dm: add persistent data library
[pandora-kernel.git] / drivers / md / persistent-data / dm-btree.c
diff --git a/drivers/md/persistent-data/dm-btree.c b/drivers/md/persistent-data/dm-btree.c
new file mode 100644 (file)
index 0000000..e0638be
--- /dev/null
@@ -0,0 +1,805 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-btree-internal.h"
+#include "dm-space-map.h"
+#include "dm-transaction-manager.h"
+
+#include <linux/module.h>
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "btree"
+
+/*----------------------------------------------------------------
+ * Array manipulation
+ *--------------------------------------------------------------*/
+static void memcpy_disk(void *dest, const void *src, size_t len)
+       __dm_written_to_disk(src)
+{
+       memcpy(dest, src, len);
+       __dm_unbless_for_disk(src);
+}
+
+static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
+                        unsigned index, void *elt)
+       __dm_written_to_disk(elt)
+{
+       if (index < nr_elts)
+               memmove(base + (elt_size * (index + 1)),
+                       base + (elt_size * index),
+                       (nr_elts - index) * elt_size);
+
+       memcpy_disk(base + (elt_size * index), elt, elt_size);
+}
+
+/*----------------------------------------------------------------*/
+
+/* makes the assumption that no two keys are the same. */
+static int bsearch(struct node *n, uint64_t key, int want_hi)
+{
+       int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
+
+       while (hi - lo > 1) {
+               int mid = lo + ((hi - lo) / 2);
+               uint64_t mid_key = le64_to_cpu(n->keys[mid]);
+
+               if (mid_key == key)
+                       return mid;
+
+               if (mid_key < key)
+                       lo = mid;
+               else
+                       hi = mid;
+       }
+
+       return want_hi ? hi : lo;
+}
+
+int lower_bound(struct node *n, uint64_t key)
+{
+       return bsearch(n, key, 0);
+}
+
+void inc_children(struct dm_transaction_manager *tm, struct node *n,
+                 struct dm_btree_value_type *vt)
+{
+       unsigned i;
+       uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
+
+       if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
+               for (i = 0; i < nr_entries; i++)
+                       dm_tm_inc(tm, value64(n, i));
+       else if (vt->inc)
+               for (i = 0; i < nr_entries; i++)
+                       vt->inc(vt->context,
+                               value_ptr(n, i, vt->size));
+}
+
+static int insert_at(size_t value_size, struct node *node, unsigned index,
+                     uint64_t key, void *value)
+                     __dm_written_to_disk(value)
+{
+       uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
+       __le64 key_le = cpu_to_le64(key);
+
+       if (index > nr_entries ||
+           index >= le32_to_cpu(node->header.max_entries)) {
+               DMERR("too many entries in btree node for insert");
+               __dm_unbless_for_disk(value);
+               return -ENOMEM;
+       }
+
+       __dm_bless_for_disk(&key_le);
+
+       array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
+       array_insert(value_base(node), value_size, nr_entries, index, value);
+       node->header.nr_entries = cpu_to_le32(nr_entries + 1);
+
+       return 0;
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * We want 3n entries (for some n).  This works more nicely for repeated
+ * insert remove loops than (2n + 1).
+ */
+static uint32_t calc_max_entries(size_t value_size, size_t block_size)
+{
+       uint32_t total, n;
+       size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
+
+       block_size -= sizeof(struct node_header);
+       total = block_size / elt_size;
+       n = total / 3;          /* rounds down */
+
+       return 3 * n;
+}
+
+int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
+{
+       int r;
+       struct dm_block *b;
+       struct node *n;
+       size_t block_size;
+       uint32_t max_entries;
+
+       r = new_block(info, &b);
+       if (r < 0)
+               return r;
+
+       block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
+       max_entries = calc_max_entries(info->value_type.size, block_size);
+
+       n = dm_block_data(b);
+       memset(n, 0, block_size);
+       n->header.flags = cpu_to_le32(LEAF_NODE);
+       n->header.nr_entries = cpu_to_le32(0);
+       n->header.max_entries = cpu_to_le32(max_entries);
+       n->header.value_size = cpu_to_le32(info->value_type.size);
+
+       *root = dm_block_location(b);
+       return unlock_block(info, b);
+}
+EXPORT_SYMBOL_GPL(dm_btree_empty);
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Deletion uses a recursive algorithm, since we have limited stack space
+ * we explicitly manage our own stack on the heap.
+ */
+#define MAX_SPINE_DEPTH 64
+struct frame {
+       struct dm_block *b;
+       struct node *n;
+       unsigned level;
+       unsigned nr_children;
+       unsigned current_child;
+};
+
+struct del_stack {
+       struct dm_transaction_manager *tm;
+       int top;
+       struct frame spine[MAX_SPINE_DEPTH];
+};
+
+static int top_frame(struct del_stack *s, struct frame **f)
+{
+       if (s->top < 0) {
+               DMERR("btree deletion stack empty");
+               return -EINVAL;
+       }
+
+       *f = s->spine + s->top;
+
+       return 0;
+}
+
+static int unprocessed_frames(struct del_stack *s)
+{
+       return s->top >= 0;
+}
+
+static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
+{
+       int r;
+       uint32_t ref_count;
+
+       if (s->top >= MAX_SPINE_DEPTH - 1) {
+               DMERR("btree deletion stack out of memory");
+               return -ENOMEM;
+       }
+
+       r = dm_tm_ref(s->tm, b, &ref_count);
+       if (r)
+               return r;
+
+       if (ref_count > 1)
+               /*
+                * This is a shared node, so we can just decrement it's
+                * reference counter and leave the children.
+                */
+               dm_tm_dec(s->tm, b);
+
+       else {
+               struct frame *f = s->spine + ++s->top;
+
+               r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
+               if (r) {
+                       s->top--;
+                       return r;
+               }
+
+               f->n = dm_block_data(f->b);
+               f->level = level;
+               f->nr_children = le32_to_cpu(f->n->header.nr_entries);
+               f->current_child = 0;
+       }
+
+       return 0;
+}
+
+static void pop_frame(struct del_stack *s)
+{
+       struct frame *f = s->spine + s->top--;
+
+       dm_tm_dec(s->tm, dm_block_location(f->b));
+       dm_tm_unlock(s->tm, f->b);
+}
+
+int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
+{
+       int r;
+       struct del_stack *s;
+
+       s = kmalloc(sizeof(*s), GFP_KERNEL);
+       if (!s)
+               return -ENOMEM;
+       s->tm = info->tm;
+       s->top = -1;
+
+       r = push_frame(s, root, 1);
+       if (r)
+               goto out;
+
+       while (unprocessed_frames(s)) {
+               uint32_t flags;
+               struct frame *f;
+               dm_block_t b;
+
+               r = top_frame(s, &f);
+               if (r)
+                       goto out;
+
+               if (f->current_child >= f->nr_children) {
+                       pop_frame(s);
+                       continue;
+               }
+
+               flags = le32_to_cpu(f->n->header.flags);
+               if (flags & INTERNAL_NODE) {
+                       b = value64(f->n, f->current_child);
+                       f->current_child++;
+                       r = push_frame(s, b, f->level);
+                       if (r)
+                               goto out;
+
+               } else if (f->level != (info->levels - 1)) {
+                       b = value64(f->n, f->current_child);
+                       f->current_child++;
+                       r = push_frame(s, b, f->level + 1);
+                       if (r)
+                               goto out;
+
+               } else {
+                       if (info->value_type.dec) {
+                               unsigned i;
+
+                               for (i = 0; i < f->nr_children; i++)
+                                       info->value_type.dec(info->value_type.context,
+                                                            value_ptr(f->n, i, info->value_type.size));
+                       }
+                       f->current_child = f->nr_children;
+               }
+       }
+
+out:
+       kfree(s);
+       return r;
+}
+EXPORT_SYMBOL_GPL(dm_btree_del);
+
+/*----------------------------------------------------------------*/
+
+static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
+                           int (*search_fn)(struct node *, uint64_t),
+                           uint64_t *result_key, void *v, size_t value_size)
+{
+       int i, r;
+       uint32_t flags, nr_entries;
+
+       do {
+               r = ro_step(s, block);
+               if (r < 0)
+                       return r;
+
+               i = search_fn(ro_node(s), key);
+
+               flags = le32_to_cpu(ro_node(s)->header.flags);
+               nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
+               if (i < 0 || i >= nr_entries)
+                       return -ENODATA;
+
+               if (flags & INTERNAL_NODE)
+                       block = value64(ro_node(s), i);
+
+       } while (!(flags & LEAF_NODE));
+
+       *result_key = le64_to_cpu(ro_node(s)->keys[i]);
+       memcpy(v, value_ptr(ro_node(s), i, value_size), value_size);
+
+       return 0;
+}
+
+int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
+                   uint64_t *keys, void *value_le)
+{
+       unsigned level, last_level = info->levels - 1;
+       int r = -ENODATA;
+       uint64_t rkey;
+       __le64 internal_value_le;
+       struct ro_spine spine;
+
+       init_ro_spine(&spine, info);
+       for (level = 0; level < info->levels; level++) {
+               size_t size;
+               void *value_p;
+
+               if (level == last_level) {
+                       value_p = value_le;
+                       size = info->value_type.size;
+
+               } else {
+                       value_p = &internal_value_le;
+                       size = sizeof(uint64_t);
+               }
+
+               r = btree_lookup_raw(&spine, root, keys[level],
+                                    lower_bound, &rkey,
+                                    value_p, size);
+
+               if (!r) {
+                       if (rkey != keys[level]) {
+                               exit_ro_spine(&spine);
+                               return -ENODATA;
+                       }
+               } else {
+                       exit_ro_spine(&spine);
+                       return r;
+               }
+
+               root = le64_to_cpu(internal_value_le);
+       }
+       exit_ro_spine(&spine);
+
+       return r;
+}
+EXPORT_SYMBOL_GPL(dm_btree_lookup);
+
+/*
+ * Splits a node by creating a sibling node and shifting half the nodes
+ * contents across.  Assumes there is a parent node, and it has room for
+ * another child.
+ *
+ * Before:
+ *       +--------+
+ *       | Parent |
+ *       +--------+
+ *          |
+ *          v
+ *     +----------+
+ *     | A ++++++ |
+ *     +----------+
+ *
+ *
+ * After:
+ *             +--------+
+ *             | Parent |
+ *             +--------+
+ *               |     |
+ *               v     +------+
+ *         +---------+        |
+ *         | A* +++  |        v
+ *         +---------+   +-------+
+ *                       | B +++ |
+ *                       +-------+
+ *
+ * Where A* is a shadow of A.
+ */
+static int btree_split_sibling(struct shadow_spine *s, dm_block_t root,
+                              unsigned parent_index, uint64_t key)
+{
+       int r;
+       size_t size;
+       unsigned nr_left, nr_right;
+       struct dm_block *left, *right, *parent;
+       struct node *ln, *rn, *pn;
+       __le64 location;
+
+       left = shadow_current(s);
+
+       r = new_block(s->info, &right);
+       if (r < 0)
+               return r;
+
+       ln = dm_block_data(left);
+       rn = dm_block_data(right);
+
+       nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
+       nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
+
+       ln->header.nr_entries = cpu_to_le32(nr_left);
+
+       rn->header.flags = ln->header.flags;
+       rn->header.nr_entries = cpu_to_le32(nr_right);
+       rn->header.max_entries = ln->header.max_entries;
+       rn->header.value_size = ln->header.value_size;
+       memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
+
+       size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
+               sizeof(uint64_t) : s->info->value_type.size;
+       memcpy(value_ptr(rn, 0, size), value_ptr(ln, nr_left, size),
+              size * nr_right);
+
+       /*
+        * Patch up the parent
+        */
+       parent = shadow_parent(s);
+
+       pn = dm_block_data(parent);
+       location = cpu_to_le64(dm_block_location(left));
+       __dm_bless_for_disk(&location);
+       memcpy_disk(value_ptr(pn, parent_index, sizeof(__le64)),
+                   &location, sizeof(__le64));
+
+       location = cpu_to_le64(dm_block_location(right));
+       __dm_bless_for_disk(&location);
+
+       r = insert_at(sizeof(__le64), pn, parent_index + 1,
+                     le64_to_cpu(rn->keys[0]), &location);
+       if (r)
+               return r;
+
+       if (key < le64_to_cpu(rn->keys[0])) {
+               unlock_block(s->info, right);
+               s->nodes[1] = left;
+       } else {
+               unlock_block(s->info, left);
+               s->nodes[1] = right;
+       }
+
+       return 0;
+}
+
+/*
+ * Splits a node by creating two new children beneath the given node.
+ *
+ * Before:
+ *       +----------+
+ *       | A ++++++ |
+ *       +----------+
+ *
+ *
+ * After:
+ *     +------------+
+ *     | A (shadow) |
+ *     +------------+
+ *         |   |
+ *   +------+  +----+
+ *   |              |
+ *   v              v
+ * +-------+    +-------+
+ * | B +++ |    | C +++ |
+ * +-------+    +-------+
+ */
+static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
+{
+       int r;
+       size_t size;
+       unsigned nr_left, nr_right;
+       struct dm_block *left, *right, *new_parent;
+       struct node *pn, *ln, *rn;
+       __le64 val;
+
+       new_parent = shadow_current(s);
+
+       r = new_block(s->info, &left);
+       if (r < 0)
+               return r;
+
+       r = new_block(s->info, &right);
+       if (r < 0) {
+               /* FIXME: put left */
+               return r;
+       }
+
+       pn = dm_block_data(new_parent);
+       ln = dm_block_data(left);
+       rn = dm_block_data(right);
+
+       nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
+       nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
+
+       ln->header.flags = pn->header.flags;
+       ln->header.nr_entries = cpu_to_le32(nr_left);
+       ln->header.max_entries = pn->header.max_entries;
+       ln->header.value_size = pn->header.value_size;
+
+       rn->header.flags = pn->header.flags;
+       rn->header.nr_entries = cpu_to_le32(nr_right);
+       rn->header.max_entries = pn->header.max_entries;
+       rn->header.value_size = pn->header.value_size;
+
+       memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
+       memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
+
+       size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
+               sizeof(__le64) : s->info->value_type.size;
+       memcpy(value_ptr(ln, 0, size), value_ptr(pn, 0, size), nr_left * size);
+       memcpy(value_ptr(rn, 0, size), value_ptr(pn, nr_left, size),
+              nr_right * size);
+
+       /* new_parent should just point to l and r now */
+       pn->header.flags = cpu_to_le32(INTERNAL_NODE);
+       pn->header.nr_entries = cpu_to_le32(2);
+       pn->header.max_entries = cpu_to_le32(
+               calc_max_entries(sizeof(__le64),
+                                dm_bm_block_size(
+                                        dm_tm_get_bm(s->info->tm))));
+       pn->header.value_size = cpu_to_le32(sizeof(__le64));
+
+       val = cpu_to_le64(dm_block_location(left));
+       __dm_bless_for_disk(&val);
+       pn->keys[0] = ln->keys[0];
+       memcpy_disk(value_ptr(pn, 0, sizeof(__le64)), &val, sizeof(__le64));
+
+       val = cpu_to_le64(dm_block_location(right));
+       __dm_bless_for_disk(&val);
+       pn->keys[1] = rn->keys[0];
+       memcpy_disk(value_ptr(pn, 1, sizeof(__le64)), &val, sizeof(__le64));
+
+       /*
+        * rejig the spine.  This is ugly, since it knows too
+        * much about the spine
+        */
+       if (s->nodes[0] != new_parent) {
+               unlock_block(s->info, s->nodes[0]);
+               s->nodes[0] = new_parent;
+       }
+       if (key < le64_to_cpu(rn->keys[0])) {
+               unlock_block(s->info, right);
+               s->nodes[1] = left;
+       } else {
+               unlock_block(s->info, left);
+               s->nodes[1] = right;
+       }
+       s->count = 2;
+
+       return 0;
+}
+
+static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
+                           struct dm_btree_value_type *vt,
+                           uint64_t key, unsigned *index)
+{
+       int r, i = *index, top = 1;
+       struct node *node;
+
+       for (;;) {
+               r = shadow_step(s, root, vt);
+               if (r < 0)
+                       return r;
+
+               node = dm_block_data(shadow_current(s));
+
+               /*
+                * We have to patch up the parent node, ugly, but I don't
+                * see a way to do this automatically as part of the spine
+                * op.
+                */
+               if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
+                       __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
+
+                       __dm_bless_for_disk(&location);
+                       memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i, sizeof(uint64_t)),
+                                   &location, sizeof(__le64));
+               }
+
+               node = dm_block_data(shadow_current(s));
+
+               if (node->header.nr_entries == node->header.max_entries) {
+                       if (top)
+                               r = btree_split_beneath(s, key);
+                       else
+                               r = btree_split_sibling(s, root, i, key);
+
+                       if (r < 0)
+                               return r;
+               }
+
+               node = dm_block_data(shadow_current(s));
+
+               i = lower_bound(node, key);
+
+               if (le32_to_cpu(node->header.flags) & LEAF_NODE)
+                       break;
+
+               if (i < 0) {
+                       /* change the bounds on the lowest key */
+                       node->keys[0] = cpu_to_le64(key);
+                       i = 0;
+               }
+
+               root = value64(node, i);
+               top = 0;
+       }
+
+       if (i < 0 || le64_to_cpu(node->keys[i]) != key)
+               i++;
+
+       *index = i;
+       return 0;
+}
+
+static int insert(struct dm_btree_info *info, dm_block_t root,
+                 uint64_t *keys, void *value, dm_block_t *new_root,
+                 int *inserted)
+                 __dm_written_to_disk(value)
+{
+       int r, need_insert;
+       unsigned level, index = -1, last_level = info->levels - 1;
+       dm_block_t block = root;
+       struct shadow_spine spine;
+       struct node *n;
+       struct dm_btree_value_type le64_type;
+
+       le64_type.context = NULL;
+       le64_type.size = sizeof(__le64);
+       le64_type.inc = NULL;
+       le64_type.dec = NULL;
+       le64_type.equal = NULL;
+
+       init_shadow_spine(&spine, info);
+
+       for (level = 0; level < (info->levels - 1); level++) {
+               r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
+               if (r < 0)
+                       goto bad;
+
+               n = dm_block_data(shadow_current(&spine));
+               need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
+                              (le64_to_cpu(n->keys[index]) != keys[level]));
+
+               if (need_insert) {
+                       dm_block_t new_tree;
+                       __le64 new_le;
+
+                       r = dm_btree_empty(info, &new_tree);
+                       if (r < 0)
+                               goto bad;
+
+                       new_le = cpu_to_le64(new_tree);
+                       __dm_bless_for_disk(&new_le);
+
+                       r = insert_at(sizeof(uint64_t), n, index,
+                                     keys[level], &new_le);
+                       if (r)
+                               goto bad;
+               }
+
+               if (level < last_level)
+                       block = value64(n, index);
+       }
+
+       r = btree_insert_raw(&spine, block, &info->value_type,
+                            keys[level], &index);
+       if (r < 0)
+               goto bad;
+
+       n = dm_block_data(shadow_current(&spine));
+       need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
+                      (le64_to_cpu(n->keys[index]) != keys[level]));
+
+       if (need_insert) {
+               if (inserted)
+                       *inserted = 1;
+
+               r = insert_at(info->value_type.size, n, index,
+                             keys[level], value);
+               if (r)
+                       goto bad_unblessed;
+       } else {
+               if (inserted)
+                       *inserted = 0;
+
+               if (info->value_type.dec &&
+                   (!info->value_type.equal ||
+                    !info->value_type.equal(
+                            info->value_type.context,
+                            value_ptr(n, index, info->value_type.size),
+                            value))) {
+                       info->value_type.dec(info->value_type.context,
+                                            value_ptr(n, index, info->value_type.size));
+               }
+               memcpy_disk(value_ptr(n, index, info->value_type.size),
+                           value, info->value_type.size);
+       }
+
+       *new_root = shadow_root(&spine);
+       exit_shadow_spine(&spine);
+
+       return 0;
+
+bad:
+       __dm_unbless_for_disk(value);
+bad_unblessed:
+       exit_shadow_spine(&spine);
+       return r;
+}
+
+int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
+                   uint64_t *keys, void *value, dm_block_t *new_root)
+                   __dm_written_to_disk(value)
+{
+       return insert(info, root, keys, value, new_root, NULL);
+}
+EXPORT_SYMBOL_GPL(dm_btree_insert);
+
+int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
+                          uint64_t *keys, void *value, dm_block_t *new_root,
+                          int *inserted)
+                          __dm_written_to_disk(value)
+{
+       return insert(info, root, keys, value, new_root, inserted);
+}
+EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
+
+/*----------------------------------------------------------------*/
+
+static int find_highest_key(struct ro_spine *s, dm_block_t block,
+                           uint64_t *result_key, dm_block_t *next_block)
+{
+       int i, r;
+       uint32_t flags;
+
+       do {
+               r = ro_step(s, block);
+               if (r < 0)
+                       return r;
+
+               flags = le32_to_cpu(ro_node(s)->header.flags);
+               i = le32_to_cpu(ro_node(s)->header.nr_entries);
+               if (!i)
+                       return -ENODATA;
+               else
+                       i--;
+
+               *result_key = le64_to_cpu(ro_node(s)->keys[i]);
+               if (next_block || flags & INTERNAL_NODE)
+                       block = value64(ro_node(s), i);
+
+       } while (flags & INTERNAL_NODE);
+
+       if (next_block)
+               *next_block = block;
+       return 0;
+}
+
+int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
+                             uint64_t *result_keys)
+{
+       int r = 0, count = 0, level;
+       struct ro_spine spine;
+
+       init_ro_spine(&spine, info);
+       for (level = 0; level < info->levels; level++) {
+               r = find_highest_key(&spine, root, result_keys + level,
+                                    level == info->levels - 1 ? NULL : &root);
+               if (r == -ENODATA) {
+                       r = 0;
+                       break;
+
+               } else if (r)
+                       break;
+
+               count++;
+       }
+       exit_ro_spine(&spine);
+
+       return r ? r : count;
+}
+EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);