[CRYPTO] Use standard byte order macros wherever possible
[pandora-kernel.git] / crypto / tea.c
index 5924efd..e0077c7 100644 (file)
 #include <linux/init.h>
 #include <linux/module.h>
 #include <linux/mm.h>
+#include <asm/byteorder.h>
 #include <asm/scatterlist.h>
 #include <linux/crypto.h>
+#include <linux/types.h>
 
 #define TEA_KEY_SIZE           16
 #define TEA_BLOCK_SIZE         8
@@ -35,9 +37,6 @@
 #define XTEA_ROUNDS            32
 #define XTEA_DELTA             0x9e3779b9
 
-#define u32_in(x) le32_to_cpu(*(const __le32 *)(x))
-#define u32_out(to, from) (*(__le32 *)(to) = cpu_to_le32(from))
-
 struct tea_ctx {
        u32 KEY[4];
 };
@@ -49,8 +48,8 @@ struct xtea_ctx {
 static int tea_setkey(void *ctx_arg, const u8 *in_key,
                        unsigned int key_len, u32 *flags)
 { 
-
        struct tea_ctx *ctx = ctx_arg;
+       const __le32 *key = (const __le32 *)in_key;
        
        if (key_len != 16)
        {
@@ -58,10 +57,10 @@ static int tea_setkey(void *ctx_arg, const u8 *in_key,
                return -EINVAL;
        }
 
-       ctx->KEY[0] = u32_in (in_key);
-       ctx->KEY[1] = u32_in (in_key + 4);
-       ctx->KEY[2] = u32_in (in_key + 8);
-       ctx->KEY[3] = u32_in (in_key + 12);
+       ctx->KEY[0] = le32_to_cpu(key[0]);
+       ctx->KEY[1] = le32_to_cpu(key[1]);
+       ctx->KEY[2] = le32_to_cpu(key[2]);
+       ctx->KEY[3] = le32_to_cpu(key[3]);
 
        return 0; 
 
@@ -73,9 +72,11 @@ static void tea_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
        u32 k0, k1, k2, k3;
 
        struct tea_ctx *ctx = ctx_arg;
+       const __le32 *in = (const __le32 *)src;
+       __le32 *out = (__le32 *)dst;
 
-       y = u32_in (src);
-       z = u32_in (src + 4);
+       y = le32_to_cpu(in[0]);
+       z = le32_to_cpu(in[1]);
 
        k0 = ctx->KEY[0];
        k1 = ctx->KEY[1];
@@ -90,19 +91,20 @@ static void tea_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
                z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
        }
        
-       u32_out (dst, y);
-       u32_out (dst + 4, z);
+       out[0] = cpu_to_le32(y);
+       out[1] = cpu_to_le32(z);
 }
 
 static void tea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
 { 
        u32 y, z, n, sum;
        u32 k0, k1, k2, k3;
-
        struct tea_ctx *ctx = ctx_arg;
+       const __le32 *in = (const __le32 *)src;
+       __le32 *out = (__le32 *)dst;
 
-       y = u32_in (src);
-       z = u32_in (src + 4);
+       y = le32_to_cpu(in[0]);
+       z = le32_to_cpu(in[1]);
 
        k0 = ctx->KEY[0];
        k1 = ctx->KEY[1];
@@ -119,16 +121,15 @@ static void tea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
                sum -= TEA_DELTA;
        }
        
-       u32_out (dst, y);
-       u32_out (dst + 4, z);
-
+       out[0] = cpu_to_le32(y);
+       out[1] = cpu_to_le32(z);
 }
 
 static int xtea_setkey(void *ctx_arg, const u8 *in_key,
                        unsigned int key_len, u32 *flags)
 { 
-
        struct xtea_ctx *ctx = ctx_arg;
+       const __le32 *key = (const __le32 *)in_key;
        
        if (key_len != 16)
        {
@@ -136,10 +137,10 @@ static int xtea_setkey(void *ctx_arg, const u8 *in_key,
                return -EINVAL;
        }
 
-       ctx->KEY[0] = u32_in (in_key);
-       ctx->KEY[1] = u32_in (in_key + 4);
-       ctx->KEY[2] = u32_in (in_key + 8);
-       ctx->KEY[3] = u32_in (in_key + 12);
+       ctx->KEY[0] = le32_to_cpu(key[0]);
+       ctx->KEY[1] = le32_to_cpu(key[1]);
+       ctx->KEY[2] = le32_to_cpu(key[2]);
+       ctx->KEY[3] = le32_to_cpu(key[3]);
 
        return 0; 
 
@@ -147,14 +148,15 @@ static int xtea_setkey(void *ctx_arg, const u8 *in_key,
 
 static void xtea_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
 { 
-
        u32 y, z, sum = 0;
        u32 limit = XTEA_DELTA * XTEA_ROUNDS;
 
        struct xtea_ctx *ctx = ctx_arg;
+       const __le32 *in = (const __le32 *)src;
+       __le32 *out = (__le32 *)dst;
 
-       y = u32_in (src);
-       z = u32_in (src + 4);
+       y = le32_to_cpu(in[0]);
+       z = le32_to_cpu(in[1]);
 
        while (sum != limit) {
                y += ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum&3]); 
@@ -162,19 +164,19 @@ static void xtea_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
                z += ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 &3]); 
        }
        
-       u32_out (dst, y);
-       u32_out (dst + 4, z);
-
+       out[0] = cpu_to_le32(y);
+       out[1] = cpu_to_le32(z);
 }
 
 static void xtea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
 { 
-
        u32 y, z, sum;
        struct tea_ctx *ctx = ctx_arg;
+       const __le32 *in = (const __le32 *)src;
+       __le32 *out = (__le32 *)dst;
 
-       y = u32_in (src);
-       z = u32_in (src + 4);
+       y = le32_to_cpu(in[0]);
+       z = le32_to_cpu(in[1]);
 
        sum = XTEA_DELTA * XTEA_ROUNDS;
 
@@ -184,22 +186,22 @@ static void xtea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
                y -= ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum & 3]);
        }
        
-       u32_out (dst, y);
-       u32_out (dst + 4, z);
-
+       out[0] = cpu_to_le32(y);
+       out[1] = cpu_to_le32(z);
 }
 
 
 static void xeta_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
 { 
-
        u32 y, z, sum = 0;
        u32 limit = XTEA_DELTA * XTEA_ROUNDS;
 
        struct xtea_ctx *ctx = ctx_arg;
+       const __le32 *in = (const __le32 *)src;
+       __le32 *out = (__le32 *)dst;
 
-       y = u32_in (src);
-       z = u32_in (src + 4);
+       y = le32_to_cpu(in[0]);
+       z = le32_to_cpu(in[1]);
 
        while (sum != limit) {
                y += (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum&3];
@@ -207,19 +209,19 @@ static void xeta_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
                z += (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 &3];
        }
        
-       u32_out (dst, y);
-       u32_out (dst + 4, z);
-
+       out[0] = cpu_to_le32(y);
+       out[1] = cpu_to_le32(z);
 }
 
 static void xeta_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
 { 
-
        u32 y, z, sum;
        struct tea_ctx *ctx = ctx_arg;
+       const __le32 *in = (const __le32 *)src;
+       __le32 *out = (__le32 *)dst;
 
-       y = u32_in (src);
-       z = u32_in (src + 4);
+       y = le32_to_cpu(in[0]);
+       z = le32_to_cpu(in[1]);
 
        sum = XTEA_DELTA * XTEA_ROUNDS;
 
@@ -229,9 +231,8 @@ static void xeta_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
                y -= (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum & 3];
        }
        
-       u32_out (dst, y);
-       u32_out (dst + 4, z);
-
+       out[0] = cpu_to_le32(y);
+       out[1] = cpu_to_le32(z);
 }
 
 static struct crypto_alg tea_alg = {