Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / arch / x86 / math-emu / poly_tan.c
index 8df3e03..1875763 100644 (file)
 #include "control_w.h"
 #include "poly.h"
 
-
 #define        HiPOWERop       3       /* odd poly, positive terms */
-static const unsigned long long oddplterm[HiPOWERop] =
-{
-  0x0000000000000000LL,
-  0x0051a1cf08fca228LL,
-  0x0000000071284ff7LL
+static const unsigned long long oddplterm[HiPOWERop] = {
+       0x0000000000000000LL,
+       0x0051a1cf08fca228LL,
+       0x0000000071284ff7LL
 };
 
 #define        HiPOWERon       2       /* odd poly, negative terms */
-static const unsigned long long oddnegterm[HiPOWERon] =
-{
-   0x1291a9a184244e80LL,
-   0x0000583245819c21LL
+static const unsigned long long oddnegterm[HiPOWERon] = {
+       0x1291a9a184244e80LL,
+       0x0000583245819c21LL
 };
 
 #define        HiPOWERep       2       /* even poly, positive terms */
-static const unsigned long long evenplterm[HiPOWERep] =
-{
-  0x0e848884b539e888LL,
-  0x00003c7f18b887daLL
+static const unsigned long long evenplterm[HiPOWERep] = {
+       0x0e848884b539e888LL,
+       0x00003c7f18b887daLL
 };
 
 #define        HiPOWERen       2       /* even poly, negative terms */
-static const unsigned long long evennegterm[HiPOWERen] =
-{
-  0xf1f0200fd51569ccLL,
-  0x003afb46105c4432LL
+static const unsigned long long evennegterm[HiPOWERen] = {
+       0xf1f0200fd51569ccLL,
+       0x003afb46105c4432LL
 };
 
 static const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL;
 
-
 /*--- poly_tan() ------------------------------------------------------------+
  |                                                                           |
  +---------------------------------------------------------------------------*/
-void   poly_tan(FPU_REG *st0_ptr)
+void poly_tan(FPU_REG *st0_ptr)
 {
-  long int             exponent;
-  int                   invert;
-  Xsig                  argSq, argSqSq, accumulatoro, accumulatore, accum,
-                        argSignif, fix_up;
-  unsigned long         adj;
+       long int exponent;
+       int invert;
+       Xsig argSq, argSqSq, accumulatoro, accumulatore, accum,
+           argSignif, fix_up;
+       unsigned long adj;
 
-  exponent = exponent(st0_ptr);
+       exponent = exponent(st0_ptr);
 
 #ifdef PARANOID
-  if ( signnegative(st0_ptr) ) /* Can't hack a number < 0.0 */
-    { arith_invalid(0); return; }  /* Need a positive number */
+       if (signnegative(st0_ptr)) {    /* Can't hack a number < 0.0 */
+               arith_invalid(0);
+               return;
+       }                       /* Need a positive number */
 #endif /* PARANOID */
 
-  /* Split the problem into two domains, smaller and larger than pi/4 */
-  if ( (exponent == 0) || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2)) )
-    {
-      /* The argument is greater than (approx) pi/4 */
-      invert = 1;
-      accum.lsw = 0;
-      XSIG_LL(accum) = significand(st0_ptr);
-      if ( exponent == 0 )
-       {
-         /* The argument is >= 1.0 */
-         /* Put the binary point at the left. */
-         XSIG_LL(accum) <<= 1;
-       }
-      /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
-      XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum);
-      /* This is a special case which arises due to rounding. */
-      if ( XSIG_LL(accum) == 0xffffffffffffffffLL )
-       {
-         FPU_settag0(TAG_Valid);
-         significand(st0_ptr) = 0x8a51e04daabda360LL;
-         setexponent16(st0_ptr, (0x41 + EXTENDED_Ebias) | SIGN_Negative);
-         return;
+       /* Split the problem into two domains, smaller and larger than pi/4 */
+       if ((exponent == 0)
+           || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2))) {
+               /* The argument is greater than (approx) pi/4 */
+               invert = 1;
+               accum.lsw = 0;
+               XSIG_LL(accum) = significand(st0_ptr);
+
+               if (exponent == 0) {
+                       /* The argument is >= 1.0 */
+                       /* Put the binary point at the left. */
+                       XSIG_LL(accum) <<= 1;
+               }
+               /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
+               XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum);
+               /* This is a special case which arises due to rounding. */
+               if (XSIG_LL(accum) == 0xffffffffffffffffLL) {
+                       FPU_settag0(TAG_Valid);
+                       significand(st0_ptr) = 0x8a51e04daabda360LL;
+                       setexponent16(st0_ptr,
+                                     (0x41 + EXTENDED_Ebias) | SIGN_Negative);
+                       return;
+               }
+
+               argSignif.lsw = accum.lsw;
+               XSIG_LL(argSignif) = XSIG_LL(accum);
+               exponent = -1 + norm_Xsig(&argSignif);
+       } else {
+               invert = 0;
+               argSignif.lsw = 0;
+               XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr);
+
+               if (exponent < -1) {
+                       /* shift the argument right by the required places */
+                       if (FPU_shrx(&XSIG_LL(accum), -1 - exponent) >=
+                           0x80000000U)
+                               XSIG_LL(accum)++;       /* round up */
+               }
        }
 
-      argSignif.lsw = accum.lsw;
-      XSIG_LL(argSignif) = XSIG_LL(accum);
-      exponent = -1 + norm_Xsig(&argSignif);
-    }
-  else
-    {
-      invert = 0;
-      argSignif.lsw = 0;
-      XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr);
-      if ( exponent < -1 )
-       {
-         /* shift the argument right by the required places */
-         if ( FPU_shrx(&XSIG_LL(accum), -1-exponent) >= 0x80000000U )
-           XSIG_LL(accum) ++;  /* round up */
-       }
-    }
-
-  XSIG_LL(argSq) = XSIG_LL(accum); argSq.lsw = accum.lsw;
-  mul_Xsig_Xsig(&argSq, &argSq);
-  XSIG_LL(argSqSq) = XSIG_LL(argSq); argSqSq.lsw = argSq.lsw;
-  mul_Xsig_Xsig(&argSqSq, &argSqSq);
-
-  /* Compute the negative terms for the numerator polynomial */
-  accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0;
-  polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm, HiPOWERon-1);
-  mul_Xsig_Xsig(&accumulatoro, &argSq);
-  negate_Xsig(&accumulatoro);
-  /* Add the positive terms */
-  polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm, HiPOWERop-1);
-
-  
-  /* Compute the positive terms for the denominator polynomial */
-  accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0;
-  polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm, HiPOWERep-1);
-  mul_Xsig_Xsig(&accumulatore, &argSq);
-  negate_Xsig(&accumulatore);
-  /* Add the negative terms */
-  polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm, HiPOWERen-1);
-  /* Multiply by arg^2 */
-  mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
-  mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
-  /* de-normalize and divide by 2 */
-  shr_Xsig(&accumulatore, -2*(1+exponent) + 1);
-  negate_Xsig(&accumulatore);      /* This does 1 - accumulator */
-
-  /* Now find the ratio. */
-  if ( accumulatore.msw == 0 )
-    {
-      /* accumulatoro must contain 1.0 here, (actually, 0) but it
-        really doesn't matter what value we use because it will
-        have negligible effect in later calculations
-        */
-      XSIG_LL(accum) = 0x8000000000000000LL;
-      accum.lsw = 0;
-    }
-  else
-    {
-      div_Xsig(&accumulatoro, &accumulatore, &accum);
-    }
-
-  /* Multiply by 1/3 * arg^3 */
-  mul64_Xsig(&accum, &XSIG_LL(argSignif));
-  mul64_Xsig(&accum, &XSIG_LL(argSignif));
-  mul64_Xsig(&accum, &XSIG_LL(argSignif));
-  mul64_Xsig(&accum, &twothirds);
-  shr_Xsig(&accum, -2*(exponent+1));
-
-  /* tan(arg) = arg + accum */
-  add_two_Xsig(&accum, &argSignif, &exponent);
-
-  if ( invert )
-    {
-      /* We now have the value of tan(pi_2 - arg) where pi_2 is an
-        approximation for pi/2
-        */
-      /* The next step is to fix the answer to compensate for the
-        error due to the approximation used for pi/2
-        */
-
-      /* This is (approx) delta, the error in our approx for pi/2
-        (see above). It has an exponent of -65
-        */
-      XSIG_LL(fix_up) = 0x898cc51701b839a2LL;
-      fix_up.lsw = 0;
-
-      if ( exponent == 0 )
-       adj = 0xffffffff;   /* We want approx 1.0 here, but
-                              this is close enough. */
-      else if ( exponent > -30 )
-       {
-         adj = accum.msw >> -(exponent+1);      /* tan */
-         adj = mul_32_32(adj, adj);             /* tan^2 */
+       XSIG_LL(argSq) = XSIG_LL(accum);
+       argSq.lsw = accum.lsw;
+       mul_Xsig_Xsig(&argSq, &argSq);
+       XSIG_LL(argSqSq) = XSIG_LL(argSq);
+       argSqSq.lsw = argSq.lsw;
+       mul_Xsig_Xsig(&argSqSq, &argSqSq);
+
+       /* Compute the negative terms for the numerator polynomial */
+       accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0;
+       polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm,
+                       HiPOWERon - 1);
+       mul_Xsig_Xsig(&accumulatoro, &argSq);
+       negate_Xsig(&accumulatoro);
+       /* Add the positive terms */
+       polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm,
+                       HiPOWERop - 1);
+
+       /* Compute the positive terms for the denominator polynomial */
+       accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0;
+       polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm,
+                       HiPOWERep - 1);
+       mul_Xsig_Xsig(&accumulatore, &argSq);
+       negate_Xsig(&accumulatore);
+       /* Add the negative terms */
+       polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm,
+                       HiPOWERen - 1);
+       /* Multiply by arg^2 */
+       mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
+       mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
+       /* de-normalize and divide by 2 */
+       shr_Xsig(&accumulatore, -2 * (1 + exponent) + 1);
+       negate_Xsig(&accumulatore);     /* This does 1 - accumulator */
+
+       /* Now find the ratio. */
+       if (accumulatore.msw == 0) {
+               /* accumulatoro must contain 1.0 here, (actually, 0) but it
+                  really doesn't matter what value we use because it will
+                  have negligible effect in later calculations
+                */
+               XSIG_LL(accum) = 0x8000000000000000LL;
+               accum.lsw = 0;
+       } else {
+               div_Xsig(&accumulatoro, &accumulatore, &accum);
        }
-      else
-       adj = 0;
-      adj = mul_32_32(0x898cc517, adj);          /* delta * tan^2 */
-
-      fix_up.msw += adj;
-      if ( !(fix_up.msw & 0x80000000) )   /* did fix_up overflow ? */
-       {
-         /* Yes, we need to add an msb */
-         shr_Xsig(&fix_up, 1);
-         fix_up.msw |= 0x80000000;
-         shr_Xsig(&fix_up, 64 + exponent);
+
+       /* Multiply by 1/3 * arg^3 */
+       mul64_Xsig(&accum, &XSIG_LL(argSignif));
+       mul64_Xsig(&accum, &XSIG_LL(argSignif));
+       mul64_Xsig(&accum, &XSIG_LL(argSignif));
+       mul64_Xsig(&accum, &twothirds);
+       shr_Xsig(&accum, -2 * (exponent + 1));
+
+       /* tan(arg) = arg + accum */
+       add_two_Xsig(&accum, &argSignif, &exponent);
+
+       if (invert) {
+               /* We now have the value of tan(pi_2 - arg) where pi_2 is an
+                  approximation for pi/2
+                */
+               /* The next step is to fix the answer to compensate for the
+                  error due to the approximation used for pi/2
+                */
+
+               /* This is (approx) delta, the error in our approx for pi/2
+                  (see above). It has an exponent of -65
+                */
+               XSIG_LL(fix_up) = 0x898cc51701b839a2LL;
+               fix_up.lsw = 0;
+
+               if (exponent == 0)
+                       adj = 0xffffffff;       /* We want approx 1.0 here, but
+                                                  this is close enough. */
+               else if (exponent > -30) {
+                       adj = accum.msw >> -(exponent + 1);     /* tan */
+                       adj = mul_32_32(adj, adj);      /* tan^2 */
+               } else
+                       adj = 0;
+               adj = mul_32_32(0x898cc517, adj);       /* delta * tan^2 */
+
+               fix_up.msw += adj;
+               if (!(fix_up.msw & 0x80000000)) {       /* did fix_up overflow ? */
+                       /* Yes, we need to add an msb */
+                       shr_Xsig(&fix_up, 1);
+                       fix_up.msw |= 0x80000000;
+                       shr_Xsig(&fix_up, 64 + exponent);
+               } else
+                       shr_Xsig(&fix_up, 65 + exponent);
+
+               add_two_Xsig(&accum, &fix_up, &exponent);
+
+               /* accum now contains tan(pi/2 - arg).
+                  Use tan(arg) = 1.0 / tan(pi/2 - arg)
+                */
+               accumulatoro.lsw = accumulatoro.midw = 0;
+               accumulatoro.msw = 0x80000000;
+               div_Xsig(&accumulatoro, &accum, &accum);
+               exponent = -exponent - 1;
        }
-      else
-       shr_Xsig(&fix_up, 65 + exponent);
-
-      add_two_Xsig(&accum, &fix_up, &exponent);
-
-      /* accum now contains tan(pi/2 - arg).
-        Use tan(arg) = 1.0 / tan(pi/2 - arg)
-        */
-      accumulatoro.lsw = accumulatoro.midw = 0;
-      accumulatoro.msw = 0x80000000;
-      div_Xsig(&accumulatoro, &accum, &accum);
-      exponent = - exponent - 1;
-    }
-
-  /* Transfer the result */
-  round_Xsig(&accum);
-  FPU_settag0(TAG_Valid);
-  significand(st0_ptr) = XSIG_LL(accum);
-  setexponent16(st0_ptr, exponent + EXTENDED_Ebias);  /* Result is positive. */
+
+       /* Transfer the result */
+       round_Xsig(&accum);
+       FPU_settag0(TAG_Valid);
+       significand(st0_ptr) = XSIG_LL(accum);
+       setexponent16(st0_ptr, exponent + EXTENDED_Ebias);      /* Result is positive. */
 
 }