97d57676b8eeb3ba59e300ab923a436c53028e0d
[pandora-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
73
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
83
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
95 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
96 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
98 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
99 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
100 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
101 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
102 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
108
109 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117
118 /* Adapt the MSS value used to make delayed ack decision to the
119  * real world.
120  */
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122 {
123         struct inet_connection_sock *icsk = inet_csk(sk);
124         const unsigned int lss = icsk->icsk_ack.last_seg_size;
125         unsigned int len;
126
127         icsk->icsk_ack.last_seg_size = 0;
128
129         /* skb->len may jitter because of SACKs, even if peer
130          * sends good full-sized frames.
131          */
132         len = skb_shinfo(skb)->gso_size ? : skb->len;
133         if (len >= icsk->icsk_ack.rcv_mss) {
134                 icsk->icsk_ack.rcv_mss = len;
135         } else {
136                 /* Otherwise, we make more careful check taking into account,
137                  * that SACKs block is variable.
138                  *
139                  * "len" is invariant segment length, including TCP header.
140                  */
141                 len += skb->data - skb_transport_header(skb);
142                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143                     /* If PSH is not set, packet should be
144                      * full sized, provided peer TCP is not badly broken.
145                      * This observation (if it is correct 8)) allows
146                      * to handle super-low mtu links fairly.
147                      */
148                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150                         /* Subtract also invariant (if peer is RFC compliant),
151                          * tcp header plus fixed timestamp option length.
152                          * Resulting "len" is MSS free of SACK jitter.
153                          */
154                         len -= tcp_sk(sk)->tcp_header_len;
155                         icsk->icsk_ack.last_seg_size = len;
156                         if (len == lss) {
157                                 icsk->icsk_ack.rcv_mss = len;
158                                 return;
159                         }
160                 }
161                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164         }
165 }
166
167 static void tcp_incr_quickack(struct sock *sk)
168 {
169         struct inet_connection_sock *icsk = inet_csk(sk);
170         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171
172         if (quickacks == 0)
173                 quickacks = 2;
174         if (quickacks > icsk->icsk_ack.quick)
175                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176 }
177
178 void tcp_enter_quickack_mode(struct sock *sk)
179 {
180         struct inet_connection_sock *icsk = inet_csk(sk);
181         tcp_incr_quickack(sk);
182         icsk->icsk_ack.pingpong = 0;
183         icsk->icsk_ack.ato = TCP_ATO_MIN;
184 }
185
186 /* Send ACKs quickly, if "quick" count is not exhausted
187  * and the session is not interactive.
188  */
189
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
191 {
192         const struct inet_connection_sock *icsk = inet_csk(sk);
193         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194 }
195
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197 {
198         if (tp->ecn_flags & TCP_ECN_OK)
199                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200 }
201
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203 {
204         if (tcp_hdr(skb)->cwr)
205                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206 }
207
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209 {
210         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 }
212
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214 {
215         if (tp->ecn_flags & TCP_ECN_OK) {
216                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218                 /* Funny extension: if ECT is not set on a segment,
219                  * it is surely retransmit. It is not in ECN RFC,
220                  * but Linux follows this rule. */
221                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222                         tcp_enter_quickack_mode((struct sock *)tp);
223         }
224 }
225
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227 {
228         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229                 tp->ecn_flags &= ~TCP_ECN_OK;
230 }
231
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233 {
234         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235                 tp->ecn_flags &= ~TCP_ECN_OK;
236 }
237
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239 {
240         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241                 return 1;
242         return 0;
243 }
244
245 /* Buffer size and advertised window tuning.
246  *
247  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248  */
249
250 static void tcp_fixup_sndbuf(struct sock *sk)
251 {
252         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253                      sizeof(struct sk_buff);
254
255         if (sk->sk_sndbuf < 3 * sndmem)
256                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257 }
258
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260  *
261  * All tcp_full_space() is split to two parts: "network" buffer, allocated
262  * forward and advertised in receiver window (tp->rcv_wnd) and
263  * "application buffer", required to isolate scheduling/application
264  * latencies from network.
265  * window_clamp is maximal advertised window. It can be less than
266  * tcp_full_space(), in this case tcp_full_space() - window_clamp
267  * is reserved for "application" buffer. The less window_clamp is
268  * the smoother our behaviour from viewpoint of network, but the lower
269  * throughput and the higher sensitivity of the connection to losses. 8)
270  *
271  * rcv_ssthresh is more strict window_clamp used at "slow start"
272  * phase to predict further behaviour of this connection.
273  * It is used for two goals:
274  * - to enforce header prediction at sender, even when application
275  *   requires some significant "application buffer". It is check #1.
276  * - to prevent pruning of receive queue because of misprediction
277  *   of receiver window. Check #2.
278  *
279  * The scheme does not work when sender sends good segments opening
280  * window and then starts to feed us spaghetti. But it should work
281  * in common situations. Otherwise, we have to rely on queue collapsing.
282  */
283
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286 {
287         struct tcp_sock *tp = tcp_sk(sk);
288         /* Optimize this! */
289         int truesize = tcp_win_from_space(skb->truesize) >> 1;
290         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291
292         while (tp->rcv_ssthresh <= window) {
293                 if (truesize <= skb->len)
294                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295
296                 truesize >>= 1;
297                 window >>= 1;
298         }
299         return 0;
300 }
301
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303 {
304         struct tcp_sock *tp = tcp_sk(sk);
305
306         /* Check #1 */
307         if (tp->rcv_ssthresh < tp->window_clamp &&
308             (int)tp->rcv_ssthresh < tcp_space(sk) &&
309             !tcp_memory_pressure) {
310                 int incr;
311
312                 /* Check #2. Increase window, if skb with such overhead
313                  * will fit to rcvbuf in future.
314                  */
315                 if (tcp_win_from_space(skb->truesize) <= skb->len)
316                         incr = 2 * tp->advmss;
317                 else
318                         incr = __tcp_grow_window(sk, skb);
319
320                 if (incr) {
321                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322                                                tp->window_clamp);
323                         inet_csk(sk)->icsk_ack.quick |= 1;
324                 }
325         }
326 }
327
328 /* 3. Tuning rcvbuf, when connection enters established state. */
329
330 static void tcp_fixup_rcvbuf(struct sock *sk)
331 {
332         struct tcp_sock *tp = tcp_sk(sk);
333         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334
335         /* Try to select rcvbuf so that 4 mss-sized segments
336          * will fit to window and corresponding skbs will fit to our rcvbuf.
337          * (was 3; 4 is minimum to allow fast retransmit to work.)
338          */
339         while (tcp_win_from_space(rcvmem) < tp->advmss)
340                 rcvmem += 128;
341         if (sk->sk_rcvbuf < 4 * rcvmem)
342                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343 }
344
345 /* 4. Try to fixup all. It is made immediately after connection enters
346  *    established state.
347  */
348 static void tcp_init_buffer_space(struct sock *sk)
349 {
350         struct tcp_sock *tp = tcp_sk(sk);
351         int maxwin;
352
353         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354                 tcp_fixup_rcvbuf(sk);
355         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356                 tcp_fixup_sndbuf(sk);
357
358         tp->rcvq_space.space = tp->rcv_wnd;
359
360         maxwin = tcp_full_space(sk);
361
362         if (tp->window_clamp >= maxwin) {
363                 tp->window_clamp = maxwin;
364
365                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366                         tp->window_clamp = max(maxwin -
367                                                (maxwin >> sysctl_tcp_app_win),
368                                                4 * tp->advmss);
369         }
370
371         /* Force reservation of one segment. */
372         if (sysctl_tcp_app_win &&
373             tp->window_clamp > 2 * tp->advmss &&
374             tp->window_clamp + tp->advmss > maxwin)
375                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376
377         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378         tp->snd_cwnd_stamp = tcp_time_stamp;
379 }
380
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
383 {
384         struct tcp_sock *tp = tcp_sk(sk);
385         struct inet_connection_sock *icsk = inet_csk(sk);
386
387         icsk->icsk_ack.quick = 0;
388
389         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391             !tcp_memory_pressure &&
392             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394                                     sysctl_tcp_rmem[2]);
395         }
396         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398 }
399
400 /* Initialize RCV_MSS value.
401  * RCV_MSS is an our guess about MSS used by the peer.
402  * We haven't any direct information about the MSS.
403  * It's better to underestimate the RCV_MSS rather than overestimate.
404  * Overestimations make us ACKing less frequently than needed.
405  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406  */
407 void tcp_initialize_rcv_mss(struct sock *sk)
408 {
409         struct tcp_sock *tp = tcp_sk(sk);
410         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411
412         hint = min(hint, tp->rcv_wnd / 2);
413         hint = min(hint, TCP_MIN_RCVMSS);
414         hint = max(hint, TCP_MIN_MSS);
415
416         inet_csk(sk)->icsk_ack.rcv_mss = hint;
417 }
418
419 /* Receiver "autotuning" code.
420  *
421  * The algorithm for RTT estimation w/o timestamps is based on
422  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424  *
425  * More detail on this code can be found at
426  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427  * though this reference is out of date.  A new paper
428  * is pending.
429  */
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431 {
432         u32 new_sample = tp->rcv_rtt_est.rtt;
433         long m = sample;
434
435         if (m == 0)
436                 m = 1;
437
438         if (new_sample != 0) {
439                 /* If we sample in larger samples in the non-timestamp
440                  * case, we could grossly overestimate the RTT especially
441                  * with chatty applications or bulk transfer apps which
442                  * are stalled on filesystem I/O.
443                  *
444                  * Also, since we are only going for a minimum in the
445                  * non-timestamp case, we do not smooth things out
446                  * else with timestamps disabled convergence takes too
447                  * long.
448                  */
449                 if (!win_dep) {
450                         m -= (new_sample >> 3);
451                         new_sample += m;
452                 } else if (m < new_sample)
453                         new_sample = m << 3;
454         } else {
455                 /* No previous measure. */
456                 new_sample = m << 3;
457         }
458
459         if (tp->rcv_rtt_est.rtt != new_sample)
460                 tp->rcv_rtt_est.rtt = new_sample;
461 }
462
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464 {
465         if (tp->rcv_rtt_est.time == 0)
466                 goto new_measure;
467         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468                 return;
469         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470
471 new_measure:
472         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473         tp->rcv_rtt_est.time = tcp_time_stamp;
474 }
475
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477                                           const struct sk_buff *skb)
478 {
479         struct tcp_sock *tp = tcp_sk(sk);
480         if (tp->rx_opt.rcv_tsecr &&
481             (TCP_SKB_CB(skb)->end_seq -
482              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484 }
485
486 /*
487  * This function should be called every time data is copied to user space.
488  * It calculates the appropriate TCP receive buffer space.
489  */
490 void tcp_rcv_space_adjust(struct sock *sk)
491 {
492         struct tcp_sock *tp = tcp_sk(sk);
493         int time;
494         int space;
495
496         if (tp->rcvq_space.time == 0)
497                 goto new_measure;
498
499         time = tcp_time_stamp - tp->rcvq_space.time;
500         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501                 return;
502
503         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504
505         space = max(tp->rcvq_space.space, space);
506
507         if (tp->rcvq_space.space != space) {
508                 int rcvmem;
509
510                 tp->rcvq_space.space = space;
511
512                 if (sysctl_tcp_moderate_rcvbuf &&
513                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514                         int new_clamp = space;
515
516                         /* Receive space grows, normalize in order to
517                          * take into account packet headers and sk_buff
518                          * structure overhead.
519                          */
520                         space /= tp->advmss;
521                         if (!space)
522                                 space = 1;
523                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
524                                   16 + sizeof(struct sk_buff));
525                         while (tcp_win_from_space(rcvmem) < tp->advmss)
526                                 rcvmem += 128;
527                         space *= rcvmem;
528                         space = min(space, sysctl_tcp_rmem[2]);
529                         if (space > sk->sk_rcvbuf) {
530                                 sk->sk_rcvbuf = space;
531
532                                 /* Make the window clamp follow along.  */
533                                 tp->window_clamp = new_clamp;
534                         }
535                 }
536         }
537
538 new_measure:
539         tp->rcvq_space.seq = tp->copied_seq;
540         tp->rcvq_space.time = tcp_time_stamp;
541 }
542
543 /* There is something which you must keep in mind when you analyze the
544  * behavior of the tp->ato delayed ack timeout interval.  When a
545  * connection starts up, we want to ack as quickly as possible.  The
546  * problem is that "good" TCP's do slow start at the beginning of data
547  * transmission.  The means that until we send the first few ACK's the
548  * sender will sit on his end and only queue most of his data, because
549  * he can only send snd_cwnd unacked packets at any given time.  For
550  * each ACK we send, he increments snd_cwnd and transmits more of his
551  * queue.  -DaveM
552  */
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554 {
555         struct tcp_sock *tp = tcp_sk(sk);
556         struct inet_connection_sock *icsk = inet_csk(sk);
557         u32 now;
558
559         inet_csk_schedule_ack(sk);
560
561         tcp_measure_rcv_mss(sk, skb);
562
563         tcp_rcv_rtt_measure(tp);
564
565         now = tcp_time_stamp;
566
567         if (!icsk->icsk_ack.ato) {
568                 /* The _first_ data packet received, initialize
569                  * delayed ACK engine.
570                  */
571                 tcp_incr_quickack(sk);
572                 icsk->icsk_ack.ato = TCP_ATO_MIN;
573         } else {
574                 int m = now - icsk->icsk_ack.lrcvtime;
575
576                 if (m <= TCP_ATO_MIN / 2) {
577                         /* The fastest case is the first. */
578                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579                 } else if (m < icsk->icsk_ack.ato) {
580                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
582                                 icsk->icsk_ack.ato = icsk->icsk_rto;
583                 } else if (m > icsk->icsk_rto) {
584                         /* Too long gap. Apparently sender failed to
585                          * restart window, so that we send ACKs quickly.
586                          */
587                         tcp_incr_quickack(sk);
588                         sk_mem_reclaim(sk);
589                 }
590         }
591         icsk->icsk_ack.lrcvtime = now;
592
593         TCP_ECN_check_ce(tp, skb);
594
595         if (skb->len >= 128)
596                 tcp_grow_window(sk, skb);
597 }
598
599 static u32 tcp_rto_min(struct sock *sk)
600 {
601         struct dst_entry *dst = __sk_dst_get(sk);
602         u32 rto_min = TCP_RTO_MIN;
603
604         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605                 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606         return rto_min;
607 }
608
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610  * routine either comes from timestamps, or from segments that were
611  * known _not_ to have been retransmitted [see Karn/Partridge
612  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613  * piece by Van Jacobson.
614  * NOTE: the next three routines used to be one big routine.
615  * To save cycles in the RFC 1323 implementation it was better to break
616  * it up into three procedures. -- erics
617  */
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619 {
620         struct tcp_sock *tp = tcp_sk(sk);
621         long m = mrtt; /* RTT */
622
623         /*      The following amusing code comes from Jacobson's
624          *      article in SIGCOMM '88.  Note that rtt and mdev
625          *      are scaled versions of rtt and mean deviation.
626          *      This is designed to be as fast as possible
627          *      m stands for "measurement".
628          *
629          *      On a 1990 paper the rto value is changed to:
630          *      RTO = rtt + 4 * mdev
631          *
632          * Funny. This algorithm seems to be very broken.
633          * These formulae increase RTO, when it should be decreased, increase
634          * too slowly, when it should be increased quickly, decrease too quickly
635          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636          * does not matter how to _calculate_ it. Seems, it was trap
637          * that VJ failed to avoid. 8)
638          */
639         if (m == 0)
640                 m = 1;
641         if (tp->srtt != 0) {
642                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
643                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
644                 if (m < 0) {
645                         m = -m;         /* m is now abs(error) */
646                         m -= (tp->mdev >> 2);   /* similar update on mdev */
647                         /* This is similar to one of Eifel findings.
648                          * Eifel blocks mdev updates when rtt decreases.
649                          * This solution is a bit different: we use finer gain
650                          * for mdev in this case (alpha*beta).
651                          * Like Eifel it also prevents growth of rto,
652                          * but also it limits too fast rto decreases,
653                          * happening in pure Eifel.
654                          */
655                         if (m > 0)
656                                 m >>= 3;
657                 } else {
658                         m -= (tp->mdev >> 2);   /* similar update on mdev */
659                 }
660                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
661                 if (tp->mdev > tp->mdev_max) {
662                         tp->mdev_max = tp->mdev;
663                         if (tp->mdev_max > tp->rttvar)
664                                 tp->rttvar = tp->mdev_max;
665                 }
666                 if (after(tp->snd_una, tp->rtt_seq)) {
667                         if (tp->mdev_max < tp->rttvar)
668                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669                         tp->rtt_seq = tp->snd_nxt;
670                         tp->mdev_max = tcp_rto_min(sk);
671                 }
672         } else {
673                 /* no previous measure. */
674                 tp->srtt = m << 3;      /* take the measured time to be rtt */
675                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
676                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677                 tp->rtt_seq = tp->snd_nxt;
678         }
679 }
680
681 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
682  * routine referred to above.
683  */
684 static inline void tcp_set_rto(struct sock *sk)
685 {
686         const struct tcp_sock *tp = tcp_sk(sk);
687         /* Old crap is replaced with new one. 8)
688          *
689          * More seriously:
690          * 1. If rtt variance happened to be less 50msec, it is hallucination.
691          *    It cannot be less due to utterly erratic ACK generation made
692          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693          *    to do with delayed acks, because at cwnd>2 true delack timeout
694          *    is invisible. Actually, Linux-2.4 also generates erratic
695          *    ACKs in some circumstances.
696          */
697         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698
699         /* 2. Fixups made earlier cannot be right.
700          *    If we do not estimate RTO correctly without them,
701          *    all the algo is pure shit and should be replaced
702          *    with correct one. It is exactly, which we pretend to do.
703          */
704 }
705
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707  * guarantees that rto is higher.
708  */
709 static inline void tcp_bound_rto(struct sock *sk)
710 {
711         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
713 }
714
715 /* Save metrics learned by this TCP session.
716    This function is called only, when TCP finishes successfully
717    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
718  */
719 void tcp_update_metrics(struct sock *sk)
720 {
721         struct tcp_sock *tp = tcp_sk(sk);
722         struct dst_entry *dst = __sk_dst_get(sk);
723
724         if (sysctl_tcp_nometrics_save)
725                 return;
726
727         dst_confirm(dst);
728
729         if (dst && (dst->flags & DST_HOST)) {
730                 const struct inet_connection_sock *icsk = inet_csk(sk);
731                 int m;
732                 unsigned long rtt;
733
734                 if (icsk->icsk_backoff || !tp->srtt) {
735                         /* This session failed to estimate rtt. Why?
736                          * Probably, no packets returned in time.
737                          * Reset our results.
738                          */
739                         if (!(dst_metric_locked(dst, RTAX_RTT)))
740                                 dst->metrics[RTAX_RTT - 1] = 0;
741                         return;
742                 }
743
744                 rtt = dst_metric_rtt(dst, RTAX_RTT);
745                 m = rtt - tp->srtt;
746
747                 /* If newly calculated rtt larger than stored one,
748                  * store new one. Otherwise, use EWMA. Remember,
749                  * rtt overestimation is always better than underestimation.
750                  */
751                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
752                         if (m <= 0)
753                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
754                         else
755                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
756                 }
757
758                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759                         unsigned long var;
760                         if (m < 0)
761                                 m = -m;
762
763                         /* Scale deviation to rttvar fixed point */
764                         m >>= 1;
765                         if (m < tp->mdev)
766                                 m = tp->mdev;
767
768                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
769                         if (m >= var)
770                                 var = m;
771                         else
772                                 var -= (var - m) >> 2;
773
774                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
775                 }
776
777                 if (tp->snd_ssthresh >= 0xFFFF) {
778                         /* Slow start still did not finish. */
779                         if (dst_metric(dst, RTAX_SSTHRESH) &&
780                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
781                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
782                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
783                         if (!dst_metric_locked(dst, RTAX_CWND) &&
784                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
785                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
786                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
787                            icsk->icsk_ca_state == TCP_CA_Open) {
788                         /* Cong. avoidance phase, cwnd is reliable. */
789                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
790                                 dst->metrics[RTAX_SSTHRESH-1] =
791                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
792                         if (!dst_metric_locked(dst, RTAX_CWND))
793                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
794                 } else {
795                         /* Else slow start did not finish, cwnd is non-sense,
796                            ssthresh may be also invalid.
797                          */
798                         if (!dst_metric_locked(dst, RTAX_CWND))
799                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
800                         if (dst_metric(dst, RTAX_SSTHRESH) &&
801                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
803                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
804                 }
805
806                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
807                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
808                             tp->reordering != sysctl_tcp_reordering)
809                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
810                 }
811         }
812 }
813
814 /* Numbers are taken from RFC3390.
815  *
816  * John Heffner states:
817  *
818  *      The RFC specifies a window of no more than 4380 bytes
819  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
820  *      is a bit misleading because they use a clamp at 4380 bytes
821  *      rather than use a multiplier in the relevant range.
822  */
823 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
824 {
825         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
826
827         if (!cwnd) {
828                 if (tp->mss_cache > 1460)
829                         cwnd = 2;
830                 else
831                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
832         }
833         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
834 }
835
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
838 {
839         struct tcp_sock *tp = tcp_sk(sk);
840         const struct inet_connection_sock *icsk = inet_csk(sk);
841
842         tp->prior_ssthresh = 0;
843         tp->bytes_acked = 0;
844         if (icsk->icsk_ca_state < TCP_CA_CWR) {
845                 tp->undo_marker = 0;
846                 if (set_ssthresh)
847                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848                 tp->snd_cwnd = min(tp->snd_cwnd,
849                                    tcp_packets_in_flight(tp) + 1U);
850                 tp->snd_cwnd_cnt = 0;
851                 tp->high_seq = tp->snd_nxt;
852                 tp->snd_cwnd_stamp = tcp_time_stamp;
853                 TCP_ECN_queue_cwr(tp);
854
855                 tcp_set_ca_state(sk, TCP_CA_CWR);
856         }
857 }
858
859 /*
860  * Packet counting of FACK is based on in-order assumptions, therefore TCP
861  * disables it when reordering is detected
862  */
863 static void tcp_disable_fack(struct tcp_sock *tp)
864 {
865         /* RFC3517 uses different metric in lost marker => reset on change */
866         if (tcp_is_fack(tp))
867                 tp->lost_skb_hint = NULL;
868         tp->rx_opt.sack_ok &= ~2;
869 }
870
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
873 {
874         tp->rx_opt.sack_ok |= 4;
875 }
876
877 /* Initialize metrics on socket. */
878
879 static void tcp_init_metrics(struct sock *sk)
880 {
881         struct tcp_sock *tp = tcp_sk(sk);
882         struct dst_entry *dst = __sk_dst_get(sk);
883
884         if (dst == NULL)
885                 goto reset;
886
887         dst_confirm(dst);
888
889         if (dst_metric_locked(dst, RTAX_CWND))
890                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891         if (dst_metric(dst, RTAX_SSTHRESH)) {
892                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
895         }
896         if (dst_metric(dst, RTAX_REORDERING) &&
897             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
898                 tcp_disable_fack(tp);
899                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
900         }
901
902         if (dst_metric(dst, RTAX_RTT) == 0)
903                 goto reset;
904
905         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
906                 goto reset;
907
908         /* Initial rtt is determined from SYN,SYN-ACK.
909          * The segment is small and rtt may appear much
910          * less than real one. Use per-dst memory
911          * to make it more realistic.
912          *
913          * A bit of theory. RTT is time passed after "normal" sized packet
914          * is sent until it is ACKed. In normal circumstances sending small
915          * packets force peer to delay ACKs and calculation is correct too.
916          * The algorithm is adaptive and, provided we follow specs, it
917          * NEVER underestimate RTT. BUT! If peer tries to make some clever
918          * tricks sort of "quick acks" for time long enough to decrease RTT
919          * to low value, and then abruptly stops to do it and starts to delay
920          * ACKs, wait for troubles.
921          */
922         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
923                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
924                 tp->rtt_seq = tp->snd_nxt;
925         }
926         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
927                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
928                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
929         }
930         tcp_set_rto(sk);
931         tcp_bound_rto(sk);
932         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
933                 goto reset;
934         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
935         tp->snd_cwnd_stamp = tcp_time_stamp;
936         return;
937
938 reset:
939         /* Play conservative. If timestamps are not
940          * supported, TCP will fail to recalculate correct
941          * rtt, if initial rto is too small. FORGET ALL AND RESET!
942          */
943         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
944                 tp->srtt = 0;
945                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
946                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
947         }
948 }
949
950 static void tcp_update_reordering(struct sock *sk, const int metric,
951                                   const int ts)
952 {
953         struct tcp_sock *tp = tcp_sk(sk);
954         if (metric > tp->reordering) {
955                 int mib_idx;
956
957                 tp->reordering = min(TCP_MAX_REORDERING, metric);
958
959                 /* This exciting event is worth to be remembered. 8) */
960                 if (ts)
961                         mib_idx = LINUX_MIB_TCPTSREORDER;
962                 else if (tcp_is_reno(tp))
963                         mib_idx = LINUX_MIB_TCPRENOREORDER;
964                 else if (tcp_is_fack(tp))
965                         mib_idx = LINUX_MIB_TCPFACKREORDER;
966                 else
967                         mib_idx = LINUX_MIB_TCPSACKREORDER;
968
969                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
970 #if FASTRETRANS_DEBUG > 1
971                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973                        tp->reordering,
974                        tp->fackets_out,
975                        tp->sacked_out,
976                        tp->undo_marker ? tp->undo_retrans : 0);
977 #endif
978                 tcp_disable_fack(tp);
979         }
980 }
981
982 /* This must be called before lost_out is incremented */
983 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
984 {
985         if ((tp->retransmit_skb_hint == NULL) ||
986             before(TCP_SKB_CB(skb)->seq,
987                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
988                 tp->retransmit_skb_hint = skb;
989
990         if (!tp->lost_out ||
991             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
992                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
993 }
994
995 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
996 {
997         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
998                 tcp_verify_retransmit_hint(tp, skb);
999
1000                 tp->lost_out += tcp_skb_pcount(skb);
1001                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1002         }
1003 }
1004
1005 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1006                                             struct sk_buff *skb)
1007 {
1008         tcp_verify_retransmit_hint(tp, skb);
1009
1010         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1011                 tp->lost_out += tcp_skb_pcount(skb);
1012                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1013         }
1014 }
1015
1016 /* This procedure tags the retransmission queue when SACKs arrive.
1017  *
1018  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1019  * Packets in queue with these bits set are counted in variables
1020  * sacked_out, retrans_out and lost_out, correspondingly.
1021  *
1022  * Valid combinations are:
1023  * Tag  InFlight        Description
1024  * 0    1               - orig segment is in flight.
1025  * S    0               - nothing flies, orig reached receiver.
1026  * L    0               - nothing flies, orig lost by net.
1027  * R    2               - both orig and retransmit are in flight.
1028  * L|R  1               - orig is lost, retransmit is in flight.
1029  * S|R  1               - orig reached receiver, retrans is still in flight.
1030  * (L|S|R is logically valid, it could occur when L|R is sacked,
1031  *  but it is equivalent to plain S and code short-curcuits it to S.
1032  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1033  *
1034  * These 6 states form finite state machine, controlled by the following events:
1035  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1036  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1037  * 3. Loss detection event of one of three flavors:
1038  *      A. Scoreboard estimator decided the packet is lost.
1039  *         A'. Reno "three dupacks" marks head of queue lost.
1040  *         A''. Its FACK modfication, head until snd.fack is lost.
1041  *      B. SACK arrives sacking data transmitted after never retransmitted
1042  *         hole was sent out.
1043  *      C. SACK arrives sacking SND.NXT at the moment, when the
1044  *         segment was retransmitted.
1045  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1046  *
1047  * It is pleasant to note, that state diagram turns out to be commutative,
1048  * so that we are allowed not to be bothered by order of our actions,
1049  * when multiple events arrive simultaneously. (see the function below).
1050  *
1051  * Reordering detection.
1052  * --------------------
1053  * Reordering metric is maximal distance, which a packet can be displaced
1054  * in packet stream. With SACKs we can estimate it:
1055  *
1056  * 1. SACK fills old hole and the corresponding segment was not
1057  *    ever retransmitted -> reordering. Alas, we cannot use it
1058  *    when segment was retransmitted.
1059  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1060  *    for retransmitted and already SACKed segment -> reordering..
1061  * Both of these heuristics are not used in Loss state, when we cannot
1062  * account for retransmits accurately.
1063  *
1064  * SACK block validation.
1065  * ----------------------
1066  *
1067  * SACK block range validation checks that the received SACK block fits to
1068  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1069  * Note that SND.UNA is not included to the range though being valid because
1070  * it means that the receiver is rather inconsistent with itself reporting
1071  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1072  * perfectly valid, however, in light of RFC2018 which explicitly states
1073  * that "SACK block MUST reflect the newest segment.  Even if the newest
1074  * segment is going to be discarded ...", not that it looks very clever
1075  * in case of head skb. Due to potentional receiver driven attacks, we
1076  * choose to avoid immediate execution of a walk in write queue due to
1077  * reneging and defer head skb's loss recovery to standard loss recovery
1078  * procedure that will eventually trigger (nothing forbids us doing this).
1079  *
1080  * Implements also blockage to start_seq wrap-around. Problem lies in the
1081  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1082  * there's no guarantee that it will be before snd_nxt (n). The problem
1083  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1084  * wrap (s_w):
1085  *
1086  *         <- outs wnd ->                          <- wrapzone ->
1087  *         u     e      n                         u_w   e_w  s n_w
1088  *         |     |      |                          |     |   |  |
1089  * |<------------+------+----- TCP seqno space --------------+---------->|
1090  * ...-- <2^31 ->|                                           |<--------...
1091  * ...---- >2^31 ------>|                                    |<--------...
1092  *
1093  * Current code wouldn't be vulnerable but it's better still to discard such
1094  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1095  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1096  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1097  * equal to the ideal case (infinite seqno space without wrap caused issues).
1098  *
1099  * With D-SACK the lower bound is extended to cover sequence space below
1100  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1101  * again, D-SACK block must not to go across snd_una (for the same reason as
1102  * for the normal SACK blocks, explained above). But there all simplicity
1103  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1104  * fully below undo_marker they do not affect behavior in anyway and can
1105  * therefore be safely ignored. In rare cases (which are more or less
1106  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1107  * fragmentation and packet reordering past skb's retransmission. To consider
1108  * them correctly, the acceptable range must be extended even more though
1109  * the exact amount is rather hard to quantify. However, tp->max_window can
1110  * be used as an exaggerated estimate.
1111  */
1112 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1113                                   u32 start_seq, u32 end_seq)
1114 {
1115         /* Too far in future, or reversed (interpretation is ambiguous) */
1116         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1117                 return 0;
1118
1119         /* Nasty start_seq wrap-around check (see comments above) */
1120         if (!before(start_seq, tp->snd_nxt))
1121                 return 0;
1122
1123         /* In outstanding window? ...This is valid exit for D-SACKs too.
1124          * start_seq == snd_una is non-sensical (see comments above)
1125          */
1126         if (after(start_seq, tp->snd_una))
1127                 return 1;
1128
1129         if (!is_dsack || !tp->undo_marker)
1130                 return 0;
1131
1132         /* ...Then it's D-SACK, and must reside below snd_una completely */
1133         if (!after(end_seq, tp->snd_una))
1134                 return 0;
1135
1136         if (!before(start_seq, tp->undo_marker))
1137                 return 1;
1138
1139         /* Too old */
1140         if (!after(end_seq, tp->undo_marker))
1141                 return 0;
1142
1143         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1144          *   start_seq < undo_marker and end_seq >= undo_marker.
1145          */
1146         return !before(start_seq, end_seq - tp->max_window);
1147 }
1148
1149 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1150  * Event "C". Later note: FACK people cheated me again 8), we have to account
1151  * for reordering! Ugly, but should help.
1152  *
1153  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1154  * less than what is now known to be received by the other end (derived from
1155  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1156  * retransmitted skbs to avoid some costly processing per ACKs.
1157  */
1158 static void tcp_mark_lost_retrans(struct sock *sk)
1159 {
1160         const struct inet_connection_sock *icsk = inet_csk(sk);
1161         struct tcp_sock *tp = tcp_sk(sk);
1162         struct sk_buff *skb;
1163         int cnt = 0;
1164         u32 new_low_seq = tp->snd_nxt;
1165         u32 received_upto = tcp_highest_sack_seq(tp);
1166
1167         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1168             !after(received_upto, tp->lost_retrans_low) ||
1169             icsk->icsk_ca_state != TCP_CA_Recovery)
1170                 return;
1171
1172         tcp_for_write_queue(skb, sk) {
1173                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1174
1175                 if (skb == tcp_send_head(sk))
1176                         break;
1177                 if (cnt == tp->retrans_out)
1178                         break;
1179                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1180                         continue;
1181
1182                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1183                         continue;
1184
1185                 if (after(received_upto, ack_seq) &&
1186                     (tcp_is_fack(tp) ||
1187                      !before(received_upto,
1188                              ack_seq + tp->reordering * tp->mss_cache))) {
1189                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1190                         tp->retrans_out -= tcp_skb_pcount(skb);
1191
1192                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1193                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1194                 } else {
1195                         if (before(ack_seq, new_low_seq))
1196                                 new_low_seq = ack_seq;
1197                         cnt += tcp_skb_pcount(skb);
1198                 }
1199         }
1200
1201         if (tp->retrans_out)
1202                 tp->lost_retrans_low = new_low_seq;
1203 }
1204
1205 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1206                            struct tcp_sack_block_wire *sp, int num_sacks,
1207                            u32 prior_snd_una)
1208 {
1209         struct tcp_sock *tp = tcp_sk(sk);
1210         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1211         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1212         int dup_sack = 0;
1213
1214         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1215                 dup_sack = 1;
1216                 tcp_dsack_seen(tp);
1217                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1218         } else if (num_sacks > 1) {
1219                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1220                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1221
1222                 if (!after(end_seq_0, end_seq_1) &&
1223                     !before(start_seq_0, start_seq_1)) {
1224                         dup_sack = 1;
1225                         tcp_dsack_seen(tp);
1226                         NET_INC_STATS_BH(sock_net(sk),
1227                                         LINUX_MIB_TCPDSACKOFORECV);
1228                 }
1229         }
1230
1231         /* D-SACK for already forgotten data... Do dumb counting. */
1232         if (dup_sack &&
1233             !after(end_seq_0, prior_snd_una) &&
1234             after(end_seq_0, tp->undo_marker))
1235                 tp->undo_retrans--;
1236
1237         return dup_sack;
1238 }
1239
1240 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1241  * the incoming SACK may not exactly match but we can find smaller MSS
1242  * aligned portion of it that matches. Therefore we might need to fragment
1243  * which may fail and creates some hassle (caller must handle error case
1244  * returns).
1245  *
1246  * FIXME: this could be merged to shift decision code
1247  */
1248 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1249                                  u32 start_seq, u32 end_seq)
1250 {
1251         int in_sack, err;
1252         unsigned int pkt_len;
1253         unsigned int mss;
1254
1255         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1256                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1257
1258         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1259             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1260                 mss = tcp_skb_mss(skb);
1261                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1262
1263                 if (!in_sack) {
1264                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1265                         if (pkt_len < mss)
1266                                 pkt_len = mss;
1267                 } else {
1268                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1269                         if (pkt_len < mss)
1270                                 return -EINVAL;
1271                 }
1272
1273                 /* Round if necessary so that SACKs cover only full MSSes
1274                  * and/or the remaining small portion (if present)
1275                  */
1276                 if (pkt_len > mss) {
1277                         unsigned int new_len = (pkt_len / mss) * mss;
1278                         if (!in_sack && new_len < pkt_len) {
1279                                 new_len += mss;
1280                                 if (new_len > skb->len)
1281                                         return 0;
1282                         }
1283                         pkt_len = new_len;
1284                 }
1285                 err = tcp_fragment(sk, skb, pkt_len, mss);
1286                 if (err < 0)
1287                         return err;
1288         }
1289
1290         return in_sack;
1291 }
1292
1293 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1294                            int *reord, int dup_sack, int fack_count,
1295                            u8 *sackedto, int pcount)
1296 {
1297         struct tcp_sock *tp = tcp_sk(sk);
1298         u8 sacked = TCP_SKB_CB(skb)->sacked;
1299         int flag = 0;
1300
1301         /* Account D-SACK for retransmitted packet. */
1302         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1303                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1304                         tp->undo_retrans--;
1305                 if (sacked & TCPCB_SACKED_ACKED)
1306                         *reord = min(fack_count, *reord);
1307         }
1308
1309         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1310         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1311                 return flag;
1312
1313         if (!(sacked & TCPCB_SACKED_ACKED)) {
1314                 if (sacked & TCPCB_SACKED_RETRANS) {
1315                         /* If the segment is not tagged as lost,
1316                          * we do not clear RETRANS, believing
1317                          * that retransmission is still in flight.
1318                          */
1319                         if (sacked & TCPCB_LOST) {
1320                                 *sackedto &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1321                                 tp->lost_out -= pcount;
1322                                 tp->retrans_out -= pcount;
1323                         }
1324                 } else {
1325                         if (!(sacked & TCPCB_RETRANS)) {
1326                                 /* New sack for not retransmitted frame,
1327                                  * which was in hole. It is reordering.
1328                                  */
1329                                 if (before(TCP_SKB_CB(skb)->seq,
1330                                            tcp_highest_sack_seq(tp)))
1331                                         *reord = min(fack_count, *reord);
1332
1333                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1334                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1335                                         flag |= FLAG_ONLY_ORIG_SACKED;
1336                         }
1337
1338                         if (sacked & TCPCB_LOST) {
1339                                 *sackedto &= ~TCPCB_LOST;
1340                                 tp->lost_out -= pcount;
1341                         }
1342                 }
1343
1344                 *sackedto |= TCPCB_SACKED_ACKED;
1345                 flag |= FLAG_DATA_SACKED;
1346                 tp->sacked_out += pcount;
1347
1348                 fack_count += pcount;
1349
1350                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1351                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1352                     before(TCP_SKB_CB(skb)->seq,
1353                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1354                         tp->lost_cnt_hint += pcount;
1355
1356                 if (fack_count > tp->fackets_out)
1357                         tp->fackets_out = fack_count;
1358         }
1359
1360         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1361          * frames and clear it. undo_retrans is decreased above, L|R frames
1362          * are accounted above as well.
1363          */
1364         if (dup_sack && (*sackedto & TCPCB_SACKED_RETRANS)) {
1365                 *sackedto &= ~TCPCB_SACKED_RETRANS;
1366                 tp->retrans_out -= pcount;
1367         }
1368
1369         return flag;
1370 }
1371
1372 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1373                            struct sk_buff *skb, unsigned int pcount,
1374                            int shifted, int fack_count, int *reord,
1375                            int *flag, int mss)
1376 {
1377         struct tcp_sock *tp = tcp_sk(sk);
1378         u8 dummy_sacked = TCP_SKB_CB(skb)->sacked;      /* We discard results */
1379
1380         BUG_ON(!pcount);
1381
1382         TCP_SKB_CB(prev)->end_seq += shifted;
1383         TCP_SKB_CB(skb)->seq += shifted;
1384
1385         skb_shinfo(prev)->gso_segs += pcount;
1386         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1387         skb_shinfo(skb)->gso_segs -= pcount;
1388
1389         /* When we're adding to gso_segs == 1, gso_size will be zero,
1390          * in theory this shouldn't be necessary but as long as DSACK
1391          * code can come after this skb later on it's better to keep
1392          * setting gso_size to something.
1393          */
1394         if (!skb_shinfo(prev)->gso_size) {
1395                 skb_shinfo(prev)->gso_size = mss;
1396                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1397         }
1398
1399         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1400         if (skb_shinfo(skb)->gso_segs <= 1) {
1401                 skb_shinfo(skb)->gso_size = 0;
1402                 skb_shinfo(skb)->gso_type = 0;
1403         }
1404
1405         *flag |= tcp_sacktag_one(skb, sk, reord, 0, fack_count, &dummy_sacked,
1406                                  pcount);
1407
1408         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1409         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1410
1411         tcp_clear_all_retrans_hints(tp);
1412
1413         if (skb->len > 0) {
1414                 BUG_ON(!tcp_skb_pcount(skb));
1415                 return 0;
1416         }
1417
1418         /* Whole SKB was eaten :-) */
1419
1420         TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1421         if (skb == tcp_highest_sack(sk))
1422                 tcp_advance_highest_sack(sk, skb);
1423
1424         tcp_unlink_write_queue(skb, sk);
1425         sk_wmem_free_skb(sk, skb);
1426
1427         return 1;
1428 }
1429
1430 /* I wish gso_size would have a bit more sane initialization than
1431  * something-or-zero which complicates things
1432  */
1433 static int tcp_shift_mss(struct sk_buff *skb)
1434 {
1435         int mss = tcp_skb_mss(skb);
1436
1437         if (!mss)
1438                 mss = skb->len;
1439
1440         return mss;
1441 }
1442
1443 /* Shifting pages past head area doesn't work */
1444 static int skb_can_shift(struct sk_buff *skb)
1445 {
1446         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1447 }
1448
1449 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1450  * skb.
1451  */
1452 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1453                                           u32 start_seq, u32 end_seq,
1454                                           int dup_sack, int *fack_count,
1455                                           int *reord, int *flag)
1456 {
1457         struct tcp_sock *tp = tcp_sk(sk);
1458         struct sk_buff *prev;
1459         int mss;
1460         int pcount = 0;
1461         int len;
1462         int in_sack;
1463
1464         if (!sk_can_gso(sk))
1465                 goto fallback;
1466
1467         /* Normally R but no L won't result in plain S */
1468         if (!dup_sack &&
1469             (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) == TCPCB_SACKED_RETRANS)
1470                 goto fallback;
1471         if (!skb_can_shift(skb))
1472                 goto fallback;
1473         /* This frame is about to be dropped (was ACKed). */
1474         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1475                 goto fallback;
1476
1477         /* Can only happen with delayed DSACK + discard craziness */
1478         if (unlikely(skb == tcp_write_queue_head(sk)))
1479                 goto fallback;
1480         prev = tcp_write_queue_prev(sk, skb);
1481
1482         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1483                 goto fallback;
1484
1485         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1486                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1487
1488         if (in_sack) {
1489                 len = skb->len;
1490                 pcount = tcp_skb_pcount(skb);
1491                 mss = tcp_shift_mss(skb);
1492
1493                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1494                  * drop this restriction as unnecessary
1495                  */
1496                 if (mss != tcp_shift_mss(prev))
1497                         goto fallback;
1498         } else {
1499                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1500                         goto noop;
1501                 /* CHECKME: This is non-MSS split case only?, this will
1502                  * cause skipped skbs due to advancing loop btw, original
1503                  * has that feature too
1504                  */
1505                 if (tcp_skb_pcount(skb) <= 1)
1506                         goto noop;
1507
1508                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1509                 if (!in_sack) {
1510                         /* TODO: head merge to next could be attempted here
1511                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1512                          * though it might not be worth of the additional hassle
1513                          *
1514                          * ...we can probably just fallback to what was done
1515                          * previously. We could try merging non-SACKed ones
1516                          * as well but it probably isn't going to buy off
1517                          * because later SACKs might again split them, and
1518                          * it would make skb timestamp tracking considerably
1519                          * harder problem.
1520                          */
1521                         goto fallback;
1522                 }
1523
1524                 len = end_seq - TCP_SKB_CB(skb)->seq;
1525                 BUG_ON(len < 0);
1526                 BUG_ON(len > skb->len);
1527
1528                 /* MSS boundaries should be honoured or else pcount will
1529                  * severely break even though it makes things bit trickier.
1530                  * Optimize common case to avoid most of the divides
1531                  */
1532                 mss = tcp_skb_mss(skb);
1533
1534                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1535                  * drop this restriction as unnecessary
1536                  */
1537                 if (mss != tcp_shift_mss(prev))
1538                         goto fallback;
1539
1540                 if (len == mss) {
1541                         pcount = 1;
1542                 } else if (len < mss) {
1543                         goto noop;
1544                 } else {
1545                         pcount = len / mss;
1546                         len = pcount * mss;
1547                 }
1548         }
1549
1550         if (!skb_shift(prev, skb, len))
1551                 goto fallback;
1552         if (!tcp_shifted_skb(sk, prev, skb, pcount, len, *fack_count, reord,
1553                              flag, mss))
1554                 goto out;
1555
1556         /* Hole filled allows collapsing with the next as well, this is very
1557          * useful when hole on every nth skb pattern happens
1558          */
1559         if (prev == tcp_write_queue_tail(sk))
1560                 goto out;
1561         skb = tcp_write_queue_next(sk, prev);
1562
1563         if (!skb_can_shift(skb))
1564                 goto out;
1565         if (skb == tcp_send_head(sk))
1566                 goto out;
1567         if ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1568                 goto out;
1569
1570         len = skb->len;
1571         if (skb_shift(prev, skb, len)) {
1572                 pcount += tcp_skb_pcount(skb);
1573                 tcp_shifted_skb(sk, prev, skb, tcp_skb_pcount(skb), len,
1574                                 *fack_count, reord, flag, mss);
1575         }
1576
1577 out:
1578         *fack_count += pcount;
1579         return prev;
1580
1581 noop:
1582         return skb;
1583
1584 fallback:
1585         return NULL;
1586 }
1587
1588 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1589                                         struct tcp_sack_block *next_dup,
1590                                         u32 start_seq, u32 end_seq,
1591                                         int dup_sack_in, int *fack_count,
1592                                         int *reord, int *flag)
1593 {
1594         struct tcp_sock *tp = tcp_sk(sk);
1595         struct sk_buff *tmp;
1596
1597         tcp_for_write_queue_from(skb, sk) {
1598                 int in_sack = 0;
1599                 int dup_sack = dup_sack_in;
1600
1601                 if (skb == tcp_send_head(sk))
1602                         break;
1603
1604                 /* queue is in-order => we can short-circuit the walk early */
1605                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1606                         break;
1607
1608                 if ((next_dup != NULL) &&
1609                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1610                         in_sack = tcp_match_skb_to_sack(sk, skb,
1611                                                         next_dup->start_seq,
1612                                                         next_dup->end_seq);
1613                         if (in_sack > 0)
1614                                 dup_sack = 1;
1615                 }
1616
1617                 /* skb reference here is a bit tricky to get right, since
1618                  * shifting can eat and free both this skb and the next,
1619                  * so not even _safe variant of the loop is enough.
1620                  */
1621                 if (in_sack <= 0) {
1622                         tmp = tcp_shift_skb_data(sk, skb, start_seq,
1623                                                  end_seq, dup_sack,
1624                                                  fack_count, reord, flag);
1625                         if (tmp != NULL) {
1626                                 if (tmp != skb) {
1627                                         skb = tmp;
1628                                         continue;
1629                                 }
1630
1631                                 in_sack = 0;
1632                         } else {
1633                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1634                                                                 start_seq,
1635                                                                 end_seq);
1636                         }
1637                 }
1638
1639                 if (unlikely(in_sack < 0))
1640                         break;
1641
1642                 if (in_sack) {
1643                         *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1644                                                  *fack_count,
1645                                                  &(TCP_SKB_CB(skb)->sacked),
1646                                                  tcp_skb_pcount(skb));
1647
1648                         if (!before(TCP_SKB_CB(skb)->seq,
1649                                     tcp_highest_sack_seq(tp)))
1650                                 tcp_advance_highest_sack(sk, skb);
1651                 }
1652
1653                 *fack_count += tcp_skb_pcount(skb);
1654         }
1655         return skb;
1656 }
1657
1658 /* Avoid all extra work that is being done by sacktag while walking in
1659  * a normal way
1660  */
1661 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1662                                         u32 skip_to_seq, int *fack_count)
1663 {
1664         tcp_for_write_queue_from(skb, sk) {
1665                 if (skb == tcp_send_head(sk))
1666                         break;
1667
1668                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1669                         break;
1670
1671                 *fack_count += tcp_skb_pcount(skb);
1672         }
1673         return skb;
1674 }
1675
1676 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1677                                                 struct sock *sk,
1678                                                 struct tcp_sack_block *next_dup,
1679                                                 u32 skip_to_seq,
1680                                                 int *fack_count, int *reord,
1681                                                 int *flag)
1682 {
1683         if (next_dup == NULL)
1684                 return skb;
1685
1686         if (before(next_dup->start_seq, skip_to_seq)) {
1687                 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1688                 skb = tcp_sacktag_walk(skb, sk, NULL,
1689                                      next_dup->start_seq, next_dup->end_seq,
1690                                      1, fack_count, reord, flag);
1691         }
1692
1693         return skb;
1694 }
1695
1696 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1697 {
1698         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1699 }
1700
1701 static int
1702 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1703                         u32 prior_snd_una)
1704 {
1705         const struct inet_connection_sock *icsk = inet_csk(sk);
1706         struct tcp_sock *tp = tcp_sk(sk);
1707         unsigned char *ptr = (skb_transport_header(ack_skb) +
1708                               TCP_SKB_CB(ack_skb)->sacked);
1709         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1710         struct tcp_sack_block sp[TCP_NUM_SACKS];
1711         struct tcp_sack_block *cache;
1712         struct sk_buff *skb;
1713         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1714         int used_sacks;
1715         int reord = tp->packets_out;
1716         int flag = 0;
1717         int found_dup_sack = 0;
1718         int fack_count;
1719         int i, j;
1720         int first_sack_index;
1721
1722         if (!tp->sacked_out) {
1723                 if (WARN_ON(tp->fackets_out))
1724                         tp->fackets_out = 0;
1725                 tcp_highest_sack_reset(sk);
1726         }
1727
1728         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1729                                          num_sacks, prior_snd_una);
1730         if (found_dup_sack)
1731                 flag |= FLAG_DSACKING_ACK;
1732
1733         /* Eliminate too old ACKs, but take into
1734          * account more or less fresh ones, they can
1735          * contain valid SACK info.
1736          */
1737         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1738                 return 0;
1739
1740         if (!tp->packets_out)
1741                 goto out;
1742
1743         used_sacks = 0;
1744         first_sack_index = 0;
1745         for (i = 0; i < num_sacks; i++) {
1746                 int dup_sack = !i && found_dup_sack;
1747
1748                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1749                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1750
1751                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1752                                             sp[used_sacks].start_seq,
1753                                             sp[used_sacks].end_seq)) {
1754                         int mib_idx;
1755
1756                         if (dup_sack) {
1757                                 if (!tp->undo_marker)
1758                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1759                                 else
1760                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1761                         } else {
1762                                 /* Don't count olds caused by ACK reordering */
1763                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1764                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1765                                         continue;
1766                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1767                         }
1768
1769                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1770                         if (i == 0)
1771                                 first_sack_index = -1;
1772                         continue;
1773                 }
1774
1775                 /* Ignore very old stuff early */
1776                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1777                         continue;
1778
1779                 used_sacks++;
1780         }
1781
1782         /* order SACK blocks to allow in order walk of the retrans queue */
1783         for (i = used_sacks - 1; i > 0; i--) {
1784                 for (j = 0; j < i; j++) {
1785                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1786                                 struct tcp_sack_block tmp;
1787
1788                                 tmp = sp[j];
1789                                 sp[j] = sp[j + 1];
1790                                 sp[j + 1] = tmp;
1791
1792                                 /* Track where the first SACK block goes to */
1793                                 if (j == first_sack_index)
1794                                         first_sack_index = j + 1;
1795                         }
1796                 }
1797         }
1798
1799         skb = tcp_write_queue_head(sk);
1800         fack_count = 0;
1801         i = 0;
1802
1803         if (!tp->sacked_out) {
1804                 /* It's already past, so skip checking against it */
1805                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1806         } else {
1807                 cache = tp->recv_sack_cache;
1808                 /* Skip empty blocks in at head of the cache */
1809                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1810                        !cache->end_seq)
1811                         cache++;
1812         }
1813
1814         while (i < used_sacks) {
1815                 u32 start_seq = sp[i].start_seq;
1816                 u32 end_seq = sp[i].end_seq;
1817                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1818                 struct tcp_sack_block *next_dup = NULL;
1819
1820                 if (found_dup_sack && ((i + 1) == first_sack_index))
1821                         next_dup = &sp[i + 1];
1822
1823                 /* Event "B" in the comment above. */
1824                 if (after(end_seq, tp->high_seq))
1825                         flag |= FLAG_DATA_LOST;
1826
1827                 /* Skip too early cached blocks */
1828                 while (tcp_sack_cache_ok(tp, cache) &&
1829                        !before(start_seq, cache->end_seq))
1830                         cache++;
1831
1832                 /* Can skip some work by looking recv_sack_cache? */
1833                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1834                     after(end_seq, cache->start_seq)) {
1835
1836                         /* Head todo? */
1837                         if (before(start_seq, cache->start_seq)) {
1838                                 skb = tcp_sacktag_skip(skb, sk, start_seq,
1839                                                        &fack_count);
1840                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1841                                                        start_seq,
1842                                                        cache->start_seq,
1843                                                        dup_sack, &fack_count,
1844                                                        &reord, &flag);
1845                         }
1846
1847                         /* Rest of the block already fully processed? */
1848                         if (!after(end_seq, cache->end_seq))
1849                                 goto advance_sp;
1850
1851                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1852                                                        cache->end_seq,
1853                                                        &fack_count, &reord,
1854                                                        &flag);
1855
1856                         /* ...tail remains todo... */
1857                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1858                                 /* ...but better entrypoint exists! */
1859                                 skb = tcp_highest_sack(sk);
1860                                 if (skb == NULL)
1861                                         break;
1862                                 fack_count = tp->fackets_out;
1863                                 cache++;
1864                                 goto walk;
1865                         }
1866
1867                         skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1868                                                &fack_count);
1869                         /* Check overlap against next cached too (past this one already) */
1870                         cache++;
1871                         continue;
1872                 }
1873
1874                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1875                         skb = tcp_highest_sack(sk);
1876                         if (skb == NULL)
1877                                 break;
1878                         fack_count = tp->fackets_out;
1879                 }
1880                 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1881
1882 walk:
1883                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1884                                        dup_sack, &fack_count, &reord, &flag);
1885
1886 advance_sp:
1887                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1888                  * due to in-order walk
1889                  */
1890                 if (after(end_seq, tp->frto_highmark))
1891                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1892
1893                 i++;
1894         }
1895
1896         /* Clear the head of the cache sack blocks so we can skip it next time */
1897         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1898                 tp->recv_sack_cache[i].start_seq = 0;
1899                 tp->recv_sack_cache[i].end_seq = 0;
1900         }
1901         for (j = 0; j < used_sacks; j++)
1902                 tp->recv_sack_cache[i++] = sp[j];
1903
1904         tcp_mark_lost_retrans(sk);
1905
1906         tcp_verify_left_out(tp);
1907
1908         if ((reord < tp->fackets_out) &&
1909             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1910             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1911                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1912
1913 out:
1914
1915 #if FASTRETRANS_DEBUG > 0
1916         WARN_ON((int)tp->sacked_out < 0);
1917         WARN_ON((int)tp->lost_out < 0);
1918         WARN_ON((int)tp->retrans_out < 0);
1919         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1920 #endif
1921         return flag;
1922 }
1923
1924 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1925  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1926  */
1927 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1928 {
1929         u32 holes;
1930
1931         holes = max(tp->lost_out, 1U);
1932         holes = min(holes, tp->packets_out);
1933
1934         if ((tp->sacked_out + holes) > tp->packets_out) {
1935                 tp->sacked_out = tp->packets_out - holes;
1936                 return 1;
1937         }
1938         return 0;
1939 }
1940
1941 /* If we receive more dupacks than we expected counting segments
1942  * in assumption of absent reordering, interpret this as reordering.
1943  * The only another reason could be bug in receiver TCP.
1944  */
1945 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1946 {
1947         struct tcp_sock *tp = tcp_sk(sk);
1948         if (tcp_limit_reno_sacked(tp))
1949                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1950 }
1951
1952 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1953
1954 static void tcp_add_reno_sack(struct sock *sk)
1955 {
1956         struct tcp_sock *tp = tcp_sk(sk);
1957         tp->sacked_out++;
1958         tcp_check_reno_reordering(sk, 0);
1959         tcp_verify_left_out(tp);
1960 }
1961
1962 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1963
1964 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1965 {
1966         struct tcp_sock *tp = tcp_sk(sk);
1967
1968         if (acked > 0) {
1969                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1970                 if (acked - 1 >= tp->sacked_out)
1971                         tp->sacked_out = 0;
1972                 else
1973                         tp->sacked_out -= acked - 1;
1974         }
1975         tcp_check_reno_reordering(sk, acked);
1976         tcp_verify_left_out(tp);
1977 }
1978
1979 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1980 {
1981         tp->sacked_out = 0;
1982 }
1983
1984 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1985 {
1986         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1987 }
1988
1989 /* F-RTO can only be used if TCP has never retransmitted anything other than
1990  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1991  */
1992 int tcp_use_frto(struct sock *sk)
1993 {
1994         const struct tcp_sock *tp = tcp_sk(sk);
1995         const struct inet_connection_sock *icsk = inet_csk(sk);
1996         struct sk_buff *skb;
1997
1998         if (!sysctl_tcp_frto)
1999                 return 0;
2000
2001         /* MTU probe and F-RTO won't really play nicely along currently */
2002         if (icsk->icsk_mtup.probe_size)
2003                 return 0;
2004
2005         if (tcp_is_sackfrto(tp))
2006                 return 1;
2007
2008         /* Avoid expensive walking of rexmit queue if possible */
2009         if (tp->retrans_out > 1)
2010                 return 0;
2011
2012         skb = tcp_write_queue_head(sk);
2013         if (tcp_skb_is_last(sk, skb))
2014                 return 1;
2015         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2016         tcp_for_write_queue_from(skb, sk) {
2017                 if (skb == tcp_send_head(sk))
2018                         break;
2019                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2020                         return 0;
2021                 /* Short-circuit when first non-SACKed skb has been checked */
2022                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2023                         break;
2024         }
2025         return 1;
2026 }
2027
2028 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2029  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2030  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2031  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2032  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2033  * bits are handled if the Loss state is really to be entered (in
2034  * tcp_enter_frto_loss).
2035  *
2036  * Do like tcp_enter_loss() would; when RTO expires the second time it
2037  * does:
2038  *  "Reduce ssthresh if it has not yet been made inside this window."
2039  */
2040 void tcp_enter_frto(struct sock *sk)
2041 {
2042         const struct inet_connection_sock *icsk = inet_csk(sk);
2043         struct tcp_sock *tp = tcp_sk(sk);
2044         struct sk_buff *skb;
2045
2046         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2047             tp->snd_una == tp->high_seq ||
2048             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2049              !icsk->icsk_retransmits)) {
2050                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2051                 /* Our state is too optimistic in ssthresh() call because cwnd
2052                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2053                  * recovery has not yet completed. Pattern would be this: RTO,
2054                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2055                  * up here twice).
2056                  * RFC4138 should be more specific on what to do, even though
2057                  * RTO is quite unlikely to occur after the first Cumulative ACK
2058                  * due to back-off and complexity of triggering events ...
2059                  */
2060                 if (tp->frto_counter) {
2061                         u32 stored_cwnd;
2062                         stored_cwnd = tp->snd_cwnd;
2063                         tp->snd_cwnd = 2;
2064                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2065                         tp->snd_cwnd = stored_cwnd;
2066                 } else {
2067                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2068                 }
2069                 /* ... in theory, cong.control module could do "any tricks" in
2070                  * ssthresh(), which means that ca_state, lost bits and lost_out
2071                  * counter would have to be faked before the call occurs. We
2072                  * consider that too expensive, unlikely and hacky, so modules
2073                  * using these in ssthresh() must deal these incompatibility
2074                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2075                  */
2076                 tcp_ca_event(sk, CA_EVENT_FRTO);
2077         }
2078
2079         tp->undo_marker = tp->snd_una;
2080         tp->undo_retrans = 0;
2081
2082         skb = tcp_write_queue_head(sk);
2083         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2084                 tp->undo_marker = 0;
2085         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2086                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2087                 tp->retrans_out -= tcp_skb_pcount(skb);
2088         }
2089         tcp_verify_left_out(tp);
2090
2091         /* Too bad if TCP was application limited */
2092         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2093
2094         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2095          * The last condition is necessary at least in tp->frto_counter case.
2096          */
2097         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2098             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2099             after(tp->high_seq, tp->snd_una)) {
2100                 tp->frto_highmark = tp->high_seq;
2101         } else {
2102                 tp->frto_highmark = tp->snd_nxt;
2103         }
2104         tcp_set_ca_state(sk, TCP_CA_Disorder);
2105         tp->high_seq = tp->snd_nxt;
2106         tp->frto_counter = 1;
2107 }
2108
2109 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2110  * which indicates that we should follow the traditional RTO recovery,
2111  * i.e. mark everything lost and do go-back-N retransmission.
2112  */
2113 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2114 {
2115         struct tcp_sock *tp = tcp_sk(sk);
2116         struct sk_buff *skb;
2117
2118         tp->lost_out = 0;
2119         tp->retrans_out = 0;
2120         if (tcp_is_reno(tp))
2121                 tcp_reset_reno_sack(tp);
2122
2123         tcp_for_write_queue(skb, sk) {
2124                 if (skb == tcp_send_head(sk))
2125                         break;
2126
2127                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2128                 /*
2129                  * Count the retransmission made on RTO correctly (only when
2130                  * waiting for the first ACK and did not get it)...
2131                  */
2132                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2133                         /* For some reason this R-bit might get cleared? */
2134                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2135                                 tp->retrans_out += tcp_skb_pcount(skb);
2136                         /* ...enter this if branch just for the first segment */
2137                         flag |= FLAG_DATA_ACKED;
2138                 } else {
2139                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2140                                 tp->undo_marker = 0;
2141                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2142                 }
2143
2144                 /* Marking forward transmissions that were made after RTO lost
2145                  * can cause unnecessary retransmissions in some scenarios,
2146                  * SACK blocks will mitigate that in some but not in all cases.
2147                  * We used to not mark them but it was causing break-ups with
2148                  * receivers that do only in-order receival.
2149                  *
2150                  * TODO: we could detect presence of such receiver and select
2151                  * different behavior per flow.
2152                  */
2153                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2154                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2155                         tp->lost_out += tcp_skb_pcount(skb);
2156                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2157                 }
2158         }
2159         tcp_verify_left_out(tp);
2160
2161         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2162         tp->snd_cwnd_cnt = 0;
2163         tp->snd_cwnd_stamp = tcp_time_stamp;
2164         tp->frto_counter = 0;
2165         tp->bytes_acked = 0;
2166
2167         tp->reordering = min_t(unsigned int, tp->reordering,
2168                                sysctl_tcp_reordering);
2169         tcp_set_ca_state(sk, TCP_CA_Loss);
2170         tp->high_seq = tp->snd_nxt;
2171         TCP_ECN_queue_cwr(tp);
2172
2173         tcp_clear_all_retrans_hints(tp);
2174 }
2175
2176 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2177 {
2178         tp->retrans_out = 0;
2179         tp->lost_out = 0;
2180
2181         tp->undo_marker = 0;
2182         tp->undo_retrans = 0;
2183 }
2184
2185 void tcp_clear_retrans(struct tcp_sock *tp)
2186 {
2187         tcp_clear_retrans_partial(tp);
2188
2189         tp->fackets_out = 0;
2190         tp->sacked_out = 0;
2191 }
2192
2193 /* Enter Loss state. If "how" is not zero, forget all SACK information
2194  * and reset tags completely, otherwise preserve SACKs. If receiver
2195  * dropped its ofo queue, we will know this due to reneging detection.
2196  */
2197 void tcp_enter_loss(struct sock *sk, int how)
2198 {
2199         const struct inet_connection_sock *icsk = inet_csk(sk);
2200         struct tcp_sock *tp = tcp_sk(sk);
2201         struct sk_buff *skb;
2202
2203         /* Reduce ssthresh if it has not yet been made inside this window. */
2204         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2205             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2206                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2207                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2208                 tcp_ca_event(sk, CA_EVENT_LOSS);
2209         }
2210         tp->snd_cwnd       = 1;
2211         tp->snd_cwnd_cnt   = 0;
2212         tp->snd_cwnd_stamp = tcp_time_stamp;
2213
2214         tp->bytes_acked = 0;
2215         tcp_clear_retrans_partial(tp);
2216
2217         if (tcp_is_reno(tp))
2218                 tcp_reset_reno_sack(tp);
2219
2220         if (!how) {
2221                 /* Push undo marker, if it was plain RTO and nothing
2222                  * was retransmitted. */
2223                 tp->undo_marker = tp->snd_una;
2224         } else {
2225                 tp->sacked_out = 0;
2226                 tp->fackets_out = 0;
2227         }
2228         tcp_clear_all_retrans_hints(tp);
2229
2230         tcp_for_write_queue(skb, sk) {
2231                 if (skb == tcp_send_head(sk))
2232                         break;
2233
2234                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2235                         tp->undo_marker = 0;
2236                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2237                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2238                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2239                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2240                         tp->lost_out += tcp_skb_pcount(skb);
2241                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2242                 }
2243         }
2244         tcp_verify_left_out(tp);
2245
2246         tp->reordering = min_t(unsigned int, tp->reordering,
2247                                sysctl_tcp_reordering);
2248         tcp_set_ca_state(sk, TCP_CA_Loss);
2249         tp->high_seq = tp->snd_nxt;
2250         TCP_ECN_queue_cwr(tp);
2251         /* Abort F-RTO algorithm if one is in progress */
2252         tp->frto_counter = 0;
2253 }
2254
2255 /* If ACK arrived pointing to a remembered SACK, it means that our
2256  * remembered SACKs do not reflect real state of receiver i.e.
2257  * receiver _host_ is heavily congested (or buggy).
2258  *
2259  * Do processing similar to RTO timeout.
2260  */
2261 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2262 {
2263         if (flag & FLAG_SACK_RENEGING) {
2264                 struct inet_connection_sock *icsk = inet_csk(sk);
2265                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2266
2267                 tcp_enter_loss(sk, 1);
2268                 icsk->icsk_retransmits++;
2269                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2270                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2271                                           icsk->icsk_rto, TCP_RTO_MAX);
2272                 return 1;
2273         }
2274         return 0;
2275 }
2276
2277 static inline int tcp_fackets_out(struct tcp_sock *tp)
2278 {
2279         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2280 }
2281
2282 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2283  * counter when SACK is enabled (without SACK, sacked_out is used for
2284  * that purpose).
2285  *
2286  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2287  * segments up to the highest received SACK block so far and holes in
2288  * between them.
2289  *
2290  * With reordering, holes may still be in flight, so RFC3517 recovery
2291  * uses pure sacked_out (total number of SACKed segments) even though
2292  * it violates the RFC that uses duplicate ACKs, often these are equal
2293  * but when e.g. out-of-window ACKs or packet duplication occurs,
2294  * they differ. Since neither occurs due to loss, TCP should really
2295  * ignore them.
2296  */
2297 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2298 {
2299         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2300 }
2301
2302 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2303 {
2304         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2305 }
2306
2307 static inline int tcp_head_timedout(struct sock *sk)
2308 {
2309         struct tcp_sock *tp = tcp_sk(sk);
2310
2311         return tp->packets_out &&
2312                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2313 }
2314
2315 /* Linux NewReno/SACK/FACK/ECN state machine.
2316  * --------------------------------------
2317  *
2318  * "Open"       Normal state, no dubious events, fast path.
2319  * "Disorder"   In all the respects it is "Open",
2320  *              but requires a bit more attention. It is entered when
2321  *              we see some SACKs or dupacks. It is split of "Open"
2322  *              mainly to move some processing from fast path to slow one.
2323  * "CWR"        CWND was reduced due to some Congestion Notification event.
2324  *              It can be ECN, ICMP source quench, local device congestion.
2325  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2326  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2327  *
2328  * tcp_fastretrans_alert() is entered:
2329  * - each incoming ACK, if state is not "Open"
2330  * - when arrived ACK is unusual, namely:
2331  *      * SACK
2332  *      * Duplicate ACK.
2333  *      * ECN ECE.
2334  *
2335  * Counting packets in flight is pretty simple.
2336  *
2337  *      in_flight = packets_out - left_out + retrans_out
2338  *
2339  *      packets_out is SND.NXT-SND.UNA counted in packets.
2340  *
2341  *      retrans_out is number of retransmitted segments.
2342  *
2343  *      left_out is number of segments left network, but not ACKed yet.
2344  *
2345  *              left_out = sacked_out + lost_out
2346  *
2347  *     sacked_out: Packets, which arrived to receiver out of order
2348  *                 and hence not ACKed. With SACKs this number is simply
2349  *                 amount of SACKed data. Even without SACKs
2350  *                 it is easy to give pretty reliable estimate of this number,
2351  *                 counting duplicate ACKs.
2352  *
2353  *       lost_out: Packets lost by network. TCP has no explicit
2354  *                 "loss notification" feedback from network (for now).
2355  *                 It means that this number can be only _guessed_.
2356  *                 Actually, it is the heuristics to predict lossage that
2357  *                 distinguishes different algorithms.
2358  *
2359  *      F.e. after RTO, when all the queue is considered as lost,
2360  *      lost_out = packets_out and in_flight = retrans_out.
2361  *
2362  *              Essentially, we have now two algorithms counting
2363  *              lost packets.
2364  *
2365  *              FACK: It is the simplest heuristics. As soon as we decided
2366  *              that something is lost, we decide that _all_ not SACKed
2367  *              packets until the most forward SACK are lost. I.e.
2368  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2369  *              It is absolutely correct estimate, if network does not reorder
2370  *              packets. And it loses any connection to reality when reordering
2371  *              takes place. We use FACK by default until reordering
2372  *              is suspected on the path to this destination.
2373  *
2374  *              NewReno: when Recovery is entered, we assume that one segment
2375  *              is lost (classic Reno). While we are in Recovery and
2376  *              a partial ACK arrives, we assume that one more packet
2377  *              is lost (NewReno). This heuristics are the same in NewReno
2378  *              and SACK.
2379  *
2380  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2381  *  deflation etc. CWND is real congestion window, never inflated, changes
2382  *  only according to classic VJ rules.
2383  *
2384  * Really tricky (and requiring careful tuning) part of algorithm
2385  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2386  * The first determines the moment _when_ we should reduce CWND and,
2387  * hence, slow down forward transmission. In fact, it determines the moment
2388  * when we decide that hole is caused by loss, rather than by a reorder.
2389  *
2390  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2391  * holes, caused by lost packets.
2392  *
2393  * And the most logically complicated part of algorithm is undo
2394  * heuristics. We detect false retransmits due to both too early
2395  * fast retransmit (reordering) and underestimated RTO, analyzing
2396  * timestamps and D-SACKs. When we detect that some segments were
2397  * retransmitted by mistake and CWND reduction was wrong, we undo
2398  * window reduction and abort recovery phase. This logic is hidden
2399  * inside several functions named tcp_try_undo_<something>.
2400  */
2401
2402 /* This function decides, when we should leave Disordered state
2403  * and enter Recovery phase, reducing congestion window.
2404  *
2405  * Main question: may we further continue forward transmission
2406  * with the same cwnd?
2407  */
2408 static int tcp_time_to_recover(struct sock *sk)
2409 {
2410         struct tcp_sock *tp = tcp_sk(sk);
2411         __u32 packets_out;
2412
2413         /* Do not perform any recovery during F-RTO algorithm */
2414         if (tp->frto_counter)
2415                 return 0;
2416
2417         /* Trick#1: The loss is proven. */
2418         if (tp->lost_out)
2419                 return 1;
2420
2421         /* Not-A-Trick#2 : Classic rule... */
2422         if (tcp_dupack_heurestics(tp) > tp->reordering)
2423                 return 1;
2424
2425         /* Trick#3 : when we use RFC2988 timer restart, fast
2426          * retransmit can be triggered by timeout of queue head.
2427          */
2428         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2429                 return 1;
2430
2431         /* Trick#4: It is still not OK... But will it be useful to delay
2432          * recovery more?
2433          */
2434         packets_out = tp->packets_out;
2435         if (packets_out <= tp->reordering &&
2436             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2437             !tcp_may_send_now(sk)) {
2438                 /* We have nothing to send. This connection is limited
2439                  * either by receiver window or by application.
2440                  */
2441                 return 1;
2442         }
2443
2444         return 0;
2445 }
2446
2447 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2448  * is against sacked "cnt", otherwise it's against facked "cnt"
2449  */
2450 static void tcp_mark_head_lost(struct sock *sk, int packets)
2451 {
2452         struct tcp_sock *tp = tcp_sk(sk);
2453         struct sk_buff *skb;
2454         int cnt, oldcnt;
2455         int err;
2456         unsigned int mss;
2457
2458         WARN_ON(packets > tp->packets_out);
2459         if (tp->lost_skb_hint) {
2460                 skb = tp->lost_skb_hint;
2461                 cnt = tp->lost_cnt_hint;
2462         } else {
2463                 skb = tcp_write_queue_head(sk);
2464                 cnt = 0;
2465         }
2466
2467         tcp_for_write_queue_from(skb, sk) {
2468                 if (skb == tcp_send_head(sk))
2469                         break;
2470                 /* TODO: do this better */
2471                 /* this is not the most efficient way to do this... */
2472                 tp->lost_skb_hint = skb;
2473                 tp->lost_cnt_hint = cnt;
2474
2475                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2476                         break;
2477
2478                 oldcnt = cnt;
2479                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2480                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2481                         cnt += tcp_skb_pcount(skb);
2482
2483                 if (cnt > packets) {
2484                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2485                                 break;
2486
2487                         mss = skb_shinfo(skb)->gso_size;
2488                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2489                         if (err < 0)
2490                                 break;
2491                         cnt = packets;
2492                 }
2493
2494                 tcp_skb_mark_lost(tp, skb);
2495         }
2496         tcp_verify_left_out(tp);
2497 }
2498
2499 /* Account newly detected lost packet(s) */
2500
2501 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2502 {
2503         struct tcp_sock *tp = tcp_sk(sk);
2504
2505         if (tcp_is_reno(tp)) {
2506                 tcp_mark_head_lost(sk, 1);
2507         } else if (tcp_is_fack(tp)) {
2508                 int lost = tp->fackets_out - tp->reordering;
2509                 if (lost <= 0)
2510                         lost = 1;
2511                 tcp_mark_head_lost(sk, lost);
2512         } else {
2513                 int sacked_upto = tp->sacked_out - tp->reordering;
2514                 if (sacked_upto < fast_rexmit)
2515                         sacked_upto = fast_rexmit;
2516                 tcp_mark_head_lost(sk, sacked_upto);
2517         }
2518
2519         /* New heuristics: it is possible only after we switched
2520          * to restart timer each time when something is ACKed.
2521          * Hence, we can detect timed out packets during fast
2522          * retransmit without falling to slow start.
2523          */
2524         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2525                 struct sk_buff *skb;
2526
2527                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2528                         : tcp_write_queue_head(sk);
2529
2530                 tcp_for_write_queue_from(skb, sk) {
2531                         if (skb == tcp_send_head(sk))
2532                                 break;
2533                         if (!tcp_skb_timedout(sk, skb))
2534                                 break;
2535
2536                         tcp_skb_mark_lost(tp, skb);
2537                 }
2538
2539                 tp->scoreboard_skb_hint = skb;
2540
2541                 tcp_verify_left_out(tp);
2542         }
2543 }
2544
2545 /* CWND moderation, preventing bursts due to too big ACKs
2546  * in dubious situations.
2547  */
2548 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2549 {
2550         tp->snd_cwnd = min(tp->snd_cwnd,
2551                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2552         tp->snd_cwnd_stamp = tcp_time_stamp;
2553 }
2554
2555 /* Lower bound on congestion window is slow start threshold
2556  * unless congestion avoidance choice decides to overide it.
2557  */
2558 static inline u32 tcp_cwnd_min(const struct sock *sk)
2559 {
2560         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2561
2562         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2563 }
2564
2565 /* Decrease cwnd each second ack. */
2566 static void tcp_cwnd_down(struct sock *sk, int flag)
2567 {
2568         struct tcp_sock *tp = tcp_sk(sk);
2569         int decr = tp->snd_cwnd_cnt + 1;
2570
2571         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2572             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2573                 tp->snd_cwnd_cnt = decr & 1;
2574                 decr >>= 1;
2575
2576                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2577                         tp->snd_cwnd -= decr;
2578
2579                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2580                 tp->snd_cwnd_stamp = tcp_time_stamp;
2581         }
2582 }
2583
2584 /* Nothing was retransmitted or returned timestamp is less
2585  * than timestamp of the first retransmission.
2586  */
2587 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2588 {
2589         return !tp->retrans_stamp ||
2590                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2591                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2592 }
2593
2594 /* Undo procedures. */
2595
2596 #if FASTRETRANS_DEBUG > 1
2597 static void DBGUNDO(struct sock *sk, const char *msg)
2598 {
2599         struct tcp_sock *tp = tcp_sk(sk);
2600         struct inet_sock *inet = inet_sk(sk);
2601
2602         if (sk->sk_family == AF_INET) {
2603                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2604                        msg,
2605                        &inet->daddr, ntohs(inet->dport),
2606                        tp->snd_cwnd, tcp_left_out(tp),
2607                        tp->snd_ssthresh, tp->prior_ssthresh,
2608                        tp->packets_out);
2609         }
2610 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2611         else if (sk->sk_family == AF_INET6) {
2612                 struct ipv6_pinfo *np = inet6_sk(sk);
2613                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2614                        msg,
2615                        &np->daddr, ntohs(inet->dport),
2616                        tp->snd_cwnd, tcp_left_out(tp),
2617                        tp->snd_ssthresh, tp->prior_ssthresh,
2618                        tp->packets_out);
2619         }
2620 #endif
2621 }
2622 #else
2623 #define DBGUNDO(x...) do { } while (0)
2624 #endif
2625
2626 static void tcp_undo_cwr(struct sock *sk, const int undo)
2627 {
2628         struct tcp_sock *tp = tcp_sk(sk);
2629
2630         if (tp->prior_ssthresh) {
2631                 const struct inet_connection_sock *icsk = inet_csk(sk);
2632
2633                 if (icsk->icsk_ca_ops->undo_cwnd)
2634                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2635                 else
2636                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2637
2638                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2639                         tp->snd_ssthresh = tp->prior_ssthresh;
2640                         TCP_ECN_withdraw_cwr(tp);
2641                 }
2642         } else {
2643                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2644         }
2645         tcp_moderate_cwnd(tp);
2646         tp->snd_cwnd_stamp = tcp_time_stamp;
2647 }
2648
2649 static inline int tcp_may_undo(struct tcp_sock *tp)
2650 {
2651         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2652 }
2653
2654 /* People celebrate: "We love our President!" */
2655 static int tcp_try_undo_recovery(struct sock *sk)
2656 {
2657         struct tcp_sock *tp = tcp_sk(sk);
2658
2659         if (tcp_may_undo(tp)) {
2660                 int mib_idx;
2661
2662                 /* Happy end! We did not retransmit anything
2663                  * or our original transmission succeeded.
2664                  */
2665                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2666                 tcp_undo_cwr(sk, 1);
2667                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2668                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2669                 else
2670                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2671
2672                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2673                 tp->undo_marker = 0;
2674         }
2675         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2676                 /* Hold old state until something *above* high_seq
2677                  * is ACKed. For Reno it is MUST to prevent false
2678                  * fast retransmits (RFC2582). SACK TCP is safe. */
2679                 tcp_moderate_cwnd(tp);
2680                 return 1;
2681         }
2682         tcp_set_ca_state(sk, TCP_CA_Open);
2683         return 0;
2684 }
2685
2686 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2687 static void tcp_try_undo_dsack(struct sock *sk)
2688 {
2689         struct tcp_sock *tp = tcp_sk(sk);
2690
2691         if (tp->undo_marker && !tp->undo_retrans) {
2692                 DBGUNDO(sk, "D-SACK");
2693                 tcp_undo_cwr(sk, 1);
2694                 tp->undo_marker = 0;
2695                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2696         }
2697 }
2698
2699 /* Undo during fast recovery after partial ACK. */
2700
2701 static int tcp_try_undo_partial(struct sock *sk, int acked)
2702 {
2703         struct tcp_sock *tp = tcp_sk(sk);
2704         /* Partial ACK arrived. Force Hoe's retransmit. */
2705         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2706
2707         if (tcp_may_undo(tp)) {
2708                 /* Plain luck! Hole if filled with delayed
2709                  * packet, rather than with a retransmit.
2710                  */
2711                 if (tp->retrans_out == 0)
2712                         tp->retrans_stamp = 0;
2713
2714                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2715
2716                 DBGUNDO(sk, "Hoe");
2717                 tcp_undo_cwr(sk, 0);
2718                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2719
2720                 /* So... Do not make Hoe's retransmit yet.
2721                  * If the first packet was delayed, the rest
2722                  * ones are most probably delayed as well.
2723                  */
2724                 failed = 0;
2725         }
2726         return failed;
2727 }
2728
2729 /* Undo during loss recovery after partial ACK. */
2730 static int tcp_try_undo_loss(struct sock *sk)
2731 {
2732         struct tcp_sock *tp = tcp_sk(sk);
2733
2734         if (tcp_may_undo(tp)) {
2735                 struct sk_buff *skb;
2736                 tcp_for_write_queue(skb, sk) {
2737                         if (skb == tcp_send_head(sk))
2738                                 break;
2739                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2740                 }
2741
2742                 tcp_clear_all_retrans_hints(tp);
2743
2744                 DBGUNDO(sk, "partial loss");
2745                 tp->lost_out = 0;
2746                 tcp_undo_cwr(sk, 1);
2747                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2748                 inet_csk(sk)->icsk_retransmits = 0;
2749                 tp->undo_marker = 0;
2750                 if (tcp_is_sack(tp))
2751                         tcp_set_ca_state(sk, TCP_CA_Open);
2752                 return 1;
2753         }
2754         return 0;
2755 }
2756
2757 static inline void tcp_complete_cwr(struct sock *sk)
2758 {
2759         struct tcp_sock *tp = tcp_sk(sk);
2760         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2761         tp->snd_cwnd_stamp = tcp_time_stamp;
2762         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2763 }
2764
2765 static void tcp_try_keep_open(struct sock *sk)
2766 {
2767         struct tcp_sock *tp = tcp_sk(sk);
2768         int state = TCP_CA_Open;
2769
2770         if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2771                 state = TCP_CA_Disorder;
2772
2773         if (inet_csk(sk)->icsk_ca_state != state) {
2774                 tcp_set_ca_state(sk, state);
2775                 tp->high_seq = tp->snd_nxt;
2776         }
2777 }
2778
2779 static void tcp_try_to_open(struct sock *sk, int flag)
2780 {
2781         struct tcp_sock *tp = tcp_sk(sk);
2782
2783         tcp_verify_left_out(tp);
2784
2785         if (!tp->frto_counter && tp->retrans_out == 0)
2786                 tp->retrans_stamp = 0;
2787
2788         if (flag & FLAG_ECE)
2789                 tcp_enter_cwr(sk, 1);
2790
2791         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2792                 tcp_try_keep_open(sk);
2793                 tcp_moderate_cwnd(tp);
2794         } else {
2795                 tcp_cwnd_down(sk, flag);
2796         }
2797 }
2798
2799 static void tcp_mtup_probe_failed(struct sock *sk)
2800 {
2801         struct inet_connection_sock *icsk = inet_csk(sk);
2802
2803         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2804         icsk->icsk_mtup.probe_size = 0;
2805 }
2806
2807 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2808 {
2809         struct tcp_sock *tp = tcp_sk(sk);
2810         struct inet_connection_sock *icsk = inet_csk(sk);
2811
2812         /* FIXME: breaks with very large cwnd */
2813         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2814         tp->snd_cwnd = tp->snd_cwnd *
2815                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2816                        icsk->icsk_mtup.probe_size;
2817         tp->snd_cwnd_cnt = 0;
2818         tp->snd_cwnd_stamp = tcp_time_stamp;
2819         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2820
2821         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2822         icsk->icsk_mtup.probe_size = 0;
2823         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2824 }
2825
2826 /* Do a simple retransmit without using the backoff mechanisms in
2827  * tcp_timer. This is used for path mtu discovery.
2828  * The socket is already locked here.
2829  */
2830 void tcp_simple_retransmit(struct sock *sk)
2831 {
2832         const struct inet_connection_sock *icsk = inet_csk(sk);
2833         struct tcp_sock *tp = tcp_sk(sk);
2834         struct sk_buff *skb;
2835         unsigned int mss = tcp_current_mss(sk, 0);
2836         u32 prior_lost = tp->lost_out;
2837
2838         tcp_for_write_queue(skb, sk) {
2839                 if (skb == tcp_send_head(sk))
2840                         break;
2841                 if (skb->len > mss &&
2842                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2843                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2844                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2845                                 tp->retrans_out -= tcp_skb_pcount(skb);
2846                         }
2847                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2848                 }
2849         }
2850
2851         tcp_clear_retrans_hints_partial(tp);
2852
2853         if (prior_lost == tp->lost_out)
2854                 return;
2855
2856         if (tcp_is_reno(tp))
2857                 tcp_limit_reno_sacked(tp);
2858
2859         tcp_verify_left_out(tp);
2860
2861         /* Don't muck with the congestion window here.
2862          * Reason is that we do not increase amount of _data_
2863          * in network, but units changed and effective
2864          * cwnd/ssthresh really reduced now.
2865          */
2866         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2867                 tp->high_seq = tp->snd_nxt;
2868                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2869                 tp->prior_ssthresh = 0;
2870                 tp->undo_marker = 0;
2871                 tcp_set_ca_state(sk, TCP_CA_Loss);
2872         }
2873         tcp_xmit_retransmit_queue(sk);
2874 }
2875
2876 /* Process an event, which can update packets-in-flight not trivially.
2877  * Main goal of this function is to calculate new estimate for left_out,
2878  * taking into account both packets sitting in receiver's buffer and
2879  * packets lost by network.
2880  *
2881  * Besides that it does CWND reduction, when packet loss is detected
2882  * and changes state of machine.
2883  *
2884  * It does _not_ decide what to send, it is made in function
2885  * tcp_xmit_retransmit_queue().
2886  */
2887 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2888 {
2889         struct inet_connection_sock *icsk = inet_csk(sk);
2890         struct tcp_sock *tp = tcp_sk(sk);
2891         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2892         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2893                                     (tcp_fackets_out(tp) > tp->reordering));
2894         int fast_rexmit = 0, mib_idx;
2895
2896         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2897                 tp->sacked_out = 0;
2898         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2899                 tp->fackets_out = 0;
2900
2901         /* Now state machine starts.
2902          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2903         if (flag & FLAG_ECE)
2904                 tp->prior_ssthresh = 0;
2905
2906         /* B. In all the states check for reneging SACKs. */
2907         if (tcp_check_sack_reneging(sk, flag))
2908                 return;
2909
2910         /* C. Process data loss notification, provided it is valid. */
2911         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2912             before(tp->snd_una, tp->high_seq) &&
2913             icsk->icsk_ca_state != TCP_CA_Open &&
2914             tp->fackets_out > tp->reordering) {
2915                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2916                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2917         }
2918
2919         /* D. Check consistency of the current state. */
2920         tcp_verify_left_out(tp);
2921
2922         /* E. Check state exit conditions. State can be terminated
2923          *    when high_seq is ACKed. */
2924         if (icsk->icsk_ca_state == TCP_CA_Open) {
2925                 WARN_ON(tp->retrans_out != 0);
2926                 tp->retrans_stamp = 0;
2927         } else if (!before(tp->snd_una, tp->high_seq)) {
2928                 switch (icsk->icsk_ca_state) {
2929                 case TCP_CA_Loss:
2930                         icsk->icsk_retransmits = 0;
2931                         if (tcp_try_undo_recovery(sk))
2932                                 return;
2933                         break;
2934
2935                 case TCP_CA_CWR:
2936                         /* CWR is to be held something *above* high_seq
2937                          * is ACKed for CWR bit to reach receiver. */
2938                         if (tp->snd_una != tp->high_seq) {
2939                                 tcp_complete_cwr(sk);
2940                                 tcp_set_ca_state(sk, TCP_CA_Open);
2941                         }
2942                         break;
2943
2944                 case TCP_CA_Disorder:
2945                         tcp_try_undo_dsack(sk);
2946                         if (!tp->undo_marker ||
2947                             /* For SACK case do not Open to allow to undo
2948                              * catching for all duplicate ACKs. */
2949                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2950                                 tp->undo_marker = 0;
2951                                 tcp_set_ca_state(sk, TCP_CA_Open);
2952                         }
2953                         break;
2954
2955                 case TCP_CA_Recovery:
2956                         if (tcp_is_reno(tp))
2957                                 tcp_reset_reno_sack(tp);
2958                         if (tcp_try_undo_recovery(sk))
2959                                 return;
2960                         tcp_complete_cwr(sk);
2961                         break;
2962                 }
2963         }
2964
2965         /* F. Process state. */
2966         switch (icsk->icsk_ca_state) {
2967         case TCP_CA_Recovery:
2968                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2969                         if (tcp_is_reno(tp) && is_dupack)
2970                                 tcp_add_reno_sack(sk);
2971                 } else
2972                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2973                 break;
2974         case TCP_CA_Loss:
2975                 if (flag & FLAG_DATA_ACKED)
2976                         icsk->icsk_retransmits = 0;
2977                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2978                         tcp_reset_reno_sack(tp);
2979                 if (!tcp_try_undo_loss(sk)) {
2980                         tcp_moderate_cwnd(tp);
2981                         tcp_xmit_retransmit_queue(sk);
2982                         return;
2983                 }
2984                 if (icsk->icsk_ca_state != TCP_CA_Open)
2985                         return;
2986                 /* Loss is undone; fall through to processing in Open state. */
2987         default:
2988                 if (tcp_is_reno(tp)) {
2989                         if (flag & FLAG_SND_UNA_ADVANCED)
2990                                 tcp_reset_reno_sack(tp);
2991                         if (is_dupack)
2992                                 tcp_add_reno_sack(sk);
2993                 }
2994
2995                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2996                         tcp_try_undo_dsack(sk);
2997
2998                 if (!tcp_time_to_recover(sk)) {
2999                         tcp_try_to_open(sk, flag);
3000                         return;
3001                 }
3002
3003                 /* MTU probe failure: don't reduce cwnd */
3004                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3005                     icsk->icsk_mtup.probe_size &&
3006                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3007                         tcp_mtup_probe_failed(sk);
3008                         /* Restores the reduction we did in tcp_mtup_probe() */
3009                         tp->snd_cwnd++;
3010                         tcp_simple_retransmit(sk);
3011                         return;
3012                 }
3013
3014                 /* Otherwise enter Recovery state */
3015
3016                 if (tcp_is_reno(tp))
3017                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3018                 else
3019                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3020
3021                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3022
3023                 tp->high_seq = tp->snd_nxt;
3024                 tp->prior_ssthresh = 0;
3025                 tp->undo_marker = tp->snd_una;
3026                 tp->undo_retrans = tp->retrans_out;
3027
3028                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3029                         if (!(flag & FLAG_ECE))
3030                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3031                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3032                         TCP_ECN_queue_cwr(tp);
3033                 }
3034
3035                 tp->bytes_acked = 0;
3036                 tp->snd_cwnd_cnt = 0;
3037                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3038                 fast_rexmit = 1;
3039         }
3040
3041         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3042                 tcp_update_scoreboard(sk, fast_rexmit);
3043         tcp_cwnd_down(sk, flag);
3044         tcp_xmit_retransmit_queue(sk);
3045 }
3046
3047 /* Read draft-ietf-tcplw-high-performance before mucking
3048  * with this code. (Supersedes RFC1323)
3049  */
3050 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3051 {
3052         /* RTTM Rule: A TSecr value received in a segment is used to
3053          * update the averaged RTT measurement only if the segment
3054          * acknowledges some new data, i.e., only if it advances the
3055          * left edge of the send window.
3056          *
3057          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3058          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3059          *
3060          * Changed: reset backoff as soon as we see the first valid sample.
3061          * If we do not, we get strongly overestimated rto. With timestamps
3062          * samples are accepted even from very old segments: f.e., when rtt=1
3063          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3064          * answer arrives rto becomes 120 seconds! If at least one of segments
3065          * in window is lost... Voila.                          --ANK (010210)
3066          */
3067         struct tcp_sock *tp = tcp_sk(sk);
3068         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
3069         tcp_rtt_estimator(sk, seq_rtt);
3070         tcp_set_rto(sk);
3071         inet_csk(sk)->icsk_backoff = 0;
3072         tcp_bound_rto(sk);
3073 }
3074
3075 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3076 {
3077         /* We don't have a timestamp. Can only use
3078          * packets that are not retransmitted to determine
3079          * rtt estimates. Also, we must not reset the
3080          * backoff for rto until we get a non-retransmitted
3081          * packet. This allows us to deal with a situation
3082          * where the network delay has increased suddenly.
3083          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3084          */
3085
3086         if (flag & FLAG_RETRANS_DATA_ACKED)
3087                 return;
3088
3089         tcp_rtt_estimator(sk, seq_rtt);
3090         tcp_set_rto(sk);
3091         inet_csk(sk)->icsk_backoff = 0;
3092         tcp_bound_rto(sk);
3093 }
3094
3095 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3096                                       const s32 seq_rtt)
3097 {
3098         const struct tcp_sock *tp = tcp_sk(sk);
3099         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3100         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3101                 tcp_ack_saw_tstamp(sk, flag);
3102         else if (seq_rtt >= 0)
3103                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3104 }
3105
3106 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3107 {
3108         const struct inet_connection_sock *icsk = inet_csk(sk);
3109         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3110         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3111 }
3112
3113 /* Restart timer after forward progress on connection.
3114  * RFC2988 recommends to restart timer to now+rto.
3115  */
3116 static void tcp_rearm_rto(struct sock *sk)
3117 {
3118         struct tcp_sock *tp = tcp_sk(sk);
3119
3120         if (!tp->packets_out) {
3121                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3122         } else {
3123                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3124                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3125         }
3126 }
3127
3128 /* If we get here, the whole TSO packet has not been acked. */
3129 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3130 {
3131         struct tcp_sock *tp = tcp_sk(sk);
3132         u32 packets_acked;
3133
3134         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3135
3136         packets_acked = tcp_skb_pcount(skb);
3137         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3138                 return 0;
3139         packets_acked -= tcp_skb_pcount(skb);
3140
3141         if (packets_acked) {
3142                 BUG_ON(tcp_skb_pcount(skb) == 0);
3143                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3144         }
3145
3146         return packets_acked;
3147 }
3148
3149 /* Remove acknowledged frames from the retransmission queue. If our packet
3150  * is before the ack sequence we can discard it as it's confirmed to have
3151  * arrived at the other end.
3152  */
3153 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3154                                u32 prior_snd_una)
3155 {
3156         struct tcp_sock *tp = tcp_sk(sk);
3157         const struct inet_connection_sock *icsk = inet_csk(sk);
3158         struct sk_buff *skb;
3159         u32 now = tcp_time_stamp;
3160         int fully_acked = 1;
3161         int flag = 0;
3162         u32 pkts_acked = 0;
3163         u32 reord = tp->packets_out;
3164         u32 prior_sacked = tp->sacked_out;
3165         s32 seq_rtt = -1;
3166         s32 ca_seq_rtt = -1;
3167         ktime_t last_ackt = net_invalid_timestamp();
3168
3169         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3170                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3171                 u32 end_seq;
3172                 u32 acked_pcount;
3173                 u8 sacked = scb->sacked;
3174
3175                 /* Determine how many packets and what bytes were acked, tso and else */
3176                 if (after(scb->end_seq, tp->snd_una)) {
3177                         if (tcp_skb_pcount(skb) == 1 ||
3178                             !after(tp->snd_una, scb->seq))
3179                                 break;
3180
3181                         acked_pcount = tcp_tso_acked(sk, skb);
3182                         if (!acked_pcount)
3183                                 break;
3184
3185                         fully_acked = 0;
3186                         end_seq = tp->snd_una;
3187                 } else {
3188                         acked_pcount = tcp_skb_pcount(skb);
3189                         end_seq = scb->end_seq;
3190                 }
3191
3192                 /* MTU probing checks */
3193                 if (fully_acked && icsk->icsk_mtup.probe_size &&
3194                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
3195                         tcp_mtup_probe_success(sk, skb);
3196                 }
3197
3198                 if (sacked & TCPCB_RETRANS) {
3199                         if (sacked & TCPCB_SACKED_RETRANS)
3200                                 tp->retrans_out -= acked_pcount;
3201                         flag |= FLAG_RETRANS_DATA_ACKED;
3202                         ca_seq_rtt = -1;
3203                         seq_rtt = -1;
3204                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3205                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3206                 } else {
3207                         ca_seq_rtt = now - scb->when;
3208                         last_ackt = skb->tstamp;
3209                         if (seq_rtt < 0) {
3210                                 seq_rtt = ca_seq_rtt;
3211                         }
3212                         if (!(sacked & TCPCB_SACKED_ACKED))
3213                                 reord = min(pkts_acked, reord);
3214                 }
3215
3216                 if (sacked & TCPCB_SACKED_ACKED)
3217                         tp->sacked_out -= acked_pcount;
3218                 if (sacked & TCPCB_LOST)
3219                         tp->lost_out -= acked_pcount;
3220
3221                 tp->packets_out -= acked_pcount;
3222                 pkts_acked += acked_pcount;
3223
3224                 /* Initial outgoing SYN's get put onto the write_queue
3225                  * just like anything else we transmit.  It is not
3226                  * true data, and if we misinform our callers that
3227                  * this ACK acks real data, we will erroneously exit
3228                  * connection startup slow start one packet too
3229                  * quickly.  This is severely frowned upon behavior.
3230                  */
3231                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
3232                         flag |= FLAG_DATA_ACKED;
3233                 } else {
3234                         flag |= FLAG_SYN_ACKED;
3235                         tp->retrans_stamp = 0;
3236                 }
3237
3238                 if (!fully_acked)
3239                         break;
3240
3241                 tcp_unlink_write_queue(skb, sk);
3242                 sk_wmem_free_skb(sk, skb);
3243                 tp->scoreboard_skb_hint = NULL;
3244                 if (skb == tp->retransmit_skb_hint)
3245                         tp->retransmit_skb_hint = NULL;
3246                 if (skb == tp->lost_skb_hint)
3247                         tp->lost_skb_hint = NULL;
3248         }
3249
3250         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3251                 tp->snd_up = tp->snd_una;
3252
3253         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3254                 flag |= FLAG_SACK_RENEGING;
3255
3256         if (flag & FLAG_ACKED) {
3257                 const struct tcp_congestion_ops *ca_ops
3258                         = inet_csk(sk)->icsk_ca_ops;
3259
3260                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3261                 tcp_rearm_rto(sk);
3262
3263                 if (tcp_is_reno(tp)) {
3264                         tcp_remove_reno_sacks(sk, pkts_acked);
3265                 } else {
3266                         /* Non-retransmitted hole got filled? That's reordering */
3267                         if (reord < prior_fackets)
3268                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3269
3270                         /* No need to care for underflows here because
3271                          * the lost_skb_hint gets NULLed if we're past it
3272                          * (or something non-trivial happened)
3273                          */
3274                         if (tcp_is_fack(tp))
3275                                 tp->lost_cnt_hint -= pkts_acked;
3276                         else
3277                                 tp->lost_cnt_hint -= prior_sacked - tp->sacked_out;
3278                 }
3279
3280                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3281
3282                 if (ca_ops->pkts_acked) {
3283                         s32 rtt_us = -1;
3284
3285                         /* Is the ACK triggering packet unambiguous? */
3286                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3287                                 /* High resolution needed and available? */
3288                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3289                                     !ktime_equal(last_ackt,
3290                                                  net_invalid_timestamp()))
3291                                         rtt_us = ktime_us_delta(ktime_get_real(),
3292                                                                 last_ackt);
3293                                 else if (ca_seq_rtt > 0)
3294                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3295                         }
3296
3297                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3298                 }
3299         }
3300
3301 #if FASTRETRANS_DEBUG > 0
3302         WARN_ON((int)tp->sacked_out < 0);
3303         WARN_ON((int)tp->lost_out < 0);
3304         WARN_ON((int)tp->retrans_out < 0);
3305         if (!tp->packets_out && tcp_is_sack(tp)) {
3306                 icsk = inet_csk(sk);
3307                 if (tp->lost_out) {
3308                         printk(KERN_DEBUG "Leak l=%u %d\n",
3309                                tp->lost_out, icsk->icsk_ca_state);
3310                         tp->lost_out = 0;
3311                 }
3312                 if (tp->sacked_out) {
3313                         printk(KERN_DEBUG "Leak s=%u %d\n",
3314                                tp->sacked_out, icsk->icsk_ca_state);
3315                         tp->sacked_out = 0;
3316                 }
3317                 if (tp->retrans_out) {
3318                         printk(KERN_DEBUG "Leak r=%u %d\n",
3319                                tp->retrans_out, icsk->icsk_ca_state);
3320                         tp->retrans_out = 0;
3321                 }
3322         }
3323 #endif
3324         return flag;
3325 }
3326
3327 static void tcp_ack_probe(struct sock *sk)
3328 {
3329         const struct tcp_sock *tp = tcp_sk(sk);
3330         struct inet_connection_sock *icsk = inet_csk(sk);
3331
3332         /* Was it a usable window open? */
3333
3334         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3335                 icsk->icsk_backoff = 0;
3336                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3337                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3338                  * This function is not for random using!
3339                  */
3340         } else {
3341                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3342                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3343                                           TCP_RTO_MAX);
3344         }
3345 }
3346
3347 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3348 {
3349         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3350                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3351 }
3352
3353 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3354 {
3355         const struct tcp_sock *tp = tcp_sk(sk);
3356         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3357                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3358 }
3359
3360 /* Check that window update is acceptable.
3361  * The function assumes that snd_una<=ack<=snd_next.
3362  */
3363 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3364                                         const u32 ack, const u32 ack_seq,
3365                                         const u32 nwin)
3366 {
3367         return (after(ack, tp->snd_una) ||
3368                 after(ack_seq, tp->snd_wl1) ||
3369                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3370 }
3371
3372 /* Update our send window.
3373  *
3374  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3375  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3376  */
3377 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3378                                  u32 ack_seq)
3379 {
3380         struct tcp_sock *tp = tcp_sk(sk);
3381         int flag = 0;
3382         u32 nwin = ntohs(tcp_hdr(skb)->window);
3383
3384         if (likely(!tcp_hdr(skb)->syn))
3385                 nwin <<= tp->rx_opt.snd_wscale;
3386
3387         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3388                 flag |= FLAG_WIN_UPDATE;
3389                 tcp_update_wl(tp, ack, ack_seq);
3390
3391                 if (tp->snd_wnd != nwin) {
3392                         tp->snd_wnd = nwin;
3393
3394                         /* Note, it is the only place, where
3395                          * fast path is recovered for sending TCP.
3396                          */
3397                         tp->pred_flags = 0;
3398                         tcp_fast_path_check(sk);
3399
3400                         if (nwin > tp->max_window) {
3401                                 tp->max_window = nwin;
3402                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3403                         }
3404                 }
3405         }
3406
3407         tp->snd_una = ack;
3408
3409         return flag;
3410 }
3411
3412 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3413  * continue in congestion avoidance.
3414  */
3415 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3416 {
3417         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3418         tp->snd_cwnd_cnt = 0;
3419         tp->bytes_acked = 0;
3420         TCP_ECN_queue_cwr(tp);
3421         tcp_moderate_cwnd(tp);
3422 }
3423
3424 /* A conservative spurious RTO response algorithm: reduce cwnd using
3425  * rate halving and continue in congestion avoidance.
3426  */
3427 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3428 {
3429         tcp_enter_cwr(sk, 0);
3430 }
3431
3432 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3433 {
3434         if (flag & FLAG_ECE)
3435                 tcp_ratehalving_spur_to_response(sk);
3436         else
3437                 tcp_undo_cwr(sk, 1);
3438 }
3439
3440 /* F-RTO spurious RTO detection algorithm (RFC4138)
3441  *
3442  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3443  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3444  * window (but not to or beyond highest sequence sent before RTO):
3445  *   On First ACK,  send two new segments out.
3446  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3447  *                  algorithm is not part of the F-RTO detection algorithm
3448  *                  given in RFC4138 but can be selected separately).
3449  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3450  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3451  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3452  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3453  *
3454  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3455  * original window even after we transmit two new data segments.
3456  *
3457  * SACK version:
3458  *   on first step, wait until first cumulative ACK arrives, then move to
3459  *   the second step. In second step, the next ACK decides.
3460  *
3461  * F-RTO is implemented (mainly) in four functions:
3462  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3463  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3464  *     called when tcp_use_frto() showed green light
3465  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3466  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3467  *     to prove that the RTO is indeed spurious. It transfers the control
3468  *     from F-RTO to the conventional RTO recovery
3469  */
3470 static int tcp_process_frto(struct sock *sk, int flag)
3471 {
3472         struct tcp_sock *tp = tcp_sk(sk);
3473
3474         tcp_verify_left_out(tp);
3475
3476         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3477         if (flag & FLAG_DATA_ACKED)
3478                 inet_csk(sk)->icsk_retransmits = 0;
3479
3480         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3481             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3482                 tp->undo_marker = 0;
3483
3484         if (!before(tp->snd_una, tp->frto_highmark)) {
3485                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3486                 return 1;
3487         }
3488
3489         if (!tcp_is_sackfrto(tp)) {
3490                 /* RFC4138 shortcoming in step 2; should also have case c):
3491                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3492                  * data, winupdate
3493                  */
3494                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3495                         return 1;
3496
3497                 if (!(flag & FLAG_DATA_ACKED)) {
3498                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3499                                             flag);
3500                         return 1;
3501                 }
3502         } else {
3503                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3504                         /* Prevent sending of new data. */
3505                         tp->snd_cwnd = min(tp->snd_cwnd,
3506                                            tcp_packets_in_flight(tp));
3507                         return 1;
3508                 }
3509
3510                 if ((tp->frto_counter >= 2) &&
3511                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3512                      ((flag & FLAG_DATA_SACKED) &&
3513                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3514                         /* RFC4138 shortcoming (see comment above) */
3515                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3516                             (flag & FLAG_NOT_DUP))
3517                                 return 1;
3518
3519                         tcp_enter_frto_loss(sk, 3, flag);
3520                         return 1;
3521                 }
3522         }
3523
3524         if (tp->frto_counter == 1) {
3525                 /* tcp_may_send_now needs to see updated state */
3526                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3527                 tp->frto_counter = 2;
3528
3529                 if (!tcp_may_send_now(sk))
3530                         tcp_enter_frto_loss(sk, 2, flag);
3531
3532                 return 1;
3533         } else {
3534                 switch (sysctl_tcp_frto_response) {
3535                 case 2:
3536                         tcp_undo_spur_to_response(sk, flag);
3537                         break;
3538                 case 1:
3539                         tcp_conservative_spur_to_response(tp);
3540                         break;
3541                 default:
3542                         tcp_ratehalving_spur_to_response(sk);
3543                         break;
3544                 }
3545                 tp->frto_counter = 0;
3546                 tp->undo_marker = 0;
3547                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3548         }
3549         return 0;
3550 }
3551
3552 /* This routine deals with incoming acks, but not outgoing ones. */
3553 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3554 {
3555         struct inet_connection_sock *icsk = inet_csk(sk);
3556         struct tcp_sock *tp = tcp_sk(sk);
3557         u32 prior_snd_una = tp->snd_una;
3558         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3559         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3560         u32 prior_in_flight;
3561         u32 prior_fackets;
3562         int prior_packets;
3563         int frto_cwnd = 0;
3564
3565         /* If the ack is newer than sent or older than previous acks
3566          * then we can probably ignore it.
3567          */
3568         if (after(ack, tp->snd_nxt))
3569                 goto uninteresting_ack;
3570
3571         if (before(ack, prior_snd_una))
3572                 goto old_ack;
3573
3574         if (after(ack, prior_snd_una))
3575                 flag |= FLAG_SND_UNA_ADVANCED;
3576
3577         if (sysctl_tcp_abc) {
3578                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3579                         tp->bytes_acked += ack - prior_snd_una;
3580                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3581                         /* we assume just one segment left network */
3582                         tp->bytes_acked += min(ack - prior_snd_una,
3583                                                tp->mss_cache);
3584         }
3585
3586         prior_fackets = tp->fackets_out;
3587         prior_in_flight = tcp_packets_in_flight(tp);
3588
3589         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3590                 /* Window is constant, pure forward advance.
3591                  * No more checks are required.
3592                  * Note, we use the fact that SND.UNA>=SND.WL2.
3593                  */
3594                 tcp_update_wl(tp, ack, ack_seq);
3595                 tp->snd_una = ack;
3596                 flag |= FLAG_WIN_UPDATE;
3597
3598                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3599
3600                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3601         } else {
3602                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3603                         flag |= FLAG_DATA;
3604                 else
3605                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3606
3607                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3608
3609                 if (TCP_SKB_CB(skb)->sacked)
3610                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3611
3612                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3613                         flag |= FLAG_ECE;
3614
3615                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3616         }
3617
3618         /* We passed data and got it acked, remove any soft error
3619          * log. Something worked...
3620          */
3621         sk->sk_err_soft = 0;
3622         icsk->icsk_probes_out = 0;
3623         tp->rcv_tstamp = tcp_time_stamp;
3624         prior_packets = tp->packets_out;
3625         if (!prior_packets)
3626                 goto no_queue;
3627
3628         /* See if we can take anything off of the retransmit queue. */
3629         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3630
3631         if (tp->frto_counter)
3632                 frto_cwnd = tcp_process_frto(sk, flag);
3633         /* Guarantee sacktag reordering detection against wrap-arounds */
3634         if (before(tp->frto_highmark, tp->snd_una))
3635                 tp->frto_highmark = 0;
3636
3637         if (tcp_ack_is_dubious(sk, flag)) {
3638                 /* Advance CWND, if state allows this. */
3639                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3640                     tcp_may_raise_cwnd(sk, flag))
3641                         tcp_cong_avoid(sk, ack, prior_in_flight);
3642                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3643                                       flag);
3644         } else {
3645                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3646                         tcp_cong_avoid(sk, ack, prior_in_flight);
3647         }
3648
3649         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3650                 dst_confirm(sk->sk_dst_cache);
3651
3652         return 1;
3653
3654 no_queue:
3655         /* If this ack opens up a zero window, clear backoff.  It was
3656          * being used to time the probes, and is probably far higher than
3657          * it needs to be for normal retransmission.
3658          */
3659         if (tcp_send_head(sk))
3660                 tcp_ack_probe(sk);
3661         return 1;
3662
3663 old_ack:
3664         if (TCP_SKB_CB(skb)->sacked) {
3665                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3666                 if (icsk->icsk_ca_state == TCP_CA_Open)
3667                         tcp_try_keep_open(sk);
3668         }
3669
3670 uninteresting_ack:
3671         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3672         return 0;
3673 }
3674
3675 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3676  * But, this can also be called on packets in the established flow when
3677  * the fast version below fails.
3678  */
3679 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3680                        int estab)
3681 {
3682         unsigned char *ptr;
3683         struct tcphdr *th = tcp_hdr(skb);
3684         int length = (th->doff * 4) - sizeof(struct tcphdr);
3685
3686         ptr = (unsigned char *)(th + 1);
3687         opt_rx->saw_tstamp = 0;
3688
3689         while (length > 0) {
3690                 int opcode = *ptr++;
3691                 int opsize;
3692
3693                 switch (opcode) {
3694                 case TCPOPT_EOL:
3695                         return;
3696                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3697                         length--;
3698                         continue;
3699                 default:
3700                         opsize = *ptr++;
3701                         if (opsize < 2) /* "silly options" */
3702                                 return;
3703                         if (opsize > length)
3704                                 return; /* don't parse partial options */
3705                         switch (opcode) {
3706                         case TCPOPT_MSS:
3707                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3708                                         u16 in_mss = get_unaligned_be16(ptr);
3709                                         if (in_mss) {
3710                                                 if (opt_rx->user_mss &&
3711                                                     opt_rx->user_mss < in_mss)
3712                                                         in_mss = opt_rx->user_mss;
3713                                                 opt_rx->mss_clamp = in_mss;
3714                                         }
3715                                 }
3716                                 break;
3717                         case TCPOPT_WINDOW:
3718                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3719                                     !estab && sysctl_tcp_window_scaling) {
3720                                         __u8 snd_wscale = *(__u8 *)ptr;
3721                                         opt_rx->wscale_ok = 1;
3722                                         if (snd_wscale > 14) {
3723                                                 if (net_ratelimit())
3724                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3725                                                                "scaling value %d >14 received.\n",
3726                                                                snd_wscale);
3727                                                 snd_wscale = 14;
3728                                         }
3729                                         opt_rx->snd_wscale = snd_wscale;
3730                                 }
3731                                 break;
3732                         case TCPOPT_TIMESTAMP:
3733                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3734                                     ((estab && opt_rx->tstamp_ok) ||
3735                                      (!estab && sysctl_tcp_timestamps))) {
3736                                         opt_rx->saw_tstamp = 1;
3737                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3738                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3739                                 }
3740                                 break;
3741                         case TCPOPT_SACK_PERM:
3742                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3743                                     !estab && sysctl_tcp_sack) {
3744                                         opt_rx->sack_ok = 1;
3745                                         tcp_sack_reset(opt_rx);
3746                                 }
3747                                 break;
3748
3749                         case TCPOPT_SACK:
3750                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3751                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3752                                    opt_rx->sack_ok) {
3753                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3754                                 }
3755                                 break;
3756 #ifdef CONFIG_TCP_MD5SIG
3757                         case TCPOPT_MD5SIG:
3758                                 /*
3759                                  * The MD5 Hash has already been
3760                                  * checked (see tcp_v{4,6}_do_rcv()).
3761                                  */
3762                                 break;
3763 #endif
3764                         }
3765
3766                         ptr += opsize-2;
3767                         length -= opsize;
3768                 }
3769         }
3770 }
3771
3772 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3773 {
3774         __be32 *ptr = (__be32 *)(th + 1);
3775
3776         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3777                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3778                 tp->rx_opt.saw_tstamp = 1;
3779                 ++ptr;
3780                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3781                 ++ptr;
3782                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3783                 return 1;
3784         }
3785         return 0;
3786 }
3787
3788 /* Fast parse options. This hopes to only see timestamps.
3789  * If it is wrong it falls back on tcp_parse_options().
3790  */
3791 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3792                                   struct tcp_sock *tp)
3793 {
3794         if (th->doff == sizeof(struct tcphdr) >> 2) {
3795                 tp->rx_opt.saw_tstamp = 0;
3796                 return 0;
3797         } else if (tp->rx_opt.tstamp_ok &&
3798                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3799                 if (tcp_parse_aligned_timestamp(tp, th))
3800                         return 1;
3801         }
3802         tcp_parse_options(skb, &tp->rx_opt, 1);
3803         return 1;
3804 }
3805
3806 #ifdef CONFIG_TCP_MD5SIG
3807 /*
3808  * Parse MD5 Signature option
3809  */
3810 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3811 {
3812         int length = (th->doff << 2) - sizeof (*th);
3813         u8 *ptr = (u8*)(th + 1);
3814
3815         /* If the TCP option is too short, we can short cut */
3816         if (length < TCPOLEN_MD5SIG)
3817                 return NULL;
3818
3819         while (length > 0) {
3820                 int opcode = *ptr++;
3821                 int opsize;
3822
3823                 switch(opcode) {
3824                 case TCPOPT_EOL:
3825                         return NULL;
3826                 case TCPOPT_NOP:
3827                         length--;
3828                         continue;
3829                 default:
3830                         opsize = *ptr++;
3831                         if (opsize < 2 || opsize > length)
3832                                 return NULL;
3833                         if (opcode == TCPOPT_MD5SIG)
3834                                 return ptr;
3835                 }
3836                 ptr += opsize - 2;
3837                 length -= opsize;
3838         }
3839         return NULL;
3840 }
3841 #endif
3842
3843 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3844 {
3845         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3846         tp->rx_opt.ts_recent_stamp = get_seconds();
3847 }
3848
3849 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3850 {
3851         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3852                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3853                  * extra check below makes sure this can only happen
3854                  * for pure ACK frames.  -DaveM
3855                  *
3856                  * Not only, also it occurs for expired timestamps.
3857                  */
3858
3859                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3860                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3861                         tcp_store_ts_recent(tp);
3862         }
3863 }
3864
3865 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3866  *
3867  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3868  * it can pass through stack. So, the following predicate verifies that
3869  * this segment is not used for anything but congestion avoidance or
3870  * fast retransmit. Moreover, we even are able to eliminate most of such
3871  * second order effects, if we apply some small "replay" window (~RTO)
3872  * to timestamp space.
3873  *
3874  * All these measures still do not guarantee that we reject wrapped ACKs
3875  * on networks with high bandwidth, when sequence space is recycled fastly,
3876  * but it guarantees that such events will be very rare and do not affect
3877  * connection seriously. This doesn't look nice, but alas, PAWS is really
3878  * buggy extension.
3879  *
3880  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3881  * states that events when retransmit arrives after original data are rare.
3882  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3883  * the biggest problem on large power networks even with minor reordering.
3884  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3885  * up to bandwidth of 18Gigabit/sec. 8) ]
3886  */
3887
3888 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3889 {
3890         struct tcp_sock *tp = tcp_sk(sk);
3891         struct tcphdr *th = tcp_hdr(skb);
3892         u32 seq = TCP_SKB_CB(skb)->seq;
3893         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3894
3895         return (/* 1. Pure ACK with correct sequence number. */
3896                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3897
3898                 /* 2. ... and duplicate ACK. */
3899                 ack == tp->snd_una &&
3900
3901                 /* 3. ... and does not update window. */
3902                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3903
3904                 /* 4. ... and sits in replay window. */
3905                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3906 }
3907
3908 static inline int tcp_paws_discard(const struct sock *sk,
3909                                    const struct sk_buff *skb)
3910 {
3911         const struct tcp_sock *tp = tcp_sk(sk);
3912         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3913                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3914                 !tcp_disordered_ack(sk, skb));
3915 }
3916
3917 /* Check segment sequence number for validity.
3918  *
3919  * Segment controls are considered valid, if the segment
3920  * fits to the window after truncation to the window. Acceptability
3921  * of data (and SYN, FIN, of course) is checked separately.
3922  * See tcp_data_queue(), for example.
3923  *
3924  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3925  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3926  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3927  * (borrowed from freebsd)
3928  */
3929
3930 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3931 {
3932         return  !before(end_seq, tp->rcv_wup) &&
3933                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3934 }
3935
3936 /* When we get a reset we do this. */
3937 static void tcp_reset(struct sock *sk)
3938 {
3939         /* We want the right error as BSD sees it (and indeed as we do). */
3940         switch (sk->sk_state) {
3941         case TCP_SYN_SENT:
3942                 sk->sk_err = ECONNREFUSED;
3943                 break;
3944         case TCP_CLOSE_WAIT:
3945                 sk->sk_err = EPIPE;
3946                 break;
3947         case TCP_CLOSE:
3948                 return;
3949         default:
3950                 sk->sk_err = ECONNRESET;
3951         }
3952
3953         if (!sock_flag(sk, SOCK_DEAD))
3954                 sk->sk_error_report(sk);
3955
3956         tcp_done(sk);
3957 }
3958
3959 /*
3960  *      Process the FIN bit. This now behaves as it is supposed to work
3961  *      and the FIN takes effect when it is validly part of sequence
3962  *      space. Not before when we get holes.
3963  *
3964  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3965  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3966  *      TIME-WAIT)
3967  *
3968  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3969  *      close and we go into CLOSING (and later onto TIME-WAIT)
3970  *
3971  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3972  */
3973 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3974 {
3975         struct tcp_sock *tp = tcp_sk(sk);
3976
3977         inet_csk_schedule_ack(sk);
3978
3979         sk->sk_shutdown |= RCV_SHUTDOWN;
3980         sock_set_flag(sk, SOCK_DONE);
3981
3982         switch (sk->sk_state) {
3983         case TCP_SYN_RECV:
3984         case TCP_ESTABLISHED:
3985                 /* Move to CLOSE_WAIT */
3986                 tcp_set_state(sk, TCP_CLOSE_WAIT);
3987                 inet_csk(sk)->icsk_ack.pingpong = 1;
3988                 break;
3989
3990         case TCP_CLOSE_WAIT:
3991         case TCP_CLOSING:
3992                 /* Received a retransmission of the FIN, do
3993                  * nothing.
3994                  */
3995                 break;
3996         case TCP_LAST_ACK:
3997                 /* RFC793: Remain in the LAST-ACK state. */
3998                 break;
3999
4000         case TCP_FIN_WAIT1:
4001                 /* This case occurs when a simultaneous close
4002                  * happens, we must ack the received FIN and
4003                  * enter the CLOSING state.
4004                  */
4005                 tcp_send_ack(sk);
4006                 tcp_set_state(sk, TCP_CLOSING);
4007                 break;
4008         case TCP_FIN_WAIT2:
4009                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4010                 tcp_send_ack(sk);
4011                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4012                 break;
4013         default:
4014                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4015                  * cases we should never reach this piece of code.
4016                  */
4017                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4018                        __func__, sk->sk_state);
4019                 break;
4020         }
4021
4022         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4023          * Probably, we should reset in this case. For now drop them.
4024          */
4025         __skb_queue_purge(&tp->out_of_order_queue);
4026         if (tcp_is_sack(tp))
4027                 tcp_sack_reset(&tp->rx_opt);
4028         sk_mem_reclaim(sk);
4029
4030         if (!sock_flag(sk, SOCK_DEAD)) {
4031                 sk->sk_state_change(sk);
4032
4033                 /* Do not send POLL_HUP for half duplex close. */
4034                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4035                     sk->sk_state == TCP_CLOSE)
4036                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4037                 else
4038                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4039         }
4040 }
4041
4042 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4043                                   u32 end_seq)
4044 {
4045         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4046                 if (before(seq, sp->start_seq))
4047                         sp->start_seq = seq;
4048                 if (after(end_seq, sp->end_seq))
4049                         sp->end_seq = end_seq;
4050                 return 1;
4051         }
4052         return 0;
4053 }
4054
4055 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4056 {
4057         struct tcp_sock *tp = tcp_sk(sk);
4058
4059         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4060                 int mib_idx;
4061
4062                 if (before(seq, tp->rcv_nxt))
4063                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4064                 else
4065                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4066
4067                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4068
4069                 tp->rx_opt.dsack = 1;
4070                 tp->duplicate_sack[0].start_seq = seq;
4071                 tp->duplicate_sack[0].end_seq = end_seq;
4072                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
4073         }
4074 }
4075
4076 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4077 {
4078         struct tcp_sock *tp = tcp_sk(sk);
4079
4080         if (!tp->rx_opt.dsack)
4081                 tcp_dsack_set(sk, seq, end_seq);
4082         else
4083                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4084 }
4085
4086 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4087 {
4088         struct tcp_sock *tp = tcp_sk(sk);
4089
4090         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4091             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4092                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4093                 tcp_enter_quickack_mode(sk);
4094
4095                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4096                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4097
4098                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4099                                 end_seq = tp->rcv_nxt;
4100                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4101                 }
4102         }
4103
4104         tcp_send_ack(sk);
4105 }
4106
4107 /* These routines update the SACK block as out-of-order packets arrive or
4108  * in-order packets close up the sequence space.
4109  */
4110 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4111 {
4112         int this_sack;
4113         struct tcp_sack_block *sp = &tp->selective_acks[0];
4114         struct tcp_sack_block *swalk = sp + 1;
4115
4116         /* See if the recent change to the first SACK eats into
4117          * or hits the sequence space of other SACK blocks, if so coalesce.
4118          */
4119         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4120                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4121                         int i;
4122
4123                         /* Zap SWALK, by moving every further SACK up by one slot.
4124                          * Decrease num_sacks.
4125                          */
4126                         tp->rx_opt.num_sacks--;
4127                         tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
4128                                                tp->rx_opt.dsack;
4129                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4130                                 sp[i] = sp[i + 1];
4131                         continue;
4132                 }
4133                 this_sack++, swalk++;
4134         }
4135 }
4136
4137 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
4138                                  struct tcp_sack_block *sack2)
4139 {
4140         __u32 tmp;
4141
4142         tmp = sack1->start_seq;
4143         sack1->start_seq = sack2->start_seq;
4144         sack2->start_seq = tmp;
4145
4146         tmp = sack1->end_seq;
4147         sack1->end_seq = sack2->end_seq;
4148         sack2->end_seq = tmp;
4149 }
4150
4151 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4152 {
4153         struct tcp_sock *tp = tcp_sk(sk);
4154         struct tcp_sack_block *sp = &tp->selective_acks[0];
4155         int cur_sacks = tp->rx_opt.num_sacks;
4156         int this_sack;
4157
4158         if (!cur_sacks)
4159                 goto new_sack;
4160
4161         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4162                 if (tcp_sack_extend(sp, seq, end_seq)) {
4163                         /* Rotate this_sack to the first one. */
4164                         for (; this_sack > 0; this_sack--, sp--)
4165                                 tcp_sack_swap(sp, sp - 1);
4166                         if (cur_sacks > 1)
4167                                 tcp_sack_maybe_coalesce(tp);
4168                         return;
4169                 }
4170         }
4171
4172         /* Could not find an adjacent existing SACK, build a new one,
4173          * put it at the front, and shift everyone else down.  We
4174          * always know there is at least one SACK present already here.
4175          *
4176          * If the sack array is full, forget about the last one.
4177          */
4178         if (this_sack >= TCP_NUM_SACKS) {
4179                 this_sack--;
4180                 tp->rx_opt.num_sacks--;
4181                 sp--;
4182         }
4183         for (; this_sack > 0; this_sack--, sp--)
4184                 *sp = *(sp - 1);
4185
4186 new_sack:
4187         /* Build the new head SACK, and we're done. */
4188         sp->start_seq = seq;
4189         sp->end_seq = end_seq;
4190         tp->rx_opt.num_sacks++;
4191         tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
4192 }
4193
4194 /* RCV.NXT advances, some SACKs should be eaten. */
4195
4196 static void tcp_sack_remove(struct tcp_sock *tp)
4197 {
4198         struct tcp_sack_block *sp = &tp->selective_acks[0];
4199         int num_sacks = tp->rx_opt.num_sacks;
4200         int this_sack;
4201
4202         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4203         if (skb_queue_empty(&tp->out_of_order_queue)) {
4204                 tp->rx_opt.num_sacks = 0;
4205                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
4206                 return;
4207         }
4208
4209         for (this_sack = 0; this_sack < num_sacks;) {
4210                 /* Check if the start of the sack is covered by RCV.NXT. */
4211                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4212                         int i;
4213
4214                         /* RCV.NXT must cover all the block! */
4215                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4216
4217                         /* Zap this SACK, by moving forward any other SACKS. */
4218                         for (i=this_sack+1; i < num_sacks; i++)
4219                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4220                         num_sacks--;
4221                         continue;
4222                 }
4223                 this_sack++;
4224                 sp++;
4225         }
4226         if (num_sacks != tp->rx_opt.num_sacks) {
4227                 tp->rx_opt.num_sacks = num_sacks;
4228                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
4229                                        tp->rx_opt.dsack;
4230         }
4231 }
4232
4233 /* This one checks to see if we can put data from the
4234  * out_of_order queue into the receive_queue.
4235  */
4236 static void tcp_ofo_queue(struct sock *sk)
4237 {
4238         struct tcp_sock *tp = tcp_sk(sk);
4239         __u32 dsack_high = tp->rcv_nxt;
4240         struct sk_buff *skb;
4241
4242         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4243                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4244                         break;
4245
4246                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4247                         __u32 dsack = dsack_high;
4248                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4249                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4250                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4251                 }
4252
4253                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4254                         SOCK_DEBUG(sk, "ofo packet was already received \n");
4255                         __skb_unlink(skb, &tp->out_of_order_queue);
4256                         __kfree_skb(skb);
4257                         continue;
4258                 }
4259                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4260                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4261                            TCP_SKB_CB(skb)->end_seq);
4262
4263                 __skb_unlink(skb, &tp->out_of_order_queue);
4264                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4265                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4266                 if (tcp_hdr(skb)->fin)
4267                         tcp_fin(skb, sk, tcp_hdr(skb));
4268         }
4269 }
4270
4271 static int tcp_prune_ofo_queue(struct sock *sk);
4272 static int tcp_prune_queue(struct sock *sk);
4273
4274 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4275 {
4276         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4277             !sk_rmem_schedule(sk, size)) {
4278
4279                 if (tcp_prune_queue(sk) < 0)
4280                         return -1;
4281
4282                 if (!sk_rmem_schedule(sk, size)) {
4283                         if (!tcp_prune_ofo_queue(sk))
4284                                 return -1;
4285
4286                         if (!sk_rmem_schedule(sk, size))
4287                                 return -1;
4288                 }
4289         }
4290         return 0;
4291 }
4292
4293 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4294 {
4295         struct tcphdr *th = tcp_hdr(skb);
4296         struct tcp_sock *tp = tcp_sk(sk);
4297         int eaten = -1;
4298
4299         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4300                 goto drop;
4301
4302         __skb_pull(skb, th->doff * 4);
4303
4304         TCP_ECN_accept_cwr(tp, skb);
4305
4306         if (tp->rx_opt.dsack) {
4307                 tp->rx_opt.dsack = 0;
4308                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
4309         }
4310
4311         /*  Queue data for delivery to the user.
4312          *  Packets in sequence go to the receive queue.
4313          *  Out of sequence packets to the out_of_order_queue.
4314          */
4315         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4316                 if (tcp_receive_window(tp) == 0)
4317                         goto out_of_window;
4318
4319                 /* Ok. In sequence. In window. */
4320                 if (tp->ucopy.task == current &&
4321                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4322                     sock_owned_by_user(sk) && !tp->urg_data) {
4323                         int chunk = min_t(unsigned int, skb->len,
4324                                           tp->ucopy.len);
4325
4326                         __set_current_state(TASK_RUNNING);
4327
4328                         local_bh_enable();
4329                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4330                                 tp->ucopy.len -= chunk;
4331                                 tp->copied_seq += chunk;
4332                                 eaten = (chunk == skb->len && !th->fin);
4333                                 tcp_rcv_space_adjust(sk);
4334                         }
4335                         local_bh_disable();
4336                 }
4337
4338                 if (eaten <= 0) {
4339 queue_and_out:
4340                         if (eaten < 0 &&
4341                             tcp_try_rmem_schedule(sk, skb->truesize))
4342                                 goto drop;
4343
4344                         skb_set_owner_r(skb, sk);
4345                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4346                 }
4347                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4348                 if (skb->len)
4349                         tcp_event_data_recv(sk, skb);
4350                 if (th->fin)
4351                         tcp_fin(skb, sk, th);
4352
4353                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4354                         tcp_ofo_queue(sk);
4355
4356                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4357                          * gap in queue is filled.
4358                          */
4359                         if (skb_queue_empty(&tp->out_of_order_queue))
4360                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4361                 }
4362
4363                 if (tp->rx_opt.num_sacks)
4364                         tcp_sack_remove(tp);
4365
4366                 tcp_fast_path_check(sk);
4367
4368                 if (eaten > 0)
4369                         __kfree_skb(skb);
4370                 else if (!sock_flag(sk, SOCK_DEAD))
4371                         sk->sk_data_ready(sk, 0);
4372                 return;
4373         }
4374
4375         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4376                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4377                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4378                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4379
4380 out_of_window:
4381                 tcp_enter_quickack_mode(sk);
4382                 inet_csk_schedule_ack(sk);
4383 drop:
4384                 __kfree_skb(skb);
4385                 return;
4386         }
4387
4388         /* Out of window. F.e. zero window probe. */
4389         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4390                 goto out_of_window;
4391
4392         tcp_enter_quickack_mode(sk);
4393
4394         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4395                 /* Partial packet, seq < rcv_next < end_seq */
4396                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4397                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4398                            TCP_SKB_CB(skb)->end_seq);
4399
4400                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4401
4402                 /* If window is closed, drop tail of packet. But after
4403                  * remembering D-SACK for its head made in previous line.
4404                  */
4405                 if (!tcp_receive_window(tp))
4406                         goto out_of_window;
4407                 goto queue_and_out;
4408         }
4409
4410         TCP_ECN_check_ce(tp, skb);
4411
4412         if (tcp_try_rmem_schedule(sk, skb->truesize))
4413                 goto drop;
4414
4415         /* Disable header prediction. */
4416         tp->pred_flags = 0;
4417         inet_csk_schedule_ack(sk);
4418
4419         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4420                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4421
4422         skb_set_owner_r(skb, sk);
4423
4424         if (!skb_peek(&tp->out_of_order_queue)) {
4425                 /* Initial out of order segment, build 1 SACK. */
4426                 if (tcp_is_sack(tp)) {
4427                         tp->rx_opt.num_sacks = 1;
4428                         tp->rx_opt.dsack     = 0;
4429                         tp->rx_opt.eff_sacks = 1;
4430                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4431                         tp->selective_acks[0].end_seq =
4432                                                 TCP_SKB_CB(skb)->end_seq;
4433                 }
4434                 __skb_queue_head(&tp->out_of_order_queue, skb);
4435         } else {
4436                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4437                 u32 seq = TCP_SKB_CB(skb)->seq;
4438                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4439
4440                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4441                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4442
4443                         if (!tp->rx_opt.num_sacks ||
4444                             tp->selective_acks[0].end_seq != seq)
4445                                 goto add_sack;
4446
4447                         /* Common case: data arrive in order after hole. */
4448                         tp->selective_acks[0].end_seq = end_seq;
4449                         return;
4450                 }
4451
4452                 /* Find place to insert this segment. */
4453                 do {
4454                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4455                                 break;
4456                 } while ((skb1 = skb1->prev) !=
4457                          (struct sk_buff *)&tp->out_of_order_queue);
4458
4459                 /* Do skb overlap to previous one? */
4460                 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4461                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4462                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4463                                 /* All the bits are present. Drop. */
4464                                 __kfree_skb(skb);
4465                                 tcp_dsack_set(sk, seq, end_seq);
4466                                 goto add_sack;
4467                         }
4468                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4469                                 /* Partial overlap. */
4470                                 tcp_dsack_set(sk, seq,
4471                                               TCP_SKB_CB(skb1)->end_seq);
4472                         } else {
4473                                 skb1 = skb1->prev;
4474                         }
4475                 }
4476                 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4477
4478                 /* And clean segments covered by new one as whole. */
4479                 while ((skb1 = skb->next) !=
4480                        (struct sk_buff *)&tp->out_of_order_queue &&
4481                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4482                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4483                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4484                                                  end_seq);
4485                                 break;
4486                         }
4487                         __skb_unlink(skb1, &tp->out_of_order_queue);
4488                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4489                                          TCP_SKB_CB(skb1)->end_seq);
4490                         __kfree_skb(skb1);
4491                 }
4492
4493 add_sack:
4494                 if (tcp_is_sack(tp))
4495                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4496         }
4497 }
4498
4499 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4500                                         struct sk_buff_head *list)
4501 {
4502         struct sk_buff *next = skb->next;
4503
4504         __skb_unlink(skb, list);
4505         __kfree_skb(skb);
4506         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4507
4508         return next;
4509 }
4510
4511 /* Collapse contiguous sequence of skbs head..tail with
4512  * sequence numbers start..end.
4513  * Segments with FIN/SYN are not collapsed (only because this
4514  * simplifies code)
4515  */
4516 static void
4517 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4518              struct sk_buff *head, struct sk_buff *tail,
4519              u32 start, u32 end)
4520 {
4521         struct sk_buff *skb;
4522
4523         /* First, check that queue is collapsible and find
4524          * the point where collapsing can be useful. */
4525         for (skb = head; skb != tail;) {
4526                 /* No new bits? It is possible on ofo queue. */
4527                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4528                         skb = tcp_collapse_one(sk, skb, list);
4529                         continue;
4530                 }
4531
4532                 /* The first skb to collapse is:
4533                  * - not SYN/FIN and
4534                  * - bloated or contains data before "start" or
4535                  *   overlaps to the next one.
4536                  */
4537                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4538                     (tcp_win_from_space(skb->truesize) > skb->len ||
4539                      before(TCP_SKB_CB(skb)->seq, start) ||
4540                      (skb->next != tail &&
4541                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4542                         break;
4543
4544                 /* Decided to skip this, advance start seq. */
4545                 start = TCP_SKB_CB(skb)->end_seq;
4546                 skb = skb->next;
4547         }
4548         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4549                 return;
4550
4551         while (before(start, end)) {
4552                 struct sk_buff *nskb;
4553                 unsigned int header = skb_headroom(skb);
4554                 int copy = SKB_MAX_ORDER(header, 0);
4555
4556                 /* Too big header? This can happen with IPv6. */
4557                 if (copy < 0)
4558                         return;
4559                 if (end - start < copy)
4560                         copy = end - start;
4561                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4562                 if (!nskb)
4563                         return;
4564
4565                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4566                 skb_set_network_header(nskb, (skb_network_header(skb) -
4567                                               skb->head));
4568                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4569                                                 skb->head));
4570                 skb_reserve(nskb, header);
4571                 memcpy(nskb->head, skb->head, header);
4572                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4573                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4574                 __skb_queue_before(list, skb, nskb);
4575                 skb_set_owner_r(nskb, sk);
4576
4577                 /* Copy data, releasing collapsed skbs. */
4578                 while (copy > 0) {
4579                         int offset = start - TCP_SKB_CB(skb)->seq;
4580                         int size = TCP_SKB_CB(skb)->end_seq - start;
4581
4582                         BUG_ON(offset < 0);
4583                         if (size > 0) {
4584                                 size = min(copy, size);
4585                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4586                                         BUG();
4587                                 TCP_SKB_CB(nskb)->end_seq += size;
4588                                 copy -= size;
4589                                 start += size;
4590                         }
4591                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4592                                 skb = tcp_collapse_one(sk, skb, list);
4593                                 if (skb == tail ||
4594                                     tcp_hdr(skb)->syn ||
4595                                     tcp_hdr(skb)->fin)
4596                                         return;
4597                         }
4598                 }
4599         }
4600 }
4601
4602 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4603  * and tcp_collapse() them until all the queue is collapsed.
4604  */
4605 static void tcp_collapse_ofo_queue(struct sock *sk)
4606 {
4607         struct tcp_sock *tp = tcp_sk(sk);
4608         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4609         struct sk_buff *head;
4610         u32 start, end;
4611
4612         if (skb == NULL)
4613                 return;
4614
4615         start = TCP_SKB_CB(skb)->seq;
4616         end = TCP_SKB_CB(skb)->end_seq;
4617         head = skb;
4618
4619         for (;;) {
4620                 skb = skb->next;
4621
4622                 /* Segment is terminated when we see gap or when
4623                  * we are at the end of all the queue. */
4624                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4625                     after(TCP_SKB_CB(skb)->seq, end) ||
4626                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4627                         tcp_collapse(sk, &tp->out_of_order_queue,
4628                                      head, skb, start, end);
4629                         head = skb;
4630                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4631                                 break;
4632                         /* Start new segment */
4633                         start = TCP_SKB_CB(skb)->seq;
4634                         end = TCP_SKB_CB(skb)->end_seq;
4635                 } else {
4636                         if (before(TCP_SKB_CB(skb)->seq, start))
4637                                 start = TCP_SKB_CB(skb)->seq;
4638                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4639                                 end = TCP_SKB_CB(skb)->end_seq;
4640                 }
4641         }
4642 }
4643
4644 /*
4645  * Purge the out-of-order queue.
4646  * Return true if queue was pruned.
4647  */
4648 static int tcp_prune_ofo_queue(struct sock *sk)
4649 {
4650         struct tcp_sock *tp = tcp_sk(sk);
4651         int res = 0;
4652
4653         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4654                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4655                 __skb_queue_purge(&tp->out_of_order_queue);
4656
4657                 /* Reset SACK state.  A conforming SACK implementation will
4658                  * do the same at a timeout based retransmit.  When a connection
4659                  * is in a sad state like this, we care only about integrity
4660                  * of the connection not performance.
4661                  */
4662                 if (tp->rx_opt.sack_ok)
4663                         tcp_sack_reset(&tp->rx_opt);
4664                 sk_mem_reclaim(sk);
4665                 res = 1;
4666         }
4667         return res;
4668 }
4669
4670 /* Reduce allocated memory if we can, trying to get
4671  * the socket within its memory limits again.
4672  *
4673  * Return less than zero if we should start dropping frames
4674  * until the socket owning process reads some of the data
4675  * to stabilize the situation.
4676  */
4677 static int tcp_prune_queue(struct sock *sk)
4678 {
4679         struct tcp_sock *tp = tcp_sk(sk);
4680
4681         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4682
4683         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4684
4685         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4686                 tcp_clamp_window(sk);
4687         else if (tcp_memory_pressure)
4688                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4689
4690         tcp_collapse_ofo_queue(sk);
4691         tcp_collapse(sk, &sk->sk_receive_queue,
4692                      sk->sk_receive_queue.next,
4693                      (struct sk_buff *)&sk->sk_receive_queue,
4694                      tp->copied_seq, tp->rcv_nxt);
4695         sk_mem_reclaim(sk);
4696
4697         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4698                 return 0;
4699
4700         /* Collapsing did not help, destructive actions follow.
4701          * This must not ever occur. */
4702
4703         tcp_prune_ofo_queue(sk);
4704
4705         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4706                 return 0;
4707
4708         /* If we are really being abused, tell the caller to silently
4709          * drop receive data on the floor.  It will get retransmitted
4710          * and hopefully then we'll have sufficient space.
4711          */
4712         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4713
4714         /* Massive buffer overcommit. */
4715         tp->pred_flags = 0;
4716         return -1;
4717 }
4718
4719 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4720  * As additional protections, we do not touch cwnd in retransmission phases,
4721  * and if application hit its sndbuf limit recently.
4722  */
4723 void tcp_cwnd_application_limited(struct sock *sk)
4724 {
4725         struct tcp_sock *tp = tcp_sk(sk);
4726
4727         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4728             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4729                 /* Limited by application or receiver window. */
4730                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4731                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4732                 if (win_used < tp->snd_cwnd) {
4733                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4734                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4735                 }
4736                 tp->snd_cwnd_used = 0;
4737         }
4738         tp->snd_cwnd_stamp = tcp_time_stamp;
4739 }
4740
4741 static int tcp_should_expand_sndbuf(struct sock *sk)
4742 {
4743         struct tcp_sock *tp = tcp_sk(sk);
4744
4745         /* If the user specified a specific send buffer setting, do
4746          * not modify it.
4747          */
4748         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4749                 return 0;
4750
4751         /* If we are under global TCP memory pressure, do not expand.  */
4752         if (tcp_memory_pressure)
4753                 return 0;
4754
4755         /* If we are under soft global TCP memory pressure, do not expand.  */
4756         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4757                 return 0;
4758
4759         /* If we filled the congestion window, do not expand.  */
4760         if (tp->packets_out >= tp->snd_cwnd)
4761                 return 0;
4762
4763         return 1;
4764 }
4765
4766 /* When incoming ACK allowed to free some skb from write_queue,
4767  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4768  * on the exit from tcp input handler.
4769  *
4770  * PROBLEM: sndbuf expansion does not work well with largesend.
4771  */
4772 static void tcp_new_space(struct sock *sk)
4773 {
4774         struct tcp_sock *tp = tcp_sk(sk);
4775
4776         if (tcp_should_expand_sndbuf(sk)) {
4777                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4778                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4779                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4780                                      tp->reordering + 1);
4781                 sndmem *= 2 * demanded;
4782                 if (sndmem > sk->sk_sndbuf)
4783                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4784                 tp->snd_cwnd_stamp = tcp_time_stamp;
4785         }
4786
4787         sk->sk_write_space(sk);
4788 }
4789
4790 static void tcp_check_space(struct sock *sk)
4791 {
4792         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4793                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4794                 if (sk->sk_socket &&
4795                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4796                         tcp_new_space(sk);
4797         }
4798 }
4799
4800 static inline void tcp_data_snd_check(struct sock *sk)
4801 {
4802         tcp_push_pending_frames(sk);
4803         tcp_check_space(sk);
4804 }
4805
4806 /*
4807  * Check if sending an ack is needed.
4808  */
4809 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4810 {
4811         struct tcp_sock *tp = tcp_sk(sk);
4812
4813             /* More than one full frame received... */
4814         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4815              /* ... and right edge of window advances far enough.
4816               * (tcp_recvmsg() will send ACK otherwise). Or...
4817               */
4818              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4819             /* We ACK each frame or... */
4820             tcp_in_quickack_mode(sk) ||
4821             /* We have out of order data. */
4822             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4823                 /* Then ack it now */
4824                 tcp_send_ack(sk);
4825         } else {
4826                 /* Else, send delayed ack. */
4827                 tcp_send_delayed_ack(sk);
4828         }
4829 }
4830
4831 static inline void tcp_ack_snd_check(struct sock *sk)
4832 {
4833         if (!inet_csk_ack_scheduled(sk)) {
4834                 /* We sent a data segment already. */
4835                 return;
4836         }
4837         __tcp_ack_snd_check(sk, 1);
4838 }
4839
4840 /*
4841  *      This routine is only called when we have urgent data
4842  *      signaled. Its the 'slow' part of tcp_urg. It could be
4843  *      moved inline now as tcp_urg is only called from one
4844  *      place. We handle URGent data wrong. We have to - as
4845  *      BSD still doesn't use the correction from RFC961.
4846  *      For 1003.1g we should support a new option TCP_STDURG to permit
4847  *      either form (or just set the sysctl tcp_stdurg).
4848  */
4849
4850 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4851 {
4852         struct tcp_sock *tp = tcp_sk(sk);
4853         u32 ptr = ntohs(th->urg_ptr);
4854
4855         if (ptr && !sysctl_tcp_stdurg)
4856                 ptr--;
4857         ptr += ntohl(th->seq);
4858
4859         /* Ignore urgent data that we've already seen and read. */
4860         if (after(tp->copied_seq, ptr))
4861                 return;
4862
4863         /* Do not replay urg ptr.
4864          *
4865          * NOTE: interesting situation not covered by specs.
4866          * Misbehaving sender may send urg ptr, pointing to segment,
4867          * which we already have in ofo queue. We are not able to fetch
4868          * such data and will stay in TCP_URG_NOTYET until will be eaten
4869          * by recvmsg(). Seems, we are not obliged to handle such wicked
4870          * situations. But it is worth to think about possibility of some
4871          * DoSes using some hypothetical application level deadlock.
4872          */
4873         if (before(ptr, tp->rcv_nxt))
4874                 return;
4875
4876         /* Do we already have a newer (or duplicate) urgent pointer? */
4877         if (tp->urg_data && !after(ptr, tp->urg_seq))
4878                 return;
4879
4880         /* Tell the world about our new urgent pointer. */
4881         sk_send_sigurg(sk);
4882
4883         /* We may be adding urgent data when the last byte read was
4884          * urgent. To do this requires some care. We cannot just ignore
4885          * tp->copied_seq since we would read the last urgent byte again
4886          * as data, nor can we alter copied_seq until this data arrives
4887          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4888          *
4889          * NOTE. Double Dutch. Rendering to plain English: author of comment
4890          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4891          * and expect that both A and B disappear from stream. This is _wrong_.
4892          * Though this happens in BSD with high probability, this is occasional.
4893          * Any application relying on this is buggy. Note also, that fix "works"
4894          * only in this artificial test. Insert some normal data between A and B and we will
4895          * decline of BSD again. Verdict: it is better to remove to trap
4896          * buggy users.
4897          */
4898         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4899             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4900                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4901                 tp->copied_seq++;
4902                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4903                         __skb_unlink(skb, &sk->sk_receive_queue);
4904                         __kfree_skb(skb);
4905                 }
4906         }
4907
4908         tp->urg_data = TCP_URG_NOTYET;
4909         tp->urg_seq = ptr;
4910
4911         /* Disable header prediction. */
4912         tp->pred_flags = 0;
4913 }
4914
4915 /* This is the 'fast' part of urgent handling. */
4916 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4917 {
4918         struct tcp_sock *tp = tcp_sk(sk);
4919
4920         /* Check if we get a new urgent pointer - normally not. */
4921         if (th->urg)
4922                 tcp_check_urg(sk, th);
4923
4924         /* Do we wait for any urgent data? - normally not... */
4925         if (tp->urg_data == TCP_URG_NOTYET) {
4926                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4927                           th->syn;
4928
4929                 /* Is the urgent pointer pointing into this packet? */
4930                 if (ptr < skb->len) {
4931                         u8 tmp;
4932                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4933                                 BUG();
4934                         tp->urg_data = TCP_URG_VALID | tmp;
4935                         if (!sock_flag(sk, SOCK_DEAD))
4936                                 sk->sk_data_ready(sk, 0);
4937                 }
4938         }
4939 }
4940
4941 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4942 {
4943         struct tcp_sock *tp = tcp_sk(sk);
4944         int chunk = skb->len - hlen;
4945         int err;
4946
4947         local_bh_enable();
4948         if (skb_csum_unnecessary(skb))
4949                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4950         else
4951                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4952                                                        tp->ucopy.iov);
4953
4954         if (!err) {
4955                 tp->ucopy.len -= chunk;
4956                 tp->copied_seq += chunk;
4957                 tcp_rcv_space_adjust(sk);
4958         }
4959
4960         local_bh_disable();
4961         return err;
4962 }
4963
4964 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4965                                             struct sk_buff *skb)
4966 {
4967         __sum16 result;
4968
4969         if (sock_owned_by_user(sk)) {
4970                 local_bh_enable();
4971                 result = __tcp_checksum_complete(skb);
4972                 local_bh_disable();
4973         } else {
4974                 result = __tcp_checksum_complete(skb);
4975         }
4976         return result;
4977 }
4978
4979 static inline int tcp_checksum_complete_user(struct sock *sk,
4980                                              struct sk_buff *skb)
4981 {
4982         return !skb_csum_unnecessary(skb) &&
4983                __tcp_checksum_complete_user(sk, skb);
4984 }
4985
4986 #ifdef CONFIG_NET_DMA
4987 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4988                                   int hlen)
4989 {
4990         struct tcp_sock *tp = tcp_sk(sk);
4991         int chunk = skb->len - hlen;
4992         int dma_cookie;
4993         int copied_early = 0;
4994
4995         if (tp->ucopy.wakeup)
4996                 return 0;
4997
4998         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4999                 tp->ucopy.dma_chan = get_softnet_dma();
5000
5001         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5002
5003                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5004                                                          skb, hlen,
5005                                                          tp->ucopy.iov, chunk,
5006                                                          tp->ucopy.pinned_list);
5007
5008                 if (dma_cookie < 0)
5009                         goto out;
5010
5011                 tp->ucopy.dma_cookie = dma_cookie;
5012                 copied_early = 1;
5013
5014                 tp->ucopy.len -= chunk;
5015                 tp->copied_seq += chunk;
5016                 tcp_rcv_space_adjust(sk);
5017
5018                 if ((tp->ucopy.len == 0) ||
5019                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5020                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5021                         tp->ucopy.wakeup = 1;
5022                         sk->sk_data_ready(sk, 0);
5023                 }
5024         } else if (chunk > 0) {
5025                 tp->ucopy.wakeup = 1;
5026                 sk->sk_data_ready(sk, 0);
5027         }
5028 out:
5029         return copied_early;
5030 }
5031 #endif /* CONFIG_NET_DMA */
5032
5033 /* Does PAWS and seqno based validation of an incoming segment, flags will
5034  * play significant role here.
5035  */
5036 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5037                               struct tcphdr *th, int syn_inerr)
5038 {
5039         struct tcp_sock *tp = tcp_sk(sk);
5040
5041         /* RFC1323: H1. Apply PAWS check first. */
5042         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5043             tcp_paws_discard(sk, skb)) {
5044                 if (!th->rst) {
5045                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5046                         tcp_send_dupack(sk, skb);
5047                         goto discard;
5048                 }
5049                 /* Reset is accepted even if it did not pass PAWS. */
5050         }
5051
5052         /* Step 1: check sequence number */
5053         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5054                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5055                  * (RST) segments are validated by checking their SEQ-fields."
5056                  * And page 69: "If an incoming segment is not acceptable,
5057                  * an acknowledgment should be sent in reply (unless the RST
5058                  * bit is set, if so drop the segment and return)".
5059                  */
5060                 if (!th->rst)
5061                         tcp_send_dupack(sk, skb);
5062                 goto discard;
5063         }
5064
5065         /* Step 2: check RST bit */
5066         if (th->rst) {
5067                 tcp_reset(sk);
5068                 goto discard;
5069         }
5070
5071         /* ts_recent update must be made after we are sure that the packet
5072          * is in window.
5073          */
5074         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5075
5076         /* step 3: check security and precedence [ignored] */
5077
5078         /* step 4: Check for a SYN in window. */
5079         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5080                 if (syn_inerr)
5081                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5082                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5083                 tcp_reset(sk);
5084                 return -1;
5085         }
5086
5087         return 1;
5088
5089 discard:
5090         __kfree_skb(skb);
5091         return 0;
5092 }
5093
5094 /*
5095  *      TCP receive function for the ESTABLISHED state.
5096  *
5097  *      It is split into a fast path and a slow path. The fast path is
5098  *      disabled when:
5099  *      - A zero window was announced from us - zero window probing
5100  *        is only handled properly in the slow path.
5101  *      - Out of order segments arrived.
5102  *      - Urgent data is expected.
5103  *      - There is no buffer space left
5104  *      - Unexpected TCP flags/window values/header lengths are received
5105  *        (detected by checking the TCP header against pred_flags)
5106  *      - Data is sent in both directions. Fast path only supports pure senders
5107  *        or pure receivers (this means either the sequence number or the ack
5108  *        value must stay constant)
5109  *      - Unexpected TCP option.
5110  *
5111  *      When these conditions are not satisfied it drops into a standard
5112  *      receive procedure patterned after RFC793 to handle all cases.
5113  *      The first three cases are guaranteed by proper pred_flags setting,
5114  *      the rest is checked inline. Fast processing is turned on in
5115  *      tcp_data_queue when everything is OK.
5116  */
5117 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5118                         struct tcphdr *th, unsigned len)
5119 {
5120         struct tcp_sock *tp = tcp_sk(sk);
5121         int res;
5122
5123         /*
5124          *      Header prediction.
5125          *      The code loosely follows the one in the famous
5126          *      "30 instruction TCP receive" Van Jacobson mail.
5127          *
5128          *      Van's trick is to deposit buffers into socket queue
5129          *      on a device interrupt, to call tcp_recv function
5130          *      on the receive process context and checksum and copy
5131          *      the buffer to user space. smart...
5132          *
5133          *      Our current scheme is not silly either but we take the
5134          *      extra cost of the net_bh soft interrupt processing...
5135          *      We do checksum and copy also but from device to kernel.
5136          */
5137
5138         tp->rx_opt.saw_tstamp = 0;
5139
5140         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5141          *      if header_prediction is to be made
5142          *      'S' will always be tp->tcp_header_len >> 2
5143          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5144          *  turn it off (when there are holes in the receive
5145          *       space for instance)
5146          *      PSH flag is ignored.
5147          */
5148
5149         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5150             TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5151                 int tcp_header_len = tp->tcp_header_len;
5152
5153                 /* Timestamp header prediction: tcp_header_len
5154                  * is automatically equal to th->doff*4 due to pred_flags
5155                  * match.
5156                  */
5157
5158                 /* Check timestamp */
5159                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5160                         /* No? Slow path! */
5161                         if (!tcp_parse_aligned_timestamp(tp, th))
5162                                 goto slow_path;
5163
5164                         /* If PAWS failed, check it more carefully in slow path */
5165                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5166                                 goto slow_path;
5167
5168                         /* DO NOT update ts_recent here, if checksum fails
5169                          * and timestamp was corrupted part, it will result
5170                          * in a hung connection since we will drop all
5171                          * future packets due to the PAWS test.
5172                          */
5173                 }
5174
5175                 if (len <= tcp_header_len) {
5176                         /* Bulk data transfer: sender */
5177                         if (len == tcp_header_len) {
5178                                 /* Predicted packet is in window by definition.
5179                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5180                                  * Hence, check seq<=rcv_wup reduces to:
5181                                  */
5182                                 if (tcp_header_len ==
5183                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5184                                     tp->rcv_nxt == tp->rcv_wup)
5185                                         tcp_store_ts_recent(tp);
5186
5187                                 /* We know that such packets are checksummed
5188                                  * on entry.
5189                                  */
5190                                 tcp_ack(sk, skb, 0);
5191                                 __kfree_skb(skb);
5192                                 tcp_data_snd_check(sk);
5193                                 return 0;
5194                         } else { /* Header too small */
5195                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5196                                 goto discard;
5197                         }
5198                 } else {
5199                         int eaten = 0;
5200                         int copied_early = 0;
5201
5202                         if (tp->copied_seq == tp->rcv_nxt &&
5203                             len - tcp_header_len <= tp->ucopy.len) {
5204 #ifdef CONFIG_NET_DMA
5205                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5206                                         copied_early = 1;
5207                                         eaten = 1;
5208                                 }
5209 #endif
5210                                 if (tp->ucopy.task == current &&
5211                                     sock_owned_by_user(sk) && !copied_early) {
5212                                         __set_current_state(TASK_RUNNING);
5213
5214                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5215                                                 eaten = 1;
5216                                 }
5217                                 if (eaten) {
5218                                         /* Predicted packet is in window by definition.
5219                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5220                                          * Hence, check seq<=rcv_wup reduces to:
5221                                          */
5222                                         if (tcp_header_len ==
5223                                             (sizeof(struct tcphdr) +
5224                                              TCPOLEN_TSTAMP_ALIGNED) &&
5225                                             tp->rcv_nxt == tp->rcv_wup)
5226                                                 tcp_store_ts_recent(tp);
5227
5228                                         tcp_rcv_rtt_measure_ts(sk, skb);
5229
5230                                         __skb_pull(skb, tcp_header_len);
5231                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5232                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5233                                 }
5234                                 if (copied_early)
5235                                         tcp_cleanup_rbuf(sk, skb->len);
5236                         }
5237                         if (!eaten) {
5238                                 if (tcp_checksum_complete_user(sk, skb))
5239                                         goto csum_error;
5240
5241                                 /* Predicted packet is in window by definition.
5242                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5243                                  * Hence, check seq<=rcv_wup reduces to:
5244                                  */
5245                                 if (tcp_header_len ==
5246                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5247                                     tp->rcv_nxt == tp->rcv_wup)
5248                                         tcp_store_ts_recent(tp);
5249
5250                                 tcp_rcv_rtt_measure_ts(sk, skb);
5251
5252                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5253                                         goto step5;
5254
5255                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5256
5257                                 /* Bulk data transfer: receiver */
5258                                 __skb_pull(skb, tcp_header_len);
5259                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5260                                 skb_set_owner_r(skb, sk);
5261                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5262                         }
5263
5264                         tcp_event_data_recv(sk, skb);
5265
5266                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5267                                 /* Well, only one small jumplet in fast path... */
5268                                 tcp_ack(sk, skb, FLAG_DATA);
5269                                 tcp_data_snd_check(sk);
5270                                 if (!inet_csk_ack_scheduled(sk))
5271                                         goto no_ack;
5272                         }
5273
5274                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5275                                 __tcp_ack_snd_check(sk, 0);
5276 no_ack:
5277 #ifdef CONFIG_NET_DMA
5278                         if (copied_early)
5279                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5280                         else
5281 #endif
5282                         if (eaten)
5283                                 __kfree_skb(skb);
5284                         else
5285                                 sk->sk_data_ready(sk, 0);
5286                         return 0;
5287                 }
5288         }
5289
5290 slow_path:
5291         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5292                 goto csum_error;
5293
5294         /*
5295          *      Standard slow path.
5296          */
5297
5298         res = tcp_validate_incoming(sk, skb, th, 1);
5299         if (res <= 0)
5300                 return -res;
5301
5302 step5:
5303         if (th->ack)
5304                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5305
5306         tcp_rcv_rtt_measure_ts(sk, skb);
5307
5308         /* Process urgent data. */
5309         tcp_urg(sk, skb, th);
5310
5311         /* step 7: process the segment text */
5312         tcp_data_queue(sk, skb);
5313
5314         tcp_data_snd_check(sk);
5315         tcp_ack_snd_check(sk);
5316         return 0;
5317
5318 csum_error:
5319         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5320
5321 discard:
5322         __kfree_skb(skb);
5323         return 0;
5324 }
5325
5326 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5327                                          struct tcphdr *th, unsigned len)
5328 {
5329         struct tcp_sock *tp = tcp_sk(sk);
5330         struct inet_connection_sock *icsk = inet_csk(sk);
5331         int saved_clamp = tp->rx_opt.mss_clamp;
5332
5333         tcp_parse_options(skb, &tp->rx_opt, 0);
5334
5335         if (th->ack) {
5336                 /* rfc793:
5337                  * "If the state is SYN-SENT then
5338                  *    first check the ACK bit
5339                  *      If the ACK bit is set
5340                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5341                  *        a reset (unless the RST bit is set, if so drop
5342                  *        the segment and return)"
5343                  *
5344                  *  We do not send data with SYN, so that RFC-correct
5345                  *  test reduces to:
5346                  */
5347                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5348                         goto reset_and_undo;
5349
5350                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5351                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5352                              tcp_time_stamp)) {
5353                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5354                         goto reset_and_undo;
5355                 }
5356
5357                 /* Now ACK is acceptable.
5358                  *
5359                  * "If the RST bit is set
5360                  *    If the ACK was acceptable then signal the user "error:
5361                  *    connection reset", drop the segment, enter CLOSED state,
5362                  *    delete TCB, and return."
5363                  */
5364
5365                 if (th->rst) {
5366                         tcp_reset(sk);
5367                         goto discard;
5368                 }
5369
5370                 /* rfc793:
5371                  *   "fifth, if neither of the SYN or RST bits is set then
5372                  *    drop the segment and return."
5373                  *
5374                  *    See note below!
5375                  *                                        --ANK(990513)
5376                  */
5377                 if (!th->syn)
5378                         goto discard_and_undo;
5379
5380                 /* rfc793:
5381                  *   "If the SYN bit is on ...
5382                  *    are acceptable then ...
5383                  *    (our SYN has been ACKed), change the connection
5384                  *    state to ESTABLISHED..."
5385                  */
5386
5387                 TCP_ECN_rcv_synack(tp, th);
5388
5389                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5390                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5391
5392                 /* Ok.. it's good. Set up sequence numbers and
5393                  * move to established.
5394                  */
5395                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5396                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5397
5398                 /* RFC1323: The window in SYN & SYN/ACK segments is
5399                  * never scaled.
5400                  */
5401                 tp->snd_wnd = ntohs(th->window);
5402                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5403
5404                 if (!tp->rx_opt.wscale_ok) {
5405                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5406                         tp->window_clamp = min(tp->window_clamp, 65535U);
5407                 }
5408
5409                 if (tp->rx_opt.saw_tstamp) {
5410                         tp->rx_opt.tstamp_ok       = 1;
5411                         tp->tcp_header_len =
5412                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5413                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5414                         tcp_store_ts_recent(tp);
5415                 } else {
5416                         tp->tcp_header_len = sizeof(struct tcphdr);
5417                 }
5418
5419                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5420                         tcp_enable_fack(tp);
5421
5422                 tcp_mtup_init(sk);
5423                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5424                 tcp_initialize_rcv_mss(sk);
5425
5426                 /* Remember, tcp_poll() does not lock socket!
5427                  * Change state from SYN-SENT only after copied_seq
5428                  * is initialized. */
5429                 tp->copied_seq = tp->rcv_nxt;
5430                 smp_mb();
5431                 tcp_set_state(sk, TCP_ESTABLISHED);
5432
5433                 security_inet_conn_established(sk, skb);
5434
5435                 /* Make sure socket is routed, for correct metrics.  */
5436                 icsk->icsk_af_ops->rebuild_header(sk);
5437
5438                 tcp_init_metrics(sk);
5439
5440                 tcp_init_congestion_control(sk);
5441
5442                 /* Prevent spurious tcp_cwnd_restart() on first data
5443                  * packet.
5444                  */
5445                 tp->lsndtime = tcp_time_stamp;
5446
5447                 tcp_init_buffer_space(sk);
5448
5449                 if (sock_flag(sk, SOCK_KEEPOPEN))
5450                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5451
5452                 if (!tp->rx_opt.snd_wscale)
5453                         __tcp_fast_path_on(tp, tp->snd_wnd);
5454                 else
5455                         tp->pred_flags = 0;
5456
5457                 if (!sock_flag(sk, SOCK_DEAD)) {
5458                         sk->sk_state_change(sk);
5459                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5460                 }
5461
5462                 if (sk->sk_write_pending ||
5463                     icsk->icsk_accept_queue.rskq_defer_accept ||
5464                     icsk->icsk_ack.pingpong) {
5465                         /* Save one ACK. Data will be ready after
5466                          * several ticks, if write_pending is set.
5467                          *
5468                          * It may be deleted, but with this feature tcpdumps
5469                          * look so _wonderfully_ clever, that I was not able
5470                          * to stand against the temptation 8)     --ANK
5471                          */
5472                         inet_csk_schedule_ack(sk);
5473                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5474                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5475                         tcp_incr_quickack(sk);
5476                         tcp_enter_quickack_mode(sk);
5477                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5478                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5479
5480 discard:
5481                         __kfree_skb(skb);
5482                         return 0;
5483                 } else {
5484                         tcp_send_ack(sk);
5485                 }
5486                 return -1;
5487         }
5488
5489         /* No ACK in the segment */
5490
5491         if (th->rst) {
5492                 /* rfc793:
5493                  * "If the RST bit is set
5494                  *
5495                  *      Otherwise (no ACK) drop the segment and return."
5496                  */
5497
5498                 goto discard_and_undo;
5499         }
5500
5501         /* PAWS check. */
5502         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5503             tcp_paws_check(&tp->rx_opt, 0))
5504                 goto discard_and_undo;
5505
5506         if (th->syn) {
5507                 /* We see SYN without ACK. It is attempt of
5508                  * simultaneous connect with crossed SYNs.
5509                  * Particularly, it can be connect to self.
5510                  */
5511                 tcp_set_state(sk, TCP_SYN_RECV);
5512
5513                 if (tp->rx_opt.saw_tstamp) {
5514                         tp->rx_opt.tstamp_ok = 1;
5515                         tcp_store_ts_recent(tp);
5516                         tp->tcp_header_len =
5517                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5518                 } else {
5519                         tp->tcp_header_len = sizeof(struct tcphdr);
5520                 }
5521
5522                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5523                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5524
5525                 /* RFC1323: The window in SYN & SYN/ACK segments is
5526                  * never scaled.
5527                  */
5528                 tp->snd_wnd    = ntohs(th->window);
5529                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5530                 tp->max_window = tp->snd_wnd;
5531
5532                 TCP_ECN_rcv_syn(tp, th);
5533
5534                 tcp_mtup_init(sk);
5535                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5536                 tcp_initialize_rcv_mss(sk);
5537
5538                 tcp_send_synack(sk);
5539 #if 0
5540                 /* Note, we could accept data and URG from this segment.
5541                  * There are no obstacles to make this.
5542                  *
5543                  * However, if we ignore data in ACKless segments sometimes,
5544                  * we have no reasons to accept it sometimes.
5545                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5546                  * is not flawless. So, discard packet for sanity.
5547                  * Uncomment this return to process the data.
5548                  */
5549                 return -1;
5550 #else
5551                 goto discard;
5552 #endif
5553         }
5554         /* "fifth, if neither of the SYN or RST bits is set then
5555          * drop the segment and return."
5556          */
5557
5558 discard_and_undo:
5559         tcp_clear_options(&tp->rx_opt);
5560         tp->rx_opt.mss_clamp = saved_clamp;
5561         goto discard;
5562
5563 reset_and_undo:
5564         tcp_clear_options(&tp->rx_opt);
5565         tp->rx_opt.mss_clamp = saved_clamp;
5566         return 1;
5567 }
5568
5569 /*
5570  *      This function implements the receiving procedure of RFC 793 for
5571  *      all states except ESTABLISHED and TIME_WAIT.
5572  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5573  *      address independent.
5574  */
5575
5576 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5577                           struct tcphdr *th, unsigned len)
5578 {
5579         struct tcp_sock *tp = tcp_sk(sk);
5580         struct inet_connection_sock *icsk = inet_csk(sk);
5581         int queued = 0;
5582         int res;
5583
5584         tp->rx_opt.saw_tstamp = 0;
5585
5586         switch (sk->sk_state) {
5587         case TCP_CLOSE:
5588                 goto discard;
5589
5590         case TCP_LISTEN:
5591                 if (th->ack)
5592                         return 1;
5593
5594                 if (th->rst)
5595                         goto discard;
5596
5597                 if (th->syn) {
5598                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5599                                 return 1;
5600
5601                         /* Now we have several options: In theory there is
5602                          * nothing else in the frame. KA9Q has an option to
5603                          * send data with the syn, BSD accepts data with the
5604                          * syn up to the [to be] advertised window and
5605                          * Solaris 2.1 gives you a protocol error. For now
5606                          * we just ignore it, that fits the spec precisely
5607                          * and avoids incompatibilities. It would be nice in
5608                          * future to drop through and process the data.
5609                          *
5610                          * Now that TTCP is starting to be used we ought to
5611                          * queue this data.
5612                          * But, this leaves one open to an easy denial of
5613                          * service attack, and SYN cookies can't defend
5614                          * against this problem. So, we drop the data
5615                          * in the interest of security over speed unless
5616                          * it's still in use.
5617                          */
5618                         kfree_skb(skb);
5619                         return 0;
5620                 }
5621                 goto discard;
5622
5623         case TCP_SYN_SENT:
5624                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5625                 if (queued >= 0)
5626                         return queued;
5627
5628                 /* Do step6 onward by hand. */
5629                 tcp_urg(sk, skb, th);
5630                 __kfree_skb(skb);
5631                 tcp_data_snd_check(sk);
5632                 return 0;
5633         }
5634
5635         res = tcp_validate_incoming(sk, skb, th, 0);
5636         if (res <= 0)
5637                 return -res;
5638
5639         /* step 5: check the ACK field */
5640         if (th->ack) {
5641                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5642
5643                 switch (sk->sk_state) {
5644                 case TCP_SYN_RECV:
5645                         if (acceptable) {
5646                                 tp->copied_seq = tp->rcv_nxt;
5647                                 smp_mb();
5648                                 tcp_set_state(sk, TCP_ESTABLISHED);
5649                                 sk->sk_state_change(sk);
5650
5651                                 /* Note, that this wakeup is only for marginal
5652                                  * crossed SYN case. Passively open sockets
5653                                  * are not waked up, because sk->sk_sleep ==
5654                                  * NULL and sk->sk_socket == NULL.
5655                                  */
5656                                 if (sk->sk_socket)
5657                                         sk_wake_async(sk,
5658                                                       SOCK_WAKE_IO, POLL_OUT);
5659
5660                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5661                                 tp->snd_wnd = ntohs(th->window) <<
5662                                               tp->rx_opt.snd_wscale;
5663                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5664                                             TCP_SKB_CB(skb)->seq);
5665
5666                                 /* tcp_ack considers this ACK as duplicate
5667                                  * and does not calculate rtt.
5668                                  * Fix it at least with timestamps.
5669                                  */
5670                                 if (tp->rx_opt.saw_tstamp &&
5671                                     tp->rx_opt.rcv_tsecr && !tp->srtt)
5672                                         tcp_ack_saw_tstamp(sk, 0);
5673
5674                                 if (tp->rx_opt.tstamp_ok)
5675                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5676
5677                                 /* Make sure socket is routed, for
5678                                  * correct metrics.
5679                                  */
5680                                 icsk->icsk_af_ops->rebuild_header(sk);
5681
5682                                 tcp_init_metrics(sk);
5683
5684                                 tcp_init_congestion_control(sk);
5685
5686                                 /* Prevent spurious tcp_cwnd_restart() on
5687                                  * first data packet.
5688                                  */
5689                                 tp->lsndtime = tcp_time_stamp;
5690
5691                                 tcp_mtup_init(sk);
5692                                 tcp_initialize_rcv_mss(sk);
5693                                 tcp_init_buffer_space(sk);
5694                                 tcp_fast_path_on(tp);
5695                         } else {
5696                                 return 1;
5697                         }
5698                         break;
5699
5700                 case TCP_FIN_WAIT1:
5701                         if (tp->snd_una == tp->write_seq) {
5702                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5703                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5704                                 dst_confirm(sk->sk_dst_cache);
5705
5706                                 if (!sock_flag(sk, SOCK_DEAD))
5707                                         /* Wake up lingering close() */
5708                                         sk->sk_state_change(sk);
5709                                 else {
5710                                         int tmo;
5711
5712                                         if (tp->linger2 < 0 ||
5713                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5714                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5715                                                 tcp_done(sk);
5716                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5717                                                 return 1;
5718                                         }
5719
5720                                         tmo = tcp_fin_time(sk);
5721                                         if (tmo > TCP_TIMEWAIT_LEN) {
5722                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5723                                         } else if (th->fin || sock_owned_by_user(sk)) {
5724                                                 /* Bad case. We could lose such FIN otherwise.
5725                                                  * It is not a big problem, but it looks confusing
5726                                                  * and not so rare event. We still can lose it now,
5727                                                  * if it spins in bh_lock_sock(), but it is really
5728                                                  * marginal case.
5729                                                  */
5730                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5731                                         } else {
5732                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5733                                                 goto discard;
5734                                         }
5735                                 }
5736                         }
5737                         break;
5738
5739                 case TCP_CLOSING:
5740                         if (tp->snd_una == tp->write_seq) {
5741                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5742                                 goto discard;
5743                         }
5744                         break;
5745
5746                 case TCP_LAST_ACK:
5747                         if (tp->snd_una == tp->write_seq) {
5748                                 tcp_update_metrics(sk);
5749                                 tcp_done(sk);
5750                                 goto discard;
5751                         }
5752                         break;
5753                 }
5754         } else
5755                 goto discard;
5756
5757         /* step 6: check the URG bit */
5758         tcp_urg(sk, skb, th);
5759
5760         /* step 7: process the segment text */
5761         switch (sk->sk_state) {
5762         case TCP_CLOSE_WAIT:
5763         case TCP_CLOSING:
5764         case TCP_LAST_ACK:
5765                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5766                         break;
5767         case TCP_FIN_WAIT1:
5768         case TCP_FIN_WAIT2:
5769                 /* RFC 793 says to queue data in these states,
5770                  * RFC 1122 says we MUST send a reset.
5771                  * BSD 4.4 also does reset.
5772                  */
5773                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5774                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5775                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5776                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5777                                 tcp_reset(sk);
5778                                 return 1;
5779                         }
5780                 }
5781                 /* Fall through */
5782         case TCP_ESTABLISHED:
5783                 tcp_data_queue(sk, skb);
5784                 queued = 1;
5785                 break;
5786         }
5787
5788         /* tcp_data could move socket to TIME-WAIT */
5789         if (sk->sk_state != TCP_CLOSE) {
5790                 tcp_data_snd_check(sk);
5791                 tcp_ack_snd_check(sk);
5792         }
5793
5794         if (!queued) {
5795 discard:
5796                 __kfree_skb(skb);
5797         }
5798         return 0;
5799 }
5800
5801 EXPORT_SYMBOL(sysctl_tcp_ecn);
5802 EXPORT_SYMBOL(sysctl_tcp_reordering);
5803 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5804 EXPORT_SYMBOL(tcp_parse_options);
5805 #ifdef CONFIG_TCP_MD5SIG
5806 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5807 #endif
5808 EXPORT_SYMBOL(tcp_rcv_established);
5809 EXPORT_SYMBOL(tcp_rcv_state_process);
5810 EXPORT_SYMBOL(tcp_initialize_rcv_mss);