3ff3640653762786de25c528f18180e8937838ae
[pandora-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_ecn __read_mostly = 2;
85 EXPORT_SYMBOL(sysctl_tcp_ecn);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 2;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91 int sysctl_tcp_stdurg __read_mostly;
92 int sysctl_tcp_rfc1337 __read_mostly;
93 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
94 int sysctl_tcp_frto __read_mostly = 2;
95 int sysctl_tcp_frto_response __read_mostly;
96 int sysctl_tcp_nometrics_save __read_mostly;
97
98 int sysctl_tcp_thin_dupack __read_mostly;
99
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_abc __read_mostly;
102
103 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
104 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
105 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
106 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
107 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
108 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
109 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
110 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
112 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
115 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
116
117 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
121 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
122
123 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
124 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125
126 /* Adapt the MSS value used to make delayed ack decision to the
127  * real world.
128  */
129 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
130 {
131         struct inet_connection_sock *icsk = inet_csk(sk);
132         const unsigned int lss = icsk->icsk_ack.last_seg_size;
133         unsigned int len;
134
135         icsk->icsk_ack.last_seg_size = 0;
136
137         /* skb->len may jitter because of SACKs, even if peer
138          * sends good full-sized frames.
139          */
140         len = skb_shinfo(skb)->gso_size ? : skb->len;
141         if (len >= icsk->icsk_ack.rcv_mss) {
142                 icsk->icsk_ack.rcv_mss = len;
143         } else {
144                 /* Otherwise, we make more careful check taking into account,
145                  * that SACKs block is variable.
146                  *
147                  * "len" is invariant segment length, including TCP header.
148                  */
149                 len += skb->data - skb_transport_header(skb);
150                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
151                     /* If PSH is not set, packet should be
152                      * full sized, provided peer TCP is not badly broken.
153                      * This observation (if it is correct 8)) allows
154                      * to handle super-low mtu links fairly.
155                      */
156                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
157                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
158                         /* Subtract also invariant (if peer is RFC compliant),
159                          * tcp header plus fixed timestamp option length.
160                          * Resulting "len" is MSS free of SACK jitter.
161                          */
162                         len -= tcp_sk(sk)->tcp_header_len;
163                         icsk->icsk_ack.last_seg_size = len;
164                         if (len == lss) {
165                                 icsk->icsk_ack.rcv_mss = len;
166                                 return;
167                         }
168                 }
169                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
170                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
171                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
172         }
173 }
174
175 static void tcp_incr_quickack(struct sock *sk)
176 {
177         struct inet_connection_sock *icsk = inet_csk(sk);
178         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
179
180         if (quickacks == 0)
181                 quickacks = 2;
182         if (quickacks > icsk->icsk_ack.quick)
183                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
184 }
185
186 static void tcp_enter_quickack_mode(struct sock *sk)
187 {
188         struct inet_connection_sock *icsk = inet_csk(sk);
189         tcp_incr_quickack(sk);
190         icsk->icsk_ack.pingpong = 0;
191         icsk->icsk_ack.ato = TCP_ATO_MIN;
192 }
193
194 /* Send ACKs quickly, if "quick" count is not exhausted
195  * and the session is not interactive.
196  */
197
198 static inline int tcp_in_quickack_mode(const struct sock *sk)
199 {
200         const struct inet_connection_sock *icsk = inet_csk(sk);
201         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
202 }
203
204 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205 {
206         if (tp->ecn_flags & TCP_ECN_OK)
207                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
208 }
209
210 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
211 {
212         if (tcp_hdr(skb)->cwr)
213                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217 {
218         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219 }
220
221 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
222 {
223         if (!(tp->ecn_flags & TCP_ECN_OK))
224                 return;
225
226         switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
227         case INET_ECN_NOT_ECT:
228                 /* Funny extension: if ECT is not set on a segment,
229                  * and we already seen ECT on a previous segment,
230                  * it is probably a retransmit.
231                  */
232                 if (tp->ecn_flags & TCP_ECN_SEEN)
233                         tcp_enter_quickack_mode((struct sock *)tp);
234                 break;
235         case INET_ECN_CE:
236                 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
237                 /* fallinto */
238         default:
239                 tp->ecn_flags |= TCP_ECN_SEEN;
240         }
241 }
242
243 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
244 {
245         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
246                 tp->ecn_flags &= ~TCP_ECN_OK;
247 }
248
249 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
250 {
251         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
252                 tp->ecn_flags &= ~TCP_ECN_OK;
253 }
254
255 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
256 {
257         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
258                 return 1;
259         return 0;
260 }
261
262 /* Buffer size and advertised window tuning.
263  *
264  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
265  */
266
267 static void tcp_fixup_sndbuf(struct sock *sk)
268 {
269         int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
270
271         sndmem *= TCP_INIT_CWND;
272         if (sk->sk_sndbuf < sndmem)
273                 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
274 }
275
276 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
277  *
278  * All tcp_full_space() is split to two parts: "network" buffer, allocated
279  * forward and advertised in receiver window (tp->rcv_wnd) and
280  * "application buffer", required to isolate scheduling/application
281  * latencies from network.
282  * window_clamp is maximal advertised window. It can be less than
283  * tcp_full_space(), in this case tcp_full_space() - window_clamp
284  * is reserved for "application" buffer. The less window_clamp is
285  * the smoother our behaviour from viewpoint of network, but the lower
286  * throughput and the higher sensitivity of the connection to losses. 8)
287  *
288  * rcv_ssthresh is more strict window_clamp used at "slow start"
289  * phase to predict further behaviour of this connection.
290  * It is used for two goals:
291  * - to enforce header prediction at sender, even when application
292  *   requires some significant "application buffer". It is check #1.
293  * - to prevent pruning of receive queue because of misprediction
294  *   of receiver window. Check #2.
295  *
296  * The scheme does not work when sender sends good segments opening
297  * window and then starts to feed us spaghetti. But it should work
298  * in common situations. Otherwise, we have to rely on queue collapsing.
299  */
300
301 /* Slow part of check#2. */
302 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
303 {
304         struct tcp_sock *tp = tcp_sk(sk);
305         /* Optimize this! */
306         int truesize = tcp_win_from_space(skb->truesize) >> 1;
307         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
308
309         while (tp->rcv_ssthresh <= window) {
310                 if (truesize <= skb->len)
311                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
312
313                 truesize >>= 1;
314                 window >>= 1;
315         }
316         return 0;
317 }
318
319 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
320 {
321         struct tcp_sock *tp = tcp_sk(sk);
322
323         /* Check #1 */
324         if (tp->rcv_ssthresh < tp->window_clamp &&
325             (int)tp->rcv_ssthresh < tcp_space(sk) &&
326             !sk_under_memory_pressure(sk)) {
327                 int incr;
328
329                 /* Check #2. Increase window, if skb with such overhead
330                  * will fit to rcvbuf in future.
331                  */
332                 if (tcp_win_from_space(skb->truesize) <= skb->len)
333                         incr = 2 * tp->advmss;
334                 else
335                         incr = __tcp_grow_window(sk, skb);
336
337                 if (incr) {
338                         incr = max_t(int, incr, 2 * skb->len);
339                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
340                                                tp->window_clamp);
341                         inet_csk(sk)->icsk_ack.quick |= 1;
342                 }
343         }
344 }
345
346 /* 3. Tuning rcvbuf, when connection enters established state. */
347
348 static void tcp_fixup_rcvbuf(struct sock *sk)
349 {
350         u32 mss = tcp_sk(sk)->advmss;
351         u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
352         int rcvmem;
353
354         /* Limit to 10 segments if mss <= 1460,
355          * or 14600/mss segments, with a minimum of two segments.
356          */
357         if (mss > 1460)
358                 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
359
360         rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
361         while (tcp_win_from_space(rcvmem) < mss)
362                 rcvmem += 128;
363
364         rcvmem *= icwnd;
365
366         if (sk->sk_rcvbuf < rcvmem)
367                 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
368 }
369
370 /* 4. Try to fixup all. It is made immediately after connection enters
371  *    established state.
372  */
373 static void tcp_init_buffer_space(struct sock *sk)
374 {
375         struct tcp_sock *tp = tcp_sk(sk);
376         int maxwin;
377
378         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
379                 tcp_fixup_rcvbuf(sk);
380         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
381                 tcp_fixup_sndbuf(sk);
382
383         tp->rcvq_space.space = tp->rcv_wnd;
384
385         maxwin = tcp_full_space(sk);
386
387         if (tp->window_clamp >= maxwin) {
388                 tp->window_clamp = maxwin;
389
390                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
391                         tp->window_clamp = max(maxwin -
392                                                (maxwin >> sysctl_tcp_app_win),
393                                                4 * tp->advmss);
394         }
395
396         /* Force reservation of one segment. */
397         if (sysctl_tcp_app_win &&
398             tp->window_clamp > 2 * tp->advmss &&
399             tp->window_clamp + tp->advmss > maxwin)
400                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
401
402         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
403         tp->snd_cwnd_stamp = tcp_time_stamp;
404 }
405
406 /* 5. Recalculate window clamp after socket hit its memory bounds. */
407 static void tcp_clamp_window(struct sock *sk)
408 {
409         struct tcp_sock *tp = tcp_sk(sk);
410         struct inet_connection_sock *icsk = inet_csk(sk);
411
412         icsk->icsk_ack.quick = 0;
413
414         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
415             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
416             !sk_under_memory_pressure(sk) &&
417             sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
418                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
419                                     sysctl_tcp_rmem[2]);
420         }
421         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
422                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
423 }
424
425 /* Initialize RCV_MSS value.
426  * RCV_MSS is an our guess about MSS used by the peer.
427  * We haven't any direct information about the MSS.
428  * It's better to underestimate the RCV_MSS rather than overestimate.
429  * Overestimations make us ACKing less frequently than needed.
430  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
431  */
432 void tcp_initialize_rcv_mss(struct sock *sk)
433 {
434         const struct tcp_sock *tp = tcp_sk(sk);
435         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
436
437         hint = min(hint, tp->rcv_wnd / 2);
438         hint = min(hint, TCP_MSS_DEFAULT);
439         hint = max(hint, TCP_MIN_MSS);
440
441         inet_csk(sk)->icsk_ack.rcv_mss = hint;
442 }
443 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
444
445 /* Receiver "autotuning" code.
446  *
447  * The algorithm for RTT estimation w/o timestamps is based on
448  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
449  * <http://public.lanl.gov/radiant/pubs.html#DRS>
450  *
451  * More detail on this code can be found at
452  * <http://staff.psc.edu/jheffner/>,
453  * though this reference is out of date.  A new paper
454  * is pending.
455  */
456 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
457 {
458         u32 new_sample = tp->rcv_rtt_est.rtt;
459         long m = sample;
460
461         if (m == 0)
462                 m = 1;
463
464         if (new_sample != 0) {
465                 /* If we sample in larger samples in the non-timestamp
466                  * case, we could grossly overestimate the RTT especially
467                  * with chatty applications or bulk transfer apps which
468                  * are stalled on filesystem I/O.
469                  *
470                  * Also, since we are only going for a minimum in the
471                  * non-timestamp case, we do not smooth things out
472                  * else with timestamps disabled convergence takes too
473                  * long.
474                  */
475                 if (!win_dep) {
476                         m -= (new_sample >> 3);
477                         new_sample += m;
478                 } else {
479                         m <<= 3;
480                         if (m < new_sample)
481                                 new_sample = m;
482                 }
483         } else {
484                 /* No previous measure. */
485                 new_sample = m << 3;
486         }
487
488         if (tp->rcv_rtt_est.rtt != new_sample)
489                 tp->rcv_rtt_est.rtt = new_sample;
490 }
491
492 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
493 {
494         if (tp->rcv_rtt_est.time == 0)
495                 goto new_measure;
496         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
497                 return;
498         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
499
500 new_measure:
501         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
502         tp->rcv_rtt_est.time = tcp_time_stamp;
503 }
504
505 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
506                                           const struct sk_buff *skb)
507 {
508         struct tcp_sock *tp = tcp_sk(sk);
509         if (tp->rx_opt.rcv_tsecr &&
510             (TCP_SKB_CB(skb)->end_seq -
511              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
512                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
513 }
514
515 /*
516  * This function should be called every time data is copied to user space.
517  * It calculates the appropriate TCP receive buffer space.
518  */
519 void tcp_rcv_space_adjust(struct sock *sk)
520 {
521         struct tcp_sock *tp = tcp_sk(sk);
522         int time;
523         int space;
524
525         if (tp->rcvq_space.time == 0)
526                 goto new_measure;
527
528         time = tcp_time_stamp - tp->rcvq_space.time;
529         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
530                 return;
531
532         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
533
534         space = max(tp->rcvq_space.space, space);
535
536         if (tp->rcvq_space.space != space) {
537                 int rcvmem;
538
539                 tp->rcvq_space.space = space;
540
541                 if (sysctl_tcp_moderate_rcvbuf &&
542                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
543                         int new_clamp = space;
544
545                         /* Receive space grows, normalize in order to
546                          * take into account packet headers and sk_buff
547                          * structure overhead.
548                          */
549                         space /= tp->advmss;
550                         if (!space)
551                                 space = 1;
552                         rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
553                         while (tcp_win_from_space(rcvmem) < tp->advmss)
554                                 rcvmem += 128;
555                         space *= rcvmem;
556                         space = min(space, sysctl_tcp_rmem[2]);
557                         if (space > sk->sk_rcvbuf) {
558                                 sk->sk_rcvbuf = space;
559
560                                 /* Make the window clamp follow along.  */
561                                 tp->window_clamp = new_clamp;
562                         }
563                 }
564         }
565
566 new_measure:
567         tp->rcvq_space.seq = tp->copied_seq;
568         tp->rcvq_space.time = tcp_time_stamp;
569 }
570
571 /* There is something which you must keep in mind when you analyze the
572  * behavior of the tp->ato delayed ack timeout interval.  When a
573  * connection starts up, we want to ack as quickly as possible.  The
574  * problem is that "good" TCP's do slow start at the beginning of data
575  * transmission.  The means that until we send the first few ACK's the
576  * sender will sit on his end and only queue most of his data, because
577  * he can only send snd_cwnd unacked packets at any given time.  For
578  * each ACK we send, he increments snd_cwnd and transmits more of his
579  * queue.  -DaveM
580  */
581 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
582 {
583         struct tcp_sock *tp = tcp_sk(sk);
584         struct inet_connection_sock *icsk = inet_csk(sk);
585         u32 now;
586
587         inet_csk_schedule_ack(sk);
588
589         tcp_measure_rcv_mss(sk, skb);
590
591         tcp_rcv_rtt_measure(tp);
592
593         now = tcp_time_stamp;
594
595         if (!icsk->icsk_ack.ato) {
596                 /* The _first_ data packet received, initialize
597                  * delayed ACK engine.
598                  */
599                 tcp_incr_quickack(sk);
600                 icsk->icsk_ack.ato = TCP_ATO_MIN;
601         } else {
602                 int m = now - icsk->icsk_ack.lrcvtime;
603
604                 if (m <= TCP_ATO_MIN / 2) {
605                         /* The fastest case is the first. */
606                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
607                 } else if (m < icsk->icsk_ack.ato) {
608                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
609                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
610                                 icsk->icsk_ack.ato = icsk->icsk_rto;
611                 } else if (m > icsk->icsk_rto) {
612                         /* Too long gap. Apparently sender failed to
613                          * restart window, so that we send ACKs quickly.
614                          */
615                         tcp_incr_quickack(sk);
616                         sk_mem_reclaim(sk);
617                 }
618         }
619         icsk->icsk_ack.lrcvtime = now;
620
621         TCP_ECN_check_ce(tp, skb);
622
623         if (skb->len >= 128)
624                 tcp_grow_window(sk, skb);
625 }
626
627 /* Called to compute a smoothed rtt estimate. The data fed to this
628  * routine either comes from timestamps, or from segments that were
629  * known _not_ to have been retransmitted [see Karn/Partridge
630  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
631  * piece by Van Jacobson.
632  * NOTE: the next three routines used to be one big routine.
633  * To save cycles in the RFC 1323 implementation it was better to break
634  * it up into three procedures. -- erics
635  */
636 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
637 {
638         struct tcp_sock *tp = tcp_sk(sk);
639         long m = mrtt; /* RTT */
640
641         /*      The following amusing code comes from Jacobson's
642          *      article in SIGCOMM '88.  Note that rtt and mdev
643          *      are scaled versions of rtt and mean deviation.
644          *      This is designed to be as fast as possible
645          *      m stands for "measurement".
646          *
647          *      On a 1990 paper the rto value is changed to:
648          *      RTO = rtt + 4 * mdev
649          *
650          * Funny. This algorithm seems to be very broken.
651          * These formulae increase RTO, when it should be decreased, increase
652          * too slowly, when it should be increased quickly, decrease too quickly
653          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
654          * does not matter how to _calculate_ it. Seems, it was trap
655          * that VJ failed to avoid. 8)
656          */
657         if (m == 0)
658                 m = 1;
659         if (tp->srtt != 0) {
660                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
661                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
662                 if (m < 0) {
663                         m = -m;         /* m is now abs(error) */
664                         m -= (tp->mdev >> 2);   /* similar update on mdev */
665                         /* This is similar to one of Eifel findings.
666                          * Eifel blocks mdev updates when rtt decreases.
667                          * This solution is a bit different: we use finer gain
668                          * for mdev in this case (alpha*beta).
669                          * Like Eifel it also prevents growth of rto,
670                          * but also it limits too fast rto decreases,
671                          * happening in pure Eifel.
672                          */
673                         if (m > 0)
674                                 m >>= 3;
675                 } else {
676                         m -= (tp->mdev >> 2);   /* similar update on mdev */
677                 }
678                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
679                 if (tp->mdev > tp->mdev_max) {
680                         tp->mdev_max = tp->mdev;
681                         if (tp->mdev_max > tp->rttvar)
682                                 tp->rttvar = tp->mdev_max;
683                 }
684                 if (after(tp->snd_una, tp->rtt_seq)) {
685                         if (tp->mdev_max < tp->rttvar)
686                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
687                         tp->rtt_seq = tp->snd_nxt;
688                         tp->mdev_max = tcp_rto_min(sk);
689                 }
690         } else {
691                 /* no previous measure. */
692                 tp->srtt = m << 3;      /* take the measured time to be rtt */
693                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
694                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
695                 tp->rtt_seq = tp->snd_nxt;
696         }
697 }
698
699 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
700  * routine referred to above.
701  */
702 static inline void tcp_set_rto(struct sock *sk)
703 {
704         const struct tcp_sock *tp = tcp_sk(sk);
705         /* Old crap is replaced with new one. 8)
706          *
707          * More seriously:
708          * 1. If rtt variance happened to be less 50msec, it is hallucination.
709          *    It cannot be less due to utterly erratic ACK generation made
710          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
711          *    to do with delayed acks, because at cwnd>2 true delack timeout
712          *    is invisible. Actually, Linux-2.4 also generates erratic
713          *    ACKs in some circumstances.
714          */
715         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
716
717         /* 2. Fixups made earlier cannot be right.
718          *    If we do not estimate RTO correctly without them,
719          *    all the algo is pure shit and should be replaced
720          *    with correct one. It is exactly, which we pretend to do.
721          */
722
723         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
724          * guarantees that rto is higher.
725          */
726         tcp_bound_rto(sk);
727 }
728
729 /* Save metrics learned by this TCP session.
730    This function is called only, when TCP finishes successfully
731    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
732  */
733 void tcp_update_metrics(struct sock *sk)
734 {
735         struct tcp_sock *tp = tcp_sk(sk);
736         struct dst_entry *dst = __sk_dst_get(sk);
737
738         if (sysctl_tcp_nometrics_save)
739                 return;
740
741         dst_confirm(dst);
742
743         if (dst && (dst->flags & DST_HOST)) {
744                 const struct inet_connection_sock *icsk = inet_csk(sk);
745                 int m;
746                 unsigned long rtt;
747
748                 if (icsk->icsk_backoff || !tp->srtt) {
749                         /* This session failed to estimate rtt. Why?
750                          * Probably, no packets returned in time.
751                          * Reset our results.
752                          */
753                         if (!(dst_metric_locked(dst, RTAX_RTT)))
754                                 dst_metric_set(dst, RTAX_RTT, 0);
755                         return;
756                 }
757
758                 rtt = dst_metric_rtt(dst, RTAX_RTT);
759                 m = rtt - tp->srtt;
760
761                 /* If newly calculated rtt larger than stored one,
762                  * store new one. Otherwise, use EWMA. Remember,
763                  * rtt overestimation is always better than underestimation.
764                  */
765                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
766                         if (m <= 0)
767                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
768                         else
769                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
770                 }
771
772                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
773                         unsigned long var;
774                         if (m < 0)
775                                 m = -m;
776
777                         /* Scale deviation to rttvar fixed point */
778                         m >>= 1;
779                         if (m < tp->mdev)
780                                 m = tp->mdev;
781
782                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
783                         if (m >= var)
784                                 var = m;
785                         else
786                                 var -= (var - m) >> 2;
787
788                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
789                 }
790
791                 if (tcp_in_initial_slowstart(tp)) {
792                         /* Slow start still did not finish. */
793                         if (dst_metric(dst, RTAX_SSTHRESH) &&
794                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
795                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
796                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
797                         if (!dst_metric_locked(dst, RTAX_CWND) &&
798                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
799                                 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
800                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
801                            icsk->icsk_ca_state == TCP_CA_Open) {
802                         /* Cong. avoidance phase, cwnd is reliable. */
803                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
804                                 dst_metric_set(dst, RTAX_SSTHRESH,
805                                                max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
806                         if (!dst_metric_locked(dst, RTAX_CWND))
807                                 dst_metric_set(dst, RTAX_CWND,
808                                                (dst_metric(dst, RTAX_CWND) +
809                                                 tp->snd_cwnd) >> 1);
810                 } else {
811                         /* Else slow start did not finish, cwnd is non-sense,
812                            ssthresh may be also invalid.
813                          */
814                         if (!dst_metric_locked(dst, RTAX_CWND))
815                                 dst_metric_set(dst, RTAX_CWND,
816                                                (dst_metric(dst, RTAX_CWND) +
817                                                 tp->snd_ssthresh) >> 1);
818                         if (dst_metric(dst, RTAX_SSTHRESH) &&
819                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
820                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
821                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
822                 }
823
824                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
825                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
826                             tp->reordering != sysctl_tcp_reordering)
827                                 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
828                 }
829         }
830 }
831
832 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
833 {
834         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
835
836         if (!cwnd)
837                 cwnd = TCP_INIT_CWND;
838         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
839 }
840
841 /* Set slow start threshold and cwnd not falling to slow start */
842 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
843 {
844         struct tcp_sock *tp = tcp_sk(sk);
845         const struct inet_connection_sock *icsk = inet_csk(sk);
846
847         tp->prior_ssthresh = 0;
848         tp->bytes_acked = 0;
849         if (icsk->icsk_ca_state < TCP_CA_CWR) {
850                 tp->undo_marker = 0;
851                 if (set_ssthresh)
852                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
853                 tp->snd_cwnd = min(tp->snd_cwnd,
854                                    tcp_packets_in_flight(tp) + 1U);
855                 tp->snd_cwnd_cnt = 0;
856                 tp->high_seq = tp->snd_nxt;
857                 tp->snd_cwnd_stamp = tcp_time_stamp;
858                 TCP_ECN_queue_cwr(tp);
859
860                 tcp_set_ca_state(sk, TCP_CA_CWR);
861         }
862 }
863
864 /*
865  * Packet counting of FACK is based on in-order assumptions, therefore TCP
866  * disables it when reordering is detected
867  */
868 static void tcp_disable_fack(struct tcp_sock *tp)
869 {
870         /* RFC3517 uses different metric in lost marker => reset on change */
871         if (tcp_is_fack(tp))
872                 tp->lost_skb_hint = NULL;
873         tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
874 }
875
876 /* Take a notice that peer is sending D-SACKs */
877 static void tcp_dsack_seen(struct tcp_sock *tp)
878 {
879         tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
880 }
881
882 /* Initialize metrics on socket. */
883
884 static void tcp_init_metrics(struct sock *sk)
885 {
886         struct tcp_sock *tp = tcp_sk(sk);
887         struct dst_entry *dst = __sk_dst_get(sk);
888
889         if (dst == NULL)
890                 goto reset;
891
892         dst_confirm(dst);
893
894         if (dst_metric_locked(dst, RTAX_CWND))
895                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
896         if (dst_metric(dst, RTAX_SSTHRESH)) {
897                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
898                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
899                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
900         } else {
901                 /* ssthresh may have been reduced unnecessarily during.
902                  * 3WHS. Restore it back to its initial default.
903                  */
904                 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
905         }
906         if (dst_metric(dst, RTAX_REORDERING) &&
907             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
908                 tcp_disable_fack(tp);
909                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
910         }
911
912         if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
913                 goto reset;
914
915         /* Initial rtt is determined from SYN,SYN-ACK.
916          * The segment is small and rtt may appear much
917          * less than real one. Use per-dst memory
918          * to make it more realistic.
919          *
920          * A bit of theory. RTT is time passed after "normal" sized packet
921          * is sent until it is ACKed. In normal circumstances sending small
922          * packets force peer to delay ACKs and calculation is correct too.
923          * The algorithm is adaptive and, provided we follow specs, it
924          * NEVER underestimate RTT. BUT! If peer tries to make some clever
925          * tricks sort of "quick acks" for time long enough to decrease RTT
926          * to low value, and then abruptly stops to do it and starts to delay
927          * ACKs, wait for troubles.
928          */
929         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
930                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
931                 tp->rtt_seq = tp->snd_nxt;
932         }
933         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
934                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
935                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
936         }
937         tcp_set_rto(sk);
938 reset:
939         if (tp->srtt == 0) {
940                 /* RFC2988bis: We've failed to get a valid RTT sample from
941                  * 3WHS. This is most likely due to retransmission,
942                  * including spurious one. Reset the RTO back to 3secs
943                  * from the more aggressive 1sec to avoid more spurious
944                  * retransmission.
945                  */
946                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
947                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
948         }
949         /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
950          * retransmitted. In light of RFC2988bis' more aggressive 1sec
951          * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
952          * retransmission has occurred.
953          */
954         if (tp->total_retrans > 1)
955                 tp->snd_cwnd = 1;
956         else
957                 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
958         tp->snd_cwnd_stamp = tcp_time_stamp;
959 }
960
961 static void tcp_update_reordering(struct sock *sk, const int metric,
962                                   const int ts)
963 {
964         struct tcp_sock *tp = tcp_sk(sk);
965         if (metric > tp->reordering) {
966                 int mib_idx;
967
968                 tp->reordering = min(TCP_MAX_REORDERING, metric);
969
970                 /* This exciting event is worth to be remembered. 8) */
971                 if (ts)
972                         mib_idx = LINUX_MIB_TCPTSREORDER;
973                 else if (tcp_is_reno(tp))
974                         mib_idx = LINUX_MIB_TCPRENOREORDER;
975                 else if (tcp_is_fack(tp))
976                         mib_idx = LINUX_MIB_TCPFACKREORDER;
977                 else
978                         mib_idx = LINUX_MIB_TCPSACKREORDER;
979
980                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
981 #if FASTRETRANS_DEBUG > 1
982                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
983                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
984                        tp->reordering,
985                        tp->fackets_out,
986                        tp->sacked_out,
987                        tp->undo_marker ? tp->undo_retrans : 0);
988 #endif
989                 tcp_disable_fack(tp);
990         }
991 }
992
993 /* This must be called before lost_out is incremented */
994 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
995 {
996         if ((tp->retransmit_skb_hint == NULL) ||
997             before(TCP_SKB_CB(skb)->seq,
998                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
999                 tp->retransmit_skb_hint = skb;
1000
1001         if (!tp->lost_out ||
1002             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1003                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1004 }
1005
1006 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1007 {
1008         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1009                 tcp_verify_retransmit_hint(tp, skb);
1010
1011                 tp->lost_out += tcp_skb_pcount(skb);
1012                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1013         }
1014 }
1015
1016 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1017                                             struct sk_buff *skb)
1018 {
1019         tcp_verify_retransmit_hint(tp, skb);
1020
1021         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1022                 tp->lost_out += tcp_skb_pcount(skb);
1023                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1024         }
1025 }
1026
1027 /* This procedure tags the retransmission queue when SACKs arrive.
1028  *
1029  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1030  * Packets in queue with these bits set are counted in variables
1031  * sacked_out, retrans_out and lost_out, correspondingly.
1032  *
1033  * Valid combinations are:
1034  * Tag  InFlight        Description
1035  * 0    1               - orig segment is in flight.
1036  * S    0               - nothing flies, orig reached receiver.
1037  * L    0               - nothing flies, orig lost by net.
1038  * R    2               - both orig and retransmit are in flight.
1039  * L|R  1               - orig is lost, retransmit is in flight.
1040  * S|R  1               - orig reached receiver, retrans is still in flight.
1041  * (L|S|R is logically valid, it could occur when L|R is sacked,
1042  *  but it is equivalent to plain S and code short-curcuits it to S.
1043  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1044  *
1045  * These 6 states form finite state machine, controlled by the following events:
1046  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1047  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1048  * 3. Loss detection event of two flavors:
1049  *      A. Scoreboard estimator decided the packet is lost.
1050  *         A'. Reno "three dupacks" marks head of queue lost.
1051  *         A''. Its FACK modification, head until snd.fack is lost.
1052  *      B. SACK arrives sacking SND.NXT at the moment, when the
1053  *         segment was retransmitted.
1054  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1055  *
1056  * It is pleasant to note, that state diagram turns out to be commutative,
1057  * so that we are allowed not to be bothered by order of our actions,
1058  * when multiple events arrive simultaneously. (see the function below).
1059  *
1060  * Reordering detection.
1061  * --------------------
1062  * Reordering metric is maximal distance, which a packet can be displaced
1063  * in packet stream. With SACKs we can estimate it:
1064  *
1065  * 1. SACK fills old hole and the corresponding segment was not
1066  *    ever retransmitted -> reordering. Alas, we cannot use it
1067  *    when segment was retransmitted.
1068  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1069  *    for retransmitted and already SACKed segment -> reordering..
1070  * Both of these heuristics are not used in Loss state, when we cannot
1071  * account for retransmits accurately.
1072  *
1073  * SACK block validation.
1074  * ----------------------
1075  *
1076  * SACK block range validation checks that the received SACK block fits to
1077  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1078  * Note that SND.UNA is not included to the range though being valid because
1079  * it means that the receiver is rather inconsistent with itself reporting
1080  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1081  * perfectly valid, however, in light of RFC2018 which explicitly states
1082  * that "SACK block MUST reflect the newest segment.  Even if the newest
1083  * segment is going to be discarded ...", not that it looks very clever
1084  * in case of head skb. Due to potentional receiver driven attacks, we
1085  * choose to avoid immediate execution of a walk in write queue due to
1086  * reneging and defer head skb's loss recovery to standard loss recovery
1087  * procedure that will eventually trigger (nothing forbids us doing this).
1088  *
1089  * Implements also blockage to start_seq wrap-around. Problem lies in the
1090  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1091  * there's no guarantee that it will be before snd_nxt (n). The problem
1092  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1093  * wrap (s_w):
1094  *
1095  *         <- outs wnd ->                          <- wrapzone ->
1096  *         u     e      n                         u_w   e_w  s n_w
1097  *         |     |      |                          |     |   |  |
1098  * |<------------+------+----- TCP seqno space --------------+---------->|
1099  * ...-- <2^31 ->|                                           |<--------...
1100  * ...---- >2^31 ------>|                                    |<--------...
1101  *
1102  * Current code wouldn't be vulnerable but it's better still to discard such
1103  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1104  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1105  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1106  * equal to the ideal case (infinite seqno space without wrap caused issues).
1107  *
1108  * With D-SACK the lower bound is extended to cover sequence space below
1109  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1110  * again, D-SACK block must not to go across snd_una (for the same reason as
1111  * for the normal SACK blocks, explained above). But there all simplicity
1112  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1113  * fully below undo_marker they do not affect behavior in anyway and can
1114  * therefore be safely ignored. In rare cases (which are more or less
1115  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1116  * fragmentation and packet reordering past skb's retransmission. To consider
1117  * them correctly, the acceptable range must be extended even more though
1118  * the exact amount is rather hard to quantify. However, tp->max_window can
1119  * be used as an exaggerated estimate.
1120  */
1121 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1122                                   u32 start_seq, u32 end_seq)
1123 {
1124         /* Too far in future, or reversed (interpretation is ambiguous) */
1125         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1126                 return 0;
1127
1128         /* Nasty start_seq wrap-around check (see comments above) */
1129         if (!before(start_seq, tp->snd_nxt))
1130                 return 0;
1131
1132         /* In outstanding window? ...This is valid exit for D-SACKs too.
1133          * start_seq == snd_una is non-sensical (see comments above)
1134          */
1135         if (after(start_seq, tp->snd_una))
1136                 return 1;
1137
1138         if (!is_dsack || !tp->undo_marker)
1139                 return 0;
1140
1141         /* ...Then it's D-SACK, and must reside below snd_una completely */
1142         if (after(end_seq, tp->snd_una))
1143                 return 0;
1144
1145         if (!before(start_seq, tp->undo_marker))
1146                 return 1;
1147
1148         /* Too old */
1149         if (!after(end_seq, tp->undo_marker))
1150                 return 0;
1151
1152         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1153          *   start_seq < undo_marker and end_seq >= undo_marker.
1154          */
1155         return !before(start_seq, end_seq - tp->max_window);
1156 }
1157
1158 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1159  * Event "B". Later note: FACK people cheated me again 8), we have to account
1160  * for reordering! Ugly, but should help.
1161  *
1162  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1163  * less than what is now known to be received by the other end (derived from
1164  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1165  * retransmitted skbs to avoid some costly processing per ACKs.
1166  */
1167 static void tcp_mark_lost_retrans(struct sock *sk)
1168 {
1169         const struct inet_connection_sock *icsk = inet_csk(sk);
1170         struct tcp_sock *tp = tcp_sk(sk);
1171         struct sk_buff *skb;
1172         int cnt = 0;
1173         u32 new_low_seq = tp->snd_nxt;
1174         u32 received_upto = tcp_highest_sack_seq(tp);
1175
1176         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1177             !after(received_upto, tp->lost_retrans_low) ||
1178             icsk->icsk_ca_state != TCP_CA_Recovery)
1179                 return;
1180
1181         tcp_for_write_queue(skb, sk) {
1182                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1183
1184                 if (skb == tcp_send_head(sk))
1185                         break;
1186                 if (cnt == tp->retrans_out)
1187                         break;
1188                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1189                         continue;
1190
1191                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1192                         continue;
1193
1194                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1195                  * constraint here (see above) but figuring out that at
1196                  * least tp->reordering SACK blocks reside between ack_seq
1197                  * and received_upto is not easy task to do cheaply with
1198                  * the available datastructures.
1199                  *
1200                  * Whether FACK should check here for tp->reordering segs
1201                  * in-between one could argue for either way (it would be
1202                  * rather simple to implement as we could count fack_count
1203                  * during the walk and do tp->fackets_out - fack_count).
1204                  */
1205                 if (after(received_upto, ack_seq)) {
1206                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1207                         tp->retrans_out -= tcp_skb_pcount(skb);
1208
1209                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1210                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1211                 } else {
1212                         if (before(ack_seq, new_low_seq))
1213                                 new_low_seq = ack_seq;
1214                         cnt += tcp_skb_pcount(skb);
1215                 }
1216         }
1217
1218         if (tp->retrans_out)
1219                 tp->lost_retrans_low = new_low_seq;
1220 }
1221
1222 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1223                            struct tcp_sack_block_wire *sp, int num_sacks,
1224                            u32 prior_snd_una)
1225 {
1226         struct tcp_sock *tp = tcp_sk(sk);
1227         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1228         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1229         int dup_sack = 0;
1230
1231         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1232                 dup_sack = 1;
1233                 tcp_dsack_seen(tp);
1234                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1235         } else if (num_sacks > 1) {
1236                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1237                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1238
1239                 if (!after(end_seq_0, end_seq_1) &&
1240                     !before(start_seq_0, start_seq_1)) {
1241                         dup_sack = 1;
1242                         tcp_dsack_seen(tp);
1243                         NET_INC_STATS_BH(sock_net(sk),
1244                                         LINUX_MIB_TCPDSACKOFORECV);
1245                 }
1246         }
1247
1248         /* D-SACK for already forgotten data... Do dumb counting. */
1249         if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1250             !after(end_seq_0, prior_snd_una) &&
1251             after(end_seq_0, tp->undo_marker))
1252                 tp->undo_retrans--;
1253
1254         return dup_sack;
1255 }
1256
1257 struct tcp_sacktag_state {
1258         int reord;
1259         int fack_count;
1260         int flag;
1261 };
1262
1263 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1264  * the incoming SACK may not exactly match but we can find smaller MSS
1265  * aligned portion of it that matches. Therefore we might need to fragment
1266  * which may fail and creates some hassle (caller must handle error case
1267  * returns).
1268  *
1269  * FIXME: this could be merged to shift decision code
1270  */
1271 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1272                                  u32 start_seq, u32 end_seq)
1273 {
1274         int in_sack, err;
1275         unsigned int pkt_len;
1276         unsigned int mss;
1277
1278         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1279                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1280
1281         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1282             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1283                 mss = tcp_skb_mss(skb);
1284                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1285
1286                 if (!in_sack) {
1287                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1288                         if (pkt_len < mss)
1289                                 pkt_len = mss;
1290                 } else {
1291                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1292                         if (pkt_len < mss)
1293                                 return -EINVAL;
1294                 }
1295
1296                 /* Round if necessary so that SACKs cover only full MSSes
1297                  * and/or the remaining small portion (if present)
1298                  */
1299                 if (pkt_len > mss) {
1300                         unsigned int new_len = (pkt_len / mss) * mss;
1301                         if (!in_sack && new_len < pkt_len) {
1302                                 new_len += mss;
1303                                 if (new_len > skb->len)
1304                                         return 0;
1305                         }
1306                         pkt_len = new_len;
1307                 }
1308                 err = tcp_fragment(sk, skb, pkt_len, mss);
1309                 if (err < 0)
1310                         return err;
1311         }
1312
1313         return in_sack;
1314 }
1315
1316 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1317 static u8 tcp_sacktag_one(struct sock *sk,
1318                           struct tcp_sacktag_state *state, u8 sacked,
1319                           u32 start_seq, u32 end_seq,
1320                           int dup_sack, int pcount)
1321 {
1322         struct tcp_sock *tp = tcp_sk(sk);
1323         int fack_count = state->fack_count;
1324
1325         /* Account D-SACK for retransmitted packet. */
1326         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1327                 if (tp->undo_marker && tp->undo_retrans &&
1328                     after(end_seq, tp->undo_marker))
1329                         tp->undo_retrans--;
1330                 if (sacked & TCPCB_SACKED_ACKED)
1331                         state->reord = min(fack_count, state->reord);
1332         }
1333
1334         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1335         if (!after(end_seq, tp->snd_una))
1336                 return sacked;
1337
1338         if (!(sacked & TCPCB_SACKED_ACKED)) {
1339                 if (sacked & TCPCB_SACKED_RETRANS) {
1340                         /* If the segment is not tagged as lost,
1341                          * we do not clear RETRANS, believing
1342                          * that retransmission is still in flight.
1343                          */
1344                         if (sacked & TCPCB_LOST) {
1345                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1346                                 tp->lost_out -= pcount;
1347                                 tp->retrans_out -= pcount;
1348                         }
1349                 } else {
1350                         if (!(sacked & TCPCB_RETRANS)) {
1351                                 /* New sack for not retransmitted frame,
1352                                  * which was in hole. It is reordering.
1353                                  */
1354                                 if (before(start_seq,
1355                                            tcp_highest_sack_seq(tp)))
1356                                         state->reord = min(fack_count,
1357                                                            state->reord);
1358
1359                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1360                                 if (!after(end_seq, tp->frto_highmark))
1361                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1362                         }
1363
1364                         if (sacked & TCPCB_LOST) {
1365                                 sacked &= ~TCPCB_LOST;
1366                                 tp->lost_out -= pcount;
1367                         }
1368                 }
1369
1370                 sacked |= TCPCB_SACKED_ACKED;
1371                 state->flag |= FLAG_DATA_SACKED;
1372                 tp->sacked_out += pcount;
1373
1374                 fack_count += pcount;
1375
1376                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1377                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1378                     before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1379                         tp->lost_cnt_hint += pcount;
1380
1381                 if (fack_count > tp->fackets_out)
1382                         tp->fackets_out = fack_count;
1383         }
1384
1385         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1386          * frames and clear it. undo_retrans is decreased above, L|R frames
1387          * are accounted above as well.
1388          */
1389         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1390                 sacked &= ~TCPCB_SACKED_RETRANS;
1391                 tp->retrans_out -= pcount;
1392         }
1393
1394         return sacked;
1395 }
1396
1397 /* Shift newly-SACKed bytes from this skb to the immediately previous
1398  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1399  */
1400 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1401                            struct tcp_sacktag_state *state,
1402                            unsigned int pcount, int shifted, int mss,
1403                            int dup_sack)
1404 {
1405         struct tcp_sock *tp = tcp_sk(sk);
1406         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1407         u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1408         u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1409
1410         BUG_ON(!pcount);
1411
1412         /* Adjust counters and hints for the newly sacked sequence
1413          * range but discard the return value since prev is already
1414          * marked. We must tag the range first because the seq
1415          * advancement below implicitly advances
1416          * tcp_highest_sack_seq() when skb is highest_sack.
1417          */
1418         tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1419                         start_seq, end_seq, dup_sack, pcount);
1420
1421         if (skb == tp->lost_skb_hint)
1422                 tp->lost_cnt_hint += pcount;
1423
1424         TCP_SKB_CB(prev)->end_seq += shifted;
1425         TCP_SKB_CB(skb)->seq += shifted;
1426
1427         skb_shinfo(prev)->gso_segs += pcount;
1428         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1429         skb_shinfo(skb)->gso_segs -= pcount;
1430
1431         /* When we're adding to gso_segs == 1, gso_size will be zero,
1432          * in theory this shouldn't be necessary but as long as DSACK
1433          * code can come after this skb later on it's better to keep
1434          * setting gso_size to something.
1435          */
1436         if (!skb_shinfo(prev)->gso_size) {
1437                 skb_shinfo(prev)->gso_size = mss;
1438                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1439         }
1440
1441         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1442         if (skb_shinfo(skb)->gso_segs <= 1) {
1443                 skb_shinfo(skb)->gso_size = 0;
1444                 skb_shinfo(skb)->gso_type = 0;
1445         }
1446
1447         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1448         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1449
1450         if (skb->len > 0) {
1451                 BUG_ON(!tcp_skb_pcount(skb));
1452                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1453                 return 0;
1454         }
1455
1456         /* Whole SKB was eaten :-) */
1457
1458         if (skb == tp->retransmit_skb_hint)
1459                 tp->retransmit_skb_hint = prev;
1460         if (skb == tp->scoreboard_skb_hint)
1461                 tp->scoreboard_skb_hint = prev;
1462         if (skb == tp->lost_skb_hint) {
1463                 tp->lost_skb_hint = prev;
1464                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1465         }
1466
1467         TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1468         if (skb == tcp_highest_sack(sk))
1469                 tcp_advance_highest_sack(sk, skb);
1470
1471         tcp_unlink_write_queue(skb, sk);
1472         sk_wmem_free_skb(sk, skb);
1473
1474         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1475
1476         return 1;
1477 }
1478
1479 /* I wish gso_size would have a bit more sane initialization than
1480  * something-or-zero which complicates things
1481  */
1482 static int tcp_skb_seglen(const struct sk_buff *skb)
1483 {
1484         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1485 }
1486
1487 /* Shifting pages past head area doesn't work */
1488 static int skb_can_shift(const struct sk_buff *skb)
1489 {
1490         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1491 }
1492
1493 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1494  * skb.
1495  */
1496 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1497                                           struct tcp_sacktag_state *state,
1498                                           u32 start_seq, u32 end_seq,
1499                                           int dup_sack)
1500 {
1501         struct tcp_sock *tp = tcp_sk(sk);
1502         struct sk_buff *prev;
1503         int mss;
1504         int pcount = 0;
1505         int len;
1506         int in_sack;
1507
1508         if (!sk_can_gso(sk))
1509                 goto fallback;
1510
1511         /* Normally R but no L won't result in plain S */
1512         if (!dup_sack &&
1513             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1514                 goto fallback;
1515         if (!skb_can_shift(skb))
1516                 goto fallback;
1517         /* This frame is about to be dropped (was ACKed). */
1518         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1519                 goto fallback;
1520
1521         /* Can only happen with delayed DSACK + discard craziness */
1522         if (unlikely(skb == tcp_write_queue_head(sk)))
1523                 goto fallback;
1524         prev = tcp_write_queue_prev(sk, skb);
1525
1526         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1527                 goto fallback;
1528
1529         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1530                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1531
1532         if (in_sack) {
1533                 len = skb->len;
1534                 pcount = tcp_skb_pcount(skb);
1535                 mss = tcp_skb_seglen(skb);
1536
1537                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1538                  * drop this restriction as unnecessary
1539                  */
1540                 if (mss != tcp_skb_seglen(prev))
1541                         goto fallback;
1542         } else {
1543                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1544                         goto noop;
1545                 /* CHECKME: This is non-MSS split case only?, this will
1546                  * cause skipped skbs due to advancing loop btw, original
1547                  * has that feature too
1548                  */
1549                 if (tcp_skb_pcount(skb) <= 1)
1550                         goto noop;
1551
1552                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1553                 if (!in_sack) {
1554                         /* TODO: head merge to next could be attempted here
1555                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1556                          * though it might not be worth of the additional hassle
1557                          *
1558                          * ...we can probably just fallback to what was done
1559                          * previously. We could try merging non-SACKed ones
1560                          * as well but it probably isn't going to buy off
1561                          * because later SACKs might again split them, and
1562                          * it would make skb timestamp tracking considerably
1563                          * harder problem.
1564                          */
1565                         goto fallback;
1566                 }
1567
1568                 len = end_seq - TCP_SKB_CB(skb)->seq;
1569                 BUG_ON(len < 0);
1570                 BUG_ON(len > skb->len);
1571
1572                 /* MSS boundaries should be honoured or else pcount will
1573                  * severely break even though it makes things bit trickier.
1574                  * Optimize common case to avoid most of the divides
1575                  */
1576                 mss = tcp_skb_mss(skb);
1577
1578                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1579                  * drop this restriction as unnecessary
1580                  */
1581                 if (mss != tcp_skb_seglen(prev))
1582                         goto fallback;
1583
1584                 if (len == mss) {
1585                         pcount = 1;
1586                 } else if (len < mss) {
1587                         goto noop;
1588                 } else {
1589                         pcount = len / mss;
1590                         len = pcount * mss;
1591                 }
1592         }
1593
1594         /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1595         if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1596                 goto fallback;
1597
1598         if (!skb_shift(prev, skb, len))
1599                 goto fallback;
1600         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1601                 goto out;
1602
1603         /* Hole filled allows collapsing with the next as well, this is very
1604          * useful when hole on every nth skb pattern happens
1605          */
1606         if (prev == tcp_write_queue_tail(sk))
1607                 goto out;
1608         skb = tcp_write_queue_next(sk, prev);
1609
1610         if (!skb_can_shift(skb) ||
1611             (skb == tcp_send_head(sk)) ||
1612             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1613             (mss != tcp_skb_seglen(skb)))
1614                 goto out;
1615
1616         len = skb->len;
1617         if (skb_shift(prev, skb, len)) {
1618                 pcount += tcp_skb_pcount(skb);
1619                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1620         }
1621
1622 out:
1623         state->fack_count += pcount;
1624         return prev;
1625
1626 noop:
1627         return skb;
1628
1629 fallback:
1630         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1631         return NULL;
1632 }
1633
1634 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1635                                         struct tcp_sack_block *next_dup,
1636                                         struct tcp_sacktag_state *state,
1637                                         u32 start_seq, u32 end_seq,
1638                                         int dup_sack_in)
1639 {
1640         struct tcp_sock *tp = tcp_sk(sk);
1641         struct sk_buff *tmp;
1642
1643         tcp_for_write_queue_from(skb, sk) {
1644                 int in_sack = 0;
1645                 int dup_sack = dup_sack_in;
1646
1647                 if (skb == tcp_send_head(sk))
1648                         break;
1649
1650                 /* queue is in-order => we can short-circuit the walk early */
1651                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1652                         break;
1653
1654                 if ((next_dup != NULL) &&
1655                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1656                         in_sack = tcp_match_skb_to_sack(sk, skb,
1657                                                         next_dup->start_seq,
1658                                                         next_dup->end_seq);
1659                         if (in_sack > 0)
1660                                 dup_sack = 1;
1661                 }
1662
1663                 /* skb reference here is a bit tricky to get right, since
1664                  * shifting can eat and free both this skb and the next,
1665                  * so not even _safe variant of the loop is enough.
1666                  */
1667                 if (in_sack <= 0) {
1668                         tmp = tcp_shift_skb_data(sk, skb, state,
1669                                                  start_seq, end_seq, dup_sack);
1670                         if (tmp != NULL) {
1671                                 if (tmp != skb) {
1672                                         skb = tmp;
1673                                         continue;
1674                                 }
1675
1676                                 in_sack = 0;
1677                         } else {
1678                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1679                                                                 start_seq,
1680                                                                 end_seq);
1681                         }
1682                 }
1683
1684                 if (unlikely(in_sack < 0))
1685                         break;
1686
1687                 if (in_sack) {
1688                         TCP_SKB_CB(skb)->sacked =
1689                                 tcp_sacktag_one(sk,
1690                                                 state,
1691                                                 TCP_SKB_CB(skb)->sacked,
1692                                                 TCP_SKB_CB(skb)->seq,
1693                                                 TCP_SKB_CB(skb)->end_seq,
1694                                                 dup_sack,
1695                                                 tcp_skb_pcount(skb));
1696
1697                         if (!before(TCP_SKB_CB(skb)->seq,
1698                                     tcp_highest_sack_seq(tp)))
1699                                 tcp_advance_highest_sack(sk, skb);
1700                 }
1701
1702                 state->fack_count += tcp_skb_pcount(skb);
1703         }
1704         return skb;
1705 }
1706
1707 /* Avoid all extra work that is being done by sacktag while walking in
1708  * a normal way
1709  */
1710 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1711                                         struct tcp_sacktag_state *state,
1712                                         u32 skip_to_seq)
1713 {
1714         tcp_for_write_queue_from(skb, sk) {
1715                 if (skb == tcp_send_head(sk))
1716                         break;
1717
1718                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1719                         break;
1720
1721                 state->fack_count += tcp_skb_pcount(skb);
1722         }
1723         return skb;
1724 }
1725
1726 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1727                                                 struct sock *sk,
1728                                                 struct tcp_sack_block *next_dup,
1729                                                 struct tcp_sacktag_state *state,
1730                                                 u32 skip_to_seq)
1731 {
1732         if (next_dup == NULL)
1733                 return skb;
1734
1735         if (before(next_dup->start_seq, skip_to_seq)) {
1736                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1737                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1738                                        next_dup->start_seq, next_dup->end_seq,
1739                                        1);
1740         }
1741
1742         return skb;
1743 }
1744
1745 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1746 {
1747         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1748 }
1749
1750 static int
1751 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1752                         u32 prior_snd_una)
1753 {
1754         const struct inet_connection_sock *icsk = inet_csk(sk);
1755         struct tcp_sock *tp = tcp_sk(sk);
1756         const unsigned char *ptr = (skb_transport_header(ack_skb) +
1757                                     TCP_SKB_CB(ack_skb)->sacked);
1758         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1759         struct tcp_sack_block sp[TCP_NUM_SACKS];
1760         struct tcp_sack_block *cache;
1761         struct tcp_sacktag_state state;
1762         struct sk_buff *skb;
1763         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1764         int used_sacks;
1765         int found_dup_sack = 0;
1766         int i, j;
1767         int first_sack_index;
1768
1769         state.flag = 0;
1770         state.reord = tp->packets_out;
1771
1772         if (!tp->sacked_out) {
1773                 if (WARN_ON(tp->fackets_out))
1774                         tp->fackets_out = 0;
1775                 tcp_highest_sack_reset(sk);
1776         }
1777
1778         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1779                                          num_sacks, prior_snd_una);
1780         if (found_dup_sack)
1781                 state.flag |= FLAG_DSACKING_ACK;
1782
1783         /* Eliminate too old ACKs, but take into
1784          * account more or less fresh ones, they can
1785          * contain valid SACK info.
1786          */
1787         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1788                 return 0;
1789
1790         if (!tp->packets_out)
1791                 goto out;
1792
1793         used_sacks = 0;
1794         first_sack_index = 0;
1795         for (i = 0; i < num_sacks; i++) {
1796                 int dup_sack = !i && found_dup_sack;
1797
1798                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1799                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1800
1801                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1802                                             sp[used_sacks].start_seq,
1803                                             sp[used_sacks].end_seq)) {
1804                         int mib_idx;
1805
1806                         if (dup_sack) {
1807                                 if (!tp->undo_marker)
1808                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1809                                 else
1810                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1811                         } else {
1812                                 /* Don't count olds caused by ACK reordering */
1813                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1814                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1815                                         continue;
1816                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1817                         }
1818
1819                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1820                         if (i == 0)
1821                                 first_sack_index = -1;
1822                         continue;
1823                 }
1824
1825                 /* Ignore very old stuff early */
1826                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1827                         continue;
1828
1829                 used_sacks++;
1830         }
1831
1832         /* order SACK blocks to allow in order walk of the retrans queue */
1833         for (i = used_sacks - 1; i > 0; i--) {
1834                 for (j = 0; j < i; j++) {
1835                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1836                                 swap(sp[j], sp[j + 1]);
1837
1838                                 /* Track where the first SACK block goes to */
1839                                 if (j == first_sack_index)
1840                                         first_sack_index = j + 1;
1841                         }
1842                 }
1843         }
1844
1845         skb = tcp_write_queue_head(sk);
1846         state.fack_count = 0;
1847         i = 0;
1848
1849         if (!tp->sacked_out) {
1850                 /* It's already past, so skip checking against it */
1851                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1852         } else {
1853                 cache = tp->recv_sack_cache;
1854                 /* Skip empty blocks in at head of the cache */
1855                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1856                        !cache->end_seq)
1857                         cache++;
1858         }
1859
1860         while (i < used_sacks) {
1861                 u32 start_seq = sp[i].start_seq;
1862                 u32 end_seq = sp[i].end_seq;
1863                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1864                 struct tcp_sack_block *next_dup = NULL;
1865
1866                 if (found_dup_sack && ((i + 1) == first_sack_index))
1867                         next_dup = &sp[i + 1];
1868
1869                 /* Skip too early cached blocks */
1870                 while (tcp_sack_cache_ok(tp, cache) &&
1871                        !before(start_seq, cache->end_seq))
1872                         cache++;
1873
1874                 /* Can skip some work by looking recv_sack_cache? */
1875                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1876                     after(end_seq, cache->start_seq)) {
1877
1878                         /* Head todo? */
1879                         if (before(start_seq, cache->start_seq)) {
1880                                 skb = tcp_sacktag_skip(skb, sk, &state,
1881                                                        start_seq);
1882                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1883                                                        &state,
1884                                                        start_seq,
1885                                                        cache->start_seq,
1886                                                        dup_sack);
1887                         }
1888
1889                         /* Rest of the block already fully processed? */
1890                         if (!after(end_seq, cache->end_seq))
1891                                 goto advance_sp;
1892
1893                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1894                                                        &state,
1895                                                        cache->end_seq);
1896
1897                         /* ...tail remains todo... */
1898                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1899                                 /* ...but better entrypoint exists! */
1900                                 skb = tcp_highest_sack(sk);
1901                                 if (skb == NULL)
1902                                         break;
1903                                 state.fack_count = tp->fackets_out;
1904                                 cache++;
1905                                 goto walk;
1906                         }
1907
1908                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1909                         /* Check overlap against next cached too (past this one already) */
1910                         cache++;
1911                         continue;
1912                 }
1913
1914                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1915                         skb = tcp_highest_sack(sk);
1916                         if (skb == NULL)
1917                                 break;
1918                         state.fack_count = tp->fackets_out;
1919                 }
1920                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1921
1922 walk:
1923                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1924                                        start_seq, end_seq, dup_sack);
1925
1926 advance_sp:
1927                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1928                  * due to in-order walk
1929                  */
1930                 if (after(end_seq, tp->frto_highmark))
1931                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1932
1933                 i++;
1934         }
1935
1936         /* Clear the head of the cache sack blocks so we can skip it next time */
1937         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1938                 tp->recv_sack_cache[i].start_seq = 0;
1939                 tp->recv_sack_cache[i].end_seq = 0;
1940         }
1941         for (j = 0; j < used_sacks; j++)
1942                 tp->recv_sack_cache[i++] = sp[j];
1943
1944         tcp_mark_lost_retrans(sk);
1945
1946         tcp_verify_left_out(tp);
1947
1948         if ((state.reord < tp->fackets_out) &&
1949             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1950             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1951                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1952
1953 out:
1954
1955 #if FASTRETRANS_DEBUG > 0
1956         WARN_ON((int)tp->sacked_out < 0);
1957         WARN_ON((int)tp->lost_out < 0);
1958         WARN_ON((int)tp->retrans_out < 0);
1959         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1960 #endif
1961         return state.flag;
1962 }
1963
1964 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1965  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1966  */
1967 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1968 {
1969         u32 holes;
1970
1971         holes = max(tp->lost_out, 1U);
1972         holes = min(holes, tp->packets_out);
1973
1974         if ((tp->sacked_out + holes) > tp->packets_out) {
1975                 tp->sacked_out = tp->packets_out - holes;
1976                 return 1;
1977         }
1978         return 0;
1979 }
1980
1981 /* If we receive more dupacks than we expected counting segments
1982  * in assumption of absent reordering, interpret this as reordering.
1983  * The only another reason could be bug in receiver TCP.
1984  */
1985 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1986 {
1987         struct tcp_sock *tp = tcp_sk(sk);
1988         if (tcp_limit_reno_sacked(tp))
1989                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1990 }
1991
1992 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1993
1994 static void tcp_add_reno_sack(struct sock *sk)
1995 {
1996         struct tcp_sock *tp = tcp_sk(sk);
1997         tp->sacked_out++;
1998         tcp_check_reno_reordering(sk, 0);
1999         tcp_verify_left_out(tp);
2000 }
2001
2002 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2003
2004 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2005 {
2006         struct tcp_sock *tp = tcp_sk(sk);
2007
2008         if (acked > 0) {
2009                 /* One ACK acked hole. The rest eat duplicate ACKs. */
2010                 if (acked - 1 >= tp->sacked_out)
2011                         tp->sacked_out = 0;
2012                 else
2013                         tp->sacked_out -= acked - 1;
2014         }
2015         tcp_check_reno_reordering(sk, acked);
2016         tcp_verify_left_out(tp);
2017 }
2018
2019 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2020 {
2021         tp->sacked_out = 0;
2022 }
2023
2024 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2025 {
2026         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2027 }
2028
2029 /* F-RTO can only be used if TCP has never retransmitted anything other than
2030  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2031  */
2032 int tcp_use_frto(struct sock *sk)
2033 {
2034         const struct tcp_sock *tp = tcp_sk(sk);
2035         const struct inet_connection_sock *icsk = inet_csk(sk);
2036         struct sk_buff *skb;
2037
2038         if (!sysctl_tcp_frto)
2039                 return 0;
2040
2041         /* MTU probe and F-RTO won't really play nicely along currently */
2042         if (icsk->icsk_mtup.probe_size)
2043                 return 0;
2044
2045         if (tcp_is_sackfrto(tp))
2046                 return 1;
2047
2048         /* Avoid expensive walking of rexmit queue if possible */
2049         if (tp->retrans_out > 1)
2050                 return 0;
2051
2052         skb = tcp_write_queue_head(sk);
2053         if (tcp_skb_is_last(sk, skb))
2054                 return 1;
2055         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2056         tcp_for_write_queue_from(skb, sk) {
2057                 if (skb == tcp_send_head(sk))
2058                         break;
2059                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2060                         return 0;
2061                 /* Short-circuit when first non-SACKed skb has been checked */
2062                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2063                         break;
2064         }
2065         return 1;
2066 }
2067
2068 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2069  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2070  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2071  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2072  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2073  * bits are handled if the Loss state is really to be entered (in
2074  * tcp_enter_frto_loss).
2075  *
2076  * Do like tcp_enter_loss() would; when RTO expires the second time it
2077  * does:
2078  *  "Reduce ssthresh if it has not yet been made inside this window."
2079  */
2080 void tcp_enter_frto(struct sock *sk)
2081 {
2082         const struct inet_connection_sock *icsk = inet_csk(sk);
2083         struct tcp_sock *tp = tcp_sk(sk);
2084         struct sk_buff *skb;
2085
2086         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2087             tp->snd_una == tp->high_seq ||
2088             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2089              !icsk->icsk_retransmits)) {
2090                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2091                 /* Our state is too optimistic in ssthresh() call because cwnd
2092                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2093                  * recovery has not yet completed. Pattern would be this: RTO,
2094                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2095                  * up here twice).
2096                  * RFC4138 should be more specific on what to do, even though
2097                  * RTO is quite unlikely to occur after the first Cumulative ACK
2098                  * due to back-off and complexity of triggering events ...
2099                  */
2100                 if (tp->frto_counter) {
2101                         u32 stored_cwnd;
2102                         stored_cwnd = tp->snd_cwnd;
2103                         tp->snd_cwnd = 2;
2104                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2105                         tp->snd_cwnd = stored_cwnd;
2106                 } else {
2107                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2108                 }
2109                 /* ... in theory, cong.control module could do "any tricks" in
2110                  * ssthresh(), which means that ca_state, lost bits and lost_out
2111                  * counter would have to be faked before the call occurs. We
2112                  * consider that too expensive, unlikely and hacky, so modules
2113                  * using these in ssthresh() must deal these incompatibility
2114                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2115                  */
2116                 tcp_ca_event(sk, CA_EVENT_FRTO);
2117         }
2118
2119         tp->undo_marker = tp->snd_una;
2120         tp->undo_retrans = 0;
2121
2122         skb = tcp_write_queue_head(sk);
2123         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2124                 tp->undo_marker = 0;
2125         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2126                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2127                 tp->retrans_out -= tcp_skb_pcount(skb);
2128         }
2129         tcp_verify_left_out(tp);
2130
2131         /* Too bad if TCP was application limited */
2132         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2133
2134         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2135          * The last condition is necessary at least in tp->frto_counter case.
2136          */
2137         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2138             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2139             after(tp->high_seq, tp->snd_una)) {
2140                 tp->frto_highmark = tp->high_seq;
2141         } else {
2142                 tp->frto_highmark = tp->snd_nxt;
2143         }
2144         tcp_set_ca_state(sk, TCP_CA_Disorder);
2145         tp->high_seq = tp->snd_nxt;
2146         tp->frto_counter = 1;
2147 }
2148
2149 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2150  * which indicates that we should follow the traditional RTO recovery,
2151  * i.e. mark everything lost and do go-back-N retransmission.
2152  */
2153 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2154 {
2155         struct tcp_sock *tp = tcp_sk(sk);
2156         struct sk_buff *skb;
2157
2158         tp->lost_out = 0;
2159         tp->retrans_out = 0;
2160         if (tcp_is_reno(tp))
2161                 tcp_reset_reno_sack(tp);
2162
2163         tcp_for_write_queue(skb, sk) {
2164                 if (skb == tcp_send_head(sk))
2165                         break;
2166
2167                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2168                 /*
2169                  * Count the retransmission made on RTO correctly (only when
2170                  * waiting for the first ACK and did not get it)...
2171                  */
2172                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2173                         /* For some reason this R-bit might get cleared? */
2174                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2175                                 tp->retrans_out += tcp_skb_pcount(skb);
2176                         /* ...enter this if branch just for the first segment */
2177                         flag |= FLAG_DATA_ACKED;
2178                 } else {
2179                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2180                                 tp->undo_marker = 0;
2181                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2182                 }
2183
2184                 /* Marking forward transmissions that were made after RTO lost
2185                  * can cause unnecessary retransmissions in some scenarios,
2186                  * SACK blocks will mitigate that in some but not in all cases.
2187                  * We used to not mark them but it was causing break-ups with
2188                  * receivers that do only in-order receival.
2189                  *
2190                  * TODO: we could detect presence of such receiver and select
2191                  * different behavior per flow.
2192                  */
2193                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2194                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2195                         tp->lost_out += tcp_skb_pcount(skb);
2196                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2197                 }
2198         }
2199         tcp_verify_left_out(tp);
2200
2201         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2202         tp->snd_cwnd_cnt = 0;
2203         tp->snd_cwnd_stamp = tcp_time_stamp;
2204         tp->frto_counter = 0;
2205         tp->bytes_acked = 0;
2206
2207         tp->reordering = min_t(unsigned int, tp->reordering,
2208                                sysctl_tcp_reordering);
2209         tcp_set_ca_state(sk, TCP_CA_Loss);
2210         tp->high_seq = tp->snd_nxt;
2211         TCP_ECN_queue_cwr(tp);
2212
2213         tcp_clear_all_retrans_hints(tp);
2214 }
2215
2216 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2217 {
2218         tp->retrans_out = 0;
2219         tp->lost_out = 0;
2220
2221         tp->undo_marker = 0;
2222         tp->undo_retrans = 0;
2223 }
2224
2225 void tcp_clear_retrans(struct tcp_sock *tp)
2226 {
2227         tcp_clear_retrans_partial(tp);
2228
2229         tp->fackets_out = 0;
2230         tp->sacked_out = 0;
2231 }
2232
2233 /* Enter Loss state. If "how" is not zero, forget all SACK information
2234  * and reset tags completely, otherwise preserve SACKs. If receiver
2235  * dropped its ofo queue, we will know this due to reneging detection.
2236  */
2237 void tcp_enter_loss(struct sock *sk, int how)
2238 {
2239         const struct inet_connection_sock *icsk = inet_csk(sk);
2240         struct tcp_sock *tp = tcp_sk(sk);
2241         struct sk_buff *skb;
2242
2243         /* Reduce ssthresh if it has not yet been made inside this window. */
2244         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2245             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2246                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2247                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2248                 tcp_ca_event(sk, CA_EVENT_LOSS);
2249         }
2250         tp->snd_cwnd       = 1;
2251         tp->snd_cwnd_cnt   = 0;
2252         tp->snd_cwnd_stamp = tcp_time_stamp;
2253
2254         tp->bytes_acked = 0;
2255         tcp_clear_retrans_partial(tp);
2256
2257         if (tcp_is_reno(tp))
2258                 tcp_reset_reno_sack(tp);
2259
2260         if (!how) {
2261                 /* Push undo marker, if it was plain RTO and nothing
2262                  * was retransmitted. */
2263                 tp->undo_marker = tp->snd_una;
2264         } else {
2265                 tp->sacked_out = 0;
2266                 tp->fackets_out = 0;
2267         }
2268         tcp_clear_all_retrans_hints(tp);
2269
2270         tcp_for_write_queue(skb, sk) {
2271                 if (skb == tcp_send_head(sk))
2272                         break;
2273
2274                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2275                         tp->undo_marker = 0;
2276                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2277                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2278                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2279                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2280                         tp->lost_out += tcp_skb_pcount(skb);
2281                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2282                 }
2283         }
2284         tcp_verify_left_out(tp);
2285
2286         tp->reordering = min_t(unsigned int, tp->reordering,
2287                                sysctl_tcp_reordering);
2288         tcp_set_ca_state(sk, TCP_CA_Loss);
2289         tp->high_seq = tp->snd_nxt;
2290         TCP_ECN_queue_cwr(tp);
2291         /* Abort F-RTO algorithm if one is in progress */
2292         tp->frto_counter = 0;
2293 }
2294
2295 /* If ACK arrived pointing to a remembered SACK, it means that our
2296  * remembered SACKs do not reflect real state of receiver i.e.
2297  * receiver _host_ is heavily congested (or buggy).
2298  *
2299  * Do processing similar to RTO timeout.
2300  */
2301 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2302 {
2303         if (flag & FLAG_SACK_RENEGING) {
2304                 struct inet_connection_sock *icsk = inet_csk(sk);
2305                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2306
2307                 tcp_enter_loss(sk, 1);
2308                 icsk->icsk_retransmits++;
2309                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2310                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2311                                           icsk->icsk_rto, TCP_RTO_MAX);
2312                 return 1;
2313         }
2314         return 0;
2315 }
2316
2317 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2318 {
2319         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2320 }
2321
2322 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2323  * counter when SACK is enabled (without SACK, sacked_out is used for
2324  * that purpose).
2325  *
2326  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2327  * segments up to the highest received SACK block so far and holes in
2328  * between them.
2329  *
2330  * With reordering, holes may still be in flight, so RFC3517 recovery
2331  * uses pure sacked_out (total number of SACKed segments) even though
2332  * it violates the RFC that uses duplicate ACKs, often these are equal
2333  * but when e.g. out-of-window ACKs or packet duplication occurs,
2334  * they differ. Since neither occurs due to loss, TCP should really
2335  * ignore them.
2336  */
2337 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2338 {
2339         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2340 }
2341
2342 static inline int tcp_skb_timedout(const struct sock *sk,
2343                                    const struct sk_buff *skb)
2344 {
2345         return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2346 }
2347
2348 static inline int tcp_head_timedout(const struct sock *sk)
2349 {
2350         const struct tcp_sock *tp = tcp_sk(sk);
2351
2352         return tp->packets_out &&
2353                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2354 }
2355
2356 /* Linux NewReno/SACK/FACK/ECN state machine.
2357  * --------------------------------------
2358  *
2359  * "Open"       Normal state, no dubious events, fast path.
2360  * "Disorder"   In all the respects it is "Open",
2361  *              but requires a bit more attention. It is entered when
2362  *              we see some SACKs or dupacks. It is split of "Open"
2363  *              mainly to move some processing from fast path to slow one.
2364  * "CWR"        CWND was reduced due to some Congestion Notification event.
2365  *              It can be ECN, ICMP source quench, local device congestion.
2366  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2367  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2368  *
2369  * tcp_fastretrans_alert() is entered:
2370  * - each incoming ACK, if state is not "Open"
2371  * - when arrived ACK is unusual, namely:
2372  *      * SACK
2373  *      * Duplicate ACK.
2374  *      * ECN ECE.
2375  *
2376  * Counting packets in flight is pretty simple.
2377  *
2378  *      in_flight = packets_out - left_out + retrans_out
2379  *
2380  *      packets_out is SND.NXT-SND.UNA counted in packets.
2381  *
2382  *      retrans_out is number of retransmitted segments.
2383  *
2384  *      left_out is number of segments left network, but not ACKed yet.
2385  *
2386  *              left_out = sacked_out + lost_out
2387  *
2388  *     sacked_out: Packets, which arrived to receiver out of order
2389  *                 and hence not ACKed. With SACKs this number is simply
2390  *                 amount of SACKed data. Even without SACKs
2391  *                 it is easy to give pretty reliable estimate of this number,
2392  *                 counting duplicate ACKs.
2393  *
2394  *       lost_out: Packets lost by network. TCP has no explicit
2395  *                 "loss notification" feedback from network (for now).
2396  *                 It means that this number can be only _guessed_.
2397  *                 Actually, it is the heuristics to predict lossage that
2398  *                 distinguishes different algorithms.
2399  *
2400  *      F.e. after RTO, when all the queue is considered as lost,
2401  *      lost_out = packets_out and in_flight = retrans_out.
2402  *
2403  *              Essentially, we have now two algorithms counting
2404  *              lost packets.
2405  *
2406  *              FACK: It is the simplest heuristics. As soon as we decided
2407  *              that something is lost, we decide that _all_ not SACKed
2408  *              packets until the most forward SACK are lost. I.e.
2409  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2410  *              It is absolutely correct estimate, if network does not reorder
2411  *              packets. And it loses any connection to reality when reordering
2412  *              takes place. We use FACK by default until reordering
2413  *              is suspected on the path to this destination.
2414  *
2415  *              NewReno: when Recovery is entered, we assume that one segment
2416  *              is lost (classic Reno). While we are in Recovery and
2417  *              a partial ACK arrives, we assume that one more packet
2418  *              is lost (NewReno). This heuristics are the same in NewReno
2419  *              and SACK.
2420  *
2421  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2422  *  deflation etc. CWND is real congestion window, never inflated, changes
2423  *  only according to classic VJ rules.
2424  *
2425  * Really tricky (and requiring careful tuning) part of algorithm
2426  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2427  * The first determines the moment _when_ we should reduce CWND and,
2428  * hence, slow down forward transmission. In fact, it determines the moment
2429  * when we decide that hole is caused by loss, rather than by a reorder.
2430  *
2431  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2432  * holes, caused by lost packets.
2433  *
2434  * And the most logically complicated part of algorithm is undo
2435  * heuristics. We detect false retransmits due to both too early
2436  * fast retransmit (reordering) and underestimated RTO, analyzing
2437  * timestamps and D-SACKs. When we detect that some segments were
2438  * retransmitted by mistake and CWND reduction was wrong, we undo
2439  * window reduction and abort recovery phase. This logic is hidden
2440  * inside several functions named tcp_try_undo_<something>.
2441  */
2442
2443 /* This function decides, when we should leave Disordered state
2444  * and enter Recovery phase, reducing congestion window.
2445  *
2446  * Main question: may we further continue forward transmission
2447  * with the same cwnd?
2448  */
2449 static int tcp_time_to_recover(struct sock *sk)
2450 {
2451         struct tcp_sock *tp = tcp_sk(sk);
2452         __u32 packets_out;
2453
2454         /* Do not perform any recovery during F-RTO algorithm */
2455         if (tp->frto_counter)
2456                 return 0;
2457
2458         /* Trick#1: The loss is proven. */
2459         if (tp->lost_out)
2460                 return 1;
2461
2462         /* Not-A-Trick#2 : Classic rule... */
2463         if (tcp_dupack_heuristics(tp) > tp->reordering)
2464                 return 1;
2465
2466         /* Trick#3 : when we use RFC2988 timer restart, fast
2467          * retransmit can be triggered by timeout of queue head.
2468          */
2469         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2470                 return 1;
2471
2472         /* Trick#4: It is still not OK... But will it be useful to delay
2473          * recovery more?
2474          */
2475         packets_out = tp->packets_out;
2476         if (packets_out <= tp->reordering &&
2477             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2478             !tcp_may_send_now(sk)) {
2479                 /* We have nothing to send. This connection is limited
2480                  * either by receiver window or by application.
2481                  */
2482                 return 1;
2483         }
2484
2485         /* If a thin stream is detected, retransmit after first
2486          * received dupack. Employ only if SACK is supported in order
2487          * to avoid possible corner-case series of spurious retransmissions
2488          * Use only if there are no unsent data.
2489          */
2490         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2491             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2492             tcp_is_sack(tp) && !tcp_send_head(sk))
2493                 return 1;
2494
2495         return 0;
2496 }
2497
2498 /* New heuristics: it is possible only after we switched to restart timer
2499  * each time when something is ACKed. Hence, we can detect timed out packets
2500  * during fast retransmit without falling to slow start.
2501  *
2502  * Usefulness of this as is very questionable, since we should know which of
2503  * the segments is the next to timeout which is relatively expensive to find
2504  * in general case unless we add some data structure just for that. The
2505  * current approach certainly won't find the right one too often and when it
2506  * finally does find _something_ it usually marks large part of the window
2507  * right away (because a retransmission with a larger timestamp blocks the
2508  * loop from advancing). -ij
2509  */
2510 static void tcp_timeout_skbs(struct sock *sk)
2511 {
2512         struct tcp_sock *tp = tcp_sk(sk);
2513         struct sk_buff *skb;
2514
2515         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2516                 return;
2517
2518         skb = tp->scoreboard_skb_hint;
2519         if (tp->scoreboard_skb_hint == NULL)
2520                 skb = tcp_write_queue_head(sk);
2521
2522         tcp_for_write_queue_from(skb, sk) {
2523                 if (skb == tcp_send_head(sk))
2524                         break;
2525                 if (!tcp_skb_timedout(sk, skb))
2526                         break;
2527
2528                 tcp_skb_mark_lost(tp, skb);
2529         }
2530
2531         tp->scoreboard_skb_hint = skb;
2532
2533         tcp_verify_left_out(tp);
2534 }
2535
2536 /* Detect loss in event "A" above by marking head of queue up as lost.
2537  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2538  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2539  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2540  * the maximum SACKed segments to pass before reaching this limit.
2541  */
2542 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2543 {
2544         struct tcp_sock *tp = tcp_sk(sk);
2545         struct sk_buff *skb;
2546         int cnt, oldcnt;
2547         int err;
2548         unsigned int mss;
2549         /* Use SACK to deduce losses of new sequences sent during recovery */
2550         const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2551
2552         WARN_ON(packets > tp->packets_out);
2553         if (tp->lost_skb_hint) {
2554                 skb = tp->lost_skb_hint;
2555                 cnt = tp->lost_cnt_hint;
2556                 /* Head already handled? */
2557                 if (mark_head && skb != tcp_write_queue_head(sk))
2558                         return;
2559         } else {
2560                 skb = tcp_write_queue_head(sk);
2561                 cnt = 0;
2562         }
2563
2564         tcp_for_write_queue_from(skb, sk) {
2565                 if (skb == tcp_send_head(sk))
2566                         break;
2567                 /* TODO: do this better */
2568                 /* this is not the most efficient way to do this... */
2569                 tp->lost_skb_hint = skb;
2570                 tp->lost_cnt_hint = cnt;
2571
2572                 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2573                         break;
2574
2575                 oldcnt = cnt;
2576                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2577                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2578                         cnt += tcp_skb_pcount(skb);
2579
2580                 if (cnt > packets) {
2581                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2582                             (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2583                             (oldcnt >= packets))
2584                                 break;
2585
2586                         mss = skb_shinfo(skb)->gso_size;
2587                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2588                         if (err < 0)
2589                                 break;
2590                         cnt = packets;
2591                 }
2592
2593                 tcp_skb_mark_lost(tp, skb);
2594
2595                 if (mark_head)
2596                         break;
2597         }
2598         tcp_verify_left_out(tp);
2599 }
2600
2601 /* Account newly detected lost packet(s) */
2602
2603 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2604 {
2605         struct tcp_sock *tp = tcp_sk(sk);
2606
2607         if (tcp_is_reno(tp)) {
2608                 tcp_mark_head_lost(sk, 1, 1);
2609         } else if (tcp_is_fack(tp)) {
2610                 int lost = tp->fackets_out - tp->reordering;
2611                 if (lost <= 0)
2612                         lost = 1;
2613                 tcp_mark_head_lost(sk, lost, 0);
2614         } else {
2615                 int sacked_upto = tp->sacked_out - tp->reordering;
2616                 if (sacked_upto >= 0)
2617                         tcp_mark_head_lost(sk, sacked_upto, 0);
2618                 else if (fast_rexmit)
2619                         tcp_mark_head_lost(sk, 1, 1);
2620         }
2621
2622         tcp_timeout_skbs(sk);
2623 }
2624
2625 /* CWND moderation, preventing bursts due to too big ACKs
2626  * in dubious situations.
2627  */
2628 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2629 {
2630         tp->snd_cwnd = min(tp->snd_cwnd,
2631                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2632         tp->snd_cwnd_stamp = tcp_time_stamp;
2633 }
2634
2635 /* Lower bound on congestion window is slow start threshold
2636  * unless congestion avoidance choice decides to overide it.
2637  */
2638 static inline u32 tcp_cwnd_min(const struct sock *sk)
2639 {
2640         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2641
2642         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2643 }
2644
2645 /* Decrease cwnd each second ack. */
2646 static void tcp_cwnd_down(struct sock *sk, int flag)
2647 {
2648         struct tcp_sock *tp = tcp_sk(sk);
2649         int decr = tp->snd_cwnd_cnt + 1;
2650
2651         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2652             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2653                 tp->snd_cwnd_cnt = decr & 1;
2654                 decr >>= 1;
2655
2656                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2657                         tp->snd_cwnd -= decr;
2658
2659                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2660                 tp->snd_cwnd_stamp = tcp_time_stamp;
2661         }
2662 }
2663
2664 /* Nothing was retransmitted or returned timestamp is less
2665  * than timestamp of the first retransmission.
2666  */
2667 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2668 {
2669         return !tp->retrans_stamp ||
2670                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2671                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2672 }
2673
2674 /* Undo procedures. */
2675
2676 #if FASTRETRANS_DEBUG > 1
2677 static void DBGUNDO(struct sock *sk, const char *msg)
2678 {
2679         struct tcp_sock *tp = tcp_sk(sk);
2680         struct inet_sock *inet = inet_sk(sk);
2681
2682         if (sk->sk_family == AF_INET) {
2683                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2684                        msg,
2685                        &inet->inet_daddr, ntohs(inet->inet_dport),
2686                        tp->snd_cwnd, tcp_left_out(tp),
2687                        tp->snd_ssthresh, tp->prior_ssthresh,
2688                        tp->packets_out);
2689         }
2690 #if IS_ENABLED(CONFIG_IPV6)
2691         else if (sk->sk_family == AF_INET6) {
2692                 struct ipv6_pinfo *np = inet6_sk(sk);
2693                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2694                        msg,
2695                        &np->daddr, ntohs(inet->inet_dport),
2696                        tp->snd_cwnd, tcp_left_out(tp),
2697                        tp->snd_ssthresh, tp->prior_ssthresh,
2698                        tp->packets_out);
2699         }
2700 #endif
2701 }
2702 #else
2703 #define DBGUNDO(x...) do { } while (0)
2704 #endif
2705
2706 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2707 {
2708         struct tcp_sock *tp = tcp_sk(sk);
2709
2710         if (tp->prior_ssthresh) {
2711                 const struct inet_connection_sock *icsk = inet_csk(sk);
2712
2713                 if (icsk->icsk_ca_ops->undo_cwnd)
2714                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2715                 else
2716                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2717
2718                 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2719                         tp->snd_ssthresh = tp->prior_ssthresh;
2720                         TCP_ECN_withdraw_cwr(tp);
2721                 }
2722         } else {
2723                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2724         }
2725         tp->snd_cwnd_stamp = tcp_time_stamp;
2726 }
2727
2728 static inline int tcp_may_undo(const struct tcp_sock *tp)
2729 {
2730         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2731 }
2732
2733 /* People celebrate: "We love our President!" */
2734 static int tcp_try_undo_recovery(struct sock *sk)
2735 {
2736         struct tcp_sock *tp = tcp_sk(sk);
2737
2738         if (tcp_may_undo(tp)) {
2739                 int mib_idx;
2740
2741                 /* Happy end! We did not retransmit anything
2742                  * or our original transmission succeeded.
2743                  */
2744                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2745                 tcp_undo_cwr(sk, true);
2746                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2747                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2748                 else
2749                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2750
2751                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2752                 tp->undo_marker = 0;
2753         }
2754         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2755                 /* Hold old state until something *above* high_seq
2756                  * is ACKed. For Reno it is MUST to prevent false
2757                  * fast retransmits (RFC2582). SACK TCP is safe. */
2758                 tcp_moderate_cwnd(tp);
2759                 return 1;
2760         }
2761         tcp_set_ca_state(sk, TCP_CA_Open);
2762         return 0;
2763 }
2764
2765 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2766 static void tcp_try_undo_dsack(struct sock *sk)
2767 {
2768         struct tcp_sock *tp = tcp_sk(sk);
2769
2770         if (tp->undo_marker && !tp->undo_retrans) {
2771                 DBGUNDO(sk, "D-SACK");
2772                 tcp_undo_cwr(sk, true);
2773                 tp->undo_marker = 0;
2774                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2775         }
2776 }
2777
2778 /* We can clear retrans_stamp when there are no retransmissions in the
2779  * window. It would seem that it is trivially available for us in
2780  * tp->retrans_out, however, that kind of assumptions doesn't consider
2781  * what will happen if errors occur when sending retransmission for the
2782  * second time. ...It could the that such segment has only
2783  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2784  * the head skb is enough except for some reneging corner cases that
2785  * are not worth the effort.
2786  *
2787  * Main reason for all this complexity is the fact that connection dying
2788  * time now depends on the validity of the retrans_stamp, in particular,
2789  * that successive retransmissions of a segment must not advance
2790  * retrans_stamp under any conditions.
2791  */
2792 static int tcp_any_retrans_done(const struct sock *sk)
2793 {
2794         const struct tcp_sock *tp = tcp_sk(sk);
2795         struct sk_buff *skb;
2796
2797         if (tp->retrans_out)
2798                 return 1;
2799
2800         skb = tcp_write_queue_head(sk);
2801         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2802                 return 1;
2803
2804         return 0;
2805 }
2806
2807 /* Undo during fast recovery after partial ACK. */
2808
2809 static int tcp_try_undo_partial(struct sock *sk, int acked)
2810 {
2811         struct tcp_sock *tp = tcp_sk(sk);
2812         /* Partial ACK arrived. Force Hoe's retransmit. */
2813         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2814
2815         if (tcp_may_undo(tp)) {
2816                 /* Plain luck! Hole if filled with delayed
2817                  * packet, rather than with a retransmit.
2818                  */
2819                 if (!tcp_any_retrans_done(sk))
2820                         tp->retrans_stamp = 0;
2821
2822                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2823
2824                 DBGUNDO(sk, "Hoe");
2825                 tcp_undo_cwr(sk, false);
2826                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2827
2828                 /* So... Do not make Hoe's retransmit yet.
2829                  * If the first packet was delayed, the rest
2830                  * ones are most probably delayed as well.
2831                  */
2832                 failed = 0;
2833         }
2834         return failed;
2835 }
2836
2837 /* Undo during loss recovery after partial ACK. */
2838 static int tcp_try_undo_loss(struct sock *sk)
2839 {
2840         struct tcp_sock *tp = tcp_sk(sk);
2841
2842         if (tcp_may_undo(tp)) {
2843                 struct sk_buff *skb;
2844                 tcp_for_write_queue(skb, sk) {
2845                         if (skb == tcp_send_head(sk))
2846                                 break;
2847                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2848                 }
2849
2850                 tcp_clear_all_retrans_hints(tp);
2851
2852                 DBGUNDO(sk, "partial loss");
2853                 tp->lost_out = 0;
2854                 tcp_undo_cwr(sk, true);
2855                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2856                 inet_csk(sk)->icsk_retransmits = 0;
2857                 tp->undo_marker = 0;
2858                 if (tcp_is_sack(tp))
2859                         tcp_set_ca_state(sk, TCP_CA_Open);
2860                 return 1;
2861         }
2862         return 0;
2863 }
2864
2865 static inline void tcp_complete_cwr(struct sock *sk)
2866 {
2867         struct tcp_sock *tp = tcp_sk(sk);
2868
2869         /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2870         if (tp->undo_marker) {
2871                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2872                         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2873                 else /* PRR */
2874                         tp->snd_cwnd = tp->snd_ssthresh;
2875                 tp->snd_cwnd_stamp = tcp_time_stamp;
2876         }
2877         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2878 }
2879
2880 static void tcp_try_keep_open(struct sock *sk)
2881 {
2882         struct tcp_sock *tp = tcp_sk(sk);
2883         int state = TCP_CA_Open;
2884
2885         if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2886                 state = TCP_CA_Disorder;
2887
2888         if (inet_csk(sk)->icsk_ca_state != state) {
2889                 tcp_set_ca_state(sk, state);
2890                 tp->high_seq = tp->snd_nxt;
2891         }
2892 }
2893
2894 static void tcp_try_to_open(struct sock *sk, int flag)
2895 {
2896         struct tcp_sock *tp = tcp_sk(sk);
2897
2898         tcp_verify_left_out(tp);
2899
2900         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2901                 tp->retrans_stamp = 0;
2902
2903         if (flag & FLAG_ECE)
2904                 tcp_enter_cwr(sk, 1);
2905
2906         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2907                 tcp_try_keep_open(sk);
2908                 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2909                         tcp_moderate_cwnd(tp);
2910         } else {
2911                 tcp_cwnd_down(sk, flag);
2912         }
2913 }
2914
2915 static void tcp_mtup_probe_failed(struct sock *sk)
2916 {
2917         struct inet_connection_sock *icsk = inet_csk(sk);
2918
2919         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2920         icsk->icsk_mtup.probe_size = 0;
2921 }
2922
2923 static void tcp_mtup_probe_success(struct sock *sk)
2924 {
2925         struct tcp_sock *tp = tcp_sk(sk);
2926         struct inet_connection_sock *icsk = inet_csk(sk);
2927
2928         /* FIXME: breaks with very large cwnd */
2929         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2930         tp->snd_cwnd = tp->snd_cwnd *
2931                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2932                        icsk->icsk_mtup.probe_size;
2933         tp->snd_cwnd_cnt = 0;
2934         tp->snd_cwnd_stamp = tcp_time_stamp;
2935         tp->snd_ssthresh = tcp_current_ssthresh(sk);
2936
2937         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2938         icsk->icsk_mtup.probe_size = 0;
2939         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2940 }
2941
2942 /* Do a simple retransmit without using the backoff mechanisms in
2943  * tcp_timer. This is used for path mtu discovery.
2944  * The socket is already locked here.
2945  */
2946 void tcp_simple_retransmit(struct sock *sk)
2947 {
2948         const struct inet_connection_sock *icsk = inet_csk(sk);
2949         struct tcp_sock *tp = tcp_sk(sk);
2950         struct sk_buff *skb;
2951         unsigned int mss = tcp_current_mss(sk);
2952         u32 prior_lost = tp->lost_out;
2953
2954         tcp_for_write_queue(skb, sk) {
2955                 if (skb == tcp_send_head(sk))
2956                         break;
2957                 if (tcp_skb_seglen(skb) > mss &&
2958                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2959                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2960                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2961                                 tp->retrans_out -= tcp_skb_pcount(skb);
2962                         }
2963                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2964                 }
2965         }
2966
2967         tcp_clear_retrans_hints_partial(tp);
2968
2969         if (prior_lost == tp->lost_out)
2970                 return;
2971
2972         if (tcp_is_reno(tp))
2973                 tcp_limit_reno_sacked(tp);
2974
2975         tcp_verify_left_out(tp);
2976
2977         /* Don't muck with the congestion window here.
2978          * Reason is that we do not increase amount of _data_
2979          * in network, but units changed and effective
2980          * cwnd/ssthresh really reduced now.
2981          */
2982         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2983                 tp->high_seq = tp->snd_nxt;
2984                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2985                 tp->prior_ssthresh = 0;
2986                 tp->undo_marker = 0;
2987                 tcp_set_ca_state(sk, TCP_CA_Loss);
2988         }
2989         tcp_xmit_retransmit_queue(sk);
2990 }
2991 EXPORT_SYMBOL(tcp_simple_retransmit);
2992
2993 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2994  * (proportional rate reduction with slow start reduction bound) as described in
2995  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2996  * It computes the number of packets to send (sndcnt) based on packets newly
2997  * delivered:
2998  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2999  *      cwnd reductions across a full RTT.
3000  *   2) If packets in flight is lower than ssthresh (such as due to excess
3001  *      losses and/or application stalls), do not perform any further cwnd
3002  *      reductions, but instead slow start up to ssthresh.
3003  */
3004 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3005                                         int fast_rexmit, int flag)
3006 {
3007         struct tcp_sock *tp = tcp_sk(sk);
3008         int sndcnt = 0;
3009         int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3010
3011         if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3012                 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3013                                tp->prior_cwnd - 1;
3014                 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3015         } else {
3016                 sndcnt = min_t(int, delta,
3017                                max_t(int, tp->prr_delivered - tp->prr_out,
3018                                      newly_acked_sacked) + 1);
3019         }
3020
3021         sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3022         tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3023 }
3024
3025 /* Process an event, which can update packets-in-flight not trivially.
3026  * Main goal of this function is to calculate new estimate for left_out,
3027  * taking into account both packets sitting in receiver's buffer and
3028  * packets lost by network.
3029  *
3030  * Besides that it does CWND reduction, when packet loss is detected
3031  * and changes state of machine.
3032  *
3033  * It does _not_ decide what to send, it is made in function
3034  * tcp_xmit_retransmit_queue().
3035  */
3036 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3037                                   int newly_acked_sacked, bool is_dupack,
3038                                   int flag)
3039 {
3040         struct inet_connection_sock *icsk = inet_csk(sk);
3041         struct tcp_sock *tp = tcp_sk(sk);
3042         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3043                                     (tcp_fackets_out(tp) > tp->reordering));
3044         int fast_rexmit = 0, mib_idx;
3045
3046         if (WARN_ON(!tp->packets_out && tp->sacked_out))
3047                 tp->sacked_out = 0;
3048         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3049                 tp->fackets_out = 0;
3050
3051         /* Now state machine starts.
3052          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3053         if (flag & FLAG_ECE)
3054                 tp->prior_ssthresh = 0;
3055
3056         /* B. In all the states check for reneging SACKs. */
3057         if (tcp_check_sack_reneging(sk, flag))
3058                 return;
3059
3060         /* C. Check consistency of the current state. */
3061         tcp_verify_left_out(tp);
3062
3063         /* D. Check state exit conditions. State can be terminated
3064          *    when high_seq is ACKed. */
3065         if (icsk->icsk_ca_state == TCP_CA_Open) {
3066                 WARN_ON(tp->retrans_out != 0);
3067                 tp->retrans_stamp = 0;
3068         } else if (!before(tp->snd_una, tp->high_seq)) {
3069                 switch (icsk->icsk_ca_state) {
3070                 case TCP_CA_Loss:
3071                         icsk->icsk_retransmits = 0;
3072                         if (tcp_try_undo_recovery(sk))
3073                                 return;
3074                         break;
3075
3076                 case TCP_CA_CWR:
3077                         /* CWR is to be held something *above* high_seq
3078                          * is ACKed for CWR bit to reach receiver. */
3079                         if (tp->snd_una != tp->high_seq) {
3080                                 tcp_complete_cwr(sk);
3081                                 tcp_set_ca_state(sk, TCP_CA_Open);
3082                         }
3083                         break;
3084
3085                 case TCP_CA_Recovery:
3086                         if (tcp_is_reno(tp))
3087                                 tcp_reset_reno_sack(tp);
3088                         if (tcp_try_undo_recovery(sk))
3089                                 return;
3090                         tcp_complete_cwr(sk);
3091                         break;
3092                 }
3093         }
3094
3095         /* E. Process state. */
3096         switch (icsk->icsk_ca_state) {
3097         case TCP_CA_Recovery:
3098                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3099                         if (tcp_is_reno(tp) && is_dupack)
3100                                 tcp_add_reno_sack(sk);
3101                 } else
3102                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3103                 break;
3104         case TCP_CA_Loss:
3105                 if (flag & FLAG_DATA_ACKED)
3106                         icsk->icsk_retransmits = 0;
3107                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3108                         tcp_reset_reno_sack(tp);
3109                 if (!tcp_try_undo_loss(sk)) {
3110                         tcp_moderate_cwnd(tp);
3111                         tcp_xmit_retransmit_queue(sk);
3112                         return;
3113                 }
3114                 if (icsk->icsk_ca_state != TCP_CA_Open)
3115                         return;
3116                 /* Loss is undone; fall through to processing in Open state. */
3117         default:
3118                 if (tcp_is_reno(tp)) {
3119                         if (flag & FLAG_SND_UNA_ADVANCED)
3120                                 tcp_reset_reno_sack(tp);
3121                         if (is_dupack)
3122                                 tcp_add_reno_sack(sk);
3123                 }
3124
3125                 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3126                         tcp_try_undo_dsack(sk);
3127
3128                 if (!tcp_time_to_recover(sk)) {
3129                         tcp_try_to_open(sk, flag);
3130                         return;
3131                 }
3132
3133                 /* MTU probe failure: don't reduce cwnd */
3134                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3135                     icsk->icsk_mtup.probe_size &&
3136                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3137                         tcp_mtup_probe_failed(sk);
3138                         /* Restores the reduction we did in tcp_mtup_probe() */
3139                         tp->snd_cwnd++;
3140                         tcp_simple_retransmit(sk);
3141                         return;
3142                 }
3143
3144                 /* Otherwise enter Recovery state */
3145
3146                 if (tcp_is_reno(tp))
3147                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3148                 else
3149                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3150
3151                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3152
3153                 tp->high_seq = tp->snd_nxt;
3154                 tp->prior_ssthresh = 0;
3155                 tp->undo_marker = tp->snd_una;
3156                 tp->undo_retrans = tp->retrans_out;
3157
3158                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3159                         if (!(flag & FLAG_ECE))
3160                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3161                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3162                         TCP_ECN_queue_cwr(tp);
3163                 }
3164
3165                 tp->bytes_acked = 0;
3166                 tp->snd_cwnd_cnt = 0;
3167                 tp->prior_cwnd = tp->snd_cwnd;
3168                 tp->prr_delivered = 0;
3169                 tp->prr_out = 0;
3170                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3171                 fast_rexmit = 1;
3172         }
3173
3174         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3175                 tcp_update_scoreboard(sk, fast_rexmit);
3176         tp->prr_delivered += newly_acked_sacked;
3177         tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3178         tcp_xmit_retransmit_queue(sk);
3179 }
3180
3181 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3182 {
3183         tcp_rtt_estimator(sk, seq_rtt);
3184         tcp_set_rto(sk);
3185         inet_csk(sk)->icsk_backoff = 0;
3186 }
3187 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3188
3189 /* Read draft-ietf-tcplw-high-performance before mucking
3190  * with this code. (Supersedes RFC1323)
3191  */
3192 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3193 {
3194         /* RTTM Rule: A TSecr value received in a segment is used to
3195          * update the averaged RTT measurement only if the segment
3196          * acknowledges some new data, i.e., only if it advances the
3197          * left edge of the send window.
3198          *
3199          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3200          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3201          *
3202          * Changed: reset backoff as soon as we see the first valid sample.
3203          * If we do not, we get strongly overestimated rto. With timestamps
3204          * samples are accepted even from very old segments: f.e., when rtt=1
3205          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3206          * answer arrives rto becomes 120 seconds! If at least one of segments
3207          * in window is lost... Voila.                          --ANK (010210)
3208          */
3209         struct tcp_sock *tp = tcp_sk(sk);
3210
3211         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3212 }
3213
3214 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3215 {
3216         /* We don't have a timestamp. Can only use
3217          * packets that are not retransmitted to determine
3218          * rtt estimates. Also, we must not reset the
3219          * backoff for rto until we get a non-retransmitted
3220          * packet. This allows us to deal with a situation
3221          * where the network delay has increased suddenly.
3222          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3223          */
3224
3225         if (flag & FLAG_RETRANS_DATA_ACKED)
3226                 return;
3227
3228         tcp_valid_rtt_meas(sk, seq_rtt);
3229 }
3230
3231 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3232                                       const s32 seq_rtt)
3233 {
3234         const struct tcp_sock *tp = tcp_sk(sk);
3235         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3236         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3237                 tcp_ack_saw_tstamp(sk, flag);
3238         else if (seq_rtt >= 0)
3239                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3240 }
3241
3242 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3243 {
3244         const struct inet_connection_sock *icsk = inet_csk(sk);
3245         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3246         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3247 }
3248
3249 /* Restart timer after forward progress on connection.
3250  * RFC2988 recommends to restart timer to now+rto.
3251  */
3252 static void tcp_rearm_rto(struct sock *sk)
3253 {
3254         const struct tcp_sock *tp = tcp_sk(sk);
3255
3256         if (!tp->packets_out) {
3257                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3258         } else {
3259                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3260                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3261         }
3262 }
3263
3264 /* If we get here, the whole TSO packet has not been acked. */
3265 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3266 {
3267         struct tcp_sock *tp = tcp_sk(sk);
3268         u32 packets_acked;
3269
3270         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3271
3272         packets_acked = tcp_skb_pcount(skb);
3273         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3274                 return 0;
3275         packets_acked -= tcp_skb_pcount(skb);
3276
3277         if (packets_acked) {
3278                 BUG_ON(tcp_skb_pcount(skb) == 0);
3279                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3280         }
3281
3282         return packets_acked;
3283 }
3284
3285 /* Remove acknowledged frames from the retransmission queue. If our packet
3286  * is before the ack sequence we can discard it as it's confirmed to have
3287  * arrived at the other end.
3288  */
3289 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3290                                u32 prior_snd_una)
3291 {
3292         struct tcp_sock *tp = tcp_sk(sk);
3293         const struct inet_connection_sock *icsk = inet_csk(sk);
3294         struct sk_buff *skb;
3295         u32 now = tcp_time_stamp;
3296         int fully_acked = 1;
3297         int flag = 0;
3298         u32 pkts_acked = 0;
3299         u32 reord = tp->packets_out;
3300         u32 prior_sacked = tp->sacked_out;
3301         s32 seq_rtt = -1;
3302         s32 ca_seq_rtt = -1;
3303         ktime_t last_ackt = net_invalid_timestamp();
3304
3305         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3306                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3307                 u32 acked_pcount;
3308                 u8 sacked = scb->sacked;
3309
3310                 /* Determine how many packets and what bytes were acked, tso and else */
3311                 if (after(scb->end_seq, tp->snd_una)) {
3312                         if (tcp_skb_pcount(skb) == 1 ||
3313                             !after(tp->snd_una, scb->seq))
3314                                 break;
3315
3316                         acked_pcount = tcp_tso_acked(sk, skb);
3317                         if (!acked_pcount)
3318                                 break;
3319
3320                         fully_acked = 0;
3321                 } else {
3322                         acked_pcount = tcp_skb_pcount(skb);
3323                 }
3324
3325                 if (sacked & TCPCB_RETRANS) {
3326                         if (sacked & TCPCB_SACKED_RETRANS)
3327                                 tp->retrans_out -= acked_pcount;
3328                         flag |= FLAG_RETRANS_DATA_ACKED;
3329                         ca_seq_rtt = -1;
3330                         seq_rtt = -1;
3331                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3332                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3333                 } else {
3334                         ca_seq_rtt = now - scb->when;
3335                         last_ackt = skb->tstamp;
3336                         if (seq_rtt < 0) {
3337                                 seq_rtt = ca_seq_rtt;
3338                         }
3339                         if (!(sacked & TCPCB_SACKED_ACKED))
3340                                 reord = min(pkts_acked, reord);
3341                 }
3342
3343                 if (sacked & TCPCB_SACKED_ACKED)
3344                         tp->sacked_out -= acked_pcount;
3345                 if (sacked & TCPCB_LOST)
3346                         tp->lost_out -= acked_pcount;
3347
3348                 tp->packets_out -= acked_pcount;
3349                 pkts_acked += acked_pcount;
3350
3351                 /* Initial outgoing SYN's get put onto the write_queue
3352                  * just like anything else we transmit.  It is not
3353                  * true data, and if we misinform our callers that
3354                  * this ACK acks real data, we will erroneously exit
3355                  * connection startup slow start one packet too
3356                  * quickly.  This is severely frowned upon behavior.
3357                  */
3358                 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3359                         flag |= FLAG_DATA_ACKED;
3360                 } else {
3361                         flag |= FLAG_SYN_ACKED;
3362                         tp->retrans_stamp = 0;
3363                 }
3364
3365                 if (!fully_acked)
3366                         break;
3367
3368                 tcp_unlink_write_queue(skb, sk);
3369                 sk_wmem_free_skb(sk, skb);
3370                 tp->scoreboard_skb_hint = NULL;
3371                 if (skb == tp->retransmit_skb_hint)
3372                         tp->retransmit_skb_hint = NULL;
3373                 if (skb == tp->lost_skb_hint)
3374                         tp->lost_skb_hint = NULL;
3375         }
3376
3377         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3378                 tp->snd_up = tp->snd_una;
3379
3380         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3381                 flag |= FLAG_SACK_RENEGING;
3382
3383         if (flag & FLAG_ACKED) {
3384                 const struct tcp_congestion_ops *ca_ops
3385                         = inet_csk(sk)->icsk_ca_ops;
3386
3387                 if (unlikely(icsk->icsk_mtup.probe_size &&
3388                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3389                         tcp_mtup_probe_success(sk);
3390                 }
3391
3392                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3393                 tcp_rearm_rto(sk);
3394
3395                 if (tcp_is_reno(tp)) {
3396                         tcp_remove_reno_sacks(sk, pkts_acked);
3397                 } else {
3398                         int delta;
3399
3400                         /* Non-retransmitted hole got filled? That's reordering */
3401                         if (reord < prior_fackets)
3402                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3403
3404                         delta = tcp_is_fack(tp) ? pkts_acked :
3405                                                   prior_sacked - tp->sacked_out;
3406                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3407                 }
3408
3409                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3410
3411                 if (ca_ops->pkts_acked) {
3412                         s32 rtt_us = -1;
3413
3414                         /* Is the ACK triggering packet unambiguous? */
3415                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3416                                 /* High resolution needed and available? */
3417                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3418                                     !ktime_equal(last_ackt,
3419                                                  net_invalid_timestamp()))
3420                                         rtt_us = ktime_us_delta(ktime_get_real(),
3421                                                                 last_ackt);
3422                                 else if (ca_seq_rtt >= 0)
3423                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3424                         }
3425
3426                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3427                 }
3428         }
3429
3430 #if FASTRETRANS_DEBUG > 0
3431         WARN_ON((int)tp->sacked_out < 0);
3432         WARN_ON((int)tp->lost_out < 0);
3433         WARN_ON((int)tp->retrans_out < 0);
3434         if (!tp->packets_out && tcp_is_sack(tp)) {
3435                 icsk = inet_csk(sk);
3436                 if (tp->lost_out) {
3437                         printk(KERN_DEBUG "Leak l=%u %d\n",
3438                                tp->lost_out, icsk->icsk_ca_state);
3439                         tp->lost_out = 0;
3440                 }
3441                 if (tp->sacked_out) {
3442                         printk(KERN_DEBUG "Leak s=%u %d\n",
3443                                tp->sacked_out, icsk->icsk_ca_state);
3444                         tp->sacked_out = 0;
3445                 }
3446                 if (tp->retrans_out) {
3447                         printk(KERN_DEBUG "Leak r=%u %d\n",
3448                                tp->retrans_out, icsk->icsk_ca_state);
3449                         tp->retrans_out = 0;
3450                 }
3451         }
3452 #endif
3453         return flag;
3454 }
3455
3456 static void tcp_ack_probe(struct sock *sk)
3457 {
3458         const struct tcp_sock *tp = tcp_sk(sk);
3459         struct inet_connection_sock *icsk = inet_csk(sk);
3460
3461         /* Was it a usable window open? */
3462
3463         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3464                 icsk->icsk_backoff = 0;
3465                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3466                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3467                  * This function is not for random using!
3468                  */
3469         } else {
3470                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3471                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3472                                           TCP_RTO_MAX);
3473         }
3474 }
3475
3476 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3477 {
3478         return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3479                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3480 }
3481
3482 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3483 {
3484         const struct tcp_sock *tp = tcp_sk(sk);
3485         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3486                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3487 }
3488
3489 /* Check that window update is acceptable.
3490  * The function assumes that snd_una<=ack<=snd_next.
3491  */
3492 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3493                                         const u32 ack, const u32 ack_seq,
3494                                         const u32 nwin)
3495 {
3496         return  after(ack, tp->snd_una) ||
3497                 after(ack_seq, tp->snd_wl1) ||
3498                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3499 }
3500
3501 /* Update our send window.
3502  *
3503  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3504  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3505  */
3506 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3507                                  u32 ack_seq)
3508 {
3509         struct tcp_sock *tp = tcp_sk(sk);
3510         int flag = 0;
3511         u32 nwin = ntohs(tcp_hdr(skb)->window);
3512
3513         if (likely(!tcp_hdr(skb)->syn))
3514                 nwin <<= tp->rx_opt.snd_wscale;
3515
3516         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3517                 flag |= FLAG_WIN_UPDATE;
3518                 tcp_update_wl(tp, ack_seq);
3519
3520                 if (tp->snd_wnd != nwin) {
3521                         tp->snd_wnd = nwin;
3522
3523                         /* Note, it is the only place, where
3524                          * fast path is recovered for sending TCP.
3525                          */
3526                         tp->pred_flags = 0;
3527                         tcp_fast_path_check(sk);
3528
3529                         if (nwin > tp->max_window) {
3530                                 tp->max_window = nwin;
3531                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3532                         }
3533                 }
3534         }
3535
3536         tp->snd_una = ack;
3537
3538         return flag;
3539 }
3540
3541 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3542  * continue in congestion avoidance.
3543  */
3544 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3545 {
3546         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3547         tp->snd_cwnd_cnt = 0;
3548         tp->bytes_acked = 0;
3549         TCP_ECN_queue_cwr(tp);
3550         tcp_moderate_cwnd(tp);
3551 }
3552
3553 /* A conservative spurious RTO response algorithm: reduce cwnd using
3554  * rate halving and continue in congestion avoidance.
3555  */
3556 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3557 {
3558         tcp_enter_cwr(sk, 0);
3559 }
3560
3561 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3562 {
3563         if (flag & FLAG_ECE)
3564                 tcp_ratehalving_spur_to_response(sk);
3565         else
3566                 tcp_undo_cwr(sk, true);
3567 }
3568
3569 /* F-RTO spurious RTO detection algorithm (RFC4138)
3570  *
3571  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3572  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3573  * window (but not to or beyond highest sequence sent before RTO):
3574  *   On First ACK,  send two new segments out.
3575  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3576  *                  algorithm is not part of the F-RTO detection algorithm
3577  *                  given in RFC4138 but can be selected separately).
3578  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3579  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3580  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3581  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3582  *
3583  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3584  * original window even after we transmit two new data segments.
3585  *
3586  * SACK version:
3587  *   on first step, wait until first cumulative ACK arrives, then move to
3588  *   the second step. In second step, the next ACK decides.
3589  *
3590  * F-RTO is implemented (mainly) in four functions:
3591  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3592  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3593  *     called when tcp_use_frto() showed green light
3594  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3595  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3596  *     to prove that the RTO is indeed spurious. It transfers the control
3597  *     from F-RTO to the conventional RTO recovery
3598  */
3599 static int tcp_process_frto(struct sock *sk, int flag)
3600 {
3601         struct tcp_sock *tp = tcp_sk(sk);
3602
3603         tcp_verify_left_out(tp);
3604
3605         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3606         if (flag & FLAG_DATA_ACKED)
3607                 inet_csk(sk)->icsk_retransmits = 0;
3608
3609         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3610             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3611                 tp->undo_marker = 0;
3612
3613         if (!before(tp->snd_una, tp->frto_highmark)) {
3614                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3615                 return 1;
3616         }
3617
3618         if (!tcp_is_sackfrto(tp)) {
3619                 /* RFC4138 shortcoming in step 2; should also have case c):
3620                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3621                  * data, winupdate
3622                  */
3623                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3624                         return 1;
3625
3626                 if (!(flag & FLAG_DATA_ACKED)) {
3627                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3628                                             flag);
3629                         return 1;
3630                 }
3631         } else {
3632                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3633                         /* Prevent sending of new data. */
3634                         tp->snd_cwnd = min(tp->snd_cwnd,
3635                                            tcp_packets_in_flight(tp));
3636                         return 1;
3637                 }
3638
3639                 if ((tp->frto_counter >= 2) &&
3640                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3641                      ((flag & FLAG_DATA_SACKED) &&
3642                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3643                         /* RFC4138 shortcoming (see comment above) */
3644                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3645                             (flag & FLAG_NOT_DUP))
3646                                 return 1;
3647
3648                         tcp_enter_frto_loss(sk, 3, flag);
3649                         return 1;
3650                 }
3651         }
3652
3653         if (tp->frto_counter == 1) {
3654                 /* tcp_may_send_now needs to see updated state */
3655                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3656                 tp->frto_counter = 2;
3657
3658                 if (!tcp_may_send_now(sk))
3659                         tcp_enter_frto_loss(sk, 2, flag);
3660
3661                 return 1;
3662         } else {
3663                 switch (sysctl_tcp_frto_response) {
3664                 case 2:
3665                         tcp_undo_spur_to_response(sk, flag);
3666                         break;
3667                 case 1:
3668                         tcp_conservative_spur_to_response(tp);
3669                         break;
3670                 default:
3671                         tcp_ratehalving_spur_to_response(sk);
3672                         break;
3673                 }
3674                 tp->frto_counter = 0;
3675                 tp->undo_marker = 0;
3676                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3677         }
3678         return 0;
3679 }
3680
3681 /* This routine deals with incoming acks, but not outgoing ones. */
3682 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3683 {
3684         struct inet_connection_sock *icsk = inet_csk(sk);
3685         struct tcp_sock *tp = tcp_sk(sk);
3686         u32 prior_snd_una = tp->snd_una;
3687         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3688         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3689         bool is_dupack = false;
3690         u32 prior_in_flight;
3691         u32 prior_fackets;
3692         int prior_packets;
3693         int prior_sacked = tp->sacked_out;
3694         int pkts_acked = 0;
3695         int newly_acked_sacked = 0;
3696         int frto_cwnd = 0;
3697
3698         /* If the ack is older than previous acks
3699          * then we can probably ignore it.
3700          */
3701         if (before(ack, prior_snd_una))
3702                 goto old_ack;
3703
3704         /* If the ack includes data we haven't sent yet, discard
3705          * this segment (RFC793 Section 3.9).
3706          */
3707         if (after(ack, tp->snd_nxt))
3708                 goto invalid_ack;
3709
3710         if (after(ack, prior_snd_una))
3711                 flag |= FLAG_SND_UNA_ADVANCED;
3712
3713         if (sysctl_tcp_abc) {
3714                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3715                         tp->bytes_acked += ack - prior_snd_una;
3716                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3717                         /* we assume just one segment left network */
3718                         tp->bytes_acked += min(ack - prior_snd_una,
3719                                                tp->mss_cache);
3720         }
3721
3722         prior_fackets = tp->fackets_out;
3723         prior_in_flight = tcp_packets_in_flight(tp);
3724
3725         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3726                 /* Window is constant, pure forward advance.
3727                  * No more checks are required.
3728                  * Note, we use the fact that SND.UNA>=SND.WL2.
3729                  */
3730                 tcp_update_wl(tp, ack_seq);
3731                 tp->snd_una = ack;
3732                 flag |= FLAG_WIN_UPDATE;
3733
3734                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3735
3736                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3737         } else {
3738                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3739                         flag |= FLAG_DATA;
3740                 else
3741                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3742
3743                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3744
3745                 if (TCP_SKB_CB(skb)->sacked)
3746                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3747
3748                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3749                         flag |= FLAG_ECE;
3750
3751                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3752         }
3753
3754         /* We passed data and got it acked, remove any soft error
3755          * log. Something worked...
3756          */
3757         sk->sk_err_soft = 0;
3758         icsk->icsk_probes_out = 0;
3759         tp->rcv_tstamp = tcp_time_stamp;
3760         prior_packets = tp->packets_out;
3761         if (!prior_packets)
3762                 goto no_queue;
3763
3764         /* See if we can take anything off of the retransmit queue. */
3765         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3766
3767         pkts_acked = prior_packets - tp->packets_out;
3768         newly_acked_sacked = (prior_packets - prior_sacked) -
3769                              (tp->packets_out - tp->sacked_out);
3770
3771         if (tp->frto_counter)
3772                 frto_cwnd = tcp_process_frto(sk, flag);
3773         /* Guarantee sacktag reordering detection against wrap-arounds */
3774         if (before(tp->frto_highmark, tp->snd_una))
3775                 tp->frto_highmark = 0;
3776
3777         if (tcp_ack_is_dubious(sk, flag)) {
3778                 /* Advance CWND, if state allows this. */
3779                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3780                     tcp_may_raise_cwnd(sk, flag))
3781                         tcp_cong_avoid(sk, ack, prior_in_flight);
3782                 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3783                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3784                                       is_dupack, flag);
3785         } else {
3786                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3787                         tcp_cong_avoid(sk, ack, prior_in_flight);
3788         }
3789
3790         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3791                 dst_confirm(__sk_dst_get(sk));
3792
3793         return 1;
3794
3795 no_queue:
3796         /* If data was DSACKed, see if we can undo a cwnd reduction. */
3797         if (flag & FLAG_DSACKING_ACK)
3798                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3799                                       is_dupack, flag);
3800         /* If this ack opens up a zero window, clear backoff.  It was
3801          * being used to time the probes, and is probably far higher than
3802          * it needs to be for normal retransmission.
3803          */
3804         if (tcp_send_head(sk))
3805                 tcp_ack_probe(sk);
3806         return 1;
3807
3808 invalid_ack:
3809         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3810         return -1;
3811
3812 old_ack:
3813         /* If data was SACKed, tag it and see if we should send more data.
3814          * If data was DSACKed, see if we can undo a cwnd reduction.
3815          */
3816         if (TCP_SKB_CB(skb)->sacked) {
3817                 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3818                 newly_acked_sacked = tp->sacked_out - prior_sacked;
3819                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3820                                       is_dupack, flag);
3821         }
3822
3823         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3824         return 0;
3825 }
3826
3827 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3828  * But, this can also be called on packets in the established flow when
3829  * the fast version below fails.
3830  */
3831 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3832                        const u8 **hvpp, int estab)
3833 {
3834         const unsigned char *ptr;
3835         const struct tcphdr *th = tcp_hdr(skb);
3836         int length = (th->doff * 4) - sizeof(struct tcphdr);
3837
3838         ptr = (const unsigned char *)(th + 1);
3839         opt_rx->saw_tstamp = 0;
3840
3841         while (length > 0) {
3842                 int opcode = *ptr++;
3843                 int opsize;
3844
3845                 switch (opcode) {
3846                 case TCPOPT_EOL:
3847                         return;
3848                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3849                         length--;
3850                         continue;
3851                 default:
3852                         opsize = *ptr++;
3853                         if (opsize < 2) /* "silly options" */
3854                                 return;
3855                         if (opsize > length)
3856                                 return; /* don't parse partial options */
3857                         switch (opcode) {
3858                         case TCPOPT_MSS:
3859                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3860                                         u16 in_mss = get_unaligned_be16(ptr);
3861                                         if (in_mss) {
3862                                                 if (opt_rx->user_mss &&
3863                                                     opt_rx->user_mss < in_mss)
3864                                                         in_mss = opt_rx->user_mss;
3865                                                 opt_rx->mss_clamp = in_mss;
3866                                         }
3867                                 }
3868                                 break;
3869                         case TCPOPT_WINDOW:
3870                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3871                                     !estab && sysctl_tcp_window_scaling) {
3872                                         __u8 snd_wscale = *(__u8 *)ptr;
3873                                         opt_rx->wscale_ok = 1;
3874                                         if (snd_wscale > 14) {
3875                                                 if (net_ratelimit())
3876                                                         pr_info("%s: Illegal window scaling value %d >14 received\n",
3877                                                                 __func__,
3878                                                                 snd_wscale);
3879                                                 snd_wscale = 14;
3880                                         }
3881                                         opt_rx->snd_wscale = snd_wscale;
3882                                 }
3883                                 break;
3884                         case TCPOPT_TIMESTAMP:
3885                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3886                                     ((estab && opt_rx->tstamp_ok) ||
3887                                      (!estab && sysctl_tcp_timestamps))) {
3888                                         opt_rx->saw_tstamp = 1;
3889                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3890                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3891                                 }
3892                                 break;
3893                         case TCPOPT_SACK_PERM:
3894                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3895                                     !estab && sysctl_tcp_sack) {
3896                                         opt_rx->sack_ok = TCP_SACK_SEEN;
3897                                         tcp_sack_reset(opt_rx);
3898                                 }
3899                                 break;
3900
3901                         case TCPOPT_SACK:
3902                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3903                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3904                                    opt_rx->sack_ok) {
3905                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3906                                 }
3907                                 break;
3908 #ifdef CONFIG_TCP_MD5SIG
3909                         case TCPOPT_MD5SIG:
3910                                 /*
3911                                  * The MD5 Hash has already been
3912                                  * checked (see tcp_v{4,6}_do_rcv()).
3913                                  */
3914                                 break;
3915 #endif
3916                         case TCPOPT_COOKIE:
3917                                 /* This option is variable length.
3918                                  */
3919                                 switch (opsize) {
3920                                 case TCPOLEN_COOKIE_BASE:
3921                                         /* not yet implemented */
3922                                         break;
3923                                 case TCPOLEN_COOKIE_PAIR:
3924                                         /* not yet implemented */
3925                                         break;
3926                                 case TCPOLEN_COOKIE_MIN+0:
3927                                 case TCPOLEN_COOKIE_MIN+2:
3928                                 case TCPOLEN_COOKIE_MIN+4:
3929                                 case TCPOLEN_COOKIE_MIN+6:
3930                                 case TCPOLEN_COOKIE_MAX:
3931                                         /* 16-bit multiple */
3932                                         opt_rx->cookie_plus = opsize;
3933                                         *hvpp = ptr;
3934                                         break;
3935                                 default:
3936                                         /* ignore option */
3937                                         break;
3938                                 }
3939                                 break;
3940                         }
3941
3942                         ptr += opsize-2;
3943                         length -= opsize;
3944                 }
3945         }
3946 }
3947 EXPORT_SYMBOL(tcp_parse_options);
3948
3949 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3950 {
3951         const __be32 *ptr = (const __be32 *)(th + 1);
3952
3953         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3954                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3955                 tp->rx_opt.saw_tstamp = 1;
3956                 ++ptr;
3957                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3958                 ++ptr;
3959                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3960                 return 1;
3961         }
3962         return 0;
3963 }
3964
3965 /* Fast parse options. This hopes to only see timestamps.
3966  * If it is wrong it falls back on tcp_parse_options().
3967  */
3968 static int tcp_fast_parse_options(const struct sk_buff *skb,
3969                                   const struct tcphdr *th,
3970                                   struct tcp_sock *tp, const u8 **hvpp)
3971 {
3972         /* In the spirit of fast parsing, compare doff directly to constant
3973          * values.  Because equality is used, short doff can be ignored here.
3974          */
3975         if (th->doff == (sizeof(*th) / 4)) {
3976                 tp->rx_opt.saw_tstamp = 0;
3977                 return 0;
3978         } else if (tp->rx_opt.tstamp_ok &&
3979                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3980                 if (tcp_parse_aligned_timestamp(tp, th))
3981                         return 1;
3982         }
3983         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3984         return 1;
3985 }
3986
3987 #ifdef CONFIG_TCP_MD5SIG
3988 /*
3989  * Parse MD5 Signature option
3990  */
3991 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3992 {
3993         int length = (th->doff << 2) - sizeof(*th);
3994         const u8 *ptr = (const u8 *)(th + 1);
3995
3996         /* If the TCP option is too short, we can short cut */
3997         if (length < TCPOLEN_MD5SIG)
3998                 return NULL;
3999
4000         while (length > 0) {
4001                 int opcode = *ptr++;
4002                 int opsize;
4003
4004                 switch(opcode) {
4005                 case TCPOPT_EOL:
4006                         return NULL;
4007                 case TCPOPT_NOP:
4008                         length--;
4009                         continue;
4010                 default:
4011                         opsize = *ptr++;
4012                         if (opsize < 2 || opsize > length)
4013                                 return NULL;
4014                         if (opcode == TCPOPT_MD5SIG)
4015                                 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4016                 }
4017                 ptr += opsize - 2;
4018                 length -= opsize;
4019         }
4020         return NULL;
4021 }
4022 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4023 #endif
4024
4025 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4026 {
4027         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4028         tp->rx_opt.ts_recent_stamp = get_seconds();
4029 }
4030
4031 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4032 {
4033         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4034                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4035                  * extra check below makes sure this can only happen
4036                  * for pure ACK frames.  -DaveM
4037                  *
4038                  * Not only, also it occurs for expired timestamps.
4039                  */
4040
4041                 if (tcp_paws_check(&tp->rx_opt, 0))
4042                         tcp_store_ts_recent(tp);
4043         }
4044 }
4045
4046 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4047  *
4048  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4049  * it can pass through stack. So, the following predicate verifies that
4050  * this segment is not used for anything but congestion avoidance or
4051  * fast retransmit. Moreover, we even are able to eliminate most of such
4052  * second order effects, if we apply some small "replay" window (~RTO)
4053  * to timestamp space.
4054  *
4055  * All these measures still do not guarantee that we reject wrapped ACKs
4056  * on networks with high bandwidth, when sequence space is recycled fastly,
4057  * but it guarantees that such events will be very rare and do not affect
4058  * connection seriously. This doesn't look nice, but alas, PAWS is really
4059  * buggy extension.
4060  *
4061  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4062  * states that events when retransmit arrives after original data are rare.
4063  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4064  * the biggest problem on large power networks even with minor reordering.
4065  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4066  * up to bandwidth of 18Gigabit/sec. 8) ]
4067  */
4068
4069 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4070 {
4071         const struct tcp_sock *tp = tcp_sk(sk);
4072         const struct tcphdr *th = tcp_hdr(skb);
4073         u32 seq = TCP_SKB_CB(skb)->seq;
4074         u32 ack = TCP_SKB_CB(skb)->ack_seq;
4075
4076         return (/* 1. Pure ACK with correct sequence number. */
4077                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4078
4079                 /* 2. ... and duplicate ACK. */
4080                 ack == tp->snd_una &&
4081
4082                 /* 3. ... and does not update window. */
4083                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4084
4085                 /* 4. ... and sits in replay window. */
4086                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4087 }
4088
4089 static inline int tcp_paws_discard(const struct sock *sk,
4090                                    const struct sk_buff *skb)
4091 {
4092         const struct tcp_sock *tp = tcp_sk(sk);
4093
4094         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4095                !tcp_disordered_ack(sk, skb);
4096 }
4097
4098 /* Check segment sequence number for validity.
4099  *
4100  * Segment controls are considered valid, if the segment
4101  * fits to the window after truncation to the window. Acceptability
4102  * of data (and SYN, FIN, of course) is checked separately.
4103  * See tcp_data_queue(), for example.
4104  *
4105  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4106  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4107  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4108  * (borrowed from freebsd)
4109  */
4110
4111 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4112 {
4113         return  !before(end_seq, tp->rcv_wup) &&
4114                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4115 }
4116
4117 /* When we get a reset we do this. */
4118 static void tcp_reset(struct sock *sk)
4119 {
4120         /* We want the right error as BSD sees it (and indeed as we do). */
4121         switch (sk->sk_state) {
4122         case TCP_SYN_SENT:
4123                 sk->sk_err = ECONNREFUSED;
4124                 break;
4125         case TCP_CLOSE_WAIT:
4126                 sk->sk_err = EPIPE;
4127                 break;
4128         case TCP_CLOSE:
4129                 return;
4130         default:
4131                 sk->sk_err = ECONNRESET;
4132         }
4133         /* This barrier is coupled with smp_rmb() in tcp_poll() */
4134         smp_wmb();
4135
4136         if (!sock_flag(sk, SOCK_DEAD))
4137                 sk->sk_error_report(sk);
4138
4139         tcp_done(sk);
4140 }
4141
4142 /*
4143  *      Process the FIN bit. This now behaves as it is supposed to work
4144  *      and the FIN takes effect when it is validly part of sequence
4145  *      space. Not before when we get holes.
4146  *
4147  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4148  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4149  *      TIME-WAIT)
4150  *
4151  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4152  *      close and we go into CLOSING (and later onto TIME-WAIT)
4153  *
4154  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4155  */
4156 static void tcp_fin(struct sock *sk)
4157 {
4158         struct tcp_sock *tp = tcp_sk(sk);
4159
4160         inet_csk_schedule_ack(sk);
4161
4162         sk->sk_shutdown |= RCV_SHUTDOWN;
4163         sock_set_flag(sk, SOCK_DONE);
4164
4165         switch (sk->sk_state) {
4166         case TCP_SYN_RECV:
4167         case TCP_ESTABLISHED:
4168                 /* Move to CLOSE_WAIT */
4169                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4170                 inet_csk(sk)->icsk_ack.pingpong = 1;
4171                 break;
4172
4173         case TCP_CLOSE_WAIT:
4174         case TCP_CLOSING:
4175                 /* Received a retransmission of the FIN, do
4176                  * nothing.
4177                  */
4178                 break;
4179         case TCP_LAST_ACK:
4180                 /* RFC793: Remain in the LAST-ACK state. */
4181                 break;
4182
4183         case TCP_FIN_WAIT1:
4184                 /* This case occurs when a simultaneous close
4185                  * happens, we must ack the received FIN and
4186                  * enter the CLOSING state.
4187                  */
4188                 tcp_send_ack(sk);
4189                 tcp_set_state(sk, TCP_CLOSING);
4190                 break;
4191         case TCP_FIN_WAIT2:
4192                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4193                 tcp_send_ack(sk);
4194                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4195                 break;
4196         default:
4197                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4198                  * cases we should never reach this piece of code.
4199                  */
4200                 pr_err("%s: Impossible, sk->sk_state=%d\n",
4201                        __func__, sk->sk_state);
4202                 break;
4203         }
4204
4205         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4206          * Probably, we should reset in this case. For now drop them.
4207          */
4208         __skb_queue_purge(&tp->out_of_order_queue);
4209         if (tcp_is_sack(tp))
4210                 tcp_sack_reset(&tp->rx_opt);
4211         sk_mem_reclaim(sk);
4212
4213         if (!sock_flag(sk, SOCK_DEAD)) {
4214                 sk->sk_state_change(sk);
4215
4216                 /* Do not send POLL_HUP for half duplex close. */
4217                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4218                     sk->sk_state == TCP_CLOSE)
4219                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4220                 else
4221                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4222         }
4223 }
4224
4225 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4226                                   u32 end_seq)
4227 {
4228         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4229                 if (before(seq, sp->start_seq))
4230                         sp->start_seq = seq;
4231                 if (after(end_seq, sp->end_seq))
4232                         sp->end_seq = end_seq;
4233                 return 1;
4234         }
4235         return 0;
4236 }
4237
4238 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4239 {
4240         struct tcp_sock *tp = tcp_sk(sk);
4241
4242         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4243                 int mib_idx;
4244
4245                 if (before(seq, tp->rcv_nxt))
4246                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4247                 else
4248                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4249
4250                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4251
4252                 tp->rx_opt.dsack = 1;
4253                 tp->duplicate_sack[0].start_seq = seq;
4254                 tp->duplicate_sack[0].end_seq = end_seq;
4255         }
4256 }
4257
4258 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4259 {
4260         struct tcp_sock *tp = tcp_sk(sk);
4261
4262         if (!tp->rx_opt.dsack)
4263                 tcp_dsack_set(sk, seq, end_seq);
4264         else
4265                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4266 }
4267
4268 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4269 {
4270         struct tcp_sock *tp = tcp_sk(sk);
4271
4272         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4273             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4274                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4275                 tcp_enter_quickack_mode(sk);
4276
4277                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4278                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4279
4280                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4281                                 end_seq = tp->rcv_nxt;
4282                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4283                 }
4284         }
4285
4286         tcp_send_ack(sk);
4287 }
4288
4289 /* These routines update the SACK block as out-of-order packets arrive or
4290  * in-order packets close up the sequence space.
4291  */
4292 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4293 {
4294         int this_sack;
4295         struct tcp_sack_block *sp = &tp->selective_acks[0];
4296         struct tcp_sack_block *swalk = sp + 1;
4297
4298         /* See if the recent change to the first SACK eats into
4299          * or hits the sequence space of other SACK blocks, if so coalesce.
4300          */
4301         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4302                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4303                         int i;
4304
4305                         /* Zap SWALK, by moving every further SACK up by one slot.
4306                          * Decrease num_sacks.
4307                          */
4308                         tp->rx_opt.num_sacks--;
4309                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4310                                 sp[i] = sp[i + 1];
4311                         continue;
4312                 }
4313                 this_sack++, swalk++;
4314         }
4315 }
4316
4317 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4318 {
4319         struct tcp_sock *tp = tcp_sk(sk);
4320         struct tcp_sack_block *sp = &tp->selective_acks[0];
4321         int cur_sacks = tp->rx_opt.num_sacks;
4322         int this_sack;
4323
4324         if (!cur_sacks)
4325                 goto new_sack;
4326
4327         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4328                 if (tcp_sack_extend(sp, seq, end_seq)) {
4329                         /* Rotate this_sack to the first one. */
4330                         for (; this_sack > 0; this_sack--, sp--)
4331                                 swap(*sp, *(sp - 1));
4332                         if (cur_sacks > 1)
4333                                 tcp_sack_maybe_coalesce(tp);
4334                         return;
4335                 }
4336         }
4337
4338         /* Could not find an adjacent existing SACK, build a new one,
4339          * put it at the front, and shift everyone else down.  We
4340          * always know there is at least one SACK present already here.
4341          *
4342          * If the sack array is full, forget about the last one.
4343          */
4344         if (this_sack >= TCP_NUM_SACKS) {
4345                 this_sack--;
4346                 tp->rx_opt.num_sacks--;
4347                 sp--;
4348         }
4349         for (; this_sack > 0; this_sack--, sp--)
4350                 *sp = *(sp - 1);
4351
4352 new_sack:
4353         /* Build the new head SACK, and we're done. */
4354         sp->start_seq = seq;
4355         sp->end_seq = end_seq;
4356         tp->rx_opt.num_sacks++;
4357 }
4358
4359 /* RCV.NXT advances, some SACKs should be eaten. */
4360
4361 static void tcp_sack_remove(struct tcp_sock *tp)
4362 {
4363         struct tcp_sack_block *sp = &tp->selective_acks[0];
4364         int num_sacks = tp->rx_opt.num_sacks;
4365         int this_sack;
4366
4367         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4368         if (skb_queue_empty(&tp->out_of_order_queue)) {
4369                 tp->rx_opt.num_sacks = 0;
4370                 return;
4371         }
4372
4373         for (this_sack = 0; this_sack < num_sacks;) {
4374                 /* Check if the start of the sack is covered by RCV.NXT. */
4375                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4376                         int i;
4377
4378                         /* RCV.NXT must cover all the block! */
4379                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4380
4381                         /* Zap this SACK, by moving forward any other SACKS. */
4382                         for (i=this_sack+1; i < num_sacks; i++)
4383                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4384                         num_sacks--;
4385                         continue;
4386                 }
4387                 this_sack++;
4388                 sp++;
4389         }
4390         tp->rx_opt.num_sacks = num_sacks;
4391 }
4392
4393 /* This one checks to see if we can put data from the
4394  * out_of_order queue into the receive_queue.
4395  */
4396 static void tcp_ofo_queue(struct sock *sk)
4397 {
4398         struct tcp_sock *tp = tcp_sk(sk);
4399         __u32 dsack_high = tp->rcv_nxt;
4400         struct sk_buff *skb;
4401
4402         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4403                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4404                         break;
4405
4406                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4407                         __u32 dsack = dsack_high;
4408                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4409                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4410                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4411                 }
4412
4413                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4414                         SOCK_DEBUG(sk, "ofo packet was already received\n");
4415                         __skb_unlink(skb, &tp->out_of_order_queue);
4416                         __kfree_skb(skb);
4417                         continue;
4418                 }
4419                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4420                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4421                            TCP_SKB_CB(skb)->end_seq);
4422
4423                 __skb_unlink(skb, &tp->out_of_order_queue);
4424                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4425                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4426                 if (tcp_hdr(skb)->fin)
4427                         tcp_fin(sk);
4428         }
4429 }
4430
4431 static int tcp_prune_ofo_queue(struct sock *sk);
4432 static int tcp_prune_queue(struct sock *sk);
4433
4434 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4435 {
4436         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4437             !sk_rmem_schedule(sk, size)) {
4438
4439                 if (tcp_prune_queue(sk) < 0)
4440                         return -1;
4441
4442                 if (!sk_rmem_schedule(sk, size)) {
4443                         if (!tcp_prune_ofo_queue(sk))
4444                                 return -1;
4445
4446                         if (!sk_rmem_schedule(sk, size))
4447                                 return -1;
4448                 }
4449         }
4450         return 0;
4451 }
4452
4453 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4454 {
4455         struct tcp_sock *tp = tcp_sk(sk);
4456         struct sk_buff *skb1;
4457         u32 seq, end_seq;
4458
4459         TCP_ECN_check_ce(tp, skb);
4460
4461         if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4462                 /* TODO: should increment a counter */
4463                 __kfree_skb(skb);
4464                 return;
4465         }
4466
4467         /* Disable header prediction. */
4468         tp->pred_flags = 0;
4469         inet_csk_schedule_ack(sk);
4470
4471         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4472                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4473
4474         skb1 = skb_peek_tail(&tp->out_of_order_queue);
4475         if (!skb1) {
4476                 /* Initial out of order segment, build 1 SACK. */
4477                 if (tcp_is_sack(tp)) {
4478                         tp->rx_opt.num_sacks = 1;
4479                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4480                         tp->selective_acks[0].end_seq =
4481                                                 TCP_SKB_CB(skb)->end_seq;
4482                 }
4483                 __skb_queue_head(&tp->out_of_order_queue, skb);
4484                 goto end;
4485         }
4486
4487         seq = TCP_SKB_CB(skb)->seq;
4488         end_seq = TCP_SKB_CB(skb)->end_seq;
4489
4490         if (seq == TCP_SKB_CB(skb1)->end_seq) {
4491                 /* Packets in ofo can stay in queue a long time.
4492                  * Better try to coalesce them right now
4493                  * to avoid future tcp_collapse_ofo_queue(),
4494                  * probably the most expensive function in tcp stack.
4495                  */
4496                 if (skb->len <= skb_tailroom(skb1) && !tcp_hdr(skb)->fin) {
4497                         NET_INC_STATS_BH(sock_net(sk),
4498                                          LINUX_MIB_TCPRCVCOALESCE);
4499                         BUG_ON(skb_copy_bits(skb, 0,
4500                                              skb_put(skb1, skb->len),
4501                                              skb->len));
4502                         TCP_SKB_CB(skb1)->end_seq = end_seq;
4503                         TCP_SKB_CB(skb1)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
4504                         __kfree_skb(skb);
4505                         skb = NULL;
4506                 } else {
4507                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4508                 }
4509
4510                 if (!tp->rx_opt.num_sacks ||
4511                     tp->selective_acks[0].end_seq != seq)
4512                         goto add_sack;
4513
4514                 /* Common case: data arrive in order after hole. */
4515                 tp->selective_acks[0].end_seq = end_seq;
4516                 goto end;
4517         }
4518
4519         /* Find place to insert this segment. */
4520         while (1) {
4521                 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4522                         break;
4523                 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4524                         skb1 = NULL;
4525                         break;
4526                 }
4527                 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4528         }
4529
4530         /* Do skb overlap to previous one? */
4531         if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4532                 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4533                         /* All the bits are present. Drop. */
4534                         __kfree_skb(skb);
4535                         skb = NULL;
4536                         tcp_dsack_set(sk, seq, end_seq);
4537                         goto add_sack;
4538                 }
4539                 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4540                         /* Partial overlap. */
4541                         tcp_dsack_set(sk, seq,
4542                                       TCP_SKB_CB(skb1)->end_seq);
4543                 } else {
4544                         if (skb_queue_is_first(&tp->out_of_order_queue,
4545                                                skb1))
4546                                 skb1 = NULL;
4547                         else
4548                                 skb1 = skb_queue_prev(
4549                                         &tp->out_of_order_queue,
4550                                         skb1);
4551                 }
4552         }
4553         if (!skb1)
4554                 __skb_queue_head(&tp->out_of_order_queue, skb);
4555         else
4556                 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4557
4558         /* And clean segments covered by new one as whole. */
4559         while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4560                 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4561
4562                 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4563                         break;
4564                 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4565                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4566                                          end_seq);
4567                         break;
4568                 }
4569                 __skb_unlink(skb1, &tp->out_of_order_queue);
4570                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4571                                  TCP_SKB_CB(skb1)->end_seq);
4572                 __kfree_skb(skb1);
4573         }
4574
4575 add_sack:
4576         if (tcp_is_sack(tp))
4577                 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4578 end:
4579         if (skb)
4580                 skb_set_owner_r(skb, sk);
4581 }
4582
4583
4584 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4585 {
4586         const struct tcphdr *th = tcp_hdr(skb);
4587         struct tcp_sock *tp = tcp_sk(sk);
4588         int eaten = -1;
4589
4590         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4591                 goto drop;
4592
4593         skb_dst_drop(skb);
4594         __skb_pull(skb, th->doff * 4);
4595
4596         TCP_ECN_accept_cwr(tp, skb);
4597
4598         tp->rx_opt.dsack = 0;
4599
4600         /*  Queue data for delivery to the user.
4601          *  Packets in sequence go to the receive queue.
4602          *  Out of sequence packets to the out_of_order_queue.
4603          */
4604         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4605                 if (tcp_receive_window(tp) == 0)
4606                         goto out_of_window;
4607
4608                 /* Ok. In sequence. In window. */
4609                 if (tp->ucopy.task == current &&
4610                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4611                     sock_owned_by_user(sk) && !tp->urg_data) {
4612                         int chunk = min_t(unsigned int, skb->len,
4613                                           tp->ucopy.len);
4614
4615                         __set_current_state(TASK_RUNNING);
4616
4617                         local_bh_enable();
4618                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4619                                 tp->ucopy.len -= chunk;
4620                                 tp->copied_seq += chunk;
4621                                 eaten = (chunk == skb->len);
4622                                 tcp_rcv_space_adjust(sk);
4623                         }
4624                         local_bh_disable();
4625                 }
4626
4627                 if (eaten <= 0) {
4628 queue_and_out:
4629                         if (eaten < 0 &&
4630                             tcp_try_rmem_schedule(sk, skb->truesize))
4631                                 goto drop;
4632
4633                         skb_set_owner_r(skb, sk);
4634                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4635                 }
4636                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4637                 if (skb->len)
4638                         tcp_event_data_recv(sk, skb);
4639                 if (th->fin)
4640                         tcp_fin(sk);
4641
4642                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4643                         tcp_ofo_queue(sk);
4644
4645                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4646                          * gap in queue is filled.
4647                          */
4648                         if (skb_queue_empty(&tp->out_of_order_queue))
4649                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4650                 }
4651
4652                 if (tp->rx_opt.num_sacks)
4653                         tcp_sack_remove(tp);
4654
4655                 tcp_fast_path_check(sk);
4656
4657                 if (eaten > 0)
4658                         __kfree_skb(skb);
4659                 else if (!sock_flag(sk, SOCK_DEAD))
4660                         sk->sk_data_ready(sk, 0);
4661                 return;
4662         }
4663
4664         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4665                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4666                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4667                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4668
4669 out_of_window:
4670                 tcp_enter_quickack_mode(sk);
4671                 inet_csk_schedule_ack(sk);
4672 drop:
4673                 __kfree_skb(skb);
4674                 return;
4675         }
4676
4677         /* Out of window. F.e. zero window probe. */
4678         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4679                 goto out_of_window;
4680
4681         tcp_enter_quickack_mode(sk);
4682
4683         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4684                 /* Partial packet, seq < rcv_next < end_seq */
4685                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4686                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4687                            TCP_SKB_CB(skb)->end_seq);
4688
4689                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4690
4691                 /* If window is closed, drop tail of packet. But after
4692                  * remembering D-SACK for its head made in previous line.
4693                  */
4694                 if (!tcp_receive_window(tp))
4695                         goto out_of_window;
4696                 goto queue_and_out;
4697         }
4698
4699         tcp_data_queue_ofo(sk, skb);
4700 }
4701
4702 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4703                                         struct sk_buff_head *list)
4704 {
4705         struct sk_buff *next = NULL;
4706
4707         if (!skb_queue_is_last(list, skb))
4708                 next = skb_queue_next(list, skb);
4709
4710         __skb_unlink(skb, list);
4711         __kfree_skb(skb);
4712         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4713
4714         return next;
4715 }
4716
4717 /* Collapse contiguous sequence of skbs head..tail with
4718  * sequence numbers start..end.
4719  *
4720  * If tail is NULL, this means until the end of the list.
4721  *
4722  * Segments with FIN/SYN are not collapsed (only because this
4723  * simplifies code)
4724  */
4725 static void
4726 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4727              struct sk_buff *head, struct sk_buff *tail,
4728              u32 start, u32 end)
4729 {
4730         struct sk_buff *skb, *n;
4731         bool end_of_skbs;
4732
4733         /* First, check that queue is collapsible and find
4734          * the point where collapsing can be useful. */
4735         skb = head;
4736 restart:
4737         end_of_skbs = true;
4738         skb_queue_walk_from_safe(list, skb, n) {
4739                 if (skb == tail)
4740                         break;
4741                 /* No new bits? It is possible on ofo queue. */
4742                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4743                         skb = tcp_collapse_one(sk, skb, list);
4744                         if (!skb)
4745                                 break;
4746                         goto restart;
4747                 }
4748
4749                 /* The first skb to collapse is:
4750                  * - not SYN/FIN and
4751                  * - bloated or contains data before "start" or
4752                  *   overlaps to the next one.
4753                  */
4754                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4755                     (tcp_win_from_space(skb->truesize) > skb->len ||
4756                      before(TCP_SKB_CB(skb)->seq, start))) {
4757                         end_of_skbs = false;
4758                         break;
4759                 }
4760
4761                 if (!skb_queue_is_last(list, skb)) {
4762                         struct sk_buff *next = skb_queue_next(list, skb);
4763                         if (next != tail &&
4764                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4765                                 end_of_skbs = false;
4766                                 break;
4767                         }
4768                 }
4769
4770                 /* Decided to skip this, advance start seq. */
4771                 start = TCP_SKB_CB(skb)->end_seq;
4772         }
4773         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4774                 return;
4775
4776         while (before(start, end)) {
4777                 struct sk_buff *nskb;
4778                 unsigned int header = skb_headroom(skb);
4779                 int copy = SKB_MAX_ORDER(header, 0);
4780
4781                 /* Too big header? This can happen with IPv6. */
4782                 if (copy < 0)
4783                         return;
4784                 if (end - start < copy)
4785                         copy = end - start;
4786                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4787                 if (!nskb)
4788                         return;
4789
4790                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4791                 skb_set_network_header(nskb, (skb_network_header(skb) -
4792                                               skb->head));
4793                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4794                                                 skb->head));
4795                 skb_reserve(nskb, header);
4796                 memcpy(nskb->head, skb->head, header);
4797                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4798                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4799                 __skb_queue_before(list, skb, nskb);
4800                 skb_set_owner_r(nskb, sk);
4801
4802                 /* Copy data, releasing collapsed skbs. */
4803                 while (copy > 0) {
4804                         int offset = start - TCP_SKB_CB(skb)->seq;
4805                         int size = TCP_SKB_CB(skb)->end_seq - start;
4806
4807                         BUG_ON(offset < 0);
4808                         if (size > 0) {
4809                                 size = min(copy, size);
4810                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4811                                         BUG();
4812                                 TCP_SKB_CB(nskb)->end_seq += size;
4813                                 copy -= size;
4814                                 start += size;
4815                         }
4816                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4817                                 skb = tcp_collapse_one(sk, skb, list);
4818                                 if (!skb ||
4819                                     skb == tail ||
4820                                     tcp_hdr(skb)->syn ||
4821                                     tcp_hdr(skb)->fin)
4822                                         return;
4823                         }
4824                 }
4825         }
4826 }
4827
4828 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4829  * and tcp_collapse() them until all the queue is collapsed.
4830  */
4831 static void tcp_collapse_ofo_queue(struct sock *sk)
4832 {
4833         struct tcp_sock *tp = tcp_sk(sk);
4834         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4835         struct sk_buff *head;
4836         u32 start, end;
4837
4838         if (skb == NULL)
4839                 return;
4840
4841         start = TCP_SKB_CB(skb)->seq;
4842         end = TCP_SKB_CB(skb)->end_seq;
4843         head = skb;
4844
4845         for (;;) {
4846                 struct sk_buff *next = NULL;
4847
4848                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4849                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4850                 skb = next;
4851
4852                 /* Segment is terminated when we see gap or when
4853                  * we are at the end of all the queue. */
4854                 if (!skb ||
4855                     after(TCP_SKB_CB(skb)->seq, end) ||
4856                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4857                         tcp_collapse(sk, &tp->out_of_order_queue,
4858                                      head, skb, start, end);
4859                         head = skb;
4860                         if (!skb)
4861                                 break;
4862                         /* Start new segment */
4863                         start = TCP_SKB_CB(skb)->seq;
4864                         end = TCP_SKB_CB(skb)->end_seq;
4865                 } else {
4866                         if (before(TCP_SKB_CB(skb)->seq, start))
4867                                 start = TCP_SKB_CB(skb)->seq;
4868                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4869                                 end = TCP_SKB_CB(skb)->end_seq;
4870                 }
4871         }
4872 }
4873
4874 /*
4875  * Purge the out-of-order queue.
4876  * Return true if queue was pruned.
4877  */
4878 static int tcp_prune_ofo_queue(struct sock *sk)
4879 {
4880         struct tcp_sock *tp = tcp_sk(sk);
4881         int res = 0;
4882
4883         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4884                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4885                 __skb_queue_purge(&tp->out_of_order_queue);
4886
4887                 /* Reset SACK state.  A conforming SACK implementation will
4888                  * do the same at a timeout based retransmit.  When a connection
4889                  * is in a sad state like this, we care only about integrity
4890                  * of the connection not performance.
4891                  */
4892                 if (tp->rx_opt.sack_ok)
4893                         tcp_sack_reset(&tp->rx_opt);
4894                 sk_mem_reclaim(sk);
4895                 res = 1;
4896         }
4897         return res;
4898 }
4899
4900 /* Reduce allocated memory if we can, trying to get
4901  * the socket within its memory limits again.
4902  *
4903  * Return less than zero if we should start dropping frames
4904  * until the socket owning process reads some of the data
4905  * to stabilize the situation.
4906  */
4907 static int tcp_prune_queue(struct sock *sk)
4908 {
4909         struct tcp_sock *tp = tcp_sk(sk);
4910
4911         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4912
4913         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4914
4915         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4916                 tcp_clamp_window(sk);
4917         else if (sk_under_memory_pressure(sk))
4918                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4919
4920         tcp_collapse_ofo_queue(sk);
4921         if (!skb_queue_empty(&sk->sk_receive_queue))
4922                 tcp_collapse(sk, &sk->sk_receive_queue,
4923                              skb_peek(&sk->sk_receive_queue),
4924                              NULL,
4925                              tp->copied_seq, tp->rcv_nxt);
4926         sk_mem_reclaim(sk);
4927
4928         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4929                 return 0;
4930
4931         /* Collapsing did not help, destructive actions follow.
4932          * This must not ever occur. */
4933
4934         tcp_prune_ofo_queue(sk);
4935
4936         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4937                 return 0;
4938
4939         /* If we are really being abused, tell the caller to silently
4940          * drop receive data on the floor.  It will get retransmitted
4941          * and hopefully then we'll have sufficient space.
4942          */
4943         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4944
4945         /* Massive buffer overcommit. */
4946         tp->pred_flags = 0;
4947         return -1;
4948 }
4949
4950 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4951  * As additional protections, we do not touch cwnd in retransmission phases,
4952  * and if application hit its sndbuf limit recently.
4953  */
4954 void tcp_cwnd_application_limited(struct sock *sk)
4955 {
4956         struct tcp_sock *tp = tcp_sk(sk);
4957
4958         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4959             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4960                 /* Limited by application or receiver window. */
4961                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4962                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4963                 if (win_used < tp->snd_cwnd) {
4964                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4965                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4966                 }
4967                 tp->snd_cwnd_used = 0;
4968         }
4969         tp->snd_cwnd_stamp = tcp_time_stamp;
4970 }
4971
4972 static int tcp_should_expand_sndbuf(const struct sock *sk)
4973 {
4974         const struct tcp_sock *tp = tcp_sk(sk);
4975
4976         /* If the user specified a specific send buffer setting, do
4977          * not modify it.
4978          */
4979         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4980                 return 0;
4981
4982         /* If we are under global TCP memory pressure, do not expand.  */
4983         if (sk_under_memory_pressure(sk))
4984                 return 0;
4985
4986         /* If we are under soft global TCP memory pressure, do not expand.  */
4987         if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4988                 return 0;
4989
4990         /* If we filled the congestion window, do not expand.  */
4991         if (tp->packets_out >= tp->snd_cwnd)
4992                 return 0;
4993
4994         return 1;
4995 }
4996
4997 /* When incoming ACK allowed to free some skb from write_queue,
4998  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4999  * on the exit from tcp input handler.
5000  *
5001  * PROBLEM: sndbuf expansion does not work well with largesend.
5002  */
5003 static void tcp_new_space(struct sock *sk)
5004 {
5005         struct tcp_sock *tp = tcp_sk(sk);
5006
5007         if (tcp_should_expand_sndbuf(sk)) {
5008                 int sndmem = SKB_TRUESIZE(max_t(u32,
5009                                                 tp->rx_opt.mss_clamp,
5010                                                 tp->mss_cache) +
5011                                           MAX_TCP_HEADER);
5012                 int demanded = max_t(unsigned int, tp->snd_cwnd,
5013                                      tp->reordering + 1);
5014                 sndmem *= 2 * demanded;
5015                 if (sndmem > sk->sk_sndbuf)
5016                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5017                 tp->snd_cwnd_stamp = tcp_time_stamp;
5018         }
5019
5020         sk->sk_write_space(sk);
5021 }
5022
5023 static void tcp_check_space(struct sock *sk)
5024 {
5025         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5026                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5027                 if (sk->sk_socket &&
5028                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5029                         tcp_new_space(sk);
5030         }
5031 }
5032
5033 static inline void tcp_data_snd_check(struct sock *sk)
5034 {
5035         tcp_push_pending_frames(sk);
5036         tcp_check_space(sk);
5037 }
5038
5039 /*
5040  * Check if sending an ack is needed.
5041  */
5042 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5043 {
5044         struct tcp_sock *tp = tcp_sk(sk);
5045
5046             /* More than one full frame received... */
5047         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5048              /* ... and right edge of window advances far enough.
5049               * (tcp_recvmsg() will send ACK otherwise). Or...
5050               */
5051              __tcp_select_window(sk) >= tp->rcv_wnd) ||
5052             /* We ACK each frame or... */
5053             tcp_in_quickack_mode(sk) ||
5054             /* We have out of order data. */
5055             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5056                 /* Then ack it now */
5057                 tcp_send_ack(sk);
5058         } else {
5059                 /* Else, send delayed ack. */
5060                 tcp_send_delayed_ack(sk);
5061         }
5062 }
5063
5064 static inline void tcp_ack_snd_check(struct sock *sk)
5065 {
5066         if (!inet_csk_ack_scheduled(sk)) {
5067                 /* We sent a data segment already. */
5068                 return;
5069         }
5070         __tcp_ack_snd_check(sk, 1);
5071 }
5072
5073 /*
5074  *      This routine is only called when we have urgent data
5075  *      signaled. Its the 'slow' part of tcp_urg. It could be
5076  *      moved inline now as tcp_urg is only called from one
5077  *      place. We handle URGent data wrong. We have to - as
5078  *      BSD still doesn't use the correction from RFC961.
5079  *      For 1003.1g we should support a new option TCP_STDURG to permit
5080  *      either form (or just set the sysctl tcp_stdurg).
5081  */
5082
5083 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5084 {
5085         struct tcp_sock *tp = tcp_sk(sk);
5086         u32 ptr = ntohs(th->urg_ptr);
5087
5088         if (ptr && !sysctl_tcp_stdurg)
5089                 ptr--;
5090         ptr += ntohl(th->seq);
5091
5092         /* Ignore urgent data that we've already seen and read. */
5093         if (after(tp->copied_seq, ptr))
5094                 return;
5095
5096         /* Do not replay urg ptr.
5097          *
5098          * NOTE: interesting situation not covered by specs.
5099          * Misbehaving sender may send urg ptr, pointing to segment,
5100          * which we already have in ofo queue. We are not able to fetch
5101          * such data and will stay in TCP_URG_NOTYET until will be eaten
5102          * by recvmsg(). Seems, we are not obliged to handle such wicked
5103          * situations. But it is worth to think about possibility of some
5104          * DoSes using some hypothetical application level deadlock.
5105          */
5106         if (before(ptr, tp->rcv_nxt))
5107                 return;
5108
5109         /* Do we already have a newer (or duplicate) urgent pointer? */
5110         if (tp->urg_data && !after(ptr, tp->urg_seq))
5111                 return;
5112
5113         /* Tell the world about our new urgent pointer. */
5114         sk_send_sigurg(sk);
5115
5116         /* We may be adding urgent data when the last byte read was
5117          * urgent. To do this requires some care. We cannot just ignore
5118          * tp->copied_seq since we would read the last urgent byte again
5119          * as data, nor can we alter copied_seq until this data arrives
5120          * or we break the semantics of SIOCATMARK (and thus sockatmark())
5121          *
5122          * NOTE. Double Dutch. Rendering to plain English: author of comment
5123          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5124          * and expect that both A and B disappear from stream. This is _wrong_.
5125          * Though this happens in BSD with high probability, this is occasional.
5126          * Any application relying on this is buggy. Note also, that fix "works"
5127          * only in this artificial test. Insert some normal data between A and B and we will
5128          * decline of BSD again. Verdict: it is better to remove to trap
5129          * buggy users.
5130          */
5131         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5132             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5133                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5134                 tp->copied_seq++;
5135                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5136                         __skb_unlink(skb, &sk->sk_receive_queue);
5137                         __kfree_skb(skb);
5138                 }
5139         }
5140
5141         tp->urg_data = TCP_URG_NOTYET;
5142         tp->urg_seq = ptr;
5143
5144         /* Disable header prediction. */
5145         tp->pred_flags = 0;
5146 }
5147
5148 /* This is the 'fast' part of urgent handling. */
5149 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5150 {
5151         struct tcp_sock *tp = tcp_sk(sk);
5152
5153         /* Check if we get a new urgent pointer - normally not. */
5154         if (th->urg)
5155                 tcp_check_urg(sk, th);
5156
5157         /* Do we wait for any urgent data? - normally not... */
5158         if (tp->urg_data == TCP_URG_NOTYET) {
5159                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5160                           th->syn;
5161
5162                 /* Is the urgent pointer pointing into this packet? */
5163                 if (ptr < skb->len) {
5164                         u8 tmp;
5165                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5166                                 BUG();
5167                         tp->urg_data = TCP_URG_VALID | tmp;
5168                         if (!sock_flag(sk, SOCK_DEAD))
5169                                 sk->sk_data_ready(sk, 0);
5170                 }
5171         }
5172 }
5173
5174 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5175 {
5176         struct tcp_sock *tp = tcp_sk(sk);
5177         int chunk = skb->len - hlen;
5178         int err;
5179
5180         local_bh_enable();
5181         if (skb_csum_unnecessary(skb))
5182                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5183         else
5184                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5185                                                        tp->ucopy.iov);
5186
5187         if (!err) {
5188                 tp->ucopy.len -= chunk;
5189                 tp->copied_seq += chunk;
5190                 tcp_rcv_space_adjust(sk);
5191         }
5192
5193         local_bh_disable();
5194         return err;
5195 }
5196
5197 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5198                                             struct sk_buff *skb)
5199 {
5200         __sum16 result;
5201
5202         if (sock_owned_by_user(sk)) {
5203                 local_bh_enable();
5204                 result = __tcp_checksum_complete(skb);
5205                 local_bh_disable();
5206         } else {
5207                 result = __tcp_checksum_complete(skb);
5208         }
5209         return result;
5210 }
5211
5212 static inline int tcp_checksum_complete_user(struct sock *sk,
5213                                              struct sk_buff *skb)
5214 {
5215         return !skb_csum_unnecessary(skb) &&
5216                __tcp_checksum_complete_user(sk, skb);
5217 }
5218
5219 #ifdef CONFIG_NET_DMA
5220 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5221                                   int hlen)
5222 {
5223         struct tcp_sock *tp = tcp_sk(sk);
5224         int chunk = skb->len - hlen;
5225         int dma_cookie;
5226         int copied_early = 0;
5227
5228         if (tp->ucopy.wakeup)
5229                 return 0;
5230
5231         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5232                 tp->ucopy.dma_chan = net_dma_find_channel();
5233
5234         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5235
5236                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5237                                                          skb, hlen,
5238                                                          tp->ucopy.iov, chunk,
5239                                                          tp->ucopy.pinned_list);
5240
5241                 if (dma_cookie < 0)
5242                         goto out;
5243
5244                 tp->ucopy.dma_cookie = dma_cookie;
5245                 copied_early = 1;
5246
5247                 tp->ucopy.len -= chunk;
5248                 tp->copied_seq += chunk;
5249                 tcp_rcv_space_adjust(sk);
5250
5251                 if ((tp->ucopy.len == 0) ||
5252                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5253                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5254                         tp->ucopy.wakeup = 1;
5255                         sk->sk_data_ready(sk, 0);
5256                 }
5257         } else if (chunk > 0) {
5258                 tp->ucopy.wakeup = 1;
5259                 sk->sk_data_ready(sk, 0);
5260         }
5261 out:
5262         return copied_early;
5263 }
5264 #endif /* CONFIG_NET_DMA */
5265
5266 /* Does PAWS and seqno based validation of an incoming segment, flags will
5267  * play significant role here.
5268  */
5269 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5270                               const struct tcphdr *th, int syn_inerr)
5271 {
5272         const u8 *hash_location;
5273         struct tcp_sock *tp = tcp_sk(sk);
5274
5275         /* RFC1323: H1. Apply PAWS check first. */
5276         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5277             tp->rx_opt.saw_tstamp &&
5278             tcp_paws_discard(sk, skb)) {
5279                 if (!th->rst) {
5280                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5281                         tcp_send_dupack(sk, skb);
5282                         goto discard;
5283                 }
5284                 /* Reset is accepted even if it did not pass PAWS. */
5285         }
5286
5287         /* Step 1: check sequence number */
5288         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5289                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5290                  * (RST) segments are validated by checking their SEQ-fields."
5291                  * And page 69: "If an incoming segment is not acceptable,
5292                  * an acknowledgment should be sent in reply (unless the RST
5293                  * bit is set, if so drop the segment and return)".
5294                  */
5295                 if (!th->rst)
5296                         tcp_send_dupack(sk, skb);
5297                 goto discard;
5298         }
5299
5300         /* Step 2: check RST bit */
5301         if (th->rst) {
5302                 tcp_reset(sk);
5303                 goto discard;
5304         }
5305
5306         /* ts_recent update must be made after we are sure that the packet
5307          * is in window.
5308          */
5309         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5310
5311         /* step 3: check security and precedence [ignored] */
5312
5313         /* step 4: Check for a SYN in window. */
5314         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5315                 if (syn_inerr)
5316                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5317                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5318                 tcp_reset(sk);
5319                 return -1;
5320         }
5321
5322         return 1;
5323
5324 discard:
5325         __kfree_skb(skb);
5326         return 0;
5327 }
5328
5329 /*
5330  *      TCP receive function for the ESTABLISHED state.
5331  *
5332  *      It is split into a fast path and a slow path. The fast path is
5333  *      disabled when:
5334  *      - A zero window was announced from us - zero window probing
5335  *        is only handled properly in the slow path.
5336  *      - Out of order segments arrived.
5337  *      - Urgent data is expected.
5338  *      - There is no buffer space left
5339  *      - Unexpected TCP flags/window values/header lengths are received
5340  *        (detected by checking the TCP header against pred_flags)
5341  *      - Data is sent in both directions. Fast path only supports pure senders
5342  *        or pure receivers (this means either the sequence number or the ack
5343  *        value must stay constant)
5344  *      - Unexpected TCP option.
5345  *
5346  *      When these conditions are not satisfied it drops into a standard
5347  *      receive procedure patterned after RFC793 to handle all cases.
5348  *      The first three cases are guaranteed by proper pred_flags setting,
5349  *      the rest is checked inline. Fast processing is turned on in
5350  *      tcp_data_queue when everything is OK.
5351  */
5352 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5353                         const struct tcphdr *th, unsigned int len)
5354 {
5355         struct tcp_sock *tp = tcp_sk(sk);
5356         int res;
5357
5358         /*
5359          *      Header prediction.
5360          *      The code loosely follows the one in the famous
5361          *      "30 instruction TCP receive" Van Jacobson mail.
5362          *
5363          *      Van's trick is to deposit buffers into socket queue
5364          *      on a device interrupt, to call tcp_recv function
5365          *      on the receive process context and checksum and copy
5366          *      the buffer to user space. smart...
5367          *
5368          *      Our current scheme is not silly either but we take the
5369          *      extra cost of the net_bh soft interrupt processing...
5370          *      We do checksum and copy also but from device to kernel.
5371          */
5372
5373         tp->rx_opt.saw_tstamp = 0;
5374
5375         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5376          *      if header_prediction is to be made
5377          *      'S' will always be tp->tcp_header_len >> 2
5378          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5379          *  turn it off (when there are holes in the receive
5380          *       space for instance)
5381          *      PSH flag is ignored.
5382          */
5383
5384         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5385             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5386             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5387                 int tcp_header_len = tp->tcp_header_len;
5388
5389                 /* Timestamp header prediction: tcp_header_len
5390                  * is automatically equal to th->doff*4 due to pred_flags
5391                  * match.
5392                  */
5393
5394                 /* Check timestamp */
5395                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5396                         /* No? Slow path! */
5397                         if (!tcp_parse_aligned_timestamp(tp, th))
5398                                 goto slow_path;
5399
5400                         /* If PAWS failed, check it more carefully in slow path */
5401                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5402                                 goto slow_path;
5403
5404                         /* DO NOT update ts_recent here, if checksum fails
5405                          * and timestamp was corrupted part, it will result
5406                          * in a hung connection since we will drop all
5407                          * future packets due to the PAWS test.
5408                          */
5409                 }
5410
5411                 if (len <= tcp_header_len) {
5412                         /* Bulk data transfer: sender */
5413                         if (len == tcp_header_len) {
5414                                 /* Predicted packet is in window by definition.
5415                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5416                                  * Hence, check seq<=rcv_wup reduces to:
5417                                  */
5418                                 if (tcp_header_len ==
5419                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5420                                     tp->rcv_nxt == tp->rcv_wup)
5421                                         tcp_store_ts_recent(tp);
5422
5423                                 /* We know that such packets are checksummed
5424                                  * on entry.
5425                                  */
5426                                 tcp_ack(sk, skb, 0);
5427                                 __kfree_skb(skb);
5428                                 tcp_data_snd_check(sk);
5429                                 return 0;
5430                         } else { /* Header too small */
5431                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5432                                 goto discard;
5433                         }
5434                 } else {
5435                         int eaten = 0;
5436                         int copied_early = 0;
5437
5438                         if (tp->copied_seq == tp->rcv_nxt &&
5439                             len - tcp_header_len <= tp->ucopy.len) {
5440 #ifdef CONFIG_NET_DMA
5441                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5442                                         copied_early = 1;
5443                                         eaten = 1;
5444                                 }
5445 #endif
5446                                 if (tp->ucopy.task == current &&
5447                                     sock_owned_by_user(sk) && !copied_early) {
5448                                         __set_current_state(TASK_RUNNING);
5449
5450                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5451                                                 eaten = 1;
5452                                 }
5453                                 if (eaten) {
5454                                         /* Predicted packet is in window by definition.
5455                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5456                                          * Hence, check seq<=rcv_wup reduces to:
5457                                          */
5458                                         if (tcp_header_len ==
5459                                             (sizeof(struct tcphdr) +
5460                                              TCPOLEN_TSTAMP_ALIGNED) &&
5461                                             tp->rcv_nxt == tp->rcv_wup)
5462                                                 tcp_store_ts_recent(tp);
5463
5464                                         tcp_rcv_rtt_measure_ts(sk, skb);
5465
5466                                         __skb_pull(skb, tcp_header_len);
5467                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5468                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5469                                 }
5470                                 if (copied_early)
5471                                         tcp_cleanup_rbuf(sk, skb->len);
5472                         }
5473                         if (!eaten) {
5474                                 if (tcp_checksum_complete_user(sk, skb))
5475                                         goto csum_error;
5476
5477                                 /* Predicted packet is in window by definition.
5478                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5479                                  * Hence, check seq<=rcv_wup reduces to:
5480                                  */
5481                                 if (tcp_header_len ==
5482                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5483                                     tp->rcv_nxt == tp->rcv_wup)
5484                                         tcp_store_ts_recent(tp);
5485
5486                                 tcp_rcv_rtt_measure_ts(sk, skb);
5487
5488                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5489                                         goto step5;
5490
5491                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5492
5493                                 /* Bulk data transfer: receiver */
5494                                 __skb_pull(skb, tcp_header_len);
5495                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5496                                 skb_set_owner_r(skb, sk);
5497                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5498                         }
5499
5500                         tcp_event_data_recv(sk, skb);
5501
5502                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5503                                 /* Well, only one small jumplet in fast path... */
5504                                 tcp_ack(sk, skb, FLAG_DATA);
5505                                 tcp_data_snd_check(sk);
5506                                 if (!inet_csk_ack_scheduled(sk))
5507                                         goto no_ack;
5508                         }
5509
5510                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5511                                 __tcp_ack_snd_check(sk, 0);
5512 no_ack:
5513 #ifdef CONFIG_NET_DMA
5514                         if (copied_early)
5515                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5516                         else
5517 #endif
5518                         if (eaten)
5519                                 __kfree_skb(skb);
5520                         else
5521                                 sk->sk_data_ready(sk, 0);
5522                         return 0;
5523                 }
5524         }
5525
5526 slow_path:
5527         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5528                 goto csum_error;
5529
5530         /*
5531          *      Standard slow path.
5532          */
5533
5534         res = tcp_validate_incoming(sk, skb, th, 1);
5535         if (res <= 0)
5536                 return -res;
5537
5538 step5:
5539         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5540                 goto discard;
5541
5542         tcp_rcv_rtt_measure_ts(sk, skb);
5543
5544         /* Process urgent data. */
5545         tcp_urg(sk, skb, th);
5546
5547         /* step 7: process the segment text */
5548         tcp_data_queue(sk, skb);
5549
5550         tcp_data_snd_check(sk);
5551         tcp_ack_snd_check(sk);
5552         return 0;
5553
5554 csum_error:
5555         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5556
5557 discard:
5558         __kfree_skb(skb);
5559         return 0;
5560 }
5561 EXPORT_SYMBOL(tcp_rcv_established);
5562
5563 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5564                                          const struct tcphdr *th, unsigned int len)
5565 {
5566         const u8 *hash_location;
5567         struct inet_connection_sock *icsk = inet_csk(sk);
5568         struct tcp_sock *tp = tcp_sk(sk);
5569         struct tcp_cookie_values *cvp = tp->cookie_values;
5570         int saved_clamp = tp->rx_opt.mss_clamp;
5571
5572         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5573
5574         if (th->ack) {
5575                 /* rfc793:
5576                  * "If the state is SYN-SENT then
5577                  *    first check the ACK bit
5578                  *      If the ACK bit is set
5579                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5580                  *        a reset (unless the RST bit is set, if so drop
5581                  *        the segment and return)"
5582                  *
5583                  *  We do not send data with SYN, so that RFC-correct
5584                  *  test reduces to:
5585                  */
5586                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5587                         goto reset_and_undo;
5588
5589                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5590                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5591                              tcp_time_stamp)) {
5592                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5593                         goto reset_and_undo;
5594                 }
5595
5596                 /* Now ACK is acceptable.
5597                  *
5598                  * "If the RST bit is set
5599                  *    If the ACK was acceptable then signal the user "error:
5600                  *    connection reset", drop the segment, enter CLOSED state,
5601                  *    delete TCB, and return."
5602                  */
5603
5604                 if (th->rst) {
5605                         tcp_reset(sk);
5606                         goto discard;
5607                 }
5608
5609                 /* rfc793:
5610                  *   "fifth, if neither of the SYN or RST bits is set then
5611                  *    drop the segment and return."
5612                  *
5613                  *    See note below!
5614                  *                                        --ANK(990513)
5615                  */
5616                 if (!th->syn)
5617                         goto discard_and_undo;
5618
5619                 /* rfc793:
5620                  *   "If the SYN bit is on ...
5621                  *    are acceptable then ...
5622                  *    (our SYN has been ACKed), change the connection
5623                  *    state to ESTABLISHED..."
5624                  */
5625
5626                 TCP_ECN_rcv_synack(tp, th);
5627
5628                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5629                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5630
5631                 /* Ok.. it's good. Set up sequence numbers and
5632                  * move to established.
5633                  */
5634                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5635                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5636
5637                 /* RFC1323: The window in SYN & SYN/ACK segments is
5638                  * never scaled.
5639                  */
5640                 tp->snd_wnd = ntohs(th->window);
5641                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5642
5643                 if (!tp->rx_opt.wscale_ok) {
5644                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5645                         tp->window_clamp = min(tp->window_clamp, 65535U);
5646                 }
5647
5648                 if (tp->rx_opt.saw_tstamp) {
5649                         tp->rx_opt.tstamp_ok       = 1;
5650                         tp->tcp_header_len =
5651                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5652                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5653                         tcp_store_ts_recent(tp);
5654                 } else {
5655                         tp->tcp_header_len = sizeof(struct tcphdr);
5656                 }
5657
5658                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5659                         tcp_enable_fack(tp);
5660
5661                 tcp_mtup_init(sk);
5662                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5663                 tcp_initialize_rcv_mss(sk);
5664
5665                 /* Remember, tcp_poll() does not lock socket!
5666                  * Change state from SYN-SENT only after copied_seq
5667                  * is initialized. */
5668                 tp->copied_seq = tp->rcv_nxt;
5669
5670                 if (cvp != NULL &&
5671                     cvp->cookie_pair_size > 0 &&
5672                     tp->rx_opt.cookie_plus > 0) {
5673                         int cookie_size = tp->rx_opt.cookie_plus
5674                                         - TCPOLEN_COOKIE_BASE;
5675                         int cookie_pair_size = cookie_size
5676                                              + cvp->cookie_desired;
5677
5678                         /* A cookie extension option was sent and returned.
5679                          * Note that each incoming SYNACK replaces the
5680                          * Responder cookie.  The initial exchange is most
5681                          * fragile, as protection against spoofing relies
5682                          * entirely upon the sequence and timestamp (above).
5683                          * This replacement strategy allows the correct pair to
5684                          * pass through, while any others will be filtered via
5685                          * Responder verification later.
5686                          */
5687                         if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5688                                 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5689                                        hash_location, cookie_size);
5690                                 cvp->cookie_pair_size = cookie_pair_size;
5691                         }
5692                 }
5693
5694                 smp_mb();
5695                 tcp_set_state(sk, TCP_ESTABLISHED);
5696
5697                 security_inet_conn_established(sk, skb);
5698
5699                 /* Make sure socket is routed, for correct metrics.  */
5700                 icsk->icsk_af_ops->rebuild_header(sk);
5701
5702                 tcp_init_metrics(sk);
5703
5704                 tcp_init_congestion_control(sk);
5705
5706                 /* Prevent spurious tcp_cwnd_restart() on first data
5707                  * packet.
5708                  */
5709                 tp->lsndtime = tcp_time_stamp;
5710
5711                 tcp_init_buffer_space(sk);
5712
5713                 if (sock_flag(sk, SOCK_KEEPOPEN))
5714                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5715
5716                 if (!tp->rx_opt.snd_wscale)
5717                         __tcp_fast_path_on(tp, tp->snd_wnd);
5718                 else
5719                         tp->pred_flags = 0;
5720
5721                 if (!sock_flag(sk, SOCK_DEAD)) {
5722                         sk->sk_state_change(sk);
5723                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5724                 }
5725
5726                 if (sk->sk_write_pending ||
5727                     icsk->icsk_accept_queue.rskq_defer_accept ||
5728                     icsk->icsk_ack.pingpong) {
5729                         /* Save one ACK. Data will be ready after
5730                          * several ticks, if write_pending is set.
5731                          *
5732                          * It may be deleted, but with this feature tcpdumps
5733                          * look so _wonderfully_ clever, that I was not able
5734                          * to stand against the temptation 8)     --ANK
5735                          */
5736                         inet_csk_schedule_ack(sk);
5737                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5738                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5739                         tcp_incr_quickack(sk);
5740                         tcp_enter_quickack_mode(sk);
5741                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5742                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5743
5744 discard:
5745                         __kfree_skb(skb);
5746                         return 0;
5747                 } else {
5748                         tcp_send_ack(sk);
5749                 }
5750                 return -1;
5751         }
5752
5753         /* No ACK in the segment */
5754
5755         if (th->rst) {
5756                 /* rfc793:
5757                  * "If the RST bit is set
5758                  *
5759                  *      Otherwise (no ACK) drop the segment and return."
5760                  */
5761
5762                 goto discard_and_undo;
5763         }
5764
5765         /* PAWS check. */
5766         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5767             tcp_paws_reject(&tp->rx_opt, 0))
5768                 goto discard_and_undo;
5769
5770         if (th->syn) {
5771                 /* We see SYN without ACK. It is attempt of
5772                  * simultaneous connect with crossed SYNs.
5773                  * Particularly, it can be connect to self.
5774                  */
5775                 tcp_set_state(sk, TCP_SYN_RECV);
5776
5777                 if (tp->rx_opt.saw_tstamp) {
5778                         tp->rx_opt.tstamp_ok = 1;
5779                         tcp_store_ts_recent(tp);
5780                         tp->tcp_header_len =
5781                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5782                 } else {
5783                         tp->tcp_header_len = sizeof(struct tcphdr);
5784                 }
5785
5786                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5787                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5788
5789                 /* RFC1323: The window in SYN & SYN/ACK segments is
5790                  * never scaled.
5791                  */
5792                 tp->snd_wnd    = ntohs(th->window);
5793                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5794                 tp->max_window = tp->snd_wnd;
5795
5796                 TCP_ECN_rcv_syn(tp, th);
5797
5798                 tcp_mtup_init(sk);
5799                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5800                 tcp_initialize_rcv_mss(sk);
5801
5802                 tcp_send_synack(sk);
5803 #if 0
5804                 /* Note, we could accept data and URG from this segment.
5805                  * There are no obstacles to make this.
5806                  *
5807                  * However, if we ignore data in ACKless segments sometimes,
5808                  * we have no reasons to accept it sometimes.
5809                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5810                  * is not flawless. So, discard packet for sanity.
5811                  * Uncomment this return to process the data.
5812                  */
5813                 return -1;
5814 #else
5815                 goto discard;
5816 #endif
5817         }
5818         /* "fifth, if neither of the SYN or RST bits is set then
5819          * drop the segment and return."
5820          */
5821
5822 discard_and_undo:
5823         tcp_clear_options(&tp->rx_opt);
5824         tp->rx_opt.mss_clamp = saved_clamp;
5825         goto discard;
5826
5827 reset_and_undo:
5828         tcp_clear_options(&tp->rx_opt);
5829         tp->rx_opt.mss_clamp = saved_clamp;
5830         return 1;
5831 }
5832
5833 /*
5834  *      This function implements the receiving procedure of RFC 793 for
5835  *      all states except ESTABLISHED and TIME_WAIT.
5836  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5837  *      address independent.
5838  */
5839
5840 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5841                           const struct tcphdr *th, unsigned int len)
5842 {
5843         struct tcp_sock *tp = tcp_sk(sk);
5844         struct inet_connection_sock *icsk = inet_csk(sk);
5845         int queued = 0;
5846         int res;
5847
5848         tp->rx_opt.saw_tstamp = 0;
5849
5850         switch (sk->sk_state) {
5851         case TCP_CLOSE:
5852                 goto discard;
5853
5854         case TCP_LISTEN:
5855                 if (th->ack)
5856                         return 1;
5857
5858                 if (th->rst)
5859                         goto discard;
5860
5861                 if (th->syn) {
5862                         if (th->fin)
5863                                 goto discard;
5864                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5865                                 return 1;
5866
5867                         /* Now we have several options: In theory there is
5868                          * nothing else in the frame. KA9Q has an option to
5869                          * send data with the syn, BSD accepts data with the
5870                          * syn up to the [to be] advertised window and
5871                          * Solaris 2.1 gives you a protocol error. For now
5872                          * we just ignore it, that fits the spec precisely
5873                          * and avoids incompatibilities. It would be nice in
5874                          * future to drop through and process the data.
5875                          *
5876                          * Now that TTCP is starting to be used we ought to
5877                          * queue this data.
5878                          * But, this leaves one open to an easy denial of
5879                          * service attack, and SYN cookies can't defend
5880                          * against this problem. So, we drop the data
5881                          * in the interest of security over speed unless
5882                          * it's still in use.
5883                          */
5884                         kfree_skb(skb);
5885                         return 0;
5886                 }
5887                 goto discard;
5888
5889         case TCP_SYN_SENT:
5890                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5891                 if (queued >= 0)
5892                         return queued;
5893
5894                 /* Do step6 onward by hand. */
5895                 tcp_urg(sk, skb, th);
5896                 __kfree_skb(skb);
5897                 tcp_data_snd_check(sk);
5898                 return 0;
5899         }
5900
5901         res = tcp_validate_incoming(sk, skb, th, 0);
5902         if (res <= 0)
5903                 return -res;
5904
5905         /* step 5: check the ACK field */
5906         if (th->ack) {
5907                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5908
5909                 switch (sk->sk_state) {
5910                 case TCP_SYN_RECV:
5911                         if (acceptable) {
5912                                 tp->copied_seq = tp->rcv_nxt;
5913                                 smp_mb();
5914                                 tcp_set_state(sk, TCP_ESTABLISHED);
5915                                 sk->sk_state_change(sk);
5916
5917                                 /* Note, that this wakeup is only for marginal
5918                                  * crossed SYN case. Passively open sockets
5919                                  * are not waked up, because sk->sk_sleep ==
5920                                  * NULL and sk->sk_socket == NULL.
5921                                  */
5922                                 if (sk->sk_socket)
5923                                         sk_wake_async(sk,
5924                                                       SOCK_WAKE_IO, POLL_OUT);
5925
5926                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5927                                 tp->snd_wnd = ntohs(th->window) <<
5928                                               tp->rx_opt.snd_wscale;
5929                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5930
5931                                 if (tp->rx_opt.tstamp_ok)
5932                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5933
5934                                 /* Make sure socket is routed, for
5935                                  * correct metrics.
5936                                  */
5937                                 icsk->icsk_af_ops->rebuild_header(sk);
5938
5939                                 tcp_init_metrics(sk);
5940
5941                                 tcp_init_congestion_control(sk);
5942
5943                                 /* Prevent spurious tcp_cwnd_restart() on
5944                                  * first data packet.
5945                                  */
5946                                 tp->lsndtime = tcp_time_stamp;
5947
5948                                 tcp_mtup_init(sk);
5949                                 tcp_initialize_rcv_mss(sk);
5950                                 tcp_init_buffer_space(sk);
5951                                 tcp_fast_path_on(tp);
5952                         } else {
5953                                 return 1;
5954                         }
5955                         break;
5956
5957                 case TCP_FIN_WAIT1:
5958                         if (tp->snd_una == tp->write_seq) {
5959                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5960                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5961                                 dst_confirm(__sk_dst_get(sk));
5962
5963                                 if (!sock_flag(sk, SOCK_DEAD))
5964                                         /* Wake up lingering close() */
5965                                         sk->sk_state_change(sk);
5966                                 else {
5967                                         int tmo;
5968
5969                                         if (tp->linger2 < 0 ||
5970                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5971                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5972                                                 tcp_done(sk);
5973                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5974                                                 return 1;
5975                                         }
5976
5977                                         tmo = tcp_fin_time(sk);
5978                                         if (tmo > TCP_TIMEWAIT_LEN) {
5979                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5980                                         } else if (th->fin || sock_owned_by_user(sk)) {
5981                                                 /* Bad case. We could lose such FIN otherwise.
5982                                                  * It is not a big problem, but it looks confusing
5983                                                  * and not so rare event. We still can lose it now,
5984                                                  * if it spins in bh_lock_sock(), but it is really
5985                                                  * marginal case.
5986                                                  */
5987                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5988                                         } else {
5989                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5990                                                 goto discard;
5991                                         }
5992                                 }
5993                         }
5994                         break;
5995
5996                 case TCP_CLOSING:
5997                         if (tp->snd_una == tp->write_seq) {
5998                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5999                                 goto discard;
6000                         }
6001                         break;
6002
6003                 case TCP_LAST_ACK:
6004                         if (tp->snd_una == tp->write_seq) {
6005                                 tcp_update_metrics(sk);
6006                                 tcp_done(sk);
6007                                 goto discard;
6008                         }
6009                         break;
6010                 }
6011         } else
6012                 goto discard;
6013
6014         /* step 6: check the URG bit */
6015         tcp_urg(sk, skb, th);
6016
6017         /* step 7: process the segment text */
6018         switch (sk->sk_state) {
6019         case TCP_CLOSE_WAIT:
6020         case TCP_CLOSING:
6021         case TCP_LAST_ACK:
6022                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6023                         break;
6024         case TCP_FIN_WAIT1:
6025         case TCP_FIN_WAIT2:
6026                 /* RFC 793 says to queue data in these states,
6027                  * RFC 1122 says we MUST send a reset.
6028                  * BSD 4.4 also does reset.
6029                  */
6030                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6031                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6032                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6033                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6034                                 tcp_reset(sk);
6035                                 return 1;
6036                         }
6037                 }
6038                 /* Fall through */
6039         case TCP_ESTABLISHED:
6040                 tcp_data_queue(sk, skb);
6041                 queued = 1;
6042                 break;
6043         }
6044
6045         /* tcp_data could move socket to TIME-WAIT */
6046         if (sk->sk_state != TCP_CLOSE) {
6047                 tcp_data_snd_check(sk);
6048                 tcp_ack_snd_check(sk);
6049         }
6050
6051         if (!queued) {
6052 discard:
6053                 __kfree_skb(skb);
6054         }
6055         return 0;
6056 }
6057 EXPORT_SYMBOL(tcp_rcv_state_process);