8b5c41ec7ee129d735426e3e4ce54696f26ac898
[pandora-kernel.git] / net / dccp / ccids / lib / packet_history.c
1 /*
2  *  net/dccp/packet_history.c
3  *
4  *  Copyright (c) 2007   The University of Aberdeen, Scotland, UK
5  *  Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
6  *
7  *  An implementation of the DCCP protocol
8  *
9  *  This code has been developed by the University of Waikato WAND
10  *  research group. For further information please see http://www.wand.net.nz/
11  *  or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz
12  *
13  *  This code also uses code from Lulea University, rereleased as GPL by its
14  *  authors:
15  *  Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
16  *
17  *  Changes to meet Linux coding standards, to make it meet latest ccid3 draft
18  *  and to make it work as a loadable module in the DCCP stack written by
19  *  Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
20  *
21  *  Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
22  *
23  *  This program is free software; you can redistribute it and/or modify
24  *  it under the terms of the GNU General Public License as published by
25  *  the Free Software Foundation; either version 2 of the License, or
26  *  (at your option) any later version.
27  *
28  *  This program is distributed in the hope that it will be useful,
29  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
30  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  *  GNU General Public License for more details.
32  *
33  *  You should have received a copy of the GNU General Public License
34  *  along with this program; if not, write to the Free Software
35  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
36  */
37
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include "packet_history.h"
41 #include "../../dccp.h"
42
43 /**
44  *  tfrc_tx_hist_entry  -  Simple singly-linked TX history list
45  *  @next:  next oldest entry (LIFO order)
46  *  @seqno: sequence number of this entry
47  *  @stamp: send time of packet with sequence number @seqno
48  */
49 struct tfrc_tx_hist_entry {
50         struct tfrc_tx_hist_entry *next;
51         u64                       seqno;
52         ktime_t                   stamp;
53 };
54
55 /*
56  * Transmitter History Routines
57  */
58 static struct kmem_cache *tfrc_tx_hist_slab;
59
60 int __init tfrc_tx_packet_history_init(void)
61 {
62         tfrc_tx_hist_slab = kmem_cache_create("tfrc_tx_hist",
63                                               sizeof(struct tfrc_tx_hist_entry),
64                                               0, SLAB_HWCACHE_ALIGN, NULL);
65         return tfrc_tx_hist_slab == NULL ? -ENOBUFS : 0;
66 }
67
68 void tfrc_tx_packet_history_exit(void)
69 {
70         if (tfrc_tx_hist_slab != NULL) {
71                 kmem_cache_destroy(tfrc_tx_hist_slab);
72                 tfrc_tx_hist_slab = NULL;
73         }
74 }
75
76 static struct tfrc_tx_hist_entry *
77         tfrc_tx_hist_find_entry(struct tfrc_tx_hist_entry *head, u64 seqno)
78 {
79         while (head != NULL && head->seqno != seqno)
80                 head = head->next;
81
82         return head;
83 }
84
85 int tfrc_tx_hist_add(struct tfrc_tx_hist_entry **headp, u64 seqno)
86 {
87         struct tfrc_tx_hist_entry *entry = kmem_cache_alloc(tfrc_tx_hist_slab, gfp_any());
88
89         if (entry == NULL)
90                 return -ENOBUFS;
91         entry->seqno = seqno;
92         entry->stamp = ktime_get_real();
93         entry->next  = *headp;
94         *headp       = entry;
95         return 0;
96 }
97 EXPORT_SYMBOL_GPL(tfrc_tx_hist_add);
98
99 void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry **headp)
100 {
101         struct tfrc_tx_hist_entry *head = *headp;
102
103         while (head != NULL) {
104                 struct tfrc_tx_hist_entry *next = head->next;
105
106                 kmem_cache_free(tfrc_tx_hist_slab, head);
107                 head = next;
108         }
109
110         *headp = NULL;
111 }
112 EXPORT_SYMBOL_GPL(tfrc_tx_hist_purge);
113
114 u32 tfrc_tx_hist_rtt(struct tfrc_tx_hist_entry *head, const u64 seqno,
115                      const ktime_t now)
116 {
117         u32 rtt = 0;
118         struct tfrc_tx_hist_entry *packet = tfrc_tx_hist_find_entry(head, seqno);
119
120         if (packet != NULL) {
121                 rtt = ktime_us_delta(now, packet->stamp);
122                 /*
123                  * Garbage-collect older (irrelevant) entries:
124                  */
125                 tfrc_tx_hist_purge(&packet->next);
126         }
127
128         return rtt;
129 }
130 EXPORT_SYMBOL_GPL(tfrc_tx_hist_rtt);
131
132
133 /*
134  *      Receiver History Routines
135  */
136 static struct kmem_cache *tfrc_rx_hist_slab;
137
138 int __init tfrc_rx_packet_history_init(void)
139 {
140         tfrc_rx_hist_slab = kmem_cache_create("tfrc_rxh_cache",
141                                               sizeof(struct tfrc_rx_hist_entry),
142                                               0, SLAB_HWCACHE_ALIGN, NULL);
143         return tfrc_rx_hist_slab == NULL ? -ENOBUFS : 0;
144 }
145
146 void tfrc_rx_packet_history_exit(void)
147 {
148         if (tfrc_rx_hist_slab != NULL) {
149                 kmem_cache_destroy(tfrc_rx_hist_slab);
150                 tfrc_rx_hist_slab = NULL;
151         }
152 }
153
154 static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry *entry,
155                                                const struct sk_buff *skb,
156                                                const u32 ndp)
157 {
158         const struct dccp_hdr *dh = dccp_hdr(skb);
159
160         entry->tfrchrx_seqno = DCCP_SKB_CB(skb)->dccpd_seq;
161         entry->tfrchrx_ccval = dh->dccph_ccval;
162         entry->tfrchrx_type  = dh->dccph_type;
163         entry->tfrchrx_ndp   = ndp;
164         entry->tfrchrx_tstamp = ktime_get_real();
165 }
166
167 void tfrc_rx_hist_add_packet(struct tfrc_rx_hist *h,
168                              const struct sk_buff *skb,
169                              const u32 ndp)
170 {
171         struct tfrc_rx_hist_entry *entry = tfrc_rx_hist_last_rcv(h);
172
173         tfrc_rx_hist_entry_from_skb(entry, skb, ndp);
174 }
175 EXPORT_SYMBOL_GPL(tfrc_rx_hist_add_packet);
176
177 /* has the packet contained in skb been seen before? */
178 int tfrc_rx_hist_duplicate(struct tfrc_rx_hist *h, struct sk_buff *skb)
179 {
180         const u64 seq = DCCP_SKB_CB(skb)->dccpd_seq;
181         int i;
182
183         if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, seq) <= 0)
184                 return 1;
185
186         for (i = 1; i <= h->loss_count; i++)
187                 if (tfrc_rx_hist_entry(h, i)->tfrchrx_seqno == seq)
188                         return 1;
189
190         return 0;
191 }
192 EXPORT_SYMBOL_GPL(tfrc_rx_hist_duplicate);
193
194 static void tfrc_rx_hist_swap(struct tfrc_rx_hist *h, const u8 a, const u8 b)
195 {
196         const u8 idx_a = tfrc_rx_hist_index(h, a),
197                  idx_b = tfrc_rx_hist_index(h, b);
198         struct tfrc_rx_hist_entry *tmp = h->ring[idx_a];
199
200         h->ring[idx_a] = h->ring[idx_b];
201         h->ring[idx_b] = tmp;
202 }
203
204 /*
205  * Private helper functions for loss detection.
206  *
207  * In the descriptions, `Si' refers to the sequence number of entry number i,
208  * whose NDP count is `Ni' (lower case is used for variables).
209  * Note: All __after_loss functions expect that a test against duplicates has
210  *       been performed already: the seqno of the skb must not be less than the
211  *       seqno of loss_prev; and it must not equal that of any valid hist_entry.
212  */
213 static void __one_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n2)
214 {
215         u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
216             s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
217             s2 = DCCP_SKB_CB(skb)->dccpd_seq;
218
219         if (likely(dccp_delta_seqno(s1, s2) > 0)) {     /* S1  <  S2 */
220                 h->loss_count = 2;
221                 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n2);
222                 return;
223         }
224
225         /* S0  <  S2  <  S1 */
226
227         if (dccp_loss_free(s0, s2, n2)) {
228                 u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
229
230                 if (dccp_loss_free(s2, s1, n1)) {
231                         /* hole is filled: S0, S2, and S1 are consecutive */
232                         h->loss_count = 0;
233                         h->loss_start = tfrc_rx_hist_index(h, 1);
234                 } else
235                         /* gap between S2 and S1: just update loss_prev */
236                         tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n2);
237
238         } else {        /* gap between S0 and S2 */
239                 /*
240                  * Reorder history to insert S2 between S0 and S1
241                  */
242                 tfrc_rx_hist_swap(h, 0, 3);
243                 h->loss_start = tfrc_rx_hist_index(h, 3);
244                 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n2);
245                 h->loss_count = 2;
246         }
247 }
248
249 /* return 1 if a new loss event has been identified */
250 static int __two_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n3)
251 {
252         u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
253             s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
254             s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
255             s3 = DCCP_SKB_CB(skb)->dccpd_seq;
256
257         if (likely(dccp_delta_seqno(s2, s3) > 0)) {     /* S2  <  S3 */
258                 h->loss_count = 3;
259                 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 3), skb, n3);
260                 return 1;
261         }
262
263         /* S3  <  S2 */
264
265         if (dccp_delta_seqno(s1, s3) > 0) {             /* S1  <  S3  <  S2 */
266                 /*
267                  * Reorder history to insert S3 between S1 and S2
268                  */
269                 tfrc_rx_hist_swap(h, 2, 3);
270                 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n3);
271                 h->loss_count = 3;
272                 return 1;
273         }
274
275         /* S0  <  S3  <  S1 */
276
277         if (dccp_loss_free(s0, s3, n3)) {
278                 u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
279
280                 if (dccp_loss_free(s3, s1, n1)) {
281                         /* hole between S0 and S1 filled by S3 */
282                         u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp;
283
284                         if (dccp_loss_free(s1, s2, n2)) {
285                                 /* entire hole filled by S0, S3, S1, S2 */
286                                 h->loss_start = tfrc_rx_hist_index(h, 2);
287                                 h->loss_count = 0;
288                         } else {
289                                 /* gap remains between S1 and S2 */
290                                 h->loss_start = tfrc_rx_hist_index(h, 1);
291                                 h->loss_count = 1;
292                         }
293
294                 } else /* gap exists between S3 and S1, loss_count stays at 2 */
295                         tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n3);
296
297                 return 0;
298         }
299
300         /*
301          * The remaining case:  S0  <  S3  <  S1  <  S2;  gap between S0 and S3
302          * Reorder history to insert S3 between S0 and S1.
303          */
304         tfrc_rx_hist_swap(h, 0, 3);
305         h->loss_start = tfrc_rx_hist_index(h, 3);
306         tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n3);
307         h->loss_count = 3;
308
309         return 1;
310 }
311
312 /* recycle RX history records to continue loss detection if necessary */
313 static void __three_after_loss(struct tfrc_rx_hist *h)
314 {
315         /*
316          * At this stage we know already that there is a gap between S0 and S1
317          * (since S0 was the highest sequence number received before detecting
318          * the loss). To recycle the loss record, it is thus only necessary to
319          * check for other possible gaps between S1/S2 and between S2/S3.
320          */
321         u64 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
322             s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
323             s3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_seqno;
324         u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp,
325             n3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_ndp;
326
327         if (dccp_loss_free(s1, s2, n2)) {
328
329                 if (dccp_loss_free(s2, s3, n3)) {
330                         /* no gap between S2 and S3: entire hole is filled */
331                         h->loss_start = tfrc_rx_hist_index(h, 3);
332                         h->loss_count = 0;
333                 } else {
334                         /* gap between S2 and S3 */
335                         h->loss_start = tfrc_rx_hist_index(h, 2);
336                         h->loss_count = 1;
337                 }
338
339         } else {        /* gap between S1 and S2 */
340                 h->loss_start = tfrc_rx_hist_index(h, 1);
341                 h->loss_count = 2;
342         }
343 }
344
345 /**
346  *  tfrc_rx_handle_loss  -  Loss detection and further processing
347  *  @h:             The non-empty RX history object
348  *  @lh:            Loss Intervals database to update
349  *  @skb:           Currently received packet
350  *  @ndp:           The NDP count belonging to @skb
351  *  @calc_first_li: Caller-dependent computation of first loss interval in @lh
352  *  @sk:            Used by @calc_first_li (see tfrc_lh_interval_add)
353  *  Chooses action according to pending loss, updates LI database when a new
354  *  loss was detected, and does required post-processing. Returns 1 when caller
355  *  should send feedback, 0 otherwise.
356  */
357 int tfrc_rx_handle_loss(struct tfrc_rx_hist *h,
358                         struct tfrc_loss_hist *lh,
359                         struct sk_buff *skb, u32 ndp,
360                         u32 (*calc_first_li)(struct sock *), struct sock *sk)
361 {
362         int is_new_loss = 0;
363
364         if (h->loss_count == 1) {
365                 __one_after_loss(h, skb, ndp);
366         } else if (h->loss_count != 2) {
367                 DCCP_BUG("invalid loss_count %d", h->loss_count);
368         } else if (__two_after_loss(h, skb, ndp)) {
369                 /*
370                  * Update Loss Interval database and recycle RX records
371                  */
372                 is_new_loss = tfrc_lh_interval_add(lh, h, calc_first_li, sk);
373                 __three_after_loss(h);
374         }
375         return is_new_loss;
376 }
377 EXPORT_SYMBOL_GPL(tfrc_rx_handle_loss);
378
379 int tfrc_rx_hist_alloc(struct tfrc_rx_hist *h)
380 {
381         int i;
382
383         for (i = 0; i <= TFRC_NDUPACK; i++) {
384                 h->ring[i] = kmem_cache_alloc(tfrc_rx_hist_slab, GFP_ATOMIC);
385                 if (h->ring[i] == NULL)
386                         goto out_free;
387         }
388
389         h->loss_count = h->loss_start = 0;
390         return 0;
391
392 out_free:
393         while (i-- != 0) {
394                 kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
395                 h->ring[i] = NULL;
396         }
397         return -ENOBUFS;
398 }
399 EXPORT_SYMBOL_GPL(tfrc_rx_hist_alloc);
400
401 void tfrc_rx_hist_purge(struct tfrc_rx_hist *h)
402 {
403         int i;
404
405         for (i = 0; i <= TFRC_NDUPACK; ++i)
406                 if (h->ring[i] != NULL) {
407                         kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
408                         h->ring[i] = NULL;
409                 }
410 }
411 EXPORT_SYMBOL_GPL(tfrc_rx_hist_purge);
412
413 /**
414  * tfrc_rx_hist_rtt_last_s - reference entry to compute RTT samples against
415  */
416 static inline struct tfrc_rx_hist_entry *
417                         tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist *h)
418 {
419         return h->ring[0];
420 }
421
422 /**
423  * tfrc_rx_hist_rtt_prev_s: previously suitable (wrt rtt_last_s) RTT-sampling entry
424  */
425 static inline struct tfrc_rx_hist_entry *
426                         tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist *h)
427 {
428         return h->ring[h->rtt_sample_prev];
429 }
430
431 /**
432  * tfrc_rx_hist_sample_rtt  -  Sample RTT from timestamp / CCVal
433  * Based on ideas presented in RFC 4342, 8.1. Returns 0 if it was not able
434  * to compute a sample with given data - calling function should check this.
435  */
436 u32 tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist *h, const struct sk_buff *skb)
437 {
438         u32 sample = 0,
439             delta_v = SUB16(dccp_hdr(skb)->dccph_ccval,
440                             tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
441
442         if (delta_v < 1 || delta_v > 4) {       /* unsuitable CCVal delta */
443                 if (h->rtt_sample_prev == 2) {  /* previous candidate stored */
444                         sample = SUB16(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
445                                        tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
446                         if (sample)
447                                 sample = 4 / sample *
448                                          ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_tstamp,
449                                                         tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp);
450                         else    /*
451                                  * FIXME: This condition is in principle not
452                                  * possible but occurs when CCID is used for
453                                  * two-way data traffic. I have tried to trace
454                                  * it, but the cause does not seem to be here.
455                                  */
456                                 DCCP_BUG("please report to dccp@vger.kernel.org"
457                                          " => prev = %u, last = %u",
458                                          tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
459                                          tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
460                 } else if (delta_v < 1) {
461                         h->rtt_sample_prev = 1;
462                         goto keep_ref_for_next_time;
463                 }
464
465         } else if (delta_v == 4) /* optimal match */
466                 sample = ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp));
467         else {                   /* suboptimal match */
468                 h->rtt_sample_prev = 2;
469                 goto keep_ref_for_next_time;
470         }
471
472         if (unlikely(sample > DCCP_SANE_RTT_MAX)) {
473                 DCCP_WARN("RTT sample %u too large, using max\n", sample);
474                 sample = DCCP_SANE_RTT_MAX;
475         }
476
477         h->rtt_sample_prev = 0;        /* use current entry as next reference */
478 keep_ref_for_next_time:
479
480         return sample;
481 }
482 EXPORT_SYMBOL_GPL(tfrc_rx_hist_sample_rtt);