9f64bb86d30cf5b5974a1f3f214ccc5393d437d0
[pandora-kernel.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23         CONFIG_DEFAULT_SECURITY;
24
25 /* things that live in capability.c */
26 extern void __init security_fixup_ops(struct security_operations *ops);
27
28 static struct security_operations *security_ops;
29 static struct security_operations default_security_ops = {
30         .name   = "default",
31 };
32
33 static inline int __init verify(struct security_operations *ops)
34 {
35         /* verify the security_operations structure exists */
36         if (!ops)
37                 return -EINVAL;
38         security_fixup_ops(ops);
39         return 0;
40 }
41
42 static void __init do_security_initcalls(void)
43 {
44         initcall_t *call;
45         call = __security_initcall_start;
46         while (call < __security_initcall_end) {
47                 (*call) ();
48                 call++;
49         }
50 }
51
52 /**
53  * security_init - initializes the security framework
54  *
55  * This should be called early in the kernel initialization sequence.
56  */
57 int __init security_init(void)
58 {
59         printk(KERN_INFO "Security Framework initialized\n");
60
61         security_fixup_ops(&default_security_ops);
62         security_ops = &default_security_ops;
63         do_security_initcalls();
64
65         return 0;
66 }
67
68 void reset_security_ops(void)
69 {
70         security_ops = &default_security_ops;
71 }
72
73 /* Save user chosen LSM */
74 static int __init choose_lsm(char *str)
75 {
76         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77         return 1;
78 }
79 __setup("security=", choose_lsm);
80
81 /**
82  * security_module_enable - Load given security module on boot ?
83  * @ops: a pointer to the struct security_operations that is to be checked.
84  *
85  * Each LSM must pass this method before registering its own operations
86  * to avoid security registration races. This method may also be used
87  * to check if your LSM is currently loaded during kernel initialization.
88  *
89  * Return true if:
90  *      -The passed LSM is the one chosen by user at boot time,
91  *      -or the passed LSM is configured as the default and the user did not
92  *       choose an alternate LSM at boot time.
93  * Otherwise, return false.
94  */
95 int __init security_module_enable(struct security_operations *ops)
96 {
97         return !strcmp(ops->name, chosen_lsm);
98 }
99
100 /**
101  * register_security - registers a security framework with the kernel
102  * @ops: a pointer to the struct security_options that is to be registered
103  *
104  * This function allows a security module to register itself with the
105  * kernel security subsystem.  Some rudimentary checking is done on the @ops
106  * value passed to this function. You'll need to check first if your LSM
107  * is allowed to register its @ops by calling security_module_enable(@ops).
108  *
109  * If there is already a security module registered with the kernel,
110  * an error will be returned.  Otherwise %0 is returned on success.
111  */
112 int __init register_security(struct security_operations *ops)
113 {
114         if (verify(ops)) {
115                 printk(KERN_DEBUG "%s could not verify "
116                        "security_operations structure.\n", __func__);
117                 return -EINVAL;
118         }
119
120         if (security_ops != &default_security_ops)
121                 return -EAGAIN;
122
123         security_ops = ops;
124
125         return 0;
126 }
127
128 /* Security operations */
129
130 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
131 {
132         return security_ops->ptrace_access_check(child, mode);
133 }
134
135 int security_ptrace_traceme(struct task_struct *parent)
136 {
137         return security_ops->ptrace_traceme(parent);
138 }
139
140 int security_capget(struct task_struct *target,
141                      kernel_cap_t *effective,
142                      kernel_cap_t *inheritable,
143                      kernel_cap_t *permitted)
144 {
145         return security_ops->capget(target, effective, inheritable, permitted);
146 }
147
148 int security_capset(struct cred *new, const struct cred *old,
149                     const kernel_cap_t *effective,
150                     const kernel_cap_t *inheritable,
151                     const kernel_cap_t *permitted)
152 {
153         return security_ops->capset(new, old,
154                                     effective, inheritable, permitted);
155 }
156
157 int security_capable(struct user_namespace *ns, const struct cred *cred,
158                      int cap)
159 {
160         return security_ops->capable(current, cred, ns, cap,
161                                      SECURITY_CAP_AUDIT);
162 }
163
164 int security_real_capable(struct task_struct *tsk, struct user_namespace *ns,
165                           int cap)
166 {
167         const struct cred *cred;
168         int ret;
169
170         cred = get_task_cred(tsk);
171         ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_AUDIT);
172         put_cred(cred);
173         return ret;
174 }
175
176 int security_real_capable_noaudit(struct task_struct *tsk,
177                                   struct user_namespace *ns, int cap)
178 {
179         const struct cred *cred;
180         int ret;
181
182         cred = get_task_cred(tsk);
183         ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_NOAUDIT);
184         put_cred(cred);
185         return ret;
186 }
187
188 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
189 {
190         return security_ops->quotactl(cmds, type, id, sb);
191 }
192
193 int security_quota_on(struct dentry *dentry)
194 {
195         return security_ops->quota_on(dentry);
196 }
197
198 int security_syslog(int type)
199 {
200         return security_ops->syslog(type);
201 }
202
203 int security_settime(const struct timespec *ts, const struct timezone *tz)
204 {
205         return security_ops->settime(ts, tz);
206 }
207
208 int security_vm_enough_memory(long pages)
209 {
210         WARN_ON(current->mm == NULL);
211         return security_ops->vm_enough_memory(current->mm, pages);
212 }
213
214 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
215 {
216         WARN_ON(mm == NULL);
217         return security_ops->vm_enough_memory(mm, pages);
218 }
219
220 int security_vm_enough_memory_kern(long pages)
221 {
222         /* If current->mm is a kernel thread then we will pass NULL,
223            for this specific case that is fine */
224         return security_ops->vm_enough_memory(current->mm, pages);
225 }
226
227 int security_bprm_set_creds(struct linux_binprm *bprm)
228 {
229         return security_ops->bprm_set_creds(bprm);
230 }
231
232 int security_bprm_check(struct linux_binprm *bprm)
233 {
234         int ret;
235
236         ret = security_ops->bprm_check_security(bprm);
237         if (ret)
238                 return ret;
239         return ima_bprm_check(bprm);
240 }
241
242 void security_bprm_committing_creds(struct linux_binprm *bprm)
243 {
244         security_ops->bprm_committing_creds(bprm);
245 }
246
247 void security_bprm_committed_creds(struct linux_binprm *bprm)
248 {
249         security_ops->bprm_committed_creds(bprm);
250 }
251
252 int security_bprm_secureexec(struct linux_binprm *bprm)
253 {
254         return security_ops->bprm_secureexec(bprm);
255 }
256
257 int security_sb_alloc(struct super_block *sb)
258 {
259         return security_ops->sb_alloc_security(sb);
260 }
261
262 void security_sb_free(struct super_block *sb)
263 {
264         security_ops->sb_free_security(sb);
265 }
266
267 int security_sb_copy_data(char *orig, char *copy)
268 {
269         return security_ops->sb_copy_data(orig, copy);
270 }
271 EXPORT_SYMBOL(security_sb_copy_data);
272
273 int security_sb_remount(struct super_block *sb, void *data)
274 {
275         return security_ops->sb_remount(sb, data);
276 }
277
278 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
279 {
280         return security_ops->sb_kern_mount(sb, flags, data);
281 }
282
283 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
284 {
285         return security_ops->sb_show_options(m, sb);
286 }
287
288 int security_sb_statfs(struct dentry *dentry)
289 {
290         return security_ops->sb_statfs(dentry);
291 }
292
293 int security_sb_mount(char *dev_name, struct path *path,
294                        char *type, unsigned long flags, void *data)
295 {
296         return security_ops->sb_mount(dev_name, path, type, flags, data);
297 }
298
299 int security_sb_umount(struct vfsmount *mnt, int flags)
300 {
301         return security_ops->sb_umount(mnt, flags);
302 }
303
304 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
305 {
306         return security_ops->sb_pivotroot(old_path, new_path);
307 }
308
309 int security_sb_set_mnt_opts(struct super_block *sb,
310                                 struct security_mnt_opts *opts)
311 {
312         return security_ops->sb_set_mnt_opts(sb, opts);
313 }
314 EXPORT_SYMBOL(security_sb_set_mnt_opts);
315
316 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
317                                 struct super_block *newsb)
318 {
319         security_ops->sb_clone_mnt_opts(oldsb, newsb);
320 }
321 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
322
323 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
324 {
325         return security_ops->sb_parse_opts_str(options, opts);
326 }
327 EXPORT_SYMBOL(security_sb_parse_opts_str);
328
329 int security_inode_alloc(struct inode *inode)
330 {
331         inode->i_security = NULL;
332         return security_ops->inode_alloc_security(inode);
333 }
334
335 void security_inode_free(struct inode *inode)
336 {
337         ima_inode_free(inode);
338         security_ops->inode_free_security(inode);
339 }
340
341 int security_inode_init_security(struct inode *inode, struct inode *dir,
342                                  const struct qstr *qstr, char **name,
343                                  void **value, size_t *len)
344 {
345         if (unlikely(IS_PRIVATE(inode)))
346                 return -EOPNOTSUPP;
347         return security_ops->inode_init_security(inode, dir, qstr, name, value,
348                                                  len);
349 }
350 EXPORT_SYMBOL(security_inode_init_security);
351
352 #ifdef CONFIG_SECURITY_PATH
353 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
354                         unsigned int dev)
355 {
356         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
357                 return 0;
358         return security_ops->path_mknod(dir, dentry, mode, dev);
359 }
360 EXPORT_SYMBOL(security_path_mknod);
361
362 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
363 {
364         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
365                 return 0;
366         return security_ops->path_mkdir(dir, dentry, mode);
367 }
368 EXPORT_SYMBOL(security_path_mkdir);
369
370 int security_path_rmdir(struct path *dir, struct dentry *dentry)
371 {
372         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
373                 return 0;
374         return security_ops->path_rmdir(dir, dentry);
375 }
376 EXPORT_SYMBOL(security_path_rmdir);
377
378 int security_path_unlink(struct path *dir, struct dentry *dentry)
379 {
380         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
381                 return 0;
382         return security_ops->path_unlink(dir, dentry);
383 }
384 EXPORT_SYMBOL(security_path_unlink);
385
386 int security_path_symlink(struct path *dir, struct dentry *dentry,
387                           const char *old_name)
388 {
389         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
390                 return 0;
391         return security_ops->path_symlink(dir, dentry, old_name);
392 }
393 EXPORT_SYMBOL(security_path_symlink);
394
395 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
396                        struct dentry *new_dentry)
397 {
398         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
399                 return 0;
400         return security_ops->path_link(old_dentry, new_dir, new_dentry);
401 }
402 EXPORT_SYMBOL(security_path_link);
403
404 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
405                          struct path *new_dir, struct dentry *new_dentry)
406 {
407         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
408                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
409                 return 0;
410         return security_ops->path_rename(old_dir, old_dentry, new_dir,
411                                          new_dentry);
412 }
413 EXPORT_SYMBOL(security_path_rename);
414
415 int security_path_truncate(struct path *path)
416 {
417         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
418                 return 0;
419         return security_ops->path_truncate(path);
420 }
421 EXPORT_SYMBOL(security_path_truncate);
422
423 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
424                         mode_t mode)
425 {
426         if (unlikely(IS_PRIVATE(dentry->d_inode)))
427                 return 0;
428         return security_ops->path_chmod(dentry, mnt, mode);
429 }
430 EXPORT_SYMBOL(security_path_chmod);
431
432 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
433 {
434         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
435                 return 0;
436         return security_ops->path_chown(path, uid, gid);
437 }
438 EXPORT_SYMBOL(security_path_chown);
439
440 int security_path_chroot(struct path *path)
441 {
442         return security_ops->path_chroot(path);
443 }
444 #endif
445
446 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
447 {
448         if (unlikely(IS_PRIVATE(dir)))
449                 return 0;
450         return security_ops->inode_create(dir, dentry, mode);
451 }
452 EXPORT_SYMBOL_GPL(security_inode_create);
453
454 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
455                          struct dentry *new_dentry)
456 {
457         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
458                 return 0;
459         return security_ops->inode_link(old_dentry, dir, new_dentry);
460 }
461
462 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
463 {
464         if (unlikely(IS_PRIVATE(dentry->d_inode)))
465                 return 0;
466         return security_ops->inode_unlink(dir, dentry);
467 }
468
469 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
470                             const char *old_name)
471 {
472         if (unlikely(IS_PRIVATE(dir)))
473                 return 0;
474         return security_ops->inode_symlink(dir, dentry, old_name);
475 }
476
477 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
478 {
479         if (unlikely(IS_PRIVATE(dir)))
480                 return 0;
481         return security_ops->inode_mkdir(dir, dentry, mode);
482 }
483 EXPORT_SYMBOL_GPL(security_inode_mkdir);
484
485 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
486 {
487         if (unlikely(IS_PRIVATE(dentry->d_inode)))
488                 return 0;
489         return security_ops->inode_rmdir(dir, dentry);
490 }
491
492 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
493 {
494         if (unlikely(IS_PRIVATE(dir)))
495                 return 0;
496         return security_ops->inode_mknod(dir, dentry, mode, dev);
497 }
498
499 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
500                            struct inode *new_dir, struct dentry *new_dentry)
501 {
502         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
503             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
504                 return 0;
505         return security_ops->inode_rename(old_dir, old_dentry,
506                                            new_dir, new_dentry);
507 }
508
509 int security_inode_readlink(struct dentry *dentry)
510 {
511         if (unlikely(IS_PRIVATE(dentry->d_inode)))
512                 return 0;
513         return security_ops->inode_readlink(dentry);
514 }
515 EXPORT_SYMBOL(security_inode_readlink);
516
517 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
518 {
519         if (unlikely(IS_PRIVATE(dentry->d_inode)))
520                 return 0;
521         return security_ops->inode_follow_link(dentry, nd);
522 }
523
524 int security_inode_permission(struct inode *inode, int mask)
525 {
526         if (unlikely(IS_PRIVATE(inode)))
527                 return 0;
528         return security_ops->inode_permission(inode, mask, 0);
529 }
530 EXPORT_SYMBOL(security_inode_permission);
531
532 int security_inode_exec_permission(struct inode *inode, unsigned int flags)
533 {
534         if (unlikely(IS_PRIVATE(inode)))
535                 return 0;
536         return security_ops->inode_permission(inode, MAY_EXEC, flags);
537 }
538
539 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
540 {
541         if (unlikely(IS_PRIVATE(dentry->d_inode)))
542                 return 0;
543         return security_ops->inode_setattr(dentry, attr);
544 }
545 EXPORT_SYMBOL_GPL(security_inode_setattr);
546
547 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
548 {
549         if (unlikely(IS_PRIVATE(dentry->d_inode)))
550                 return 0;
551         return security_ops->inode_getattr(mnt, dentry);
552 }
553
554 int security_inode_setxattr(struct dentry *dentry, const char *name,
555                             const void *value, size_t size, int flags)
556 {
557         if (unlikely(IS_PRIVATE(dentry->d_inode)))
558                 return 0;
559         return security_ops->inode_setxattr(dentry, name, value, size, flags);
560 }
561
562 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
563                                   const void *value, size_t size, int flags)
564 {
565         if (unlikely(IS_PRIVATE(dentry->d_inode)))
566                 return;
567         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
568 }
569
570 int security_inode_getxattr(struct dentry *dentry, const char *name)
571 {
572         if (unlikely(IS_PRIVATE(dentry->d_inode)))
573                 return 0;
574         return security_ops->inode_getxattr(dentry, name);
575 }
576
577 int security_inode_listxattr(struct dentry *dentry)
578 {
579         if (unlikely(IS_PRIVATE(dentry->d_inode)))
580                 return 0;
581         return security_ops->inode_listxattr(dentry);
582 }
583
584 int security_inode_removexattr(struct dentry *dentry, const char *name)
585 {
586         if (unlikely(IS_PRIVATE(dentry->d_inode)))
587                 return 0;
588         return security_ops->inode_removexattr(dentry, name);
589 }
590
591 int security_inode_need_killpriv(struct dentry *dentry)
592 {
593         return security_ops->inode_need_killpriv(dentry);
594 }
595
596 int security_inode_killpriv(struct dentry *dentry)
597 {
598         return security_ops->inode_killpriv(dentry);
599 }
600
601 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
602 {
603         if (unlikely(IS_PRIVATE(inode)))
604                 return -EOPNOTSUPP;
605         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
606 }
607
608 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
609 {
610         if (unlikely(IS_PRIVATE(inode)))
611                 return -EOPNOTSUPP;
612         return security_ops->inode_setsecurity(inode, name, value, size, flags);
613 }
614
615 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
616 {
617         if (unlikely(IS_PRIVATE(inode)))
618                 return 0;
619         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
620 }
621
622 void security_inode_getsecid(const struct inode *inode, u32 *secid)
623 {
624         security_ops->inode_getsecid(inode, secid);
625 }
626
627 int security_file_permission(struct file *file, int mask)
628 {
629         int ret;
630
631         ret = security_ops->file_permission(file, mask);
632         if (ret)
633                 return ret;
634
635         return fsnotify_perm(file, mask);
636 }
637 EXPORT_SYMBOL(security_file_permission);
638
639 int security_file_alloc(struct file *file)
640 {
641         return security_ops->file_alloc_security(file);
642 }
643
644 void security_file_free(struct file *file)
645 {
646         security_ops->file_free_security(file);
647 }
648
649 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
650 {
651         return security_ops->file_ioctl(file, cmd, arg);
652 }
653
654 int security_file_mmap(struct file *file, unsigned long reqprot,
655                         unsigned long prot, unsigned long flags,
656                         unsigned long addr, unsigned long addr_only)
657 {
658         int ret;
659
660         ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
661         if (ret)
662                 return ret;
663         return ima_file_mmap(file, prot);
664 }
665 EXPORT_SYMBOL(security_file_mmap);
666
667 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
668                             unsigned long prot)
669 {
670         return security_ops->file_mprotect(vma, reqprot, prot);
671 }
672
673 int security_file_lock(struct file *file, unsigned int cmd)
674 {
675         return security_ops->file_lock(file, cmd);
676 }
677
678 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
679 {
680         return security_ops->file_fcntl(file, cmd, arg);
681 }
682
683 int security_file_set_fowner(struct file *file)
684 {
685         return security_ops->file_set_fowner(file);
686 }
687
688 int security_file_send_sigiotask(struct task_struct *tsk,
689                                   struct fown_struct *fown, int sig)
690 {
691         return security_ops->file_send_sigiotask(tsk, fown, sig);
692 }
693
694 int security_file_receive(struct file *file)
695 {
696         return security_ops->file_receive(file);
697 }
698
699 int security_dentry_open(struct file *file, const struct cred *cred)
700 {
701         int ret;
702
703         ret = security_ops->dentry_open(file, cred);
704         if (ret)
705                 return ret;
706
707         return fsnotify_perm(file, MAY_OPEN);
708 }
709
710 int security_task_create(unsigned long clone_flags)
711 {
712         return security_ops->task_create(clone_flags);
713 }
714
715 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
716 {
717         return security_ops->cred_alloc_blank(cred, gfp);
718 }
719
720 void security_cred_free(struct cred *cred)
721 {
722         security_ops->cred_free(cred);
723 }
724
725 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
726 {
727         return security_ops->cred_prepare(new, old, gfp);
728 }
729
730 void security_transfer_creds(struct cred *new, const struct cred *old)
731 {
732         security_ops->cred_transfer(new, old);
733 }
734
735 int security_kernel_act_as(struct cred *new, u32 secid)
736 {
737         return security_ops->kernel_act_as(new, secid);
738 }
739
740 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
741 {
742         return security_ops->kernel_create_files_as(new, inode);
743 }
744
745 int security_kernel_module_request(char *kmod_name)
746 {
747         return security_ops->kernel_module_request(kmod_name);
748 }
749
750 int security_task_fix_setuid(struct cred *new, const struct cred *old,
751                              int flags)
752 {
753         return security_ops->task_fix_setuid(new, old, flags);
754 }
755
756 int security_task_setpgid(struct task_struct *p, pid_t pgid)
757 {
758         return security_ops->task_setpgid(p, pgid);
759 }
760
761 int security_task_getpgid(struct task_struct *p)
762 {
763         return security_ops->task_getpgid(p);
764 }
765
766 int security_task_getsid(struct task_struct *p)
767 {
768         return security_ops->task_getsid(p);
769 }
770
771 void security_task_getsecid(struct task_struct *p, u32 *secid)
772 {
773         security_ops->task_getsecid(p, secid);
774 }
775 EXPORT_SYMBOL(security_task_getsecid);
776
777 int security_task_setnice(struct task_struct *p, int nice)
778 {
779         return security_ops->task_setnice(p, nice);
780 }
781
782 int security_task_setioprio(struct task_struct *p, int ioprio)
783 {
784         return security_ops->task_setioprio(p, ioprio);
785 }
786
787 int security_task_getioprio(struct task_struct *p)
788 {
789         return security_ops->task_getioprio(p);
790 }
791
792 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
793                 struct rlimit *new_rlim)
794 {
795         return security_ops->task_setrlimit(p, resource, new_rlim);
796 }
797
798 int security_task_setscheduler(struct task_struct *p)
799 {
800         return security_ops->task_setscheduler(p);
801 }
802
803 int security_task_getscheduler(struct task_struct *p)
804 {
805         return security_ops->task_getscheduler(p);
806 }
807
808 int security_task_movememory(struct task_struct *p)
809 {
810         return security_ops->task_movememory(p);
811 }
812
813 int security_task_kill(struct task_struct *p, struct siginfo *info,
814                         int sig, u32 secid)
815 {
816         return security_ops->task_kill(p, info, sig, secid);
817 }
818
819 int security_task_wait(struct task_struct *p)
820 {
821         return security_ops->task_wait(p);
822 }
823
824 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
825                          unsigned long arg4, unsigned long arg5)
826 {
827         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
828 }
829
830 void security_task_to_inode(struct task_struct *p, struct inode *inode)
831 {
832         security_ops->task_to_inode(p, inode);
833 }
834
835 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
836 {
837         return security_ops->ipc_permission(ipcp, flag);
838 }
839
840 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
841 {
842         security_ops->ipc_getsecid(ipcp, secid);
843 }
844
845 int security_msg_msg_alloc(struct msg_msg *msg)
846 {
847         return security_ops->msg_msg_alloc_security(msg);
848 }
849
850 void security_msg_msg_free(struct msg_msg *msg)
851 {
852         security_ops->msg_msg_free_security(msg);
853 }
854
855 int security_msg_queue_alloc(struct msg_queue *msq)
856 {
857         return security_ops->msg_queue_alloc_security(msq);
858 }
859
860 void security_msg_queue_free(struct msg_queue *msq)
861 {
862         security_ops->msg_queue_free_security(msq);
863 }
864
865 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
866 {
867         return security_ops->msg_queue_associate(msq, msqflg);
868 }
869
870 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
871 {
872         return security_ops->msg_queue_msgctl(msq, cmd);
873 }
874
875 int security_msg_queue_msgsnd(struct msg_queue *msq,
876                                struct msg_msg *msg, int msqflg)
877 {
878         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
879 }
880
881 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
882                                struct task_struct *target, long type, int mode)
883 {
884         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
885 }
886
887 int security_shm_alloc(struct shmid_kernel *shp)
888 {
889         return security_ops->shm_alloc_security(shp);
890 }
891
892 void security_shm_free(struct shmid_kernel *shp)
893 {
894         security_ops->shm_free_security(shp);
895 }
896
897 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
898 {
899         return security_ops->shm_associate(shp, shmflg);
900 }
901
902 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
903 {
904         return security_ops->shm_shmctl(shp, cmd);
905 }
906
907 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
908 {
909         return security_ops->shm_shmat(shp, shmaddr, shmflg);
910 }
911
912 int security_sem_alloc(struct sem_array *sma)
913 {
914         return security_ops->sem_alloc_security(sma);
915 }
916
917 void security_sem_free(struct sem_array *sma)
918 {
919         security_ops->sem_free_security(sma);
920 }
921
922 int security_sem_associate(struct sem_array *sma, int semflg)
923 {
924         return security_ops->sem_associate(sma, semflg);
925 }
926
927 int security_sem_semctl(struct sem_array *sma, int cmd)
928 {
929         return security_ops->sem_semctl(sma, cmd);
930 }
931
932 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
933                         unsigned nsops, int alter)
934 {
935         return security_ops->sem_semop(sma, sops, nsops, alter);
936 }
937
938 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
939 {
940         if (unlikely(inode && IS_PRIVATE(inode)))
941                 return;
942         security_ops->d_instantiate(dentry, inode);
943 }
944 EXPORT_SYMBOL(security_d_instantiate);
945
946 int security_getprocattr(struct task_struct *p, char *name, char **value)
947 {
948         return security_ops->getprocattr(p, name, value);
949 }
950
951 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
952 {
953         return security_ops->setprocattr(p, name, value, size);
954 }
955
956 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
957 {
958         return security_ops->netlink_send(sk, skb);
959 }
960
961 int security_netlink_recv(struct sk_buff *skb, int cap)
962 {
963         return security_ops->netlink_recv(skb, cap);
964 }
965 EXPORT_SYMBOL(security_netlink_recv);
966
967 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
968 {
969         return security_ops->secid_to_secctx(secid, secdata, seclen);
970 }
971 EXPORT_SYMBOL(security_secid_to_secctx);
972
973 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
974 {
975         return security_ops->secctx_to_secid(secdata, seclen, secid);
976 }
977 EXPORT_SYMBOL(security_secctx_to_secid);
978
979 void security_release_secctx(char *secdata, u32 seclen)
980 {
981         security_ops->release_secctx(secdata, seclen);
982 }
983 EXPORT_SYMBOL(security_release_secctx);
984
985 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
986 {
987         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
988 }
989 EXPORT_SYMBOL(security_inode_notifysecctx);
990
991 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
992 {
993         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
994 }
995 EXPORT_SYMBOL(security_inode_setsecctx);
996
997 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
998 {
999         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1000 }
1001 EXPORT_SYMBOL(security_inode_getsecctx);
1002
1003 #ifdef CONFIG_SECURITY_NETWORK
1004
1005 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1006 {
1007         return security_ops->unix_stream_connect(sock, other, newsk);
1008 }
1009 EXPORT_SYMBOL(security_unix_stream_connect);
1010
1011 int security_unix_may_send(struct socket *sock,  struct socket *other)
1012 {
1013         return security_ops->unix_may_send(sock, other);
1014 }
1015 EXPORT_SYMBOL(security_unix_may_send);
1016
1017 int security_socket_create(int family, int type, int protocol, int kern)
1018 {
1019         return security_ops->socket_create(family, type, protocol, kern);
1020 }
1021
1022 int security_socket_post_create(struct socket *sock, int family,
1023                                 int type, int protocol, int kern)
1024 {
1025         return security_ops->socket_post_create(sock, family, type,
1026                                                 protocol, kern);
1027 }
1028
1029 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1030 {
1031         return security_ops->socket_bind(sock, address, addrlen);
1032 }
1033
1034 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1035 {
1036         return security_ops->socket_connect(sock, address, addrlen);
1037 }
1038
1039 int security_socket_listen(struct socket *sock, int backlog)
1040 {
1041         return security_ops->socket_listen(sock, backlog);
1042 }
1043
1044 int security_socket_accept(struct socket *sock, struct socket *newsock)
1045 {
1046         return security_ops->socket_accept(sock, newsock);
1047 }
1048
1049 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1050 {
1051         return security_ops->socket_sendmsg(sock, msg, size);
1052 }
1053
1054 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1055                             int size, int flags)
1056 {
1057         return security_ops->socket_recvmsg(sock, msg, size, flags);
1058 }
1059
1060 int security_socket_getsockname(struct socket *sock)
1061 {
1062         return security_ops->socket_getsockname(sock);
1063 }
1064
1065 int security_socket_getpeername(struct socket *sock)
1066 {
1067         return security_ops->socket_getpeername(sock);
1068 }
1069
1070 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1071 {
1072         return security_ops->socket_getsockopt(sock, level, optname);
1073 }
1074
1075 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1076 {
1077         return security_ops->socket_setsockopt(sock, level, optname);
1078 }
1079
1080 int security_socket_shutdown(struct socket *sock, int how)
1081 {
1082         return security_ops->socket_shutdown(sock, how);
1083 }
1084
1085 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1086 {
1087         return security_ops->socket_sock_rcv_skb(sk, skb);
1088 }
1089 EXPORT_SYMBOL(security_sock_rcv_skb);
1090
1091 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1092                                       int __user *optlen, unsigned len)
1093 {
1094         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1095 }
1096
1097 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1098 {
1099         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1100 }
1101 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1102
1103 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1104 {
1105         return security_ops->sk_alloc_security(sk, family, priority);
1106 }
1107
1108 void security_sk_free(struct sock *sk)
1109 {
1110         security_ops->sk_free_security(sk);
1111 }
1112
1113 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1114 {
1115         security_ops->sk_clone_security(sk, newsk);
1116 }
1117
1118 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1119 {
1120         security_ops->sk_getsecid(sk, &fl->flowi_secid);
1121 }
1122 EXPORT_SYMBOL(security_sk_classify_flow);
1123
1124 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1125 {
1126         security_ops->req_classify_flow(req, fl);
1127 }
1128 EXPORT_SYMBOL(security_req_classify_flow);
1129
1130 void security_sock_graft(struct sock *sk, struct socket *parent)
1131 {
1132         security_ops->sock_graft(sk, parent);
1133 }
1134 EXPORT_SYMBOL(security_sock_graft);
1135
1136 int security_inet_conn_request(struct sock *sk,
1137                         struct sk_buff *skb, struct request_sock *req)
1138 {
1139         return security_ops->inet_conn_request(sk, skb, req);
1140 }
1141 EXPORT_SYMBOL(security_inet_conn_request);
1142
1143 void security_inet_csk_clone(struct sock *newsk,
1144                         const struct request_sock *req)
1145 {
1146         security_ops->inet_csk_clone(newsk, req);
1147 }
1148
1149 void security_inet_conn_established(struct sock *sk,
1150                         struct sk_buff *skb)
1151 {
1152         security_ops->inet_conn_established(sk, skb);
1153 }
1154
1155 int security_secmark_relabel_packet(u32 secid)
1156 {
1157         return security_ops->secmark_relabel_packet(secid);
1158 }
1159 EXPORT_SYMBOL(security_secmark_relabel_packet);
1160
1161 void security_secmark_refcount_inc(void)
1162 {
1163         security_ops->secmark_refcount_inc();
1164 }
1165 EXPORT_SYMBOL(security_secmark_refcount_inc);
1166
1167 void security_secmark_refcount_dec(void)
1168 {
1169         security_ops->secmark_refcount_dec();
1170 }
1171 EXPORT_SYMBOL(security_secmark_refcount_dec);
1172
1173 int security_tun_dev_create(void)
1174 {
1175         return security_ops->tun_dev_create();
1176 }
1177 EXPORT_SYMBOL(security_tun_dev_create);
1178
1179 void security_tun_dev_post_create(struct sock *sk)
1180 {
1181         return security_ops->tun_dev_post_create(sk);
1182 }
1183 EXPORT_SYMBOL(security_tun_dev_post_create);
1184
1185 int security_tun_dev_attach(struct sock *sk)
1186 {
1187         return security_ops->tun_dev_attach(sk);
1188 }
1189 EXPORT_SYMBOL(security_tun_dev_attach);
1190
1191 #endif  /* CONFIG_SECURITY_NETWORK */
1192
1193 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1194
1195 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1196 {
1197         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1198 }
1199 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1200
1201 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1202                               struct xfrm_sec_ctx **new_ctxp)
1203 {
1204         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1205 }
1206
1207 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1208 {
1209         security_ops->xfrm_policy_free_security(ctx);
1210 }
1211 EXPORT_SYMBOL(security_xfrm_policy_free);
1212
1213 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1214 {
1215         return security_ops->xfrm_policy_delete_security(ctx);
1216 }
1217
1218 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1219 {
1220         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1221 }
1222 EXPORT_SYMBOL(security_xfrm_state_alloc);
1223
1224 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1225                                       struct xfrm_sec_ctx *polsec, u32 secid)
1226 {
1227         if (!polsec)
1228                 return 0;
1229         /*
1230          * We want the context to be taken from secid which is usually
1231          * from the sock.
1232          */
1233         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1234 }
1235
1236 int security_xfrm_state_delete(struct xfrm_state *x)
1237 {
1238         return security_ops->xfrm_state_delete_security(x);
1239 }
1240 EXPORT_SYMBOL(security_xfrm_state_delete);
1241
1242 void security_xfrm_state_free(struct xfrm_state *x)
1243 {
1244         security_ops->xfrm_state_free_security(x);
1245 }
1246
1247 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1248 {
1249         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1250 }
1251
1252 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1253                                        struct xfrm_policy *xp,
1254                                        const struct flowi *fl)
1255 {
1256         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1257 }
1258
1259 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1260 {
1261         return security_ops->xfrm_decode_session(skb, secid, 1);
1262 }
1263
1264 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1265 {
1266         int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1267
1268         BUG_ON(rc);
1269 }
1270 EXPORT_SYMBOL(security_skb_classify_flow);
1271
1272 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1273
1274 #ifdef CONFIG_KEYS
1275
1276 int security_key_alloc(struct key *key, const struct cred *cred,
1277                        unsigned long flags)
1278 {
1279         return security_ops->key_alloc(key, cred, flags);
1280 }
1281
1282 void security_key_free(struct key *key)
1283 {
1284         security_ops->key_free(key);
1285 }
1286
1287 int security_key_permission(key_ref_t key_ref,
1288                             const struct cred *cred, key_perm_t perm)
1289 {
1290         return security_ops->key_permission(key_ref, cred, perm);
1291 }
1292
1293 int security_key_getsecurity(struct key *key, char **_buffer)
1294 {
1295         return security_ops->key_getsecurity(key, _buffer);
1296 }
1297
1298 #endif  /* CONFIG_KEYS */
1299
1300 #ifdef CONFIG_AUDIT
1301
1302 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1303 {
1304         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1305 }
1306
1307 int security_audit_rule_known(struct audit_krule *krule)
1308 {
1309         return security_ops->audit_rule_known(krule);
1310 }
1311
1312 void security_audit_rule_free(void *lsmrule)
1313 {
1314         security_ops->audit_rule_free(lsmrule);
1315 }
1316
1317 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1318                               struct audit_context *actx)
1319 {
1320         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1321 }
1322
1323 #endif /* CONFIG_AUDIT */