d6c54b524bfa63a9b9ed46c6eeb337848b541185
[pandora-kernel.git] / sound / pci / ctxfi / cthw20k2.c
1 /**
2  * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
3  *
4  * This source file is released under GPL v2 license (no other versions).
5  * See the COPYING file included in the main directory of this source
6  * distribution for the license terms and conditions.
7  *
8  * @File        cthw20k2.c
9  *
10  * @Brief
11  * This file contains the implementation of hardware access method for 20k2.
12  *
13  * @Author      Liu Chun
14  * @Date        May 14 2008
15  *
16  */
17
18 #include <linux/types.h>
19 #include <linux/slab.h>
20 #include <linux/pci.h>
21 #include <linux/io.h>
22 #include <linux/string.h>
23 #include <linux/kernel.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include "cthw20k2.h"
27 #include "ct20k2reg.h"
28
29 #if BITS_PER_LONG == 32
30 #define CT_XFI_DMA_MASK         DMA_BIT_MASK(32) /* 32 bit PTE */
31 #else
32 #define CT_XFI_DMA_MASK         DMA_BIT_MASK(64) /* 64 bit PTE */
33 #endif
34
35 struct hw20k2 {
36         struct hw hw;
37         /* for i2c */
38         unsigned char dev_id;
39         unsigned char addr_size;
40         unsigned char data_size;
41
42         int mic_source;
43 };
44
45 static u32 hw_read_20kx(struct hw *hw, u32 reg);
46 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data);
47
48 /*
49  * Type definition block.
50  * The layout of control structures can be directly applied on 20k2 chip.
51  */
52
53 /*
54  * SRC control block definitions.
55  */
56
57 /* SRC resource control block */
58 #define SRCCTL_STATE    0x00000007
59 #define SRCCTL_BM       0x00000008
60 #define SRCCTL_RSR      0x00000030
61 #define SRCCTL_SF       0x000001C0
62 #define SRCCTL_WR       0x00000200
63 #define SRCCTL_PM       0x00000400
64 #define SRCCTL_ROM      0x00001800
65 #define SRCCTL_VO       0x00002000
66 #define SRCCTL_ST       0x00004000
67 #define SRCCTL_IE       0x00008000
68 #define SRCCTL_ILSZ     0x000F0000
69 #define SRCCTL_BP       0x00100000
70
71 #define SRCCCR_CISZ     0x000007FF
72 #define SRCCCR_CWA      0x001FF800
73 #define SRCCCR_D        0x00200000
74 #define SRCCCR_RS       0x01C00000
75 #define SRCCCR_NAL      0x3E000000
76 #define SRCCCR_RA       0xC0000000
77
78 #define SRCCA_CA        0x0FFFFFFF
79 #define SRCCA_RS        0xE0000000
80
81 #define SRCSA_SA        0x0FFFFFFF
82
83 #define SRCLA_LA        0x0FFFFFFF
84
85 /* Mixer Parameter Ring ram Low and Hight register.
86  * Fixed-point value in 8.24 format for parameter channel */
87 #define MPRLH_PITCH     0xFFFFFFFF
88
89 /* SRC resource register dirty flags */
90 union src_dirty {
91         struct {
92                 u16 ctl:1;
93                 u16 ccr:1;
94                 u16 sa:1;
95                 u16 la:1;
96                 u16 ca:1;
97                 u16 mpr:1;
98                 u16 czbfs:1;    /* Clear Z-Buffers */
99                 u16 rsv:9;
100         } bf;
101         u16 data;
102 };
103
104 struct src_rsc_ctrl_blk {
105         unsigned int    ctl;
106         unsigned int    ccr;
107         unsigned int    ca;
108         unsigned int    sa;
109         unsigned int    la;
110         unsigned int    mpr;
111         union src_dirty dirty;
112 };
113
114 /* SRC manager control block */
115 union src_mgr_dirty {
116         struct {
117                 u16 enb0:1;
118                 u16 enb1:1;
119                 u16 enb2:1;
120                 u16 enb3:1;
121                 u16 enb4:1;
122                 u16 enb5:1;
123                 u16 enb6:1;
124                 u16 enb7:1;
125                 u16 enbsa:1;
126                 u16 rsv:7;
127         } bf;
128         u16 data;
129 };
130
131 struct src_mgr_ctrl_blk {
132         unsigned int            enbsa;
133         unsigned int            enb[8];
134         union src_mgr_dirty     dirty;
135 };
136
137 /* SRCIMP manager control block */
138 #define SRCAIM_ARC      0x00000FFF
139 #define SRCAIM_NXT      0x00FF0000
140 #define SRCAIM_SRC      0xFF000000
141
142 struct srcimap {
143         unsigned int srcaim;
144         unsigned int idx;
145 };
146
147 /* SRCIMP manager register dirty flags */
148 union srcimp_mgr_dirty {
149         struct {
150                 u16 srcimap:1;
151                 u16 rsv:15;
152         } bf;
153         u16 data;
154 };
155
156 struct srcimp_mgr_ctrl_blk {
157         struct srcimap          srcimap;
158         union srcimp_mgr_dirty  dirty;
159 };
160
161 /*
162  * Function implementation block.
163  */
164
165 static int src_get_rsc_ctrl_blk(void **rblk)
166 {
167         struct src_rsc_ctrl_blk *blk;
168
169         *rblk = NULL;
170         blk = kzalloc(sizeof(*blk), GFP_KERNEL);
171         if (!blk)
172                 return -ENOMEM;
173
174         *rblk = blk;
175
176         return 0;
177 }
178
179 static int src_put_rsc_ctrl_blk(void *blk)
180 {
181         kfree(blk);
182
183         return 0;
184 }
185
186 static int src_set_state(void *blk, unsigned int state)
187 {
188         struct src_rsc_ctrl_blk *ctl = blk;
189
190         set_field(&ctl->ctl, SRCCTL_STATE, state);
191         ctl->dirty.bf.ctl = 1;
192         return 0;
193 }
194
195 static int src_set_bm(void *blk, unsigned int bm)
196 {
197         struct src_rsc_ctrl_blk *ctl = blk;
198
199         set_field(&ctl->ctl, SRCCTL_BM, bm);
200         ctl->dirty.bf.ctl = 1;
201         return 0;
202 }
203
204 static int src_set_rsr(void *blk, unsigned int rsr)
205 {
206         struct src_rsc_ctrl_blk *ctl = blk;
207
208         set_field(&ctl->ctl, SRCCTL_RSR, rsr);
209         ctl->dirty.bf.ctl = 1;
210         return 0;
211 }
212
213 static int src_set_sf(void *blk, unsigned int sf)
214 {
215         struct src_rsc_ctrl_blk *ctl = blk;
216
217         set_field(&ctl->ctl, SRCCTL_SF, sf);
218         ctl->dirty.bf.ctl = 1;
219         return 0;
220 }
221
222 static int src_set_wr(void *blk, unsigned int wr)
223 {
224         struct src_rsc_ctrl_blk *ctl = blk;
225
226         set_field(&ctl->ctl, SRCCTL_WR, wr);
227         ctl->dirty.bf.ctl = 1;
228         return 0;
229 }
230
231 static int src_set_pm(void *blk, unsigned int pm)
232 {
233         struct src_rsc_ctrl_blk *ctl = blk;
234
235         set_field(&ctl->ctl, SRCCTL_PM, pm);
236         ctl->dirty.bf.ctl = 1;
237         return 0;
238 }
239
240 static int src_set_rom(void *blk, unsigned int rom)
241 {
242         struct src_rsc_ctrl_blk *ctl = blk;
243
244         set_field(&ctl->ctl, SRCCTL_ROM, rom);
245         ctl->dirty.bf.ctl = 1;
246         return 0;
247 }
248
249 static int src_set_vo(void *blk, unsigned int vo)
250 {
251         struct src_rsc_ctrl_blk *ctl = blk;
252
253         set_field(&ctl->ctl, SRCCTL_VO, vo);
254         ctl->dirty.bf.ctl = 1;
255         return 0;
256 }
257
258 static int src_set_st(void *blk, unsigned int st)
259 {
260         struct src_rsc_ctrl_blk *ctl = blk;
261
262         set_field(&ctl->ctl, SRCCTL_ST, st);
263         ctl->dirty.bf.ctl = 1;
264         return 0;
265 }
266
267 static int src_set_ie(void *blk, unsigned int ie)
268 {
269         struct src_rsc_ctrl_blk *ctl = blk;
270
271         set_field(&ctl->ctl, SRCCTL_IE, ie);
272         ctl->dirty.bf.ctl = 1;
273         return 0;
274 }
275
276 static int src_set_ilsz(void *blk, unsigned int ilsz)
277 {
278         struct src_rsc_ctrl_blk *ctl = blk;
279
280         set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz);
281         ctl->dirty.bf.ctl = 1;
282         return 0;
283 }
284
285 static int src_set_bp(void *blk, unsigned int bp)
286 {
287         struct src_rsc_ctrl_blk *ctl = blk;
288
289         set_field(&ctl->ctl, SRCCTL_BP, bp);
290         ctl->dirty.bf.ctl = 1;
291         return 0;
292 }
293
294 static int src_set_cisz(void *blk, unsigned int cisz)
295 {
296         struct src_rsc_ctrl_blk *ctl = blk;
297
298         set_field(&ctl->ccr, SRCCCR_CISZ, cisz);
299         ctl->dirty.bf.ccr = 1;
300         return 0;
301 }
302
303 static int src_set_ca(void *blk, unsigned int ca)
304 {
305         struct src_rsc_ctrl_blk *ctl = blk;
306
307         set_field(&ctl->ca, SRCCA_CA, ca);
308         ctl->dirty.bf.ca = 1;
309         return 0;
310 }
311
312 static int src_set_sa(void *blk, unsigned int sa)
313 {
314         struct src_rsc_ctrl_blk *ctl = blk;
315
316         set_field(&ctl->sa, SRCSA_SA, sa);
317         ctl->dirty.bf.sa = 1;
318         return 0;
319 }
320
321 static int src_set_la(void *blk, unsigned int la)
322 {
323         struct src_rsc_ctrl_blk *ctl = blk;
324
325         set_field(&ctl->la, SRCLA_LA, la);
326         ctl->dirty.bf.la = 1;
327         return 0;
328 }
329
330 static int src_set_pitch(void *blk, unsigned int pitch)
331 {
332         struct src_rsc_ctrl_blk *ctl = blk;
333
334         set_field(&ctl->mpr, MPRLH_PITCH, pitch);
335         ctl->dirty.bf.mpr = 1;
336         return 0;
337 }
338
339 static int src_set_clear_zbufs(void *blk, unsigned int clear)
340 {
341         ((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0);
342         return 0;
343 }
344
345 static int src_set_dirty(void *blk, unsigned int flags)
346 {
347         ((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
348         return 0;
349 }
350
351 static int src_set_dirty_all(void *blk)
352 {
353         ((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
354         return 0;
355 }
356
357 #define AR_SLOT_SIZE            4096
358 #define AR_SLOT_BLOCK_SIZE      16
359 #define AR_PTS_PITCH            6
360 #define AR_PARAM_SRC_OFFSET     0x60
361
362 static unsigned int src_param_pitch_mixer(unsigned int src_idx)
363 {
364         return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE
365                         - AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE;
366
367 }
368
369 static int src_commit_write(struct hw *hw, unsigned int idx, void *blk)
370 {
371         struct src_rsc_ctrl_blk *ctl = blk;
372         int i;
373
374         if (ctl->dirty.bf.czbfs) {
375                 /* Clear Z-Buffer registers */
376                 for (i = 0; i < 8; i++)
377                         hw_write_20kx(hw, SRC_UPZ+idx*0x100+i*0x4, 0);
378
379                 for (i = 0; i < 4; i++)
380                         hw_write_20kx(hw, SRC_DN0Z+idx*0x100+i*0x4, 0);
381
382                 for (i = 0; i < 8; i++)
383                         hw_write_20kx(hw, SRC_DN1Z+idx*0x100+i*0x4, 0);
384
385                 ctl->dirty.bf.czbfs = 0;
386         }
387         if (ctl->dirty.bf.mpr) {
388                 /* Take the parameter mixer resource in the same group as that
389                  * the idx src is in for simplicity. Unlike src, all conjugate
390                  * parameter mixer resources must be programmed for
391                  * corresponding conjugate src resources. */
392                 unsigned int pm_idx = src_param_pitch_mixer(idx);
393                 hw_write_20kx(hw, MIXER_PRING_LO_HI+4*pm_idx, ctl->mpr);
394                 hw_write_20kx(hw, MIXER_PMOPLO+8*pm_idx, 0x3);
395                 hw_write_20kx(hw, MIXER_PMOPHI+8*pm_idx, 0x0);
396                 ctl->dirty.bf.mpr = 0;
397         }
398         if (ctl->dirty.bf.sa) {
399                 hw_write_20kx(hw, SRC_SA+idx*0x100, ctl->sa);
400                 ctl->dirty.bf.sa = 0;
401         }
402         if (ctl->dirty.bf.la) {
403                 hw_write_20kx(hw, SRC_LA+idx*0x100, ctl->la);
404                 ctl->dirty.bf.la = 0;
405         }
406         if (ctl->dirty.bf.ca) {
407                 hw_write_20kx(hw, SRC_CA+idx*0x100, ctl->ca);
408                 ctl->dirty.bf.ca = 0;
409         }
410
411         /* Write srccf register */
412         hw_write_20kx(hw, SRC_CF+idx*0x100, 0x0);
413
414         if (ctl->dirty.bf.ccr) {
415                 hw_write_20kx(hw, SRC_CCR+idx*0x100, ctl->ccr);
416                 ctl->dirty.bf.ccr = 0;
417         }
418         if (ctl->dirty.bf.ctl) {
419                 hw_write_20kx(hw, SRC_CTL+idx*0x100, ctl->ctl);
420                 ctl->dirty.bf.ctl = 0;
421         }
422
423         return 0;
424 }
425
426 static int src_get_ca(struct hw *hw, unsigned int idx, void *blk)
427 {
428         struct src_rsc_ctrl_blk *ctl = blk;
429
430         ctl->ca = hw_read_20kx(hw, SRC_CA+idx*0x100);
431         ctl->dirty.bf.ca = 0;
432
433         return get_field(ctl->ca, SRCCA_CA);
434 }
435
436 static unsigned int src_get_dirty(void *blk)
437 {
438         return ((struct src_rsc_ctrl_blk *)blk)->dirty.data;
439 }
440
441 static unsigned int src_dirty_conj_mask(void)
442 {
443         return 0x20;
444 }
445
446 static int src_mgr_enbs_src(void *blk, unsigned int idx)
447 {
448         ((struct src_mgr_ctrl_blk *)blk)->enbsa |= (0x1 << ((idx%128)/4));
449         ((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1;
450         ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
451         return 0;
452 }
453
454 static int src_mgr_enb_src(void *blk, unsigned int idx)
455 {
456         ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
457         ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
458         return 0;
459 }
460
461 static int src_mgr_dsb_src(void *blk, unsigned int idx)
462 {
463         ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32));
464         ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
465         return 0;
466 }
467
468 static int src_mgr_commit_write(struct hw *hw, void *blk)
469 {
470         struct src_mgr_ctrl_blk *ctl = blk;
471         int i;
472         unsigned int ret;
473
474         if (ctl->dirty.bf.enbsa) {
475                 do {
476                         ret = hw_read_20kx(hw, SRC_ENBSTAT);
477                 } while (ret & 0x1);
478                 hw_write_20kx(hw, SRC_ENBSA, ctl->enbsa);
479                 ctl->dirty.bf.enbsa = 0;
480         }
481         for (i = 0; i < 8; i++) {
482                 if ((ctl->dirty.data & (0x1 << i))) {
483                         hw_write_20kx(hw, SRC_ENB+(i*0x100), ctl->enb[i]);
484                         ctl->dirty.data &= ~(0x1 << i);
485                 }
486         }
487
488         return 0;
489 }
490
491 static int src_mgr_get_ctrl_blk(void **rblk)
492 {
493         struct src_mgr_ctrl_blk *blk;
494
495         *rblk = NULL;
496         blk = kzalloc(sizeof(*blk), GFP_KERNEL);
497         if (!blk)
498                 return -ENOMEM;
499
500         *rblk = blk;
501
502         return 0;
503 }
504
505 static int src_mgr_put_ctrl_blk(void *blk)
506 {
507         kfree(blk);
508
509         return 0;
510 }
511
512 static int srcimp_mgr_get_ctrl_blk(void **rblk)
513 {
514         struct srcimp_mgr_ctrl_blk *blk;
515
516         *rblk = NULL;
517         blk = kzalloc(sizeof(*blk), GFP_KERNEL);
518         if (!blk)
519                 return -ENOMEM;
520
521         *rblk = blk;
522
523         return 0;
524 }
525
526 static int srcimp_mgr_put_ctrl_blk(void *blk)
527 {
528         kfree(blk);
529
530         return 0;
531 }
532
533 static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot)
534 {
535         struct srcimp_mgr_ctrl_blk *ctl = blk;
536
537         set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot);
538         ctl->dirty.bf.srcimap = 1;
539         return 0;
540 }
541
542 static int srcimp_mgr_set_imapuser(void *blk, unsigned int user)
543 {
544         struct srcimp_mgr_ctrl_blk *ctl = blk;
545
546         set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user);
547         ctl->dirty.bf.srcimap = 1;
548         return 0;
549 }
550
551 static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next)
552 {
553         struct srcimp_mgr_ctrl_blk *ctl = blk;
554
555         set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next);
556         ctl->dirty.bf.srcimap = 1;
557         return 0;
558 }
559
560 static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr)
561 {
562         ((struct srcimp_mgr_ctrl_blk *)blk)->srcimap.idx = addr;
563         ((struct srcimp_mgr_ctrl_blk *)blk)->dirty.bf.srcimap = 1;
564         return 0;
565 }
566
567 static int srcimp_mgr_commit_write(struct hw *hw, void *blk)
568 {
569         struct srcimp_mgr_ctrl_blk *ctl = blk;
570
571         if (ctl->dirty.bf.srcimap) {
572                 hw_write_20kx(hw, SRC_IMAP+ctl->srcimap.idx*0x100,
573                                                 ctl->srcimap.srcaim);
574                 ctl->dirty.bf.srcimap = 0;
575         }
576
577         return 0;
578 }
579
580 /*
581  * AMIXER control block definitions.
582  */
583
584 #define AMOPLO_M        0x00000003
585 #define AMOPLO_IV       0x00000004
586 #define AMOPLO_X        0x0003FFF0
587 #define AMOPLO_Y        0xFFFC0000
588
589 #define AMOPHI_SADR     0x000000FF
590 #define AMOPHI_SE       0x80000000
591
592 /* AMIXER resource register dirty flags */
593 union amixer_dirty {
594         struct {
595                 u16 amoplo:1;
596                 u16 amophi:1;
597                 u16 rsv:14;
598         } bf;
599         u16 data;
600 };
601
602 /* AMIXER resource control block */
603 struct amixer_rsc_ctrl_blk {
604         unsigned int            amoplo;
605         unsigned int            amophi;
606         union amixer_dirty      dirty;
607 };
608
609 static int amixer_set_mode(void *blk, unsigned int mode)
610 {
611         struct amixer_rsc_ctrl_blk *ctl = blk;
612
613         set_field(&ctl->amoplo, AMOPLO_M, mode);
614         ctl->dirty.bf.amoplo = 1;
615         return 0;
616 }
617
618 static int amixer_set_iv(void *blk, unsigned int iv)
619 {
620         struct amixer_rsc_ctrl_blk *ctl = blk;
621
622         set_field(&ctl->amoplo, AMOPLO_IV, iv);
623         ctl->dirty.bf.amoplo = 1;
624         return 0;
625 }
626
627 static int amixer_set_x(void *blk, unsigned int x)
628 {
629         struct amixer_rsc_ctrl_blk *ctl = blk;
630
631         set_field(&ctl->amoplo, AMOPLO_X, x);
632         ctl->dirty.bf.amoplo = 1;
633         return 0;
634 }
635
636 static int amixer_set_y(void *blk, unsigned int y)
637 {
638         struct amixer_rsc_ctrl_blk *ctl = blk;
639
640         set_field(&ctl->amoplo, AMOPLO_Y, y);
641         ctl->dirty.bf.amoplo = 1;
642         return 0;
643 }
644
645 static int amixer_set_sadr(void *blk, unsigned int sadr)
646 {
647         struct amixer_rsc_ctrl_blk *ctl = blk;
648
649         set_field(&ctl->amophi, AMOPHI_SADR, sadr);
650         ctl->dirty.bf.amophi = 1;
651         return 0;
652 }
653
654 static int amixer_set_se(void *blk, unsigned int se)
655 {
656         struct amixer_rsc_ctrl_blk *ctl = blk;
657
658         set_field(&ctl->amophi, AMOPHI_SE, se);
659         ctl->dirty.bf.amophi = 1;
660         return 0;
661 }
662
663 static int amixer_set_dirty(void *blk, unsigned int flags)
664 {
665         ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
666         return 0;
667 }
668
669 static int amixer_set_dirty_all(void *blk)
670 {
671         ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
672         return 0;
673 }
674
675 static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk)
676 {
677         struct amixer_rsc_ctrl_blk *ctl = blk;
678
679         if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) {
680                 hw_write_20kx(hw, MIXER_AMOPLO+idx*8, ctl->amoplo);
681                 ctl->dirty.bf.amoplo = 0;
682                 hw_write_20kx(hw, MIXER_AMOPHI+idx*8, ctl->amophi);
683                 ctl->dirty.bf.amophi = 0;
684         }
685
686         return 0;
687 }
688
689 static int amixer_get_y(void *blk)
690 {
691         struct amixer_rsc_ctrl_blk *ctl = blk;
692
693         return get_field(ctl->amoplo, AMOPLO_Y);
694 }
695
696 static unsigned int amixer_get_dirty(void *blk)
697 {
698         return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data;
699 }
700
701 static int amixer_rsc_get_ctrl_blk(void **rblk)
702 {
703         struct amixer_rsc_ctrl_blk *blk;
704
705         *rblk = NULL;
706         blk = kzalloc(sizeof(*blk), GFP_KERNEL);
707         if (!blk)
708                 return -ENOMEM;
709
710         *rblk = blk;
711
712         return 0;
713 }
714
715 static int amixer_rsc_put_ctrl_blk(void *blk)
716 {
717         kfree(blk);
718
719         return 0;
720 }
721
722 static int amixer_mgr_get_ctrl_blk(void **rblk)
723 {
724         *rblk = NULL;
725
726         return 0;
727 }
728
729 static int amixer_mgr_put_ctrl_blk(void *blk)
730 {
731         return 0;
732 }
733
734 /*
735  * DAIO control block definitions.
736  */
737
738 /* Receiver Sample Rate Tracker Control register */
739 #define SRTCTL_SRCO     0x000000FF
740 #define SRTCTL_SRCM     0x0000FF00
741 #define SRTCTL_RSR      0x00030000
742 #define SRTCTL_DRAT     0x00300000
743 #define SRTCTL_EC       0x01000000
744 #define SRTCTL_ET       0x10000000
745
746 /* DAIO Receiver register dirty flags */
747 union dai_dirty {
748         struct {
749                 u16 srt:1;
750                 u16 rsv:15;
751         } bf;
752         u16 data;
753 };
754
755 /* DAIO Receiver control block */
756 struct dai_ctrl_blk {
757         unsigned int    srt;
758         union dai_dirty dirty;
759 };
760
761 /* Audio Input Mapper RAM */
762 #define AIM_ARC         0x00000FFF
763 #define AIM_NXT         0x007F0000
764
765 struct daoimap {
766         unsigned int aim;
767         unsigned int idx;
768 };
769
770 /* Audio Transmitter Control and Status register */
771 #define ATXCTL_EN       0x00000001
772 #define ATXCTL_MODE     0x00000010
773 #define ATXCTL_CD       0x00000020
774 #define ATXCTL_RAW      0x00000100
775 #define ATXCTL_MT       0x00000200
776 #define ATXCTL_NUC      0x00003000
777 #define ATXCTL_BEN      0x00010000
778 #define ATXCTL_BMUX     0x00700000
779 #define ATXCTL_B24      0x01000000
780 #define ATXCTL_CPF      0x02000000
781 #define ATXCTL_RIV      0x10000000
782 #define ATXCTL_LIV      0x20000000
783 #define ATXCTL_RSAT     0x40000000
784 #define ATXCTL_LSAT     0x80000000
785
786 /* XDIF Transmitter register dirty flags */
787 union dao_dirty {
788         struct {
789                 u16 atxcsl:1;
790                 u16 rsv:15;
791         } bf;
792         u16 data;
793 };
794
795 /* XDIF Transmitter control block */
796 struct dao_ctrl_blk {
797         /* XDIF Transmitter Channel Status Low Register */
798         unsigned int    atxcsl;
799         union dao_dirty dirty;
800 };
801
802 /* Audio Receiver Control register */
803 #define ARXCTL_EN       0x00000001
804
805 /* DAIO manager register dirty flags */
806 union daio_mgr_dirty {
807         struct {
808                 u32 atxctl:8;
809                 u32 arxctl:8;
810                 u32 daoimap:1;
811                 u32 rsv:15;
812         } bf;
813         u32 data;
814 };
815
816 /* DAIO manager control block */
817 struct daio_mgr_ctrl_blk {
818         struct daoimap          daoimap;
819         unsigned int            txctl[8];
820         unsigned int            rxctl[8];
821         union daio_mgr_dirty    dirty;
822 };
823
824 static int dai_srt_set_srco(void *blk, unsigned int src)
825 {
826         struct dai_ctrl_blk *ctl = blk;
827
828         set_field(&ctl->srt, SRTCTL_SRCO, src);
829         ctl->dirty.bf.srt = 1;
830         return 0;
831 }
832
833 static int dai_srt_set_srcm(void *blk, unsigned int src)
834 {
835         struct dai_ctrl_blk *ctl = blk;
836
837         set_field(&ctl->srt, SRTCTL_SRCM, src);
838         ctl->dirty.bf.srt = 1;
839         return 0;
840 }
841
842 static int dai_srt_set_rsr(void *blk, unsigned int rsr)
843 {
844         struct dai_ctrl_blk *ctl = blk;
845
846         set_field(&ctl->srt, SRTCTL_RSR, rsr);
847         ctl->dirty.bf.srt = 1;
848         return 0;
849 }
850
851 static int dai_srt_set_drat(void *blk, unsigned int drat)
852 {
853         struct dai_ctrl_blk *ctl = blk;
854
855         set_field(&ctl->srt, SRTCTL_DRAT, drat);
856         ctl->dirty.bf.srt = 1;
857         return 0;
858 }
859
860 static int dai_srt_set_ec(void *blk, unsigned int ec)
861 {
862         struct dai_ctrl_blk *ctl = blk;
863
864         set_field(&ctl->srt, SRTCTL_EC, ec ? 1 : 0);
865         ctl->dirty.bf.srt = 1;
866         return 0;
867 }
868
869 static int dai_srt_set_et(void *blk, unsigned int et)
870 {
871         struct dai_ctrl_blk *ctl = blk;
872
873         set_field(&ctl->srt, SRTCTL_ET, et ? 1 : 0);
874         ctl->dirty.bf.srt = 1;
875         return 0;
876 }
877
878 static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk)
879 {
880         struct dai_ctrl_blk *ctl = blk;
881
882         if (ctl->dirty.bf.srt) {
883                 hw_write_20kx(hw, AUDIO_IO_RX_SRT_CTL+0x40*idx, ctl->srt);
884                 ctl->dirty.bf.srt = 0;
885         }
886
887         return 0;
888 }
889
890 static int dai_get_ctrl_blk(void **rblk)
891 {
892         struct dai_ctrl_blk *blk;
893
894         *rblk = NULL;
895         blk = kzalloc(sizeof(*blk), GFP_KERNEL);
896         if (!blk)
897                 return -ENOMEM;
898
899         *rblk = blk;
900
901         return 0;
902 }
903
904 static int dai_put_ctrl_blk(void *blk)
905 {
906         kfree(blk);
907
908         return 0;
909 }
910
911 static int dao_set_spos(void *blk, unsigned int spos)
912 {
913         ((struct dao_ctrl_blk *)blk)->atxcsl = spos;
914         ((struct dao_ctrl_blk *)blk)->dirty.bf.atxcsl = 1;
915         return 0;
916 }
917
918 static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk)
919 {
920         struct dao_ctrl_blk *ctl = blk;
921
922         if (ctl->dirty.bf.atxcsl) {
923                 if (idx < 4) {
924                         /* S/PDIF SPOSx */
925                         hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+0x40*idx,
926                                                         ctl->atxcsl);
927                 }
928                 ctl->dirty.bf.atxcsl = 0;
929         }
930
931         return 0;
932 }
933
934 static int dao_get_spos(void *blk, unsigned int *spos)
935 {
936         *spos = ((struct dao_ctrl_blk *)blk)->atxcsl;
937         return 0;
938 }
939
940 static int dao_get_ctrl_blk(void **rblk)
941 {
942         struct dao_ctrl_blk *blk;
943
944         *rblk = NULL;
945         blk = kzalloc(sizeof(*blk), GFP_KERNEL);
946         if (!blk)
947                 return -ENOMEM;
948
949         *rblk = blk;
950
951         return 0;
952 }
953
954 static int dao_put_ctrl_blk(void *blk)
955 {
956         kfree(blk);
957
958         return 0;
959 }
960
961 static int daio_mgr_enb_dai(void *blk, unsigned int idx)
962 {
963         struct daio_mgr_ctrl_blk *ctl = blk;
964
965         set_field(&ctl->rxctl[idx], ARXCTL_EN, 1);
966         ctl->dirty.bf.arxctl |= (0x1 << idx);
967         return 0;
968 }
969
970 static int daio_mgr_dsb_dai(void *blk, unsigned int idx)
971 {
972         struct daio_mgr_ctrl_blk *ctl = blk;
973
974         set_field(&ctl->rxctl[idx], ARXCTL_EN, 0);
975
976         ctl->dirty.bf.arxctl |= (0x1 << idx);
977         return 0;
978 }
979
980 static int daio_mgr_enb_dao(void *blk, unsigned int idx)
981 {
982         struct daio_mgr_ctrl_blk *ctl = blk;
983
984         set_field(&ctl->txctl[idx], ATXCTL_EN, 1);
985         ctl->dirty.bf.atxctl |= (0x1 << idx);
986         return 0;
987 }
988
989 static int daio_mgr_dsb_dao(void *blk, unsigned int idx)
990 {
991         struct daio_mgr_ctrl_blk *ctl = blk;
992
993         set_field(&ctl->txctl[idx], ATXCTL_EN, 0);
994         ctl->dirty.bf.atxctl |= (0x1 << idx);
995         return 0;
996 }
997
998 static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf)
999 {
1000         struct daio_mgr_ctrl_blk *ctl = blk;
1001
1002         if (idx < 4) {
1003                 /* S/PDIF output */
1004                 switch ((conf & 0x7)) {
1005                 case 1:
1006                         set_field(&ctl->txctl[idx], ATXCTL_NUC, 0);
1007                         break;
1008                 case 2:
1009                         set_field(&ctl->txctl[idx], ATXCTL_NUC, 1);
1010                         break;
1011                 case 4:
1012                         set_field(&ctl->txctl[idx], ATXCTL_NUC, 2);
1013                         break;
1014                 case 8:
1015                         set_field(&ctl->txctl[idx], ATXCTL_NUC, 3);
1016                         break;
1017                 default:
1018                         break;
1019                 }
1020                 /* CDIF */
1021                 set_field(&ctl->txctl[idx], ATXCTL_CD, (!(conf & 0x7)));
1022                 /* Non-audio */
1023                 set_field(&ctl->txctl[idx], ATXCTL_LIV, (conf >> 4) & 0x1);
1024                 /* Non-audio */
1025                 set_field(&ctl->txctl[idx], ATXCTL_RIV, (conf >> 4) & 0x1);
1026                 set_field(&ctl->txctl[idx], ATXCTL_RAW,
1027                           ((conf >> 3) & 0x1) ? 0 : 0);
1028                 ctl->dirty.bf.atxctl |= (0x1 << idx);
1029         } else {
1030                 /* I2S output */
1031                 /*idx %= 4; */
1032         }
1033         return 0;
1034 }
1035
1036 static int daio_mgr_set_imaparc(void *blk, unsigned int slot)
1037 {
1038         struct daio_mgr_ctrl_blk *ctl = blk;
1039
1040         set_field(&ctl->daoimap.aim, AIM_ARC, slot);
1041         ctl->dirty.bf.daoimap = 1;
1042         return 0;
1043 }
1044
1045 static int daio_mgr_set_imapnxt(void *blk, unsigned int next)
1046 {
1047         struct daio_mgr_ctrl_blk *ctl = blk;
1048
1049         set_field(&ctl->daoimap.aim, AIM_NXT, next);
1050         ctl->dirty.bf.daoimap = 1;
1051         return 0;
1052 }
1053
1054 static int daio_mgr_set_imapaddr(void *blk, unsigned int addr)
1055 {
1056         ((struct daio_mgr_ctrl_blk *)blk)->daoimap.idx = addr;
1057         ((struct daio_mgr_ctrl_blk *)blk)->dirty.bf.daoimap = 1;
1058         return 0;
1059 }
1060
1061 static int daio_mgr_commit_write(struct hw *hw, void *blk)
1062 {
1063         struct daio_mgr_ctrl_blk *ctl = blk;
1064         unsigned int data;
1065         int i;
1066
1067         for (i = 0; i < 8; i++) {
1068                 if ((ctl->dirty.bf.atxctl & (0x1 << i))) {
1069                         data = ctl->txctl[i];
1070                         hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
1071                         ctl->dirty.bf.atxctl &= ~(0x1 << i);
1072                         mdelay(1);
1073                 }
1074                 if ((ctl->dirty.bf.arxctl & (0x1 << i))) {
1075                         data = ctl->rxctl[i];
1076                         hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
1077                         ctl->dirty.bf.arxctl &= ~(0x1 << i);
1078                         mdelay(1);
1079                 }
1080         }
1081         if (ctl->dirty.bf.daoimap) {
1082                 hw_write_20kx(hw, AUDIO_IO_AIM+ctl->daoimap.idx*4,
1083                                                 ctl->daoimap.aim);
1084                 ctl->dirty.bf.daoimap = 0;
1085         }
1086
1087         return 0;
1088 }
1089
1090 static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk)
1091 {
1092         struct daio_mgr_ctrl_blk *blk;
1093         int i;
1094
1095         *rblk = NULL;
1096         blk = kzalloc(sizeof(*blk), GFP_KERNEL);
1097         if (!blk)
1098                 return -ENOMEM;
1099
1100         for (i = 0; i < 8; i++) {
1101                 blk->txctl[i] = hw_read_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i));
1102                 blk->rxctl[i] = hw_read_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i));
1103         }
1104
1105         *rblk = blk;
1106
1107         return 0;
1108 }
1109
1110 static int daio_mgr_put_ctrl_blk(void *blk)
1111 {
1112         kfree(blk);
1113
1114         return 0;
1115 }
1116
1117 /* Timer interrupt */
1118 static int set_timer_irq(struct hw *hw, int enable)
1119 {
1120         hw_write_20kx(hw, GIE, enable ? IT_INT : 0);
1121         return 0;
1122 }
1123
1124 static int set_timer_tick(struct hw *hw, unsigned int ticks)
1125 {
1126         if (ticks)
1127                 ticks |= TIMR_IE | TIMR_IP;
1128         hw_write_20kx(hw, TIMR, ticks);
1129         return 0;
1130 }
1131
1132 static unsigned int get_wc(struct hw *hw)
1133 {
1134         return hw_read_20kx(hw, WC);
1135 }
1136
1137 /* Card hardware initialization block */
1138 struct dac_conf {
1139         unsigned int msr; /* master sample rate in rsrs */
1140 };
1141
1142 struct adc_conf {
1143         unsigned int msr;       /* master sample rate in rsrs */
1144         unsigned char input;    /* the input source of ADC */
1145         unsigned char mic20db;  /* boost mic by 20db if input is microphone */
1146 };
1147
1148 struct daio_conf {
1149         unsigned int msr; /* master sample rate in rsrs */
1150 };
1151
1152 struct trn_conf {
1153         unsigned long vm_pgt_phys;
1154 };
1155
1156 static int hw_daio_init(struct hw *hw, const struct daio_conf *info)
1157 {
1158         u32 data;
1159         int i;
1160
1161         /* Program I2S with proper sample rate and enable the correct I2S
1162          * channel. ED(0/8/16/24): Enable all I2S/I2X master clock output */
1163         if (1 == info->msr) {
1164                 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x01010101);
1165                 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x01010101);
1166                 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1167         } else if (2 == info->msr) {
1168                 if (hw->model != CTSB1270) {
1169                         hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11111111);
1170                 } else {
1171                         /* PCM4220 on Titanium HD is different. */
1172                         hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11011111);
1173                 }
1174                 /* Specify all playing 96khz
1175                  * EA [0]       - Enabled
1176                  * RTA [4:5]    - 96kHz
1177                  * EB [8]       - Enabled
1178                  * RTB [12:13]  - 96kHz
1179                  * EC [16]      - Enabled
1180                  * RTC [20:21]  - 96kHz
1181                  * ED [24]      - Enabled
1182                  * RTD [28:29]  - 96kHz */
1183                 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x11111111);
1184                 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1185         } else if ((4 == info->msr) && (hw->model == CTSB1270)) {
1186                 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x21011111);
1187                 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x21212121);
1188                 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1189         } else {
1190                 printk(KERN_ALERT "ctxfi: ERROR!!! Invalid sampling rate!!!\n");
1191                 return -EINVAL;
1192         }
1193
1194         for (i = 0; i < 8; i++) {
1195                 if (i <= 3) {
1196                         /* This comment looks wrong since loop is over 4  */
1197                         /* channels and emu20k2 supports 4 spdif IOs.     */
1198                         /* 1st 3 channels are SPDIFs (SB0960) */
1199                         if (i == 3)
1200                                 data = 0x1001001;
1201                         else
1202                                 data = 0x1000001;
1203
1204                         hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
1205                         hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
1206
1207                         /* Initialize the SPDIF Out Channel status registers.
1208                          * The value specified here is based on the typical
1209                          * values provided in the specification, namely: Clock
1210                          * Accuracy of 1000ppm, Sample Rate of 48KHz,
1211                          * unspecified source number, Generation status = 1,
1212                          * Category code = 0x12 (Digital Signal Mixer),
1213                          * Mode = 0, Emph = 0, Copy Permitted, AN = 0
1214                          * (indicating that we're transmitting digital audio,
1215                          * and the Professional Use bit is 0. */
1216
1217                         hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+(0x40*i),
1218                                         0x02109204); /* Default to 48kHz */
1219
1220                         hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_H+(0x40*i), 0x0B);
1221                 } else {
1222                         /* Again, loop is over 4 channels not 5. */
1223                         /* Next 5 channels are I2S (SB0960) */
1224                         data = 0x11;
1225                         hw_write_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i), data);
1226                         if (2 == info->msr) {
1227                                 /* Four channels per sample period */
1228                                 data |= 0x1000;
1229                         } else if (4 == info->msr) {
1230                                 /* FIXME: check this against the chip spec */
1231                                 data |= 0x2000;
1232                         }
1233                         hw_write_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i), data);
1234                 }
1235         }
1236
1237         return 0;
1238 }
1239
1240 /* TRANSPORT operations */
1241 static int hw_trn_init(struct hw *hw, const struct trn_conf *info)
1242 {
1243         u32 vmctl, data;
1244         u32 ptp_phys_low, ptp_phys_high;
1245         int i;
1246
1247         /* Set up device page table */
1248         if ((~0UL) == info->vm_pgt_phys) {
1249                 printk(KERN_ALERT "ctxfi: "
1250                        "Wrong device page table page address!!!\n");
1251                 return -1;
1252         }
1253
1254         vmctl = 0x80000C0F;  /* 32-bit, 4k-size page */
1255         ptp_phys_low = (u32)info->vm_pgt_phys;
1256         ptp_phys_high = upper_32_bits(info->vm_pgt_phys);
1257         if (sizeof(void *) == 8) /* 64bit address */
1258                 vmctl |= (3 << 8);
1259         /* Write page table physical address to all PTPAL registers */
1260         for (i = 0; i < 64; i++) {
1261                 hw_write_20kx(hw, VMEM_PTPAL+(16*i), ptp_phys_low);
1262                 hw_write_20kx(hw, VMEM_PTPAH+(16*i), ptp_phys_high);
1263         }
1264         /* Enable virtual memory transfer */
1265         hw_write_20kx(hw, VMEM_CTL, vmctl);
1266         /* Enable transport bus master and queueing of request */
1267         hw_write_20kx(hw, TRANSPORT_CTL, 0x03);
1268         hw_write_20kx(hw, TRANSPORT_INT, 0x200c01);
1269         /* Enable transport ring */
1270         data = hw_read_20kx(hw, TRANSPORT_ENB);
1271         hw_write_20kx(hw, TRANSPORT_ENB, (data | 0x03));
1272
1273         return 0;
1274 }
1275
1276 /* Card initialization */
1277 #define GCTL_AIE        0x00000001
1278 #define GCTL_UAA        0x00000002
1279 #define GCTL_DPC        0x00000004
1280 #define GCTL_DBP        0x00000008
1281 #define GCTL_ABP        0x00000010
1282 #define GCTL_TBP        0x00000020
1283 #define GCTL_SBP        0x00000040
1284 #define GCTL_FBP        0x00000080
1285 #define GCTL_ME         0x00000100
1286 #define GCTL_AID        0x00001000
1287
1288 #define PLLCTL_SRC      0x00000007
1289 #define PLLCTL_SPE      0x00000008
1290 #define PLLCTL_RD       0x000000F0
1291 #define PLLCTL_FD       0x0001FF00
1292 #define PLLCTL_OD       0x00060000
1293 #define PLLCTL_B        0x00080000
1294 #define PLLCTL_AS       0x00100000
1295 #define PLLCTL_LF       0x03E00000
1296 #define PLLCTL_SPS      0x1C000000
1297 #define PLLCTL_AD       0x60000000
1298
1299 #define PLLSTAT_CCS     0x00000007
1300 #define PLLSTAT_SPL     0x00000008
1301 #define PLLSTAT_CRD     0x000000F0
1302 #define PLLSTAT_CFD     0x0001FF00
1303 #define PLLSTAT_SL      0x00020000
1304 #define PLLSTAT_FAS     0x00040000
1305 #define PLLSTAT_B       0x00080000
1306 #define PLLSTAT_PD      0x00100000
1307 #define PLLSTAT_OCA     0x00200000
1308 #define PLLSTAT_NCA     0x00400000
1309
1310 static int hw_pll_init(struct hw *hw, unsigned int rsr)
1311 {
1312         unsigned int pllenb;
1313         unsigned int pllctl;
1314         unsigned int pllstat;
1315         int i;
1316
1317         pllenb = 0xB;
1318         hw_write_20kx(hw, PLL_ENB, pllenb);
1319         pllctl = 0x20C00000;
1320         set_field(&pllctl, PLLCTL_B, 0);
1321         set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 4 : 147 - 4);
1322         set_field(&pllctl, PLLCTL_RD, 48000 == rsr ? 1 - 1 : 10 - 1);
1323         hw_write_20kx(hw, PLL_CTL, pllctl);
1324         mdelay(40);
1325
1326         pllctl = hw_read_20kx(hw, PLL_CTL);
1327         set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 2 : 147 - 2);
1328         hw_write_20kx(hw, PLL_CTL, pllctl);
1329         mdelay(40);
1330
1331         for (i = 0; i < 1000; i++) {
1332                 pllstat = hw_read_20kx(hw, PLL_STAT);
1333                 if (get_field(pllstat, PLLSTAT_PD))
1334                         continue;
1335
1336                 if (get_field(pllstat, PLLSTAT_B) !=
1337                                         get_field(pllctl, PLLCTL_B))
1338                         continue;
1339
1340                 if (get_field(pllstat, PLLSTAT_CCS) !=
1341                                         get_field(pllctl, PLLCTL_SRC))
1342                         continue;
1343
1344                 if (get_field(pllstat, PLLSTAT_CRD) !=
1345                                         get_field(pllctl, PLLCTL_RD))
1346                         continue;
1347
1348                 if (get_field(pllstat, PLLSTAT_CFD) !=
1349                                         get_field(pllctl, PLLCTL_FD))
1350                         continue;
1351
1352                 break;
1353         }
1354         if (i >= 1000) {
1355                 printk(KERN_ALERT "ctxfi: PLL initialization failed!!!\n");
1356                 return -EBUSY;
1357         }
1358
1359         return 0;
1360 }
1361
1362 static int hw_auto_init(struct hw *hw)
1363 {
1364         unsigned int gctl;
1365         int i;
1366
1367         gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1368         set_field(&gctl, GCTL_AIE, 0);
1369         hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1370         set_field(&gctl, GCTL_AIE, 1);
1371         hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1372         mdelay(10);
1373         for (i = 0; i < 400000; i++) {
1374                 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1375                 if (get_field(gctl, GCTL_AID))
1376                         break;
1377         }
1378         if (!get_field(gctl, GCTL_AID)) {
1379                 printk(KERN_ALERT "ctxfi: Card Auto-init failed!!!\n");
1380                 return -EBUSY;
1381         }
1382
1383         return 0;
1384 }
1385
1386 /* DAC operations */
1387
1388 #define CS4382_MC1              0x1
1389 #define CS4382_MC2              0x2
1390 #define CS4382_MC3              0x3
1391 #define CS4382_FC               0x4
1392 #define CS4382_IC               0x5
1393 #define CS4382_XC1              0x6
1394 #define CS4382_VCA1             0x7
1395 #define CS4382_VCB1             0x8
1396 #define CS4382_XC2              0x9
1397 #define CS4382_VCA2             0xA
1398 #define CS4382_VCB2             0xB
1399 #define CS4382_XC3              0xC
1400 #define CS4382_VCA3             0xD
1401 #define CS4382_VCB3             0xE
1402 #define CS4382_XC4              0xF
1403 #define CS4382_VCA4             0x10
1404 #define CS4382_VCB4             0x11
1405 #define CS4382_CREV             0x12
1406
1407 /* I2C status */
1408 #define STATE_LOCKED            0x00
1409 #define STATE_UNLOCKED          0xAA
1410 #define DATA_READY              0x800000    /* Used with I2C_IF_STATUS */
1411 #define DATA_ABORT              0x10000     /* Used with I2C_IF_STATUS */
1412
1413 #define I2C_STATUS_DCM  0x00000001
1414 #define I2C_STATUS_BC   0x00000006
1415 #define I2C_STATUS_APD  0x00000008
1416 #define I2C_STATUS_AB   0x00010000
1417 #define I2C_STATUS_DR   0x00800000
1418
1419 #define I2C_ADDRESS_PTAD        0x0000FFFF
1420 #define I2C_ADDRESS_SLAD        0x007F0000
1421
1422 struct regs_cs4382 {
1423         u32 mode_control_1;
1424         u32 mode_control_2;
1425         u32 mode_control_3;
1426
1427         u32 filter_control;
1428         u32 invert_control;
1429
1430         u32 mix_control_P1;
1431         u32 vol_control_A1;
1432         u32 vol_control_B1;
1433
1434         u32 mix_control_P2;
1435         u32 vol_control_A2;
1436         u32 vol_control_B2;
1437
1438         u32 mix_control_P3;
1439         u32 vol_control_A3;
1440         u32 vol_control_B3;
1441
1442         u32 mix_control_P4;
1443         u32 vol_control_A4;
1444         u32 vol_control_B4;
1445 };
1446
1447 static int hw20k2_i2c_unlock_full_access(struct hw *hw)
1448 {
1449         u8 UnlockKeySequence_FLASH_FULLACCESS_MODE[2] =  {0xB3, 0xD4};
1450
1451         /* Send keys for forced BIOS mode */
1452         hw_write_20kx(hw, I2C_IF_WLOCK,
1453                         UnlockKeySequence_FLASH_FULLACCESS_MODE[0]);
1454         hw_write_20kx(hw, I2C_IF_WLOCK,
1455                         UnlockKeySequence_FLASH_FULLACCESS_MODE[1]);
1456         /* Check whether the chip is unlocked */
1457         if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_UNLOCKED)
1458                 return 0;
1459
1460         return -1;
1461 }
1462
1463 static int hw20k2_i2c_lock_chip(struct hw *hw)
1464 {
1465         /* Write twice */
1466         hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
1467         hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
1468         if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_LOCKED)
1469                 return 0;
1470
1471         return -1;
1472 }
1473
1474 static int hw20k2_i2c_init(struct hw *hw, u8 dev_id, u8 addr_size, u8 data_size)
1475 {
1476         struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1477         int err;
1478         unsigned int i2c_status;
1479         unsigned int i2c_addr;
1480
1481         err = hw20k2_i2c_unlock_full_access(hw);
1482         if (err < 0)
1483                 return err;
1484
1485         hw20k2->addr_size = addr_size;
1486         hw20k2->data_size = data_size;
1487         hw20k2->dev_id = dev_id;
1488
1489         i2c_addr = 0;
1490         set_field(&i2c_addr, I2C_ADDRESS_SLAD, dev_id);
1491
1492         hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
1493
1494         i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1495
1496         set_field(&i2c_status, I2C_STATUS_DCM, 1); /* Direct control mode */
1497
1498         hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1499
1500         return 0;
1501 }
1502
1503 static int hw20k2_i2c_uninit(struct hw *hw)
1504 {
1505         unsigned int i2c_status;
1506         unsigned int i2c_addr;
1507
1508         i2c_addr = 0;
1509         set_field(&i2c_addr, I2C_ADDRESS_SLAD, 0x57); /* I2C id */
1510
1511         hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
1512
1513         i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1514
1515         set_field(&i2c_status, I2C_STATUS_DCM, 0); /* I2C mode */
1516
1517         hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1518
1519         return hw20k2_i2c_lock_chip(hw);
1520 }
1521
1522 static int hw20k2_i2c_wait_data_ready(struct hw *hw)
1523 {
1524         int i = 0x400000;
1525         unsigned int ret;
1526
1527         do {
1528                 ret = hw_read_20kx(hw, I2C_IF_STATUS);
1529         } while ((!(ret & DATA_READY)) && --i);
1530
1531         return i;
1532 }
1533
1534 static int hw20k2_i2c_read(struct hw *hw, u16 addr, u32 *datap)
1535 {
1536         struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1537         unsigned int i2c_status;
1538
1539         i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1540         set_field(&i2c_status, I2C_STATUS_BC,
1541                   (4 == hw20k2->addr_size) ? 0 : hw20k2->addr_size);
1542         hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1543         if (!hw20k2_i2c_wait_data_ready(hw))
1544                 return -1;
1545
1546         hw_write_20kx(hw, I2C_IF_WDATA, addr);
1547         if (!hw20k2_i2c_wait_data_ready(hw))
1548                 return -1;
1549
1550         /* Force a read operation */
1551         hw_write_20kx(hw, I2C_IF_RDATA, 0);
1552         if (!hw20k2_i2c_wait_data_ready(hw))
1553                 return -1;
1554
1555         *datap = hw_read_20kx(hw, I2C_IF_RDATA);
1556
1557         return 0;
1558 }
1559
1560 static int hw20k2_i2c_write(struct hw *hw, u16 addr, u32 data)
1561 {
1562         struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1563         unsigned int i2c_data = (data << (hw20k2->addr_size * 8)) | addr;
1564         unsigned int i2c_status;
1565
1566         i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1567
1568         set_field(&i2c_status, I2C_STATUS_BC,
1569                   (4 == (hw20k2->addr_size + hw20k2->data_size)) ?
1570                   0 : (hw20k2->addr_size + hw20k2->data_size));
1571
1572         hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1573         hw20k2_i2c_wait_data_ready(hw);
1574         /* Dummy write to trigger the write operation */
1575         hw_write_20kx(hw, I2C_IF_WDATA, 0);
1576         hw20k2_i2c_wait_data_ready(hw);
1577
1578         /* This is the real data */
1579         hw_write_20kx(hw, I2C_IF_WDATA, i2c_data);
1580         hw20k2_i2c_wait_data_ready(hw);
1581
1582         return 0;
1583 }
1584
1585 static void hw_dac_stop(struct hw *hw)
1586 {
1587         u32 data;
1588         data = hw_read_20kx(hw, GPIO_DATA);
1589         data &= 0xFFFFFFFD;
1590         hw_write_20kx(hw, GPIO_DATA, data);
1591         mdelay(10);
1592 }
1593
1594 static void hw_dac_start(struct hw *hw)
1595 {
1596         u32 data;
1597         data = hw_read_20kx(hw, GPIO_DATA);
1598         data |= 0x2;
1599         hw_write_20kx(hw, GPIO_DATA, data);
1600         mdelay(50);
1601 }
1602
1603 static void hw_dac_reset(struct hw *hw)
1604 {
1605         hw_dac_stop(hw);
1606         hw_dac_start(hw);
1607 }
1608
1609 static int hw_dac_init(struct hw *hw, const struct dac_conf *info)
1610 {
1611         int err;
1612         u32 data;
1613         int i;
1614         struct regs_cs4382 cs_read = {0};
1615         struct regs_cs4382 cs_def = {
1616                                    0x00000001,  /* Mode Control 1 */
1617                                    0x00000000,  /* Mode Control 2 */
1618                                    0x00000084,  /* Mode Control 3 */
1619                                    0x00000000,  /* Filter Control */
1620                                    0x00000000,  /* Invert Control */
1621                                    0x00000024,  /* Mixing Control Pair 1 */
1622                                    0x00000000,  /* Vol Control A1 */
1623                                    0x00000000,  /* Vol Control B1 */
1624                                    0x00000024,  /* Mixing Control Pair 2 */
1625                                    0x00000000,  /* Vol Control A2 */
1626                                    0x00000000,  /* Vol Control B2 */
1627                                    0x00000024,  /* Mixing Control Pair 3 */
1628                                    0x00000000,  /* Vol Control A3 */
1629                                    0x00000000,  /* Vol Control B3 */
1630                                    0x00000024,  /* Mixing Control Pair 4 */
1631                                    0x00000000,  /* Vol Control A4 */
1632                                    0x00000000   /* Vol Control B4 */
1633                                  };
1634
1635         if (hw->model == CTSB1270) {
1636                 hw_dac_stop(hw);
1637                 data = hw_read_20kx(hw, GPIO_DATA);
1638                 data &= ~0x0600;
1639                 if (1 == info->msr)
1640                         data |= 0x0000; /* Single Speed Mode 0-50kHz */
1641                 else if (2 == info->msr)
1642                         data |= 0x0200; /* Double Speed Mode 50-100kHz */
1643                 else
1644                         data |= 0x0600; /* Quad Speed Mode 100-200kHz */
1645                 hw_write_20kx(hw, GPIO_DATA, data);
1646                 hw_dac_start(hw);
1647                 return 0;
1648         }
1649
1650         /* Set DAC reset bit as output */
1651         data = hw_read_20kx(hw, GPIO_CTRL);
1652         data |= 0x02;
1653         hw_write_20kx(hw, GPIO_CTRL, data);
1654
1655         err = hw20k2_i2c_init(hw, 0x18, 1, 1);
1656         if (err < 0)
1657                 goto End;
1658
1659         for (i = 0; i < 2; i++) {
1660                 /* Reset DAC twice just in-case the chip
1661                  * didn't initialized properly */
1662                 hw_dac_reset(hw);
1663                 hw_dac_reset(hw);
1664
1665                 if (hw20k2_i2c_read(hw, CS4382_MC1,  &cs_read.mode_control_1))
1666                         continue;
1667
1668                 if (hw20k2_i2c_read(hw, CS4382_MC2,  &cs_read.mode_control_2))
1669                         continue;
1670
1671                 if (hw20k2_i2c_read(hw, CS4382_MC3,  &cs_read.mode_control_3))
1672                         continue;
1673
1674                 if (hw20k2_i2c_read(hw, CS4382_FC,   &cs_read.filter_control))
1675                         continue;
1676
1677                 if (hw20k2_i2c_read(hw, CS4382_IC,   &cs_read.invert_control))
1678                         continue;
1679
1680                 if (hw20k2_i2c_read(hw, CS4382_XC1,  &cs_read.mix_control_P1))
1681                         continue;
1682
1683                 if (hw20k2_i2c_read(hw, CS4382_VCA1, &cs_read.vol_control_A1))
1684                         continue;
1685
1686                 if (hw20k2_i2c_read(hw, CS4382_VCB1, &cs_read.vol_control_B1))
1687                         continue;
1688
1689                 if (hw20k2_i2c_read(hw, CS4382_XC2,  &cs_read.mix_control_P2))
1690                         continue;
1691
1692                 if (hw20k2_i2c_read(hw, CS4382_VCA2, &cs_read.vol_control_A2))
1693                         continue;
1694
1695                 if (hw20k2_i2c_read(hw, CS4382_VCB2, &cs_read.vol_control_B2))
1696                         continue;
1697
1698                 if (hw20k2_i2c_read(hw, CS4382_XC3,  &cs_read.mix_control_P3))
1699                         continue;
1700
1701                 if (hw20k2_i2c_read(hw, CS4382_VCA3, &cs_read.vol_control_A3))
1702                         continue;
1703
1704                 if (hw20k2_i2c_read(hw, CS4382_VCB3, &cs_read.vol_control_B3))
1705                         continue;
1706
1707                 if (hw20k2_i2c_read(hw, CS4382_XC4,  &cs_read.mix_control_P4))
1708                         continue;
1709
1710                 if (hw20k2_i2c_read(hw, CS4382_VCA4, &cs_read.vol_control_A4))
1711                         continue;
1712
1713                 if (hw20k2_i2c_read(hw, CS4382_VCB4, &cs_read.vol_control_B4))
1714                         continue;
1715
1716                 if (memcmp(&cs_read, &cs_def, sizeof(cs_read)))
1717                         continue;
1718                 else
1719                         break;
1720         }
1721
1722         if (i >= 2)
1723                 goto End;
1724
1725         /* Note: Every I2C write must have some delay.
1726          * This is not a requirement but the delay works here... */
1727         hw20k2_i2c_write(hw, CS4382_MC1, 0x80);
1728         hw20k2_i2c_write(hw, CS4382_MC2, 0x10);
1729         if (1 == info->msr) {
1730                 hw20k2_i2c_write(hw, CS4382_XC1, 0x24);
1731                 hw20k2_i2c_write(hw, CS4382_XC2, 0x24);
1732                 hw20k2_i2c_write(hw, CS4382_XC3, 0x24);
1733                 hw20k2_i2c_write(hw, CS4382_XC4, 0x24);
1734         } else if (2 == info->msr) {
1735                 hw20k2_i2c_write(hw, CS4382_XC1, 0x25);
1736                 hw20k2_i2c_write(hw, CS4382_XC2, 0x25);
1737                 hw20k2_i2c_write(hw, CS4382_XC3, 0x25);
1738                 hw20k2_i2c_write(hw, CS4382_XC4, 0x25);
1739         } else {
1740                 hw20k2_i2c_write(hw, CS4382_XC1, 0x26);
1741                 hw20k2_i2c_write(hw, CS4382_XC2, 0x26);
1742                 hw20k2_i2c_write(hw, CS4382_XC3, 0x26);
1743                 hw20k2_i2c_write(hw, CS4382_XC4, 0x26);
1744         }
1745
1746         return 0;
1747 End:
1748
1749         hw20k2_i2c_uninit(hw);
1750         return -1;
1751 }
1752
1753 /* ADC operations */
1754 #define MAKE_WM8775_ADDR(addr, data)    (u32)(((addr<<1)&0xFE)|((data>>8)&0x1))
1755 #define MAKE_WM8775_DATA(data)  (u32)(data&0xFF)
1756
1757 #define WM8775_IC       0x0B
1758 #define WM8775_MMC      0x0C
1759 #define WM8775_AADCL    0x0E
1760 #define WM8775_AADCR    0x0F
1761 #define WM8775_ADCMC    0x15
1762 #define WM8775_RESET    0x17
1763
1764 static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type)
1765 {
1766         u32 data;
1767         if (hw->model == CTSB1270) {
1768                 /* Titanium HD has two ADC chips, one for line in and one */
1769                 /* for MIC. We don't need to switch the ADC input. */
1770                 return 1;
1771         }
1772         data = hw_read_20kx(hw, GPIO_DATA);
1773         switch (type) {
1774         case ADC_MICIN:
1775                 data = (data & (0x1 << 14)) ? 1 : 0;
1776                 break;
1777         case ADC_LINEIN:
1778                 data = (data & (0x1 << 14)) ? 0 : 1;
1779                 break;
1780         default:
1781                 data = 0;
1782         }
1783         return data;
1784 }
1785
1786 #define MIC_BOOST_0DB 0xCF
1787 #define MIC_BOOST_STEPS_PER_DB 2
1788
1789 static void hw_wm8775_input_select(struct hw *hw, u8 input, s8 gain_in_db)
1790 {
1791         u32 adcmc, gain;
1792
1793         if (input > 3)
1794                 input = 3;
1795
1796         adcmc = ((u32)1 << input) | 0x100; /* Link L+R gain... */
1797
1798         hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, adcmc),
1799                                 MAKE_WM8775_DATA(adcmc));
1800
1801         if (gain_in_db < -103)
1802                 gain_in_db = -103;
1803         if (gain_in_db > 24)
1804                 gain_in_db = 24;
1805
1806         gain = gain_in_db * MIC_BOOST_STEPS_PER_DB + MIC_BOOST_0DB;
1807
1808         hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCL, gain),
1809                                 MAKE_WM8775_DATA(gain));
1810         /* ...so there should be no need for the following. */
1811         hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCR, gain),
1812                                 MAKE_WM8775_DATA(gain));
1813 }
1814
1815 static int hw_adc_input_select(struct hw *hw, enum ADCSRC type)
1816 {
1817         u32 data;
1818         data = hw_read_20kx(hw, GPIO_DATA);
1819         switch (type) {
1820         case ADC_MICIN:
1821                 data |= (0x1 << 14);
1822                 hw_write_20kx(hw, GPIO_DATA, data);
1823                 hw_wm8775_input_select(hw, 0, 20); /* Mic, 20dB */
1824                 break;
1825         case ADC_LINEIN:
1826                 data &= ~(0x1 << 14);
1827                 hw_write_20kx(hw, GPIO_DATA, data);
1828                 hw_wm8775_input_select(hw, 1, 0); /* Line-in, 0dB */
1829                 break;
1830         default:
1831                 break;
1832         }
1833
1834         return 0;
1835 }
1836
1837 static int hw_adc_init(struct hw *hw, const struct adc_conf *info)
1838 {
1839         int err;
1840         u32 data, ctl;
1841
1842         /*  Set ADC reset bit as output */
1843         data = hw_read_20kx(hw, GPIO_CTRL);
1844         data |= (0x1 << 15);
1845         hw_write_20kx(hw, GPIO_CTRL, data);
1846
1847         /* Initialize I2C */
1848         err = hw20k2_i2c_init(hw, 0x1A, 1, 1);
1849         if (err < 0) {
1850                 printk(KERN_ALERT "ctxfi: Failure to acquire I2C!!!\n");
1851                 goto error;
1852         }
1853
1854         /* Reset the ADC (reset is active low). */
1855         data = hw_read_20kx(hw, GPIO_DATA);
1856         data &= ~(0x1 << 15);
1857         hw_write_20kx(hw, GPIO_DATA, data);
1858
1859         if (hw->model == CTSB1270) {
1860                 /* Set up the PCM4220 ADC on Titanium HD */
1861                 data &= ~0x0C;
1862                 if (1 == info->msr)
1863                         data |= 0x00; /* Single Speed Mode 32-50kHz */
1864                 else if (2 == info->msr)
1865                         data |= 0x08; /* Double Speed Mode 50-108kHz */
1866                 else
1867                         data |= 0x04; /* Quad Speed Mode 108kHz-216kHz */
1868                 hw_write_20kx(hw, GPIO_DATA, data);
1869         }
1870
1871         mdelay(10);
1872         /* Return the ADC to normal operation. */
1873         data |= (0x1 << 15);
1874         hw_write_20kx(hw, GPIO_DATA, data);
1875         mdelay(50);
1876
1877         /* I2C write to register offset 0x0B to set ADC LRCLK polarity */
1878         /* invert bit, interface format to I2S, word length to 24-bit, */
1879         /* enable ADC high pass filter. Fixes bug 5323?         */
1880         hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_IC, 0x26),
1881                          MAKE_WM8775_DATA(0x26));
1882
1883         /* Set the master mode (256fs) */
1884         if (1 == info->msr) {
1885                 /* slave mode, 128x oversampling 256fs */
1886                 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x02),
1887                                                 MAKE_WM8775_DATA(0x02));
1888         } else if ((2 == info->msr) || (4 == info->msr)) {
1889                 /* slave mode, 64x oversampling, 256fs */
1890                 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x0A),
1891                                                 MAKE_WM8775_DATA(0x0A));
1892         } else {
1893                 printk(KERN_ALERT "ctxfi: Invalid master sampling "
1894                                   "rate (msr %d)!!!\n", info->msr);
1895                 err = -EINVAL;
1896                 goto error;
1897         }
1898
1899         if (hw->model != CTSB1270) {
1900                 /* Configure GPIO bit 14 change to line-in/mic-in */
1901                 ctl = hw_read_20kx(hw, GPIO_CTRL);
1902                 ctl |= 0x1 << 14;
1903                 hw_write_20kx(hw, GPIO_CTRL, ctl);
1904                 hw_adc_input_select(hw, ADC_LINEIN);
1905         } else {
1906                 hw_wm8775_input_select(hw, 0, 0);
1907         }
1908
1909         return 0;
1910 error:
1911         hw20k2_i2c_uninit(hw);
1912         return err;
1913 }
1914
1915 static struct capabilities hw_capabilities(struct hw *hw)
1916 {
1917         struct capabilities cap;
1918
1919         cap.digit_io_switch = 0;
1920         cap.dedicated_mic = hw->model == CTSB1270;
1921         cap.output_switch = hw->model == CTSB1270;
1922         cap.mic_source_switch = hw->model == CTSB1270;
1923
1924         return cap;
1925 }
1926
1927 static int hw_output_switch_get(struct hw *hw)
1928 {
1929         u32 data = hw_read_20kx(hw, GPIO_EXT_DATA);
1930
1931         switch (data & 0x30) {
1932         case 0x00:
1933              return 0;
1934         case 0x10:
1935              return 1;
1936         case 0x20:
1937              return 2;
1938         default:
1939              return 3;
1940         }
1941 }
1942
1943 static int hw_output_switch_put(struct hw *hw, int position)
1944 {
1945         u32 data;
1946
1947         if (position == hw_output_switch_get(hw))
1948                 return 0;
1949
1950         /* Mute line and headphones (intended for anti-pop). */
1951         data = hw_read_20kx(hw, GPIO_DATA);
1952         data |= (0x03 << 11);
1953         hw_write_20kx(hw, GPIO_DATA, data);
1954
1955         data = hw_read_20kx(hw, GPIO_EXT_DATA) & ~0x30;
1956         switch (position) {
1957         case 0:
1958                 break;
1959         case 1:
1960                 data |= 0x10;
1961                 break;
1962         default:
1963                 data |= 0x20;
1964         }
1965         hw_write_20kx(hw, GPIO_EXT_DATA, data);
1966
1967         /* Unmute line and headphones. */
1968         data = hw_read_20kx(hw, GPIO_DATA);
1969         data &= ~(0x03 << 11);
1970         hw_write_20kx(hw, GPIO_DATA, data);
1971
1972         return 1;
1973 }
1974
1975 static int hw_mic_source_switch_get(struct hw *hw)
1976 {
1977         struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1978
1979         return hw20k2->mic_source;
1980 }
1981
1982 static int hw_mic_source_switch_put(struct hw *hw, int position)
1983 {
1984         struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1985
1986         if (position == hw20k2->mic_source)
1987                 return 0;
1988
1989         switch (position) {
1990         case 0:
1991                 hw_wm8775_input_select(hw, 0, 0); /* Mic, 0dB */
1992                 break;
1993         case 1:
1994                 hw_wm8775_input_select(hw, 1, 0); /* FP Mic, 0dB */
1995                 break;
1996         case 2:
1997                 hw_wm8775_input_select(hw, 3, 0); /* Aux Ext, 0dB */
1998                 break;
1999         default:
2000                 return 0;
2001         }
2002
2003         hw20k2->mic_source = position;
2004
2005         return 1;
2006 }
2007
2008 static irqreturn_t ct_20k2_interrupt(int irq, void *dev_id)
2009 {
2010         struct hw *hw = dev_id;
2011         unsigned int status;
2012
2013         status = hw_read_20kx(hw, GIP);
2014         if (!status)
2015                 return IRQ_NONE;
2016
2017         if (hw->irq_callback)
2018                 hw->irq_callback(hw->irq_callback_data, status);
2019
2020         hw_write_20kx(hw, GIP, status);
2021         return IRQ_HANDLED;
2022 }
2023
2024 static int hw_card_start(struct hw *hw)
2025 {
2026         int err = 0;
2027         struct pci_dev *pci = hw->pci;
2028         unsigned int gctl;
2029
2030         err = pci_enable_device(pci);
2031         if (err < 0)
2032                 return err;
2033
2034         /* Set DMA transfer mask */
2035         if (pci_set_dma_mask(pci, CT_XFI_DMA_MASK) < 0 ||
2036             pci_set_consistent_dma_mask(pci, CT_XFI_DMA_MASK) < 0) {
2037                 printk(KERN_ERR "ctxfi: architecture does not support PCI "
2038                 "busmaster DMA with mask 0x%llx\n", CT_XFI_DMA_MASK);
2039                 err = -ENXIO;
2040                 goto error1;
2041         }
2042
2043         if (!hw->io_base) {
2044                 err = pci_request_regions(pci, "XFi");
2045                 if (err < 0)
2046                         goto error1;
2047
2048                 hw->io_base = pci_resource_start(hw->pci, 2);
2049                 hw->mem_base = (unsigned long)ioremap(hw->io_base,
2050                                         pci_resource_len(hw->pci, 2));
2051                 if (!hw->mem_base) {
2052                         err = -ENOENT;
2053                         goto error2;
2054                 }
2055         }
2056
2057         /* Switch to 20k2 mode from UAA mode. */
2058         gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
2059         set_field(&gctl, GCTL_UAA, 0);
2060         hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
2061
2062         if (hw->irq < 0) {
2063                 err = request_irq(pci->irq, ct_20k2_interrupt, IRQF_SHARED,
2064                                   KBUILD_MODNAME, hw);
2065                 if (err < 0) {
2066                         printk(KERN_ERR "XFi: Cannot get irq %d\n", pci->irq);
2067                         goto error2;
2068                 }
2069                 hw->irq = pci->irq;
2070         }
2071
2072         pci_set_master(pci);
2073
2074         return 0;
2075
2076 /*error3:
2077         iounmap((void *)hw->mem_base);
2078         hw->mem_base = (unsigned long)NULL;*/
2079 error2:
2080         pci_release_regions(pci);
2081         hw->io_base = 0;
2082 error1:
2083         pci_disable_device(pci);
2084         return err;
2085 }
2086
2087 static int hw_card_stop(struct hw *hw)
2088 {
2089         unsigned int data;
2090
2091         /* disable transport bus master and queueing of request */
2092         hw_write_20kx(hw, TRANSPORT_CTL, 0x00);
2093
2094         /* disable pll */
2095         data = hw_read_20kx(hw, PLL_ENB);
2096         hw_write_20kx(hw, PLL_ENB, (data & (~0x07)));
2097
2098         /* TODO: Disable interrupt and so on... */
2099         return 0;
2100 }
2101
2102 static int hw_card_shutdown(struct hw *hw)
2103 {
2104         if (hw->irq >= 0)
2105                 free_irq(hw->irq, hw);
2106
2107         hw->irq = -1;
2108
2109         if (hw->mem_base)
2110                 iounmap((void *)hw->mem_base);
2111
2112         hw->mem_base = (unsigned long)NULL;
2113
2114         if (hw->io_base)
2115                 pci_release_regions(hw->pci);
2116
2117         hw->io_base = 0;
2118
2119         pci_disable_device(hw->pci);
2120
2121         return 0;
2122 }
2123
2124 static int hw_card_init(struct hw *hw, struct card_conf *info)
2125 {
2126         int err;
2127         unsigned int gctl;
2128         u32 data = 0;
2129         struct dac_conf dac_info = {0};
2130         struct adc_conf adc_info = {0};
2131         struct daio_conf daio_info = {0};
2132         struct trn_conf trn_info = {0};
2133
2134         /* Get PCI io port/memory base address and
2135          * do 20kx core switch if needed. */
2136         err = hw_card_start(hw);
2137         if (err)
2138                 return err;
2139
2140         /* PLL init */
2141         err = hw_pll_init(hw, info->rsr);
2142         if (err < 0)
2143                 return err;
2144
2145         /* kick off auto-init */
2146         err = hw_auto_init(hw);
2147         if (err < 0)
2148                 return err;
2149
2150         gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
2151         set_field(&gctl, GCTL_DBP, 1);
2152         set_field(&gctl, GCTL_TBP, 1);
2153         set_field(&gctl, GCTL_FBP, 1);
2154         set_field(&gctl, GCTL_DPC, 0);
2155         hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
2156
2157         /* Reset all global pending interrupts */
2158         hw_write_20kx(hw, GIE, 0);
2159         /* Reset all SRC pending interrupts */
2160         hw_write_20kx(hw, SRC_IP, 0);
2161
2162         if (hw->model != CTSB1270) {
2163                 /* TODO: detect the card ID and configure GPIO accordingly. */
2164                 /* Configures GPIO (0xD802 0x98028) */
2165                 /*hw_write_20kx(hw, GPIO_CTRL, 0x7F07);*/
2166                 /* Configures GPIO (SB0880) */
2167                 /*hw_write_20kx(hw, GPIO_CTRL, 0xFF07);*/
2168                 hw_write_20kx(hw, GPIO_CTRL, 0xD802);
2169         } else {
2170                 hw_write_20kx(hw, GPIO_CTRL, 0x9E5F);
2171         }
2172         /* Enable audio ring */
2173         hw_write_20kx(hw, MIXER_AR_ENABLE, 0x01);
2174
2175         trn_info.vm_pgt_phys = info->vm_pgt_phys;
2176         err = hw_trn_init(hw, &trn_info);
2177         if (err < 0)
2178                 return err;
2179
2180         daio_info.msr = info->msr;
2181         err = hw_daio_init(hw, &daio_info);
2182         if (err < 0)
2183                 return err;
2184
2185         dac_info.msr = info->msr;
2186         err = hw_dac_init(hw, &dac_info);
2187         if (err < 0)
2188                 return err;
2189
2190         adc_info.msr = info->msr;
2191         adc_info.input = ADC_LINEIN;
2192         adc_info.mic20db = 0;
2193         err = hw_adc_init(hw, &adc_info);
2194         if (err < 0)
2195                 return err;
2196
2197         data = hw_read_20kx(hw, SRC_MCTL);
2198         data |= 0x1; /* Enables input from the audio ring */
2199         hw_write_20kx(hw, SRC_MCTL, data);
2200
2201         return 0;
2202 }
2203
2204 #ifdef CONFIG_PM
2205 static int hw_suspend(struct hw *hw, pm_message_t state)
2206 {
2207         struct pci_dev *pci = hw->pci;
2208
2209         hw_card_stop(hw);
2210
2211         pci_disable_device(pci);
2212         pci_save_state(pci);
2213         pci_set_power_state(pci, pci_choose_state(pci, state));
2214
2215         return 0;
2216 }
2217
2218 static int hw_resume(struct hw *hw, struct card_conf *info)
2219 {
2220         struct pci_dev *pci = hw->pci;
2221
2222         pci_set_power_state(pci, PCI_D0);
2223         pci_restore_state(pci);
2224
2225         /* Re-initialize card hardware. */
2226         return hw_card_init(hw, info);
2227 }
2228 #endif
2229
2230 static u32 hw_read_20kx(struct hw *hw, u32 reg)
2231 {
2232         return readl((void *)(hw->mem_base + reg));
2233 }
2234
2235 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data)
2236 {
2237         writel(data, (void *)(hw->mem_base + reg));
2238 }
2239
2240 static struct hw ct20k2_preset __devinitdata = {
2241         .irq = -1,
2242
2243         .card_init = hw_card_init,
2244         .card_stop = hw_card_stop,
2245         .pll_init = hw_pll_init,
2246         .is_adc_source_selected = hw_is_adc_input_selected,
2247         .select_adc_source = hw_adc_input_select,
2248         .capabilities = hw_capabilities,
2249         .output_switch_get = hw_output_switch_get,
2250         .output_switch_put = hw_output_switch_put,
2251         .mic_source_switch_get = hw_mic_source_switch_get,
2252         .mic_source_switch_put = hw_mic_source_switch_put,
2253 #ifdef CONFIG_PM
2254         .suspend = hw_suspend,
2255         .resume = hw_resume,
2256 #endif
2257
2258         .src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk,
2259         .src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk,
2260         .src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk,
2261         .src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk,
2262         .src_set_state = src_set_state,
2263         .src_set_bm = src_set_bm,
2264         .src_set_rsr = src_set_rsr,
2265         .src_set_sf = src_set_sf,
2266         .src_set_wr = src_set_wr,
2267         .src_set_pm = src_set_pm,
2268         .src_set_rom = src_set_rom,
2269         .src_set_vo = src_set_vo,
2270         .src_set_st = src_set_st,
2271         .src_set_ie = src_set_ie,
2272         .src_set_ilsz = src_set_ilsz,
2273         .src_set_bp = src_set_bp,
2274         .src_set_cisz = src_set_cisz,
2275         .src_set_ca = src_set_ca,
2276         .src_set_sa = src_set_sa,
2277         .src_set_la = src_set_la,
2278         .src_set_pitch = src_set_pitch,
2279         .src_set_dirty = src_set_dirty,
2280         .src_set_clear_zbufs = src_set_clear_zbufs,
2281         .src_set_dirty_all = src_set_dirty_all,
2282         .src_commit_write = src_commit_write,
2283         .src_get_ca = src_get_ca,
2284         .src_get_dirty = src_get_dirty,
2285         .src_dirty_conj_mask = src_dirty_conj_mask,
2286         .src_mgr_enbs_src = src_mgr_enbs_src,
2287         .src_mgr_enb_src = src_mgr_enb_src,
2288         .src_mgr_dsb_src = src_mgr_dsb_src,
2289         .src_mgr_commit_write = src_mgr_commit_write,
2290
2291         .srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk,
2292         .srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk,
2293         .srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc,
2294         .srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser,
2295         .srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt,
2296         .srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr,
2297         .srcimp_mgr_commit_write = srcimp_mgr_commit_write,
2298
2299         .amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk,
2300         .amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk,
2301         .amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk,
2302         .amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk,
2303         .amixer_set_mode = amixer_set_mode,
2304         .amixer_set_iv = amixer_set_iv,
2305         .amixer_set_x = amixer_set_x,
2306         .amixer_set_y = amixer_set_y,
2307         .amixer_set_sadr = amixer_set_sadr,
2308         .amixer_set_se = amixer_set_se,
2309         .amixer_set_dirty = amixer_set_dirty,
2310         .amixer_set_dirty_all = amixer_set_dirty_all,
2311         .amixer_commit_write = amixer_commit_write,
2312         .amixer_get_y = amixer_get_y,
2313         .amixer_get_dirty = amixer_get_dirty,
2314
2315         .dai_get_ctrl_blk = dai_get_ctrl_blk,
2316         .dai_put_ctrl_blk = dai_put_ctrl_blk,
2317         .dai_srt_set_srco = dai_srt_set_srco,
2318         .dai_srt_set_srcm = dai_srt_set_srcm,
2319         .dai_srt_set_rsr = dai_srt_set_rsr,
2320         .dai_srt_set_drat = dai_srt_set_drat,
2321         .dai_srt_set_ec = dai_srt_set_ec,
2322         .dai_srt_set_et = dai_srt_set_et,
2323         .dai_commit_write = dai_commit_write,
2324
2325         .dao_get_ctrl_blk = dao_get_ctrl_blk,
2326         .dao_put_ctrl_blk = dao_put_ctrl_blk,
2327         .dao_set_spos = dao_set_spos,
2328         .dao_commit_write = dao_commit_write,
2329         .dao_get_spos = dao_get_spos,
2330
2331         .daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk,
2332         .daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk,
2333         .daio_mgr_enb_dai = daio_mgr_enb_dai,
2334         .daio_mgr_dsb_dai = daio_mgr_dsb_dai,
2335         .daio_mgr_enb_dao = daio_mgr_enb_dao,
2336         .daio_mgr_dsb_dao = daio_mgr_dsb_dao,
2337         .daio_mgr_dao_init = daio_mgr_dao_init,
2338         .daio_mgr_set_imaparc = daio_mgr_set_imaparc,
2339         .daio_mgr_set_imapnxt = daio_mgr_set_imapnxt,
2340         .daio_mgr_set_imapaddr = daio_mgr_set_imapaddr,
2341         .daio_mgr_commit_write = daio_mgr_commit_write,
2342
2343         .set_timer_irq = set_timer_irq,
2344         .set_timer_tick = set_timer_tick,
2345         .get_wc = get_wc,
2346 };
2347
2348 int __devinit create_20k2_hw_obj(struct hw **rhw)
2349 {
2350         struct hw20k2 *hw20k2;
2351
2352         *rhw = NULL;
2353         hw20k2 = kzalloc(sizeof(*hw20k2), GFP_KERNEL);
2354         if (!hw20k2)
2355                 return -ENOMEM;
2356
2357         hw20k2->hw = ct20k2_preset;
2358         *rhw = &hw20k2->hw;
2359
2360         return 0;
2361 }
2362
2363 int destroy_20k2_hw_obj(struct hw *hw)
2364 {
2365         if (hw->io_base)
2366                 hw_card_shutdown(hw);
2367
2368         kfree(hw);
2369         return 0;
2370 }