a7d6671e33b8a6e46aba0b352ad083736d1b421b
[pandora-kernel.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
64
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
81
82 #include <linux/crypto.h>
83 #include <linux/scatterlist.h>
84
85 int sysctl_tcp_tw_reuse __read_mostly;
86 int sysctl_tcp_low_latency __read_mostly;
87 EXPORT_SYMBOL(sysctl_tcp_low_latency);
88
89
90 #ifdef CONFIG_TCP_MD5SIG
91 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
92                                                    __be32 addr);
93 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
94                                __be32 daddr, __be32 saddr, struct tcphdr *th);
95 #else
96 static inline
97 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
98 {
99         return NULL;
100 }
101 #endif
102
103 struct inet_hashinfo tcp_hashinfo;
104 EXPORT_SYMBOL(tcp_hashinfo);
105
106 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
107 {
108         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
109                                           ip_hdr(skb)->saddr,
110                                           tcp_hdr(skb)->dest,
111                                           tcp_hdr(skb)->source);
112 }
113
114 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
115 {
116         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
117         struct tcp_sock *tp = tcp_sk(sk);
118
119         /* With PAWS, it is safe from the viewpoint
120            of data integrity. Even without PAWS it is safe provided sequence
121            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
122
123            Actually, the idea is close to VJ's one, only timestamp cache is
124            held not per host, but per port pair and TW bucket is used as state
125            holder.
126
127            If TW bucket has been already destroyed we fall back to VJ's scheme
128            and use initial timestamp retrieved from peer table.
129          */
130         if (tcptw->tw_ts_recent_stamp &&
131             (twp == NULL || (sysctl_tcp_tw_reuse &&
132                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
133                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
134                 if (tp->write_seq == 0)
135                         tp->write_seq = 1;
136                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
137                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
138                 sock_hold(sktw);
139                 return 1;
140         }
141
142         return 0;
143 }
144 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
145
146 /* This will initiate an outgoing connection. */
147 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
148 {
149         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
150         struct inet_sock *inet = inet_sk(sk);
151         struct tcp_sock *tp = tcp_sk(sk);
152         __be16 orig_sport, orig_dport;
153         __be32 daddr, nexthop;
154         struct flowi4 *fl4;
155         struct rtable *rt;
156         int err;
157         struct ip_options_rcu *inet_opt;
158
159         if (addr_len < sizeof(struct sockaddr_in))
160                 return -EINVAL;
161
162         if (usin->sin_family != AF_INET)
163                 return -EAFNOSUPPORT;
164
165         nexthop = daddr = usin->sin_addr.s_addr;
166         inet_opt = rcu_dereference_protected(inet->inet_opt,
167                                              sock_owned_by_user(sk));
168         if (inet_opt && inet_opt->opt.srr) {
169                 if (!daddr)
170                         return -EINVAL;
171                 nexthop = inet_opt->opt.faddr;
172         }
173
174         orig_sport = inet->inet_sport;
175         orig_dport = usin->sin_port;
176         fl4 = &inet->cork.fl.u.ip4;
177         rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
178                               RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
179                               IPPROTO_TCP,
180                               orig_sport, orig_dport, sk, true);
181         if (IS_ERR(rt)) {
182                 err = PTR_ERR(rt);
183                 if (err == -ENETUNREACH)
184                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
185                 return err;
186         }
187
188         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
189                 ip_rt_put(rt);
190                 return -ENETUNREACH;
191         }
192
193         if (!inet_opt || !inet_opt->opt.srr)
194                 daddr = fl4->daddr;
195
196         if (!inet->inet_saddr)
197                 inet->inet_saddr = fl4->saddr;
198         inet->inet_rcv_saddr = inet->inet_saddr;
199
200         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
201                 /* Reset inherited state */
202                 tp->rx_opt.ts_recent       = 0;
203                 tp->rx_opt.ts_recent_stamp = 0;
204                 tp->write_seq              = 0;
205         }
206
207         if (tcp_death_row.sysctl_tw_recycle &&
208             !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
209                 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
210                 /*
211                  * VJ's idea. We save last timestamp seen from
212                  * the destination in peer table, when entering state
213                  * TIME-WAIT * and initialize rx_opt.ts_recent from it,
214                  * when trying new connection.
215                  */
216                 if (peer) {
217                         inet_peer_refcheck(peer);
218                         if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
219                                 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
220                                 tp->rx_opt.ts_recent = peer->tcp_ts;
221                         }
222                 }
223         }
224
225         inet->inet_dport = usin->sin_port;
226         inet->inet_daddr = daddr;
227
228         inet_csk(sk)->icsk_ext_hdr_len = 0;
229         if (inet_opt)
230                 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
231
232         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
233
234         /* Socket identity is still unknown (sport may be zero).
235          * However we set state to SYN-SENT and not releasing socket
236          * lock select source port, enter ourselves into the hash tables and
237          * complete initialization after this.
238          */
239         tcp_set_state(sk, TCP_SYN_SENT);
240         err = inet_hash_connect(&tcp_death_row, sk);
241         if (err)
242                 goto failure;
243
244         rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
245                                inet->inet_sport, inet->inet_dport, sk);
246         if (IS_ERR(rt)) {
247                 err = PTR_ERR(rt);
248                 rt = NULL;
249                 goto failure;
250         }
251         /* OK, now commit destination to socket.  */
252         sk->sk_gso_type = SKB_GSO_TCPV4;
253         sk_setup_caps(sk, &rt->dst);
254
255         if (!tp->write_seq)
256                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
257                                                            inet->inet_daddr,
258                                                            inet->inet_sport,
259                                                            usin->sin_port);
260
261         inet->inet_id = tp->write_seq ^ jiffies;
262
263         err = tcp_connect(sk);
264         rt = NULL;
265         if (err)
266                 goto failure;
267
268         return 0;
269
270 failure:
271         /*
272          * This unhashes the socket and releases the local port,
273          * if necessary.
274          */
275         tcp_set_state(sk, TCP_CLOSE);
276         ip_rt_put(rt);
277         sk->sk_route_caps = 0;
278         inet->inet_dport = 0;
279         return err;
280 }
281 EXPORT_SYMBOL(tcp_v4_connect);
282
283 /*
284  * This routine does path mtu discovery as defined in RFC1191.
285  */
286 static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
287 {
288         struct dst_entry *dst;
289         struct inet_sock *inet = inet_sk(sk);
290
291         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
292          * send out by Linux are always <576bytes so they should go through
293          * unfragmented).
294          */
295         if (sk->sk_state == TCP_LISTEN)
296                 return;
297
298         /* We don't check in the destentry if pmtu discovery is forbidden
299          * on this route. We just assume that no packet_to_big packets
300          * are send back when pmtu discovery is not active.
301          * There is a small race when the user changes this flag in the
302          * route, but I think that's acceptable.
303          */
304         if ((dst = __sk_dst_check(sk, 0)) == NULL)
305                 return;
306
307         dst->ops->update_pmtu(dst, mtu);
308
309         /* Something is about to be wrong... Remember soft error
310          * for the case, if this connection will not able to recover.
311          */
312         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
313                 sk->sk_err_soft = EMSGSIZE;
314
315         mtu = dst_mtu(dst);
316
317         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
318             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
319                 tcp_sync_mss(sk, mtu);
320
321                 /* Resend the TCP packet because it's
322                  * clear that the old packet has been
323                  * dropped. This is the new "fast" path mtu
324                  * discovery.
325                  */
326                 tcp_simple_retransmit(sk);
327         } /* else let the usual retransmit timer handle it */
328 }
329
330 /*
331  * This routine is called by the ICMP module when it gets some
332  * sort of error condition.  If err < 0 then the socket should
333  * be closed and the error returned to the user.  If err > 0
334  * it's just the icmp type << 8 | icmp code.  After adjustment
335  * header points to the first 8 bytes of the tcp header.  We need
336  * to find the appropriate port.
337  *
338  * The locking strategy used here is very "optimistic". When
339  * someone else accesses the socket the ICMP is just dropped
340  * and for some paths there is no check at all.
341  * A more general error queue to queue errors for later handling
342  * is probably better.
343  *
344  */
345
346 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
347 {
348         const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
349         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
350         struct inet_connection_sock *icsk;
351         struct tcp_sock *tp;
352         struct inet_sock *inet;
353         const int type = icmp_hdr(icmp_skb)->type;
354         const int code = icmp_hdr(icmp_skb)->code;
355         struct sock *sk;
356         struct sk_buff *skb;
357         __u32 seq;
358         __u32 remaining;
359         int err;
360         struct net *net = dev_net(icmp_skb->dev);
361
362         if (icmp_skb->len < (iph->ihl << 2) + 8) {
363                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
364                 return;
365         }
366
367         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
368                         iph->saddr, th->source, inet_iif(icmp_skb));
369         if (!sk) {
370                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
371                 return;
372         }
373         if (sk->sk_state == TCP_TIME_WAIT) {
374                 inet_twsk_put(inet_twsk(sk));
375                 return;
376         }
377
378         bh_lock_sock(sk);
379         /* If too many ICMPs get dropped on busy
380          * servers this needs to be solved differently.
381          */
382         if (sock_owned_by_user(sk))
383                 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
384
385         if (sk->sk_state == TCP_CLOSE)
386                 goto out;
387
388         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
389                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
390                 goto out;
391         }
392
393         icsk = inet_csk(sk);
394         tp = tcp_sk(sk);
395         seq = ntohl(th->seq);
396         if (sk->sk_state != TCP_LISTEN &&
397             !between(seq, tp->snd_una, tp->snd_nxt)) {
398                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
399                 goto out;
400         }
401
402         switch (type) {
403         case ICMP_SOURCE_QUENCH:
404                 /* Just silently ignore these. */
405                 goto out;
406         case ICMP_PARAMETERPROB:
407                 err = EPROTO;
408                 break;
409         case ICMP_DEST_UNREACH:
410                 if (code > NR_ICMP_UNREACH)
411                         goto out;
412
413                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
414                         if (!sock_owned_by_user(sk))
415                                 do_pmtu_discovery(sk, iph, info);
416                         goto out;
417                 }
418
419                 err = icmp_err_convert[code].errno;
420                 /* check if icmp_skb allows revert of backoff
421                  * (see draft-zimmermann-tcp-lcd) */
422                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
423                         break;
424                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
425                     !icsk->icsk_backoff)
426                         break;
427
428                 if (sock_owned_by_user(sk))
429                         break;
430
431                 icsk->icsk_backoff--;
432                 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp) <<
433                                          icsk->icsk_backoff;
434                 tcp_bound_rto(sk);
435
436                 skb = tcp_write_queue_head(sk);
437                 BUG_ON(!skb);
438
439                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
440                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
441
442                 if (remaining) {
443                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
444                                                   remaining, TCP_RTO_MAX);
445                 } else {
446                         /* RTO revert clocked out retransmission.
447                          * Will retransmit now */
448                         tcp_retransmit_timer(sk);
449                 }
450
451                 break;
452         case ICMP_TIME_EXCEEDED:
453                 err = EHOSTUNREACH;
454                 break;
455         default:
456                 goto out;
457         }
458
459         switch (sk->sk_state) {
460                 struct request_sock *req, **prev;
461         case TCP_LISTEN:
462                 if (sock_owned_by_user(sk))
463                         goto out;
464
465                 req = inet_csk_search_req(sk, &prev, th->dest,
466                                           iph->daddr, iph->saddr);
467                 if (!req)
468                         goto out;
469
470                 /* ICMPs are not backlogged, hence we cannot get
471                    an established socket here.
472                  */
473                 WARN_ON(req->sk);
474
475                 if (seq != tcp_rsk(req)->snt_isn) {
476                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
477                         goto out;
478                 }
479
480                 /*
481                  * Still in SYN_RECV, just remove it silently.
482                  * There is no good way to pass the error to the newly
483                  * created socket, and POSIX does not want network
484                  * errors returned from accept().
485                  */
486                 inet_csk_reqsk_queue_drop(sk, req, prev);
487                 goto out;
488
489         case TCP_SYN_SENT:
490         case TCP_SYN_RECV:  /* Cannot happen.
491                                It can f.e. if SYNs crossed.
492                              */
493                 if (!sock_owned_by_user(sk)) {
494                         sk->sk_err = err;
495
496                         sk->sk_error_report(sk);
497
498                         tcp_done(sk);
499                 } else {
500                         sk->sk_err_soft = err;
501                 }
502                 goto out;
503         }
504
505         /* If we've already connected we will keep trying
506          * until we time out, or the user gives up.
507          *
508          * rfc1122 4.2.3.9 allows to consider as hard errors
509          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
510          * but it is obsoleted by pmtu discovery).
511          *
512          * Note, that in modern internet, where routing is unreliable
513          * and in each dark corner broken firewalls sit, sending random
514          * errors ordered by their masters even this two messages finally lose
515          * their original sense (even Linux sends invalid PORT_UNREACHs)
516          *
517          * Now we are in compliance with RFCs.
518          *                                                      --ANK (980905)
519          */
520
521         inet = inet_sk(sk);
522         if (!sock_owned_by_user(sk) && inet->recverr) {
523                 sk->sk_err = err;
524                 sk->sk_error_report(sk);
525         } else  { /* Only an error on timeout */
526                 sk->sk_err_soft = err;
527         }
528
529 out:
530         bh_unlock_sock(sk);
531         sock_put(sk);
532 }
533
534 static void __tcp_v4_send_check(struct sk_buff *skb,
535                                 __be32 saddr, __be32 daddr)
536 {
537         struct tcphdr *th = tcp_hdr(skb);
538
539         if (skb->ip_summed == CHECKSUM_PARTIAL) {
540                 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
541                 skb->csum_start = skb_transport_header(skb) - skb->head;
542                 skb->csum_offset = offsetof(struct tcphdr, check);
543         } else {
544                 th->check = tcp_v4_check(skb->len, saddr, daddr,
545                                          csum_partial(th,
546                                                       th->doff << 2,
547                                                       skb->csum));
548         }
549 }
550
551 /* This routine computes an IPv4 TCP checksum. */
552 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
553 {
554         struct inet_sock *inet = inet_sk(sk);
555
556         __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
557 }
558 EXPORT_SYMBOL(tcp_v4_send_check);
559
560 int tcp_v4_gso_send_check(struct sk_buff *skb)
561 {
562         const struct iphdr *iph;
563         struct tcphdr *th;
564
565         if (!pskb_may_pull(skb, sizeof(*th)))
566                 return -EINVAL;
567
568         iph = ip_hdr(skb);
569         th = tcp_hdr(skb);
570
571         th->check = 0;
572         skb->ip_summed = CHECKSUM_PARTIAL;
573         __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
574         return 0;
575 }
576
577 /*
578  *      This routine will send an RST to the other tcp.
579  *
580  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
581  *                    for reset.
582  *      Answer: if a packet caused RST, it is not for a socket
583  *              existing in our system, if it is matched to a socket,
584  *              it is just duplicate segment or bug in other side's TCP.
585  *              So that we build reply only basing on parameters
586  *              arrived with segment.
587  *      Exception: precedence violation. We do not implement it in any case.
588  */
589
590 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
591 {
592         struct tcphdr *th = tcp_hdr(skb);
593         struct {
594                 struct tcphdr th;
595 #ifdef CONFIG_TCP_MD5SIG
596                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
597 #endif
598         } rep;
599         struct ip_reply_arg arg;
600 #ifdef CONFIG_TCP_MD5SIG
601         struct tcp_md5sig_key *key;
602 #endif
603         struct net *net;
604
605         /* Never send a reset in response to a reset. */
606         if (th->rst)
607                 return;
608
609         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
610                 return;
611
612         /* Swap the send and the receive. */
613         memset(&rep, 0, sizeof(rep));
614         rep.th.dest   = th->source;
615         rep.th.source = th->dest;
616         rep.th.doff   = sizeof(struct tcphdr) / 4;
617         rep.th.rst    = 1;
618
619         if (th->ack) {
620                 rep.th.seq = th->ack_seq;
621         } else {
622                 rep.th.ack = 1;
623                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
624                                        skb->len - (th->doff << 2));
625         }
626
627         memset(&arg, 0, sizeof(arg));
628         arg.iov[0].iov_base = (unsigned char *)&rep;
629         arg.iov[0].iov_len  = sizeof(rep.th);
630
631 #ifdef CONFIG_TCP_MD5SIG
632         key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
633         if (key) {
634                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
635                                    (TCPOPT_NOP << 16) |
636                                    (TCPOPT_MD5SIG << 8) |
637                                    TCPOLEN_MD5SIG);
638                 /* Update length and the length the header thinks exists */
639                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
640                 rep.th.doff = arg.iov[0].iov_len / 4;
641
642                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
643                                      key, ip_hdr(skb)->saddr,
644                                      ip_hdr(skb)->daddr, &rep.th);
645         }
646 #endif
647         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
648                                       ip_hdr(skb)->saddr, /* XXX */
649                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
650         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
651         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
652
653         net = dev_net(skb_dst(skb)->dev);
654         ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
655                       &arg, arg.iov[0].iov_len);
656
657         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
658         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
659 }
660
661 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
662    outside socket context is ugly, certainly. What can I do?
663  */
664
665 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
666                             u32 win, u32 ts, int oif,
667                             struct tcp_md5sig_key *key,
668                             int reply_flags)
669 {
670         struct tcphdr *th = tcp_hdr(skb);
671         struct {
672                 struct tcphdr th;
673                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
674 #ifdef CONFIG_TCP_MD5SIG
675                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
676 #endif
677                         ];
678         } rep;
679         struct ip_reply_arg arg;
680         struct net *net = dev_net(skb_dst(skb)->dev);
681
682         memset(&rep.th, 0, sizeof(struct tcphdr));
683         memset(&arg, 0, sizeof(arg));
684
685         arg.iov[0].iov_base = (unsigned char *)&rep;
686         arg.iov[0].iov_len  = sizeof(rep.th);
687         if (ts) {
688                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
689                                    (TCPOPT_TIMESTAMP << 8) |
690                                    TCPOLEN_TIMESTAMP);
691                 rep.opt[1] = htonl(tcp_time_stamp);
692                 rep.opt[2] = htonl(ts);
693                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
694         }
695
696         /* Swap the send and the receive. */
697         rep.th.dest    = th->source;
698         rep.th.source  = th->dest;
699         rep.th.doff    = arg.iov[0].iov_len / 4;
700         rep.th.seq     = htonl(seq);
701         rep.th.ack_seq = htonl(ack);
702         rep.th.ack     = 1;
703         rep.th.window  = htons(win);
704
705 #ifdef CONFIG_TCP_MD5SIG
706         if (key) {
707                 int offset = (ts) ? 3 : 0;
708
709                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
710                                           (TCPOPT_NOP << 16) |
711                                           (TCPOPT_MD5SIG << 8) |
712                                           TCPOLEN_MD5SIG);
713                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
714                 rep.th.doff = arg.iov[0].iov_len/4;
715
716                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
717                                     key, ip_hdr(skb)->saddr,
718                                     ip_hdr(skb)->daddr, &rep.th);
719         }
720 #endif
721         arg.flags = reply_flags;
722         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
723                                       ip_hdr(skb)->saddr, /* XXX */
724                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
725         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
726         if (oif)
727                 arg.bound_dev_if = oif;
728
729         ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
730                       &arg, arg.iov[0].iov_len);
731
732         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
733 }
734
735 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
736 {
737         struct inet_timewait_sock *tw = inet_twsk(sk);
738         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
739
740         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
741                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
742                         tcptw->tw_ts_recent,
743                         tw->tw_bound_dev_if,
744                         tcp_twsk_md5_key(tcptw),
745                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
746                         );
747
748         inet_twsk_put(tw);
749 }
750
751 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
752                                   struct request_sock *req)
753 {
754         tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
755                         tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
756                         req->ts_recent,
757                         0,
758                         tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
759                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
760 }
761
762 /*
763  *      Send a SYN-ACK after having received a SYN.
764  *      This still operates on a request_sock only, not on a big
765  *      socket.
766  */
767 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
768                               struct request_sock *req,
769                               struct request_values *rvp)
770 {
771         const struct inet_request_sock *ireq = inet_rsk(req);
772         struct flowi4 fl4;
773         int err = -1;
774         struct sk_buff * skb;
775
776         /* First, grab a route. */
777         if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
778                 return -1;
779
780         skb = tcp_make_synack(sk, dst, req, rvp);
781
782         if (skb) {
783                 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
784
785                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
786                                             ireq->rmt_addr,
787                                             ireq->opt);
788                 err = net_xmit_eval(err);
789         }
790
791         dst_release(dst);
792         return err;
793 }
794
795 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
796                               struct request_values *rvp)
797 {
798         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
799         return tcp_v4_send_synack(sk, NULL, req, rvp);
800 }
801
802 /*
803  *      IPv4 request_sock destructor.
804  */
805 static void tcp_v4_reqsk_destructor(struct request_sock *req)
806 {
807         kfree(inet_rsk(req)->opt);
808 }
809
810 static void syn_flood_warning(const struct sk_buff *skb)
811 {
812         const char *msg;
813
814 #ifdef CONFIG_SYN_COOKIES
815         if (sysctl_tcp_syncookies)
816                 msg = "Sending cookies";
817         else
818 #endif
819                 msg = "Dropping request";
820
821         pr_info("TCP: Possible SYN flooding on port %d. %s.\n",
822                                 ntohs(tcp_hdr(skb)->dest), msg);
823 }
824
825 /*
826  * Save and compile IPv4 options into the request_sock if needed.
827  */
828 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
829                                                   struct sk_buff *skb)
830 {
831         const struct ip_options *opt = &(IPCB(skb)->opt);
832         struct ip_options_rcu *dopt = NULL;
833
834         if (opt && opt->optlen) {
835                 int opt_size = sizeof(*dopt) + opt->optlen;
836
837                 dopt = kmalloc(opt_size, GFP_ATOMIC);
838                 if (dopt) {
839                         if (ip_options_echo(&dopt->opt, skb)) {
840                                 kfree(dopt);
841                                 dopt = NULL;
842                         }
843                 }
844         }
845         return dopt;
846 }
847
848 #ifdef CONFIG_TCP_MD5SIG
849 /*
850  * RFC2385 MD5 checksumming requires a mapping of
851  * IP address->MD5 Key.
852  * We need to maintain these in the sk structure.
853  */
854
855 /* Find the Key structure for an address.  */
856 static struct tcp_md5sig_key *
857                         tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
858 {
859         struct tcp_sock *tp = tcp_sk(sk);
860         int i;
861
862         if (!tp->md5sig_info || !tp->md5sig_info->entries4)
863                 return NULL;
864         for (i = 0; i < tp->md5sig_info->entries4; i++) {
865                 if (tp->md5sig_info->keys4[i].addr == addr)
866                         return &tp->md5sig_info->keys4[i].base;
867         }
868         return NULL;
869 }
870
871 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
872                                          struct sock *addr_sk)
873 {
874         return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
875 }
876 EXPORT_SYMBOL(tcp_v4_md5_lookup);
877
878 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
879                                                       struct request_sock *req)
880 {
881         return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
882 }
883
884 /* This can be called on a newly created socket, from other files */
885 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
886                       u8 *newkey, u8 newkeylen)
887 {
888         /* Add Key to the list */
889         struct tcp_md5sig_key *key;
890         struct tcp_sock *tp = tcp_sk(sk);
891         struct tcp4_md5sig_key *keys;
892
893         key = tcp_v4_md5_do_lookup(sk, addr);
894         if (key) {
895                 /* Pre-existing entry - just update that one. */
896                 kfree(key->key);
897                 key->key = newkey;
898                 key->keylen = newkeylen;
899         } else {
900                 struct tcp_md5sig_info *md5sig;
901
902                 if (!tp->md5sig_info) {
903                         tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
904                                                   GFP_ATOMIC);
905                         if (!tp->md5sig_info) {
906                                 kfree(newkey);
907                                 return -ENOMEM;
908                         }
909                         sk_nocaps_add(sk, NETIF_F_GSO_MASK);
910                 }
911                 if (tcp_alloc_md5sig_pool(sk) == NULL) {
912                         kfree(newkey);
913                         return -ENOMEM;
914                 }
915                 md5sig = tp->md5sig_info;
916
917                 if (md5sig->alloced4 == md5sig->entries4) {
918                         keys = kmalloc((sizeof(*keys) *
919                                         (md5sig->entries4 + 1)), GFP_ATOMIC);
920                         if (!keys) {
921                                 kfree(newkey);
922                                 tcp_free_md5sig_pool();
923                                 return -ENOMEM;
924                         }
925
926                         if (md5sig->entries4)
927                                 memcpy(keys, md5sig->keys4,
928                                        sizeof(*keys) * md5sig->entries4);
929
930                         /* Free old key list, and reference new one */
931                         kfree(md5sig->keys4);
932                         md5sig->keys4 = keys;
933                         md5sig->alloced4++;
934                 }
935                 md5sig->entries4++;
936                 md5sig->keys4[md5sig->entries4 - 1].addr        = addr;
937                 md5sig->keys4[md5sig->entries4 - 1].base.key    = newkey;
938                 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
939         }
940         return 0;
941 }
942 EXPORT_SYMBOL(tcp_v4_md5_do_add);
943
944 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
945                                u8 *newkey, u8 newkeylen)
946 {
947         return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
948                                  newkey, newkeylen);
949 }
950
951 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
952 {
953         struct tcp_sock *tp = tcp_sk(sk);
954         int i;
955
956         for (i = 0; i < tp->md5sig_info->entries4; i++) {
957                 if (tp->md5sig_info->keys4[i].addr == addr) {
958                         /* Free the key */
959                         kfree(tp->md5sig_info->keys4[i].base.key);
960                         tp->md5sig_info->entries4--;
961
962                         if (tp->md5sig_info->entries4 == 0) {
963                                 kfree(tp->md5sig_info->keys4);
964                                 tp->md5sig_info->keys4 = NULL;
965                                 tp->md5sig_info->alloced4 = 0;
966                         } else if (tp->md5sig_info->entries4 != i) {
967                                 /* Need to do some manipulation */
968                                 memmove(&tp->md5sig_info->keys4[i],
969                                         &tp->md5sig_info->keys4[i+1],
970                                         (tp->md5sig_info->entries4 - i) *
971                                          sizeof(struct tcp4_md5sig_key));
972                         }
973                         tcp_free_md5sig_pool();
974                         return 0;
975                 }
976         }
977         return -ENOENT;
978 }
979 EXPORT_SYMBOL(tcp_v4_md5_do_del);
980
981 static void tcp_v4_clear_md5_list(struct sock *sk)
982 {
983         struct tcp_sock *tp = tcp_sk(sk);
984
985         /* Free each key, then the set of key keys,
986          * the crypto element, and then decrement our
987          * hold on the last resort crypto.
988          */
989         if (tp->md5sig_info->entries4) {
990                 int i;
991                 for (i = 0; i < tp->md5sig_info->entries4; i++)
992                         kfree(tp->md5sig_info->keys4[i].base.key);
993                 tp->md5sig_info->entries4 = 0;
994                 tcp_free_md5sig_pool();
995         }
996         if (tp->md5sig_info->keys4) {
997                 kfree(tp->md5sig_info->keys4);
998                 tp->md5sig_info->keys4 = NULL;
999                 tp->md5sig_info->alloced4  = 0;
1000         }
1001 }
1002
1003 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1004                                  int optlen)
1005 {
1006         struct tcp_md5sig cmd;
1007         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1008         u8 *newkey;
1009
1010         if (optlen < sizeof(cmd))
1011                 return -EINVAL;
1012
1013         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1014                 return -EFAULT;
1015
1016         if (sin->sin_family != AF_INET)
1017                 return -EINVAL;
1018
1019         if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1020                 if (!tcp_sk(sk)->md5sig_info)
1021                         return -ENOENT;
1022                 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1023         }
1024
1025         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1026                 return -EINVAL;
1027
1028         if (!tcp_sk(sk)->md5sig_info) {
1029                 struct tcp_sock *tp = tcp_sk(sk);
1030                 struct tcp_md5sig_info *p;
1031
1032                 p = kzalloc(sizeof(*p), sk->sk_allocation);
1033                 if (!p)
1034                         return -EINVAL;
1035
1036                 tp->md5sig_info = p;
1037                 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1038         }
1039
1040         newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1041         if (!newkey)
1042                 return -ENOMEM;
1043         return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1044                                  newkey, cmd.tcpm_keylen);
1045 }
1046
1047 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1048                                         __be32 daddr, __be32 saddr, int nbytes)
1049 {
1050         struct tcp4_pseudohdr *bp;
1051         struct scatterlist sg;
1052
1053         bp = &hp->md5_blk.ip4;
1054
1055         /*
1056          * 1. the TCP pseudo-header (in the order: source IP address,
1057          * destination IP address, zero-padded protocol number, and
1058          * segment length)
1059          */
1060         bp->saddr = saddr;
1061         bp->daddr = daddr;
1062         bp->pad = 0;
1063         bp->protocol = IPPROTO_TCP;
1064         bp->len = cpu_to_be16(nbytes);
1065
1066         sg_init_one(&sg, bp, sizeof(*bp));
1067         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1068 }
1069
1070 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1071                                __be32 daddr, __be32 saddr, struct tcphdr *th)
1072 {
1073         struct tcp_md5sig_pool *hp;
1074         struct hash_desc *desc;
1075
1076         hp = tcp_get_md5sig_pool();
1077         if (!hp)
1078                 goto clear_hash_noput;
1079         desc = &hp->md5_desc;
1080
1081         if (crypto_hash_init(desc))
1082                 goto clear_hash;
1083         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1084                 goto clear_hash;
1085         if (tcp_md5_hash_header(hp, th))
1086                 goto clear_hash;
1087         if (tcp_md5_hash_key(hp, key))
1088                 goto clear_hash;
1089         if (crypto_hash_final(desc, md5_hash))
1090                 goto clear_hash;
1091
1092         tcp_put_md5sig_pool();
1093         return 0;
1094
1095 clear_hash:
1096         tcp_put_md5sig_pool();
1097 clear_hash_noput:
1098         memset(md5_hash, 0, 16);
1099         return 1;
1100 }
1101
1102 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1103                         struct sock *sk, struct request_sock *req,
1104                         struct sk_buff *skb)
1105 {
1106         struct tcp_md5sig_pool *hp;
1107         struct hash_desc *desc;
1108         struct tcphdr *th = tcp_hdr(skb);
1109         __be32 saddr, daddr;
1110
1111         if (sk) {
1112                 saddr = inet_sk(sk)->inet_saddr;
1113                 daddr = inet_sk(sk)->inet_daddr;
1114         } else if (req) {
1115                 saddr = inet_rsk(req)->loc_addr;
1116                 daddr = inet_rsk(req)->rmt_addr;
1117         } else {
1118                 const struct iphdr *iph = ip_hdr(skb);
1119                 saddr = iph->saddr;
1120                 daddr = iph->daddr;
1121         }
1122
1123         hp = tcp_get_md5sig_pool();
1124         if (!hp)
1125                 goto clear_hash_noput;
1126         desc = &hp->md5_desc;
1127
1128         if (crypto_hash_init(desc))
1129                 goto clear_hash;
1130
1131         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1132                 goto clear_hash;
1133         if (tcp_md5_hash_header(hp, th))
1134                 goto clear_hash;
1135         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1136                 goto clear_hash;
1137         if (tcp_md5_hash_key(hp, key))
1138                 goto clear_hash;
1139         if (crypto_hash_final(desc, md5_hash))
1140                 goto clear_hash;
1141
1142         tcp_put_md5sig_pool();
1143         return 0;
1144
1145 clear_hash:
1146         tcp_put_md5sig_pool();
1147 clear_hash_noput:
1148         memset(md5_hash, 0, 16);
1149         return 1;
1150 }
1151 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1152
1153 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1154 {
1155         /*
1156          * This gets called for each TCP segment that arrives
1157          * so we want to be efficient.
1158          * We have 3 drop cases:
1159          * o No MD5 hash and one expected.
1160          * o MD5 hash and we're not expecting one.
1161          * o MD5 hash and its wrong.
1162          */
1163         __u8 *hash_location = NULL;
1164         struct tcp_md5sig_key *hash_expected;
1165         const struct iphdr *iph = ip_hdr(skb);
1166         struct tcphdr *th = tcp_hdr(skb);
1167         int genhash;
1168         unsigned char newhash[16];
1169
1170         hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1171         hash_location = tcp_parse_md5sig_option(th);
1172
1173         /* We've parsed the options - do we have a hash? */
1174         if (!hash_expected && !hash_location)
1175                 return 0;
1176
1177         if (hash_expected && !hash_location) {
1178                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1179                 return 1;
1180         }
1181
1182         if (!hash_expected && hash_location) {
1183                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1184                 return 1;
1185         }
1186
1187         /* Okay, so this is hash_expected and hash_location -
1188          * so we need to calculate the checksum.
1189          */
1190         genhash = tcp_v4_md5_hash_skb(newhash,
1191                                       hash_expected,
1192                                       NULL, NULL, skb);
1193
1194         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1195                 if (net_ratelimit()) {
1196                         printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1197                                &iph->saddr, ntohs(th->source),
1198                                &iph->daddr, ntohs(th->dest),
1199                                genhash ? " tcp_v4_calc_md5_hash failed" : "");
1200                 }
1201                 return 1;
1202         }
1203         return 0;
1204 }
1205
1206 #endif
1207
1208 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1209         .family         =       PF_INET,
1210         .obj_size       =       sizeof(struct tcp_request_sock),
1211         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1212         .send_ack       =       tcp_v4_reqsk_send_ack,
1213         .destructor     =       tcp_v4_reqsk_destructor,
1214         .send_reset     =       tcp_v4_send_reset,
1215         .syn_ack_timeout =      tcp_syn_ack_timeout,
1216 };
1217
1218 #ifdef CONFIG_TCP_MD5SIG
1219 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1220         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1221         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1222 };
1223 #endif
1224
1225 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1226 {
1227         struct tcp_extend_values tmp_ext;
1228         struct tcp_options_received tmp_opt;
1229         u8 *hash_location;
1230         struct request_sock *req;
1231         struct inet_request_sock *ireq;
1232         struct tcp_sock *tp = tcp_sk(sk);
1233         struct dst_entry *dst = NULL;
1234         __be32 saddr = ip_hdr(skb)->saddr;
1235         __be32 daddr = ip_hdr(skb)->daddr;
1236         __u32 isn = TCP_SKB_CB(skb)->when;
1237 #ifdef CONFIG_SYN_COOKIES
1238         int want_cookie = 0;
1239 #else
1240 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1241 #endif
1242
1243         /* Never answer to SYNs send to broadcast or multicast */
1244         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1245                 goto drop;
1246
1247         /* TW buckets are converted to open requests without
1248          * limitations, they conserve resources and peer is
1249          * evidently real one.
1250          */
1251         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1252                 if (net_ratelimit())
1253                         syn_flood_warning(skb);
1254 #ifdef CONFIG_SYN_COOKIES
1255                 if (sysctl_tcp_syncookies) {
1256                         want_cookie = 1;
1257                 } else
1258 #endif
1259                 goto drop;
1260         }
1261
1262         /* Accept backlog is full. If we have already queued enough
1263          * of warm entries in syn queue, drop request. It is better than
1264          * clogging syn queue with openreqs with exponentially increasing
1265          * timeout.
1266          */
1267         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1268                 goto drop;
1269
1270         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1271         if (!req)
1272                 goto drop;
1273
1274 #ifdef CONFIG_TCP_MD5SIG
1275         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1276 #endif
1277
1278         tcp_clear_options(&tmp_opt);
1279         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1280         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1281         tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1282
1283         if (tmp_opt.cookie_plus > 0 &&
1284             tmp_opt.saw_tstamp &&
1285             !tp->rx_opt.cookie_out_never &&
1286             (sysctl_tcp_cookie_size > 0 ||
1287              (tp->cookie_values != NULL &&
1288               tp->cookie_values->cookie_desired > 0))) {
1289                 u8 *c;
1290                 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1291                 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1292
1293                 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1294                         goto drop_and_release;
1295
1296                 /* Secret recipe starts with IP addresses */
1297                 *mess++ ^= (__force u32)daddr;
1298                 *mess++ ^= (__force u32)saddr;
1299
1300                 /* plus variable length Initiator Cookie */
1301                 c = (u8 *)mess;
1302                 while (l-- > 0)
1303                         *c++ ^= *hash_location++;
1304
1305 #ifdef CONFIG_SYN_COOKIES
1306                 want_cookie = 0;        /* not our kind of cookie */
1307 #endif
1308                 tmp_ext.cookie_out_never = 0; /* false */
1309                 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1310         } else if (!tp->rx_opt.cookie_in_always) {
1311                 /* redundant indications, but ensure initialization. */
1312                 tmp_ext.cookie_out_never = 1; /* true */
1313                 tmp_ext.cookie_plus = 0;
1314         } else {
1315                 goto drop_and_release;
1316         }
1317         tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1318
1319         if (want_cookie && !tmp_opt.saw_tstamp)
1320                 tcp_clear_options(&tmp_opt);
1321
1322         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1323         tcp_openreq_init(req, &tmp_opt, skb);
1324
1325         ireq = inet_rsk(req);
1326         ireq->loc_addr = daddr;
1327         ireq->rmt_addr = saddr;
1328         ireq->no_srccheck = inet_sk(sk)->transparent;
1329         ireq->opt = tcp_v4_save_options(sk, skb);
1330
1331         if (security_inet_conn_request(sk, skb, req))
1332                 goto drop_and_free;
1333
1334         if (!want_cookie || tmp_opt.tstamp_ok)
1335                 TCP_ECN_create_request(req, tcp_hdr(skb));
1336
1337         if (want_cookie) {
1338                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1339                 req->cookie_ts = tmp_opt.tstamp_ok;
1340         } else if (!isn) {
1341                 struct inet_peer *peer = NULL;
1342                 struct flowi4 fl4;
1343
1344                 /* VJ's idea. We save last timestamp seen
1345                  * from the destination in peer table, when entering
1346                  * state TIME-WAIT, and check against it before
1347                  * accepting new connection request.
1348                  *
1349                  * If "isn" is not zero, this request hit alive
1350                  * timewait bucket, so that all the necessary checks
1351                  * are made in the function processing timewait state.
1352                  */
1353                 if (tmp_opt.saw_tstamp &&
1354                     tcp_death_row.sysctl_tw_recycle &&
1355                     (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1356                     fl4.daddr == saddr &&
1357                     (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1358                         inet_peer_refcheck(peer);
1359                         if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1360                             (s32)(peer->tcp_ts - req->ts_recent) >
1361                                                         TCP_PAWS_WINDOW) {
1362                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1363                                 goto drop_and_release;
1364                         }
1365                 }
1366                 /* Kill the following clause, if you dislike this way. */
1367                 else if (!sysctl_tcp_syncookies &&
1368                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1369                           (sysctl_max_syn_backlog >> 2)) &&
1370                          (!peer || !peer->tcp_ts_stamp) &&
1371                          (!dst || !dst_metric(dst, RTAX_RTT))) {
1372                         /* Without syncookies last quarter of
1373                          * backlog is filled with destinations,
1374                          * proven to be alive.
1375                          * It means that we continue to communicate
1376                          * to destinations, already remembered
1377                          * to the moment of synflood.
1378                          */
1379                         LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1380                                        &saddr, ntohs(tcp_hdr(skb)->source));
1381                         goto drop_and_release;
1382                 }
1383
1384                 isn = tcp_v4_init_sequence(skb);
1385         }
1386         tcp_rsk(req)->snt_isn = isn;
1387
1388         if (tcp_v4_send_synack(sk, dst, req,
1389                                (struct request_values *)&tmp_ext) ||
1390             want_cookie)
1391                 goto drop_and_free;
1392
1393         inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1394         return 0;
1395
1396 drop_and_release:
1397         dst_release(dst);
1398 drop_and_free:
1399         reqsk_free(req);
1400 drop:
1401         return 0;
1402 }
1403 EXPORT_SYMBOL(tcp_v4_conn_request);
1404
1405
1406 /*
1407  * The three way handshake has completed - we got a valid synack -
1408  * now create the new socket.
1409  */
1410 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1411                                   struct request_sock *req,
1412                                   struct dst_entry *dst)
1413 {
1414         struct inet_request_sock *ireq;
1415         struct inet_sock *newinet;
1416         struct tcp_sock *newtp;
1417         struct sock *newsk;
1418 #ifdef CONFIG_TCP_MD5SIG
1419         struct tcp_md5sig_key *key;
1420 #endif
1421         struct ip_options_rcu *inet_opt;
1422
1423         if (sk_acceptq_is_full(sk))
1424                 goto exit_overflow;
1425
1426         newsk = tcp_create_openreq_child(sk, req, skb);
1427         if (!newsk)
1428                 goto exit_nonewsk;
1429
1430         newsk->sk_gso_type = SKB_GSO_TCPV4;
1431
1432         newtp                 = tcp_sk(newsk);
1433         newinet               = inet_sk(newsk);
1434         ireq                  = inet_rsk(req);
1435         newinet->inet_daddr   = ireq->rmt_addr;
1436         newinet->inet_rcv_saddr = ireq->loc_addr;
1437         newinet->inet_saddr           = ireq->loc_addr;
1438         inet_opt              = ireq->opt;
1439         rcu_assign_pointer(newinet->inet_opt, inet_opt);
1440         ireq->opt             = NULL;
1441         newinet->mc_index     = inet_iif(skb);
1442         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1443         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1444         if (inet_opt)
1445                 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1446         newinet->inet_id = newtp->write_seq ^ jiffies;
1447
1448         if (!dst && (dst = inet_csk_route_child_sock(sk, newsk, req)) == NULL)
1449                 goto put_and_exit;
1450
1451         sk_setup_caps(newsk, dst);
1452
1453         tcp_mtup_init(newsk);
1454         tcp_sync_mss(newsk, dst_mtu(dst));
1455         newtp->advmss = dst_metric_advmss(dst);
1456         if (tcp_sk(sk)->rx_opt.user_mss &&
1457             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1458                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1459
1460         tcp_initialize_rcv_mss(newsk);
1461
1462 #ifdef CONFIG_TCP_MD5SIG
1463         /* Copy over the MD5 key from the original socket */
1464         key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1465         if (key != NULL) {
1466                 /*
1467                  * We're using one, so create a matching key
1468                  * on the newsk structure. If we fail to get
1469                  * memory, then we end up not copying the key
1470                  * across. Shucks.
1471                  */
1472                 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1473                 if (newkey != NULL)
1474                         tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1475                                           newkey, key->keylen);
1476                 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1477         }
1478 #endif
1479
1480         if (__inet_inherit_port(sk, newsk) < 0)
1481                 goto put_and_exit;
1482         __inet_hash_nolisten(newsk, NULL);
1483
1484         return newsk;
1485
1486 exit_overflow:
1487         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1488 exit_nonewsk:
1489         dst_release(dst);
1490 exit:
1491         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1492         return NULL;
1493 put_and_exit:
1494         sock_put(newsk);
1495         goto exit;
1496 }
1497 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1498
1499 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1500 {
1501         struct tcphdr *th = tcp_hdr(skb);
1502         const struct iphdr *iph = ip_hdr(skb);
1503         struct sock *nsk;
1504         struct request_sock **prev;
1505         /* Find possible connection requests. */
1506         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1507                                                        iph->saddr, iph->daddr);
1508         if (req)
1509                 return tcp_check_req(sk, skb, req, prev);
1510
1511         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1512                         th->source, iph->daddr, th->dest, inet_iif(skb));
1513
1514         if (nsk) {
1515                 if (nsk->sk_state != TCP_TIME_WAIT) {
1516                         bh_lock_sock(nsk);
1517                         return nsk;
1518                 }
1519                 inet_twsk_put(inet_twsk(nsk));
1520                 return NULL;
1521         }
1522
1523 #ifdef CONFIG_SYN_COOKIES
1524         if (!th->syn)
1525                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1526 #endif
1527         return sk;
1528 }
1529
1530 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1531 {
1532         const struct iphdr *iph = ip_hdr(skb);
1533
1534         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1535                 if (!tcp_v4_check(skb->len, iph->saddr,
1536                                   iph->daddr, skb->csum)) {
1537                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1538                         return 0;
1539                 }
1540         }
1541
1542         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1543                                        skb->len, IPPROTO_TCP, 0);
1544
1545         if (skb->len <= 76) {
1546                 return __skb_checksum_complete(skb);
1547         }
1548         return 0;
1549 }
1550
1551
1552 /* The socket must have it's spinlock held when we get
1553  * here.
1554  *
1555  * We have a potential double-lock case here, so even when
1556  * doing backlog processing we use the BH locking scheme.
1557  * This is because we cannot sleep with the original spinlock
1558  * held.
1559  */
1560 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1561 {
1562         struct sock *rsk;
1563 #ifdef CONFIG_TCP_MD5SIG
1564         /*
1565          * We really want to reject the packet as early as possible
1566          * if:
1567          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1568          *  o There is an MD5 option and we're not expecting one
1569          */
1570         if (tcp_v4_inbound_md5_hash(sk, skb))
1571                 goto discard;
1572 #endif
1573
1574         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1575                 sock_rps_save_rxhash(sk, skb->rxhash);
1576                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1577                         rsk = sk;
1578                         goto reset;
1579                 }
1580                 return 0;
1581         }
1582
1583         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1584                 goto csum_err;
1585
1586         if (sk->sk_state == TCP_LISTEN) {
1587                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1588                 if (!nsk)
1589                         goto discard;
1590
1591                 if (nsk != sk) {
1592                         if (tcp_child_process(sk, nsk, skb)) {
1593                                 rsk = nsk;
1594                                 goto reset;
1595                         }
1596                         return 0;
1597                 }
1598         } else
1599                 sock_rps_save_rxhash(sk, skb->rxhash);
1600
1601         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1602                 rsk = sk;
1603                 goto reset;
1604         }
1605         return 0;
1606
1607 reset:
1608         tcp_v4_send_reset(rsk, skb);
1609 discard:
1610         kfree_skb(skb);
1611         /* Be careful here. If this function gets more complicated and
1612          * gcc suffers from register pressure on the x86, sk (in %ebx)
1613          * might be destroyed here. This current version compiles correctly,
1614          * but you have been warned.
1615          */
1616         return 0;
1617
1618 csum_err:
1619         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1620         goto discard;
1621 }
1622 EXPORT_SYMBOL(tcp_v4_do_rcv);
1623
1624 /*
1625  *      From tcp_input.c
1626  */
1627
1628 int tcp_v4_rcv(struct sk_buff *skb)
1629 {
1630         const struct iphdr *iph;
1631         struct tcphdr *th;
1632         struct sock *sk;
1633         int ret;
1634         struct net *net = dev_net(skb->dev);
1635
1636         if (skb->pkt_type != PACKET_HOST)
1637                 goto discard_it;
1638
1639         /* Count it even if it's bad */
1640         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1641
1642         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1643                 goto discard_it;
1644
1645         th = tcp_hdr(skb);
1646
1647         if (th->doff < sizeof(struct tcphdr) / 4)
1648                 goto bad_packet;
1649         if (!pskb_may_pull(skb, th->doff * 4))
1650                 goto discard_it;
1651
1652         /* An explanation is required here, I think.
1653          * Packet length and doff are validated by header prediction,
1654          * provided case of th->doff==0 is eliminated.
1655          * So, we defer the checks. */
1656         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1657                 goto bad_packet;
1658
1659         th = tcp_hdr(skb);
1660         iph = ip_hdr(skb);
1661         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1662         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1663                                     skb->len - th->doff * 4);
1664         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1665         TCP_SKB_CB(skb)->when    = 0;
1666         TCP_SKB_CB(skb)->flags   = iph->tos;
1667         TCP_SKB_CB(skb)->sacked  = 0;
1668
1669         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1670         if (!sk)
1671                 goto no_tcp_socket;
1672
1673 process:
1674         if (sk->sk_state == TCP_TIME_WAIT)
1675                 goto do_time_wait;
1676
1677         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1678                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1679                 goto discard_and_relse;
1680         }
1681
1682         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1683                 goto discard_and_relse;
1684         nf_reset(skb);
1685
1686         if (sk_filter(sk, skb))
1687                 goto discard_and_relse;
1688
1689         skb->dev = NULL;
1690
1691         bh_lock_sock_nested(sk);
1692         ret = 0;
1693         if (!sock_owned_by_user(sk)) {
1694 #ifdef CONFIG_NET_DMA
1695                 struct tcp_sock *tp = tcp_sk(sk);
1696                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1697                         tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1698                 if (tp->ucopy.dma_chan)
1699                         ret = tcp_v4_do_rcv(sk, skb);
1700                 else
1701 #endif
1702                 {
1703                         if (!tcp_prequeue(sk, skb))
1704                                 ret = tcp_v4_do_rcv(sk, skb);
1705                 }
1706         } else if (unlikely(sk_add_backlog(sk, skb))) {
1707                 bh_unlock_sock(sk);
1708                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1709                 goto discard_and_relse;
1710         }
1711         bh_unlock_sock(sk);
1712
1713         sock_put(sk);
1714
1715         return ret;
1716
1717 no_tcp_socket:
1718         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1719                 goto discard_it;
1720
1721         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1722 bad_packet:
1723                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1724         } else {
1725                 tcp_v4_send_reset(NULL, skb);
1726         }
1727
1728 discard_it:
1729         /* Discard frame. */
1730         kfree_skb(skb);
1731         return 0;
1732
1733 discard_and_relse:
1734         sock_put(sk);
1735         goto discard_it;
1736
1737 do_time_wait:
1738         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1739                 inet_twsk_put(inet_twsk(sk));
1740                 goto discard_it;
1741         }
1742
1743         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1744                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1745                 inet_twsk_put(inet_twsk(sk));
1746                 goto discard_it;
1747         }
1748         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1749         case TCP_TW_SYN: {
1750                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1751                                                         &tcp_hashinfo,
1752                                                         iph->daddr, th->dest,
1753                                                         inet_iif(skb));
1754                 if (sk2) {
1755                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1756                         inet_twsk_put(inet_twsk(sk));
1757                         sk = sk2;
1758                         goto process;
1759                 }
1760                 /* Fall through to ACK */
1761         }
1762         case TCP_TW_ACK:
1763                 tcp_v4_timewait_ack(sk, skb);
1764                 break;
1765         case TCP_TW_RST:
1766                 goto no_tcp_socket;
1767         case TCP_TW_SUCCESS:;
1768         }
1769         goto discard_it;
1770 }
1771
1772 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1773 {
1774         struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1775         struct inet_sock *inet = inet_sk(sk);
1776         struct inet_peer *peer;
1777
1778         if (!rt ||
1779             inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1780                 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1781                 *release_it = true;
1782         } else {
1783                 if (!rt->peer)
1784                         rt_bind_peer(rt, inet->inet_daddr, 1);
1785                 peer = rt->peer;
1786                 *release_it = false;
1787         }
1788
1789         return peer;
1790 }
1791 EXPORT_SYMBOL(tcp_v4_get_peer);
1792
1793 void *tcp_v4_tw_get_peer(struct sock *sk)
1794 {
1795         struct inet_timewait_sock *tw = inet_twsk(sk);
1796
1797         return inet_getpeer_v4(tw->tw_daddr, 1);
1798 }
1799 EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1800
1801 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1802         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
1803         .twsk_unique    = tcp_twsk_unique,
1804         .twsk_destructor= tcp_twsk_destructor,
1805         .twsk_getpeer   = tcp_v4_tw_get_peer,
1806 };
1807
1808 const struct inet_connection_sock_af_ops ipv4_specific = {
1809         .queue_xmit        = ip_queue_xmit,
1810         .send_check        = tcp_v4_send_check,
1811         .rebuild_header    = inet_sk_rebuild_header,
1812         .conn_request      = tcp_v4_conn_request,
1813         .syn_recv_sock     = tcp_v4_syn_recv_sock,
1814         .get_peer          = tcp_v4_get_peer,
1815         .net_header_len    = sizeof(struct iphdr),
1816         .setsockopt        = ip_setsockopt,
1817         .getsockopt        = ip_getsockopt,
1818         .addr2sockaddr     = inet_csk_addr2sockaddr,
1819         .sockaddr_len      = sizeof(struct sockaddr_in),
1820         .bind_conflict     = inet_csk_bind_conflict,
1821 #ifdef CONFIG_COMPAT
1822         .compat_setsockopt = compat_ip_setsockopt,
1823         .compat_getsockopt = compat_ip_getsockopt,
1824 #endif
1825 };
1826 EXPORT_SYMBOL(ipv4_specific);
1827
1828 #ifdef CONFIG_TCP_MD5SIG
1829 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1830         .md5_lookup             = tcp_v4_md5_lookup,
1831         .calc_md5_hash          = tcp_v4_md5_hash_skb,
1832         .md5_add                = tcp_v4_md5_add_func,
1833         .md5_parse              = tcp_v4_parse_md5_keys,
1834 };
1835 #endif
1836
1837 /* NOTE: A lot of things set to zero explicitly by call to
1838  *       sk_alloc() so need not be done here.
1839  */
1840 static int tcp_v4_init_sock(struct sock *sk)
1841 {
1842         struct inet_connection_sock *icsk = inet_csk(sk);
1843         struct tcp_sock *tp = tcp_sk(sk);
1844
1845         skb_queue_head_init(&tp->out_of_order_queue);
1846         tcp_init_xmit_timers(sk);
1847         tcp_prequeue_init(tp);
1848
1849         icsk->icsk_rto = TCP_TIMEOUT_INIT;
1850         tp->mdev = TCP_TIMEOUT_INIT;
1851
1852         /* So many TCP implementations out there (incorrectly) count the
1853          * initial SYN frame in their delayed-ACK and congestion control
1854          * algorithms that we must have the following bandaid to talk
1855          * efficiently to them.  -DaveM
1856          */
1857         tp->snd_cwnd = 2;
1858
1859         /* See draft-stevens-tcpca-spec-01 for discussion of the
1860          * initialization of these values.
1861          */
1862         tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1863         tp->snd_cwnd_clamp = ~0;
1864         tp->mss_cache = TCP_MSS_DEFAULT;
1865
1866         tp->reordering = sysctl_tcp_reordering;
1867         icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1868
1869         sk->sk_state = TCP_CLOSE;
1870
1871         sk->sk_write_space = sk_stream_write_space;
1872         sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1873
1874         icsk->icsk_af_ops = &ipv4_specific;
1875         icsk->icsk_sync_mss = tcp_sync_mss;
1876 #ifdef CONFIG_TCP_MD5SIG
1877         tp->af_specific = &tcp_sock_ipv4_specific;
1878 #endif
1879
1880         /* TCP Cookie Transactions */
1881         if (sysctl_tcp_cookie_size > 0) {
1882                 /* Default, cookies without s_data_payload. */
1883                 tp->cookie_values =
1884                         kzalloc(sizeof(*tp->cookie_values),
1885                                 sk->sk_allocation);
1886                 if (tp->cookie_values != NULL)
1887                         kref_init(&tp->cookie_values->kref);
1888         }
1889         /* Presumed zeroed, in order of appearance:
1890          *      cookie_in_always, cookie_out_never,
1891          *      s_data_constant, s_data_in, s_data_out
1892          */
1893         sk->sk_sndbuf = sysctl_tcp_wmem[1];
1894         sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1895
1896         local_bh_disable();
1897         percpu_counter_inc(&tcp_sockets_allocated);
1898         local_bh_enable();
1899
1900         return 0;
1901 }
1902
1903 void tcp_v4_destroy_sock(struct sock *sk)
1904 {
1905         struct tcp_sock *tp = tcp_sk(sk);
1906
1907         tcp_clear_xmit_timers(sk);
1908
1909         tcp_cleanup_congestion_control(sk);
1910
1911         /* Cleanup up the write buffer. */
1912         tcp_write_queue_purge(sk);
1913
1914         /* Cleans up our, hopefully empty, out_of_order_queue. */
1915         __skb_queue_purge(&tp->out_of_order_queue);
1916
1917 #ifdef CONFIG_TCP_MD5SIG
1918         /* Clean up the MD5 key list, if any */
1919         if (tp->md5sig_info) {
1920                 tcp_v4_clear_md5_list(sk);
1921                 kfree(tp->md5sig_info);
1922                 tp->md5sig_info = NULL;
1923         }
1924 #endif
1925
1926 #ifdef CONFIG_NET_DMA
1927         /* Cleans up our sk_async_wait_queue */
1928         __skb_queue_purge(&sk->sk_async_wait_queue);
1929 #endif
1930
1931         /* Clean prequeue, it must be empty really */
1932         __skb_queue_purge(&tp->ucopy.prequeue);
1933
1934         /* Clean up a referenced TCP bind bucket. */
1935         if (inet_csk(sk)->icsk_bind_hash)
1936                 inet_put_port(sk);
1937
1938         /*
1939          * If sendmsg cached page exists, toss it.
1940          */
1941         if (sk->sk_sndmsg_page) {
1942                 __free_page(sk->sk_sndmsg_page);
1943                 sk->sk_sndmsg_page = NULL;
1944         }
1945
1946         /* TCP Cookie Transactions */
1947         if (tp->cookie_values != NULL) {
1948                 kref_put(&tp->cookie_values->kref,
1949                          tcp_cookie_values_release);
1950                 tp->cookie_values = NULL;
1951         }
1952
1953         percpu_counter_dec(&tcp_sockets_allocated);
1954 }
1955 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1956
1957 #ifdef CONFIG_PROC_FS
1958 /* Proc filesystem TCP sock list dumping. */
1959
1960 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1961 {
1962         return hlist_nulls_empty(head) ? NULL :
1963                 list_entry(head->first, struct inet_timewait_sock, tw_node);
1964 }
1965
1966 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1967 {
1968         return !is_a_nulls(tw->tw_node.next) ?
1969                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1970 }
1971
1972 /*
1973  * Get next listener socket follow cur.  If cur is NULL, get first socket
1974  * starting from bucket given in st->bucket; when st->bucket is zero the
1975  * very first socket in the hash table is returned.
1976  */
1977 static void *listening_get_next(struct seq_file *seq, void *cur)
1978 {
1979         struct inet_connection_sock *icsk;
1980         struct hlist_nulls_node *node;
1981         struct sock *sk = cur;
1982         struct inet_listen_hashbucket *ilb;
1983         struct tcp_iter_state *st = seq->private;
1984         struct net *net = seq_file_net(seq);
1985
1986         if (!sk) {
1987                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1988                 spin_lock_bh(&ilb->lock);
1989                 sk = sk_nulls_head(&ilb->head);
1990                 st->offset = 0;
1991                 goto get_sk;
1992         }
1993         ilb = &tcp_hashinfo.listening_hash[st->bucket];
1994         ++st->num;
1995         ++st->offset;
1996
1997         if (st->state == TCP_SEQ_STATE_OPENREQ) {
1998                 struct request_sock *req = cur;
1999
2000                 icsk = inet_csk(st->syn_wait_sk);
2001                 req = req->dl_next;
2002                 while (1) {
2003                         while (req) {
2004                                 if (req->rsk_ops->family == st->family) {
2005                                         cur = req;
2006                                         goto out;
2007                                 }
2008                                 req = req->dl_next;
2009                         }
2010                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2011                                 break;
2012 get_req:
2013                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2014                 }
2015                 sk        = sk_nulls_next(st->syn_wait_sk);
2016                 st->state = TCP_SEQ_STATE_LISTENING;
2017                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2018         } else {
2019                 icsk = inet_csk(sk);
2020                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2021                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2022                         goto start_req;
2023                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2024                 sk = sk_nulls_next(sk);
2025         }
2026 get_sk:
2027         sk_nulls_for_each_from(sk, node) {
2028                 if (!net_eq(sock_net(sk), net))
2029                         continue;
2030                 if (sk->sk_family == st->family) {
2031                         cur = sk;
2032                         goto out;
2033                 }
2034                 icsk = inet_csk(sk);
2035                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2036                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2037 start_req:
2038                         st->uid         = sock_i_uid(sk);
2039                         st->syn_wait_sk = sk;
2040                         st->state       = TCP_SEQ_STATE_OPENREQ;
2041                         st->sbucket     = 0;
2042                         goto get_req;
2043                 }
2044                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2045         }
2046         spin_unlock_bh(&ilb->lock);
2047         st->offset = 0;
2048         if (++st->bucket < INET_LHTABLE_SIZE) {
2049                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2050                 spin_lock_bh(&ilb->lock);
2051                 sk = sk_nulls_head(&ilb->head);
2052                 goto get_sk;
2053         }
2054         cur = NULL;
2055 out:
2056         return cur;
2057 }
2058
2059 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2060 {
2061         struct tcp_iter_state *st = seq->private;
2062         void *rc;
2063
2064         st->bucket = 0;
2065         st->offset = 0;
2066         rc = listening_get_next(seq, NULL);
2067
2068         while (rc && *pos) {
2069                 rc = listening_get_next(seq, rc);
2070                 --*pos;
2071         }
2072         return rc;
2073 }
2074
2075 static inline int empty_bucket(struct tcp_iter_state *st)
2076 {
2077         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2078                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2079 }
2080
2081 /*
2082  * Get first established socket starting from bucket given in st->bucket.
2083  * If st->bucket is zero, the very first socket in the hash is returned.
2084  */
2085 static void *established_get_first(struct seq_file *seq)
2086 {
2087         struct tcp_iter_state *st = seq->private;
2088         struct net *net = seq_file_net(seq);
2089         void *rc = NULL;
2090
2091         st->offset = 0;
2092         for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2093                 struct sock *sk;
2094                 struct hlist_nulls_node *node;
2095                 struct inet_timewait_sock *tw;
2096                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2097
2098                 /* Lockless fast path for the common case of empty buckets */
2099                 if (empty_bucket(st))
2100                         continue;
2101
2102                 spin_lock_bh(lock);
2103                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2104                         if (sk->sk_family != st->family ||
2105                             !net_eq(sock_net(sk), net)) {
2106                                 continue;
2107                         }
2108                         rc = sk;
2109                         goto out;
2110                 }
2111                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2112                 inet_twsk_for_each(tw, node,
2113                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2114                         if (tw->tw_family != st->family ||
2115                             !net_eq(twsk_net(tw), net)) {
2116                                 continue;
2117                         }
2118                         rc = tw;
2119                         goto out;
2120                 }
2121                 spin_unlock_bh(lock);
2122                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2123         }
2124 out:
2125         return rc;
2126 }
2127
2128 static void *established_get_next(struct seq_file *seq, void *cur)
2129 {
2130         struct sock *sk = cur;
2131         struct inet_timewait_sock *tw;
2132         struct hlist_nulls_node *node;
2133         struct tcp_iter_state *st = seq->private;
2134         struct net *net = seq_file_net(seq);
2135
2136         ++st->num;
2137         ++st->offset;
2138
2139         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2140                 tw = cur;
2141                 tw = tw_next(tw);
2142 get_tw:
2143                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2144                         tw = tw_next(tw);
2145                 }
2146                 if (tw) {
2147                         cur = tw;
2148                         goto out;
2149                 }
2150                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2151                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2152
2153                 /* Look for next non empty bucket */
2154                 st->offset = 0;
2155                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2156                                 empty_bucket(st))
2157                         ;
2158                 if (st->bucket > tcp_hashinfo.ehash_mask)
2159                         return NULL;
2160
2161                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2162                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2163         } else
2164                 sk = sk_nulls_next(sk);
2165
2166         sk_nulls_for_each_from(sk, node) {
2167                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2168                         goto found;
2169         }
2170
2171         st->state = TCP_SEQ_STATE_TIME_WAIT;
2172         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2173         goto get_tw;
2174 found:
2175         cur = sk;
2176 out:
2177         return cur;
2178 }
2179
2180 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2181 {
2182         struct tcp_iter_state *st = seq->private;
2183         void *rc;
2184
2185         st->bucket = 0;
2186         rc = established_get_first(seq);
2187
2188         while (rc && pos) {
2189                 rc = established_get_next(seq, rc);
2190                 --pos;
2191         }
2192         return rc;
2193 }
2194
2195 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2196 {
2197         void *rc;
2198         struct tcp_iter_state *st = seq->private;
2199
2200         st->state = TCP_SEQ_STATE_LISTENING;
2201         rc        = listening_get_idx(seq, &pos);
2202
2203         if (!rc) {
2204                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2205                 rc        = established_get_idx(seq, pos);
2206         }
2207
2208         return rc;
2209 }
2210
2211 static void *tcp_seek_last_pos(struct seq_file *seq)
2212 {
2213         struct tcp_iter_state *st = seq->private;
2214         int offset = st->offset;
2215         int orig_num = st->num;
2216         void *rc = NULL;
2217
2218         switch (st->state) {
2219         case TCP_SEQ_STATE_OPENREQ:
2220         case TCP_SEQ_STATE_LISTENING:
2221                 if (st->bucket >= INET_LHTABLE_SIZE)
2222                         break;
2223                 st->state = TCP_SEQ_STATE_LISTENING;
2224                 rc = listening_get_next(seq, NULL);
2225                 while (offset-- && rc)
2226                         rc = listening_get_next(seq, rc);
2227                 if (rc)
2228                         break;
2229                 st->bucket = 0;
2230                 /* Fallthrough */
2231         case TCP_SEQ_STATE_ESTABLISHED:
2232         case TCP_SEQ_STATE_TIME_WAIT:
2233                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2234                 if (st->bucket > tcp_hashinfo.ehash_mask)
2235                         break;
2236                 rc = established_get_first(seq);
2237                 while (offset-- && rc)
2238                         rc = established_get_next(seq, rc);
2239         }
2240
2241         st->num = orig_num;
2242
2243         return rc;
2244 }
2245
2246 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2247 {
2248         struct tcp_iter_state *st = seq->private;
2249         void *rc;
2250
2251         if (*pos && *pos == st->last_pos) {
2252                 rc = tcp_seek_last_pos(seq);
2253                 if (rc)
2254                         goto out;
2255         }
2256
2257         st->state = TCP_SEQ_STATE_LISTENING;
2258         st->num = 0;
2259         st->bucket = 0;
2260         st->offset = 0;
2261         rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2262
2263 out:
2264         st->last_pos = *pos;
2265         return rc;
2266 }
2267
2268 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2269 {
2270         struct tcp_iter_state *st = seq->private;
2271         void *rc = NULL;
2272
2273         if (v == SEQ_START_TOKEN) {
2274                 rc = tcp_get_idx(seq, 0);
2275                 goto out;
2276         }
2277
2278         switch (st->state) {
2279         case TCP_SEQ_STATE_OPENREQ:
2280         case TCP_SEQ_STATE_LISTENING:
2281                 rc = listening_get_next(seq, v);
2282                 if (!rc) {
2283                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2284                         st->bucket = 0;
2285                         st->offset = 0;
2286                         rc        = established_get_first(seq);
2287                 }
2288                 break;
2289         case TCP_SEQ_STATE_ESTABLISHED:
2290         case TCP_SEQ_STATE_TIME_WAIT:
2291                 rc = established_get_next(seq, v);
2292                 break;
2293         }
2294 out:
2295         ++*pos;
2296         st->last_pos = *pos;
2297         return rc;
2298 }
2299
2300 static void tcp_seq_stop(struct seq_file *seq, void *v)
2301 {
2302         struct tcp_iter_state *st = seq->private;
2303
2304         switch (st->state) {
2305         case TCP_SEQ_STATE_OPENREQ:
2306                 if (v) {
2307                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2308                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2309                 }
2310         case TCP_SEQ_STATE_LISTENING:
2311                 if (v != SEQ_START_TOKEN)
2312                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2313                 break;
2314         case TCP_SEQ_STATE_TIME_WAIT:
2315         case TCP_SEQ_STATE_ESTABLISHED:
2316                 if (v)
2317                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2318                 break;
2319         }
2320 }
2321
2322 static int tcp_seq_open(struct inode *inode, struct file *file)
2323 {
2324         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2325         struct tcp_iter_state *s;
2326         int err;
2327
2328         err = seq_open_net(inode, file, &afinfo->seq_ops,
2329                           sizeof(struct tcp_iter_state));
2330         if (err < 0)
2331                 return err;
2332
2333         s = ((struct seq_file *)file->private_data)->private;
2334         s->family               = afinfo->family;
2335         s->last_pos             = 0;
2336         return 0;
2337 }
2338
2339 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2340 {
2341         int rc = 0;
2342         struct proc_dir_entry *p;
2343
2344         afinfo->seq_fops.open           = tcp_seq_open;
2345         afinfo->seq_fops.read           = seq_read;
2346         afinfo->seq_fops.llseek         = seq_lseek;
2347         afinfo->seq_fops.release        = seq_release_net;
2348
2349         afinfo->seq_ops.start           = tcp_seq_start;
2350         afinfo->seq_ops.next            = tcp_seq_next;
2351         afinfo->seq_ops.stop            = tcp_seq_stop;
2352
2353         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2354                              &afinfo->seq_fops, afinfo);
2355         if (!p)
2356                 rc = -ENOMEM;
2357         return rc;
2358 }
2359 EXPORT_SYMBOL(tcp_proc_register);
2360
2361 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2362 {
2363         proc_net_remove(net, afinfo->name);
2364 }
2365 EXPORT_SYMBOL(tcp_proc_unregister);
2366
2367 static void get_openreq4(struct sock *sk, struct request_sock *req,
2368                          struct seq_file *f, int i, int uid, int *len)
2369 {
2370         const struct inet_request_sock *ireq = inet_rsk(req);
2371         int ttd = req->expires - jiffies;
2372
2373         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2374                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2375                 i,
2376                 ireq->loc_addr,
2377                 ntohs(inet_sk(sk)->inet_sport),
2378                 ireq->rmt_addr,
2379                 ntohs(ireq->rmt_port),
2380                 TCP_SYN_RECV,
2381                 0, 0, /* could print option size, but that is af dependent. */
2382                 1,    /* timers active (only the expire timer) */
2383                 jiffies_to_clock_t(ttd),
2384                 req->retrans,
2385                 uid,
2386                 0,  /* non standard timer */
2387                 0, /* open_requests have no inode */
2388                 atomic_read(&sk->sk_refcnt),
2389                 req,
2390                 len);
2391 }
2392
2393 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2394 {
2395         int timer_active;
2396         unsigned long timer_expires;
2397         struct tcp_sock *tp = tcp_sk(sk);
2398         const struct inet_connection_sock *icsk = inet_csk(sk);
2399         struct inet_sock *inet = inet_sk(sk);
2400         __be32 dest = inet->inet_daddr;
2401         __be32 src = inet->inet_rcv_saddr;
2402         __u16 destp = ntohs(inet->inet_dport);
2403         __u16 srcp = ntohs(inet->inet_sport);
2404         int rx_queue;
2405
2406         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2407                 timer_active    = 1;
2408                 timer_expires   = icsk->icsk_timeout;
2409         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2410                 timer_active    = 4;
2411                 timer_expires   = icsk->icsk_timeout;
2412         } else if (timer_pending(&sk->sk_timer)) {
2413                 timer_active    = 2;
2414                 timer_expires   = sk->sk_timer.expires;
2415         } else {
2416                 timer_active    = 0;
2417                 timer_expires = jiffies;
2418         }
2419
2420         if (sk->sk_state == TCP_LISTEN)
2421                 rx_queue = sk->sk_ack_backlog;
2422         else
2423                 /*
2424                  * because we dont lock socket, we might find a transient negative value
2425                  */
2426                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2427
2428         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2429                         "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2430                 i, src, srcp, dest, destp, sk->sk_state,
2431                 tp->write_seq - tp->snd_una,
2432                 rx_queue,
2433                 timer_active,
2434                 jiffies_to_clock_t(timer_expires - jiffies),
2435                 icsk->icsk_retransmits,
2436                 sock_i_uid(sk),
2437                 icsk->icsk_probes_out,
2438                 sock_i_ino(sk),
2439                 atomic_read(&sk->sk_refcnt), sk,
2440                 jiffies_to_clock_t(icsk->icsk_rto),
2441                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2442                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2443                 tp->snd_cwnd,
2444                 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2445                 len);
2446 }
2447
2448 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2449                                struct seq_file *f, int i, int *len)
2450 {
2451         __be32 dest, src;
2452         __u16 destp, srcp;
2453         int ttd = tw->tw_ttd - jiffies;
2454
2455         if (ttd < 0)
2456                 ttd = 0;
2457
2458         dest  = tw->tw_daddr;
2459         src   = tw->tw_rcv_saddr;
2460         destp = ntohs(tw->tw_dport);
2461         srcp  = ntohs(tw->tw_sport);
2462
2463         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2464                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2465                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2466                 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2467                 atomic_read(&tw->tw_refcnt), tw, len);
2468 }
2469
2470 #define TMPSZ 150
2471
2472 static int tcp4_seq_show(struct seq_file *seq, void *v)
2473 {
2474         struct tcp_iter_state *st;
2475         int len;
2476
2477         if (v == SEQ_START_TOKEN) {
2478                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2479                            "  sl  local_address rem_address   st tx_queue "
2480                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2481                            "inode");
2482                 goto out;
2483         }
2484         st = seq->private;
2485
2486         switch (st->state) {
2487         case TCP_SEQ_STATE_LISTENING:
2488         case TCP_SEQ_STATE_ESTABLISHED:
2489                 get_tcp4_sock(v, seq, st->num, &len);
2490                 break;
2491         case TCP_SEQ_STATE_OPENREQ:
2492                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2493                 break;
2494         case TCP_SEQ_STATE_TIME_WAIT:
2495                 get_timewait4_sock(v, seq, st->num, &len);
2496                 break;
2497         }
2498         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2499 out:
2500         return 0;
2501 }
2502
2503 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2504         .name           = "tcp",
2505         .family         = AF_INET,
2506         .seq_fops       = {
2507                 .owner          = THIS_MODULE,
2508         },
2509         .seq_ops        = {
2510                 .show           = tcp4_seq_show,
2511         },
2512 };
2513
2514 static int __net_init tcp4_proc_init_net(struct net *net)
2515 {
2516         return tcp_proc_register(net, &tcp4_seq_afinfo);
2517 }
2518
2519 static void __net_exit tcp4_proc_exit_net(struct net *net)
2520 {
2521         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2522 }
2523
2524 static struct pernet_operations tcp4_net_ops = {
2525         .init = tcp4_proc_init_net,
2526         .exit = tcp4_proc_exit_net,
2527 };
2528
2529 int __init tcp4_proc_init(void)
2530 {
2531         return register_pernet_subsys(&tcp4_net_ops);
2532 }
2533
2534 void tcp4_proc_exit(void)
2535 {
2536         unregister_pernet_subsys(&tcp4_net_ops);
2537 }
2538 #endif /* CONFIG_PROC_FS */
2539
2540 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2541 {
2542         const struct iphdr *iph = skb_gro_network_header(skb);
2543
2544         switch (skb->ip_summed) {
2545         case CHECKSUM_COMPLETE:
2546                 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2547                                   skb->csum)) {
2548                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2549                         break;
2550                 }
2551
2552                 /* fall through */
2553         case CHECKSUM_NONE:
2554                 NAPI_GRO_CB(skb)->flush = 1;
2555                 return NULL;
2556         }
2557
2558         return tcp_gro_receive(head, skb);
2559 }
2560
2561 int tcp4_gro_complete(struct sk_buff *skb)
2562 {
2563         const struct iphdr *iph = ip_hdr(skb);
2564         struct tcphdr *th = tcp_hdr(skb);
2565
2566         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2567                                   iph->saddr, iph->daddr, 0);
2568         skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2569
2570         return tcp_gro_complete(skb);
2571 }
2572
2573 struct proto tcp_prot = {
2574         .name                   = "TCP",
2575         .owner                  = THIS_MODULE,
2576         .close                  = tcp_close,
2577         .connect                = tcp_v4_connect,
2578         .disconnect             = tcp_disconnect,
2579         .accept                 = inet_csk_accept,
2580         .ioctl                  = tcp_ioctl,
2581         .init                   = tcp_v4_init_sock,
2582         .destroy                = tcp_v4_destroy_sock,
2583         .shutdown               = tcp_shutdown,
2584         .setsockopt             = tcp_setsockopt,
2585         .getsockopt             = tcp_getsockopt,
2586         .recvmsg                = tcp_recvmsg,
2587         .sendmsg                = tcp_sendmsg,
2588         .sendpage               = tcp_sendpage,
2589         .backlog_rcv            = tcp_v4_do_rcv,
2590         .hash                   = inet_hash,
2591         .unhash                 = inet_unhash,
2592         .get_port               = inet_csk_get_port,
2593         .enter_memory_pressure  = tcp_enter_memory_pressure,
2594         .sockets_allocated      = &tcp_sockets_allocated,
2595         .orphan_count           = &tcp_orphan_count,
2596         .memory_allocated       = &tcp_memory_allocated,
2597         .memory_pressure        = &tcp_memory_pressure,
2598         .sysctl_mem             = sysctl_tcp_mem,
2599         .sysctl_wmem            = sysctl_tcp_wmem,
2600         .sysctl_rmem            = sysctl_tcp_rmem,
2601         .max_header             = MAX_TCP_HEADER,
2602         .obj_size               = sizeof(struct tcp_sock),
2603         .slab_flags             = SLAB_DESTROY_BY_RCU,
2604         .twsk_prot              = &tcp_timewait_sock_ops,
2605         .rsk_prot               = &tcp_request_sock_ops,
2606         .h.hashinfo             = &tcp_hashinfo,
2607         .no_autobind            = true,
2608 #ifdef CONFIG_COMPAT
2609         .compat_setsockopt      = compat_tcp_setsockopt,
2610         .compat_getsockopt      = compat_tcp_getsockopt,
2611 #endif
2612 };
2613 EXPORT_SYMBOL(tcp_prot);
2614
2615
2616 static int __net_init tcp_sk_init(struct net *net)
2617 {
2618         return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2619                                     PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2620 }
2621
2622 static void __net_exit tcp_sk_exit(struct net *net)
2623 {
2624         inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2625 }
2626
2627 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2628 {
2629         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2630 }
2631
2632 static struct pernet_operations __net_initdata tcp_sk_ops = {
2633        .init       = tcp_sk_init,
2634        .exit       = tcp_sk_exit,
2635        .exit_batch = tcp_sk_exit_batch,
2636 };
2637
2638 void __init tcp_v4_init(void)
2639 {
2640         inet_hashinfo_init(&tcp_hashinfo);
2641         if (register_pernet_subsys(&tcp_sk_ops))
2642                 panic("Failed to create the TCP control socket.\n");
2643 }