[Bluetooth] Restrict well known PSM to privileged users
[pandora-kernel.git] / kernel / timer.c
index 654dd5d..c2a8ccf 100644 (file)
@@ -80,6 +80,138 @@ tvec_base_t boot_tvec_bases;
 EXPORT_SYMBOL(boot_tvec_bases);
 static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
 
+/**
+ * __round_jiffies - function to round jiffies to a full second
+ * @j: the time in (absolute) jiffies that should be rounded
+ * @cpu: the processor number on which the timeout will happen
+ *
+ * __round_jiffies rounds an absolute time in the future (in jiffies)
+ * up or down to (approximately) full seconds. This is useful for timers
+ * for which the exact time they fire does not matter too much, as long as
+ * they fire approximately every X seconds.
+ *
+ * By rounding these timers to whole seconds, all such timers will fire
+ * at the same time, rather than at various times spread out. The goal
+ * of this is to have the CPU wake up less, which saves power.
+ *
+ * The exact rounding is skewed for each processor to avoid all
+ * processors firing at the exact same time, which could lead
+ * to lock contention or spurious cache line bouncing.
+ *
+ * The return value is the rounded version of the "j" parameter.
+ */
+unsigned long __round_jiffies(unsigned long j, int cpu)
+{
+       int rem;
+       unsigned long original = j;
+
+       /*
+        * We don't want all cpus firing their timers at once hitting the
+        * same lock or cachelines, so we skew each extra cpu with an extra
+        * 3 jiffies. This 3 jiffies came originally from the mm/ code which
+        * already did this.
+        * The skew is done by adding 3*cpunr, then round, then subtract this
+        * extra offset again.
+        */
+       j += cpu * 3;
+
+       rem = j % HZ;
+
+       /*
+        * If the target jiffie is just after a whole second (which can happen
+        * due to delays of the timer irq, long irq off times etc etc) then
+        * we should round down to the whole second, not up. Use 1/4th second
+        * as cutoff for this rounding as an extreme upper bound for this.
+        */
+       if (rem < HZ/4) /* round down */
+               j = j - rem;
+       else /* round up */
+               j = j - rem + HZ;
+
+       /* now that we have rounded, subtract the extra skew again */
+       j -= cpu * 3;
+
+       if (j <= jiffies) /* rounding ate our timeout entirely; */
+               return original;
+       return j;
+}
+EXPORT_SYMBOL_GPL(__round_jiffies);
+
+/**
+ * __round_jiffies_relative - function to round jiffies to a full second
+ * @j: the time in (relative) jiffies that should be rounded
+ * @cpu: the processor number on which the timeout will happen
+ *
+ * __round_jiffies_relative rounds a time delta  in the future (in jiffies)
+ * up or down to (approximately) full seconds. This is useful for timers
+ * for which the exact time they fire does not matter too much, as long as
+ * they fire approximately every X seconds.
+ *
+ * By rounding these timers to whole seconds, all such timers will fire
+ * at the same time, rather than at various times spread out. The goal
+ * of this is to have the CPU wake up less, which saves power.
+ *
+ * The exact rounding is skewed for each processor to avoid all
+ * processors firing at the exact same time, which could lead
+ * to lock contention or spurious cache line bouncing.
+ *
+ * The return value is the rounded version of the "j" parameter.
+ */
+unsigned long __round_jiffies_relative(unsigned long j, int cpu)
+{
+       /*
+        * In theory the following code can skip a jiffy in case jiffies
+        * increments right between the addition and the later subtraction.
+        * However since the entire point of this function is to use approximate
+        * timeouts, it's entirely ok to not handle that.
+        */
+       return  __round_jiffies(j + jiffies, cpu) - jiffies;
+}
+EXPORT_SYMBOL_GPL(__round_jiffies_relative);
+
+/**
+ * round_jiffies - function to round jiffies to a full second
+ * @j: the time in (absolute) jiffies that should be rounded
+ *
+ * round_jiffies rounds an absolute time in the future (in jiffies)
+ * up or down to (approximately) full seconds. This is useful for timers
+ * for which the exact time they fire does not matter too much, as long as
+ * they fire approximately every X seconds.
+ *
+ * By rounding these timers to whole seconds, all such timers will fire
+ * at the same time, rather than at various times spread out. The goal
+ * of this is to have the CPU wake up less, which saves power.
+ *
+ * The return value is the rounded version of the "j" parameter.
+ */
+unsigned long round_jiffies(unsigned long j)
+{
+       return __round_jiffies(j, raw_smp_processor_id());
+}
+EXPORT_SYMBOL_GPL(round_jiffies);
+
+/**
+ * round_jiffies_relative - function to round jiffies to a full second
+ * @j: the time in (relative) jiffies that should be rounded
+ *
+ * round_jiffies_relative rounds a time delta  in the future (in jiffies)
+ * up or down to (approximately) full seconds. This is useful for timers
+ * for which the exact time they fire does not matter too much, as long as
+ * they fire approximately every X seconds.
+ *
+ * By rounding these timers to whole seconds, all such timers will fire
+ * at the same time, rather than at various times spread out. The goal
+ * of this is to have the CPU wake up less, which saves power.
+ *
+ * The return value is the rounded version of the "j" parameter.
+ */
+unsigned long round_jiffies_relative(unsigned long j)
+{
+       return __round_jiffies_relative(j, raw_smp_processor_id());
+}
+EXPORT_SYMBOL_GPL(round_jiffies_relative);
+
+
 static inline void set_running_timer(tvec_base_t *base,
                                        struct timer_list *timer)
 {
@@ -714,7 +846,7 @@ static int change_clocksource(void)
                clock = new;
                clock->cycle_last = now;
                printk(KERN_INFO "Time: %s clocksource has been installed.\n",
-                                       clock->name);
+                      clock->name);
                return 1;
        } else if (clock->update_callback) {
                return clock->update_callback();
@@ -722,7 +854,10 @@ static int change_clocksource(void)
        return 0;
 }
 #else
-#define change_clocksource() (0)
+static inline int change_clocksource(void)
+{
+       return 0;
+}
 #endif
 
 /**
@@ -768,7 +903,7 @@ static int timekeeping_suspended;
  * @dev:       unused
  *
  * This is for the generic clocksource timekeeping.
- * xtime/wall_to_monotonic/jiffies/wall_jiffies/etc are
+ * xtime/wall_to_monotonic/jiffies/etc are
  * still managed by arch specific suspend/resume code.
  */
 static int timekeeping_resume(struct sys_device *dev)
@@ -820,7 +955,8 @@ device_initcall(timekeeping_init_device);
  * If the error is already larger, we look ahead even further
  * to compensate for late or lost adjustments.
  */
-static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, s64 *offset)
+static __always_inline int clocksource_bigadjust(s64 error, s64 *interval,
+                                                s64 *offset)
 {
        s64 tick_error, i;
        u32 look_ahead, adj;
@@ -844,7 +980,8 @@ static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, s64 *
         * Now calculate the error in (1 << look_ahead) ticks, but first
         * remove the single look ahead already included in the error.
         */
-       tick_error = current_tick_length() >> (TICK_LENGTH_SHIFT - clock->shift + 1);
+       tick_error = current_tick_length() >>
+               (TICK_LENGTH_SHIFT - clock->shift + 1);
        tick_error -= clock->xtime_interval >> 1;
        error = ((error - tick_error) >> look_ahead) + tick_error;
 
@@ -896,7 +1033,8 @@ static void clocksource_adjust(struct clocksource *clock, s64 offset)
        clock->mult += adj;
        clock->xtime_interval += interval;
        clock->xtime_nsec -= offset;
-       clock->error -= (interval - offset) << (TICK_LENGTH_SHIFT - clock->shift);
+       clock->error -= (interval - offset) <<
+                       (TICK_LENGTH_SHIFT - clock->shift);
 }
 
 /**
@@ -1008,17 +1146,18 @@ static inline void calc_load(unsigned long ticks)
        unsigned long active_tasks; /* fixed-point */
        static int count = LOAD_FREQ;
 
-       active_tasks = count_active_tasks();
-       for (count -= ticks; count < 0; count += LOAD_FREQ) {
-               CALC_LOAD(avenrun[0], EXP_1, active_tasks);
-               CALC_LOAD(avenrun[1], EXP_5, active_tasks);
-               CALC_LOAD(avenrun[2], EXP_15, active_tasks);
+       count -= ticks;
+       if (unlikely(count < 0)) {
+               active_tasks = count_active_tasks();
+               do {
+                       CALC_LOAD(avenrun[0], EXP_1, active_tasks);
+                       CALC_LOAD(avenrun[1], EXP_5, active_tasks);
+                       CALC_LOAD(avenrun[2], EXP_15, active_tasks);
+                       count += LOAD_FREQ;
+               } while (count < 0);
        }
 }
 
-/* jiffies at the most recent update of wall time */
-unsigned long wall_jiffies = INITIAL_JIFFIES;
-
 /*
  * This read-write spinlock protects us from races in SMP while
  * playing with xtime and avenrun.
@@ -1056,7 +1195,6 @@ void run_local_timers(void)
  */
 static inline void update_times(unsigned long ticks)
 {
-       wall_jiffies += ticks;
        update_wall_time();
        calc_load(ticks);
 }
@@ -1206,11 +1344,10 @@ fastcall signed long __sched schedule_timeout(signed long timeout)
                 * should never happens anyway). You just have the printk()
                 * that will tell you if something is gone wrong and where.
                 */
-               if (timeout < 0)
-               {
+               if (timeout < 0) {
                        printk(KERN_ERR "schedule_timeout: wrong timeout "
-                               "value %lx from %p\n", timeout,
-                               __builtin_return_address(0));
+                               "value %lx\n", timeout);
+                       dump_stack();
                        current->state = TASK_RUNNING;
                        goto out;
                }