63c3ef6d4a1c21b448739176cf31acf872efca61
[pandora-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
73
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
83
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
95 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
96 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
98 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
99 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
100 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
101 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
102 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
108
109 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117
118 /* Adapt the MSS value used to make delayed ack decision to the
119  * real world.
120  */
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122 {
123         struct inet_connection_sock *icsk = inet_csk(sk);
124         const unsigned int lss = icsk->icsk_ack.last_seg_size;
125         unsigned int len;
126
127         icsk->icsk_ack.last_seg_size = 0;
128
129         /* skb->len may jitter because of SACKs, even if peer
130          * sends good full-sized frames.
131          */
132         len = skb_shinfo(skb)->gso_size ? : skb->len;
133         if (len >= icsk->icsk_ack.rcv_mss) {
134                 icsk->icsk_ack.rcv_mss = len;
135         } else {
136                 /* Otherwise, we make more careful check taking into account,
137                  * that SACKs block is variable.
138                  *
139                  * "len" is invariant segment length, including TCP header.
140                  */
141                 len += skb->data - skb_transport_header(skb);
142                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143                     /* If PSH is not set, packet should be
144                      * full sized, provided peer TCP is not badly broken.
145                      * This observation (if it is correct 8)) allows
146                      * to handle super-low mtu links fairly.
147                      */
148                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150                         /* Subtract also invariant (if peer is RFC compliant),
151                          * tcp header plus fixed timestamp option length.
152                          * Resulting "len" is MSS free of SACK jitter.
153                          */
154                         len -= tcp_sk(sk)->tcp_header_len;
155                         icsk->icsk_ack.last_seg_size = len;
156                         if (len == lss) {
157                                 icsk->icsk_ack.rcv_mss = len;
158                                 return;
159                         }
160                 }
161                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164         }
165 }
166
167 static void tcp_incr_quickack(struct sock *sk)
168 {
169         struct inet_connection_sock *icsk = inet_csk(sk);
170         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171
172         if (quickacks == 0)
173                 quickacks = 2;
174         if (quickacks > icsk->icsk_ack.quick)
175                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176 }
177
178 void tcp_enter_quickack_mode(struct sock *sk)
179 {
180         struct inet_connection_sock *icsk = inet_csk(sk);
181         tcp_incr_quickack(sk);
182         icsk->icsk_ack.pingpong = 0;
183         icsk->icsk_ack.ato = TCP_ATO_MIN;
184 }
185
186 /* Send ACKs quickly, if "quick" count is not exhausted
187  * and the session is not interactive.
188  */
189
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
191 {
192         const struct inet_connection_sock *icsk = inet_csk(sk);
193         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194 }
195
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197 {
198         if (tp->ecn_flags & TCP_ECN_OK)
199                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200 }
201
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203 {
204         if (tcp_hdr(skb)->cwr)
205                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206 }
207
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209 {
210         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 }
212
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214 {
215         if (tp->ecn_flags & TCP_ECN_OK) {
216                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218                 /* Funny extension: if ECT is not set on a segment,
219                  * it is surely retransmit. It is not in ECN RFC,
220                  * but Linux follows this rule. */
221                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222                         tcp_enter_quickack_mode((struct sock *)tp);
223         }
224 }
225
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227 {
228         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229                 tp->ecn_flags &= ~TCP_ECN_OK;
230 }
231
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233 {
234         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235                 tp->ecn_flags &= ~TCP_ECN_OK;
236 }
237
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239 {
240         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241                 return 1;
242         return 0;
243 }
244
245 /* Buffer size and advertised window tuning.
246  *
247  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248  */
249
250 static void tcp_fixup_sndbuf(struct sock *sk)
251 {
252         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253                      sizeof(struct sk_buff);
254
255         if (sk->sk_sndbuf < 3 * sndmem)
256                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257 }
258
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260  *
261  * All tcp_full_space() is split to two parts: "network" buffer, allocated
262  * forward and advertised in receiver window (tp->rcv_wnd) and
263  * "application buffer", required to isolate scheduling/application
264  * latencies from network.
265  * window_clamp is maximal advertised window. It can be less than
266  * tcp_full_space(), in this case tcp_full_space() - window_clamp
267  * is reserved for "application" buffer. The less window_clamp is
268  * the smoother our behaviour from viewpoint of network, but the lower
269  * throughput and the higher sensitivity of the connection to losses. 8)
270  *
271  * rcv_ssthresh is more strict window_clamp used at "slow start"
272  * phase to predict further behaviour of this connection.
273  * It is used for two goals:
274  * - to enforce header prediction at sender, even when application
275  *   requires some significant "application buffer". It is check #1.
276  * - to prevent pruning of receive queue because of misprediction
277  *   of receiver window. Check #2.
278  *
279  * The scheme does not work when sender sends good segments opening
280  * window and then starts to feed us spaghetti. But it should work
281  * in common situations. Otherwise, we have to rely on queue collapsing.
282  */
283
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286 {
287         struct tcp_sock *tp = tcp_sk(sk);
288         /* Optimize this! */
289         int truesize = tcp_win_from_space(skb->truesize) >> 1;
290         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291
292         while (tp->rcv_ssthresh <= window) {
293                 if (truesize <= skb->len)
294                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295
296                 truesize >>= 1;
297                 window >>= 1;
298         }
299         return 0;
300 }
301
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303 {
304         struct tcp_sock *tp = tcp_sk(sk);
305
306         /* Check #1 */
307         if (tp->rcv_ssthresh < tp->window_clamp &&
308             (int)tp->rcv_ssthresh < tcp_space(sk) &&
309             !tcp_memory_pressure) {
310                 int incr;
311
312                 /* Check #2. Increase window, if skb with such overhead
313                  * will fit to rcvbuf in future.
314                  */
315                 if (tcp_win_from_space(skb->truesize) <= skb->len)
316                         incr = 2 * tp->advmss;
317                 else
318                         incr = __tcp_grow_window(sk, skb);
319
320                 if (incr) {
321                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322                                                tp->window_clamp);
323                         inet_csk(sk)->icsk_ack.quick |= 1;
324                 }
325         }
326 }
327
328 /* 3. Tuning rcvbuf, when connection enters established state. */
329
330 static void tcp_fixup_rcvbuf(struct sock *sk)
331 {
332         struct tcp_sock *tp = tcp_sk(sk);
333         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334
335         /* Try to select rcvbuf so that 4 mss-sized segments
336          * will fit to window and corresponding skbs will fit to our rcvbuf.
337          * (was 3; 4 is minimum to allow fast retransmit to work.)
338          */
339         while (tcp_win_from_space(rcvmem) < tp->advmss)
340                 rcvmem += 128;
341         if (sk->sk_rcvbuf < 4 * rcvmem)
342                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343 }
344
345 /* 4. Try to fixup all. It is made immediately after connection enters
346  *    established state.
347  */
348 static void tcp_init_buffer_space(struct sock *sk)
349 {
350         struct tcp_sock *tp = tcp_sk(sk);
351         int maxwin;
352
353         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354                 tcp_fixup_rcvbuf(sk);
355         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356                 tcp_fixup_sndbuf(sk);
357
358         tp->rcvq_space.space = tp->rcv_wnd;
359
360         maxwin = tcp_full_space(sk);
361
362         if (tp->window_clamp >= maxwin) {
363                 tp->window_clamp = maxwin;
364
365                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366                         tp->window_clamp = max(maxwin -
367                                                (maxwin >> sysctl_tcp_app_win),
368                                                4 * tp->advmss);
369         }
370
371         /* Force reservation of one segment. */
372         if (sysctl_tcp_app_win &&
373             tp->window_clamp > 2 * tp->advmss &&
374             tp->window_clamp + tp->advmss > maxwin)
375                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376
377         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378         tp->snd_cwnd_stamp = tcp_time_stamp;
379 }
380
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
383 {
384         struct tcp_sock *tp = tcp_sk(sk);
385         struct inet_connection_sock *icsk = inet_csk(sk);
386
387         icsk->icsk_ack.quick = 0;
388
389         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391             !tcp_memory_pressure &&
392             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394                                     sysctl_tcp_rmem[2]);
395         }
396         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398 }
399
400 /* Initialize RCV_MSS value.
401  * RCV_MSS is an our guess about MSS used by the peer.
402  * We haven't any direct information about the MSS.
403  * It's better to underestimate the RCV_MSS rather than overestimate.
404  * Overestimations make us ACKing less frequently than needed.
405  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406  */
407 void tcp_initialize_rcv_mss(struct sock *sk)
408 {
409         struct tcp_sock *tp = tcp_sk(sk);
410         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411
412         hint = min(hint, tp->rcv_wnd / 2);
413         hint = min(hint, TCP_MIN_RCVMSS);
414         hint = max(hint, TCP_MIN_MSS);
415
416         inet_csk(sk)->icsk_ack.rcv_mss = hint;
417 }
418
419 /* Receiver "autotuning" code.
420  *
421  * The algorithm for RTT estimation w/o timestamps is based on
422  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424  *
425  * More detail on this code can be found at
426  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427  * though this reference is out of date.  A new paper
428  * is pending.
429  */
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431 {
432         u32 new_sample = tp->rcv_rtt_est.rtt;
433         long m = sample;
434
435         if (m == 0)
436                 m = 1;
437
438         if (new_sample != 0) {
439                 /* If we sample in larger samples in the non-timestamp
440                  * case, we could grossly overestimate the RTT especially
441                  * with chatty applications or bulk transfer apps which
442                  * are stalled on filesystem I/O.
443                  *
444                  * Also, since we are only going for a minimum in the
445                  * non-timestamp case, we do not smooth things out
446                  * else with timestamps disabled convergence takes too
447                  * long.
448                  */
449                 if (!win_dep) {
450                         m -= (new_sample >> 3);
451                         new_sample += m;
452                 } else if (m < new_sample)
453                         new_sample = m << 3;
454         } else {
455                 /* No previous measure. */
456                 new_sample = m << 3;
457         }
458
459         if (tp->rcv_rtt_est.rtt != new_sample)
460                 tp->rcv_rtt_est.rtt = new_sample;
461 }
462
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464 {
465         if (tp->rcv_rtt_est.time == 0)
466                 goto new_measure;
467         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468                 return;
469         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470
471 new_measure:
472         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473         tp->rcv_rtt_est.time = tcp_time_stamp;
474 }
475
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477                                           const struct sk_buff *skb)
478 {
479         struct tcp_sock *tp = tcp_sk(sk);
480         if (tp->rx_opt.rcv_tsecr &&
481             (TCP_SKB_CB(skb)->end_seq -
482              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484 }
485
486 /*
487  * This function should be called every time data is copied to user space.
488  * It calculates the appropriate TCP receive buffer space.
489  */
490 void tcp_rcv_space_adjust(struct sock *sk)
491 {
492         struct tcp_sock *tp = tcp_sk(sk);
493         int time;
494         int space;
495
496         if (tp->rcvq_space.time == 0)
497                 goto new_measure;
498
499         time = tcp_time_stamp - tp->rcvq_space.time;
500         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501                 return;
502
503         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504
505         space = max(tp->rcvq_space.space, space);
506
507         if (tp->rcvq_space.space != space) {
508                 int rcvmem;
509
510                 tp->rcvq_space.space = space;
511
512                 if (sysctl_tcp_moderate_rcvbuf &&
513                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514                         int new_clamp = space;
515
516                         /* Receive space grows, normalize in order to
517                          * take into account packet headers and sk_buff
518                          * structure overhead.
519                          */
520                         space /= tp->advmss;
521                         if (!space)
522                                 space = 1;
523                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
524                                   16 + sizeof(struct sk_buff));
525                         while (tcp_win_from_space(rcvmem) < tp->advmss)
526                                 rcvmem += 128;
527                         space *= rcvmem;
528                         space = min(space, sysctl_tcp_rmem[2]);
529                         if (space > sk->sk_rcvbuf) {
530                                 sk->sk_rcvbuf = space;
531
532                                 /* Make the window clamp follow along.  */
533                                 tp->window_clamp = new_clamp;
534                         }
535                 }
536         }
537
538 new_measure:
539         tp->rcvq_space.seq = tp->copied_seq;
540         tp->rcvq_space.time = tcp_time_stamp;
541 }
542
543 /* There is something which you must keep in mind when you analyze the
544  * behavior of the tp->ato delayed ack timeout interval.  When a
545  * connection starts up, we want to ack as quickly as possible.  The
546  * problem is that "good" TCP's do slow start at the beginning of data
547  * transmission.  The means that until we send the first few ACK's the
548  * sender will sit on his end and only queue most of his data, because
549  * he can only send snd_cwnd unacked packets at any given time.  For
550  * each ACK we send, he increments snd_cwnd and transmits more of his
551  * queue.  -DaveM
552  */
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554 {
555         struct tcp_sock *tp = tcp_sk(sk);
556         struct inet_connection_sock *icsk = inet_csk(sk);
557         u32 now;
558
559         inet_csk_schedule_ack(sk);
560
561         tcp_measure_rcv_mss(sk, skb);
562
563         tcp_rcv_rtt_measure(tp);
564
565         now = tcp_time_stamp;
566
567         if (!icsk->icsk_ack.ato) {
568                 /* The _first_ data packet received, initialize
569                  * delayed ACK engine.
570                  */
571                 tcp_incr_quickack(sk);
572                 icsk->icsk_ack.ato = TCP_ATO_MIN;
573         } else {
574                 int m = now - icsk->icsk_ack.lrcvtime;
575
576                 if (m <= TCP_ATO_MIN / 2) {
577                         /* The fastest case is the first. */
578                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579                 } else if (m < icsk->icsk_ack.ato) {
580                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
582                                 icsk->icsk_ack.ato = icsk->icsk_rto;
583                 } else if (m > icsk->icsk_rto) {
584                         /* Too long gap. Apparently sender failed to
585                          * restart window, so that we send ACKs quickly.
586                          */
587                         tcp_incr_quickack(sk);
588                         sk_mem_reclaim(sk);
589                 }
590         }
591         icsk->icsk_ack.lrcvtime = now;
592
593         TCP_ECN_check_ce(tp, skb);
594
595         if (skb->len >= 128)
596                 tcp_grow_window(sk, skb);
597 }
598
599 static u32 tcp_rto_min(struct sock *sk)
600 {
601         struct dst_entry *dst = __sk_dst_get(sk);
602         u32 rto_min = TCP_RTO_MIN;
603
604         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605                 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606         return rto_min;
607 }
608
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610  * routine either comes from timestamps, or from segments that were
611  * known _not_ to have been retransmitted [see Karn/Partridge
612  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613  * piece by Van Jacobson.
614  * NOTE: the next three routines used to be one big routine.
615  * To save cycles in the RFC 1323 implementation it was better to break
616  * it up into three procedures. -- erics
617  */
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619 {
620         struct tcp_sock *tp = tcp_sk(sk);
621         long m = mrtt; /* RTT */
622
623         /*      The following amusing code comes from Jacobson's
624          *      article in SIGCOMM '88.  Note that rtt and mdev
625          *      are scaled versions of rtt and mean deviation.
626          *      This is designed to be as fast as possible
627          *      m stands for "measurement".
628          *
629          *      On a 1990 paper the rto value is changed to:
630          *      RTO = rtt + 4 * mdev
631          *
632          * Funny. This algorithm seems to be very broken.
633          * These formulae increase RTO, when it should be decreased, increase
634          * too slowly, when it should be increased quickly, decrease too quickly
635          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636          * does not matter how to _calculate_ it. Seems, it was trap
637          * that VJ failed to avoid. 8)
638          */
639         if (m == 0)
640                 m = 1;
641         if (tp->srtt != 0) {
642                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
643                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
644                 if (m < 0) {
645                         m = -m;         /* m is now abs(error) */
646                         m -= (tp->mdev >> 2);   /* similar update on mdev */
647                         /* This is similar to one of Eifel findings.
648                          * Eifel blocks mdev updates when rtt decreases.
649                          * This solution is a bit different: we use finer gain
650                          * for mdev in this case (alpha*beta).
651                          * Like Eifel it also prevents growth of rto,
652                          * but also it limits too fast rto decreases,
653                          * happening in pure Eifel.
654                          */
655                         if (m > 0)
656                                 m >>= 3;
657                 } else {
658                         m -= (tp->mdev >> 2);   /* similar update on mdev */
659                 }
660                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
661                 if (tp->mdev > tp->mdev_max) {
662                         tp->mdev_max = tp->mdev;
663                         if (tp->mdev_max > tp->rttvar)
664                                 tp->rttvar = tp->mdev_max;
665                 }
666                 if (after(tp->snd_una, tp->rtt_seq)) {
667                         if (tp->mdev_max < tp->rttvar)
668                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669                         tp->rtt_seq = tp->snd_nxt;
670                         tp->mdev_max = tcp_rto_min(sk);
671                 }
672         } else {
673                 /* no previous measure. */
674                 tp->srtt = m << 3;      /* take the measured time to be rtt */
675                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
676                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677                 tp->rtt_seq = tp->snd_nxt;
678         }
679 }
680
681 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
682  * routine referred to above.
683  */
684 static inline void tcp_set_rto(struct sock *sk)
685 {
686         const struct tcp_sock *tp = tcp_sk(sk);
687         /* Old crap is replaced with new one. 8)
688          *
689          * More seriously:
690          * 1. If rtt variance happened to be less 50msec, it is hallucination.
691          *    It cannot be less due to utterly erratic ACK generation made
692          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693          *    to do with delayed acks, because at cwnd>2 true delack timeout
694          *    is invisible. Actually, Linux-2.4 also generates erratic
695          *    ACKs in some circumstances.
696          */
697         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698
699         /* 2. Fixups made earlier cannot be right.
700          *    If we do not estimate RTO correctly without them,
701          *    all the algo is pure shit and should be replaced
702          *    with correct one. It is exactly, which we pretend to do.
703          */
704 }
705
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707  * guarantees that rto is higher.
708  */
709 static inline void tcp_bound_rto(struct sock *sk)
710 {
711         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
713 }
714
715 /* Save metrics learned by this TCP session.
716    This function is called only, when TCP finishes successfully
717    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
718  */
719 void tcp_update_metrics(struct sock *sk)
720 {
721         struct tcp_sock *tp = tcp_sk(sk);
722         struct dst_entry *dst = __sk_dst_get(sk);
723
724         if (sysctl_tcp_nometrics_save)
725                 return;
726
727         dst_confirm(dst);
728
729         if (dst && (dst->flags & DST_HOST)) {
730                 const struct inet_connection_sock *icsk = inet_csk(sk);
731                 int m;
732                 unsigned long rtt;
733
734                 if (icsk->icsk_backoff || !tp->srtt) {
735                         /* This session failed to estimate rtt. Why?
736                          * Probably, no packets returned in time.
737                          * Reset our results.
738                          */
739                         if (!(dst_metric_locked(dst, RTAX_RTT)))
740                                 dst->metrics[RTAX_RTT - 1] = 0;
741                         return;
742                 }
743
744                 rtt = dst_metric_rtt(dst, RTAX_RTT);
745                 m = rtt - tp->srtt;
746
747                 /* If newly calculated rtt larger than stored one,
748                  * store new one. Otherwise, use EWMA. Remember,
749                  * rtt overestimation is always better than underestimation.
750                  */
751                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
752                         if (m <= 0)
753                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
754                         else
755                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
756                 }
757
758                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759                         unsigned long var;
760                         if (m < 0)
761                                 m = -m;
762
763                         /* Scale deviation to rttvar fixed point */
764                         m >>= 1;
765                         if (m < tp->mdev)
766                                 m = tp->mdev;
767
768                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
769                         if (m >= var)
770                                 var = m;
771                         else
772                                 var -= (var - m) >> 2;
773
774                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
775                 }
776
777                 if (tp->snd_ssthresh >= 0xFFFF) {
778                         /* Slow start still did not finish. */
779                         if (dst_metric(dst, RTAX_SSTHRESH) &&
780                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
781                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
782                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
783                         if (!dst_metric_locked(dst, RTAX_CWND) &&
784                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
785                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
786                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
787                            icsk->icsk_ca_state == TCP_CA_Open) {
788                         /* Cong. avoidance phase, cwnd is reliable. */
789                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
790                                 dst->metrics[RTAX_SSTHRESH-1] =
791                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
792                         if (!dst_metric_locked(dst, RTAX_CWND))
793                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
794                 } else {
795                         /* Else slow start did not finish, cwnd is non-sense,
796                            ssthresh may be also invalid.
797                          */
798                         if (!dst_metric_locked(dst, RTAX_CWND))
799                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
800                         if (dst_metric(dst, RTAX_SSTHRESH) &&
801                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
803                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
804                 }
805
806                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
807                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
808                             tp->reordering != sysctl_tcp_reordering)
809                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
810                 }
811         }
812 }
813
814 /* Numbers are taken from RFC3390.
815  *
816  * John Heffner states:
817  *
818  *      The RFC specifies a window of no more than 4380 bytes
819  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
820  *      is a bit misleading because they use a clamp at 4380 bytes
821  *      rather than use a multiplier in the relevant range.
822  */
823 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
824 {
825         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
826
827         if (!cwnd) {
828                 if (tp->mss_cache > 1460)
829                         cwnd = 2;
830                 else
831                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
832         }
833         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
834 }
835
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
838 {
839         struct tcp_sock *tp = tcp_sk(sk);
840         const struct inet_connection_sock *icsk = inet_csk(sk);
841
842         tp->prior_ssthresh = 0;
843         tp->bytes_acked = 0;
844         if (icsk->icsk_ca_state < TCP_CA_CWR) {
845                 tp->undo_marker = 0;
846                 if (set_ssthresh)
847                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848                 tp->snd_cwnd = min(tp->snd_cwnd,
849                                    tcp_packets_in_flight(tp) + 1U);
850                 tp->snd_cwnd_cnt = 0;
851                 tp->high_seq = tp->snd_nxt;
852                 tp->snd_cwnd_stamp = tcp_time_stamp;
853                 TCP_ECN_queue_cwr(tp);
854
855                 tcp_set_ca_state(sk, TCP_CA_CWR);
856         }
857 }
858
859 /*
860  * Packet counting of FACK is based on in-order assumptions, therefore TCP
861  * disables it when reordering is detected
862  */
863 static void tcp_disable_fack(struct tcp_sock *tp)
864 {
865         /* RFC3517 uses different metric in lost marker => reset on change */
866         if (tcp_is_fack(tp))
867                 tp->lost_skb_hint = NULL;
868         tp->rx_opt.sack_ok &= ~2;
869 }
870
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
873 {
874         tp->rx_opt.sack_ok |= 4;
875 }
876
877 /* Initialize metrics on socket. */
878
879 static void tcp_init_metrics(struct sock *sk)
880 {
881         struct tcp_sock *tp = tcp_sk(sk);
882         struct dst_entry *dst = __sk_dst_get(sk);
883
884         if (dst == NULL)
885                 goto reset;
886
887         dst_confirm(dst);
888
889         if (dst_metric_locked(dst, RTAX_CWND))
890                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891         if (dst_metric(dst, RTAX_SSTHRESH)) {
892                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
895         }
896         if (dst_metric(dst, RTAX_REORDERING) &&
897             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
898                 tcp_disable_fack(tp);
899                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
900         }
901
902         if (dst_metric(dst, RTAX_RTT) == 0)
903                 goto reset;
904
905         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
906                 goto reset;
907
908         /* Initial rtt is determined from SYN,SYN-ACK.
909          * The segment is small and rtt may appear much
910          * less than real one. Use per-dst memory
911          * to make it more realistic.
912          *
913          * A bit of theory. RTT is time passed after "normal" sized packet
914          * is sent until it is ACKed. In normal circumstances sending small
915          * packets force peer to delay ACKs and calculation is correct too.
916          * The algorithm is adaptive and, provided we follow specs, it
917          * NEVER underestimate RTT. BUT! If peer tries to make some clever
918          * tricks sort of "quick acks" for time long enough to decrease RTT
919          * to low value, and then abruptly stops to do it and starts to delay
920          * ACKs, wait for troubles.
921          */
922         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
923                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
924                 tp->rtt_seq = tp->snd_nxt;
925         }
926         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
927                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
928                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
929         }
930         tcp_set_rto(sk);
931         tcp_bound_rto(sk);
932         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
933                 goto reset;
934         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
935         tp->snd_cwnd_stamp = tcp_time_stamp;
936         return;
937
938 reset:
939         /* Play conservative. If timestamps are not
940          * supported, TCP will fail to recalculate correct
941          * rtt, if initial rto is too small. FORGET ALL AND RESET!
942          */
943         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
944                 tp->srtt = 0;
945                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
946                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
947         }
948 }
949
950 static void tcp_update_reordering(struct sock *sk, const int metric,
951                                   const int ts)
952 {
953         struct tcp_sock *tp = tcp_sk(sk);
954         if (metric > tp->reordering) {
955                 int mib_idx;
956
957                 tp->reordering = min(TCP_MAX_REORDERING, metric);
958
959                 /* This exciting event is worth to be remembered. 8) */
960                 if (ts)
961                         mib_idx = LINUX_MIB_TCPTSREORDER;
962                 else if (tcp_is_reno(tp))
963                         mib_idx = LINUX_MIB_TCPRENOREORDER;
964                 else if (tcp_is_fack(tp))
965                         mib_idx = LINUX_MIB_TCPFACKREORDER;
966                 else
967                         mib_idx = LINUX_MIB_TCPSACKREORDER;
968
969                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
970 #if FASTRETRANS_DEBUG > 1
971                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973                        tp->reordering,
974                        tp->fackets_out,
975                        tp->sacked_out,
976                        tp->undo_marker ? tp->undo_retrans : 0);
977 #endif
978                 tcp_disable_fack(tp);
979         }
980 }
981
982 /* This must be called before lost_out is incremented */
983 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
984 {
985         if ((tp->retransmit_skb_hint == NULL) ||
986             before(TCP_SKB_CB(skb)->seq,
987                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
988                 tp->retransmit_skb_hint = skb;
989
990         if (!tp->lost_out ||
991             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
992                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
993 }
994
995 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
996 {
997         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
998                 tcp_verify_retransmit_hint(tp, skb);
999
1000                 tp->lost_out += tcp_skb_pcount(skb);
1001                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1002         }
1003 }
1004
1005 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1006                                             struct sk_buff *skb)
1007 {
1008         tcp_verify_retransmit_hint(tp, skb);
1009
1010         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1011                 tp->lost_out += tcp_skb_pcount(skb);
1012                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1013         }
1014 }
1015
1016 /* This procedure tags the retransmission queue when SACKs arrive.
1017  *
1018  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1019  * Packets in queue with these bits set are counted in variables
1020  * sacked_out, retrans_out and lost_out, correspondingly.
1021  *
1022  * Valid combinations are:
1023  * Tag  InFlight        Description
1024  * 0    1               - orig segment is in flight.
1025  * S    0               - nothing flies, orig reached receiver.
1026  * L    0               - nothing flies, orig lost by net.
1027  * R    2               - both orig and retransmit are in flight.
1028  * L|R  1               - orig is lost, retransmit is in flight.
1029  * S|R  1               - orig reached receiver, retrans is still in flight.
1030  * (L|S|R is logically valid, it could occur when L|R is sacked,
1031  *  but it is equivalent to plain S and code short-curcuits it to S.
1032  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1033  *
1034  * These 6 states form finite state machine, controlled by the following events:
1035  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1036  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1037  * 3. Loss detection event of one of three flavors:
1038  *      A. Scoreboard estimator decided the packet is lost.
1039  *         A'. Reno "three dupacks" marks head of queue lost.
1040  *         A''. Its FACK modfication, head until snd.fack is lost.
1041  *      B. SACK arrives sacking data transmitted after never retransmitted
1042  *         hole was sent out.
1043  *      C. SACK arrives sacking SND.NXT at the moment, when the
1044  *         segment was retransmitted.
1045  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1046  *
1047  * It is pleasant to note, that state diagram turns out to be commutative,
1048  * so that we are allowed not to be bothered by order of our actions,
1049  * when multiple events arrive simultaneously. (see the function below).
1050  *
1051  * Reordering detection.
1052  * --------------------
1053  * Reordering metric is maximal distance, which a packet can be displaced
1054  * in packet stream. With SACKs we can estimate it:
1055  *
1056  * 1. SACK fills old hole and the corresponding segment was not
1057  *    ever retransmitted -> reordering. Alas, we cannot use it
1058  *    when segment was retransmitted.
1059  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1060  *    for retransmitted and already SACKed segment -> reordering..
1061  * Both of these heuristics are not used in Loss state, when we cannot
1062  * account for retransmits accurately.
1063  *
1064  * SACK block validation.
1065  * ----------------------
1066  *
1067  * SACK block range validation checks that the received SACK block fits to
1068  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1069  * Note that SND.UNA is not included to the range though being valid because
1070  * it means that the receiver is rather inconsistent with itself reporting
1071  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1072  * perfectly valid, however, in light of RFC2018 which explicitly states
1073  * that "SACK block MUST reflect the newest segment.  Even if the newest
1074  * segment is going to be discarded ...", not that it looks very clever
1075  * in case of head skb. Due to potentional receiver driven attacks, we
1076  * choose to avoid immediate execution of a walk in write queue due to
1077  * reneging and defer head skb's loss recovery to standard loss recovery
1078  * procedure that will eventually trigger (nothing forbids us doing this).
1079  *
1080  * Implements also blockage to start_seq wrap-around. Problem lies in the
1081  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1082  * there's no guarantee that it will be before snd_nxt (n). The problem
1083  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1084  * wrap (s_w):
1085  *
1086  *         <- outs wnd ->                          <- wrapzone ->
1087  *         u     e      n                         u_w   e_w  s n_w
1088  *         |     |      |                          |     |   |  |
1089  * |<------------+------+----- TCP seqno space --------------+---------->|
1090  * ...-- <2^31 ->|                                           |<--------...
1091  * ...---- >2^31 ------>|                                    |<--------...
1092  *
1093  * Current code wouldn't be vulnerable but it's better still to discard such
1094  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1095  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1096  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1097  * equal to the ideal case (infinite seqno space without wrap caused issues).
1098  *
1099  * With D-SACK the lower bound is extended to cover sequence space below
1100  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1101  * again, D-SACK block must not to go across snd_una (for the same reason as
1102  * for the normal SACK blocks, explained above). But there all simplicity
1103  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1104  * fully below undo_marker they do not affect behavior in anyway and can
1105  * therefore be safely ignored. In rare cases (which are more or less
1106  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1107  * fragmentation and packet reordering past skb's retransmission. To consider
1108  * them correctly, the acceptable range must be extended even more though
1109  * the exact amount is rather hard to quantify. However, tp->max_window can
1110  * be used as an exaggerated estimate.
1111  */
1112 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1113                                   u32 start_seq, u32 end_seq)
1114 {
1115         /* Too far in future, or reversed (interpretation is ambiguous) */
1116         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1117                 return 0;
1118
1119         /* Nasty start_seq wrap-around check (see comments above) */
1120         if (!before(start_seq, tp->snd_nxt))
1121                 return 0;
1122
1123         /* In outstanding window? ...This is valid exit for D-SACKs too.
1124          * start_seq == snd_una is non-sensical (see comments above)
1125          */
1126         if (after(start_seq, tp->snd_una))
1127                 return 1;
1128
1129         if (!is_dsack || !tp->undo_marker)
1130                 return 0;
1131
1132         /* ...Then it's D-SACK, and must reside below snd_una completely */
1133         if (!after(end_seq, tp->snd_una))
1134                 return 0;
1135
1136         if (!before(start_seq, tp->undo_marker))
1137                 return 1;
1138
1139         /* Too old */
1140         if (!after(end_seq, tp->undo_marker))
1141                 return 0;
1142
1143         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1144          *   start_seq < undo_marker and end_seq >= undo_marker.
1145          */
1146         return !before(start_seq, end_seq - tp->max_window);
1147 }
1148
1149 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1150  * Event "C". Later note: FACK people cheated me again 8), we have to account
1151  * for reordering! Ugly, but should help.
1152  *
1153  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1154  * less than what is now known to be received by the other end (derived from
1155  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1156  * retransmitted skbs to avoid some costly processing per ACKs.
1157  */
1158 static void tcp_mark_lost_retrans(struct sock *sk)
1159 {
1160         const struct inet_connection_sock *icsk = inet_csk(sk);
1161         struct tcp_sock *tp = tcp_sk(sk);
1162         struct sk_buff *skb;
1163         int cnt = 0;
1164         u32 new_low_seq = tp->snd_nxt;
1165         u32 received_upto = tcp_highest_sack_seq(tp);
1166
1167         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1168             !after(received_upto, tp->lost_retrans_low) ||
1169             icsk->icsk_ca_state != TCP_CA_Recovery)
1170                 return;
1171
1172         tcp_for_write_queue(skb, sk) {
1173                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1174
1175                 if (skb == tcp_send_head(sk))
1176                         break;
1177                 if (cnt == tp->retrans_out)
1178                         break;
1179                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1180                         continue;
1181
1182                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1183                         continue;
1184
1185                 if (after(received_upto, ack_seq) &&
1186                     (tcp_is_fack(tp) ||
1187                      !before(received_upto,
1188                              ack_seq + tp->reordering * tp->mss_cache))) {
1189                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1190                         tp->retrans_out -= tcp_skb_pcount(skb);
1191
1192                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1193                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1194                 } else {
1195                         if (before(ack_seq, new_low_seq))
1196                                 new_low_seq = ack_seq;
1197                         cnt += tcp_skb_pcount(skb);
1198                 }
1199         }
1200
1201         if (tp->retrans_out)
1202                 tp->lost_retrans_low = new_low_seq;
1203 }
1204
1205 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1206                            struct tcp_sack_block_wire *sp, int num_sacks,
1207                            u32 prior_snd_una)
1208 {
1209         struct tcp_sock *tp = tcp_sk(sk);
1210         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1211         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1212         int dup_sack = 0;
1213
1214         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1215                 dup_sack = 1;
1216                 tcp_dsack_seen(tp);
1217                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1218         } else if (num_sacks > 1) {
1219                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1220                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1221
1222                 if (!after(end_seq_0, end_seq_1) &&
1223                     !before(start_seq_0, start_seq_1)) {
1224                         dup_sack = 1;
1225                         tcp_dsack_seen(tp);
1226                         NET_INC_STATS_BH(sock_net(sk),
1227                                         LINUX_MIB_TCPDSACKOFORECV);
1228                 }
1229         }
1230
1231         /* D-SACK for already forgotten data... Do dumb counting. */
1232         if (dup_sack &&
1233             !after(end_seq_0, prior_snd_una) &&
1234             after(end_seq_0, tp->undo_marker))
1235                 tp->undo_retrans--;
1236
1237         return dup_sack;
1238 }
1239
1240 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1241  * the incoming SACK may not exactly match but we can find smaller MSS
1242  * aligned portion of it that matches. Therefore we might need to fragment
1243  * which may fail and creates some hassle (caller must handle error case
1244  * returns).
1245  *
1246  * FIXME: this could be merged to shift decision code
1247  */
1248 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1249                                  u32 start_seq, u32 end_seq)
1250 {
1251         int in_sack, err;
1252         unsigned int pkt_len;
1253         unsigned int mss;
1254
1255         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1256                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1257
1258         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1259             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1260                 mss = tcp_skb_mss(skb);
1261                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1262
1263                 if (!in_sack) {
1264                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1265                         if (pkt_len < mss)
1266                                 pkt_len = mss;
1267                 } else {
1268                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1269                         if (pkt_len < mss)
1270                                 return -EINVAL;
1271                 }
1272
1273                 /* Round if necessary so that SACKs cover only full MSSes
1274                  * and/or the remaining small portion (if present)
1275                  */
1276                 if (pkt_len > mss) {
1277                         unsigned int new_len = (pkt_len / mss) * mss;
1278                         if (!in_sack && new_len < pkt_len) {
1279                                 new_len += mss;
1280                                 if (new_len > skb->len)
1281                                         return 0;
1282                         }
1283                         pkt_len = new_len;
1284                 }
1285                 err = tcp_fragment(sk, skb, pkt_len, mss);
1286                 if (err < 0)
1287                         return err;
1288         }
1289
1290         return in_sack;
1291 }
1292
1293 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1294                            int *reord, int dup_sack, int fack_count,
1295                            u8 *sackedto, int pcount)
1296 {
1297         struct tcp_sock *tp = tcp_sk(sk);
1298         u8 sacked = TCP_SKB_CB(skb)->sacked;
1299         int flag = 0;
1300
1301         /* Account D-SACK for retransmitted packet. */
1302         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1303                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1304                         tp->undo_retrans--;
1305                 if (sacked & TCPCB_SACKED_ACKED)
1306                         *reord = min(fack_count, *reord);
1307         }
1308
1309         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1310         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1311                 return flag;
1312
1313         if (!(sacked & TCPCB_SACKED_ACKED)) {
1314                 if (sacked & TCPCB_SACKED_RETRANS) {
1315                         /* If the segment is not tagged as lost,
1316                          * we do not clear RETRANS, believing
1317                          * that retransmission is still in flight.
1318                          */
1319                         if (sacked & TCPCB_LOST) {
1320                                 *sackedto &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1321                                 tp->lost_out -= pcount;
1322                                 tp->retrans_out -= pcount;
1323                         }
1324                 } else {
1325                         if (!(sacked & TCPCB_RETRANS)) {
1326                                 /* New sack for not retransmitted frame,
1327                                  * which was in hole. It is reordering.
1328                                  */
1329                                 if (before(TCP_SKB_CB(skb)->seq,
1330                                            tcp_highest_sack_seq(tp)))
1331                                         *reord = min(fack_count, *reord);
1332
1333                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1334                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1335                                         flag |= FLAG_ONLY_ORIG_SACKED;
1336                         }
1337
1338                         if (sacked & TCPCB_LOST) {
1339                                 *sackedto &= ~TCPCB_LOST;
1340                                 tp->lost_out -= pcount;
1341                         }
1342                 }
1343
1344                 *sackedto |= TCPCB_SACKED_ACKED;
1345                 flag |= FLAG_DATA_SACKED;
1346                 tp->sacked_out += pcount;
1347
1348                 fack_count += pcount;
1349
1350                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1351                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1352                     before(TCP_SKB_CB(skb)->seq,
1353                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1354                         tp->lost_cnt_hint += pcount;
1355
1356                 if (fack_count > tp->fackets_out)
1357                         tp->fackets_out = fack_count;
1358         }
1359
1360         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1361          * frames and clear it. undo_retrans is decreased above, L|R frames
1362          * are accounted above as well.
1363          */
1364         if (dup_sack && (*sackedto & TCPCB_SACKED_RETRANS)) {
1365                 *sackedto &= ~TCPCB_SACKED_RETRANS;
1366                 tp->retrans_out -= pcount;
1367         }
1368
1369         return flag;
1370 }
1371
1372 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1373                            struct sk_buff *skb, unsigned int pcount,
1374                            int shifted, int fack_count, int *reord,
1375                            int *flag, int mss)
1376 {
1377         struct tcp_sock *tp = tcp_sk(sk);
1378         u8 dummy_sacked = TCP_SKB_CB(skb)->sacked;      /* We discard results */
1379
1380         BUG_ON(!pcount);
1381
1382         /* Tweak before seqno plays */
1383         if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1384             !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1385                 tp->lost_cnt_hint += pcount;
1386
1387         TCP_SKB_CB(prev)->end_seq += shifted;
1388         TCP_SKB_CB(skb)->seq += shifted;
1389
1390         skb_shinfo(prev)->gso_segs += pcount;
1391         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1392         skb_shinfo(skb)->gso_segs -= pcount;
1393
1394         /* When we're adding to gso_segs == 1, gso_size will be zero,
1395          * in theory this shouldn't be necessary but as long as DSACK
1396          * code can come after this skb later on it's better to keep
1397          * setting gso_size to something.
1398          */
1399         if (!skb_shinfo(prev)->gso_size) {
1400                 skb_shinfo(prev)->gso_size = mss;
1401                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1402         }
1403
1404         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1405         if (skb_shinfo(skb)->gso_segs <= 1) {
1406                 skb_shinfo(skb)->gso_size = 0;
1407                 skb_shinfo(skb)->gso_type = 0;
1408         }
1409
1410         *flag |= tcp_sacktag_one(skb, sk, reord, 0, fack_count, &dummy_sacked,
1411                                  pcount);
1412
1413         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1414         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1415
1416         if (skb->len > 0) {
1417                 BUG_ON(!tcp_skb_pcount(skb));
1418                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1419                 return 0;
1420         }
1421
1422         /* Whole SKB was eaten :-) */
1423
1424         if (skb == tp->retransmit_skb_hint)
1425                 tp->retransmit_skb_hint = prev;
1426         if (skb == tp->scoreboard_skb_hint)
1427                 tp->scoreboard_skb_hint = prev;
1428         if (skb == tp->lost_skb_hint) {
1429                 tp->lost_skb_hint = prev;
1430                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1431         }
1432
1433         TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1434         if (skb == tcp_highest_sack(sk))
1435                 tcp_advance_highest_sack(sk, skb);
1436
1437         tcp_unlink_write_queue(skb, sk);
1438         sk_wmem_free_skb(sk, skb);
1439
1440         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1441
1442         return 1;
1443 }
1444
1445 /* I wish gso_size would have a bit more sane initialization than
1446  * something-or-zero which complicates things
1447  */
1448 static int tcp_shift_mss(struct sk_buff *skb)
1449 {
1450         int mss = tcp_skb_mss(skb);
1451
1452         if (!mss)
1453                 mss = skb->len;
1454
1455         return mss;
1456 }
1457
1458 /* Shifting pages past head area doesn't work */
1459 static int skb_can_shift(struct sk_buff *skb)
1460 {
1461         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1462 }
1463
1464 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1465  * skb.
1466  */
1467 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1468                                           u32 start_seq, u32 end_seq,
1469                                           int dup_sack, int *fack_count,
1470                                           int *reord, int *flag)
1471 {
1472         struct tcp_sock *tp = tcp_sk(sk);
1473         struct sk_buff *prev;
1474         int mss;
1475         int pcount = 0;
1476         int len;
1477         int in_sack;
1478
1479         if (!sk_can_gso(sk))
1480                 goto fallback;
1481
1482         /* Normally R but no L won't result in plain S */
1483         if (!dup_sack &&
1484             (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) == TCPCB_SACKED_RETRANS)
1485                 goto fallback;
1486         if (!skb_can_shift(skb))
1487                 goto fallback;
1488         /* This frame is about to be dropped (was ACKed). */
1489         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1490                 goto fallback;
1491
1492         /* Can only happen with delayed DSACK + discard craziness */
1493         if (unlikely(skb == tcp_write_queue_head(sk)))
1494                 goto fallback;
1495         prev = tcp_write_queue_prev(sk, skb);
1496
1497         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1498                 goto fallback;
1499
1500         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1501                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1502
1503         if (in_sack) {
1504                 len = skb->len;
1505                 pcount = tcp_skb_pcount(skb);
1506                 mss = tcp_shift_mss(skb);
1507
1508                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1509                  * drop this restriction as unnecessary
1510                  */
1511                 if (mss != tcp_shift_mss(prev))
1512                         goto fallback;
1513         } else {
1514                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1515                         goto noop;
1516                 /* CHECKME: This is non-MSS split case only?, this will
1517                  * cause skipped skbs due to advancing loop btw, original
1518                  * has that feature too
1519                  */
1520                 if (tcp_skb_pcount(skb) <= 1)
1521                         goto noop;
1522
1523                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1524                 if (!in_sack) {
1525                         /* TODO: head merge to next could be attempted here
1526                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1527                          * though it might not be worth of the additional hassle
1528                          *
1529                          * ...we can probably just fallback to what was done
1530                          * previously. We could try merging non-SACKed ones
1531                          * as well but it probably isn't going to buy off
1532                          * because later SACKs might again split them, and
1533                          * it would make skb timestamp tracking considerably
1534                          * harder problem.
1535                          */
1536                         goto fallback;
1537                 }
1538
1539                 len = end_seq - TCP_SKB_CB(skb)->seq;
1540                 BUG_ON(len < 0);
1541                 BUG_ON(len > skb->len);
1542
1543                 /* MSS boundaries should be honoured or else pcount will
1544                  * severely break even though it makes things bit trickier.
1545                  * Optimize common case to avoid most of the divides
1546                  */
1547                 mss = tcp_skb_mss(skb);
1548
1549                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1550                  * drop this restriction as unnecessary
1551                  */
1552                 if (mss != tcp_shift_mss(prev))
1553                         goto fallback;
1554
1555                 if (len == mss) {
1556                         pcount = 1;
1557                 } else if (len < mss) {
1558                         goto noop;
1559                 } else {
1560                         pcount = len / mss;
1561                         len = pcount * mss;
1562                 }
1563         }
1564
1565         if (!skb_shift(prev, skb, len))
1566                 goto fallback;
1567         if (!tcp_shifted_skb(sk, prev, skb, pcount, len, *fack_count, reord,
1568                              flag, mss))
1569                 goto out;
1570
1571         /* Hole filled allows collapsing with the next as well, this is very
1572          * useful when hole on every nth skb pattern happens
1573          */
1574         if (prev == tcp_write_queue_tail(sk))
1575                 goto out;
1576         skb = tcp_write_queue_next(sk, prev);
1577
1578         if (!skb_can_shift(skb) ||
1579             (skb == tcp_send_head(sk)) ||
1580             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1581             (mss != tcp_shift_mss(skb)))
1582                 goto out;
1583
1584         len = skb->len;
1585         if (skb_shift(prev, skb, len)) {
1586                 pcount += tcp_skb_pcount(skb);
1587                 tcp_shifted_skb(sk, prev, skb, tcp_skb_pcount(skb), len,
1588                                 *fack_count, reord, flag, mss);
1589         }
1590
1591 out:
1592         *fack_count += pcount;
1593         return prev;
1594
1595 noop:
1596         return skb;
1597
1598 fallback:
1599         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1600         return NULL;
1601 }
1602
1603 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1604                                         struct tcp_sack_block *next_dup,
1605                                         u32 start_seq, u32 end_seq,
1606                                         int dup_sack_in, int *fack_count,
1607                                         int *reord, int *flag)
1608 {
1609         struct tcp_sock *tp = tcp_sk(sk);
1610         struct sk_buff *tmp;
1611
1612         tcp_for_write_queue_from(skb, sk) {
1613                 int in_sack = 0;
1614                 int dup_sack = dup_sack_in;
1615
1616                 if (skb == tcp_send_head(sk))
1617                         break;
1618
1619                 /* queue is in-order => we can short-circuit the walk early */
1620                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1621                         break;
1622
1623                 if ((next_dup != NULL) &&
1624                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1625                         in_sack = tcp_match_skb_to_sack(sk, skb,
1626                                                         next_dup->start_seq,
1627                                                         next_dup->end_seq);
1628                         if (in_sack > 0)
1629                                 dup_sack = 1;
1630                 }
1631
1632                 /* skb reference here is a bit tricky to get right, since
1633                  * shifting can eat and free both this skb and the next,
1634                  * so not even _safe variant of the loop is enough.
1635                  */
1636                 if (in_sack <= 0) {
1637                         tmp = tcp_shift_skb_data(sk, skb, start_seq,
1638                                                  end_seq, dup_sack,
1639                                                  fack_count, reord, flag);
1640                         if (tmp != NULL) {
1641                                 if (tmp != skb) {
1642                                         skb = tmp;
1643                                         continue;
1644                                 }
1645
1646                                 in_sack = 0;
1647                         } else {
1648                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1649                                                                 start_seq,
1650                                                                 end_seq);
1651                         }
1652                 }
1653
1654                 if (unlikely(in_sack < 0))
1655                         break;
1656
1657                 if (in_sack) {
1658                         *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1659                                                  *fack_count,
1660                                                  &(TCP_SKB_CB(skb)->sacked),
1661                                                  tcp_skb_pcount(skb));
1662
1663                         if (!before(TCP_SKB_CB(skb)->seq,
1664                                     tcp_highest_sack_seq(tp)))
1665                                 tcp_advance_highest_sack(sk, skb);
1666                 }
1667
1668                 *fack_count += tcp_skb_pcount(skb);
1669         }
1670         return skb;
1671 }
1672
1673 /* Avoid all extra work that is being done by sacktag while walking in
1674  * a normal way
1675  */
1676 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1677                                         u32 skip_to_seq, int *fack_count)
1678 {
1679         tcp_for_write_queue_from(skb, sk) {
1680                 if (skb == tcp_send_head(sk))
1681                         break;
1682
1683                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1684                         break;
1685
1686                 *fack_count += tcp_skb_pcount(skb);
1687         }
1688         return skb;
1689 }
1690
1691 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1692                                                 struct sock *sk,
1693                                                 struct tcp_sack_block *next_dup,
1694                                                 u32 skip_to_seq,
1695                                                 int *fack_count, int *reord,
1696                                                 int *flag)
1697 {
1698         if (next_dup == NULL)
1699                 return skb;
1700
1701         if (before(next_dup->start_seq, skip_to_seq)) {
1702                 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1703                 skb = tcp_sacktag_walk(skb, sk, NULL,
1704                                      next_dup->start_seq, next_dup->end_seq,
1705                                      1, fack_count, reord, flag);
1706         }
1707
1708         return skb;
1709 }
1710
1711 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1712 {
1713         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1714 }
1715
1716 static int
1717 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1718                         u32 prior_snd_una)
1719 {
1720         const struct inet_connection_sock *icsk = inet_csk(sk);
1721         struct tcp_sock *tp = tcp_sk(sk);
1722         unsigned char *ptr = (skb_transport_header(ack_skb) +
1723                               TCP_SKB_CB(ack_skb)->sacked);
1724         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1725         struct tcp_sack_block sp[TCP_NUM_SACKS];
1726         struct tcp_sack_block *cache;
1727         struct sk_buff *skb;
1728         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1729         int used_sacks;
1730         int reord = tp->packets_out;
1731         int flag = 0;
1732         int found_dup_sack = 0;
1733         int fack_count;
1734         int i, j;
1735         int first_sack_index;
1736
1737         if (!tp->sacked_out) {
1738                 if (WARN_ON(tp->fackets_out))
1739                         tp->fackets_out = 0;
1740                 tcp_highest_sack_reset(sk);
1741         }
1742
1743         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1744                                          num_sacks, prior_snd_una);
1745         if (found_dup_sack)
1746                 flag |= FLAG_DSACKING_ACK;
1747
1748         /* Eliminate too old ACKs, but take into
1749          * account more or less fresh ones, they can
1750          * contain valid SACK info.
1751          */
1752         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1753                 return 0;
1754
1755         if (!tp->packets_out)
1756                 goto out;
1757
1758         used_sacks = 0;
1759         first_sack_index = 0;
1760         for (i = 0; i < num_sacks; i++) {
1761                 int dup_sack = !i && found_dup_sack;
1762
1763                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1764                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1765
1766                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1767                                             sp[used_sacks].start_seq,
1768                                             sp[used_sacks].end_seq)) {
1769                         int mib_idx;
1770
1771                         if (dup_sack) {
1772                                 if (!tp->undo_marker)
1773                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1774                                 else
1775                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1776                         } else {
1777                                 /* Don't count olds caused by ACK reordering */
1778                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1779                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1780                                         continue;
1781                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1782                         }
1783
1784                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1785                         if (i == 0)
1786                                 first_sack_index = -1;
1787                         continue;
1788                 }
1789
1790                 /* Ignore very old stuff early */
1791                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1792                         continue;
1793
1794                 used_sacks++;
1795         }
1796
1797         /* order SACK blocks to allow in order walk of the retrans queue */
1798         for (i = used_sacks - 1; i > 0; i--) {
1799                 for (j = 0; j < i; j++) {
1800                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1801                                 struct tcp_sack_block tmp;
1802
1803                                 tmp = sp[j];
1804                                 sp[j] = sp[j + 1];
1805                                 sp[j + 1] = tmp;
1806
1807                                 /* Track where the first SACK block goes to */
1808                                 if (j == first_sack_index)
1809                                         first_sack_index = j + 1;
1810                         }
1811                 }
1812         }
1813
1814         skb = tcp_write_queue_head(sk);
1815         fack_count = 0;
1816         i = 0;
1817
1818         if (!tp->sacked_out) {
1819                 /* It's already past, so skip checking against it */
1820                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1821         } else {
1822                 cache = tp->recv_sack_cache;
1823                 /* Skip empty blocks in at head of the cache */
1824                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1825                        !cache->end_seq)
1826                         cache++;
1827         }
1828
1829         while (i < used_sacks) {
1830                 u32 start_seq = sp[i].start_seq;
1831                 u32 end_seq = sp[i].end_seq;
1832                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1833                 struct tcp_sack_block *next_dup = NULL;
1834
1835                 if (found_dup_sack && ((i + 1) == first_sack_index))
1836                         next_dup = &sp[i + 1];
1837
1838                 /* Event "B" in the comment above. */
1839                 if (after(end_seq, tp->high_seq))
1840                         flag |= FLAG_DATA_LOST;
1841
1842                 /* Skip too early cached blocks */
1843                 while (tcp_sack_cache_ok(tp, cache) &&
1844                        !before(start_seq, cache->end_seq))
1845                         cache++;
1846
1847                 /* Can skip some work by looking recv_sack_cache? */
1848                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1849                     after(end_seq, cache->start_seq)) {
1850
1851                         /* Head todo? */
1852                         if (before(start_seq, cache->start_seq)) {
1853                                 skb = tcp_sacktag_skip(skb, sk, start_seq,
1854                                                        &fack_count);
1855                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1856                                                        start_seq,
1857                                                        cache->start_seq,
1858                                                        dup_sack, &fack_count,
1859                                                        &reord, &flag);
1860                         }
1861
1862                         /* Rest of the block already fully processed? */
1863                         if (!after(end_seq, cache->end_seq))
1864                                 goto advance_sp;
1865
1866                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1867                                                        cache->end_seq,
1868                                                        &fack_count, &reord,
1869                                                        &flag);
1870
1871                         /* ...tail remains todo... */
1872                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1873                                 /* ...but better entrypoint exists! */
1874                                 skb = tcp_highest_sack(sk);
1875                                 if (skb == NULL)
1876                                         break;
1877                                 fack_count = tp->fackets_out;
1878                                 cache++;
1879                                 goto walk;
1880                         }
1881
1882                         skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1883                                                &fack_count);
1884                         /* Check overlap against next cached too (past this one already) */
1885                         cache++;
1886                         continue;
1887                 }
1888
1889                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1890                         skb = tcp_highest_sack(sk);
1891                         if (skb == NULL)
1892                                 break;
1893                         fack_count = tp->fackets_out;
1894                 }
1895                 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1896
1897 walk:
1898                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1899                                        dup_sack, &fack_count, &reord, &flag);
1900
1901 advance_sp:
1902                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1903                  * due to in-order walk
1904                  */
1905                 if (after(end_seq, tp->frto_highmark))
1906                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1907
1908                 i++;
1909         }
1910
1911         /* Clear the head of the cache sack blocks so we can skip it next time */
1912         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1913                 tp->recv_sack_cache[i].start_seq = 0;
1914                 tp->recv_sack_cache[i].end_seq = 0;
1915         }
1916         for (j = 0; j < used_sacks; j++)
1917                 tp->recv_sack_cache[i++] = sp[j];
1918
1919         tcp_mark_lost_retrans(sk);
1920
1921         tcp_verify_left_out(tp);
1922
1923         if ((reord < tp->fackets_out) &&
1924             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1925             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1926                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1927
1928 out:
1929
1930 #if FASTRETRANS_DEBUG > 0
1931         WARN_ON((int)tp->sacked_out < 0);
1932         WARN_ON((int)tp->lost_out < 0);
1933         WARN_ON((int)tp->retrans_out < 0);
1934         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1935 #endif
1936         return flag;
1937 }
1938
1939 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1940  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1941  */
1942 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1943 {
1944         u32 holes;
1945
1946         holes = max(tp->lost_out, 1U);
1947         holes = min(holes, tp->packets_out);
1948
1949         if ((tp->sacked_out + holes) > tp->packets_out) {
1950                 tp->sacked_out = tp->packets_out - holes;
1951                 return 1;
1952         }
1953         return 0;
1954 }
1955
1956 /* If we receive more dupacks than we expected counting segments
1957  * in assumption of absent reordering, interpret this as reordering.
1958  * The only another reason could be bug in receiver TCP.
1959  */
1960 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1961 {
1962         struct tcp_sock *tp = tcp_sk(sk);
1963         if (tcp_limit_reno_sacked(tp))
1964                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1965 }
1966
1967 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1968
1969 static void tcp_add_reno_sack(struct sock *sk)
1970 {
1971         struct tcp_sock *tp = tcp_sk(sk);
1972         tp->sacked_out++;
1973         tcp_check_reno_reordering(sk, 0);
1974         tcp_verify_left_out(tp);
1975 }
1976
1977 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1978
1979 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1980 {
1981         struct tcp_sock *tp = tcp_sk(sk);
1982
1983         if (acked > 0) {
1984                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1985                 if (acked - 1 >= tp->sacked_out)
1986                         tp->sacked_out = 0;
1987                 else
1988                         tp->sacked_out -= acked - 1;
1989         }
1990         tcp_check_reno_reordering(sk, acked);
1991         tcp_verify_left_out(tp);
1992 }
1993
1994 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1995 {
1996         tp->sacked_out = 0;
1997 }
1998
1999 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2000 {
2001         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2002 }
2003
2004 /* F-RTO can only be used if TCP has never retransmitted anything other than
2005  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2006  */
2007 int tcp_use_frto(struct sock *sk)
2008 {
2009         const struct tcp_sock *tp = tcp_sk(sk);
2010         const struct inet_connection_sock *icsk = inet_csk(sk);
2011         struct sk_buff *skb;
2012
2013         if (!sysctl_tcp_frto)
2014                 return 0;
2015
2016         /* MTU probe and F-RTO won't really play nicely along currently */
2017         if (icsk->icsk_mtup.probe_size)
2018                 return 0;
2019
2020         if (tcp_is_sackfrto(tp))
2021                 return 1;
2022
2023         /* Avoid expensive walking of rexmit queue if possible */
2024         if (tp->retrans_out > 1)
2025                 return 0;
2026
2027         skb = tcp_write_queue_head(sk);
2028         if (tcp_skb_is_last(sk, skb))
2029                 return 1;
2030         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2031         tcp_for_write_queue_from(skb, sk) {
2032                 if (skb == tcp_send_head(sk))
2033                         break;
2034                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2035                         return 0;
2036                 /* Short-circuit when first non-SACKed skb has been checked */
2037                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2038                         break;
2039         }
2040         return 1;
2041 }
2042
2043 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2044  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2045  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2046  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2047  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2048  * bits are handled if the Loss state is really to be entered (in
2049  * tcp_enter_frto_loss).
2050  *
2051  * Do like tcp_enter_loss() would; when RTO expires the second time it
2052  * does:
2053  *  "Reduce ssthresh if it has not yet been made inside this window."
2054  */
2055 void tcp_enter_frto(struct sock *sk)
2056 {
2057         const struct inet_connection_sock *icsk = inet_csk(sk);
2058         struct tcp_sock *tp = tcp_sk(sk);
2059         struct sk_buff *skb;
2060
2061         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2062             tp->snd_una == tp->high_seq ||
2063             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2064              !icsk->icsk_retransmits)) {
2065                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2066                 /* Our state is too optimistic in ssthresh() call because cwnd
2067                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2068                  * recovery has not yet completed. Pattern would be this: RTO,
2069                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2070                  * up here twice).
2071                  * RFC4138 should be more specific on what to do, even though
2072                  * RTO is quite unlikely to occur after the first Cumulative ACK
2073                  * due to back-off and complexity of triggering events ...
2074                  */
2075                 if (tp->frto_counter) {
2076                         u32 stored_cwnd;
2077                         stored_cwnd = tp->snd_cwnd;
2078                         tp->snd_cwnd = 2;
2079                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2080                         tp->snd_cwnd = stored_cwnd;
2081                 } else {
2082                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2083                 }
2084                 /* ... in theory, cong.control module could do "any tricks" in
2085                  * ssthresh(), which means that ca_state, lost bits and lost_out
2086                  * counter would have to be faked before the call occurs. We
2087                  * consider that too expensive, unlikely and hacky, so modules
2088                  * using these in ssthresh() must deal these incompatibility
2089                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2090                  */
2091                 tcp_ca_event(sk, CA_EVENT_FRTO);
2092         }
2093
2094         tp->undo_marker = tp->snd_una;
2095         tp->undo_retrans = 0;
2096
2097         skb = tcp_write_queue_head(sk);
2098         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2099                 tp->undo_marker = 0;
2100         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2101                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2102                 tp->retrans_out -= tcp_skb_pcount(skb);
2103         }
2104         tcp_verify_left_out(tp);
2105
2106         /* Too bad if TCP was application limited */
2107         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2108
2109         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2110          * The last condition is necessary at least in tp->frto_counter case.
2111          */
2112         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2113             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2114             after(tp->high_seq, tp->snd_una)) {
2115                 tp->frto_highmark = tp->high_seq;
2116         } else {
2117                 tp->frto_highmark = tp->snd_nxt;
2118         }
2119         tcp_set_ca_state(sk, TCP_CA_Disorder);
2120         tp->high_seq = tp->snd_nxt;
2121         tp->frto_counter = 1;
2122 }
2123
2124 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2125  * which indicates that we should follow the traditional RTO recovery,
2126  * i.e. mark everything lost and do go-back-N retransmission.
2127  */
2128 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2129 {
2130         struct tcp_sock *tp = tcp_sk(sk);
2131         struct sk_buff *skb;
2132
2133         tp->lost_out = 0;
2134         tp->retrans_out = 0;
2135         if (tcp_is_reno(tp))
2136                 tcp_reset_reno_sack(tp);
2137
2138         tcp_for_write_queue(skb, sk) {
2139                 if (skb == tcp_send_head(sk))
2140                         break;
2141
2142                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2143                 /*
2144                  * Count the retransmission made on RTO correctly (only when
2145                  * waiting for the first ACK and did not get it)...
2146                  */
2147                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2148                         /* For some reason this R-bit might get cleared? */
2149                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2150                                 tp->retrans_out += tcp_skb_pcount(skb);
2151                         /* ...enter this if branch just for the first segment */
2152                         flag |= FLAG_DATA_ACKED;
2153                 } else {
2154                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2155                                 tp->undo_marker = 0;
2156                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2157                 }
2158
2159                 /* Marking forward transmissions that were made after RTO lost
2160                  * can cause unnecessary retransmissions in some scenarios,
2161                  * SACK blocks will mitigate that in some but not in all cases.
2162                  * We used to not mark them but it was causing break-ups with
2163                  * receivers that do only in-order receival.
2164                  *
2165                  * TODO: we could detect presence of such receiver and select
2166                  * different behavior per flow.
2167                  */
2168                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2169                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2170                         tp->lost_out += tcp_skb_pcount(skb);
2171                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2172                 }
2173         }
2174         tcp_verify_left_out(tp);
2175
2176         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2177         tp->snd_cwnd_cnt = 0;
2178         tp->snd_cwnd_stamp = tcp_time_stamp;
2179         tp->frto_counter = 0;
2180         tp->bytes_acked = 0;
2181
2182         tp->reordering = min_t(unsigned int, tp->reordering,
2183                                sysctl_tcp_reordering);
2184         tcp_set_ca_state(sk, TCP_CA_Loss);
2185         tp->high_seq = tp->snd_nxt;
2186         TCP_ECN_queue_cwr(tp);
2187
2188         tcp_clear_all_retrans_hints(tp);
2189 }
2190
2191 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2192 {
2193         tp->retrans_out = 0;
2194         tp->lost_out = 0;
2195
2196         tp->undo_marker = 0;
2197         tp->undo_retrans = 0;
2198 }
2199
2200 void tcp_clear_retrans(struct tcp_sock *tp)
2201 {
2202         tcp_clear_retrans_partial(tp);
2203
2204         tp->fackets_out = 0;
2205         tp->sacked_out = 0;
2206 }
2207
2208 /* Enter Loss state. If "how" is not zero, forget all SACK information
2209  * and reset tags completely, otherwise preserve SACKs. If receiver
2210  * dropped its ofo queue, we will know this due to reneging detection.
2211  */
2212 void tcp_enter_loss(struct sock *sk, int how)
2213 {
2214         const struct inet_connection_sock *icsk = inet_csk(sk);
2215         struct tcp_sock *tp = tcp_sk(sk);
2216         struct sk_buff *skb;
2217
2218         /* Reduce ssthresh if it has not yet been made inside this window. */
2219         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2220             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2221                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2222                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2223                 tcp_ca_event(sk, CA_EVENT_LOSS);
2224         }
2225         tp->snd_cwnd       = 1;
2226         tp->snd_cwnd_cnt   = 0;
2227         tp->snd_cwnd_stamp = tcp_time_stamp;
2228
2229         tp->bytes_acked = 0;
2230         tcp_clear_retrans_partial(tp);
2231
2232         if (tcp_is_reno(tp))
2233                 tcp_reset_reno_sack(tp);
2234
2235         if (!how) {
2236                 /* Push undo marker, if it was plain RTO and nothing
2237                  * was retransmitted. */
2238                 tp->undo_marker = tp->snd_una;
2239         } else {
2240                 tp->sacked_out = 0;
2241                 tp->fackets_out = 0;
2242         }
2243         tcp_clear_all_retrans_hints(tp);
2244
2245         tcp_for_write_queue(skb, sk) {
2246                 if (skb == tcp_send_head(sk))
2247                         break;
2248
2249                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2250                         tp->undo_marker = 0;
2251                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2252                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2253                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2254                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2255                         tp->lost_out += tcp_skb_pcount(skb);
2256                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2257                 }
2258         }
2259         tcp_verify_left_out(tp);
2260
2261         tp->reordering = min_t(unsigned int, tp->reordering,
2262                                sysctl_tcp_reordering);
2263         tcp_set_ca_state(sk, TCP_CA_Loss);
2264         tp->high_seq = tp->snd_nxt;
2265         TCP_ECN_queue_cwr(tp);
2266         /* Abort F-RTO algorithm if one is in progress */
2267         tp->frto_counter = 0;
2268 }
2269
2270 /* If ACK arrived pointing to a remembered SACK, it means that our
2271  * remembered SACKs do not reflect real state of receiver i.e.
2272  * receiver _host_ is heavily congested (or buggy).
2273  *
2274  * Do processing similar to RTO timeout.
2275  */
2276 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2277 {
2278         if (flag & FLAG_SACK_RENEGING) {
2279                 struct inet_connection_sock *icsk = inet_csk(sk);
2280                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2281
2282                 tcp_enter_loss(sk, 1);
2283                 icsk->icsk_retransmits++;
2284                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2285                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2286                                           icsk->icsk_rto, TCP_RTO_MAX);
2287                 return 1;
2288         }
2289         return 0;
2290 }
2291
2292 static inline int tcp_fackets_out(struct tcp_sock *tp)
2293 {
2294         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2295 }
2296
2297 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2298  * counter when SACK is enabled (without SACK, sacked_out is used for
2299  * that purpose).
2300  *
2301  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2302  * segments up to the highest received SACK block so far and holes in
2303  * between them.
2304  *
2305  * With reordering, holes may still be in flight, so RFC3517 recovery
2306  * uses pure sacked_out (total number of SACKed segments) even though
2307  * it violates the RFC that uses duplicate ACKs, often these are equal
2308  * but when e.g. out-of-window ACKs or packet duplication occurs,
2309  * they differ. Since neither occurs due to loss, TCP should really
2310  * ignore them.
2311  */
2312 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2313 {
2314         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2315 }
2316
2317 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2318 {
2319         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2320 }
2321
2322 static inline int tcp_head_timedout(struct sock *sk)
2323 {
2324         struct tcp_sock *tp = tcp_sk(sk);
2325
2326         return tp->packets_out &&
2327                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2328 }
2329
2330 /* Linux NewReno/SACK/FACK/ECN state machine.
2331  * --------------------------------------
2332  *
2333  * "Open"       Normal state, no dubious events, fast path.
2334  * "Disorder"   In all the respects it is "Open",
2335  *              but requires a bit more attention. It is entered when
2336  *              we see some SACKs or dupacks. It is split of "Open"
2337  *              mainly to move some processing from fast path to slow one.
2338  * "CWR"        CWND was reduced due to some Congestion Notification event.
2339  *              It can be ECN, ICMP source quench, local device congestion.
2340  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2341  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2342  *
2343  * tcp_fastretrans_alert() is entered:
2344  * - each incoming ACK, if state is not "Open"
2345  * - when arrived ACK is unusual, namely:
2346  *      * SACK
2347  *      * Duplicate ACK.
2348  *      * ECN ECE.
2349  *
2350  * Counting packets in flight is pretty simple.
2351  *
2352  *      in_flight = packets_out - left_out + retrans_out
2353  *
2354  *      packets_out is SND.NXT-SND.UNA counted in packets.
2355  *
2356  *      retrans_out is number of retransmitted segments.
2357  *
2358  *      left_out is number of segments left network, but not ACKed yet.
2359  *
2360  *              left_out = sacked_out + lost_out
2361  *
2362  *     sacked_out: Packets, which arrived to receiver out of order
2363  *                 and hence not ACKed. With SACKs this number is simply
2364  *                 amount of SACKed data. Even without SACKs
2365  *                 it is easy to give pretty reliable estimate of this number,
2366  *                 counting duplicate ACKs.
2367  *
2368  *       lost_out: Packets lost by network. TCP has no explicit
2369  *                 "loss notification" feedback from network (for now).
2370  *                 It means that this number can be only _guessed_.
2371  *                 Actually, it is the heuristics to predict lossage that
2372  *                 distinguishes different algorithms.
2373  *
2374  *      F.e. after RTO, when all the queue is considered as lost,
2375  *      lost_out = packets_out and in_flight = retrans_out.
2376  *
2377  *              Essentially, we have now two algorithms counting
2378  *              lost packets.
2379  *
2380  *              FACK: It is the simplest heuristics. As soon as we decided
2381  *              that something is lost, we decide that _all_ not SACKed
2382  *              packets until the most forward SACK are lost. I.e.
2383  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2384  *              It is absolutely correct estimate, if network does not reorder
2385  *              packets. And it loses any connection to reality when reordering
2386  *              takes place. We use FACK by default until reordering
2387  *              is suspected on the path to this destination.
2388  *
2389  *              NewReno: when Recovery is entered, we assume that one segment
2390  *              is lost (classic Reno). While we are in Recovery and
2391  *              a partial ACK arrives, we assume that one more packet
2392  *              is lost (NewReno). This heuristics are the same in NewReno
2393  *              and SACK.
2394  *
2395  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2396  *  deflation etc. CWND is real congestion window, never inflated, changes
2397  *  only according to classic VJ rules.
2398  *
2399  * Really tricky (and requiring careful tuning) part of algorithm
2400  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2401  * The first determines the moment _when_ we should reduce CWND and,
2402  * hence, slow down forward transmission. In fact, it determines the moment
2403  * when we decide that hole is caused by loss, rather than by a reorder.
2404  *
2405  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2406  * holes, caused by lost packets.
2407  *
2408  * And the most logically complicated part of algorithm is undo
2409  * heuristics. We detect false retransmits due to both too early
2410  * fast retransmit (reordering) and underestimated RTO, analyzing
2411  * timestamps and D-SACKs. When we detect that some segments were
2412  * retransmitted by mistake and CWND reduction was wrong, we undo
2413  * window reduction and abort recovery phase. This logic is hidden
2414  * inside several functions named tcp_try_undo_<something>.
2415  */
2416
2417 /* This function decides, when we should leave Disordered state
2418  * and enter Recovery phase, reducing congestion window.
2419  *
2420  * Main question: may we further continue forward transmission
2421  * with the same cwnd?
2422  */
2423 static int tcp_time_to_recover(struct sock *sk)
2424 {
2425         struct tcp_sock *tp = tcp_sk(sk);
2426         __u32 packets_out;
2427
2428         /* Do not perform any recovery during F-RTO algorithm */
2429         if (tp->frto_counter)
2430                 return 0;
2431
2432         /* Trick#1: The loss is proven. */
2433         if (tp->lost_out)
2434                 return 1;
2435
2436         /* Not-A-Trick#2 : Classic rule... */
2437         if (tcp_dupack_heurestics(tp) > tp->reordering)
2438                 return 1;
2439
2440         /* Trick#3 : when we use RFC2988 timer restart, fast
2441          * retransmit can be triggered by timeout of queue head.
2442          */
2443         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2444                 return 1;
2445
2446         /* Trick#4: It is still not OK... But will it be useful to delay
2447          * recovery more?
2448          */
2449         packets_out = tp->packets_out;
2450         if (packets_out <= tp->reordering &&
2451             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2452             !tcp_may_send_now(sk)) {
2453                 /* We have nothing to send. This connection is limited
2454                  * either by receiver window or by application.
2455                  */
2456                 return 1;
2457         }
2458
2459         return 0;
2460 }
2461
2462 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2463  * is against sacked "cnt", otherwise it's against facked "cnt"
2464  */
2465 static void tcp_mark_head_lost(struct sock *sk, int packets)
2466 {
2467         struct tcp_sock *tp = tcp_sk(sk);
2468         struct sk_buff *skb;
2469         int cnt, oldcnt;
2470         int err;
2471         unsigned int mss;
2472
2473         WARN_ON(packets > tp->packets_out);
2474         if (tp->lost_skb_hint) {
2475                 skb = tp->lost_skb_hint;
2476                 cnt = tp->lost_cnt_hint;
2477         } else {
2478                 skb = tcp_write_queue_head(sk);
2479                 cnt = 0;
2480         }
2481
2482         tcp_for_write_queue_from(skb, sk) {
2483                 if (skb == tcp_send_head(sk))
2484                         break;
2485                 /* TODO: do this better */
2486                 /* this is not the most efficient way to do this... */
2487                 tp->lost_skb_hint = skb;
2488                 tp->lost_cnt_hint = cnt;
2489
2490                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2491                         break;
2492
2493                 oldcnt = cnt;
2494                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2495                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2496                         cnt += tcp_skb_pcount(skb);
2497
2498                 if (cnt > packets) {
2499                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2500                                 break;
2501
2502                         mss = skb_shinfo(skb)->gso_size;
2503                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2504                         if (err < 0)
2505                                 break;
2506                         cnt = packets;
2507                 }
2508
2509                 tcp_skb_mark_lost(tp, skb);
2510         }
2511         tcp_verify_left_out(tp);
2512 }
2513
2514 /* Account newly detected lost packet(s) */
2515
2516 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2517 {
2518         struct tcp_sock *tp = tcp_sk(sk);
2519
2520         if (tcp_is_reno(tp)) {
2521                 tcp_mark_head_lost(sk, 1);
2522         } else if (tcp_is_fack(tp)) {
2523                 int lost = tp->fackets_out - tp->reordering;
2524                 if (lost <= 0)
2525                         lost = 1;
2526                 tcp_mark_head_lost(sk, lost);
2527         } else {
2528                 int sacked_upto = tp->sacked_out - tp->reordering;
2529                 if (sacked_upto < fast_rexmit)
2530                         sacked_upto = fast_rexmit;
2531                 tcp_mark_head_lost(sk, sacked_upto);
2532         }
2533
2534         /* New heuristics: it is possible only after we switched
2535          * to restart timer each time when something is ACKed.
2536          * Hence, we can detect timed out packets during fast
2537          * retransmit without falling to slow start.
2538          */
2539         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2540                 struct sk_buff *skb;
2541
2542                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2543                         : tcp_write_queue_head(sk);
2544
2545                 tcp_for_write_queue_from(skb, sk) {
2546                         if (skb == tcp_send_head(sk))
2547                                 break;
2548                         if (!tcp_skb_timedout(sk, skb))
2549                                 break;
2550
2551                         tcp_skb_mark_lost(tp, skb);
2552                 }
2553
2554                 tp->scoreboard_skb_hint = skb;
2555
2556                 tcp_verify_left_out(tp);
2557         }
2558 }
2559
2560 /* CWND moderation, preventing bursts due to too big ACKs
2561  * in dubious situations.
2562  */
2563 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2564 {
2565         tp->snd_cwnd = min(tp->snd_cwnd,
2566                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2567         tp->snd_cwnd_stamp = tcp_time_stamp;
2568 }
2569
2570 /* Lower bound on congestion window is slow start threshold
2571  * unless congestion avoidance choice decides to overide it.
2572  */
2573 static inline u32 tcp_cwnd_min(const struct sock *sk)
2574 {
2575         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2576
2577         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2578 }
2579
2580 /* Decrease cwnd each second ack. */
2581 static void tcp_cwnd_down(struct sock *sk, int flag)
2582 {
2583         struct tcp_sock *tp = tcp_sk(sk);
2584         int decr = tp->snd_cwnd_cnt + 1;
2585
2586         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2587             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2588                 tp->snd_cwnd_cnt = decr & 1;
2589                 decr >>= 1;
2590
2591                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2592                         tp->snd_cwnd -= decr;
2593
2594                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2595                 tp->snd_cwnd_stamp = tcp_time_stamp;
2596         }
2597 }
2598
2599 /* Nothing was retransmitted or returned timestamp is less
2600  * than timestamp of the first retransmission.
2601  */
2602 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2603 {
2604         return !tp->retrans_stamp ||
2605                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2606                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2607 }
2608
2609 /* Undo procedures. */
2610
2611 #if FASTRETRANS_DEBUG > 1
2612 static void DBGUNDO(struct sock *sk, const char *msg)
2613 {
2614         struct tcp_sock *tp = tcp_sk(sk);
2615         struct inet_sock *inet = inet_sk(sk);
2616
2617         if (sk->sk_family == AF_INET) {
2618                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2619                        msg,
2620                        &inet->daddr, ntohs(inet->dport),
2621                        tp->snd_cwnd, tcp_left_out(tp),
2622                        tp->snd_ssthresh, tp->prior_ssthresh,
2623                        tp->packets_out);
2624         }
2625 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2626         else if (sk->sk_family == AF_INET6) {
2627                 struct ipv6_pinfo *np = inet6_sk(sk);
2628                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2629                        msg,
2630                        &np->daddr, ntohs(inet->dport),
2631                        tp->snd_cwnd, tcp_left_out(tp),
2632                        tp->snd_ssthresh, tp->prior_ssthresh,
2633                        tp->packets_out);
2634         }
2635 #endif
2636 }
2637 #else
2638 #define DBGUNDO(x...) do { } while (0)
2639 #endif
2640
2641 static void tcp_undo_cwr(struct sock *sk, const int undo)
2642 {
2643         struct tcp_sock *tp = tcp_sk(sk);
2644
2645         if (tp->prior_ssthresh) {
2646                 const struct inet_connection_sock *icsk = inet_csk(sk);
2647
2648                 if (icsk->icsk_ca_ops->undo_cwnd)
2649                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2650                 else
2651                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2652
2653                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2654                         tp->snd_ssthresh = tp->prior_ssthresh;
2655                         TCP_ECN_withdraw_cwr(tp);
2656                 }
2657         } else {
2658                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2659         }
2660         tcp_moderate_cwnd(tp);
2661         tp->snd_cwnd_stamp = tcp_time_stamp;
2662 }
2663
2664 static inline int tcp_may_undo(struct tcp_sock *tp)
2665 {
2666         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2667 }
2668
2669 /* People celebrate: "We love our President!" */
2670 static int tcp_try_undo_recovery(struct sock *sk)
2671 {
2672         struct tcp_sock *tp = tcp_sk(sk);
2673
2674         if (tcp_may_undo(tp)) {
2675                 int mib_idx;
2676
2677                 /* Happy end! We did not retransmit anything
2678                  * or our original transmission succeeded.
2679                  */
2680                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2681                 tcp_undo_cwr(sk, 1);
2682                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2683                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2684                 else
2685                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2686
2687                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2688                 tp->undo_marker = 0;
2689         }
2690         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2691                 /* Hold old state until something *above* high_seq
2692                  * is ACKed. For Reno it is MUST to prevent false
2693                  * fast retransmits (RFC2582). SACK TCP is safe. */
2694                 tcp_moderate_cwnd(tp);
2695                 return 1;
2696         }
2697         tcp_set_ca_state(sk, TCP_CA_Open);
2698         return 0;
2699 }
2700
2701 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2702 static void tcp_try_undo_dsack(struct sock *sk)
2703 {
2704         struct tcp_sock *tp = tcp_sk(sk);
2705
2706         if (tp->undo_marker && !tp->undo_retrans) {
2707                 DBGUNDO(sk, "D-SACK");
2708                 tcp_undo_cwr(sk, 1);
2709                 tp->undo_marker = 0;
2710                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2711         }
2712 }
2713
2714 /* Undo during fast recovery after partial ACK. */
2715
2716 static int tcp_try_undo_partial(struct sock *sk, int acked)
2717 {
2718         struct tcp_sock *tp = tcp_sk(sk);
2719         /* Partial ACK arrived. Force Hoe's retransmit. */
2720         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2721
2722         if (tcp_may_undo(tp)) {
2723                 /* Plain luck! Hole if filled with delayed
2724                  * packet, rather than with a retransmit.
2725                  */
2726                 if (tp->retrans_out == 0)
2727                         tp->retrans_stamp = 0;
2728
2729                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2730
2731                 DBGUNDO(sk, "Hoe");
2732                 tcp_undo_cwr(sk, 0);
2733                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2734
2735                 /* So... Do not make Hoe's retransmit yet.
2736                  * If the first packet was delayed, the rest
2737                  * ones are most probably delayed as well.
2738                  */
2739                 failed = 0;
2740         }
2741         return failed;
2742 }
2743
2744 /* Undo during loss recovery after partial ACK. */
2745 static int tcp_try_undo_loss(struct sock *sk)
2746 {
2747         struct tcp_sock *tp = tcp_sk(sk);
2748
2749         if (tcp_may_undo(tp)) {
2750                 struct sk_buff *skb;
2751                 tcp_for_write_queue(skb, sk) {
2752                         if (skb == tcp_send_head(sk))
2753                                 break;
2754                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2755                 }
2756
2757                 tcp_clear_all_retrans_hints(tp);
2758
2759                 DBGUNDO(sk, "partial loss");
2760                 tp->lost_out = 0;
2761                 tcp_undo_cwr(sk, 1);
2762                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2763                 inet_csk(sk)->icsk_retransmits = 0;
2764                 tp->undo_marker = 0;
2765                 if (tcp_is_sack(tp))
2766                         tcp_set_ca_state(sk, TCP_CA_Open);
2767                 return 1;
2768         }
2769         return 0;
2770 }
2771
2772 static inline void tcp_complete_cwr(struct sock *sk)
2773 {
2774         struct tcp_sock *tp = tcp_sk(sk);
2775         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2776         tp->snd_cwnd_stamp = tcp_time_stamp;
2777         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2778 }
2779
2780 static void tcp_try_keep_open(struct sock *sk)
2781 {
2782         struct tcp_sock *tp = tcp_sk(sk);
2783         int state = TCP_CA_Open;
2784
2785         if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2786                 state = TCP_CA_Disorder;
2787
2788         if (inet_csk(sk)->icsk_ca_state != state) {
2789                 tcp_set_ca_state(sk, state);
2790                 tp->high_seq = tp->snd_nxt;
2791         }
2792 }
2793
2794 static void tcp_try_to_open(struct sock *sk, int flag)
2795 {
2796         struct tcp_sock *tp = tcp_sk(sk);
2797
2798         tcp_verify_left_out(tp);
2799
2800         if (!tp->frto_counter && tp->retrans_out == 0)
2801                 tp->retrans_stamp = 0;
2802
2803         if (flag & FLAG_ECE)
2804                 tcp_enter_cwr(sk, 1);
2805
2806         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2807                 tcp_try_keep_open(sk);
2808                 tcp_moderate_cwnd(tp);
2809         } else {
2810                 tcp_cwnd_down(sk, flag);
2811         }
2812 }
2813
2814 static void tcp_mtup_probe_failed(struct sock *sk)
2815 {
2816         struct inet_connection_sock *icsk = inet_csk(sk);
2817
2818         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2819         icsk->icsk_mtup.probe_size = 0;
2820 }
2821
2822 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2823 {
2824         struct tcp_sock *tp = tcp_sk(sk);
2825         struct inet_connection_sock *icsk = inet_csk(sk);
2826
2827         /* FIXME: breaks with very large cwnd */
2828         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2829         tp->snd_cwnd = tp->snd_cwnd *
2830                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2831                        icsk->icsk_mtup.probe_size;
2832         tp->snd_cwnd_cnt = 0;
2833         tp->snd_cwnd_stamp = tcp_time_stamp;
2834         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2835
2836         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2837         icsk->icsk_mtup.probe_size = 0;
2838         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2839 }
2840
2841 /* Do a simple retransmit without using the backoff mechanisms in
2842  * tcp_timer. This is used for path mtu discovery.
2843  * The socket is already locked here.
2844  */
2845 void tcp_simple_retransmit(struct sock *sk)
2846 {
2847         const struct inet_connection_sock *icsk = inet_csk(sk);
2848         struct tcp_sock *tp = tcp_sk(sk);
2849         struct sk_buff *skb;
2850         unsigned int mss = tcp_current_mss(sk, 0);
2851         u32 prior_lost = tp->lost_out;
2852
2853         tcp_for_write_queue(skb, sk) {
2854                 if (skb == tcp_send_head(sk))
2855                         break;
2856                 if (skb->len > mss &&
2857                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2858                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2859                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2860                                 tp->retrans_out -= tcp_skb_pcount(skb);
2861                         }
2862                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2863                 }
2864         }
2865
2866         tcp_clear_retrans_hints_partial(tp);
2867
2868         if (prior_lost == tp->lost_out)
2869                 return;
2870
2871         if (tcp_is_reno(tp))
2872                 tcp_limit_reno_sacked(tp);
2873
2874         tcp_verify_left_out(tp);
2875
2876         /* Don't muck with the congestion window here.
2877          * Reason is that we do not increase amount of _data_
2878          * in network, but units changed and effective
2879          * cwnd/ssthresh really reduced now.
2880          */
2881         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2882                 tp->high_seq = tp->snd_nxt;
2883                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2884                 tp->prior_ssthresh = 0;
2885                 tp->undo_marker = 0;
2886                 tcp_set_ca_state(sk, TCP_CA_Loss);
2887         }
2888         tcp_xmit_retransmit_queue(sk);
2889 }
2890
2891 /* Process an event, which can update packets-in-flight not trivially.
2892  * Main goal of this function is to calculate new estimate for left_out,
2893  * taking into account both packets sitting in receiver's buffer and
2894  * packets lost by network.
2895  *
2896  * Besides that it does CWND reduction, when packet loss is detected
2897  * and changes state of machine.
2898  *
2899  * It does _not_ decide what to send, it is made in function
2900  * tcp_xmit_retransmit_queue().
2901  */
2902 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2903 {
2904         struct inet_connection_sock *icsk = inet_csk(sk);
2905         struct tcp_sock *tp = tcp_sk(sk);
2906         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2907         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2908                                     (tcp_fackets_out(tp) > tp->reordering));
2909         int fast_rexmit = 0, mib_idx;
2910
2911         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2912                 tp->sacked_out = 0;
2913         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2914                 tp->fackets_out = 0;
2915
2916         /* Now state machine starts.
2917          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2918         if (flag & FLAG_ECE)
2919                 tp->prior_ssthresh = 0;
2920
2921         /* B. In all the states check for reneging SACKs. */
2922         if (tcp_check_sack_reneging(sk, flag))
2923                 return;
2924
2925         /* C. Process data loss notification, provided it is valid. */
2926         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2927             before(tp->snd_una, tp->high_seq) &&
2928             icsk->icsk_ca_state != TCP_CA_Open &&
2929             tp->fackets_out > tp->reordering) {
2930                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2931                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2932         }
2933
2934         /* D. Check consistency of the current state. */
2935         tcp_verify_left_out(tp);
2936
2937         /* E. Check state exit conditions. State can be terminated
2938          *    when high_seq is ACKed. */
2939         if (icsk->icsk_ca_state == TCP_CA_Open) {
2940                 WARN_ON(tp->retrans_out != 0);
2941                 tp->retrans_stamp = 0;
2942         } else if (!before(tp->snd_una, tp->high_seq)) {
2943                 switch (icsk->icsk_ca_state) {
2944                 case TCP_CA_Loss:
2945                         icsk->icsk_retransmits = 0;
2946                         if (tcp_try_undo_recovery(sk))
2947                                 return;
2948                         break;
2949
2950                 case TCP_CA_CWR:
2951                         /* CWR is to be held something *above* high_seq
2952                          * is ACKed for CWR bit to reach receiver. */
2953                         if (tp->snd_una != tp->high_seq) {
2954                                 tcp_complete_cwr(sk);
2955                                 tcp_set_ca_state(sk, TCP_CA_Open);
2956                         }
2957                         break;
2958
2959                 case TCP_CA_Disorder:
2960                         tcp_try_undo_dsack(sk);
2961                         if (!tp->undo_marker ||
2962                             /* For SACK case do not Open to allow to undo
2963                              * catching for all duplicate ACKs. */
2964                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2965                                 tp->undo_marker = 0;
2966                                 tcp_set_ca_state(sk, TCP_CA_Open);
2967                         }
2968                         break;
2969
2970                 case TCP_CA_Recovery:
2971                         if (tcp_is_reno(tp))
2972                                 tcp_reset_reno_sack(tp);
2973                         if (tcp_try_undo_recovery(sk))
2974                                 return;
2975                         tcp_complete_cwr(sk);
2976                         break;
2977                 }
2978         }
2979
2980         /* F. Process state. */
2981         switch (icsk->icsk_ca_state) {
2982         case TCP_CA_Recovery:
2983                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2984                         if (tcp_is_reno(tp) && is_dupack)
2985                                 tcp_add_reno_sack(sk);
2986                 } else
2987                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2988                 break;
2989         case TCP_CA_Loss:
2990                 if (flag & FLAG_DATA_ACKED)
2991                         icsk->icsk_retransmits = 0;
2992                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2993                         tcp_reset_reno_sack(tp);
2994                 if (!tcp_try_undo_loss(sk)) {
2995                         tcp_moderate_cwnd(tp);
2996                         tcp_xmit_retransmit_queue(sk);
2997                         return;
2998                 }
2999                 if (icsk->icsk_ca_state != TCP_CA_Open)
3000                         return;
3001                 /* Loss is undone; fall through to processing in Open state. */
3002         default:
3003                 if (tcp_is_reno(tp)) {
3004                         if (flag & FLAG_SND_UNA_ADVANCED)
3005                                 tcp_reset_reno_sack(tp);
3006                         if (is_dupack)
3007                                 tcp_add_reno_sack(sk);
3008                 }
3009
3010                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3011                         tcp_try_undo_dsack(sk);
3012
3013                 if (!tcp_time_to_recover(sk)) {
3014                         tcp_try_to_open(sk, flag);
3015                         return;
3016                 }
3017
3018                 /* MTU probe failure: don't reduce cwnd */
3019                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3020                     icsk->icsk_mtup.probe_size &&
3021                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3022                         tcp_mtup_probe_failed(sk);
3023                         /* Restores the reduction we did in tcp_mtup_probe() */
3024                         tp->snd_cwnd++;
3025                         tcp_simple_retransmit(sk);
3026                         return;
3027                 }
3028
3029                 /* Otherwise enter Recovery state */
3030
3031                 if (tcp_is_reno(tp))
3032                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3033                 else
3034                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3035
3036                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3037
3038                 tp->high_seq = tp->snd_nxt;
3039                 tp->prior_ssthresh = 0;
3040                 tp->undo_marker = tp->snd_una;
3041                 tp->undo_retrans = tp->retrans_out;
3042
3043                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3044                         if (!(flag & FLAG_ECE))
3045                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3046                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3047                         TCP_ECN_queue_cwr(tp);
3048                 }
3049
3050                 tp->bytes_acked = 0;
3051                 tp->snd_cwnd_cnt = 0;
3052                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3053                 fast_rexmit = 1;
3054         }
3055
3056         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3057                 tcp_update_scoreboard(sk, fast_rexmit);
3058         tcp_cwnd_down(sk, flag);
3059         tcp_xmit_retransmit_queue(sk);
3060 }
3061
3062 /* Read draft-ietf-tcplw-high-performance before mucking
3063  * with this code. (Supersedes RFC1323)
3064  */
3065 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3066 {
3067         /* RTTM Rule: A TSecr value received in a segment is used to
3068          * update the averaged RTT measurement only if the segment
3069          * acknowledges some new data, i.e., only if it advances the
3070          * left edge of the send window.
3071          *
3072          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3073          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3074          *
3075          * Changed: reset backoff as soon as we see the first valid sample.
3076          * If we do not, we get strongly overestimated rto. With timestamps
3077          * samples are accepted even from very old segments: f.e., when rtt=1
3078          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3079          * answer arrives rto becomes 120 seconds! If at least one of segments
3080          * in window is lost... Voila.                          --ANK (010210)
3081          */
3082         struct tcp_sock *tp = tcp_sk(sk);
3083         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
3084         tcp_rtt_estimator(sk, seq_rtt);
3085         tcp_set_rto(sk);
3086         inet_csk(sk)->icsk_backoff = 0;
3087         tcp_bound_rto(sk);
3088 }
3089
3090 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3091 {
3092         /* We don't have a timestamp. Can only use
3093          * packets that are not retransmitted to determine
3094          * rtt estimates. Also, we must not reset the
3095          * backoff for rto until we get a non-retransmitted
3096          * packet. This allows us to deal with a situation
3097          * where the network delay has increased suddenly.
3098          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3099          */
3100
3101         if (flag & FLAG_RETRANS_DATA_ACKED)
3102                 return;
3103
3104         tcp_rtt_estimator(sk, seq_rtt);
3105         tcp_set_rto(sk);
3106         inet_csk(sk)->icsk_backoff = 0;
3107         tcp_bound_rto(sk);
3108 }
3109
3110 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3111                                       const s32 seq_rtt)
3112 {
3113         const struct tcp_sock *tp = tcp_sk(sk);
3114         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3115         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3116                 tcp_ack_saw_tstamp(sk, flag);
3117         else if (seq_rtt >= 0)
3118                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3119 }
3120
3121 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3122 {
3123         const struct inet_connection_sock *icsk = inet_csk(sk);
3124         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3125         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3126 }
3127
3128 /* Restart timer after forward progress on connection.
3129  * RFC2988 recommends to restart timer to now+rto.
3130  */
3131 static void tcp_rearm_rto(struct sock *sk)
3132 {
3133         struct tcp_sock *tp = tcp_sk(sk);
3134
3135         if (!tp->packets_out) {
3136                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3137         } else {
3138                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3139                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3140         }
3141 }
3142
3143 /* If we get here, the whole TSO packet has not been acked. */
3144 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3145 {
3146         struct tcp_sock *tp = tcp_sk(sk);
3147         u32 packets_acked;
3148
3149         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3150
3151         packets_acked = tcp_skb_pcount(skb);
3152         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3153                 return 0;
3154         packets_acked -= tcp_skb_pcount(skb);
3155
3156         if (packets_acked) {
3157                 BUG_ON(tcp_skb_pcount(skb) == 0);
3158                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3159         }
3160
3161         return packets_acked;
3162 }
3163
3164 /* Remove acknowledged frames from the retransmission queue. If our packet
3165  * is before the ack sequence we can discard it as it's confirmed to have
3166  * arrived at the other end.
3167  */
3168 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3169                                u32 prior_snd_una)
3170 {
3171         struct tcp_sock *tp = tcp_sk(sk);
3172         const struct inet_connection_sock *icsk = inet_csk(sk);
3173         struct sk_buff *skb;
3174         u32 now = tcp_time_stamp;
3175         int fully_acked = 1;
3176         int flag = 0;
3177         u32 pkts_acked = 0;
3178         u32 reord = tp->packets_out;
3179         u32 prior_sacked = tp->sacked_out;
3180         s32 seq_rtt = -1;
3181         s32 ca_seq_rtt = -1;
3182         ktime_t last_ackt = net_invalid_timestamp();
3183
3184         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3185                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3186                 u32 end_seq;
3187                 u32 acked_pcount;
3188                 u8 sacked = scb->sacked;
3189
3190                 /* Determine how many packets and what bytes were acked, tso and else */
3191                 if (after(scb->end_seq, tp->snd_una)) {
3192                         if (tcp_skb_pcount(skb) == 1 ||
3193                             !after(tp->snd_una, scb->seq))
3194                                 break;
3195
3196                         acked_pcount = tcp_tso_acked(sk, skb);
3197                         if (!acked_pcount)
3198                                 break;
3199
3200                         fully_acked = 0;
3201                         end_seq = tp->snd_una;
3202                 } else {
3203                         acked_pcount = tcp_skb_pcount(skb);
3204                         end_seq = scb->end_seq;
3205                 }
3206
3207                 /* MTU probing checks */
3208                 if (fully_acked && icsk->icsk_mtup.probe_size &&
3209                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
3210                         tcp_mtup_probe_success(sk, skb);
3211                 }
3212
3213                 if (sacked & TCPCB_RETRANS) {
3214                         if (sacked & TCPCB_SACKED_RETRANS)
3215                                 tp->retrans_out -= acked_pcount;
3216                         flag |= FLAG_RETRANS_DATA_ACKED;
3217                         ca_seq_rtt = -1;
3218                         seq_rtt = -1;
3219                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3220                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3221                 } else {
3222                         ca_seq_rtt = now - scb->when;
3223                         last_ackt = skb->tstamp;
3224                         if (seq_rtt < 0) {
3225                                 seq_rtt = ca_seq_rtt;
3226                         }
3227                         if (!(sacked & TCPCB_SACKED_ACKED))
3228                                 reord = min(pkts_acked, reord);
3229                 }
3230
3231                 if (sacked & TCPCB_SACKED_ACKED)
3232                         tp->sacked_out -= acked_pcount;
3233                 if (sacked & TCPCB_LOST)
3234                         tp->lost_out -= acked_pcount;
3235
3236                 tp->packets_out -= acked_pcount;
3237                 pkts_acked += acked_pcount;
3238
3239                 /* Initial outgoing SYN's get put onto the write_queue
3240                  * just like anything else we transmit.  It is not
3241                  * true data, and if we misinform our callers that
3242                  * this ACK acks real data, we will erroneously exit
3243                  * connection startup slow start one packet too
3244                  * quickly.  This is severely frowned upon behavior.
3245                  */
3246                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
3247                         flag |= FLAG_DATA_ACKED;
3248                 } else {
3249                         flag |= FLAG_SYN_ACKED;
3250                         tp->retrans_stamp = 0;
3251                 }
3252
3253                 if (!fully_acked)
3254                         break;
3255
3256                 tcp_unlink_write_queue(skb, sk);
3257                 sk_wmem_free_skb(sk, skb);
3258                 tp->scoreboard_skb_hint = NULL;
3259                 if (skb == tp->retransmit_skb_hint)
3260                         tp->retransmit_skb_hint = NULL;
3261                 if (skb == tp->lost_skb_hint)
3262                         tp->lost_skb_hint = NULL;
3263         }
3264
3265         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3266                 tp->snd_up = tp->snd_una;
3267
3268         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3269                 flag |= FLAG_SACK_RENEGING;
3270
3271         if (flag & FLAG_ACKED) {
3272                 const struct tcp_congestion_ops *ca_ops
3273                         = inet_csk(sk)->icsk_ca_ops;
3274
3275                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3276                 tcp_rearm_rto(sk);
3277
3278                 if (tcp_is_reno(tp)) {
3279                         tcp_remove_reno_sacks(sk, pkts_acked);
3280                 } else {
3281                         /* Non-retransmitted hole got filled? That's reordering */
3282                         if (reord < prior_fackets)
3283                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3284
3285                         /* No need to care for underflows here because
3286                          * the lost_skb_hint gets NULLed if we're past it
3287                          * (or something non-trivial happened)
3288                          */
3289                         if (tcp_is_fack(tp))
3290                                 tp->lost_cnt_hint -= pkts_acked;
3291                         else
3292                                 tp->lost_cnt_hint -= prior_sacked - tp->sacked_out;
3293                 }
3294
3295                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3296
3297                 if (ca_ops->pkts_acked) {
3298                         s32 rtt_us = -1;
3299
3300                         /* Is the ACK triggering packet unambiguous? */
3301                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3302                                 /* High resolution needed and available? */
3303                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3304                                     !ktime_equal(last_ackt,
3305                                                  net_invalid_timestamp()))
3306                                         rtt_us = ktime_us_delta(ktime_get_real(),
3307                                                                 last_ackt);
3308                                 else if (ca_seq_rtt > 0)
3309                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3310                         }
3311
3312                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3313                 }
3314         }
3315
3316 #if FASTRETRANS_DEBUG > 0
3317         WARN_ON((int)tp->sacked_out < 0);
3318         WARN_ON((int)tp->lost_out < 0);
3319         WARN_ON((int)tp->retrans_out < 0);
3320         if (!tp->packets_out && tcp_is_sack(tp)) {
3321                 icsk = inet_csk(sk);
3322                 if (tp->lost_out) {
3323                         printk(KERN_DEBUG "Leak l=%u %d\n",
3324                                tp->lost_out, icsk->icsk_ca_state);
3325                         tp->lost_out = 0;
3326                 }
3327                 if (tp->sacked_out) {
3328                         printk(KERN_DEBUG "Leak s=%u %d\n",
3329                                tp->sacked_out, icsk->icsk_ca_state);
3330                         tp->sacked_out = 0;
3331                 }
3332                 if (tp->retrans_out) {
3333                         printk(KERN_DEBUG "Leak r=%u %d\n",
3334                                tp->retrans_out, icsk->icsk_ca_state);
3335                         tp->retrans_out = 0;
3336                 }
3337         }
3338 #endif
3339         return flag;
3340 }
3341
3342 static void tcp_ack_probe(struct sock *sk)
3343 {
3344         const struct tcp_sock *tp = tcp_sk(sk);
3345         struct inet_connection_sock *icsk = inet_csk(sk);
3346
3347         /* Was it a usable window open? */
3348
3349         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3350                 icsk->icsk_backoff = 0;
3351                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3352                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3353                  * This function is not for random using!
3354                  */
3355         } else {
3356                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3357                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3358                                           TCP_RTO_MAX);
3359         }
3360 }
3361
3362 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3363 {
3364         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3365                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3366 }
3367
3368 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3369 {
3370         const struct tcp_sock *tp = tcp_sk(sk);
3371         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3372                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3373 }
3374
3375 /* Check that window update is acceptable.
3376  * The function assumes that snd_una<=ack<=snd_next.
3377  */
3378 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3379                                         const u32 ack, const u32 ack_seq,
3380                                         const u32 nwin)
3381 {
3382         return (after(ack, tp->snd_una) ||
3383                 after(ack_seq, tp->snd_wl1) ||
3384                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3385 }
3386
3387 /* Update our send window.
3388  *
3389  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3390  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3391  */
3392 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3393                                  u32 ack_seq)
3394 {
3395         struct tcp_sock *tp = tcp_sk(sk);
3396         int flag = 0;
3397         u32 nwin = ntohs(tcp_hdr(skb)->window);
3398
3399         if (likely(!tcp_hdr(skb)->syn))
3400                 nwin <<= tp->rx_opt.snd_wscale;
3401
3402         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3403                 flag |= FLAG_WIN_UPDATE;
3404                 tcp_update_wl(tp, ack, ack_seq);
3405
3406                 if (tp->snd_wnd != nwin) {
3407                         tp->snd_wnd = nwin;
3408
3409                         /* Note, it is the only place, where
3410                          * fast path is recovered for sending TCP.
3411                          */
3412                         tp->pred_flags = 0;
3413                         tcp_fast_path_check(sk);
3414
3415                         if (nwin > tp->max_window) {
3416                                 tp->max_window = nwin;
3417                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3418                         }
3419                 }
3420         }
3421
3422         tp->snd_una = ack;
3423
3424         return flag;
3425 }
3426
3427 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3428  * continue in congestion avoidance.
3429  */
3430 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3431 {
3432         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3433         tp->snd_cwnd_cnt = 0;
3434         tp->bytes_acked = 0;
3435         TCP_ECN_queue_cwr(tp);
3436         tcp_moderate_cwnd(tp);
3437 }
3438
3439 /* A conservative spurious RTO response algorithm: reduce cwnd using
3440  * rate halving and continue in congestion avoidance.
3441  */
3442 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3443 {
3444         tcp_enter_cwr(sk, 0);
3445 }
3446
3447 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3448 {
3449         if (flag & FLAG_ECE)
3450                 tcp_ratehalving_spur_to_response(sk);
3451         else
3452                 tcp_undo_cwr(sk, 1);
3453 }
3454
3455 /* F-RTO spurious RTO detection algorithm (RFC4138)
3456  *
3457  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3458  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3459  * window (but not to or beyond highest sequence sent before RTO):
3460  *   On First ACK,  send two new segments out.
3461  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3462  *                  algorithm is not part of the F-RTO detection algorithm
3463  *                  given in RFC4138 but can be selected separately).
3464  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3465  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3466  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3467  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3468  *
3469  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3470  * original window even after we transmit two new data segments.
3471  *
3472  * SACK version:
3473  *   on first step, wait until first cumulative ACK arrives, then move to
3474  *   the second step. In second step, the next ACK decides.
3475  *
3476  * F-RTO is implemented (mainly) in four functions:
3477  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3478  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3479  *     called when tcp_use_frto() showed green light
3480  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3481  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3482  *     to prove that the RTO is indeed spurious. It transfers the control
3483  *     from F-RTO to the conventional RTO recovery
3484  */
3485 static int tcp_process_frto(struct sock *sk, int flag)
3486 {
3487         struct tcp_sock *tp = tcp_sk(sk);
3488
3489         tcp_verify_left_out(tp);
3490
3491         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3492         if (flag & FLAG_DATA_ACKED)
3493                 inet_csk(sk)->icsk_retransmits = 0;
3494
3495         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3496             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3497                 tp->undo_marker = 0;
3498
3499         if (!before(tp->snd_una, tp->frto_highmark)) {
3500                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3501                 return 1;
3502         }
3503
3504         if (!tcp_is_sackfrto(tp)) {
3505                 /* RFC4138 shortcoming in step 2; should also have case c):
3506                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3507                  * data, winupdate
3508                  */
3509                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3510                         return 1;
3511
3512                 if (!(flag & FLAG_DATA_ACKED)) {
3513                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3514                                             flag);
3515                         return 1;
3516                 }
3517         } else {
3518                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3519                         /* Prevent sending of new data. */
3520                         tp->snd_cwnd = min(tp->snd_cwnd,
3521                                            tcp_packets_in_flight(tp));
3522                         return 1;
3523                 }
3524
3525                 if ((tp->frto_counter >= 2) &&
3526                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3527                      ((flag & FLAG_DATA_SACKED) &&
3528                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3529                         /* RFC4138 shortcoming (see comment above) */
3530                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3531                             (flag & FLAG_NOT_DUP))
3532                                 return 1;
3533
3534                         tcp_enter_frto_loss(sk, 3, flag);
3535                         return 1;
3536                 }
3537         }
3538
3539         if (tp->frto_counter == 1) {
3540                 /* tcp_may_send_now needs to see updated state */
3541                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3542                 tp->frto_counter = 2;
3543
3544                 if (!tcp_may_send_now(sk))
3545                         tcp_enter_frto_loss(sk, 2, flag);
3546
3547                 return 1;
3548         } else {
3549                 switch (sysctl_tcp_frto_response) {
3550                 case 2:
3551                         tcp_undo_spur_to_response(sk, flag);
3552                         break;
3553                 case 1:
3554                         tcp_conservative_spur_to_response(tp);
3555                         break;
3556                 default:
3557                         tcp_ratehalving_spur_to_response(sk);
3558                         break;
3559                 }
3560                 tp->frto_counter = 0;
3561                 tp->undo_marker = 0;
3562                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3563         }
3564         return 0;
3565 }
3566
3567 /* This routine deals with incoming acks, but not outgoing ones. */
3568 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3569 {
3570         struct inet_connection_sock *icsk = inet_csk(sk);
3571         struct tcp_sock *tp = tcp_sk(sk);
3572         u32 prior_snd_una = tp->snd_una;
3573         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3574         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3575         u32 prior_in_flight;
3576         u32 prior_fackets;
3577         int prior_packets;
3578         int frto_cwnd = 0;
3579
3580         /* If the ack is newer than sent or older than previous acks
3581          * then we can probably ignore it.
3582          */
3583         if (after(ack, tp->snd_nxt))
3584                 goto uninteresting_ack;
3585
3586         if (before(ack, prior_snd_una))
3587                 goto old_ack;
3588
3589         if (after(ack, prior_snd_una))
3590                 flag |= FLAG_SND_UNA_ADVANCED;
3591
3592         if (sysctl_tcp_abc) {
3593                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3594                         tp->bytes_acked += ack - prior_snd_una;
3595                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3596                         /* we assume just one segment left network */
3597                         tp->bytes_acked += min(ack - prior_snd_una,
3598                                                tp->mss_cache);
3599         }
3600
3601         prior_fackets = tp->fackets_out;
3602         prior_in_flight = tcp_packets_in_flight(tp);
3603
3604         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3605                 /* Window is constant, pure forward advance.
3606                  * No more checks are required.
3607                  * Note, we use the fact that SND.UNA>=SND.WL2.
3608                  */
3609                 tcp_update_wl(tp, ack, ack_seq);
3610                 tp->snd_una = ack;
3611                 flag |= FLAG_WIN_UPDATE;
3612
3613                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3614
3615                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3616         } else {
3617                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3618                         flag |= FLAG_DATA;
3619                 else
3620                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3621
3622                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3623
3624                 if (TCP_SKB_CB(skb)->sacked)
3625                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3626
3627                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3628                         flag |= FLAG_ECE;
3629
3630                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3631         }
3632
3633         /* We passed data and got it acked, remove any soft error
3634          * log. Something worked...
3635          */
3636         sk->sk_err_soft = 0;
3637         icsk->icsk_probes_out = 0;
3638         tp->rcv_tstamp = tcp_time_stamp;
3639         prior_packets = tp->packets_out;
3640         if (!prior_packets)
3641                 goto no_queue;
3642
3643         /* See if we can take anything off of the retransmit queue. */
3644         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3645
3646         if (tp->frto_counter)
3647                 frto_cwnd = tcp_process_frto(sk, flag);
3648         /* Guarantee sacktag reordering detection against wrap-arounds */
3649         if (before(tp->frto_highmark, tp->snd_una))
3650                 tp->frto_highmark = 0;
3651
3652         if (tcp_ack_is_dubious(sk, flag)) {
3653                 /* Advance CWND, if state allows this. */
3654                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3655                     tcp_may_raise_cwnd(sk, flag))
3656                         tcp_cong_avoid(sk, ack, prior_in_flight);
3657                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3658                                       flag);
3659         } else {
3660                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3661                         tcp_cong_avoid(sk, ack, prior_in_flight);
3662         }
3663
3664         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3665                 dst_confirm(sk->sk_dst_cache);
3666
3667         return 1;
3668
3669 no_queue:
3670         /* If this ack opens up a zero window, clear backoff.  It was
3671          * being used to time the probes, and is probably far higher than
3672          * it needs to be for normal retransmission.
3673          */
3674         if (tcp_send_head(sk))
3675                 tcp_ack_probe(sk);
3676         return 1;
3677
3678 old_ack:
3679         if (TCP_SKB_CB(skb)->sacked) {
3680                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3681                 if (icsk->icsk_ca_state == TCP_CA_Open)
3682                         tcp_try_keep_open(sk);
3683         }
3684
3685 uninteresting_ack:
3686         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3687         return 0;
3688 }
3689
3690 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3691  * But, this can also be called on packets in the established flow when
3692  * the fast version below fails.
3693  */
3694 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3695                        int estab)
3696 {
3697         unsigned char *ptr;
3698         struct tcphdr *th = tcp_hdr(skb);
3699         int length = (th->doff * 4) - sizeof(struct tcphdr);
3700
3701         ptr = (unsigned char *)(th + 1);
3702         opt_rx->saw_tstamp = 0;
3703
3704         while (length > 0) {
3705                 int opcode = *ptr++;
3706                 int opsize;
3707
3708                 switch (opcode) {
3709                 case TCPOPT_EOL:
3710                         return;
3711                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3712                         length--;
3713                         continue;
3714                 default:
3715                         opsize = *ptr++;
3716                         if (opsize < 2) /* "silly options" */
3717                                 return;
3718                         if (opsize > length)
3719                                 return; /* don't parse partial options */
3720                         switch (opcode) {
3721                         case TCPOPT_MSS:
3722                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3723                                         u16 in_mss = get_unaligned_be16(ptr);
3724                                         if (in_mss) {
3725                                                 if (opt_rx->user_mss &&
3726                                                     opt_rx->user_mss < in_mss)
3727                                                         in_mss = opt_rx->user_mss;
3728                                                 opt_rx->mss_clamp = in_mss;
3729                                         }
3730                                 }
3731                                 break;
3732                         case TCPOPT_WINDOW:
3733                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3734                                     !estab && sysctl_tcp_window_scaling) {
3735                                         __u8 snd_wscale = *(__u8 *)ptr;
3736                                         opt_rx->wscale_ok = 1;
3737                                         if (snd_wscale > 14) {
3738                                                 if (net_ratelimit())
3739                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3740                                                                "scaling value %d >14 received.\n",
3741                                                                snd_wscale);
3742                                                 snd_wscale = 14;
3743                                         }
3744                                         opt_rx->snd_wscale = snd_wscale;
3745                                 }
3746                                 break;
3747                         case TCPOPT_TIMESTAMP:
3748                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3749                                     ((estab && opt_rx->tstamp_ok) ||
3750                                      (!estab && sysctl_tcp_timestamps))) {
3751                                         opt_rx->saw_tstamp = 1;
3752                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3753                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3754                                 }
3755                                 break;
3756                         case TCPOPT_SACK_PERM:
3757                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3758                                     !estab && sysctl_tcp_sack) {
3759                                         opt_rx->sack_ok = 1;
3760                                         tcp_sack_reset(opt_rx);
3761                                 }
3762                                 break;
3763
3764                         case TCPOPT_SACK:
3765                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3766                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3767                                    opt_rx->sack_ok) {
3768                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3769                                 }
3770                                 break;
3771 #ifdef CONFIG_TCP_MD5SIG
3772                         case TCPOPT_MD5SIG:
3773                                 /*
3774                                  * The MD5 Hash has already been
3775                                  * checked (see tcp_v{4,6}_do_rcv()).
3776                                  */
3777                                 break;
3778 #endif
3779                         }
3780
3781                         ptr += opsize-2;
3782                         length -= opsize;
3783                 }
3784         }
3785 }
3786
3787 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3788 {
3789         __be32 *ptr = (__be32 *)(th + 1);
3790
3791         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3792                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3793                 tp->rx_opt.saw_tstamp = 1;
3794                 ++ptr;
3795                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3796                 ++ptr;
3797                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3798                 return 1;
3799         }
3800         return 0;
3801 }
3802
3803 /* Fast parse options. This hopes to only see timestamps.
3804  * If it is wrong it falls back on tcp_parse_options().
3805  */
3806 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3807                                   struct tcp_sock *tp)
3808 {
3809         if (th->doff == sizeof(struct tcphdr) >> 2) {
3810                 tp->rx_opt.saw_tstamp = 0;
3811                 return 0;
3812         } else if (tp->rx_opt.tstamp_ok &&
3813                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3814                 if (tcp_parse_aligned_timestamp(tp, th))
3815                         return 1;
3816         }
3817         tcp_parse_options(skb, &tp->rx_opt, 1);
3818         return 1;
3819 }
3820
3821 #ifdef CONFIG_TCP_MD5SIG
3822 /*
3823  * Parse MD5 Signature option
3824  */
3825 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3826 {
3827         int length = (th->doff << 2) - sizeof (*th);
3828         u8 *ptr = (u8*)(th + 1);
3829
3830         /* If the TCP option is too short, we can short cut */
3831         if (length < TCPOLEN_MD5SIG)
3832                 return NULL;
3833
3834         while (length > 0) {
3835                 int opcode = *ptr++;
3836                 int opsize;
3837
3838                 switch(opcode) {
3839                 case TCPOPT_EOL:
3840                         return NULL;
3841                 case TCPOPT_NOP:
3842                         length--;
3843                         continue;
3844                 default:
3845                         opsize = *ptr++;
3846                         if (opsize < 2 || opsize > length)
3847                                 return NULL;
3848                         if (opcode == TCPOPT_MD5SIG)
3849                                 return ptr;
3850                 }
3851                 ptr += opsize - 2;
3852                 length -= opsize;
3853         }
3854         return NULL;
3855 }
3856 #endif
3857
3858 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3859 {
3860         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3861         tp->rx_opt.ts_recent_stamp = get_seconds();
3862 }
3863
3864 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3865 {
3866         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3867                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3868                  * extra check below makes sure this can only happen
3869                  * for pure ACK frames.  -DaveM
3870                  *
3871                  * Not only, also it occurs for expired timestamps.
3872                  */
3873
3874                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3875                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3876                         tcp_store_ts_recent(tp);
3877         }
3878 }
3879
3880 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3881  *
3882  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3883  * it can pass through stack. So, the following predicate verifies that
3884  * this segment is not used for anything but congestion avoidance or
3885  * fast retransmit. Moreover, we even are able to eliminate most of such
3886  * second order effects, if we apply some small "replay" window (~RTO)
3887  * to timestamp space.
3888  *
3889  * All these measures still do not guarantee that we reject wrapped ACKs
3890  * on networks with high bandwidth, when sequence space is recycled fastly,
3891  * but it guarantees that such events will be very rare and do not affect
3892  * connection seriously. This doesn't look nice, but alas, PAWS is really
3893  * buggy extension.
3894  *
3895  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3896  * states that events when retransmit arrives after original data are rare.
3897  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3898  * the biggest problem on large power networks even with minor reordering.
3899  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3900  * up to bandwidth of 18Gigabit/sec. 8) ]
3901  */
3902
3903 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3904 {
3905         struct tcp_sock *tp = tcp_sk(sk);
3906         struct tcphdr *th = tcp_hdr(skb);
3907         u32 seq = TCP_SKB_CB(skb)->seq;
3908         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3909
3910         return (/* 1. Pure ACK with correct sequence number. */
3911                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3912
3913                 /* 2. ... and duplicate ACK. */
3914                 ack == tp->snd_una &&
3915
3916                 /* 3. ... and does not update window. */
3917                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3918
3919                 /* 4. ... and sits in replay window. */
3920                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3921 }
3922
3923 static inline int tcp_paws_discard(const struct sock *sk,
3924                                    const struct sk_buff *skb)
3925 {
3926         const struct tcp_sock *tp = tcp_sk(sk);
3927         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3928                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3929                 !tcp_disordered_ack(sk, skb));
3930 }
3931
3932 /* Check segment sequence number for validity.
3933  *
3934  * Segment controls are considered valid, if the segment
3935  * fits to the window after truncation to the window. Acceptability
3936  * of data (and SYN, FIN, of course) is checked separately.
3937  * See tcp_data_queue(), for example.
3938  *
3939  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3940  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3941  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3942  * (borrowed from freebsd)
3943  */
3944
3945 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3946 {
3947         return  !before(end_seq, tp->rcv_wup) &&
3948                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3949 }
3950
3951 /* When we get a reset we do this. */
3952 static void tcp_reset(struct sock *sk)
3953 {
3954         /* We want the right error as BSD sees it (and indeed as we do). */
3955         switch (sk->sk_state) {
3956         case TCP_SYN_SENT:
3957                 sk->sk_err = ECONNREFUSED;
3958                 break;
3959         case TCP_CLOSE_WAIT:
3960                 sk->sk_err = EPIPE;
3961                 break;
3962         case TCP_CLOSE:
3963                 return;
3964         default:
3965                 sk->sk_err = ECONNRESET;
3966         }
3967
3968         if (!sock_flag(sk, SOCK_DEAD))
3969                 sk->sk_error_report(sk);
3970
3971         tcp_done(sk);
3972 }
3973
3974 /*
3975  *      Process the FIN bit. This now behaves as it is supposed to work
3976  *      and the FIN takes effect when it is validly part of sequence
3977  *      space. Not before when we get holes.
3978  *
3979  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3980  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3981  *      TIME-WAIT)
3982  *
3983  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3984  *      close and we go into CLOSING (and later onto TIME-WAIT)
3985  *
3986  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3987  */
3988 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3989 {
3990         struct tcp_sock *tp = tcp_sk(sk);
3991
3992         inet_csk_schedule_ack(sk);
3993
3994         sk->sk_shutdown |= RCV_SHUTDOWN;
3995         sock_set_flag(sk, SOCK_DONE);
3996
3997         switch (sk->sk_state) {
3998         case TCP_SYN_RECV:
3999         case TCP_ESTABLISHED:
4000                 /* Move to CLOSE_WAIT */
4001                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4002                 inet_csk(sk)->icsk_ack.pingpong = 1;
4003                 break;
4004
4005         case TCP_CLOSE_WAIT:
4006         case TCP_CLOSING:
4007                 /* Received a retransmission of the FIN, do
4008                  * nothing.
4009                  */
4010                 break;
4011         case TCP_LAST_ACK:
4012                 /* RFC793: Remain in the LAST-ACK state. */
4013                 break;
4014
4015         case TCP_FIN_WAIT1:
4016                 /* This case occurs when a simultaneous close
4017                  * happens, we must ack the received FIN and
4018                  * enter the CLOSING state.
4019                  */
4020                 tcp_send_ack(sk);
4021                 tcp_set_state(sk, TCP_CLOSING);
4022                 break;
4023         case TCP_FIN_WAIT2:
4024                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4025                 tcp_send_ack(sk);
4026                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4027                 break;
4028         default:
4029                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4030                  * cases we should never reach this piece of code.
4031                  */
4032                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4033                        __func__, sk->sk_state);
4034                 break;
4035         }
4036
4037         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4038          * Probably, we should reset in this case. For now drop them.
4039          */
4040         __skb_queue_purge(&tp->out_of_order_queue);
4041         if (tcp_is_sack(tp))
4042                 tcp_sack_reset(&tp->rx_opt);
4043         sk_mem_reclaim(sk);
4044
4045         if (!sock_flag(sk, SOCK_DEAD)) {
4046                 sk->sk_state_change(sk);
4047
4048                 /* Do not send POLL_HUP for half duplex close. */
4049                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4050                     sk->sk_state == TCP_CLOSE)
4051                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4052                 else
4053                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4054         }
4055 }
4056
4057 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4058                                   u32 end_seq)
4059 {
4060         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4061                 if (before(seq, sp->start_seq))
4062                         sp->start_seq = seq;
4063                 if (after(end_seq, sp->end_seq))
4064                         sp->end_seq = end_seq;
4065                 return 1;
4066         }
4067         return 0;
4068 }
4069
4070 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4071 {
4072         struct tcp_sock *tp = tcp_sk(sk);
4073
4074         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4075                 int mib_idx;
4076
4077                 if (before(seq, tp->rcv_nxt))
4078                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4079                 else
4080                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4081
4082                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4083
4084                 tp->rx_opt.dsack = 1;
4085                 tp->duplicate_sack[0].start_seq = seq;
4086                 tp->duplicate_sack[0].end_seq = end_seq;
4087                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
4088         }
4089 }
4090
4091 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4092 {
4093         struct tcp_sock *tp = tcp_sk(sk);
4094
4095         if (!tp->rx_opt.dsack)
4096                 tcp_dsack_set(sk, seq, end_seq);
4097         else
4098                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4099 }
4100
4101 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4102 {
4103         struct tcp_sock *tp = tcp_sk(sk);
4104
4105         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4106             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4107                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4108                 tcp_enter_quickack_mode(sk);
4109
4110                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4111                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4112
4113                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4114                                 end_seq = tp->rcv_nxt;
4115                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4116                 }
4117         }
4118
4119         tcp_send_ack(sk);
4120 }
4121
4122 /* These routines update the SACK block as out-of-order packets arrive or
4123  * in-order packets close up the sequence space.
4124  */
4125 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4126 {
4127         int this_sack;
4128         struct tcp_sack_block *sp = &tp->selective_acks[0];
4129         struct tcp_sack_block *swalk = sp + 1;
4130
4131         /* See if the recent change to the first SACK eats into
4132          * or hits the sequence space of other SACK blocks, if so coalesce.
4133          */
4134         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4135                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4136                         int i;
4137
4138                         /* Zap SWALK, by moving every further SACK up by one slot.
4139                          * Decrease num_sacks.
4140                          */
4141                         tp->rx_opt.num_sacks--;
4142                         tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
4143                                                tp->rx_opt.dsack;
4144                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4145                                 sp[i] = sp[i + 1];
4146                         continue;
4147                 }
4148                 this_sack++, swalk++;
4149         }
4150 }
4151
4152 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
4153                                  struct tcp_sack_block *sack2)
4154 {
4155         __u32 tmp;
4156
4157         tmp = sack1->start_seq;
4158         sack1->start_seq = sack2->start_seq;
4159         sack2->start_seq = tmp;
4160
4161         tmp = sack1->end_seq;
4162         sack1->end_seq = sack2->end_seq;
4163         sack2->end_seq = tmp;
4164 }
4165
4166 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4167 {
4168         struct tcp_sock *tp = tcp_sk(sk);
4169         struct tcp_sack_block *sp = &tp->selective_acks[0];
4170         int cur_sacks = tp->rx_opt.num_sacks;
4171         int this_sack;
4172
4173         if (!cur_sacks)
4174                 goto new_sack;
4175
4176         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4177                 if (tcp_sack_extend(sp, seq, end_seq)) {
4178                         /* Rotate this_sack to the first one. */
4179                         for (; this_sack > 0; this_sack--, sp--)
4180                                 tcp_sack_swap(sp, sp - 1);
4181                         if (cur_sacks > 1)
4182                                 tcp_sack_maybe_coalesce(tp);
4183                         return;
4184                 }
4185         }
4186
4187         /* Could not find an adjacent existing SACK, build a new one,
4188          * put it at the front, and shift everyone else down.  We
4189          * always know there is at least one SACK present already here.
4190          *
4191          * If the sack array is full, forget about the last one.
4192          */
4193         if (this_sack >= TCP_NUM_SACKS) {
4194                 this_sack--;
4195                 tp->rx_opt.num_sacks--;
4196                 sp--;
4197         }
4198         for (; this_sack > 0; this_sack--, sp--)
4199                 *sp = *(sp - 1);
4200
4201 new_sack:
4202         /* Build the new head SACK, and we're done. */
4203         sp->start_seq = seq;
4204         sp->end_seq = end_seq;
4205         tp->rx_opt.num_sacks++;
4206         tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
4207 }
4208
4209 /* RCV.NXT advances, some SACKs should be eaten. */
4210
4211 static void tcp_sack_remove(struct tcp_sock *tp)
4212 {
4213         struct tcp_sack_block *sp = &tp->selective_acks[0];
4214         int num_sacks = tp->rx_opt.num_sacks;
4215         int this_sack;
4216
4217         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4218         if (skb_queue_empty(&tp->out_of_order_queue)) {
4219                 tp->rx_opt.num_sacks = 0;
4220                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
4221                 return;
4222         }
4223
4224         for (this_sack = 0; this_sack < num_sacks;) {
4225                 /* Check if the start of the sack is covered by RCV.NXT. */
4226                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4227                         int i;
4228
4229                         /* RCV.NXT must cover all the block! */
4230                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4231
4232                         /* Zap this SACK, by moving forward any other SACKS. */
4233                         for (i=this_sack+1; i < num_sacks; i++)
4234                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4235                         num_sacks--;
4236                         continue;
4237                 }
4238                 this_sack++;
4239                 sp++;
4240         }
4241         if (num_sacks != tp->rx_opt.num_sacks) {
4242                 tp->rx_opt.num_sacks = num_sacks;
4243                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
4244                                        tp->rx_opt.dsack;
4245         }
4246 }
4247
4248 /* This one checks to see if we can put data from the
4249  * out_of_order queue into the receive_queue.
4250  */
4251 static void tcp_ofo_queue(struct sock *sk)
4252 {
4253         struct tcp_sock *tp = tcp_sk(sk);
4254         __u32 dsack_high = tp->rcv_nxt;
4255         struct sk_buff *skb;
4256
4257         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4258                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4259                         break;
4260
4261                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4262                         __u32 dsack = dsack_high;
4263                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4264                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4265                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4266                 }
4267
4268                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4269                         SOCK_DEBUG(sk, "ofo packet was already received \n");
4270                         __skb_unlink(skb, &tp->out_of_order_queue);
4271                         __kfree_skb(skb);
4272                         continue;
4273                 }
4274                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4275                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4276                            TCP_SKB_CB(skb)->end_seq);
4277
4278                 __skb_unlink(skb, &tp->out_of_order_queue);
4279                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4280                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4281                 if (tcp_hdr(skb)->fin)
4282                         tcp_fin(skb, sk, tcp_hdr(skb));
4283         }
4284 }
4285
4286 static int tcp_prune_ofo_queue(struct sock *sk);
4287 static int tcp_prune_queue(struct sock *sk);
4288
4289 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4290 {
4291         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4292             !sk_rmem_schedule(sk, size)) {
4293
4294                 if (tcp_prune_queue(sk) < 0)
4295                         return -1;
4296
4297                 if (!sk_rmem_schedule(sk, size)) {
4298                         if (!tcp_prune_ofo_queue(sk))
4299                                 return -1;
4300
4301                         if (!sk_rmem_schedule(sk, size))
4302                                 return -1;
4303                 }
4304         }
4305         return 0;
4306 }
4307
4308 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4309 {
4310         struct tcphdr *th = tcp_hdr(skb);
4311         struct tcp_sock *tp = tcp_sk(sk);
4312         int eaten = -1;
4313
4314         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4315                 goto drop;
4316
4317         __skb_pull(skb, th->doff * 4);
4318
4319         TCP_ECN_accept_cwr(tp, skb);
4320
4321         if (tp->rx_opt.dsack) {
4322                 tp->rx_opt.dsack = 0;
4323                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
4324         }
4325
4326         /*  Queue data for delivery to the user.
4327          *  Packets in sequence go to the receive queue.
4328          *  Out of sequence packets to the out_of_order_queue.
4329          */
4330         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4331                 if (tcp_receive_window(tp) == 0)
4332                         goto out_of_window;
4333
4334                 /* Ok. In sequence. In window. */
4335                 if (tp->ucopy.task == current &&
4336                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4337                     sock_owned_by_user(sk) && !tp->urg_data) {
4338                         int chunk = min_t(unsigned int, skb->len,
4339                                           tp->ucopy.len);
4340
4341                         __set_current_state(TASK_RUNNING);
4342
4343                         local_bh_enable();
4344                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4345                                 tp->ucopy.len -= chunk;
4346                                 tp->copied_seq += chunk;
4347                                 eaten = (chunk == skb->len && !th->fin);
4348                                 tcp_rcv_space_adjust(sk);
4349                         }
4350                         local_bh_disable();
4351                 }
4352
4353                 if (eaten <= 0) {
4354 queue_and_out:
4355                         if (eaten < 0 &&
4356                             tcp_try_rmem_schedule(sk, skb->truesize))
4357                                 goto drop;
4358
4359                         skb_set_owner_r(skb, sk);
4360                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4361                 }
4362                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4363                 if (skb->len)
4364                         tcp_event_data_recv(sk, skb);
4365                 if (th->fin)
4366                         tcp_fin(skb, sk, th);
4367
4368                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4369                         tcp_ofo_queue(sk);
4370
4371                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4372                          * gap in queue is filled.
4373                          */
4374                         if (skb_queue_empty(&tp->out_of_order_queue))
4375                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4376                 }
4377
4378                 if (tp->rx_opt.num_sacks)
4379                         tcp_sack_remove(tp);
4380
4381                 tcp_fast_path_check(sk);
4382
4383                 if (eaten > 0)
4384                         __kfree_skb(skb);
4385                 else if (!sock_flag(sk, SOCK_DEAD))
4386                         sk->sk_data_ready(sk, 0);
4387                 return;
4388         }
4389
4390         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4391                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4392                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4393                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4394
4395 out_of_window:
4396                 tcp_enter_quickack_mode(sk);
4397                 inet_csk_schedule_ack(sk);
4398 drop:
4399                 __kfree_skb(skb);
4400                 return;
4401         }
4402
4403         /* Out of window. F.e. zero window probe. */
4404         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4405                 goto out_of_window;
4406
4407         tcp_enter_quickack_mode(sk);
4408
4409         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4410                 /* Partial packet, seq < rcv_next < end_seq */
4411                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4412                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4413                            TCP_SKB_CB(skb)->end_seq);
4414
4415                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4416
4417                 /* If window is closed, drop tail of packet. But after
4418                  * remembering D-SACK for its head made in previous line.
4419                  */
4420                 if (!tcp_receive_window(tp))
4421                         goto out_of_window;
4422                 goto queue_and_out;
4423         }
4424
4425         TCP_ECN_check_ce(tp, skb);
4426
4427         if (tcp_try_rmem_schedule(sk, skb->truesize))
4428                 goto drop;
4429
4430         /* Disable header prediction. */
4431         tp->pred_flags = 0;
4432         inet_csk_schedule_ack(sk);
4433
4434         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4435                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4436
4437         skb_set_owner_r(skb, sk);
4438
4439         if (!skb_peek(&tp->out_of_order_queue)) {
4440                 /* Initial out of order segment, build 1 SACK. */
4441                 if (tcp_is_sack(tp)) {
4442                         tp->rx_opt.num_sacks = 1;
4443                         tp->rx_opt.dsack     = 0;
4444                         tp->rx_opt.eff_sacks = 1;
4445                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4446                         tp->selective_acks[0].end_seq =
4447                                                 TCP_SKB_CB(skb)->end_seq;
4448                 }
4449                 __skb_queue_head(&tp->out_of_order_queue, skb);
4450         } else {
4451                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4452                 u32 seq = TCP_SKB_CB(skb)->seq;
4453                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4454
4455                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4456                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4457
4458                         if (!tp->rx_opt.num_sacks ||
4459                             tp->selective_acks[0].end_seq != seq)
4460                                 goto add_sack;
4461
4462                         /* Common case: data arrive in order after hole. */
4463                         tp->selective_acks[0].end_seq = end_seq;
4464                         return;
4465                 }
4466
4467                 /* Find place to insert this segment. */
4468                 do {
4469                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4470                                 break;
4471                 } while ((skb1 = skb1->prev) !=
4472                          (struct sk_buff *)&tp->out_of_order_queue);
4473
4474                 /* Do skb overlap to previous one? */
4475                 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4476                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4477                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4478                                 /* All the bits are present. Drop. */
4479                                 __kfree_skb(skb);
4480                                 tcp_dsack_set(sk, seq, end_seq);
4481                                 goto add_sack;
4482                         }
4483                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4484                                 /* Partial overlap. */
4485                                 tcp_dsack_set(sk, seq,
4486                                               TCP_SKB_CB(skb1)->end_seq);
4487                         } else {
4488                                 skb1 = skb1->prev;
4489                         }
4490                 }
4491                 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4492
4493                 /* And clean segments covered by new one as whole. */
4494                 while ((skb1 = skb->next) !=
4495                        (struct sk_buff *)&tp->out_of_order_queue &&
4496                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4497                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4498                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4499                                                  end_seq);
4500                                 break;
4501                         }
4502                         __skb_unlink(skb1, &tp->out_of_order_queue);
4503                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4504                                          TCP_SKB_CB(skb1)->end_seq);
4505                         __kfree_skb(skb1);
4506                 }
4507
4508 add_sack:
4509                 if (tcp_is_sack(tp))
4510                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4511         }
4512 }
4513
4514 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4515                                         struct sk_buff_head *list)
4516 {
4517         struct sk_buff *next = skb->next;
4518
4519         __skb_unlink(skb, list);
4520         __kfree_skb(skb);
4521         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4522
4523         return next;
4524 }
4525
4526 /* Collapse contiguous sequence of skbs head..tail with
4527  * sequence numbers start..end.
4528  * Segments with FIN/SYN are not collapsed (only because this
4529  * simplifies code)
4530  */
4531 static void
4532 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4533              struct sk_buff *head, struct sk_buff *tail,
4534              u32 start, u32 end)
4535 {
4536         struct sk_buff *skb;
4537
4538         /* First, check that queue is collapsible and find
4539          * the point where collapsing can be useful. */
4540         for (skb = head; skb != tail;) {
4541                 /* No new bits? It is possible on ofo queue. */
4542                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4543                         skb = tcp_collapse_one(sk, skb, list);
4544                         continue;
4545                 }
4546
4547                 /* The first skb to collapse is:
4548                  * - not SYN/FIN and
4549                  * - bloated or contains data before "start" or
4550                  *   overlaps to the next one.
4551                  */
4552                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4553                     (tcp_win_from_space(skb->truesize) > skb->len ||
4554                      before(TCP_SKB_CB(skb)->seq, start) ||
4555                      (skb->next != tail &&
4556                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4557                         break;
4558
4559                 /* Decided to skip this, advance start seq. */
4560                 start = TCP_SKB_CB(skb)->end_seq;
4561                 skb = skb->next;
4562         }
4563         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4564                 return;
4565
4566         while (before(start, end)) {
4567                 struct sk_buff *nskb;
4568                 unsigned int header = skb_headroom(skb);
4569                 int copy = SKB_MAX_ORDER(header, 0);
4570
4571                 /* Too big header? This can happen with IPv6. */
4572                 if (copy < 0)
4573                         return;
4574                 if (end - start < copy)
4575                         copy = end - start;
4576                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4577                 if (!nskb)
4578                         return;
4579
4580                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4581                 skb_set_network_header(nskb, (skb_network_header(skb) -
4582                                               skb->head));
4583                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4584                                                 skb->head));
4585                 skb_reserve(nskb, header);
4586                 memcpy(nskb->head, skb->head, header);
4587                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4588                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4589                 __skb_queue_before(list, skb, nskb);
4590                 skb_set_owner_r(nskb, sk);
4591
4592                 /* Copy data, releasing collapsed skbs. */
4593                 while (copy > 0) {
4594                         int offset = start - TCP_SKB_CB(skb)->seq;
4595                         int size = TCP_SKB_CB(skb)->end_seq - start;
4596
4597                         BUG_ON(offset < 0);
4598                         if (size > 0) {
4599                                 size = min(copy, size);
4600                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4601                                         BUG();
4602                                 TCP_SKB_CB(nskb)->end_seq += size;
4603                                 copy -= size;
4604                                 start += size;
4605                         }
4606                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4607                                 skb = tcp_collapse_one(sk, skb, list);
4608                                 if (skb == tail ||
4609                                     tcp_hdr(skb)->syn ||
4610                                     tcp_hdr(skb)->fin)
4611                                         return;
4612                         }
4613                 }
4614         }
4615 }
4616
4617 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4618  * and tcp_collapse() them until all the queue is collapsed.
4619  */
4620 static void tcp_collapse_ofo_queue(struct sock *sk)
4621 {
4622         struct tcp_sock *tp = tcp_sk(sk);
4623         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4624         struct sk_buff *head;
4625         u32 start, end;
4626
4627         if (skb == NULL)
4628                 return;
4629
4630         start = TCP_SKB_CB(skb)->seq;
4631         end = TCP_SKB_CB(skb)->end_seq;
4632         head = skb;
4633
4634         for (;;) {
4635                 skb = skb->next;
4636
4637                 /* Segment is terminated when we see gap or when
4638                  * we are at the end of all the queue. */
4639                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4640                     after(TCP_SKB_CB(skb)->seq, end) ||
4641                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4642                         tcp_collapse(sk, &tp->out_of_order_queue,
4643                                      head, skb, start, end);
4644                         head = skb;
4645                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4646                                 break;
4647                         /* Start new segment */
4648                         start = TCP_SKB_CB(skb)->seq;
4649                         end = TCP_SKB_CB(skb)->end_seq;
4650                 } else {
4651                         if (before(TCP_SKB_CB(skb)->seq, start))
4652                                 start = TCP_SKB_CB(skb)->seq;
4653                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4654                                 end = TCP_SKB_CB(skb)->end_seq;
4655                 }
4656         }
4657 }
4658
4659 /*
4660  * Purge the out-of-order queue.
4661  * Return true if queue was pruned.
4662  */
4663 static int tcp_prune_ofo_queue(struct sock *sk)
4664 {
4665         struct tcp_sock *tp = tcp_sk(sk);
4666         int res = 0;
4667
4668         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4669                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4670                 __skb_queue_purge(&tp->out_of_order_queue);
4671
4672                 /* Reset SACK state.  A conforming SACK implementation will
4673                  * do the same at a timeout based retransmit.  When a connection
4674                  * is in a sad state like this, we care only about integrity
4675                  * of the connection not performance.
4676                  */
4677                 if (tp->rx_opt.sack_ok)
4678                         tcp_sack_reset(&tp->rx_opt);
4679                 sk_mem_reclaim(sk);
4680                 res = 1;
4681         }
4682         return res;
4683 }
4684
4685 /* Reduce allocated memory if we can, trying to get
4686  * the socket within its memory limits again.
4687  *
4688  * Return less than zero if we should start dropping frames
4689  * until the socket owning process reads some of the data
4690  * to stabilize the situation.
4691  */
4692 static int tcp_prune_queue(struct sock *sk)
4693 {
4694         struct tcp_sock *tp = tcp_sk(sk);
4695
4696         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4697
4698         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4699
4700         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4701                 tcp_clamp_window(sk);
4702         else if (tcp_memory_pressure)
4703                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4704
4705         tcp_collapse_ofo_queue(sk);
4706         tcp_collapse(sk, &sk->sk_receive_queue,
4707                      sk->sk_receive_queue.next,
4708                      (struct sk_buff *)&sk->sk_receive_queue,
4709                      tp->copied_seq, tp->rcv_nxt);
4710         sk_mem_reclaim(sk);
4711
4712         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4713                 return 0;
4714
4715         /* Collapsing did not help, destructive actions follow.
4716          * This must not ever occur. */
4717
4718         tcp_prune_ofo_queue(sk);
4719
4720         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4721                 return 0;
4722
4723         /* If we are really being abused, tell the caller to silently
4724          * drop receive data on the floor.  It will get retransmitted
4725          * and hopefully then we'll have sufficient space.
4726          */
4727         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4728
4729         /* Massive buffer overcommit. */
4730         tp->pred_flags = 0;
4731         return -1;
4732 }
4733
4734 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4735  * As additional protections, we do not touch cwnd in retransmission phases,
4736  * and if application hit its sndbuf limit recently.
4737  */
4738 void tcp_cwnd_application_limited(struct sock *sk)
4739 {
4740         struct tcp_sock *tp = tcp_sk(sk);
4741
4742         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4743             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4744                 /* Limited by application or receiver window. */
4745                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4746                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4747                 if (win_used < tp->snd_cwnd) {
4748                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4749                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4750                 }
4751                 tp->snd_cwnd_used = 0;
4752         }
4753         tp->snd_cwnd_stamp = tcp_time_stamp;
4754 }
4755
4756 static int tcp_should_expand_sndbuf(struct sock *sk)
4757 {
4758         struct tcp_sock *tp = tcp_sk(sk);
4759
4760         /* If the user specified a specific send buffer setting, do
4761          * not modify it.
4762          */
4763         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4764                 return 0;
4765
4766         /* If we are under global TCP memory pressure, do not expand.  */
4767         if (tcp_memory_pressure)
4768                 return 0;
4769
4770         /* If we are under soft global TCP memory pressure, do not expand.  */
4771         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4772                 return 0;
4773
4774         /* If we filled the congestion window, do not expand.  */
4775         if (tp->packets_out >= tp->snd_cwnd)
4776                 return 0;
4777
4778         return 1;
4779 }
4780
4781 /* When incoming ACK allowed to free some skb from write_queue,
4782  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4783  * on the exit from tcp input handler.
4784  *
4785  * PROBLEM: sndbuf expansion does not work well with largesend.
4786  */
4787 static void tcp_new_space(struct sock *sk)
4788 {
4789         struct tcp_sock *tp = tcp_sk(sk);
4790
4791         if (tcp_should_expand_sndbuf(sk)) {
4792                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4793                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4794                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4795                                      tp->reordering + 1);
4796                 sndmem *= 2 * demanded;
4797                 if (sndmem > sk->sk_sndbuf)
4798                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4799                 tp->snd_cwnd_stamp = tcp_time_stamp;
4800         }
4801
4802         sk->sk_write_space(sk);
4803 }
4804
4805 static void tcp_check_space(struct sock *sk)
4806 {
4807         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4808                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4809                 if (sk->sk_socket &&
4810                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4811                         tcp_new_space(sk);
4812         }
4813 }
4814
4815 static inline void tcp_data_snd_check(struct sock *sk)
4816 {
4817         tcp_push_pending_frames(sk);
4818         tcp_check_space(sk);
4819 }
4820
4821 /*
4822  * Check if sending an ack is needed.
4823  */
4824 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4825 {
4826         struct tcp_sock *tp = tcp_sk(sk);
4827
4828             /* More than one full frame received... */
4829         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4830              /* ... and right edge of window advances far enough.
4831               * (tcp_recvmsg() will send ACK otherwise). Or...
4832               */
4833              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4834             /* We ACK each frame or... */
4835             tcp_in_quickack_mode(sk) ||
4836             /* We have out of order data. */
4837             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4838                 /* Then ack it now */
4839                 tcp_send_ack(sk);
4840         } else {
4841                 /* Else, send delayed ack. */
4842                 tcp_send_delayed_ack(sk);
4843         }
4844 }
4845
4846 static inline void tcp_ack_snd_check(struct sock *sk)
4847 {
4848         if (!inet_csk_ack_scheduled(sk)) {
4849                 /* We sent a data segment already. */
4850                 return;
4851         }
4852         __tcp_ack_snd_check(sk, 1);
4853 }
4854
4855 /*
4856  *      This routine is only called when we have urgent data
4857  *      signaled. Its the 'slow' part of tcp_urg. It could be
4858  *      moved inline now as tcp_urg is only called from one
4859  *      place. We handle URGent data wrong. We have to - as
4860  *      BSD still doesn't use the correction from RFC961.
4861  *      For 1003.1g we should support a new option TCP_STDURG to permit
4862  *      either form (or just set the sysctl tcp_stdurg).
4863  */
4864
4865 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4866 {
4867         struct tcp_sock *tp = tcp_sk(sk);
4868         u32 ptr = ntohs(th->urg_ptr);
4869
4870         if (ptr && !sysctl_tcp_stdurg)
4871                 ptr--;
4872         ptr += ntohl(th->seq);
4873
4874         /* Ignore urgent data that we've already seen and read. */
4875         if (after(tp->copied_seq, ptr))
4876                 return;
4877
4878         /* Do not replay urg ptr.
4879          *
4880          * NOTE: interesting situation not covered by specs.
4881          * Misbehaving sender may send urg ptr, pointing to segment,
4882          * which we already have in ofo queue. We are not able to fetch
4883          * such data and will stay in TCP_URG_NOTYET until will be eaten
4884          * by recvmsg(). Seems, we are not obliged to handle such wicked
4885          * situations. But it is worth to think about possibility of some
4886          * DoSes using some hypothetical application level deadlock.
4887          */
4888         if (before(ptr, tp->rcv_nxt))
4889                 return;
4890
4891         /* Do we already have a newer (or duplicate) urgent pointer? */
4892         if (tp->urg_data && !after(ptr, tp->urg_seq))
4893                 return;
4894
4895         /* Tell the world about our new urgent pointer. */
4896         sk_send_sigurg(sk);
4897
4898         /* We may be adding urgent data when the last byte read was
4899          * urgent. To do this requires some care. We cannot just ignore
4900          * tp->copied_seq since we would read the last urgent byte again
4901          * as data, nor can we alter copied_seq until this data arrives
4902          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4903          *
4904          * NOTE. Double Dutch. Rendering to plain English: author of comment
4905          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4906          * and expect that both A and B disappear from stream. This is _wrong_.
4907          * Though this happens in BSD with high probability, this is occasional.
4908          * Any application relying on this is buggy. Note also, that fix "works"
4909          * only in this artificial test. Insert some normal data between A and B and we will
4910          * decline of BSD again. Verdict: it is better to remove to trap
4911          * buggy users.
4912          */
4913         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4914             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4915                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4916                 tp->copied_seq++;
4917                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4918                         __skb_unlink(skb, &sk->sk_receive_queue);
4919                         __kfree_skb(skb);
4920                 }
4921         }
4922
4923         tp->urg_data = TCP_URG_NOTYET;
4924         tp->urg_seq = ptr;
4925
4926         /* Disable header prediction. */
4927         tp->pred_flags = 0;
4928 }
4929
4930 /* This is the 'fast' part of urgent handling. */
4931 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4932 {
4933         struct tcp_sock *tp = tcp_sk(sk);
4934
4935         /* Check if we get a new urgent pointer - normally not. */
4936         if (th->urg)
4937                 tcp_check_urg(sk, th);
4938
4939         /* Do we wait for any urgent data? - normally not... */
4940         if (tp->urg_data == TCP_URG_NOTYET) {
4941                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4942                           th->syn;
4943
4944                 /* Is the urgent pointer pointing into this packet? */
4945                 if (ptr < skb->len) {
4946                         u8 tmp;
4947                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4948                                 BUG();
4949                         tp->urg_data = TCP_URG_VALID | tmp;
4950                         if (!sock_flag(sk, SOCK_DEAD))
4951                                 sk->sk_data_ready(sk, 0);
4952                 }
4953         }
4954 }
4955
4956 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4957 {
4958         struct tcp_sock *tp = tcp_sk(sk);
4959         int chunk = skb->len - hlen;
4960         int err;
4961
4962         local_bh_enable();
4963         if (skb_csum_unnecessary(skb))
4964                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4965         else
4966                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4967                                                        tp->ucopy.iov);
4968
4969         if (!err) {
4970                 tp->ucopy.len -= chunk;
4971                 tp->copied_seq += chunk;
4972                 tcp_rcv_space_adjust(sk);
4973         }
4974
4975         local_bh_disable();
4976         return err;
4977 }
4978
4979 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4980                                             struct sk_buff *skb)
4981 {
4982         __sum16 result;
4983
4984         if (sock_owned_by_user(sk)) {
4985                 local_bh_enable();
4986                 result = __tcp_checksum_complete(skb);
4987                 local_bh_disable();
4988         } else {
4989                 result = __tcp_checksum_complete(skb);
4990         }
4991         return result;
4992 }
4993
4994 static inline int tcp_checksum_complete_user(struct sock *sk,
4995                                              struct sk_buff *skb)
4996 {
4997         return !skb_csum_unnecessary(skb) &&
4998                __tcp_checksum_complete_user(sk, skb);
4999 }
5000
5001 #ifdef CONFIG_NET_DMA
5002 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5003                                   int hlen)
5004 {
5005         struct tcp_sock *tp = tcp_sk(sk);
5006         int chunk = skb->len - hlen;
5007         int dma_cookie;
5008         int copied_early = 0;
5009
5010         if (tp->ucopy.wakeup)
5011                 return 0;
5012
5013         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5014                 tp->ucopy.dma_chan = get_softnet_dma();
5015
5016         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5017
5018                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5019                                                          skb, hlen,
5020                                                          tp->ucopy.iov, chunk,
5021                                                          tp->ucopy.pinned_list);
5022
5023                 if (dma_cookie < 0)
5024                         goto out;
5025
5026                 tp->ucopy.dma_cookie = dma_cookie;
5027                 copied_early = 1;
5028
5029                 tp->ucopy.len -= chunk;
5030                 tp->copied_seq += chunk;
5031                 tcp_rcv_space_adjust(sk);
5032
5033                 if ((tp->ucopy.len == 0) ||
5034                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5035                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5036                         tp->ucopy.wakeup = 1;
5037                         sk->sk_data_ready(sk, 0);
5038                 }
5039         } else if (chunk > 0) {
5040                 tp->ucopy.wakeup = 1;
5041                 sk->sk_data_ready(sk, 0);
5042         }
5043 out:
5044         return copied_early;
5045 }
5046 #endif /* CONFIG_NET_DMA */
5047
5048 /* Does PAWS and seqno based validation of an incoming segment, flags will
5049  * play significant role here.
5050  */
5051 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5052                               struct tcphdr *th, int syn_inerr)
5053 {
5054         struct tcp_sock *tp = tcp_sk(sk);
5055
5056         /* RFC1323: H1. Apply PAWS check first. */
5057         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5058             tcp_paws_discard(sk, skb)) {
5059                 if (!th->rst) {
5060                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5061                         tcp_send_dupack(sk, skb);
5062                         goto discard;
5063                 }
5064                 /* Reset is accepted even if it did not pass PAWS. */
5065         }
5066
5067         /* Step 1: check sequence number */
5068         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5069                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5070                  * (RST) segments are validated by checking their SEQ-fields."
5071                  * And page 69: "If an incoming segment is not acceptable,
5072                  * an acknowledgment should be sent in reply (unless the RST
5073                  * bit is set, if so drop the segment and return)".
5074                  */
5075                 if (!th->rst)
5076                         tcp_send_dupack(sk, skb);
5077                 goto discard;
5078         }
5079
5080         /* Step 2: check RST bit */
5081         if (th->rst) {
5082                 tcp_reset(sk);
5083                 goto discard;
5084         }
5085
5086         /* ts_recent update must be made after we are sure that the packet
5087          * is in window.
5088          */
5089         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5090
5091         /* step 3: check security and precedence [ignored] */
5092
5093         /* step 4: Check for a SYN in window. */
5094         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5095                 if (syn_inerr)
5096                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5097                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5098                 tcp_reset(sk);
5099                 return -1;
5100         }
5101
5102         return 1;
5103
5104 discard:
5105         __kfree_skb(skb);
5106         return 0;
5107 }
5108
5109 /*
5110  *      TCP receive function for the ESTABLISHED state.
5111  *
5112  *      It is split into a fast path and a slow path. The fast path is
5113  *      disabled when:
5114  *      - A zero window was announced from us - zero window probing
5115  *        is only handled properly in the slow path.
5116  *      - Out of order segments arrived.
5117  *      - Urgent data is expected.
5118  *      - There is no buffer space left
5119  *      - Unexpected TCP flags/window values/header lengths are received
5120  *        (detected by checking the TCP header against pred_flags)
5121  *      - Data is sent in both directions. Fast path only supports pure senders
5122  *        or pure receivers (this means either the sequence number or the ack
5123  *        value must stay constant)
5124  *      - Unexpected TCP option.
5125  *
5126  *      When these conditions are not satisfied it drops into a standard
5127  *      receive procedure patterned after RFC793 to handle all cases.
5128  *      The first three cases are guaranteed by proper pred_flags setting,
5129  *      the rest is checked inline. Fast processing is turned on in
5130  *      tcp_data_queue when everything is OK.
5131  */
5132 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5133                         struct tcphdr *th, unsigned len)
5134 {
5135         struct tcp_sock *tp = tcp_sk(sk);
5136         int res;
5137
5138         /*
5139          *      Header prediction.
5140          *      The code loosely follows the one in the famous
5141          *      "30 instruction TCP receive" Van Jacobson mail.
5142          *
5143          *      Van's trick is to deposit buffers into socket queue
5144          *      on a device interrupt, to call tcp_recv function
5145          *      on the receive process context and checksum and copy
5146          *      the buffer to user space. smart...
5147          *
5148          *      Our current scheme is not silly either but we take the
5149          *      extra cost of the net_bh soft interrupt processing...
5150          *      We do checksum and copy also but from device to kernel.
5151          */
5152
5153         tp->rx_opt.saw_tstamp = 0;
5154
5155         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5156          *      if header_prediction is to be made
5157          *      'S' will always be tp->tcp_header_len >> 2
5158          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5159          *  turn it off (when there are holes in the receive
5160          *       space for instance)
5161          *      PSH flag is ignored.
5162          */
5163
5164         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5165             TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5166                 int tcp_header_len = tp->tcp_header_len;
5167
5168                 /* Timestamp header prediction: tcp_header_len
5169                  * is automatically equal to th->doff*4 due to pred_flags
5170                  * match.
5171                  */
5172
5173                 /* Check timestamp */
5174                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5175                         /* No? Slow path! */
5176                         if (!tcp_parse_aligned_timestamp(tp, th))
5177                                 goto slow_path;
5178
5179                         /* If PAWS failed, check it more carefully in slow path */
5180                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5181                                 goto slow_path;
5182
5183                         /* DO NOT update ts_recent here, if checksum fails
5184                          * and timestamp was corrupted part, it will result
5185                          * in a hung connection since we will drop all
5186                          * future packets due to the PAWS test.
5187                          */
5188                 }
5189
5190                 if (len <= tcp_header_len) {
5191                         /* Bulk data transfer: sender */
5192                         if (len == tcp_header_len) {
5193                                 /* Predicted packet is in window by definition.
5194                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5195                                  * Hence, check seq<=rcv_wup reduces to:
5196                                  */
5197                                 if (tcp_header_len ==
5198                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5199                                     tp->rcv_nxt == tp->rcv_wup)
5200                                         tcp_store_ts_recent(tp);
5201
5202                                 /* We know that such packets are checksummed
5203                                  * on entry.
5204                                  */
5205                                 tcp_ack(sk, skb, 0);
5206                                 __kfree_skb(skb);
5207                                 tcp_data_snd_check(sk);
5208                                 return 0;
5209                         } else { /* Header too small */
5210                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5211                                 goto discard;
5212                         }
5213                 } else {
5214                         int eaten = 0;
5215                         int copied_early = 0;
5216
5217                         if (tp->copied_seq == tp->rcv_nxt &&
5218                             len - tcp_header_len <= tp->ucopy.len) {
5219 #ifdef CONFIG_NET_DMA
5220                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5221                                         copied_early = 1;
5222                                         eaten = 1;
5223                                 }
5224 #endif
5225                                 if (tp->ucopy.task == current &&
5226                                     sock_owned_by_user(sk) && !copied_early) {
5227                                         __set_current_state(TASK_RUNNING);
5228
5229                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5230                                                 eaten = 1;
5231                                 }
5232                                 if (eaten) {
5233                                         /* Predicted packet is in window by definition.
5234                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5235                                          * Hence, check seq<=rcv_wup reduces to:
5236                                          */
5237                                         if (tcp_header_len ==
5238                                             (sizeof(struct tcphdr) +
5239                                              TCPOLEN_TSTAMP_ALIGNED) &&
5240                                             tp->rcv_nxt == tp->rcv_wup)
5241                                                 tcp_store_ts_recent(tp);
5242
5243                                         tcp_rcv_rtt_measure_ts(sk, skb);
5244
5245                                         __skb_pull(skb, tcp_header_len);
5246                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5247                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5248                                 }
5249                                 if (copied_early)
5250                                         tcp_cleanup_rbuf(sk, skb->len);
5251                         }
5252                         if (!eaten) {
5253                                 if (tcp_checksum_complete_user(sk, skb))
5254                                         goto csum_error;
5255
5256                                 /* Predicted packet is in window by definition.
5257                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5258                                  * Hence, check seq<=rcv_wup reduces to:
5259                                  */
5260                                 if (tcp_header_len ==
5261                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5262                                     tp->rcv_nxt == tp->rcv_wup)
5263                                         tcp_store_ts_recent(tp);
5264
5265                                 tcp_rcv_rtt_measure_ts(sk, skb);
5266
5267                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5268                                         goto step5;
5269
5270                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5271
5272                                 /* Bulk data transfer: receiver */
5273                                 __skb_pull(skb, tcp_header_len);
5274                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5275                                 skb_set_owner_r(skb, sk);
5276                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5277                         }
5278
5279                         tcp_event_data_recv(sk, skb);
5280
5281                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5282                                 /* Well, only one small jumplet in fast path... */
5283                                 tcp_ack(sk, skb, FLAG_DATA);
5284                                 tcp_data_snd_check(sk);
5285                                 if (!inet_csk_ack_scheduled(sk))
5286                                         goto no_ack;
5287                         }
5288
5289                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5290                                 __tcp_ack_snd_check(sk, 0);
5291 no_ack:
5292 #ifdef CONFIG_NET_DMA
5293                         if (copied_early)
5294                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5295                         else
5296 #endif
5297                         if (eaten)
5298                                 __kfree_skb(skb);
5299                         else
5300                                 sk->sk_data_ready(sk, 0);
5301                         return 0;
5302                 }
5303         }
5304
5305 slow_path:
5306         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5307                 goto csum_error;
5308
5309         /*
5310          *      Standard slow path.
5311          */
5312
5313         res = tcp_validate_incoming(sk, skb, th, 1);
5314         if (res <= 0)
5315                 return -res;
5316
5317 step5:
5318         if (th->ack)
5319                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5320
5321         tcp_rcv_rtt_measure_ts(sk, skb);
5322
5323         /* Process urgent data. */
5324         tcp_urg(sk, skb, th);
5325
5326         /* step 7: process the segment text */
5327         tcp_data_queue(sk, skb);
5328
5329         tcp_data_snd_check(sk);
5330         tcp_ack_snd_check(sk);
5331         return 0;
5332
5333 csum_error:
5334         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5335
5336 discard:
5337         __kfree_skb(skb);
5338         return 0;
5339 }
5340
5341 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5342                                          struct tcphdr *th, unsigned len)
5343 {
5344         struct tcp_sock *tp = tcp_sk(sk);
5345         struct inet_connection_sock *icsk = inet_csk(sk);
5346         int saved_clamp = tp->rx_opt.mss_clamp;
5347
5348         tcp_parse_options(skb, &tp->rx_opt, 0);
5349
5350         if (th->ack) {
5351                 /* rfc793:
5352                  * "If the state is SYN-SENT then
5353                  *    first check the ACK bit
5354                  *      If the ACK bit is set
5355                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5356                  *        a reset (unless the RST bit is set, if so drop
5357                  *        the segment and return)"
5358                  *
5359                  *  We do not send data with SYN, so that RFC-correct
5360                  *  test reduces to:
5361                  */
5362                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5363                         goto reset_and_undo;
5364
5365                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5366                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5367                              tcp_time_stamp)) {
5368                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5369                         goto reset_and_undo;
5370                 }
5371
5372                 /* Now ACK is acceptable.
5373                  *
5374                  * "If the RST bit is set
5375                  *    If the ACK was acceptable then signal the user "error:
5376                  *    connection reset", drop the segment, enter CLOSED state,
5377                  *    delete TCB, and return."
5378                  */
5379
5380                 if (th->rst) {
5381                         tcp_reset(sk);
5382                         goto discard;
5383                 }
5384
5385                 /* rfc793:
5386                  *   "fifth, if neither of the SYN or RST bits is set then
5387                  *    drop the segment and return."
5388                  *
5389                  *    See note below!
5390                  *                                        --ANK(990513)
5391                  */
5392                 if (!th->syn)
5393                         goto discard_and_undo;
5394
5395                 /* rfc793:
5396                  *   "If the SYN bit is on ...
5397                  *    are acceptable then ...
5398                  *    (our SYN has been ACKed), change the connection
5399                  *    state to ESTABLISHED..."
5400                  */
5401
5402                 TCP_ECN_rcv_synack(tp, th);
5403
5404                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5405                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5406
5407                 /* Ok.. it's good. Set up sequence numbers and
5408                  * move to established.
5409                  */
5410                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5411                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5412
5413                 /* RFC1323: The window in SYN & SYN/ACK segments is
5414                  * never scaled.
5415                  */
5416                 tp->snd_wnd = ntohs(th->window);
5417                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5418
5419                 if (!tp->rx_opt.wscale_ok) {
5420                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5421                         tp->window_clamp = min(tp->window_clamp, 65535U);
5422                 }
5423
5424                 if (tp->rx_opt.saw_tstamp) {
5425                         tp->rx_opt.tstamp_ok       = 1;
5426                         tp->tcp_header_len =
5427                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5428                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5429                         tcp_store_ts_recent(tp);
5430                 } else {
5431                         tp->tcp_header_len = sizeof(struct tcphdr);
5432                 }
5433
5434                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5435                         tcp_enable_fack(tp);
5436
5437                 tcp_mtup_init(sk);
5438                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5439                 tcp_initialize_rcv_mss(sk);
5440
5441                 /* Remember, tcp_poll() does not lock socket!
5442                  * Change state from SYN-SENT only after copied_seq
5443                  * is initialized. */
5444                 tp->copied_seq = tp->rcv_nxt;
5445                 smp_mb();
5446                 tcp_set_state(sk, TCP_ESTABLISHED);
5447
5448                 security_inet_conn_established(sk, skb);
5449
5450                 /* Make sure socket is routed, for correct metrics.  */
5451                 icsk->icsk_af_ops->rebuild_header(sk);
5452
5453                 tcp_init_metrics(sk);
5454
5455                 tcp_init_congestion_control(sk);
5456
5457                 /* Prevent spurious tcp_cwnd_restart() on first data
5458                  * packet.
5459                  */
5460                 tp->lsndtime = tcp_time_stamp;
5461
5462                 tcp_init_buffer_space(sk);
5463
5464                 if (sock_flag(sk, SOCK_KEEPOPEN))
5465                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5466
5467                 if (!tp->rx_opt.snd_wscale)
5468                         __tcp_fast_path_on(tp, tp->snd_wnd);
5469                 else
5470                         tp->pred_flags = 0;
5471
5472                 if (!sock_flag(sk, SOCK_DEAD)) {
5473                         sk->sk_state_change(sk);
5474                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5475                 }
5476
5477                 if (sk->sk_write_pending ||
5478                     icsk->icsk_accept_queue.rskq_defer_accept ||
5479                     icsk->icsk_ack.pingpong) {
5480                         /* Save one ACK. Data will be ready after
5481                          * several ticks, if write_pending is set.
5482                          *
5483                          * It may be deleted, but with this feature tcpdumps
5484                          * look so _wonderfully_ clever, that I was not able
5485                          * to stand against the temptation 8)     --ANK
5486                          */
5487                         inet_csk_schedule_ack(sk);
5488                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5489                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5490                         tcp_incr_quickack(sk);
5491                         tcp_enter_quickack_mode(sk);
5492                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5493                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5494
5495 discard:
5496                         __kfree_skb(skb);
5497                         return 0;
5498                 } else {
5499                         tcp_send_ack(sk);
5500                 }
5501                 return -1;
5502         }
5503
5504         /* No ACK in the segment */
5505
5506         if (th->rst) {
5507                 /* rfc793:
5508                  * "If the RST bit is set
5509                  *
5510                  *      Otherwise (no ACK) drop the segment and return."
5511                  */
5512
5513                 goto discard_and_undo;
5514         }
5515
5516         /* PAWS check. */
5517         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5518             tcp_paws_check(&tp->rx_opt, 0))
5519                 goto discard_and_undo;
5520
5521         if (th->syn) {
5522                 /* We see SYN without ACK. It is attempt of
5523                  * simultaneous connect with crossed SYNs.
5524                  * Particularly, it can be connect to self.
5525                  */
5526                 tcp_set_state(sk, TCP_SYN_RECV);
5527
5528                 if (tp->rx_opt.saw_tstamp) {
5529                         tp->rx_opt.tstamp_ok = 1;
5530                         tcp_store_ts_recent(tp);
5531                         tp->tcp_header_len =
5532                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5533                 } else {
5534                         tp->tcp_header_len = sizeof(struct tcphdr);
5535                 }
5536
5537                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5538                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5539
5540                 /* RFC1323: The window in SYN & SYN/ACK segments is
5541                  * never scaled.
5542                  */
5543                 tp->snd_wnd    = ntohs(th->window);
5544                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5545                 tp->max_window = tp->snd_wnd;
5546
5547                 TCP_ECN_rcv_syn(tp, th);
5548
5549                 tcp_mtup_init(sk);
5550                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5551                 tcp_initialize_rcv_mss(sk);
5552
5553                 tcp_send_synack(sk);
5554 #if 0
5555                 /* Note, we could accept data and URG from this segment.
5556                  * There are no obstacles to make this.
5557                  *
5558                  * However, if we ignore data in ACKless segments sometimes,
5559                  * we have no reasons to accept it sometimes.
5560                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5561                  * is not flawless. So, discard packet for sanity.
5562                  * Uncomment this return to process the data.
5563                  */
5564                 return -1;
5565 #else
5566                 goto discard;
5567 #endif
5568         }
5569         /* "fifth, if neither of the SYN or RST bits is set then
5570          * drop the segment and return."
5571          */
5572
5573 discard_and_undo:
5574         tcp_clear_options(&tp->rx_opt);
5575         tp->rx_opt.mss_clamp = saved_clamp;
5576         goto discard;
5577
5578 reset_and_undo:
5579         tcp_clear_options(&tp->rx_opt);
5580         tp->rx_opt.mss_clamp = saved_clamp;
5581         return 1;
5582 }
5583
5584 /*
5585  *      This function implements the receiving procedure of RFC 793 for
5586  *      all states except ESTABLISHED and TIME_WAIT.
5587  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5588  *      address independent.
5589  */
5590
5591 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5592                           struct tcphdr *th, unsigned len)
5593 {
5594         struct tcp_sock *tp = tcp_sk(sk);
5595         struct inet_connection_sock *icsk = inet_csk(sk);
5596         int queued = 0;
5597         int res;
5598
5599         tp->rx_opt.saw_tstamp = 0;
5600
5601         switch (sk->sk_state) {
5602         case TCP_CLOSE:
5603                 goto discard;
5604
5605         case TCP_LISTEN:
5606                 if (th->ack)
5607                         return 1;
5608
5609                 if (th->rst)
5610                         goto discard;
5611
5612                 if (th->syn) {
5613                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5614                                 return 1;
5615
5616                         /* Now we have several options: In theory there is
5617                          * nothing else in the frame. KA9Q has an option to
5618                          * send data with the syn, BSD accepts data with the
5619                          * syn up to the [to be] advertised window and
5620                          * Solaris 2.1 gives you a protocol error. For now
5621                          * we just ignore it, that fits the spec precisely
5622                          * and avoids incompatibilities. It would be nice in
5623                          * future to drop through and process the data.
5624                          *
5625                          * Now that TTCP is starting to be used we ought to
5626                          * queue this data.
5627                          * But, this leaves one open to an easy denial of
5628                          * service attack, and SYN cookies can't defend
5629                          * against this problem. So, we drop the data
5630                          * in the interest of security over speed unless
5631                          * it's still in use.
5632                          */
5633                         kfree_skb(skb);
5634                         return 0;
5635                 }
5636                 goto discard;
5637
5638         case TCP_SYN_SENT:
5639                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5640                 if (queued >= 0)
5641                         return queued;
5642
5643                 /* Do step6 onward by hand. */
5644                 tcp_urg(sk, skb, th);
5645                 __kfree_skb(skb);
5646                 tcp_data_snd_check(sk);
5647                 return 0;
5648         }
5649
5650         res = tcp_validate_incoming(sk, skb, th, 0);
5651         if (res <= 0)
5652                 return -res;
5653
5654         /* step 5: check the ACK field */
5655         if (th->ack) {
5656                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5657
5658                 switch (sk->sk_state) {
5659                 case TCP_SYN_RECV:
5660                         if (acceptable) {
5661                                 tp->copied_seq = tp->rcv_nxt;
5662                                 smp_mb();
5663                                 tcp_set_state(sk, TCP_ESTABLISHED);
5664                                 sk->sk_state_change(sk);
5665
5666                                 /* Note, that this wakeup is only for marginal
5667                                  * crossed SYN case. Passively open sockets
5668                                  * are not waked up, because sk->sk_sleep ==
5669                                  * NULL and sk->sk_socket == NULL.
5670                                  */
5671                                 if (sk->sk_socket)
5672                                         sk_wake_async(sk,
5673                                                       SOCK_WAKE_IO, POLL_OUT);
5674
5675                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5676                                 tp->snd_wnd = ntohs(th->window) <<
5677                                               tp->rx_opt.snd_wscale;
5678                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5679                                             TCP_SKB_CB(skb)->seq);
5680
5681                                 /* tcp_ack considers this ACK as duplicate
5682                                  * and does not calculate rtt.
5683                                  * Fix it at least with timestamps.
5684                                  */
5685                                 if (tp->rx_opt.saw_tstamp &&
5686                                     tp->rx_opt.rcv_tsecr && !tp->srtt)
5687                                         tcp_ack_saw_tstamp(sk, 0);
5688
5689                                 if (tp->rx_opt.tstamp_ok)
5690                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5691
5692                                 /* Make sure socket is routed, for
5693                                  * correct metrics.
5694                                  */
5695                                 icsk->icsk_af_ops->rebuild_header(sk);
5696
5697                                 tcp_init_metrics(sk);
5698
5699                                 tcp_init_congestion_control(sk);
5700
5701                                 /* Prevent spurious tcp_cwnd_restart() on
5702                                  * first data packet.
5703                                  */
5704                                 tp->lsndtime = tcp_time_stamp;
5705
5706                                 tcp_mtup_init(sk);
5707                                 tcp_initialize_rcv_mss(sk);
5708                                 tcp_init_buffer_space(sk);
5709                                 tcp_fast_path_on(tp);
5710                         } else {
5711                                 return 1;
5712                         }
5713                         break;
5714
5715                 case TCP_FIN_WAIT1:
5716                         if (tp->snd_una == tp->write_seq) {
5717                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5718                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5719                                 dst_confirm(sk->sk_dst_cache);
5720
5721                                 if (!sock_flag(sk, SOCK_DEAD))
5722                                         /* Wake up lingering close() */
5723                                         sk->sk_state_change(sk);
5724                                 else {
5725                                         int tmo;
5726
5727                                         if (tp->linger2 < 0 ||
5728                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5729                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5730                                                 tcp_done(sk);
5731                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5732                                                 return 1;
5733                                         }
5734
5735                                         tmo = tcp_fin_time(sk);
5736                                         if (tmo > TCP_TIMEWAIT_LEN) {
5737                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5738                                         } else if (th->fin || sock_owned_by_user(sk)) {
5739                                                 /* Bad case. We could lose such FIN otherwise.
5740                                                  * It is not a big problem, but it looks confusing
5741                                                  * and not so rare event. We still can lose it now,
5742                                                  * if it spins in bh_lock_sock(), but it is really
5743                                                  * marginal case.
5744                                                  */
5745                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5746                                         } else {
5747                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5748                                                 goto discard;
5749                                         }
5750                                 }
5751                         }
5752                         break;
5753
5754                 case TCP_CLOSING:
5755                         if (tp->snd_una == tp->write_seq) {
5756                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5757                                 goto discard;
5758                         }
5759                         break;
5760
5761                 case TCP_LAST_ACK:
5762                         if (tp->snd_una == tp->write_seq) {
5763                                 tcp_update_metrics(sk);
5764                                 tcp_done(sk);
5765                                 goto discard;
5766                         }
5767                         break;
5768                 }
5769         } else
5770                 goto discard;
5771
5772         /* step 6: check the URG bit */
5773         tcp_urg(sk, skb, th);
5774
5775         /* step 7: process the segment text */
5776         switch (sk->sk_state) {
5777         case TCP_CLOSE_WAIT:
5778         case TCP_CLOSING:
5779         case TCP_LAST_ACK:
5780                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5781                         break;
5782         case TCP_FIN_WAIT1:
5783         case TCP_FIN_WAIT2:
5784                 /* RFC 793 says to queue data in these states,
5785                  * RFC 1122 says we MUST send a reset.
5786                  * BSD 4.4 also does reset.
5787                  */
5788                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5789                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5790                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5791                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5792                                 tcp_reset(sk);
5793                                 return 1;
5794                         }
5795                 }
5796                 /* Fall through */
5797         case TCP_ESTABLISHED:
5798                 tcp_data_queue(sk, skb);
5799                 queued = 1;
5800                 break;
5801         }
5802
5803         /* tcp_data could move socket to TIME-WAIT */
5804         if (sk->sk_state != TCP_CLOSE) {
5805                 tcp_data_snd_check(sk);
5806                 tcp_ack_snd_check(sk);
5807         }
5808
5809         if (!queued) {
5810 discard:
5811                 __kfree_skb(skb);
5812         }
5813         return 0;
5814 }
5815
5816 EXPORT_SYMBOL(sysctl_tcp_ecn);
5817 EXPORT_SYMBOL(sysctl_tcp_reordering);
5818 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5819 EXPORT_SYMBOL(tcp_parse_options);
5820 #ifdef CONFIG_TCP_MD5SIG
5821 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5822 #endif
5823 EXPORT_SYMBOL(tcp_rcv_established);
5824 EXPORT_SYMBOL(tcp_rcv_state_process);
5825 EXPORT_SYMBOL(tcp_initialize_rcv_mss);