ca7c621cd97566512a072ba58a3ca5d8da4110ad
[pandora-kernel.git] / net / sunrpc / cache.c
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <linux/pagemap.h>
31 #include <linux/smp_lock.h>
32 #include <asm/ioctls.h>
33 #include <linux/sunrpc/types.h>
34 #include <linux/sunrpc/cache.h>
35 #include <linux/sunrpc/stats.h>
36 #include <linux/sunrpc/rpc_pipe_fs.h>
37
38 #define  RPCDBG_FACILITY RPCDBG_CACHE
39
40 static int cache_defer_req(struct cache_req *req, struct cache_head *item);
41 static void cache_revisit_request(struct cache_head *item);
42
43 static void cache_init(struct cache_head *h)
44 {
45         time_t now = seconds_since_boot();
46         h->next = NULL;
47         h->flags = 0;
48         kref_init(&h->ref);
49         h->expiry_time = now + CACHE_NEW_EXPIRY;
50         h->last_refresh = now;
51 }
52
53 static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
54 {
55         return  (h->expiry_time < seconds_since_boot()) ||
56                 (detail->flush_time > h->last_refresh);
57 }
58
59 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
60                                        struct cache_head *key, int hash)
61 {
62         struct cache_head **head,  **hp;
63         struct cache_head *new = NULL, *freeme = NULL;
64
65         head = &detail->hash_table[hash];
66
67         read_lock(&detail->hash_lock);
68
69         for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
70                 struct cache_head *tmp = *hp;
71                 if (detail->match(tmp, key)) {
72                         if (cache_is_expired(detail, tmp))
73                                 /* This entry is expired, we will discard it. */
74                                 break;
75                         cache_get(tmp);
76                         read_unlock(&detail->hash_lock);
77                         return tmp;
78                 }
79         }
80         read_unlock(&detail->hash_lock);
81         /* Didn't find anything, insert an empty entry */
82
83         new = detail->alloc();
84         if (!new)
85                 return NULL;
86         /* must fully initialise 'new', else
87          * we might get lose if we need to
88          * cache_put it soon.
89          */
90         cache_init(new);
91         detail->init(new, key);
92
93         write_lock(&detail->hash_lock);
94
95         /* check if entry appeared while we slept */
96         for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
97                 struct cache_head *tmp = *hp;
98                 if (detail->match(tmp, key)) {
99                         if (cache_is_expired(detail, tmp)) {
100                                 *hp = tmp->next;
101                                 tmp->next = NULL;
102                                 detail->entries --;
103                                 freeme = tmp;
104                                 break;
105                         }
106                         cache_get(tmp);
107                         write_unlock(&detail->hash_lock);
108                         cache_put(new, detail);
109                         return tmp;
110                 }
111         }
112         new->next = *head;
113         *head = new;
114         detail->entries++;
115         cache_get(new);
116         write_unlock(&detail->hash_lock);
117
118         if (freeme)
119                 cache_put(freeme, detail);
120         return new;
121 }
122 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
123
124
125 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
126
127 static void cache_fresh_locked(struct cache_head *head, time_t expiry)
128 {
129         head->expiry_time = expiry;
130         head->last_refresh = seconds_since_boot();
131         set_bit(CACHE_VALID, &head->flags);
132 }
133
134 static void cache_fresh_unlocked(struct cache_head *head,
135                                  struct cache_detail *detail)
136 {
137         if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
138                 cache_revisit_request(head);
139                 cache_dequeue(detail, head);
140         }
141 }
142
143 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
144                                        struct cache_head *new, struct cache_head *old, int hash)
145 {
146         /* The 'old' entry is to be replaced by 'new'.
147          * If 'old' is not VALID, we update it directly,
148          * otherwise we need to replace it
149          */
150         struct cache_head **head;
151         struct cache_head *tmp;
152
153         if (!test_bit(CACHE_VALID, &old->flags)) {
154                 write_lock(&detail->hash_lock);
155                 if (!test_bit(CACHE_VALID, &old->flags)) {
156                         if (test_bit(CACHE_NEGATIVE, &new->flags))
157                                 set_bit(CACHE_NEGATIVE, &old->flags);
158                         else
159                                 detail->update(old, new);
160                         cache_fresh_locked(old, new->expiry_time);
161                         write_unlock(&detail->hash_lock);
162                         cache_fresh_unlocked(old, detail);
163                         return old;
164                 }
165                 write_unlock(&detail->hash_lock);
166         }
167         /* We need to insert a new entry */
168         tmp = detail->alloc();
169         if (!tmp) {
170                 cache_put(old, detail);
171                 return NULL;
172         }
173         cache_init(tmp);
174         detail->init(tmp, old);
175         head = &detail->hash_table[hash];
176
177         write_lock(&detail->hash_lock);
178         if (test_bit(CACHE_NEGATIVE, &new->flags))
179                 set_bit(CACHE_NEGATIVE, &tmp->flags);
180         else
181                 detail->update(tmp, new);
182         tmp->next = *head;
183         *head = tmp;
184         detail->entries++;
185         cache_get(tmp);
186         cache_fresh_locked(tmp, new->expiry_time);
187         cache_fresh_locked(old, 0);
188         write_unlock(&detail->hash_lock);
189         cache_fresh_unlocked(tmp, detail);
190         cache_fresh_unlocked(old, detail);
191         cache_put(old, detail);
192         return tmp;
193 }
194 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
195
196 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
197 {
198         if (!cd->cache_upcall)
199                 return -EINVAL;
200         return cd->cache_upcall(cd, h);
201 }
202
203 static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
204 {
205         if (!test_bit(CACHE_VALID, &h->flags))
206                 return -EAGAIN;
207         else {
208                 /* entry is valid */
209                 if (test_bit(CACHE_NEGATIVE, &h->flags))
210                         return -ENOENT;
211                 else
212                         return 0;
213         }
214 }
215
216 /*
217  * This is the generic cache management routine for all
218  * the authentication caches.
219  * It checks the currency of a cache item and will (later)
220  * initiate an upcall to fill it if needed.
221  *
222  *
223  * Returns 0 if the cache_head can be used, or cache_puts it and returns
224  * -EAGAIN if upcall is pending and request has been queued
225  * -ETIMEDOUT if upcall failed or request could not be queue or
226  *           upcall completed but item is still invalid (implying that
227  *           the cache item has been replaced with a newer one).
228  * -ENOENT if cache entry was negative
229  */
230 int cache_check(struct cache_detail *detail,
231                     struct cache_head *h, struct cache_req *rqstp)
232 {
233         int rv;
234         long refresh_age, age;
235
236         /* First decide return status as best we can */
237         rv = cache_is_valid(detail, h);
238
239         /* now see if we want to start an upcall */
240         refresh_age = (h->expiry_time - h->last_refresh);
241         age = seconds_since_boot() - h->last_refresh;
242
243         if (rqstp == NULL) {
244                 if (rv == -EAGAIN)
245                         rv = -ENOENT;
246         } else if (rv == -EAGAIN || age > refresh_age/2) {
247                 dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
248                                 refresh_age, age);
249                 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
250                         switch (cache_make_upcall(detail, h)) {
251                         case -EINVAL:
252                                 clear_bit(CACHE_PENDING, &h->flags);
253                                 cache_revisit_request(h);
254                                 if (rv == -EAGAIN) {
255                                         set_bit(CACHE_NEGATIVE, &h->flags);
256                                         cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
257                                         cache_fresh_unlocked(h, detail);
258                                         rv = -ENOENT;
259                                 }
260                                 break;
261
262                         case -EAGAIN:
263                                 clear_bit(CACHE_PENDING, &h->flags);
264                                 cache_revisit_request(h);
265                                 break;
266                         }
267                 }
268         }
269
270         if (rv == -EAGAIN) {
271                 if (cache_defer_req(rqstp, h) < 0) {
272                         /* Request is not deferred */
273                         rv = cache_is_valid(detail, h);
274                         if (rv == -EAGAIN)
275                                 rv = -ETIMEDOUT;
276                 }
277         }
278         if (rv)
279                 cache_put(h, detail);
280         return rv;
281 }
282 EXPORT_SYMBOL_GPL(cache_check);
283
284 /*
285  * caches need to be periodically cleaned.
286  * For this we maintain a list of cache_detail and
287  * a current pointer into that list and into the table
288  * for that entry.
289  *
290  * Each time clean_cache is called it finds the next non-empty entry
291  * in the current table and walks the list in that entry
292  * looking for entries that can be removed.
293  *
294  * An entry gets removed if:
295  * - The expiry is before current time
296  * - The last_refresh time is before the flush_time for that cache
297  *
298  * later we might drop old entries with non-NEVER expiry if that table
299  * is getting 'full' for some definition of 'full'
300  *
301  * The question of "how often to scan a table" is an interesting one
302  * and is answered in part by the use of the "nextcheck" field in the
303  * cache_detail.
304  * When a scan of a table begins, the nextcheck field is set to a time
305  * that is well into the future.
306  * While scanning, if an expiry time is found that is earlier than the
307  * current nextcheck time, nextcheck is set to that expiry time.
308  * If the flush_time is ever set to a time earlier than the nextcheck
309  * time, the nextcheck time is then set to that flush_time.
310  *
311  * A table is then only scanned if the current time is at least
312  * the nextcheck time.
313  *
314  */
315
316 static LIST_HEAD(cache_list);
317 static DEFINE_SPINLOCK(cache_list_lock);
318 static struct cache_detail *current_detail;
319 static int current_index;
320
321 static void do_cache_clean(struct work_struct *work);
322 static struct delayed_work cache_cleaner;
323
324 static void sunrpc_init_cache_detail(struct cache_detail *cd)
325 {
326         rwlock_init(&cd->hash_lock);
327         INIT_LIST_HEAD(&cd->queue);
328         spin_lock(&cache_list_lock);
329         cd->nextcheck = 0;
330         cd->entries = 0;
331         atomic_set(&cd->readers, 0);
332         cd->last_close = 0;
333         cd->last_warn = -1;
334         list_add(&cd->others, &cache_list);
335         spin_unlock(&cache_list_lock);
336
337         /* start the cleaning process */
338         schedule_delayed_work(&cache_cleaner, 0);
339 }
340
341 static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
342 {
343         cache_purge(cd);
344         spin_lock(&cache_list_lock);
345         write_lock(&cd->hash_lock);
346         if (cd->entries || atomic_read(&cd->inuse)) {
347                 write_unlock(&cd->hash_lock);
348                 spin_unlock(&cache_list_lock);
349                 goto out;
350         }
351         if (current_detail == cd)
352                 current_detail = NULL;
353         list_del_init(&cd->others);
354         write_unlock(&cd->hash_lock);
355         spin_unlock(&cache_list_lock);
356         if (list_empty(&cache_list)) {
357                 /* module must be being unloaded so its safe to kill the worker */
358                 cancel_delayed_work_sync(&cache_cleaner);
359         }
360         return;
361 out:
362         printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
363 }
364
365 /* clean cache tries to find something to clean
366  * and cleans it.
367  * It returns 1 if it cleaned something,
368  *            0 if it didn't find anything this time
369  *           -1 if it fell off the end of the list.
370  */
371 static int cache_clean(void)
372 {
373         int rv = 0;
374         struct list_head *next;
375
376         spin_lock(&cache_list_lock);
377
378         /* find a suitable table if we don't already have one */
379         while (current_detail == NULL ||
380             current_index >= current_detail->hash_size) {
381                 if (current_detail)
382                         next = current_detail->others.next;
383                 else
384                         next = cache_list.next;
385                 if (next == &cache_list) {
386                         current_detail = NULL;
387                         spin_unlock(&cache_list_lock);
388                         return -1;
389                 }
390                 current_detail = list_entry(next, struct cache_detail, others);
391                 if (current_detail->nextcheck > seconds_since_boot())
392                         current_index = current_detail->hash_size;
393                 else {
394                         current_index = 0;
395                         current_detail->nextcheck = seconds_since_boot()+30*60;
396                 }
397         }
398
399         /* find a non-empty bucket in the table */
400         while (current_detail &&
401                current_index < current_detail->hash_size &&
402                current_detail->hash_table[current_index] == NULL)
403                 current_index++;
404
405         /* find a cleanable entry in the bucket and clean it, or set to next bucket */
406
407         if (current_detail && current_index < current_detail->hash_size) {
408                 struct cache_head *ch, **cp;
409                 struct cache_detail *d;
410
411                 write_lock(&current_detail->hash_lock);
412
413                 /* Ok, now to clean this strand */
414
415                 cp = & current_detail->hash_table[current_index];
416                 for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
417                         if (current_detail->nextcheck > ch->expiry_time)
418                                 current_detail->nextcheck = ch->expiry_time+1;
419                         if (!cache_is_expired(current_detail, ch))
420                                 continue;
421
422                         *cp = ch->next;
423                         ch->next = NULL;
424                         current_detail->entries--;
425                         rv = 1;
426                         break;
427                 }
428
429                 write_unlock(&current_detail->hash_lock);
430                 d = current_detail;
431                 if (!ch)
432                         current_index ++;
433                 spin_unlock(&cache_list_lock);
434                 if (ch) {
435                         if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
436                                 cache_dequeue(current_detail, ch);
437                         cache_revisit_request(ch);
438                         cache_put(ch, d);
439                 }
440         } else
441                 spin_unlock(&cache_list_lock);
442
443         return rv;
444 }
445
446 /*
447  * We want to regularly clean the cache, so we need to schedule some work ...
448  */
449 static void do_cache_clean(struct work_struct *work)
450 {
451         int delay = 5;
452         if (cache_clean() == -1)
453                 delay = round_jiffies_relative(30*HZ);
454
455         if (list_empty(&cache_list))
456                 delay = 0;
457
458         if (delay)
459                 schedule_delayed_work(&cache_cleaner, delay);
460 }
461
462
463 /*
464  * Clean all caches promptly.  This just calls cache_clean
465  * repeatedly until we are sure that every cache has had a chance to
466  * be fully cleaned
467  */
468 void cache_flush(void)
469 {
470         while (cache_clean() != -1)
471                 cond_resched();
472         while (cache_clean() != -1)
473                 cond_resched();
474 }
475 EXPORT_SYMBOL_GPL(cache_flush);
476
477 void cache_purge(struct cache_detail *detail)
478 {
479         detail->flush_time = LONG_MAX;
480         detail->nextcheck = seconds_since_boot();
481         cache_flush();
482         detail->flush_time = 1;
483 }
484 EXPORT_SYMBOL_GPL(cache_purge);
485
486
487 /*
488  * Deferral and Revisiting of Requests.
489  *
490  * If a cache lookup finds a pending entry, we
491  * need to defer the request and revisit it later.
492  * All deferred requests are stored in a hash table,
493  * indexed by "struct cache_head *".
494  * As it may be wasteful to store a whole request
495  * structure, we allow the request to provide a
496  * deferred form, which must contain a
497  * 'struct cache_deferred_req'
498  * This cache_deferred_req contains a method to allow
499  * it to be revisited when cache info is available
500  */
501
502 #define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
503 #define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
504
505 #define DFR_MAX 300     /* ??? */
506
507 static DEFINE_SPINLOCK(cache_defer_lock);
508 static LIST_HEAD(cache_defer_list);
509 static struct list_head cache_defer_hash[DFR_HASHSIZE];
510 static int cache_defer_cnt;
511
512 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
513 {
514         list_del_init(&dreq->recent);
515         list_del_init(&dreq->hash);
516         cache_defer_cnt--;
517 }
518
519 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
520 {
521         int hash = DFR_HASH(item);
522
523         list_add(&dreq->recent, &cache_defer_list);
524         if (cache_defer_hash[hash].next == NULL)
525                 INIT_LIST_HEAD(&cache_defer_hash[hash]);
526         list_add(&dreq->hash, &cache_defer_hash[hash]);
527 }
528
529 static int setup_deferral(struct cache_deferred_req *dreq, struct cache_head *item)
530 {
531         struct cache_deferred_req *discard;
532
533         dreq->item = item;
534
535         spin_lock(&cache_defer_lock);
536
537         __hash_deferred_req(dreq, item);
538
539         /* it is in, now maybe clean up */
540         discard = NULL;
541         if (++cache_defer_cnt > DFR_MAX) {
542                 discard = list_entry(cache_defer_list.prev,
543                                      struct cache_deferred_req, recent);
544                 __unhash_deferred_req(discard);
545         }
546         spin_unlock(&cache_defer_lock);
547
548         if (discard)
549                 /* there was one too many */
550                 discard->revisit(discard, 1);
551
552         if (!test_bit(CACHE_PENDING, &item->flags)) {
553                 /* must have just been validated... */
554                 cache_revisit_request(item);
555                 return -EAGAIN;
556         }
557         return 0;
558 }
559
560 struct thread_deferred_req {
561         struct cache_deferred_req handle;
562         struct completion completion;
563 };
564
565 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
566 {
567         struct thread_deferred_req *dr =
568                 container_of(dreq, struct thread_deferred_req, handle);
569         complete(&dr->completion);
570 }
571
572 static int cache_wait_req(struct cache_req *req, struct cache_head *item)
573 {
574         struct thread_deferred_req sleeper;
575         struct cache_deferred_req *dreq = &sleeper.handle;
576         int ret;
577
578         sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
579         dreq->revisit = cache_restart_thread;
580
581         ret = setup_deferral(dreq, item);
582         if (ret)
583                 return ret;
584
585         if (wait_for_completion_interruptible_timeout(
586                     &sleeper.completion, req->thread_wait) <= 0) {
587                 /* The completion wasn't completed, so we need
588                  * to clean up
589                  */
590                 spin_lock(&cache_defer_lock);
591                 if (!list_empty(&sleeper.handle.hash)) {
592                         __unhash_deferred_req(&sleeper.handle);
593                         spin_unlock(&cache_defer_lock);
594                 } else {
595                         /* cache_revisit_request already removed
596                          * this from the hash table, but hasn't
597                          * called ->revisit yet.  It will very soon
598                          * and we need to wait for it.
599                          */
600                         spin_unlock(&cache_defer_lock);
601                         wait_for_completion(&sleeper.completion);
602                 }
603         }
604         if (test_bit(CACHE_PENDING, &item->flags)) {
605                 /* item is still pending, try request
606                  * deferral
607                  */
608                 return -ETIMEDOUT;
609         }
610         /* only return success if we actually deferred the
611          * request.  In this case we waited until it was
612          * answered so no deferral has happened - rather
613          * an answer already exists.
614          */
615         return -EEXIST;
616 }
617
618 static int cache_defer_req(struct cache_req *req, struct cache_head *item)
619 {
620         struct cache_deferred_req *dreq;
621         int ret;
622
623         if (cache_defer_cnt >= DFR_MAX) {
624                 /* too much in the cache, randomly drop this one,
625                  * or continue and drop the oldest
626                  */
627                 if (net_random()&1)
628                         return -ENOMEM;
629         }
630         if (req->thread_wait) {
631                 ret = cache_wait_req(req, item);
632                 if (ret != -ETIMEDOUT)
633                         return ret;
634         }
635         dreq = req->defer(req);
636         if (dreq == NULL)
637                 return -ENOMEM;
638         return setup_deferral(dreq, item);
639 }
640
641 static void cache_revisit_request(struct cache_head *item)
642 {
643         struct cache_deferred_req *dreq;
644         struct list_head pending;
645
646         struct list_head *lp;
647         int hash = DFR_HASH(item);
648
649         INIT_LIST_HEAD(&pending);
650         spin_lock(&cache_defer_lock);
651
652         lp = cache_defer_hash[hash].next;
653         if (lp) {
654                 while (lp != &cache_defer_hash[hash]) {
655                         dreq = list_entry(lp, struct cache_deferred_req, hash);
656                         lp = lp->next;
657                         if (dreq->item == item) {
658                                 __unhash_deferred_req(dreq);
659                                 list_add(&dreq->recent, &pending);
660                         }
661                 }
662         }
663         spin_unlock(&cache_defer_lock);
664
665         while (!list_empty(&pending)) {
666                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
667                 list_del_init(&dreq->recent);
668                 dreq->revisit(dreq, 0);
669         }
670 }
671
672 void cache_clean_deferred(void *owner)
673 {
674         struct cache_deferred_req *dreq, *tmp;
675         struct list_head pending;
676
677
678         INIT_LIST_HEAD(&pending);
679         spin_lock(&cache_defer_lock);
680
681         list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
682                 if (dreq->owner == owner)
683                         __unhash_deferred_req(dreq);
684         }
685         spin_unlock(&cache_defer_lock);
686
687         while (!list_empty(&pending)) {
688                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
689                 list_del_init(&dreq->recent);
690                 dreq->revisit(dreq, 1);
691         }
692 }
693
694 /*
695  * communicate with user-space
696  *
697  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
698  * On read, you get a full request, or block.
699  * On write, an update request is processed.
700  * Poll works if anything to read, and always allows write.
701  *
702  * Implemented by linked list of requests.  Each open file has
703  * a ->private that also exists in this list.  New requests are added
704  * to the end and may wakeup and preceding readers.
705  * New readers are added to the head.  If, on read, an item is found with
706  * CACHE_UPCALLING clear, we free it from the list.
707  *
708  */
709
710 static DEFINE_SPINLOCK(queue_lock);
711 static DEFINE_MUTEX(queue_io_mutex);
712
713 struct cache_queue {
714         struct list_head        list;
715         int                     reader; /* if 0, then request */
716 };
717 struct cache_request {
718         struct cache_queue      q;
719         struct cache_head       *item;
720         char                    * buf;
721         int                     len;
722         int                     readers;
723 };
724 struct cache_reader {
725         struct cache_queue      q;
726         int                     offset; /* if non-0, we have a refcnt on next request */
727 };
728
729 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
730                           loff_t *ppos, struct cache_detail *cd)
731 {
732         struct cache_reader *rp = filp->private_data;
733         struct cache_request *rq;
734         struct inode *inode = filp->f_path.dentry->d_inode;
735         int err;
736
737         if (count == 0)
738                 return 0;
739
740         mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
741                               * readers on this file */
742  again:
743         spin_lock(&queue_lock);
744         /* need to find next request */
745         while (rp->q.list.next != &cd->queue &&
746                list_entry(rp->q.list.next, struct cache_queue, list)
747                ->reader) {
748                 struct list_head *next = rp->q.list.next;
749                 list_move(&rp->q.list, next);
750         }
751         if (rp->q.list.next == &cd->queue) {
752                 spin_unlock(&queue_lock);
753                 mutex_unlock(&inode->i_mutex);
754                 BUG_ON(rp->offset);
755                 return 0;
756         }
757         rq = container_of(rp->q.list.next, struct cache_request, q.list);
758         BUG_ON(rq->q.reader);
759         if (rp->offset == 0)
760                 rq->readers++;
761         spin_unlock(&queue_lock);
762
763         if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
764                 err = -EAGAIN;
765                 spin_lock(&queue_lock);
766                 list_move(&rp->q.list, &rq->q.list);
767                 spin_unlock(&queue_lock);
768         } else {
769                 if (rp->offset + count > rq->len)
770                         count = rq->len - rp->offset;
771                 err = -EFAULT;
772                 if (copy_to_user(buf, rq->buf + rp->offset, count))
773                         goto out;
774                 rp->offset += count;
775                 if (rp->offset >= rq->len) {
776                         rp->offset = 0;
777                         spin_lock(&queue_lock);
778                         list_move(&rp->q.list, &rq->q.list);
779                         spin_unlock(&queue_lock);
780                 }
781                 err = 0;
782         }
783  out:
784         if (rp->offset == 0) {
785                 /* need to release rq */
786                 spin_lock(&queue_lock);
787                 rq->readers--;
788                 if (rq->readers == 0 &&
789                     !test_bit(CACHE_PENDING, &rq->item->flags)) {
790                         list_del(&rq->q.list);
791                         spin_unlock(&queue_lock);
792                         cache_put(rq->item, cd);
793                         kfree(rq->buf);
794                         kfree(rq);
795                 } else
796                         spin_unlock(&queue_lock);
797         }
798         if (err == -EAGAIN)
799                 goto again;
800         mutex_unlock(&inode->i_mutex);
801         return err ? err :  count;
802 }
803
804 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
805                                  size_t count, struct cache_detail *cd)
806 {
807         ssize_t ret;
808
809         if (copy_from_user(kaddr, buf, count))
810                 return -EFAULT;
811         kaddr[count] = '\0';
812         ret = cd->cache_parse(cd, kaddr, count);
813         if (!ret)
814                 ret = count;
815         return ret;
816 }
817
818 static ssize_t cache_slow_downcall(const char __user *buf,
819                                    size_t count, struct cache_detail *cd)
820 {
821         static char write_buf[8192]; /* protected by queue_io_mutex */
822         ssize_t ret = -EINVAL;
823
824         if (count >= sizeof(write_buf))
825                 goto out;
826         mutex_lock(&queue_io_mutex);
827         ret = cache_do_downcall(write_buf, buf, count, cd);
828         mutex_unlock(&queue_io_mutex);
829 out:
830         return ret;
831 }
832
833 static ssize_t cache_downcall(struct address_space *mapping,
834                               const char __user *buf,
835                               size_t count, struct cache_detail *cd)
836 {
837         struct page *page;
838         char *kaddr;
839         ssize_t ret = -ENOMEM;
840
841         if (count >= PAGE_CACHE_SIZE)
842                 goto out_slow;
843
844         page = find_or_create_page(mapping, 0, GFP_KERNEL);
845         if (!page)
846                 goto out_slow;
847
848         kaddr = kmap(page);
849         ret = cache_do_downcall(kaddr, buf, count, cd);
850         kunmap(page);
851         unlock_page(page);
852         page_cache_release(page);
853         return ret;
854 out_slow:
855         return cache_slow_downcall(buf, count, cd);
856 }
857
858 static ssize_t cache_write(struct file *filp, const char __user *buf,
859                            size_t count, loff_t *ppos,
860                            struct cache_detail *cd)
861 {
862         struct address_space *mapping = filp->f_mapping;
863         struct inode *inode = filp->f_path.dentry->d_inode;
864         ssize_t ret = -EINVAL;
865
866         if (!cd->cache_parse)
867                 goto out;
868
869         mutex_lock(&inode->i_mutex);
870         ret = cache_downcall(mapping, buf, count, cd);
871         mutex_unlock(&inode->i_mutex);
872 out:
873         return ret;
874 }
875
876 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
877
878 static unsigned int cache_poll(struct file *filp, poll_table *wait,
879                                struct cache_detail *cd)
880 {
881         unsigned int mask;
882         struct cache_reader *rp = filp->private_data;
883         struct cache_queue *cq;
884
885         poll_wait(filp, &queue_wait, wait);
886
887         /* alway allow write */
888         mask = POLL_OUT | POLLWRNORM;
889
890         if (!rp)
891                 return mask;
892
893         spin_lock(&queue_lock);
894
895         for (cq= &rp->q; &cq->list != &cd->queue;
896              cq = list_entry(cq->list.next, struct cache_queue, list))
897                 if (!cq->reader) {
898                         mask |= POLLIN | POLLRDNORM;
899                         break;
900                 }
901         spin_unlock(&queue_lock);
902         return mask;
903 }
904
905 static int cache_ioctl(struct inode *ino, struct file *filp,
906                        unsigned int cmd, unsigned long arg,
907                        struct cache_detail *cd)
908 {
909         int len = 0;
910         struct cache_reader *rp = filp->private_data;
911         struct cache_queue *cq;
912
913         if (cmd != FIONREAD || !rp)
914                 return -EINVAL;
915
916         spin_lock(&queue_lock);
917
918         /* only find the length remaining in current request,
919          * or the length of the next request
920          */
921         for (cq= &rp->q; &cq->list != &cd->queue;
922              cq = list_entry(cq->list.next, struct cache_queue, list))
923                 if (!cq->reader) {
924                         struct cache_request *cr =
925                                 container_of(cq, struct cache_request, q);
926                         len = cr->len - rp->offset;
927                         break;
928                 }
929         spin_unlock(&queue_lock);
930
931         return put_user(len, (int __user *)arg);
932 }
933
934 static int cache_open(struct inode *inode, struct file *filp,
935                       struct cache_detail *cd)
936 {
937         struct cache_reader *rp = NULL;
938
939         if (!cd || !try_module_get(cd->owner))
940                 return -EACCES;
941         nonseekable_open(inode, filp);
942         if (filp->f_mode & FMODE_READ) {
943                 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
944                 if (!rp)
945                         return -ENOMEM;
946                 rp->offset = 0;
947                 rp->q.reader = 1;
948                 atomic_inc(&cd->readers);
949                 spin_lock(&queue_lock);
950                 list_add(&rp->q.list, &cd->queue);
951                 spin_unlock(&queue_lock);
952         }
953         filp->private_data = rp;
954         return 0;
955 }
956
957 static int cache_release(struct inode *inode, struct file *filp,
958                          struct cache_detail *cd)
959 {
960         struct cache_reader *rp = filp->private_data;
961
962         if (rp) {
963                 spin_lock(&queue_lock);
964                 if (rp->offset) {
965                         struct cache_queue *cq;
966                         for (cq= &rp->q; &cq->list != &cd->queue;
967                              cq = list_entry(cq->list.next, struct cache_queue, list))
968                                 if (!cq->reader) {
969                                         container_of(cq, struct cache_request, q)
970                                                 ->readers--;
971                                         break;
972                                 }
973                         rp->offset = 0;
974                 }
975                 list_del(&rp->q.list);
976                 spin_unlock(&queue_lock);
977
978                 filp->private_data = NULL;
979                 kfree(rp);
980
981                 cd->last_close = seconds_since_boot();
982                 atomic_dec(&cd->readers);
983         }
984         module_put(cd->owner);
985         return 0;
986 }
987
988
989
990 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
991 {
992         struct cache_queue *cq;
993         spin_lock(&queue_lock);
994         list_for_each_entry(cq, &detail->queue, list)
995                 if (!cq->reader) {
996                         struct cache_request *cr = container_of(cq, struct cache_request, q);
997                         if (cr->item != ch)
998                                 continue;
999                         if (cr->readers != 0)
1000                                 continue;
1001                         list_del(&cr->q.list);
1002                         spin_unlock(&queue_lock);
1003                         cache_put(cr->item, detail);
1004                         kfree(cr->buf);
1005                         kfree(cr);
1006                         return;
1007                 }
1008         spin_unlock(&queue_lock);
1009 }
1010
1011 /*
1012  * Support routines for text-based upcalls.
1013  * Fields are separated by spaces.
1014  * Fields are either mangled to quote space tab newline slosh with slosh
1015  * or a hexified with a leading \x
1016  * Record is terminated with newline.
1017  *
1018  */
1019
1020 void qword_add(char **bpp, int *lp, char *str)
1021 {
1022         char *bp = *bpp;
1023         int len = *lp;
1024         char c;
1025
1026         if (len < 0) return;
1027
1028         while ((c=*str++) && len)
1029                 switch(c) {
1030                 case ' ':
1031                 case '\t':
1032                 case '\n':
1033                 case '\\':
1034                         if (len >= 4) {
1035                                 *bp++ = '\\';
1036                                 *bp++ = '0' + ((c & 0300)>>6);
1037                                 *bp++ = '0' + ((c & 0070)>>3);
1038                                 *bp++ = '0' + ((c & 0007)>>0);
1039                         }
1040                         len -= 4;
1041                         break;
1042                 default:
1043                         *bp++ = c;
1044                         len--;
1045                 }
1046         if (c || len <1) len = -1;
1047         else {
1048                 *bp++ = ' ';
1049                 len--;
1050         }
1051         *bpp = bp;
1052         *lp = len;
1053 }
1054 EXPORT_SYMBOL_GPL(qword_add);
1055
1056 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1057 {
1058         char *bp = *bpp;
1059         int len = *lp;
1060
1061         if (len < 0) return;
1062
1063         if (len > 2) {
1064                 *bp++ = '\\';
1065                 *bp++ = 'x';
1066                 len -= 2;
1067                 while (blen && len >= 2) {
1068                         unsigned char c = *buf++;
1069                         *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1070                         *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1071                         len -= 2;
1072                         blen--;
1073                 }
1074         }
1075         if (blen || len<1) len = -1;
1076         else {
1077                 *bp++ = ' ';
1078                 len--;
1079         }
1080         *bpp = bp;
1081         *lp = len;
1082 }
1083 EXPORT_SYMBOL_GPL(qword_addhex);
1084
1085 static void warn_no_listener(struct cache_detail *detail)
1086 {
1087         if (detail->last_warn != detail->last_close) {
1088                 detail->last_warn = detail->last_close;
1089                 if (detail->warn_no_listener)
1090                         detail->warn_no_listener(detail, detail->last_close != 0);
1091         }
1092 }
1093
1094 static bool cache_listeners_exist(struct cache_detail *detail)
1095 {
1096         if (atomic_read(&detail->readers))
1097                 return true;
1098         if (detail->last_close == 0)
1099                 /* This cache was never opened */
1100                 return false;
1101         if (detail->last_close < seconds_since_boot() - 30)
1102                 /*
1103                  * We allow for the possibility that someone might
1104                  * restart a userspace daemon without restarting the
1105                  * server; but after 30 seconds, we give up.
1106                  */
1107                  return false;
1108         return true;
1109 }
1110
1111 /*
1112  * register an upcall request to user-space and queue it up for read() by the
1113  * upcall daemon.
1114  *
1115  * Each request is at most one page long.
1116  */
1117 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1118                 void (*cache_request)(struct cache_detail *,
1119                                       struct cache_head *,
1120                                       char **,
1121                                       int *))
1122 {
1123
1124         char *buf;
1125         struct cache_request *crq;
1126         char *bp;
1127         int len;
1128
1129         if (!cache_listeners_exist(detail)) {
1130                 warn_no_listener(detail);
1131                 return -EINVAL;
1132         }
1133
1134         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1135         if (!buf)
1136                 return -EAGAIN;
1137
1138         crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1139         if (!crq) {
1140                 kfree(buf);
1141                 return -EAGAIN;
1142         }
1143
1144         bp = buf; len = PAGE_SIZE;
1145
1146         cache_request(detail, h, &bp, &len);
1147
1148         if (len < 0) {
1149                 kfree(buf);
1150                 kfree(crq);
1151                 return -EAGAIN;
1152         }
1153         crq->q.reader = 0;
1154         crq->item = cache_get(h);
1155         crq->buf = buf;
1156         crq->len = PAGE_SIZE - len;
1157         crq->readers = 0;
1158         spin_lock(&queue_lock);
1159         list_add_tail(&crq->q.list, &detail->queue);
1160         spin_unlock(&queue_lock);
1161         wake_up(&queue_wait);
1162         return 0;
1163 }
1164 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1165
1166 /*
1167  * parse a message from user-space and pass it
1168  * to an appropriate cache
1169  * Messages are, like requests, separated into fields by
1170  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1171  *
1172  * Message is
1173  *   reply cachename expiry key ... content....
1174  *
1175  * key and content are both parsed by cache
1176  */
1177
1178 #define isodigit(c) (isdigit(c) && c <= '7')
1179 int qword_get(char **bpp, char *dest, int bufsize)
1180 {
1181         /* return bytes copied, or -1 on error */
1182         char *bp = *bpp;
1183         int len = 0;
1184
1185         while (*bp == ' ') bp++;
1186
1187         if (bp[0] == '\\' && bp[1] == 'x') {
1188                 /* HEX STRING */
1189                 bp += 2;
1190                 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1191                         int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1192                         bp++;
1193                         byte <<= 4;
1194                         byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1195                         *dest++ = byte;
1196                         bp++;
1197                         len++;
1198                 }
1199         } else {
1200                 /* text with \nnn octal quoting */
1201                 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1202                         if (*bp == '\\' &&
1203                             isodigit(bp[1]) && (bp[1] <= '3') &&
1204                             isodigit(bp[2]) &&
1205                             isodigit(bp[3])) {
1206                                 int byte = (*++bp -'0');
1207                                 bp++;
1208                                 byte = (byte << 3) | (*bp++ - '0');
1209                                 byte = (byte << 3) | (*bp++ - '0');
1210                                 *dest++ = byte;
1211                                 len++;
1212                         } else {
1213                                 *dest++ = *bp++;
1214                                 len++;
1215                         }
1216                 }
1217         }
1218
1219         if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1220                 return -1;
1221         while (*bp == ' ') bp++;
1222         *bpp = bp;
1223         *dest = '\0';
1224         return len;
1225 }
1226 EXPORT_SYMBOL_GPL(qword_get);
1227
1228
1229 /*
1230  * support /proc/sunrpc/cache/$CACHENAME/content
1231  * as a seqfile.
1232  * We call ->cache_show passing NULL for the item to
1233  * get a header, then pass each real item in the cache
1234  */
1235
1236 struct handle {
1237         struct cache_detail *cd;
1238 };
1239
1240 static void *c_start(struct seq_file *m, loff_t *pos)
1241         __acquires(cd->hash_lock)
1242 {
1243         loff_t n = *pos;
1244         unsigned hash, entry;
1245         struct cache_head *ch;
1246         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1247
1248
1249         read_lock(&cd->hash_lock);
1250         if (!n--)
1251                 return SEQ_START_TOKEN;
1252         hash = n >> 32;
1253         entry = n & ((1LL<<32) - 1);
1254
1255         for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1256                 if (!entry--)
1257                         return ch;
1258         n &= ~((1LL<<32) - 1);
1259         do {
1260                 hash++;
1261                 n += 1LL<<32;
1262         } while(hash < cd->hash_size &&
1263                 cd->hash_table[hash]==NULL);
1264         if (hash >= cd->hash_size)
1265                 return NULL;
1266         *pos = n+1;
1267         return cd->hash_table[hash];
1268 }
1269
1270 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1271 {
1272         struct cache_head *ch = p;
1273         int hash = (*pos >> 32);
1274         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1275
1276         if (p == SEQ_START_TOKEN)
1277                 hash = 0;
1278         else if (ch->next == NULL) {
1279                 hash++;
1280                 *pos += 1LL<<32;
1281         } else {
1282                 ++*pos;
1283                 return ch->next;
1284         }
1285         *pos &= ~((1LL<<32) - 1);
1286         while (hash < cd->hash_size &&
1287                cd->hash_table[hash] == NULL) {
1288                 hash++;
1289                 *pos += 1LL<<32;
1290         }
1291         if (hash >= cd->hash_size)
1292                 return NULL;
1293         ++*pos;
1294         return cd->hash_table[hash];
1295 }
1296
1297 static void c_stop(struct seq_file *m, void *p)
1298         __releases(cd->hash_lock)
1299 {
1300         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1301         read_unlock(&cd->hash_lock);
1302 }
1303
1304 static int c_show(struct seq_file *m, void *p)
1305 {
1306         struct cache_head *cp = p;
1307         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1308
1309         if (p == SEQ_START_TOKEN)
1310                 return cd->cache_show(m, cd, NULL);
1311
1312         ifdebug(CACHE)
1313                 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1314                            convert_to_wallclock(cp->expiry_time),
1315                            atomic_read(&cp->ref.refcount), cp->flags);
1316         cache_get(cp);
1317         if (cache_check(cd, cp, NULL))
1318                 /* cache_check does a cache_put on failure */
1319                 seq_printf(m, "# ");
1320         else
1321                 cache_put(cp, cd);
1322
1323         return cd->cache_show(m, cd, cp);
1324 }
1325
1326 static const struct seq_operations cache_content_op = {
1327         .start  = c_start,
1328         .next   = c_next,
1329         .stop   = c_stop,
1330         .show   = c_show,
1331 };
1332
1333 static int content_open(struct inode *inode, struct file *file,
1334                         struct cache_detail *cd)
1335 {
1336         struct handle *han;
1337
1338         if (!cd || !try_module_get(cd->owner))
1339                 return -EACCES;
1340         han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1341         if (han == NULL) {
1342                 module_put(cd->owner);
1343                 return -ENOMEM;
1344         }
1345
1346         han->cd = cd;
1347         return 0;
1348 }
1349
1350 static int content_release(struct inode *inode, struct file *file,
1351                 struct cache_detail *cd)
1352 {
1353         int ret = seq_release_private(inode, file);
1354         module_put(cd->owner);
1355         return ret;
1356 }
1357
1358 static int open_flush(struct inode *inode, struct file *file,
1359                         struct cache_detail *cd)
1360 {
1361         if (!cd || !try_module_get(cd->owner))
1362                 return -EACCES;
1363         return nonseekable_open(inode, file);
1364 }
1365
1366 static int release_flush(struct inode *inode, struct file *file,
1367                         struct cache_detail *cd)
1368 {
1369         module_put(cd->owner);
1370         return 0;
1371 }
1372
1373 static ssize_t read_flush(struct file *file, char __user *buf,
1374                           size_t count, loff_t *ppos,
1375                           struct cache_detail *cd)
1376 {
1377         char tbuf[20];
1378         unsigned long p = *ppos;
1379         size_t len;
1380
1381         sprintf(tbuf, "%lu\n", convert_to_wallclock(cd->flush_time));
1382         len = strlen(tbuf);
1383         if (p >= len)
1384                 return 0;
1385         len -= p;
1386         if (len > count)
1387                 len = count;
1388         if (copy_to_user(buf, (void*)(tbuf+p), len))
1389                 return -EFAULT;
1390         *ppos += len;
1391         return len;
1392 }
1393
1394 static ssize_t write_flush(struct file *file, const char __user *buf,
1395                            size_t count, loff_t *ppos,
1396                            struct cache_detail *cd)
1397 {
1398         char tbuf[20];
1399         char *bp, *ep;
1400
1401         if (*ppos || count > sizeof(tbuf)-1)
1402                 return -EINVAL;
1403         if (copy_from_user(tbuf, buf, count))
1404                 return -EFAULT;
1405         tbuf[count] = 0;
1406         simple_strtoul(tbuf, &ep, 0);
1407         if (*ep && *ep != '\n')
1408                 return -EINVAL;
1409
1410         bp = tbuf;
1411         cd->flush_time = get_expiry(&bp);
1412         cd->nextcheck = seconds_since_boot();
1413         cache_flush();
1414
1415         *ppos += count;
1416         return count;
1417 }
1418
1419 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1420                                  size_t count, loff_t *ppos)
1421 {
1422         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1423
1424         return cache_read(filp, buf, count, ppos, cd);
1425 }
1426
1427 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1428                                   size_t count, loff_t *ppos)
1429 {
1430         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1431
1432         return cache_write(filp, buf, count, ppos, cd);
1433 }
1434
1435 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1436 {
1437         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1438
1439         return cache_poll(filp, wait, cd);
1440 }
1441
1442 static long cache_ioctl_procfs(struct file *filp,
1443                                unsigned int cmd, unsigned long arg)
1444 {
1445         long ret;
1446         struct inode *inode = filp->f_path.dentry->d_inode;
1447         struct cache_detail *cd = PDE(inode)->data;
1448
1449         lock_kernel();
1450         ret = cache_ioctl(inode, filp, cmd, arg, cd);
1451         unlock_kernel();
1452
1453         return ret;
1454 }
1455
1456 static int cache_open_procfs(struct inode *inode, struct file *filp)
1457 {
1458         struct cache_detail *cd = PDE(inode)->data;
1459
1460         return cache_open(inode, filp, cd);
1461 }
1462
1463 static int cache_release_procfs(struct inode *inode, struct file *filp)
1464 {
1465         struct cache_detail *cd = PDE(inode)->data;
1466
1467         return cache_release(inode, filp, cd);
1468 }
1469
1470 static const struct file_operations cache_file_operations_procfs = {
1471         .owner          = THIS_MODULE,
1472         .llseek         = no_llseek,
1473         .read           = cache_read_procfs,
1474         .write          = cache_write_procfs,
1475         .poll           = cache_poll_procfs,
1476         .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1477         .open           = cache_open_procfs,
1478         .release        = cache_release_procfs,
1479 };
1480
1481 static int content_open_procfs(struct inode *inode, struct file *filp)
1482 {
1483         struct cache_detail *cd = PDE(inode)->data;
1484
1485         return content_open(inode, filp, cd);
1486 }
1487
1488 static int content_release_procfs(struct inode *inode, struct file *filp)
1489 {
1490         struct cache_detail *cd = PDE(inode)->data;
1491
1492         return content_release(inode, filp, cd);
1493 }
1494
1495 static const struct file_operations content_file_operations_procfs = {
1496         .open           = content_open_procfs,
1497         .read           = seq_read,
1498         .llseek         = seq_lseek,
1499         .release        = content_release_procfs,
1500 };
1501
1502 static int open_flush_procfs(struct inode *inode, struct file *filp)
1503 {
1504         struct cache_detail *cd = PDE(inode)->data;
1505
1506         return open_flush(inode, filp, cd);
1507 }
1508
1509 static int release_flush_procfs(struct inode *inode, struct file *filp)
1510 {
1511         struct cache_detail *cd = PDE(inode)->data;
1512
1513         return release_flush(inode, filp, cd);
1514 }
1515
1516 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1517                             size_t count, loff_t *ppos)
1518 {
1519         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1520
1521         return read_flush(filp, buf, count, ppos, cd);
1522 }
1523
1524 static ssize_t write_flush_procfs(struct file *filp,
1525                                   const char __user *buf,
1526                                   size_t count, loff_t *ppos)
1527 {
1528         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1529
1530         return write_flush(filp, buf, count, ppos, cd);
1531 }
1532
1533 static const struct file_operations cache_flush_operations_procfs = {
1534         .open           = open_flush_procfs,
1535         .read           = read_flush_procfs,
1536         .write          = write_flush_procfs,
1537         .release        = release_flush_procfs,
1538 };
1539
1540 static void remove_cache_proc_entries(struct cache_detail *cd)
1541 {
1542         if (cd->u.procfs.proc_ent == NULL)
1543                 return;
1544         if (cd->u.procfs.flush_ent)
1545                 remove_proc_entry("flush", cd->u.procfs.proc_ent);
1546         if (cd->u.procfs.channel_ent)
1547                 remove_proc_entry("channel", cd->u.procfs.proc_ent);
1548         if (cd->u.procfs.content_ent)
1549                 remove_proc_entry("content", cd->u.procfs.proc_ent);
1550         cd->u.procfs.proc_ent = NULL;
1551         remove_proc_entry(cd->name, proc_net_rpc);
1552 }
1553
1554 #ifdef CONFIG_PROC_FS
1555 static int create_cache_proc_entries(struct cache_detail *cd)
1556 {
1557         struct proc_dir_entry *p;
1558
1559         cd->u.procfs.proc_ent = proc_mkdir(cd->name, proc_net_rpc);
1560         if (cd->u.procfs.proc_ent == NULL)
1561                 goto out_nomem;
1562         cd->u.procfs.channel_ent = NULL;
1563         cd->u.procfs.content_ent = NULL;
1564
1565         p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1566                              cd->u.procfs.proc_ent,
1567                              &cache_flush_operations_procfs, cd);
1568         cd->u.procfs.flush_ent = p;
1569         if (p == NULL)
1570                 goto out_nomem;
1571
1572         if (cd->cache_upcall || cd->cache_parse) {
1573                 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1574                                      cd->u.procfs.proc_ent,
1575                                      &cache_file_operations_procfs, cd);
1576                 cd->u.procfs.channel_ent = p;
1577                 if (p == NULL)
1578                         goto out_nomem;
1579         }
1580         if (cd->cache_show) {
1581                 p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1582                                 cd->u.procfs.proc_ent,
1583                                 &content_file_operations_procfs, cd);
1584                 cd->u.procfs.content_ent = p;
1585                 if (p == NULL)
1586                         goto out_nomem;
1587         }
1588         return 0;
1589 out_nomem:
1590         remove_cache_proc_entries(cd);
1591         return -ENOMEM;
1592 }
1593 #else /* CONFIG_PROC_FS */
1594 static int create_cache_proc_entries(struct cache_detail *cd)
1595 {
1596         return 0;
1597 }
1598 #endif
1599
1600 void __init cache_initialize(void)
1601 {
1602         INIT_DELAYED_WORK_DEFERRABLE(&cache_cleaner, do_cache_clean);
1603 }
1604
1605 int cache_register(struct cache_detail *cd)
1606 {
1607         int ret;
1608
1609         sunrpc_init_cache_detail(cd);
1610         ret = create_cache_proc_entries(cd);
1611         if (ret)
1612                 sunrpc_destroy_cache_detail(cd);
1613         return ret;
1614 }
1615 EXPORT_SYMBOL_GPL(cache_register);
1616
1617 void cache_unregister(struct cache_detail *cd)
1618 {
1619         remove_cache_proc_entries(cd);
1620         sunrpc_destroy_cache_detail(cd);
1621 }
1622 EXPORT_SYMBOL_GPL(cache_unregister);
1623
1624 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1625                                  size_t count, loff_t *ppos)
1626 {
1627         struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1628
1629         return cache_read(filp, buf, count, ppos, cd);
1630 }
1631
1632 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1633                                   size_t count, loff_t *ppos)
1634 {
1635         struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1636
1637         return cache_write(filp, buf, count, ppos, cd);
1638 }
1639
1640 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1641 {
1642         struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1643
1644         return cache_poll(filp, wait, cd);
1645 }
1646
1647 static long cache_ioctl_pipefs(struct file *filp,
1648                               unsigned int cmd, unsigned long arg)
1649 {
1650         struct inode *inode = filp->f_dentry->d_inode;
1651         struct cache_detail *cd = RPC_I(inode)->private;
1652         long ret;
1653
1654         lock_kernel();
1655         ret = cache_ioctl(inode, filp, cmd, arg, cd);
1656         unlock_kernel();
1657
1658         return ret;
1659 }
1660
1661 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1662 {
1663         struct cache_detail *cd = RPC_I(inode)->private;
1664
1665         return cache_open(inode, filp, cd);
1666 }
1667
1668 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1669 {
1670         struct cache_detail *cd = RPC_I(inode)->private;
1671
1672         return cache_release(inode, filp, cd);
1673 }
1674
1675 const struct file_operations cache_file_operations_pipefs = {
1676         .owner          = THIS_MODULE,
1677         .llseek         = no_llseek,
1678         .read           = cache_read_pipefs,
1679         .write          = cache_write_pipefs,
1680         .poll           = cache_poll_pipefs,
1681         .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1682         .open           = cache_open_pipefs,
1683         .release        = cache_release_pipefs,
1684 };
1685
1686 static int content_open_pipefs(struct inode *inode, struct file *filp)
1687 {
1688         struct cache_detail *cd = RPC_I(inode)->private;
1689
1690         return content_open(inode, filp, cd);
1691 }
1692
1693 static int content_release_pipefs(struct inode *inode, struct file *filp)
1694 {
1695         struct cache_detail *cd = RPC_I(inode)->private;
1696
1697         return content_release(inode, filp, cd);
1698 }
1699
1700 const struct file_operations content_file_operations_pipefs = {
1701         .open           = content_open_pipefs,
1702         .read           = seq_read,
1703         .llseek         = seq_lseek,
1704         .release        = content_release_pipefs,
1705 };
1706
1707 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1708 {
1709         struct cache_detail *cd = RPC_I(inode)->private;
1710
1711         return open_flush(inode, filp, cd);
1712 }
1713
1714 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1715 {
1716         struct cache_detail *cd = RPC_I(inode)->private;
1717
1718         return release_flush(inode, filp, cd);
1719 }
1720
1721 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1722                             size_t count, loff_t *ppos)
1723 {
1724         struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1725
1726         return read_flush(filp, buf, count, ppos, cd);
1727 }
1728
1729 static ssize_t write_flush_pipefs(struct file *filp,
1730                                   const char __user *buf,
1731                                   size_t count, loff_t *ppos)
1732 {
1733         struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1734
1735         return write_flush(filp, buf, count, ppos, cd);
1736 }
1737
1738 const struct file_operations cache_flush_operations_pipefs = {
1739         .open           = open_flush_pipefs,
1740         .read           = read_flush_pipefs,
1741         .write          = write_flush_pipefs,
1742         .release        = release_flush_pipefs,
1743 };
1744
1745 int sunrpc_cache_register_pipefs(struct dentry *parent,
1746                                  const char *name, mode_t umode,
1747                                  struct cache_detail *cd)
1748 {
1749         struct qstr q;
1750         struct dentry *dir;
1751         int ret = 0;
1752
1753         sunrpc_init_cache_detail(cd);
1754         q.name = name;
1755         q.len = strlen(name);
1756         q.hash = full_name_hash(q.name, q.len);
1757         dir = rpc_create_cache_dir(parent, &q, umode, cd);
1758         if (!IS_ERR(dir))
1759                 cd->u.pipefs.dir = dir;
1760         else {
1761                 sunrpc_destroy_cache_detail(cd);
1762                 ret = PTR_ERR(dir);
1763         }
1764         return ret;
1765 }
1766 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1767
1768 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1769 {
1770         rpc_remove_cache_dir(cd->u.pipefs.dir);
1771         cd->u.pipefs.dir = NULL;
1772         sunrpc_destroy_cache_detail(cd);
1773 }
1774 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1775