[PATCH] Streamline generic_file_* interfaces and filemap cleanups
[pandora-kernel.git] / mm / vmscan.c
index 8f35d7d..eca7031 100644 (file)
@@ -19,6 +19,7 @@
 #include <linux/pagemap.h>
 #include <linux/init.h>
 #include <linux/highmem.h>
+#include <linux/vmstat.h>
 #include <linux/file.h>
 #include <linux/writeback.h>
 #include <linux/blkdev.h>
@@ -370,7 +371,7 @@ static pageout_t pageout(struct page *page, struct address_space *mapping)
                        /* synchronous write or broken a_ops? */
                        ClearPageReclaim(page);
                }
-
+               inc_zone_page_state(page, NR_VMSCAN_WRITE);
                return PAGE_SUCCESS;
        }
 
@@ -383,11 +384,30 @@ int remove_mapping(struct address_space *mapping, struct page *page)
        BUG_ON(mapping != page_mapping(page));
 
        write_lock_irq(&mapping->tree_lock);
-
        /*
-        * The non-racy check for busy page.  It is critical to check
-        * PageDirty _after_ making sure that the page is freeable and
-        * not in use by anybody.       (pagecache + us == 2)
+        * The non racy check for a busy page.
+        *
+        * Must be careful with the order of the tests. When someone has
+        * a ref to the page, it may be possible that they dirty it then
+        * drop the reference. So if PageDirty is tested before page_count
+        * here, then the following race may occur:
+        *
+        * get_user_pages(&page);
+        * [user mapping goes away]
+        * write_to(page);
+        *                              !PageDirty(page)    [good]
+        * SetPageDirty(page);
+        * put_page(page);
+        *                              !page_count(page)   [good, discard it]
+        *
+        * [oops, our write_to data is lost]
+        *
+        * Reversing the order of the tests ensures such a situation cannot
+        * escape unnoticed. The smp_rmb is needed to ensure the page->flags
+        * load is not satisfied before that of page->_count.
+        *
+        * Note that if SetPageDirty is always performed via set_page_dirty,
+        * and thus under tree_lock, then this ordering is not required.
         */
        if (unlikely(page_count(page) != 2))
                goto cannot_free;
@@ -1378,7 +1398,7 @@ unsigned long shrink_all_memory(unsigned long nr_pages)
        for_each_zone(zone)
                lru_pages += zone->nr_active + zone->nr_inactive;
 
-       nr_slab = global_page_state(NR_SLAB);
+       nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
        /* If slab caches are huge, it's better to hit them first */
        while (nr_slab >= lru_pages) {
                reclaim_state.reclaimed_slab = 0;
@@ -1527,7 +1547,6 @@ int zone_reclaim_mode __read_mostly;
 #define RECLAIM_ZONE (1<<0)    /* Run shrink_cache on the zone */
 #define RECLAIM_WRITE (1<<1)   /* Writeout pages during reclaim */
 #define RECLAIM_SWAP (1<<2)    /* Swap pages out during reclaim */
-#define RECLAIM_SLAB (1<<3)    /* Do a global slab shrink if the zone is out of memory */
 
 /*
  * Priority for ZONE_RECLAIM. This determines the fraction of pages
@@ -1542,6 +1561,12 @@ int zone_reclaim_mode __read_mostly;
  */
 int sysctl_min_unmapped_ratio = 1;
 
+/*
+ * If the number of slab pages in a zone grows beyond this percentage then
+ * slab reclaim needs to occur.
+ */
+int sysctl_min_slab_ratio = 5;
+
 /*
  * Try to free up some pages from this zone through reclaim.
  */
@@ -1561,6 +1586,7 @@ static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
                .gfp_mask = gfp_mask,
                .swappiness = vm_swappiness,
        };
+       unsigned long slab_reclaimable;
 
        disable_swap_token();
        cond_resched();
@@ -1573,29 +1599,43 @@ static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
        reclaim_state.reclaimed_slab = 0;
        p->reclaim_state = &reclaim_state;
 
-       /*
-        * Free memory by calling shrink zone with increasing priorities
-        * until we have enough memory freed.
-        */
-       priority = ZONE_RECLAIM_PRIORITY;
-       do {
-               nr_reclaimed += shrink_zone(priority, zone, &sc);
-               priority--;
-       } while (priority >= 0 && nr_reclaimed < nr_pages);
+       if (zone_page_state(zone, NR_FILE_PAGES) -
+               zone_page_state(zone, NR_FILE_MAPPED) >
+               zone->min_unmapped_pages) {
+               /*
+                * Free memory by calling shrink zone with increasing
+                * priorities until we have enough memory freed.
+                */
+               priority = ZONE_RECLAIM_PRIORITY;
+               do {
+                       nr_reclaimed += shrink_zone(priority, zone, &sc);
+                       priority--;
+               } while (priority >= 0 && nr_reclaimed < nr_pages);
+       }
 
-       if (nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
+       slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
+       if (slab_reclaimable > zone->min_slab_pages) {
                /*
                 * shrink_slab() does not currently allow us to determine how
-                * many pages were freed in this zone. So we just shake the slab
-                * a bit and then go off node for this particular allocation
-                * despite possibly having freed enough memory to allocate in
-                * this zone.  If we freed local memory then the next
-                * allocations will be local again.
+                * many pages were freed in this zone. So we take the current
+                * number of slab pages and shake the slab until it is reduced
+                * by the same nr_pages that we used for reclaiming unmapped
+                * pages.
                 *
-                * shrink_slab will free memory on all zones and may take
-                * a long time.
+                * Note that shrink_slab will free memory on all zones and may
+                * take a long time.
+                */
+               while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
+                       zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
+                               slab_reclaimable - nr_pages)
+                       ;
+
+               /*
+                * Update nr_reclaimed by the number of slab pages we
+                * reclaimed from this zone.
                 */
-               shrink_slab(sc.nr_scanned, gfp_mask, order);
+               nr_reclaimed += slab_reclaimable -
+                       zone_page_state(zone, NR_SLAB_RECLAIMABLE);
        }
 
        p->reclaim_state = NULL;
@@ -1609,7 +1649,8 @@ int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
        int node_id;
 
        /*
-        * Zone reclaim reclaims unmapped file backed pages.
+        * Zone reclaim reclaims unmapped file backed pages and
+        * slab pages if we are over the defined limits.
         *
         * A small portion of unmapped file backed pages is needed for
         * file I/O otherwise pages read by file I/O will be immediately
@@ -1618,7 +1659,9 @@ int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
         * unmapped file backed pages.
         */
        if (zone_page_state(zone, NR_FILE_PAGES) -
-           zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_ratio)
+           zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
+           && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
+                       <= zone->min_slab_pages)
                return 0;
 
        /*
@@ -1638,7 +1681,7 @@ int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
         * over remote processors and spread off node memory allocations
         * as wide as possible.
         */
-       node_id = zone->zone_pgdat->node_id;
+       node_id = zone_to_nid(zone);
        mask = node_to_cpumask(node_id);
        if (!cpus_empty(mask) && node_id != numa_node_id())
                return 0;