
+               if (rc)
+                       goto err_free;
+               free_end = re;
+       }
+
+       pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
+               rc = pcpu_map_pages(chunk, pages, populated, rs, re);
+               if (rc)
+                       goto err_unmap;
+               unmap_end = re;
+       }
+       pcpu_post_map_flush(chunk, page_start, page_end);
+
+       /* commit new bitmap */
+       bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
+clear:
+       for_each_possible_cpu(cpu)
+               memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
+       return 0;
+
+err_unmap:
+       pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
+       pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
+               pcpu_unmap_pages(chunk, pages, populated, rs, re);
+       pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
+err_free:
+       pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
+               pcpu_free_pages(chunk, pages, populated, rs, re);
+       return rc;
+}
+
+/**
+ * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
+ * @chunk: chunk to depopulate
+ * @off: offset to the area to depopulate
+ * @size: size of the area to depopulate in bytes
+ * @flush: whether to flush cache and tlb or not
+ *
+ * For each cpu, depopulate and unmap pages [@page_start,@page_end)
+ * from @chunk.  If @flush is true, vcache is flushed before unmapping
+ * and tlb after.
+ *
+ * CONTEXT:
+ * pcpu_alloc_mutex.
+ */
+static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
+{
+       int page_start = PFN_DOWN(off);
+       int page_end = PFN_UP(off + size);
+       struct page **pages;
+       unsigned long *populated;
+       int rs, re;
+
+       /* quick path, check whether it's empty already */
+       rs = page_start;
+       pcpu_next_unpop(chunk, &rs, &re, page_end);
+       if (rs == page_start && re == page_end)
+               return;
+
+       /* immutable chunks can't be depopulated */
+       WARN_ON(chunk->immutable);
+
+       /*
+        * If control reaches here, there must have been at least one
+        * successful population attempt so the temp pages array must
+        * be available now.
+        */
+       pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
+       BUG_ON(!pages);
+
+       /* unmap and free */
+       pcpu_pre_unmap_flush(chunk, page_start, page_end);
+
+       pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
+               pcpu_unmap_pages(chunk, pages, populated, rs, re);
+
+       /* no need to flush tlb, vmalloc will handle it lazily */
+
+       pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
+               pcpu_free_pages(chunk, pages, populated, rs, re);
+
+       /* commit new bitmap */
+       bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
+}
+
+static struct pcpu_chunk *pcpu_create_chunk(void)
+{
+       struct pcpu_chunk *chunk;
+       struct vm_struct **vms;
+
+       chunk = pcpu_alloc_chunk();
+       if (!chunk)
+               return NULL;
+
+       vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
+                               pcpu_nr_groups, pcpu_atom_size, GFP_KERNEL);
+       if (!vms) {
+               pcpu_free_chunk(chunk);
+               return NULL;
+       }
+
+       chunk->data = vms;
+       chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
+       return chunk;
+}
+
+static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
+{
+       if (chunk && chunk->data)
+               pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
+       pcpu_free_chunk(chunk);
+}
+
+static struct page *pcpu_addr_to_page(void *addr)
+{
+       return vmalloc_to_page(addr);
+}
+
+static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
+{
+       /* no extra restriction */
+       return 0;
+}
index 6e09741..39f7dfd 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * linux/mm/percpu.c - percpu memory allocator
+ * mm/percpu.c - percpu memory allocator
  *
  * Copyright (C) 2009          SUSE Linux Products GmbH
  * Copyright (C) 2009          Tejun Heo <tj@kernel.org>
@@ -7,14 +7,13 @@
  * This file is released under the GPLv2.
  *
  * This is percpu allocator which can handle both static and dynamic
- * areas.  Percpu areas are allocated in chunks in vmalloc area.  Each
- * chunk is consisted of boot-time determined number of units and the
- * first chunk is used for static percpu variables in the kernel image
+ * areas.  Percpu areas are allocated in chunks.  Each chunk is
+ * consisted of boot-time determined number of units and the first
+ * chunk is used for static percpu variables in the kernel image
  * (special boot time alloc/init handling necessary as these areas
  * need to be brought up before allocation services are running).
  * Unit grows as necessary and all units grow or shrink in unison.
- * When a chunk is filled up, another chunk is allocated.  ie. in
- * vmalloc area
+ * When a chunk is filled up, another chunk is allocated.
  *
  *  c0                           c1                         c2
  *  -------------------          -------------------        ------------
@@ -99,7 +98,7 @@ struct pcpu_chunk {
        int                     map_used;       /* # of map entries used */
        int                     map_alloc;      /* # of map entries allocated */
        int                     *map;           /* allocation map */
-       struct vm_struct        **vms;          /* mapped vmalloc regions */
+       void                    *data;          /* chunk data */
        bool                    immutable;      /* no [de]population allowed */
        unsigned long           populated[];    /* populated bitmap */
 };
@@ -177,6 +176,21 @@ static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
 static void pcpu_reclaim(struct work_struct *work);
 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
 
+static bool pcpu_addr_in_first_chunk(void *addr)
+{
+       void *first_start = pcpu_first_chunk->base_addr;
+
+       return addr >= first_start && addr < first_start + pcpu_unit_size;
+}
+
+static bool pcpu_addr_in_reserved_chunk(void *addr)
+{
+       void *first_start = pcpu_first_chunk->base_addr;
+
+       return addr >= first_start &&
+               addr < first_start + pcpu_reserved_chunk_limit;
+}
+
 static int __pcpu_size_to_slot(int size)
 {
        int highbit = fls(size);        /* size is in bytes */
@@ -198,27 +212,6 @@ static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
        return pcpu_size_to_slot(chunk->free_size);
 }
 
-static int pcpu_page_idx(unsigned int cpu, int page_idx)
-{
-       return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
-}
-
-static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
-                                    unsigned int cpu, int page_idx)
-{
-       return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
-               (page_idx << PAGE_SHIFT);
-}
-
-static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
-                                   unsigned int cpu, int page_idx)
-{
-       /* must not be used on pre-mapped chunk */
-       WARN_ON(chunk->immutable);
-
-       return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
-}
-
 /* set the pointer to a chunk in a page struct */
 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
 {
@@ -231,13 +224,27 @@ static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
        return (struct pcpu_chunk *)page->index;
 }
 
-static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
+static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
+{
+       return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
+}
+
+static unsigned long __maybe_unused pcpu_chunk_addr(struct pcpu_chunk *chunk,
+                                               unsigned int cpu, int page_idx)
+{
+       return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
+               (page_idx << PAGE_SHIFT);
+}
+
+static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
+                                          int *rs, int *re, int end)
 {
        *rs = find_next_zero_bit(chunk->populated, end, *rs);
        *re = find_next_bit(chunk->populated, end, *rs + 1);
 }
 
-static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
+static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
+                                        int *rs, int *re, int end)
 {
        *rs = find_next_bit(chunk->populated, end, *rs);
        *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
@@ -325,36 +332,6 @@ static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
        }
 }
 
-/**
- * pcpu_chunk_addr_search - determine chunk containing specified address
- * @addr: address for which the chunk needs to be determined.
- *
- * RETURNS:
- * The address of the found chunk.
- */
-static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
-{
-       void *first_start = pcpu_first_chunk->base_addr;
-
-       /* is it in the first chunk? */
-       if (addr >= first_start && addr < first_start + pcpu_unit_size) {
-               /* is it in the reserved area? */
-               if (addr < first_start + pcpu_reserved_chunk_limit)
-                       return pcpu_reserved_chunk;
-               return pcpu_first_chunk;
-       }
-
-       /*
-        * The address is relative to unit0 which might be unused and
-        * thus unmapped.  Offset the address to the unit space of the
-        * current processor before looking it up in the vmalloc
-        * space.  Note that any possible cpu id can be used here, so
-        * there's no need to worry about preemption or cpu hotplug.
-        */
-       addr += pcpu_unit_offsets[raw_smp_processor_id()];
-       return pcpu_get_page_chunk(vmalloc_to_page(addr));
-}
-
 /**
  * pcpu_need_to_extend - determine whether chunk area map needs to be extended
  * @chunk: chunk of interest
@@ -623,434 +600,92 @@ static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
        pcpu_chunk_relocate(chunk, oslot);
 }
 
-/**
- * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
- * @chunk: chunk of interest
- * @bitmapp: output parameter for bitmap
- * @may_alloc: may allocate the array
- *
- * Returns pointer to array of pointers to struct page and bitmap,
- * both of which can be indexed with pcpu_page_idx().  The returned
- * array is cleared to zero and *@bitmapp is copied from
- * @chunk->populated.  Note that there is only one array and bitmap
- * and access exclusion is the caller's responsibility.
- *
- * CONTEXT:
- * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
- * Otherwise, don't care.
- *
- * RETURNS:
- * Pointer to temp pages array on success, NULL on failure.
- */
-static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
-                                              unsigned long **bitmapp,
-                                              bool may_alloc)
-{
-       static struct page **pages;
-       static unsigned long *bitmap;
-       size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
-       size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
-                            sizeof(unsigned long);
-
-       if (!pages || !bitmap) {
-               if (may_alloc && !pages)
-                       pages = pcpu_mem_alloc(pages_size);
-               if (may_alloc && !bitmap)
-                       bitmap = pcpu_mem_alloc(bitmap_size);
-               if (!pages || !bitmap)
-                       return NULL;
-       }
-
-       memset(pages, 0, pages_size);
-       bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
-
-       *bitmapp = bitmap;
-       return pages;
-}
-
-/**
- * pcpu_free_pages - free pages which were allocated for @chunk
- * @chunk: chunk pages were allocated for
- * @pages: array of pages to be freed, indexed by pcpu_page_idx()
- * @populated: populated bitmap
- * @page_start: page index of the first page to be freed
- * @page_end: page index of the last page to be freed + 1
- *
- * Free pages [@page_start and @page_end) in @pages for all units.
- * The pages were allocated for @chunk.
- */
-static void pcpu_free_pages(struct pcpu_chunk *chunk,
-                           struct page **pages, unsigned long *populated,
-                           int page_start, int page_end)
+static struct pcpu_chunk *pcpu_alloc_chunk(void)
 {
-       unsigned int cpu;
-       int i;
+       struct pcpu_chunk *chunk;
 
-       for_each_possible_cpu(cpu) {
-               for (i = page_start; i < page_end; i++) {
-                       struct page *page = pages[pcpu_page_idx(cpu, i)];
+       chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
+       if (!chunk)
+               return NULL;
 
-                       if (page)
-                               __free_page(page);
-               }
+       chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
+       if (!chunk->map) {
+               kfree(chunk);
+               return NULL;
        }
-}
 
-/**
- * pcpu_alloc_pages - allocates pages for @chunk
- * @chunk: target chunk
- * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
- * @populated: populated bitmap
- * @page_start: page index of the first page to be allocated
- * @page_end: page index of the last page to be allocated + 1
- *
- * Allocate pages [@page_start,@page_end) into @pages for all units.
- * The allocation is for @chunk.  Percpu core doesn't care about the
- * content of @pages and will pass it verbatim to pcpu_map_pages().
- */
-static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
-                           struct page **pages, unsigned long *populated,
-                           int page_start, int page_end)
-{
-       const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
-       unsigned int cpu;
-       int i;
+       chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
+       chunk->map[chunk->map_used++] = pcpu_unit_size;
 
-       for_each_possible_cpu(cpu) {
-               for (i = page_start; i < page_end; i++) {
-                       struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
-
-                       *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
-                       if (!*pagep) {
-                               pcpu_free_pages(chunk, pages, populated,
-                                               page_start, page_end);
-                               return -ENOMEM;
-                       }
-               }
-       }
-       return 0;
-}
+       INIT_LIST_HEAD(&chunk->list);
+       chunk->free_size = pcpu_unit_size;
+       chunk->contig_hint = pcpu_unit_size;
 
-/**
- * pcpu_pre_unmap_flush - flush cache prior to unmapping
- * @chunk: chunk the regions to be flushed belongs to
- * @page_start: page index of the first page to be flushed
- * @page_end: page index of the last page to be flushed + 1
- *
- * Pages in [@page_start,@page_end) of @chunk are about to be
- * unmapped.  Flush cache.  As each flushing trial can be very
- * expensive, issue flush on the whole region at once rather than
- * doing it for each cpu.  This could be an overkill but is more
- * scalable.
- */
-static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
-                                int page_start, int page_end)
-{
-       flush_cache_vunmap(
-               pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
-               pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
+       return chunk;
 }
 
-static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
+static void pcpu_free_chunk(struct pcpu_chunk *chunk)
 {
-       unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
+       if (!chunk)
+               return;
+       pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
+       kfree(chunk);
 }
 
-/**
- * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
- * @chunk: chunk of interest
- * @pages: pages array which can be used to pass information to free
- * @populated: populated bitmap
- * @page_start: page index of the first page to unmap
- * @page_end: page index of the last page to unmap + 1
- *
- * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
- * Corresponding elements in @pages were cleared by the caller and can
- * be used to carry information to pcpu_free_pages() which will be
- * called after all unmaps are finished.  The caller should call
- * proper pre/post flush functions.
+/*
+ * Chunk management implementation.
+ *
+ * To allow different implementations, chunk alloc/free and
+ * [de]population are implemented in a separate file which is pulled
+ * into this file and compiled together.  The following functions
+ * should be implemented.
+ *
+ * pcpu_populate_chunk         - populate the specified range of a chunk
+ * pcpu_depopulate_chunk       - depopulate the specified range of a chunk
+ * pcpu_create_chunk           - create a new chunk
+ * pcpu_destroy_chunk          - destroy a chunk, always preceded by full depop
+ * pcpu_addr_to_page           - translate address to physical address
+ * pcpu_verify_alloc_info      - check alloc_info is acceptable during init
  */
-static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
-                            struct page **pages, unsigned long *populated,
-                            int page_start, int page_end)
-{
-       unsigned int cpu;
-       int i;
-
-       for_each_possible_cpu(cpu) {
-               for (i = page_start; i < page_end; i++) {
-                       struct page *page;
-
-                       page = pcpu_chunk_page(chunk, cpu, i);
-                       WARN_ON(!page);
-                       pages[pcpu_page_idx(cpu, i)] = page;
-               }
-               __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
-                                  page_end - page_start);
-       }
-
-       for (i = page_start; i < page_end; i++)
-               __clear_bit(i, populated);
-}
+static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
+static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
+static struct pcpu_chunk *pcpu_create_chunk(void);
+static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
+static struct page *pcpu_addr_to_page(void *addr);
+static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
+
+#ifdef CONFIG_NEED_PER_CPU_KM
+#include "percpu-km.c"
+#else
+#include "percpu-vm.c"
+#endif
 
 /**
- * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
- * @chunk: pcpu_chunk the regions to be flushed belong to
- * @page_start: page index of the first page to be flushed
- * @page_end: page index of the last page to be flushed + 1
- *
- * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
- * TLB for the regions.  This can be skipped if the area is to be
- * returned to vmalloc as vmalloc will handle TLB flushing lazily.
+ * pcpu_chunk_addr_search - determine chunk containing specified address
+ * @addr: address for which the chunk needs to be determined.
  *
- * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
- * for the whole region.
- */
-static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
-                                     int page_start, int page_end)
-{
-       flush_tlb_kernel_range(
-               pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
-               pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
-}
-
-static int __pcpu_map_pages(unsigned long addr, struct page **pages,
-                           int nr_pages)
-{
-       return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
-                                       PAGE_KERNEL, pages);
-}
-
-/**
- * pcpu_map_pages - map pages into a pcpu_chunk
- * @chunk: chunk of interest
- * @pages: pages array containing pages to be mapped
- * @populated: populated bitmap
- * @page_start: page index of the first page to map
- * @page_end: page index of the last page to map + 1
- *
- * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
- * caller is responsible for calling pcpu_post_map_flush() after all
- * mappings are complete.
- *
- * This function is responsible for setting corresponding bits in
- * @chunk->populated bitmap and whatever is necessary for reverse
- * lookup (addr -> chunk).
+ * RETURNS:
+ * The address of the found chunk.
  */
-static int pcpu_map_pages(struct pcpu_chunk *chunk,
-                         struct page **pages, unsigned long *populated,
-                         int page_start, int page_end)
+static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
 {
-       unsigned int cpu, tcpu;
-       int i, err;
-
-       for_each_possible_cpu(cpu) {
-               err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
-                                      &pages[pcpu_page_idx(cpu, page_start)],
-                                      page_end - page_start);
-               if (err < 0)
-                       goto err;
-       }
-
-       /* mapping successful, link chunk and mark populated */
-       for (i = page_start; i < page_end; i++) {
-               for_each_possible_cpu(cpu)
-                       pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
-                                           chunk);
-               __set_bit(i, populated);
-       }
-
-       return 0;
-
-err:
-       for_each_possible_cpu(tcpu) {
-               if (tcpu == cpu)
-                       break;
-               __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
-                                  page_end - page_start);
+       /* is it in the first chunk? */
+       if (pcpu_addr_in_first_chunk(addr)) {
+               /* is it in the reserved area? */
+               if (pcpu_addr_in_reserved_chunk(addr))
+                       return pcpu_reserved_chunk;
+               return pcpu_first_chunk;
        }
-       return err;
-}
-
-/**
- * pcpu_post_map_flush - flush cache after mapping
- * @chunk: pcpu_chunk the regions to be flushed belong to
- * @page_start: page index of the first page to be flushed
- * @page_end: page index of the last page to be flushed + 1
- *
- * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
- * cache.
- *
- * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
- * for the whole region.
- */
-static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
-                               int page_start, int page_end)
-{
-       flush_cache_vmap(
-               pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
-               pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
-}
-
-/**
- * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
- * @chunk: chunk to depopulate
- * @off: offset to the area to depopulate
- * @size: size of the area to depopulate in bytes
- * @flush: whether to flush cache and tlb or not
- *
- * For each cpu, depopulate and unmap pages [@page_start,@page_end)
- * from @chunk.  If @flush is true, vcache is flushed before unmapping
- * and tlb after.
- *
- * CONTEXT:
- * pcpu_alloc_mutex.
- */
-static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
-{
-       int page_start = PFN_DOWN(off);
-       int page_end = PFN_UP(off + size);
-       struct page **pages;
-       unsigned long *populated;
-       int rs, re;
-
-       /* quick path, check whether it's empty already */
-       rs = page_start;
-       pcpu_next_unpop(chunk, &rs, &re, page_end);
-       if (rs == page_start && re == page_end)
-               return;
-
-       /* immutable chunks can't be depopulated */
-       WARN_ON(chunk->immutable);
 
        /*
-        * If control reaches here, there must have been at least one
-        * successful population attempt so the temp pages array must
-        * be available now.
+        * The address is relative to unit0 which might be unused and
+        * thus unmapped.  Offset the address to the unit space of the
+        * current processor before looking it up in the vmalloc
+        * space.  Note that any possible cpu id can be used here, so
+        * there's no need to worry about preemption or cpu hotplug.
         */
-       pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
-       BUG_ON(!pages);
-
-       /* unmap and free */
-       pcpu_pre_unmap_flush(chunk, page_start, page_end);
-
-       pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
-               pcpu_unmap_pages(chunk, pages, populated, rs, re);
-
-       /* no need to flush tlb, vmalloc will handle it lazily */
-
-       pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
-               pcpu_free_pages(chunk, pages, populated, rs, re);
-
-       /* commit new bitmap */
-       bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
-}
-
-/**
- * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
- * @chunk: chunk of interest
- * @off: offset to the area to populate
- * @size: size of the area to populate in bytes
- *
- * For each cpu, populate and map pages [@page_start,@page_end) into
- * @chunk.  The area is cleared on return.
- *
- * CONTEXT:
- * pcpu_alloc_mutex, does GFP_KERNEL allocation.
- */
-static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
-{
-       int page_start = PFN_DOWN(off);
-       int page_end = PFN_UP(off + size);
-       int free_end = page_start, unmap_end = page_start;
-       struct page **pages;
-       unsigned long *populated;
-       unsigned int cpu;
-       int rs, re, rc;
-
-       /* quick path, check whether all pages are already there */
-       rs = page_start;
-       pcpu_next_pop(chunk, &rs, &re, page_end);
-       if (rs == page_start && re == page_end)
-               goto clear;
-
-       /* need to allocate and map pages, this chunk can't be immutable */
-       WARN_ON(chunk->immutable);
-
-       pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
-       if (!pages)
-               return -ENOMEM;
-
-       /* alloc and map */
-       pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
-               rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
-               if (rc)
-                       goto err_free;
-               free_end = re;
-       }
-
-       pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
-               rc = pcpu_map_pages(chunk, pages, populated, rs, re);
-               if (rc)
-                       goto err_unmap;
-               unmap_end = re;
-       }
-       pcpu_post_map_flush(chunk, page_start, page_end);
-
-       /* commit new bitmap */
-       bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
-clear:
-       for_each_possible_cpu(cpu)
-               memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
-       return 0;
-
-err_unmap:
-       pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
-       pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
-               pcpu_unmap_pages(chunk, pages, populated, rs, re);
-       pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
-err_free:
-       pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
-               pcpu_free_pages(chunk, pages, populated, rs, re);
-       return rc;
-}
-
-static void free_pcpu_chunk(struct pcpu_chunk *chunk)
-{
-       if (!chunk)
-               return;
-       if (chunk->vms)
-               pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups);
-       pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
-       kfree(chunk);
-}
-
-static struct pcpu_chunk *alloc_pcpu_chunk(void)
-{
-       struct pcpu_chunk *chunk;
-
-       chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
-       if (!chunk)
-               return NULL;
-
-       chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
-       chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
-       chunk->map[chunk->map_used++] = pcpu_unit_size;
-
-       chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
-                                      pcpu_nr_groups, pcpu_atom_size,
-                                      GFP_KERNEL);
-       if (!chunk->vms) {
-               free_pcpu_chunk(chunk);
-               return NULL;
-       }
-
-       INIT_LIST_HEAD(&chunk->list);
-       chunk->free_size = pcpu_unit_size;
-       chunk->contig_hint = pcpu_unit_size;
-       chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0];
-
-       return chunk;
+       addr += pcpu_unit_offsets[raw_smp_processor_id()];
+       return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
 }
 
 /**
@@ -1142,7 +777,7 @@ restart:
        /* hmmm... no space left, create a new chunk */
        spin_unlock_irqrestore(&pcpu_lock, flags);
 
-       chunk = alloc_pcpu_chunk();
+       chunk = pcpu_create_chunk();
        if (!chunk) {
                err = "failed to allocate new chunk";
                goto fail_unlock_mutex;
@@ -1254,7 +889,7 @@ static void pcpu_reclaim(struct work_struct *work)
 
        list_for_each_entry_safe(chunk, next, &todo, list) {
                pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
-               free_pcpu_chunk(chunk);
+               pcpu_destroy_chunk(chunk);
        }
 
        mutex_unlock(&pcpu_alloc_mutex);
@@ -1343,11 +978,14 @@ bool is_kernel_percpu_address(unsigned long addr)
  */
 phys_addr_t per_cpu_ptr_to_phys(void *addr)
 {
-       if ((unsigned long)addr < VMALLOC_START ||
-                       (unsigned long)addr >= VMALLOC_END)
-               return __pa(addr);
-       else
-               return page_to_phys(vmalloc_to_page(addr));
+       if (pcpu_addr_in_first_chunk(addr)) {
+               if ((unsigned long)addr < VMALLOC_START ||
+                   (unsigned long)addr >= VMALLOC_END)
+                       return __pa(addr);
+               else
+                       return page_to_phys(vmalloc_to_page(addr));
+       } else
+               return page_to_phys(pcpu_addr_to_page(addr));
 }
 
 static inline size_t pcpu_calc_fc_sizes(size_t static_size,
@@ -1719,6 +1357,7 @@ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
        PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
        PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
        PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
+       PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
 
        /* process group information and build config tables accordingly */
        group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));