e0935282945fb09312efe32eca51e0850218d316
[pandora-kernel.git] / net / core / sock.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Generic socket support routines. Memory allocators, socket lock/release
7  *              handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *              Alan Cox        :       Numerous verify_area() problems
17  *              Alan Cox        :       Connecting on a connecting socket
18  *                                      now returns an error for tcp.
19  *              Alan Cox        :       sock->protocol is set correctly.
20  *                                      and is not sometimes left as 0.
21  *              Alan Cox        :       connect handles icmp errors on a
22  *                                      connect properly. Unfortunately there
23  *                                      is a restart syscall nasty there. I
24  *                                      can't match BSD without hacking the C
25  *                                      library. Ideas urgently sought!
26  *              Alan Cox        :       Disallow bind() to addresses that are
27  *                                      not ours - especially broadcast ones!!
28  *              Alan Cox        :       Socket 1024 _IS_ ok for users. (fencepost)
29  *              Alan Cox        :       sock_wfree/sock_rfree don't destroy sockets,
30  *                                      instead they leave that for the DESTROY timer.
31  *              Alan Cox        :       Clean up error flag in accept
32  *              Alan Cox        :       TCP ack handling is buggy, the DESTROY timer
33  *                                      was buggy. Put a remove_sock() in the handler
34  *                                      for memory when we hit 0. Also altered the timer
35  *                                      code. The ACK stuff can wait and needs major
36  *                                      TCP layer surgery.
37  *              Alan Cox        :       Fixed TCP ack bug, removed remove sock
38  *                                      and fixed timer/inet_bh race.
39  *              Alan Cox        :       Added zapped flag for TCP
40  *              Alan Cox        :       Move kfree_skb into skbuff.c and tidied up surplus code
41  *              Alan Cox        :       for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *              Alan Cox        :       kfree_s calls now are kfree_skbmem so we can track skb resources
43  *              Alan Cox        :       Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *              Alan Cox        :       Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *              Rick Sladkey    :       Relaxed UDP rules for matching packets.
46  *              C.E.Hawkins     :       IFF_PROMISC/SIOCGHWADDR support
47  *      Pauline Middelink       :       identd support
48  *              Alan Cox        :       Fixed connect() taking signals I think.
49  *              Alan Cox        :       SO_LINGER supported
50  *              Alan Cox        :       Error reporting fixes
51  *              Anonymous       :       inet_create tidied up (sk->reuse setting)
52  *              Alan Cox        :       inet sockets don't set sk->type!
53  *              Alan Cox        :       Split socket option code
54  *              Alan Cox        :       Callbacks
55  *              Alan Cox        :       Nagle flag for Charles & Johannes stuff
56  *              Alex            :       Removed restriction on inet fioctl
57  *              Alan Cox        :       Splitting INET from NET core
58  *              Alan Cox        :       Fixed bogus SO_TYPE handling in getsockopt()
59  *              Adam Caldwell   :       Missing return in SO_DONTROUTE/SO_DEBUG code
60  *              Alan Cox        :       Split IP from generic code
61  *              Alan Cox        :       New kfree_skbmem()
62  *              Alan Cox        :       Make SO_DEBUG superuser only.
63  *              Alan Cox        :       Allow anyone to clear SO_DEBUG
64  *                                      (compatibility fix)
65  *              Alan Cox        :       Added optimistic memory grabbing for AF_UNIX throughput.
66  *              Alan Cox        :       Allocator for a socket is settable.
67  *              Alan Cox        :       SO_ERROR includes soft errors.
68  *              Alan Cox        :       Allow NULL arguments on some SO_ opts
69  *              Alan Cox        :       Generic socket allocation to make hooks
70  *                                      easier (suggested by Craig Metz).
71  *              Michael Pall    :       SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *              Jay Schulist    :       Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *              Andi Kleen      :       Add sock_kmalloc()/sock_kfree_s()
79  *              Andi Kleen      :       Fix write_space callback
80  *              Chris Evans     :       Security fixes - signedness again
81  *              Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *              This program is free software; you can redistribute it and/or
87  *              modify it under the terms of the GNU General Public License
88  *              as published by the Free Software Foundation; either version
89  *              2 of the License, or (at your option) any later version.
90  */
91
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
114
115 #include <asm/uaccess.h>
116 #include <asm/system.h>
117
118 #include <linux/netdevice.h>
119 #include <net/protocol.h>
120 #include <linux/skbuff.h>
121 #include <net/net_namespace.h>
122 #include <net/request_sock.h>
123 #include <net/sock.h>
124 #include <linux/net_tstamp.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127 #include <net/cls_cgroup.h>
128
129 #include <linux/filter.h>
130
131 #include <trace/events/sock.h>
132
133 #ifdef CONFIG_INET
134 #include <net/tcp.h>
135 #endif
136
137 /*
138  * Each address family might have different locking rules, so we have
139  * one slock key per address family:
140  */
141 static struct lock_class_key af_family_keys[AF_MAX];
142 static struct lock_class_key af_family_slock_keys[AF_MAX];
143
144 /*
145  * Make lock validator output more readable. (we pre-construct these
146  * strings build-time, so that runtime initialization of socket
147  * locks is fast):
148  */
149 static const char *const af_family_key_strings[AF_MAX+1] = {
150   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
151   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
152   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
153   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
154   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
155   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
156   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
157   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
158   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
159   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
160   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
161   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
162   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
163   "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
164 };
165 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
166   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
167   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
168   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
169   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
170   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
171   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
172   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
173   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
174   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
175   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
176   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
177   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
178   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
179   "slock-AF_NFC"   , "slock-AF_MAX"
180 };
181 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
182   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
183   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
184   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
185   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
186   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
187   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
188   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
189   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
190   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
191   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
192   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
193   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
194   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
195   "clock-AF_NFC"   , "clock-AF_MAX"
196 };
197
198 /*
199  * sk_callback_lock locking rules are per-address-family,
200  * so split the lock classes by using a per-AF key:
201  */
202 static struct lock_class_key af_callback_keys[AF_MAX];
203
204 /* Take into consideration the size of the struct sk_buff overhead in the
205  * determination of these values, since that is non-constant across
206  * platforms.  This makes socket queueing behavior and performance
207  * not depend upon such differences.
208  */
209 #define _SK_MEM_PACKETS         256
210 #define _SK_MEM_OVERHEAD        SKB_TRUESIZE(256)
211 #define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
212 #define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
213
214 /* Run time adjustable parameters. */
215 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
216 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
217 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
218 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
219
220 /* Maximal space eaten by iovec or ancillary data plus some space */
221 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
222 EXPORT_SYMBOL(sysctl_optmem_max);
223
224 #if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
225 int net_cls_subsys_id = -1;
226 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
227 #endif
228
229 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
230 {
231         struct timeval tv;
232
233         if (optlen < sizeof(tv))
234                 return -EINVAL;
235         if (copy_from_user(&tv, optval, sizeof(tv)))
236                 return -EFAULT;
237         if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
238                 return -EDOM;
239
240         if (tv.tv_sec < 0) {
241                 static int warned __read_mostly;
242
243                 *timeo_p = 0;
244                 if (warned < 10 && net_ratelimit()) {
245                         warned++;
246                         printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
247                                "tries to set negative timeout\n",
248                                 current->comm, task_pid_nr(current));
249                 }
250                 return 0;
251         }
252         *timeo_p = MAX_SCHEDULE_TIMEOUT;
253         if (tv.tv_sec == 0 && tv.tv_usec == 0)
254                 return 0;
255         if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
256                 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
257         return 0;
258 }
259
260 static void sock_warn_obsolete_bsdism(const char *name)
261 {
262         static int warned;
263         static char warncomm[TASK_COMM_LEN];
264         if (strcmp(warncomm, current->comm) && warned < 5) {
265                 strcpy(warncomm,  current->comm);
266                 printk(KERN_WARNING "process `%s' is using obsolete "
267                        "%s SO_BSDCOMPAT\n", warncomm, name);
268                 warned++;
269         }
270 }
271
272 static void sock_disable_timestamp(struct sock *sk, int flag)
273 {
274         if (sock_flag(sk, flag)) {
275                 sock_reset_flag(sk, flag);
276                 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
277                     !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
278                         net_disable_timestamp();
279                 }
280         }
281 }
282
283
284 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
285 {
286         int err;
287         int skb_len;
288         unsigned long flags;
289         struct sk_buff_head *list = &sk->sk_receive_queue;
290
291         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
292                 atomic_inc(&sk->sk_drops);
293                 trace_sock_rcvqueue_full(sk, skb);
294                 return -ENOMEM;
295         }
296
297         err = sk_filter(sk, skb);
298         if (err)
299                 return err;
300
301         if (!sk_rmem_schedule(sk, skb->truesize)) {
302                 atomic_inc(&sk->sk_drops);
303                 return -ENOBUFS;
304         }
305
306         skb->dev = NULL;
307         skb_set_owner_r(skb, sk);
308
309         /* Cache the SKB length before we tack it onto the receive
310          * queue.  Once it is added it no longer belongs to us and
311          * may be freed by other threads of control pulling packets
312          * from the queue.
313          */
314         skb_len = skb->len;
315
316         /* we escape from rcu protected region, make sure we dont leak
317          * a norefcounted dst
318          */
319         skb_dst_force(skb);
320
321         spin_lock_irqsave(&list->lock, flags);
322         skb->dropcount = atomic_read(&sk->sk_drops);
323         __skb_queue_tail(list, skb);
324         spin_unlock_irqrestore(&list->lock, flags);
325
326         if (!sock_flag(sk, SOCK_DEAD))
327                 sk->sk_data_ready(sk, skb_len);
328         return 0;
329 }
330 EXPORT_SYMBOL(sock_queue_rcv_skb);
331
332 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
333 {
334         int rc = NET_RX_SUCCESS;
335
336         if (sk_filter(sk, skb))
337                 goto discard_and_relse;
338
339         skb->dev = NULL;
340
341         if (sk_rcvqueues_full(sk, skb)) {
342                 atomic_inc(&sk->sk_drops);
343                 goto discard_and_relse;
344         }
345         if (nested)
346                 bh_lock_sock_nested(sk);
347         else
348                 bh_lock_sock(sk);
349         if (!sock_owned_by_user(sk)) {
350                 /*
351                  * trylock + unlock semantics:
352                  */
353                 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
354
355                 rc = sk_backlog_rcv(sk, skb);
356
357                 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
358         } else if (sk_add_backlog(sk, skb)) {
359                 bh_unlock_sock(sk);
360                 atomic_inc(&sk->sk_drops);
361                 goto discard_and_relse;
362         }
363
364         bh_unlock_sock(sk);
365 out:
366         sock_put(sk);
367         return rc;
368 discard_and_relse:
369         kfree_skb(skb);
370         goto out;
371 }
372 EXPORT_SYMBOL(sk_receive_skb);
373
374 void sk_reset_txq(struct sock *sk)
375 {
376         sk_tx_queue_clear(sk);
377 }
378 EXPORT_SYMBOL(sk_reset_txq);
379
380 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
381 {
382         struct dst_entry *dst = __sk_dst_get(sk);
383
384         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
385                 sk_tx_queue_clear(sk);
386                 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
387                 dst_release(dst);
388                 return NULL;
389         }
390
391         return dst;
392 }
393 EXPORT_SYMBOL(__sk_dst_check);
394
395 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
396 {
397         struct dst_entry *dst = sk_dst_get(sk);
398
399         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
400                 sk_dst_reset(sk);
401                 dst_release(dst);
402                 return NULL;
403         }
404
405         return dst;
406 }
407 EXPORT_SYMBOL(sk_dst_check);
408
409 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
410 {
411         int ret = -ENOPROTOOPT;
412 #ifdef CONFIG_NETDEVICES
413         struct net *net = sock_net(sk);
414         char devname[IFNAMSIZ];
415         int index;
416
417         /* Sorry... */
418         ret = -EPERM;
419         if (!capable(CAP_NET_RAW))
420                 goto out;
421
422         ret = -EINVAL;
423         if (optlen < 0)
424                 goto out;
425
426         /* Bind this socket to a particular device like "eth0",
427          * as specified in the passed interface name. If the
428          * name is "" or the option length is zero the socket
429          * is not bound.
430          */
431         if (optlen > IFNAMSIZ - 1)
432                 optlen = IFNAMSIZ - 1;
433         memset(devname, 0, sizeof(devname));
434
435         ret = -EFAULT;
436         if (copy_from_user(devname, optval, optlen))
437                 goto out;
438
439         index = 0;
440         if (devname[0] != '\0') {
441                 struct net_device *dev;
442
443                 rcu_read_lock();
444                 dev = dev_get_by_name_rcu(net, devname);
445                 if (dev)
446                         index = dev->ifindex;
447                 rcu_read_unlock();
448                 ret = -ENODEV;
449                 if (!dev)
450                         goto out;
451         }
452
453         lock_sock(sk);
454         sk->sk_bound_dev_if = index;
455         sk_dst_reset(sk);
456         release_sock(sk);
457
458         ret = 0;
459
460 out:
461 #endif
462
463         return ret;
464 }
465
466 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
467 {
468         if (valbool)
469                 sock_set_flag(sk, bit);
470         else
471                 sock_reset_flag(sk, bit);
472 }
473
474 /*
475  *      This is meant for all protocols to use and covers goings on
476  *      at the socket level. Everything here is generic.
477  */
478
479 int sock_setsockopt(struct socket *sock, int level, int optname,
480                     char __user *optval, unsigned int optlen)
481 {
482         struct sock *sk = sock->sk;
483         int val;
484         int valbool;
485         struct linger ling;
486         int ret = 0;
487
488         /*
489          *      Options without arguments
490          */
491
492         if (optname == SO_BINDTODEVICE)
493                 return sock_bindtodevice(sk, optval, optlen);
494
495         if (optlen < sizeof(int))
496                 return -EINVAL;
497
498         if (get_user(val, (int __user *)optval))
499                 return -EFAULT;
500
501         valbool = val ? 1 : 0;
502
503         lock_sock(sk);
504
505         switch (optname) {
506         case SO_DEBUG:
507                 if (val && !capable(CAP_NET_ADMIN))
508                         ret = -EACCES;
509                 else
510                         sock_valbool_flag(sk, SOCK_DBG, valbool);
511                 break;
512         case SO_REUSEADDR:
513                 sk->sk_reuse = valbool;
514                 break;
515         case SO_TYPE:
516         case SO_PROTOCOL:
517         case SO_DOMAIN:
518         case SO_ERROR:
519                 ret = -ENOPROTOOPT;
520                 break;
521         case SO_DONTROUTE:
522                 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
523                 break;
524         case SO_BROADCAST:
525                 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
526                 break;
527         case SO_SNDBUF:
528                 /* Don't error on this BSD doesn't and if you think
529                    about it this is right. Otherwise apps have to
530                    play 'guess the biggest size' games. RCVBUF/SNDBUF
531                    are treated in BSD as hints */
532
533                 if (val > sysctl_wmem_max)
534                         val = sysctl_wmem_max;
535 set_sndbuf:
536                 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
537                 if ((val * 2) < SOCK_MIN_SNDBUF)
538                         sk->sk_sndbuf = SOCK_MIN_SNDBUF;
539                 else
540                         sk->sk_sndbuf = val * 2;
541
542                 /*
543                  *      Wake up sending tasks if we
544                  *      upped the value.
545                  */
546                 sk->sk_write_space(sk);
547                 break;
548
549         case SO_SNDBUFFORCE:
550                 if (!capable(CAP_NET_ADMIN)) {
551                         ret = -EPERM;
552                         break;
553                 }
554                 goto set_sndbuf;
555
556         case SO_RCVBUF:
557                 /* Don't error on this BSD doesn't and if you think
558                    about it this is right. Otherwise apps have to
559                    play 'guess the biggest size' games. RCVBUF/SNDBUF
560                    are treated in BSD as hints */
561
562                 if (val > sysctl_rmem_max)
563                         val = sysctl_rmem_max;
564 set_rcvbuf:
565                 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
566                 /*
567                  * We double it on the way in to account for
568                  * "struct sk_buff" etc. overhead.   Applications
569                  * assume that the SO_RCVBUF setting they make will
570                  * allow that much actual data to be received on that
571                  * socket.
572                  *
573                  * Applications are unaware that "struct sk_buff" and
574                  * other overheads allocate from the receive buffer
575                  * during socket buffer allocation.
576                  *
577                  * And after considering the possible alternatives,
578                  * returning the value we actually used in getsockopt
579                  * is the most desirable behavior.
580                  */
581                 if ((val * 2) < SOCK_MIN_RCVBUF)
582                         sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
583                 else
584                         sk->sk_rcvbuf = val * 2;
585                 break;
586
587         case SO_RCVBUFFORCE:
588                 if (!capable(CAP_NET_ADMIN)) {
589                         ret = -EPERM;
590                         break;
591                 }
592                 goto set_rcvbuf;
593
594         case SO_KEEPALIVE:
595 #ifdef CONFIG_INET
596                 if (sk->sk_protocol == IPPROTO_TCP &&
597                     sk->sk_type == SOCK_STREAM)
598                         tcp_set_keepalive(sk, valbool);
599 #endif
600                 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
601                 break;
602
603         case SO_OOBINLINE:
604                 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
605                 break;
606
607         case SO_NO_CHECK:
608                 sk->sk_no_check = valbool;
609                 break;
610
611         case SO_PRIORITY:
612                 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
613                         sk->sk_priority = val;
614                 else
615                         ret = -EPERM;
616                 break;
617
618         case SO_LINGER:
619                 if (optlen < sizeof(ling)) {
620                         ret = -EINVAL;  /* 1003.1g */
621                         break;
622                 }
623                 if (copy_from_user(&ling, optval, sizeof(ling))) {
624                         ret = -EFAULT;
625                         break;
626                 }
627                 if (!ling.l_onoff)
628                         sock_reset_flag(sk, SOCK_LINGER);
629                 else {
630 #if (BITS_PER_LONG == 32)
631                         if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
632                                 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
633                         else
634 #endif
635                                 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
636                         sock_set_flag(sk, SOCK_LINGER);
637                 }
638                 break;
639
640         case SO_BSDCOMPAT:
641                 sock_warn_obsolete_bsdism("setsockopt");
642                 break;
643
644         case SO_PASSCRED:
645                 if (valbool)
646                         set_bit(SOCK_PASSCRED, &sock->flags);
647                 else
648                         clear_bit(SOCK_PASSCRED, &sock->flags);
649                 break;
650
651         case SO_TIMESTAMP:
652         case SO_TIMESTAMPNS:
653                 if (valbool)  {
654                         if (optname == SO_TIMESTAMP)
655                                 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
656                         else
657                                 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
658                         sock_set_flag(sk, SOCK_RCVTSTAMP);
659                         sock_enable_timestamp(sk, SOCK_TIMESTAMP);
660                 } else {
661                         sock_reset_flag(sk, SOCK_RCVTSTAMP);
662                         sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
663                 }
664                 break;
665
666         case SO_TIMESTAMPING:
667                 if (val & ~SOF_TIMESTAMPING_MASK) {
668                         ret = -EINVAL;
669                         break;
670                 }
671                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
672                                   val & SOF_TIMESTAMPING_TX_HARDWARE);
673                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
674                                   val & SOF_TIMESTAMPING_TX_SOFTWARE);
675                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
676                                   val & SOF_TIMESTAMPING_RX_HARDWARE);
677                 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
678                         sock_enable_timestamp(sk,
679                                               SOCK_TIMESTAMPING_RX_SOFTWARE);
680                 else
681                         sock_disable_timestamp(sk,
682                                                SOCK_TIMESTAMPING_RX_SOFTWARE);
683                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
684                                   val & SOF_TIMESTAMPING_SOFTWARE);
685                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
686                                   val & SOF_TIMESTAMPING_SYS_HARDWARE);
687                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
688                                   val & SOF_TIMESTAMPING_RAW_HARDWARE);
689                 break;
690
691         case SO_RCVLOWAT:
692                 if (val < 0)
693                         val = INT_MAX;
694                 sk->sk_rcvlowat = val ? : 1;
695                 break;
696
697         case SO_RCVTIMEO:
698                 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
699                 break;
700
701         case SO_SNDTIMEO:
702                 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
703                 break;
704
705         case SO_ATTACH_FILTER:
706                 ret = -EINVAL;
707                 if (optlen == sizeof(struct sock_fprog)) {
708                         struct sock_fprog fprog;
709
710                         ret = -EFAULT;
711                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
712                                 break;
713
714                         ret = sk_attach_filter(&fprog, sk);
715                 }
716                 break;
717
718         case SO_DETACH_FILTER:
719                 ret = sk_detach_filter(sk);
720                 break;
721
722         case SO_PASSSEC:
723                 if (valbool)
724                         set_bit(SOCK_PASSSEC, &sock->flags);
725                 else
726                         clear_bit(SOCK_PASSSEC, &sock->flags);
727                 break;
728         case SO_MARK:
729                 if (!capable(CAP_NET_ADMIN))
730                         ret = -EPERM;
731                 else
732                         sk->sk_mark = val;
733                 break;
734
735                 /* We implement the SO_SNDLOWAT etc to
736                    not be settable (1003.1g 5.3) */
737         case SO_RXQ_OVFL:
738                 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
739                 break;
740         default:
741                 ret = -ENOPROTOOPT;
742                 break;
743         }
744         release_sock(sk);
745         return ret;
746 }
747 EXPORT_SYMBOL(sock_setsockopt);
748
749
750 void cred_to_ucred(struct pid *pid, const struct cred *cred,
751                    struct ucred *ucred)
752 {
753         ucred->pid = pid_vnr(pid);
754         ucred->uid = ucred->gid = -1;
755         if (cred) {
756                 struct user_namespace *current_ns = current_user_ns();
757
758                 ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
759                 ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
760         }
761 }
762 EXPORT_SYMBOL_GPL(cred_to_ucred);
763
764 void cred_real_to_ucred(struct pid *pid, const struct cred *cred,
765                         struct ucred *ucred)
766 {
767         ucred->pid = pid_vnr(pid);
768         ucred->uid = ucred->gid = -1;
769         if (cred) {
770                 struct user_namespace *current_ns = current_user_ns();
771
772                 ucred->uid = user_ns_map_uid(current_ns, cred, cred->uid);
773                 ucred->gid = user_ns_map_gid(current_ns, cred, cred->gid);
774         }
775 }
776 EXPORT_SYMBOL_GPL(cred_real_to_ucred);
777
778 int sock_getsockopt(struct socket *sock, int level, int optname,
779                     char __user *optval, int __user *optlen)
780 {
781         struct sock *sk = sock->sk;
782
783         union {
784                 int val;
785                 struct linger ling;
786                 struct timeval tm;
787         } v;
788
789         int lv = sizeof(int);
790         int len;
791
792         if (get_user(len, optlen))
793                 return -EFAULT;
794         if (len < 0)
795                 return -EINVAL;
796
797         memset(&v, 0, sizeof(v));
798
799         switch (optname) {
800         case SO_DEBUG:
801                 v.val = sock_flag(sk, SOCK_DBG);
802                 break;
803
804         case SO_DONTROUTE:
805                 v.val = sock_flag(sk, SOCK_LOCALROUTE);
806                 break;
807
808         case SO_BROADCAST:
809                 v.val = !!sock_flag(sk, SOCK_BROADCAST);
810                 break;
811
812         case SO_SNDBUF:
813                 v.val = sk->sk_sndbuf;
814                 break;
815
816         case SO_RCVBUF:
817                 v.val = sk->sk_rcvbuf;
818                 break;
819
820         case SO_REUSEADDR:
821                 v.val = sk->sk_reuse;
822                 break;
823
824         case SO_KEEPALIVE:
825                 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
826                 break;
827
828         case SO_TYPE:
829                 v.val = sk->sk_type;
830                 break;
831
832         case SO_PROTOCOL:
833                 v.val = sk->sk_protocol;
834                 break;
835
836         case SO_DOMAIN:
837                 v.val = sk->sk_family;
838                 break;
839
840         case SO_ERROR:
841                 v.val = -sock_error(sk);
842                 if (v.val == 0)
843                         v.val = xchg(&sk->sk_err_soft, 0);
844                 break;
845
846         case SO_OOBINLINE:
847                 v.val = !!sock_flag(sk, SOCK_URGINLINE);
848                 break;
849
850         case SO_NO_CHECK:
851                 v.val = sk->sk_no_check;
852                 break;
853
854         case SO_PRIORITY:
855                 v.val = sk->sk_priority;
856                 break;
857
858         case SO_LINGER:
859                 lv              = sizeof(v.ling);
860                 v.ling.l_onoff  = !!sock_flag(sk, SOCK_LINGER);
861                 v.ling.l_linger = sk->sk_lingertime / HZ;
862                 break;
863
864         case SO_BSDCOMPAT:
865                 sock_warn_obsolete_bsdism("getsockopt");
866                 break;
867
868         case SO_TIMESTAMP:
869                 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
870                                 !sock_flag(sk, SOCK_RCVTSTAMPNS);
871                 break;
872
873         case SO_TIMESTAMPNS:
874                 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
875                 break;
876
877         case SO_TIMESTAMPING:
878                 v.val = 0;
879                 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
880                         v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
881                 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
882                         v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
883                 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
884                         v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
885                 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
886                         v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
887                 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
888                         v.val |= SOF_TIMESTAMPING_SOFTWARE;
889                 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
890                         v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
891                 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
892                         v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
893                 break;
894
895         case SO_RCVTIMEO:
896                 lv = sizeof(struct timeval);
897                 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
898                         v.tm.tv_sec = 0;
899                         v.tm.tv_usec = 0;
900                 } else {
901                         v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
902                         v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
903                 }
904                 break;
905
906         case SO_SNDTIMEO:
907                 lv = sizeof(struct timeval);
908                 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
909                         v.tm.tv_sec = 0;
910                         v.tm.tv_usec = 0;
911                 } else {
912                         v.tm.tv_sec = sk->sk_sndtimeo / HZ;
913                         v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
914                 }
915                 break;
916
917         case SO_RCVLOWAT:
918                 v.val = sk->sk_rcvlowat;
919                 break;
920
921         case SO_SNDLOWAT:
922                 v.val = 1;
923                 break;
924
925         case SO_PASSCRED:
926                 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
927                 break;
928
929         case SO_PEERCRED:
930         {
931                 struct ucred peercred;
932                 if (len > sizeof(peercred))
933                         len = sizeof(peercred);
934                 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
935                 if (copy_to_user(optval, &peercred, len))
936                         return -EFAULT;
937                 goto lenout;
938         }
939
940         case SO_PEERNAME:
941         {
942                 char address[128];
943
944                 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
945                         return -ENOTCONN;
946                 if (lv < len)
947                         return -EINVAL;
948                 if (copy_to_user(optval, address, len))
949                         return -EFAULT;
950                 goto lenout;
951         }
952
953         /* Dubious BSD thing... Probably nobody even uses it, but
954          * the UNIX standard wants it for whatever reason... -DaveM
955          */
956         case SO_ACCEPTCONN:
957                 v.val = sk->sk_state == TCP_LISTEN;
958                 break;
959
960         case SO_PASSSEC:
961                 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
962                 break;
963
964         case SO_PEERSEC:
965                 return security_socket_getpeersec_stream(sock, optval, optlen, len);
966
967         case SO_MARK:
968                 v.val = sk->sk_mark;
969                 break;
970
971         case SO_RXQ_OVFL:
972                 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
973                 break;
974
975         default:
976                 return -ENOPROTOOPT;
977         }
978
979         if (len > lv)
980                 len = lv;
981         if (copy_to_user(optval, &v, len))
982                 return -EFAULT;
983 lenout:
984         if (put_user(len, optlen))
985                 return -EFAULT;
986         return 0;
987 }
988
989 /*
990  * Initialize an sk_lock.
991  *
992  * (We also register the sk_lock with the lock validator.)
993  */
994 static inline void sock_lock_init(struct sock *sk)
995 {
996         sock_lock_init_class_and_name(sk,
997                         af_family_slock_key_strings[sk->sk_family],
998                         af_family_slock_keys + sk->sk_family,
999                         af_family_key_strings[sk->sk_family],
1000                         af_family_keys + sk->sk_family);
1001 }
1002
1003 /*
1004  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1005  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1006  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1007  */
1008 static void sock_copy(struct sock *nsk, const struct sock *osk)
1009 {
1010 #ifdef CONFIG_SECURITY_NETWORK
1011         void *sptr = nsk->sk_security;
1012 #endif
1013         memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1014
1015         memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1016                osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1017
1018 #ifdef CONFIG_SECURITY_NETWORK
1019         nsk->sk_security = sptr;
1020         security_sk_clone(osk, nsk);
1021 #endif
1022 }
1023
1024 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1025 {
1026         unsigned long nulls1, nulls2;
1027
1028         nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1029         nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1030         if (nulls1 > nulls2)
1031                 swap(nulls1, nulls2);
1032
1033         if (nulls1 != 0)
1034                 memset((char *)sk, 0, nulls1);
1035         memset((char *)sk + nulls1 + sizeof(void *), 0,
1036                nulls2 - nulls1 - sizeof(void *));
1037         memset((char *)sk + nulls2 + sizeof(void *), 0,
1038                size - nulls2 - sizeof(void *));
1039 }
1040 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1041
1042 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1043                 int family)
1044 {
1045         struct sock *sk;
1046         struct kmem_cache *slab;
1047
1048         slab = prot->slab;
1049         if (slab != NULL) {
1050                 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1051                 if (!sk)
1052                         return sk;
1053                 if (priority & __GFP_ZERO) {
1054                         if (prot->clear_sk)
1055                                 prot->clear_sk(sk, prot->obj_size);
1056                         else
1057                                 sk_prot_clear_nulls(sk, prot->obj_size);
1058                 }
1059         } else
1060                 sk = kmalloc(prot->obj_size, priority);
1061
1062         if (sk != NULL) {
1063                 kmemcheck_annotate_bitfield(sk, flags);
1064
1065                 if (security_sk_alloc(sk, family, priority))
1066                         goto out_free;
1067
1068                 if (!try_module_get(prot->owner))
1069                         goto out_free_sec;
1070                 sk_tx_queue_clear(sk);
1071         }
1072
1073         return sk;
1074
1075 out_free_sec:
1076         security_sk_free(sk);
1077 out_free:
1078         if (slab != NULL)
1079                 kmem_cache_free(slab, sk);
1080         else
1081                 kfree(sk);
1082         return NULL;
1083 }
1084
1085 static void sk_prot_free(struct proto *prot, struct sock *sk)
1086 {
1087         struct kmem_cache *slab;
1088         struct module *owner;
1089
1090         owner = prot->owner;
1091         slab = prot->slab;
1092
1093         security_sk_free(sk);
1094         if (slab != NULL)
1095                 kmem_cache_free(slab, sk);
1096         else
1097                 kfree(sk);
1098         module_put(owner);
1099 }
1100
1101 #ifdef CONFIG_CGROUPS
1102 void sock_update_classid(struct sock *sk)
1103 {
1104         u32 classid;
1105
1106         rcu_read_lock();  /* doing current task, which cannot vanish. */
1107         classid = task_cls_classid(current);
1108         rcu_read_unlock();
1109         if (classid && classid != sk->sk_classid)
1110                 sk->sk_classid = classid;
1111 }
1112 EXPORT_SYMBOL(sock_update_classid);
1113 #endif
1114
1115 /**
1116  *      sk_alloc - All socket objects are allocated here
1117  *      @net: the applicable net namespace
1118  *      @family: protocol family
1119  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1120  *      @prot: struct proto associated with this new sock instance
1121  */
1122 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1123                       struct proto *prot)
1124 {
1125         struct sock *sk;
1126
1127         sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1128         if (sk) {
1129                 sk->sk_family = family;
1130                 /*
1131                  * See comment in struct sock definition to understand
1132                  * why we need sk_prot_creator -acme
1133                  */
1134                 sk->sk_prot = sk->sk_prot_creator = prot;
1135                 sock_lock_init(sk);
1136                 sock_net_set(sk, get_net(net));
1137                 atomic_set(&sk->sk_wmem_alloc, 1);
1138
1139                 sock_update_classid(sk);
1140         }
1141
1142         return sk;
1143 }
1144 EXPORT_SYMBOL(sk_alloc);
1145
1146 static void __sk_free(struct sock *sk)
1147 {
1148         struct sk_filter *filter;
1149
1150         if (sk->sk_destruct)
1151                 sk->sk_destruct(sk);
1152
1153         filter = rcu_dereference_check(sk->sk_filter,
1154                                        atomic_read(&sk->sk_wmem_alloc) == 0);
1155         if (filter) {
1156                 sk_filter_uncharge(sk, filter);
1157                 RCU_INIT_POINTER(sk->sk_filter, NULL);
1158         }
1159
1160         sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1161         sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1162
1163         if (atomic_read(&sk->sk_omem_alloc))
1164                 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1165                        __func__, atomic_read(&sk->sk_omem_alloc));
1166
1167         if (sk->sk_peer_cred)
1168                 put_cred(sk->sk_peer_cred);
1169         put_pid(sk->sk_peer_pid);
1170         put_net(sock_net(sk));
1171         sk_prot_free(sk->sk_prot_creator, sk);
1172 }
1173
1174 void sk_free(struct sock *sk)
1175 {
1176         /*
1177          * We subtract one from sk_wmem_alloc and can know if
1178          * some packets are still in some tx queue.
1179          * If not null, sock_wfree() will call __sk_free(sk) later
1180          */
1181         if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1182                 __sk_free(sk);
1183 }
1184 EXPORT_SYMBOL(sk_free);
1185
1186 /*
1187  * Last sock_put should drop reference to sk->sk_net. It has already
1188  * been dropped in sk_change_net. Taking reference to stopping namespace
1189  * is not an option.
1190  * Take reference to a socket to remove it from hash _alive_ and after that
1191  * destroy it in the context of init_net.
1192  */
1193 void sk_release_kernel(struct sock *sk)
1194 {
1195         if (sk == NULL || sk->sk_socket == NULL)
1196                 return;
1197
1198         sock_hold(sk);
1199         sock_release(sk->sk_socket);
1200         release_net(sock_net(sk));
1201         sock_net_set(sk, get_net(&init_net));
1202         sock_put(sk);
1203 }
1204 EXPORT_SYMBOL(sk_release_kernel);
1205
1206 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1207 {
1208         struct sock *newsk;
1209
1210         newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1211         if (newsk != NULL) {
1212                 struct sk_filter *filter;
1213
1214                 sock_copy(newsk, sk);
1215
1216                 /* SANITY */
1217                 get_net(sock_net(newsk));
1218                 sk_node_init(&newsk->sk_node);
1219                 sock_lock_init(newsk);
1220                 bh_lock_sock(newsk);
1221                 newsk->sk_backlog.head  = newsk->sk_backlog.tail = NULL;
1222                 newsk->sk_backlog.len = 0;
1223
1224                 atomic_set(&newsk->sk_rmem_alloc, 0);
1225                 /*
1226                  * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1227                  */
1228                 atomic_set(&newsk->sk_wmem_alloc, 1);
1229                 atomic_set(&newsk->sk_omem_alloc, 0);
1230                 skb_queue_head_init(&newsk->sk_receive_queue);
1231                 skb_queue_head_init(&newsk->sk_write_queue);
1232 #ifdef CONFIG_NET_DMA
1233                 skb_queue_head_init(&newsk->sk_async_wait_queue);
1234 #endif
1235
1236                 spin_lock_init(&newsk->sk_dst_lock);
1237                 rwlock_init(&newsk->sk_callback_lock);
1238                 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1239                                 af_callback_keys + newsk->sk_family,
1240                                 af_family_clock_key_strings[newsk->sk_family]);
1241
1242                 newsk->sk_dst_cache     = NULL;
1243                 newsk->sk_wmem_queued   = 0;
1244                 newsk->sk_forward_alloc = 0;
1245                 newsk->sk_send_head     = NULL;
1246                 newsk->sk_userlocks     = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1247
1248                 sock_reset_flag(newsk, SOCK_DONE);
1249                 skb_queue_head_init(&newsk->sk_error_queue);
1250
1251                 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1252                 if (filter != NULL)
1253                         sk_filter_charge(newsk, filter);
1254
1255                 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1256                         /* It is still raw copy of parent, so invalidate
1257                          * destructor and make plain sk_free() */
1258                         newsk->sk_destruct = NULL;
1259                         bh_unlock_sock(newsk);
1260                         sk_free(newsk);
1261                         newsk = NULL;
1262                         goto out;
1263                 }
1264
1265                 newsk->sk_err      = 0;
1266                 newsk->sk_priority = 0;
1267                 /*
1268                  * Before updating sk_refcnt, we must commit prior changes to memory
1269                  * (Documentation/RCU/rculist_nulls.txt for details)
1270                  */
1271                 smp_wmb();
1272                 atomic_set(&newsk->sk_refcnt, 2);
1273
1274                 /*
1275                  * Increment the counter in the same struct proto as the master
1276                  * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1277                  * is the same as sk->sk_prot->socks, as this field was copied
1278                  * with memcpy).
1279                  *
1280                  * This _changes_ the previous behaviour, where
1281                  * tcp_create_openreq_child always was incrementing the
1282                  * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1283                  * to be taken into account in all callers. -acme
1284                  */
1285                 sk_refcnt_debug_inc(newsk);
1286                 sk_set_socket(newsk, NULL);
1287                 newsk->sk_wq = NULL;
1288
1289                 if (newsk->sk_prot->sockets_allocated)
1290                         percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1291
1292                 if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1293                     sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1294                         net_enable_timestamp();
1295         }
1296 out:
1297         return newsk;
1298 }
1299 EXPORT_SYMBOL_GPL(sk_clone);
1300
1301 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1302 {
1303         __sk_dst_set(sk, dst);
1304         sk->sk_route_caps = dst->dev->features;
1305         if (sk->sk_route_caps & NETIF_F_GSO)
1306                 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1307         sk->sk_route_caps &= ~sk->sk_route_nocaps;
1308         if (sk_can_gso(sk)) {
1309                 if (dst->header_len) {
1310                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1311                 } else {
1312                         sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1313                         sk->sk_gso_max_size = dst->dev->gso_max_size;
1314                 }
1315         }
1316 }
1317 EXPORT_SYMBOL_GPL(sk_setup_caps);
1318
1319 void __init sk_init(void)
1320 {
1321         if (totalram_pages <= 4096) {
1322                 sysctl_wmem_max = 32767;
1323                 sysctl_rmem_max = 32767;
1324                 sysctl_wmem_default = 32767;
1325                 sysctl_rmem_default = 32767;
1326         } else if (totalram_pages >= 131072) {
1327                 sysctl_wmem_max = 131071;
1328                 sysctl_rmem_max = 131071;
1329         }
1330 }
1331
1332 /*
1333  *      Simple resource managers for sockets.
1334  */
1335
1336
1337 /*
1338  * Write buffer destructor automatically called from kfree_skb.
1339  */
1340 void sock_wfree(struct sk_buff *skb)
1341 {
1342         struct sock *sk = skb->sk;
1343         unsigned int len = skb->truesize;
1344
1345         if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1346                 /*
1347                  * Keep a reference on sk_wmem_alloc, this will be released
1348                  * after sk_write_space() call
1349                  */
1350                 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1351                 sk->sk_write_space(sk);
1352                 len = 1;
1353         }
1354         /*
1355          * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1356          * could not do because of in-flight packets
1357          */
1358         if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1359                 __sk_free(sk);
1360 }
1361 EXPORT_SYMBOL(sock_wfree);
1362
1363 /*
1364  * Read buffer destructor automatically called from kfree_skb.
1365  */
1366 void sock_rfree(struct sk_buff *skb)
1367 {
1368         struct sock *sk = skb->sk;
1369         unsigned int len = skb->truesize;
1370
1371         atomic_sub(len, &sk->sk_rmem_alloc);
1372         sk_mem_uncharge(sk, len);
1373 }
1374 EXPORT_SYMBOL(sock_rfree);
1375
1376
1377 int sock_i_uid(struct sock *sk)
1378 {
1379         int uid;
1380
1381         read_lock_bh(&sk->sk_callback_lock);
1382         uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1383         read_unlock_bh(&sk->sk_callback_lock);
1384         return uid;
1385 }
1386 EXPORT_SYMBOL(sock_i_uid);
1387
1388 unsigned long sock_i_ino(struct sock *sk)
1389 {
1390         unsigned long ino;
1391
1392         read_lock_bh(&sk->sk_callback_lock);
1393         ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1394         read_unlock_bh(&sk->sk_callback_lock);
1395         return ino;
1396 }
1397 EXPORT_SYMBOL(sock_i_ino);
1398
1399 /*
1400  * Allocate a skb from the socket's send buffer.
1401  */
1402 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1403                              gfp_t priority)
1404 {
1405         if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1406                 struct sk_buff *skb = alloc_skb(size, priority);
1407                 if (skb) {
1408                         skb_set_owner_w(skb, sk);
1409                         return skb;
1410                 }
1411         }
1412         return NULL;
1413 }
1414 EXPORT_SYMBOL(sock_wmalloc);
1415
1416 /*
1417  * Allocate a skb from the socket's receive buffer.
1418  */
1419 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1420                              gfp_t priority)
1421 {
1422         if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1423                 struct sk_buff *skb = alloc_skb(size, priority);
1424                 if (skb) {
1425                         skb_set_owner_r(skb, sk);
1426                         return skb;
1427                 }
1428         }
1429         return NULL;
1430 }
1431
1432 /*
1433  * Allocate a memory block from the socket's option memory buffer.
1434  */
1435 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1436 {
1437         if ((unsigned)size <= sysctl_optmem_max &&
1438             atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1439                 void *mem;
1440                 /* First do the add, to avoid the race if kmalloc
1441                  * might sleep.
1442                  */
1443                 atomic_add(size, &sk->sk_omem_alloc);
1444                 mem = kmalloc(size, priority);
1445                 if (mem)
1446                         return mem;
1447                 atomic_sub(size, &sk->sk_omem_alloc);
1448         }
1449         return NULL;
1450 }
1451 EXPORT_SYMBOL(sock_kmalloc);
1452
1453 /*
1454  * Free an option memory block.
1455  */
1456 void sock_kfree_s(struct sock *sk, void *mem, int size)
1457 {
1458         kfree(mem);
1459         atomic_sub(size, &sk->sk_omem_alloc);
1460 }
1461 EXPORT_SYMBOL(sock_kfree_s);
1462
1463 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1464    I think, these locks should be removed for datagram sockets.
1465  */
1466 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1467 {
1468         DEFINE_WAIT(wait);
1469
1470         clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1471         for (;;) {
1472                 if (!timeo)
1473                         break;
1474                 if (signal_pending(current))
1475                         break;
1476                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1477                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1478                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1479                         break;
1480                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1481                         break;
1482                 if (sk->sk_err)
1483                         break;
1484                 timeo = schedule_timeout(timeo);
1485         }
1486         finish_wait(sk_sleep(sk), &wait);
1487         return timeo;
1488 }
1489
1490
1491 /*
1492  *      Generic send/receive buffer handlers
1493  */
1494
1495 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1496                                      unsigned long data_len, int noblock,
1497                                      int *errcode)
1498 {
1499         struct sk_buff *skb;
1500         gfp_t gfp_mask;
1501         long timeo;
1502         int err;
1503         int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1504
1505         err = -EMSGSIZE;
1506         if (npages > MAX_SKB_FRAGS)
1507                 goto failure;
1508
1509         gfp_mask = sk->sk_allocation;
1510         if (gfp_mask & __GFP_WAIT)
1511                 gfp_mask |= __GFP_REPEAT;
1512
1513         timeo = sock_sndtimeo(sk, noblock);
1514         while (1) {
1515                 err = sock_error(sk);
1516                 if (err != 0)
1517                         goto failure;
1518
1519                 err = -EPIPE;
1520                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1521                         goto failure;
1522
1523                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1524                         skb = alloc_skb(header_len, gfp_mask);
1525                         if (skb) {
1526                                 int i;
1527
1528                                 /* No pages, we're done... */
1529                                 if (!data_len)
1530                                         break;
1531
1532                                 skb->truesize += data_len;
1533                                 skb_shinfo(skb)->nr_frags = npages;
1534                                 for (i = 0; i < npages; i++) {
1535                                         struct page *page;
1536
1537                                         page = alloc_pages(sk->sk_allocation, 0);
1538                                         if (!page) {
1539                                                 err = -ENOBUFS;
1540                                                 skb_shinfo(skb)->nr_frags = i;
1541                                                 kfree_skb(skb);
1542                                                 goto failure;
1543                                         }
1544
1545                                         __skb_fill_page_desc(skb, i,
1546                                                         page, 0,
1547                                                         (data_len >= PAGE_SIZE ?
1548                                                          PAGE_SIZE :
1549                                                          data_len));
1550                                         data_len -= PAGE_SIZE;
1551                                 }
1552
1553                                 /* Full success... */
1554                                 break;
1555                         }
1556                         err = -ENOBUFS;
1557                         goto failure;
1558                 }
1559                 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1560                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1561                 err = -EAGAIN;
1562                 if (!timeo)
1563                         goto failure;
1564                 if (signal_pending(current))
1565                         goto interrupted;
1566                 timeo = sock_wait_for_wmem(sk, timeo);
1567         }
1568
1569         skb_set_owner_w(skb, sk);
1570         return skb;
1571
1572 interrupted:
1573         err = sock_intr_errno(timeo);
1574 failure:
1575         *errcode = err;
1576         return NULL;
1577 }
1578 EXPORT_SYMBOL(sock_alloc_send_pskb);
1579
1580 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1581                                     int noblock, int *errcode)
1582 {
1583         return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1584 }
1585 EXPORT_SYMBOL(sock_alloc_send_skb);
1586
1587 static void __lock_sock(struct sock *sk)
1588         __releases(&sk->sk_lock.slock)
1589         __acquires(&sk->sk_lock.slock)
1590 {
1591         DEFINE_WAIT(wait);
1592
1593         for (;;) {
1594                 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1595                                         TASK_UNINTERRUPTIBLE);
1596                 spin_unlock_bh(&sk->sk_lock.slock);
1597                 schedule();
1598                 spin_lock_bh(&sk->sk_lock.slock);
1599                 if (!sock_owned_by_user(sk))
1600                         break;
1601         }
1602         finish_wait(&sk->sk_lock.wq, &wait);
1603 }
1604
1605 static void __release_sock(struct sock *sk)
1606         __releases(&sk->sk_lock.slock)
1607         __acquires(&sk->sk_lock.slock)
1608 {
1609         struct sk_buff *skb = sk->sk_backlog.head;
1610
1611         do {
1612                 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1613                 bh_unlock_sock(sk);
1614
1615                 do {
1616                         struct sk_buff *next = skb->next;
1617
1618                         WARN_ON_ONCE(skb_dst_is_noref(skb));
1619                         skb->next = NULL;
1620                         sk_backlog_rcv(sk, skb);
1621
1622                         /*
1623                          * We are in process context here with softirqs
1624                          * disabled, use cond_resched_softirq() to preempt.
1625                          * This is safe to do because we've taken the backlog
1626                          * queue private:
1627                          */
1628                         cond_resched_softirq();
1629
1630                         skb = next;
1631                 } while (skb != NULL);
1632
1633                 bh_lock_sock(sk);
1634         } while ((skb = sk->sk_backlog.head) != NULL);
1635
1636         /*
1637          * Doing the zeroing here guarantee we can not loop forever
1638          * while a wild producer attempts to flood us.
1639          */
1640         sk->sk_backlog.len = 0;
1641 }
1642
1643 /**
1644  * sk_wait_data - wait for data to arrive at sk_receive_queue
1645  * @sk:    sock to wait on
1646  * @timeo: for how long
1647  *
1648  * Now socket state including sk->sk_err is changed only under lock,
1649  * hence we may omit checks after joining wait queue.
1650  * We check receive queue before schedule() only as optimization;
1651  * it is very likely that release_sock() added new data.
1652  */
1653 int sk_wait_data(struct sock *sk, long *timeo)
1654 {
1655         int rc;
1656         DEFINE_WAIT(wait);
1657
1658         prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1659         set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1660         rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1661         clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1662         finish_wait(sk_sleep(sk), &wait);
1663         return rc;
1664 }
1665 EXPORT_SYMBOL(sk_wait_data);
1666
1667 /**
1668  *      __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1669  *      @sk: socket
1670  *      @size: memory size to allocate
1671  *      @kind: allocation type
1672  *
1673  *      If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1674  *      rmem allocation. This function assumes that protocols which have
1675  *      memory_pressure use sk_wmem_queued as write buffer accounting.
1676  */
1677 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1678 {
1679         struct proto *prot = sk->sk_prot;
1680         int amt = sk_mem_pages(size);
1681         long allocated;
1682
1683         sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1684         allocated = atomic_long_add_return(amt, prot->memory_allocated);
1685
1686         /* Under limit. */
1687         if (allocated <= prot->sysctl_mem[0]) {
1688                 if (prot->memory_pressure && *prot->memory_pressure)
1689                         *prot->memory_pressure = 0;
1690                 return 1;
1691         }
1692
1693         /* Under pressure. */
1694         if (allocated > prot->sysctl_mem[1])
1695                 if (prot->enter_memory_pressure)
1696                         prot->enter_memory_pressure(sk);
1697
1698         /* Over hard limit. */
1699         if (allocated > prot->sysctl_mem[2])
1700                 goto suppress_allocation;
1701
1702         /* guarantee minimum buffer size under pressure */
1703         if (kind == SK_MEM_RECV) {
1704                 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1705                         return 1;
1706         } else { /* SK_MEM_SEND */
1707                 if (sk->sk_type == SOCK_STREAM) {
1708                         if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1709                                 return 1;
1710                 } else if (atomic_read(&sk->sk_wmem_alloc) <
1711                            prot->sysctl_wmem[0])
1712                                 return 1;
1713         }
1714
1715         if (prot->memory_pressure) {
1716                 int alloc;
1717
1718                 if (!*prot->memory_pressure)
1719                         return 1;
1720                 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1721                 if (prot->sysctl_mem[2] > alloc *
1722                     sk_mem_pages(sk->sk_wmem_queued +
1723                                  atomic_read(&sk->sk_rmem_alloc) +
1724                                  sk->sk_forward_alloc))
1725                         return 1;
1726         }
1727
1728 suppress_allocation:
1729
1730         if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1731                 sk_stream_moderate_sndbuf(sk);
1732
1733                 /* Fail only if socket is _under_ its sndbuf.
1734                  * In this case we cannot block, so that we have to fail.
1735                  */
1736                 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1737                         return 1;
1738         }
1739
1740         trace_sock_exceed_buf_limit(sk, prot, allocated);
1741
1742         /* Alas. Undo changes. */
1743         sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1744         atomic_long_sub(amt, prot->memory_allocated);
1745         return 0;
1746 }
1747 EXPORT_SYMBOL(__sk_mem_schedule);
1748
1749 /**
1750  *      __sk_reclaim - reclaim memory_allocated
1751  *      @sk: socket
1752  */
1753 void __sk_mem_reclaim(struct sock *sk)
1754 {
1755         struct proto *prot = sk->sk_prot;
1756
1757         atomic_long_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1758                    prot->memory_allocated);
1759         sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1760
1761         if (prot->memory_pressure && *prot->memory_pressure &&
1762             (atomic_long_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1763                 *prot->memory_pressure = 0;
1764 }
1765 EXPORT_SYMBOL(__sk_mem_reclaim);
1766
1767
1768 /*
1769  * Set of default routines for initialising struct proto_ops when
1770  * the protocol does not support a particular function. In certain
1771  * cases where it makes no sense for a protocol to have a "do nothing"
1772  * function, some default processing is provided.
1773  */
1774
1775 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1776 {
1777         return -EOPNOTSUPP;
1778 }
1779 EXPORT_SYMBOL(sock_no_bind);
1780
1781 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1782                     int len, int flags)
1783 {
1784         return -EOPNOTSUPP;
1785 }
1786 EXPORT_SYMBOL(sock_no_connect);
1787
1788 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1789 {
1790         return -EOPNOTSUPP;
1791 }
1792 EXPORT_SYMBOL(sock_no_socketpair);
1793
1794 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1795 {
1796         return -EOPNOTSUPP;
1797 }
1798 EXPORT_SYMBOL(sock_no_accept);
1799
1800 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1801                     int *len, int peer)
1802 {
1803         return -EOPNOTSUPP;
1804 }
1805 EXPORT_SYMBOL(sock_no_getname);
1806
1807 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1808 {
1809         return 0;
1810 }
1811 EXPORT_SYMBOL(sock_no_poll);
1812
1813 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1814 {
1815         return -EOPNOTSUPP;
1816 }
1817 EXPORT_SYMBOL(sock_no_ioctl);
1818
1819 int sock_no_listen(struct socket *sock, int backlog)
1820 {
1821         return -EOPNOTSUPP;
1822 }
1823 EXPORT_SYMBOL(sock_no_listen);
1824
1825 int sock_no_shutdown(struct socket *sock, int how)
1826 {
1827         return -EOPNOTSUPP;
1828 }
1829 EXPORT_SYMBOL(sock_no_shutdown);
1830
1831 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1832                     char __user *optval, unsigned int optlen)
1833 {
1834         return -EOPNOTSUPP;
1835 }
1836 EXPORT_SYMBOL(sock_no_setsockopt);
1837
1838 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1839                     char __user *optval, int __user *optlen)
1840 {
1841         return -EOPNOTSUPP;
1842 }
1843 EXPORT_SYMBOL(sock_no_getsockopt);
1844
1845 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1846                     size_t len)
1847 {
1848         return -EOPNOTSUPP;
1849 }
1850 EXPORT_SYMBOL(sock_no_sendmsg);
1851
1852 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1853                     size_t len, int flags)
1854 {
1855         return -EOPNOTSUPP;
1856 }
1857 EXPORT_SYMBOL(sock_no_recvmsg);
1858
1859 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1860 {
1861         /* Mirror missing mmap method error code */
1862         return -ENODEV;
1863 }
1864 EXPORT_SYMBOL(sock_no_mmap);
1865
1866 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1867 {
1868         ssize_t res;
1869         struct msghdr msg = {.msg_flags = flags};
1870         struct kvec iov;
1871         char *kaddr = kmap(page);
1872         iov.iov_base = kaddr + offset;
1873         iov.iov_len = size;
1874         res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1875         kunmap(page);
1876         return res;
1877 }
1878 EXPORT_SYMBOL(sock_no_sendpage);
1879
1880 /*
1881  *      Default Socket Callbacks
1882  */
1883
1884 static void sock_def_wakeup(struct sock *sk)
1885 {
1886         struct socket_wq *wq;
1887
1888         rcu_read_lock();
1889         wq = rcu_dereference(sk->sk_wq);
1890         if (wq_has_sleeper(wq))
1891                 wake_up_interruptible_all(&wq->wait);
1892         rcu_read_unlock();
1893 }
1894
1895 static void sock_def_error_report(struct sock *sk)
1896 {
1897         struct socket_wq *wq;
1898
1899         rcu_read_lock();
1900         wq = rcu_dereference(sk->sk_wq);
1901         if (wq_has_sleeper(wq))
1902                 wake_up_interruptible_poll(&wq->wait, POLLERR);
1903         sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1904         rcu_read_unlock();
1905 }
1906
1907 static void sock_def_readable(struct sock *sk, int len)
1908 {
1909         struct socket_wq *wq;
1910
1911         rcu_read_lock();
1912         wq = rcu_dereference(sk->sk_wq);
1913         if (wq_has_sleeper(wq))
1914                 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
1915                                                 POLLRDNORM | POLLRDBAND);
1916         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1917         rcu_read_unlock();
1918 }
1919
1920 static void sock_def_write_space(struct sock *sk)
1921 {
1922         struct socket_wq *wq;
1923
1924         rcu_read_lock();
1925
1926         /* Do not wake up a writer until he can make "significant"
1927          * progress.  --DaveM
1928          */
1929         if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1930                 wq = rcu_dereference(sk->sk_wq);
1931                 if (wq_has_sleeper(wq))
1932                         wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
1933                                                 POLLWRNORM | POLLWRBAND);
1934
1935                 /* Should agree with poll, otherwise some programs break */
1936                 if (sock_writeable(sk))
1937                         sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1938         }
1939
1940         rcu_read_unlock();
1941 }
1942
1943 static void sock_def_destruct(struct sock *sk)
1944 {
1945         kfree(sk->sk_protinfo);
1946 }
1947
1948 void sk_send_sigurg(struct sock *sk)
1949 {
1950         if (sk->sk_socket && sk->sk_socket->file)
1951                 if (send_sigurg(&sk->sk_socket->file->f_owner))
1952                         sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1953 }
1954 EXPORT_SYMBOL(sk_send_sigurg);
1955
1956 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1957                     unsigned long expires)
1958 {
1959         if (!mod_timer(timer, expires))
1960                 sock_hold(sk);
1961 }
1962 EXPORT_SYMBOL(sk_reset_timer);
1963
1964 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1965 {
1966         if (timer_pending(timer) && del_timer(timer))
1967                 __sock_put(sk);
1968 }
1969 EXPORT_SYMBOL(sk_stop_timer);
1970
1971 void sock_init_data(struct socket *sock, struct sock *sk)
1972 {
1973         skb_queue_head_init(&sk->sk_receive_queue);
1974         skb_queue_head_init(&sk->sk_write_queue);
1975         skb_queue_head_init(&sk->sk_error_queue);
1976 #ifdef CONFIG_NET_DMA
1977         skb_queue_head_init(&sk->sk_async_wait_queue);
1978 #endif
1979
1980         sk->sk_send_head        =       NULL;
1981
1982         init_timer(&sk->sk_timer);
1983
1984         sk->sk_allocation       =       GFP_KERNEL;
1985         sk->sk_rcvbuf           =       sysctl_rmem_default;
1986         sk->sk_sndbuf           =       sysctl_wmem_default;
1987         sk->sk_state            =       TCP_CLOSE;
1988         sk_set_socket(sk, sock);
1989
1990         sock_set_flag(sk, SOCK_ZAPPED);
1991
1992         if (sock) {
1993                 sk->sk_type     =       sock->type;
1994                 sk->sk_wq       =       sock->wq;
1995                 sock->sk        =       sk;
1996         } else
1997                 sk->sk_wq       =       NULL;
1998
1999         spin_lock_init(&sk->sk_dst_lock);
2000         rwlock_init(&sk->sk_callback_lock);
2001         lockdep_set_class_and_name(&sk->sk_callback_lock,
2002                         af_callback_keys + sk->sk_family,
2003                         af_family_clock_key_strings[sk->sk_family]);
2004
2005         sk->sk_state_change     =       sock_def_wakeup;
2006         sk->sk_data_ready       =       sock_def_readable;
2007         sk->sk_write_space      =       sock_def_write_space;
2008         sk->sk_error_report     =       sock_def_error_report;
2009         sk->sk_destruct         =       sock_def_destruct;
2010
2011         sk->sk_sndmsg_page      =       NULL;
2012         sk->sk_sndmsg_off       =       0;
2013
2014         sk->sk_peer_pid         =       NULL;
2015         sk->sk_peer_cred        =       NULL;
2016         sk->sk_write_pending    =       0;
2017         sk->sk_rcvlowat         =       1;
2018         sk->sk_rcvtimeo         =       MAX_SCHEDULE_TIMEOUT;
2019         sk->sk_sndtimeo         =       MAX_SCHEDULE_TIMEOUT;
2020
2021         sk->sk_stamp = ktime_set(-1L, 0);
2022
2023         /*
2024          * Before updating sk_refcnt, we must commit prior changes to memory
2025          * (Documentation/RCU/rculist_nulls.txt for details)
2026          */
2027         smp_wmb();
2028         atomic_set(&sk->sk_refcnt, 1);
2029         atomic_set(&sk->sk_drops, 0);
2030 }
2031 EXPORT_SYMBOL(sock_init_data);
2032
2033 void lock_sock_nested(struct sock *sk, int subclass)
2034 {
2035         might_sleep();
2036         spin_lock_bh(&sk->sk_lock.slock);
2037         if (sk->sk_lock.owned)
2038                 __lock_sock(sk);
2039         sk->sk_lock.owned = 1;
2040         spin_unlock(&sk->sk_lock.slock);
2041         /*
2042          * The sk_lock has mutex_lock() semantics here:
2043          */
2044         mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2045         local_bh_enable();
2046 }
2047 EXPORT_SYMBOL(lock_sock_nested);
2048
2049 void release_sock(struct sock *sk)
2050 {
2051         /*
2052          * The sk_lock has mutex_unlock() semantics:
2053          */
2054         mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2055
2056         spin_lock_bh(&sk->sk_lock.slock);
2057         if (sk->sk_backlog.tail)
2058                 __release_sock(sk);
2059         sk->sk_lock.owned = 0;
2060         if (waitqueue_active(&sk->sk_lock.wq))
2061                 wake_up(&sk->sk_lock.wq);
2062         spin_unlock_bh(&sk->sk_lock.slock);
2063 }
2064 EXPORT_SYMBOL(release_sock);
2065
2066 /**
2067  * lock_sock_fast - fast version of lock_sock
2068  * @sk: socket
2069  *
2070  * This version should be used for very small section, where process wont block
2071  * return false if fast path is taken
2072  *   sk_lock.slock locked, owned = 0, BH disabled
2073  * return true if slow path is taken
2074  *   sk_lock.slock unlocked, owned = 1, BH enabled
2075  */
2076 bool lock_sock_fast(struct sock *sk)
2077 {
2078         might_sleep();
2079         spin_lock_bh(&sk->sk_lock.slock);
2080
2081         if (!sk->sk_lock.owned)
2082                 /*
2083                  * Note : We must disable BH
2084                  */
2085                 return false;
2086
2087         __lock_sock(sk);
2088         sk->sk_lock.owned = 1;
2089         spin_unlock(&sk->sk_lock.slock);
2090         /*
2091          * The sk_lock has mutex_lock() semantics here:
2092          */
2093         mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2094         local_bh_enable();
2095         return true;
2096 }
2097 EXPORT_SYMBOL(lock_sock_fast);
2098
2099 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2100 {
2101         struct timeval tv;
2102         if (!sock_flag(sk, SOCK_TIMESTAMP))
2103                 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2104         tv = ktime_to_timeval(sk->sk_stamp);
2105         if (tv.tv_sec == -1)
2106                 return -ENOENT;
2107         if (tv.tv_sec == 0) {
2108                 sk->sk_stamp = ktime_get_real();
2109                 tv = ktime_to_timeval(sk->sk_stamp);
2110         }
2111         return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2112 }
2113 EXPORT_SYMBOL(sock_get_timestamp);
2114
2115 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2116 {
2117         struct timespec ts;
2118         if (!sock_flag(sk, SOCK_TIMESTAMP))
2119                 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2120         ts = ktime_to_timespec(sk->sk_stamp);
2121         if (ts.tv_sec == -1)
2122                 return -ENOENT;
2123         if (ts.tv_sec == 0) {
2124                 sk->sk_stamp = ktime_get_real();
2125                 ts = ktime_to_timespec(sk->sk_stamp);
2126         }
2127         return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2128 }
2129 EXPORT_SYMBOL(sock_get_timestampns);
2130
2131 void sock_enable_timestamp(struct sock *sk, int flag)
2132 {
2133         if (!sock_flag(sk, flag)) {
2134                 sock_set_flag(sk, flag);
2135                 /*
2136                  * we just set one of the two flags which require net
2137                  * time stamping, but time stamping might have been on
2138                  * already because of the other one
2139                  */
2140                 if (!sock_flag(sk,
2141                                 flag == SOCK_TIMESTAMP ?
2142                                 SOCK_TIMESTAMPING_RX_SOFTWARE :
2143                                 SOCK_TIMESTAMP))
2144                         net_enable_timestamp();
2145         }
2146 }
2147
2148 /*
2149  *      Get a socket option on an socket.
2150  *
2151  *      FIX: POSIX 1003.1g is very ambiguous here. It states that
2152  *      asynchronous errors should be reported by getsockopt. We assume
2153  *      this means if you specify SO_ERROR (otherwise whats the point of it).
2154  */
2155 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2156                            char __user *optval, int __user *optlen)
2157 {
2158         struct sock *sk = sock->sk;
2159
2160         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2161 }
2162 EXPORT_SYMBOL(sock_common_getsockopt);
2163
2164 #ifdef CONFIG_COMPAT
2165 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2166                                   char __user *optval, int __user *optlen)
2167 {
2168         struct sock *sk = sock->sk;
2169
2170         if (sk->sk_prot->compat_getsockopt != NULL)
2171                 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2172                                                       optval, optlen);
2173         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2174 }
2175 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2176 #endif
2177
2178 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2179                         struct msghdr *msg, size_t size, int flags)
2180 {
2181         struct sock *sk = sock->sk;
2182         int addr_len = 0;
2183         int err;
2184
2185         err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2186                                    flags & ~MSG_DONTWAIT, &addr_len);
2187         if (err >= 0)
2188                 msg->msg_namelen = addr_len;
2189         return err;
2190 }
2191 EXPORT_SYMBOL(sock_common_recvmsg);
2192
2193 /*
2194  *      Set socket options on an inet socket.
2195  */
2196 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2197                            char __user *optval, unsigned int optlen)
2198 {
2199         struct sock *sk = sock->sk;
2200
2201         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2202 }
2203 EXPORT_SYMBOL(sock_common_setsockopt);
2204
2205 #ifdef CONFIG_COMPAT
2206 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2207                                   char __user *optval, unsigned int optlen)
2208 {
2209         struct sock *sk = sock->sk;
2210
2211         if (sk->sk_prot->compat_setsockopt != NULL)
2212                 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2213                                                       optval, optlen);
2214         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2215 }
2216 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2217 #endif
2218
2219 void sk_common_release(struct sock *sk)
2220 {
2221         if (sk->sk_prot->destroy)
2222                 sk->sk_prot->destroy(sk);
2223
2224         /*
2225          * Observation: when sock_common_release is called, processes have
2226          * no access to socket. But net still has.
2227          * Step one, detach it from networking:
2228          *
2229          * A. Remove from hash tables.
2230          */
2231
2232         sk->sk_prot->unhash(sk);
2233
2234         /*
2235          * In this point socket cannot receive new packets, but it is possible
2236          * that some packets are in flight because some CPU runs receiver and
2237          * did hash table lookup before we unhashed socket. They will achieve
2238          * receive queue and will be purged by socket destructor.
2239          *
2240          * Also we still have packets pending on receive queue and probably,
2241          * our own packets waiting in device queues. sock_destroy will drain
2242          * receive queue, but transmitted packets will delay socket destruction
2243          * until the last reference will be released.
2244          */
2245
2246         sock_orphan(sk);
2247
2248         xfrm_sk_free_policy(sk);
2249
2250         sk_refcnt_debug_release(sk);
2251         sock_put(sk);
2252 }
2253 EXPORT_SYMBOL(sk_common_release);
2254
2255 static DEFINE_RWLOCK(proto_list_lock);
2256 static LIST_HEAD(proto_list);
2257
2258 #ifdef CONFIG_PROC_FS
2259 #define PROTO_INUSE_NR  64      /* should be enough for the first time */
2260 struct prot_inuse {
2261         int val[PROTO_INUSE_NR];
2262 };
2263
2264 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2265
2266 #ifdef CONFIG_NET_NS
2267 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2268 {
2269         __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2270 }
2271 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2272
2273 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2274 {
2275         int cpu, idx = prot->inuse_idx;
2276         int res = 0;
2277
2278         for_each_possible_cpu(cpu)
2279                 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2280
2281         return res >= 0 ? res : 0;
2282 }
2283 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2284
2285 static int __net_init sock_inuse_init_net(struct net *net)
2286 {
2287         net->core.inuse = alloc_percpu(struct prot_inuse);
2288         return net->core.inuse ? 0 : -ENOMEM;
2289 }
2290
2291 static void __net_exit sock_inuse_exit_net(struct net *net)
2292 {
2293         free_percpu(net->core.inuse);
2294 }
2295
2296 static struct pernet_operations net_inuse_ops = {
2297         .init = sock_inuse_init_net,
2298         .exit = sock_inuse_exit_net,
2299 };
2300
2301 static __init int net_inuse_init(void)
2302 {
2303         if (register_pernet_subsys(&net_inuse_ops))
2304                 panic("Cannot initialize net inuse counters");
2305
2306         return 0;
2307 }
2308
2309 core_initcall(net_inuse_init);
2310 #else
2311 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2312
2313 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2314 {
2315         __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2316 }
2317 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2318
2319 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2320 {
2321         int cpu, idx = prot->inuse_idx;
2322         int res = 0;
2323
2324         for_each_possible_cpu(cpu)
2325                 res += per_cpu(prot_inuse, cpu).val[idx];
2326
2327         return res >= 0 ? res : 0;
2328 }
2329 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2330 #endif
2331
2332 static void assign_proto_idx(struct proto *prot)
2333 {
2334         prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2335
2336         if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2337                 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2338                 return;
2339         }
2340
2341         set_bit(prot->inuse_idx, proto_inuse_idx);
2342 }
2343
2344 static void release_proto_idx(struct proto *prot)
2345 {
2346         if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2347                 clear_bit(prot->inuse_idx, proto_inuse_idx);
2348 }
2349 #else
2350 static inline void assign_proto_idx(struct proto *prot)
2351 {
2352 }
2353
2354 static inline void release_proto_idx(struct proto *prot)
2355 {
2356 }
2357 #endif
2358
2359 int proto_register(struct proto *prot, int alloc_slab)
2360 {
2361         if (alloc_slab) {
2362                 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2363                                         SLAB_HWCACHE_ALIGN | prot->slab_flags,
2364                                         NULL);
2365
2366                 if (prot->slab == NULL) {
2367                         printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2368                                prot->name);
2369                         goto out;
2370                 }
2371
2372                 if (prot->rsk_prot != NULL) {
2373                         prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2374                         if (prot->rsk_prot->slab_name == NULL)
2375                                 goto out_free_sock_slab;
2376
2377                         prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2378                                                                  prot->rsk_prot->obj_size, 0,
2379                                                                  SLAB_HWCACHE_ALIGN, NULL);
2380
2381                         if (prot->rsk_prot->slab == NULL) {
2382                                 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2383                                        prot->name);
2384                                 goto out_free_request_sock_slab_name;
2385                         }
2386                 }
2387
2388                 if (prot->twsk_prot != NULL) {
2389                         prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2390
2391                         if (prot->twsk_prot->twsk_slab_name == NULL)
2392                                 goto out_free_request_sock_slab;
2393
2394                         prot->twsk_prot->twsk_slab =
2395                                 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2396                                                   prot->twsk_prot->twsk_obj_size,
2397                                                   0,
2398                                                   SLAB_HWCACHE_ALIGN |
2399                                                         prot->slab_flags,
2400                                                   NULL);
2401                         if (prot->twsk_prot->twsk_slab == NULL)
2402                                 goto out_free_timewait_sock_slab_name;
2403                 }
2404         }
2405
2406         write_lock(&proto_list_lock);
2407         list_add(&prot->node, &proto_list);
2408         assign_proto_idx(prot);
2409         write_unlock(&proto_list_lock);
2410         return 0;
2411
2412 out_free_timewait_sock_slab_name:
2413         kfree(prot->twsk_prot->twsk_slab_name);
2414 out_free_request_sock_slab:
2415         if (prot->rsk_prot && prot->rsk_prot->slab) {
2416                 kmem_cache_destroy(prot->rsk_prot->slab);
2417                 prot->rsk_prot->slab = NULL;
2418         }
2419 out_free_request_sock_slab_name:
2420         if (prot->rsk_prot)
2421                 kfree(prot->rsk_prot->slab_name);
2422 out_free_sock_slab:
2423         kmem_cache_destroy(prot->slab);
2424         prot->slab = NULL;
2425 out:
2426         return -ENOBUFS;
2427 }
2428 EXPORT_SYMBOL(proto_register);
2429
2430 void proto_unregister(struct proto *prot)
2431 {
2432         write_lock(&proto_list_lock);
2433         release_proto_idx(prot);
2434         list_del(&prot->node);
2435         write_unlock(&proto_list_lock);
2436
2437         if (prot->slab != NULL) {
2438                 kmem_cache_destroy(prot->slab);
2439                 prot->slab = NULL;
2440         }
2441
2442         if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2443                 kmem_cache_destroy(prot->rsk_prot->slab);
2444                 kfree(prot->rsk_prot->slab_name);
2445                 prot->rsk_prot->slab = NULL;
2446         }
2447
2448         if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2449                 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2450                 kfree(prot->twsk_prot->twsk_slab_name);
2451                 prot->twsk_prot->twsk_slab = NULL;
2452         }
2453 }
2454 EXPORT_SYMBOL(proto_unregister);
2455
2456 #ifdef CONFIG_PROC_FS
2457 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2458         __acquires(proto_list_lock)
2459 {
2460         read_lock(&proto_list_lock);
2461         return seq_list_start_head(&proto_list, *pos);
2462 }
2463
2464 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2465 {
2466         return seq_list_next(v, &proto_list, pos);
2467 }
2468
2469 static void proto_seq_stop(struct seq_file *seq, void *v)
2470         __releases(proto_list_lock)
2471 {
2472         read_unlock(&proto_list_lock);
2473 }
2474
2475 static char proto_method_implemented(const void *method)
2476 {
2477         return method == NULL ? 'n' : 'y';
2478 }
2479
2480 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2481 {
2482         seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2483                         "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2484                    proto->name,
2485                    proto->obj_size,
2486                    sock_prot_inuse_get(seq_file_net(seq), proto),
2487                    proto->memory_allocated != NULL ? atomic_long_read(proto->memory_allocated) : -1L,
2488                    proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2489                    proto->max_header,
2490                    proto->slab == NULL ? "no" : "yes",
2491                    module_name(proto->owner),
2492                    proto_method_implemented(proto->close),
2493                    proto_method_implemented(proto->connect),
2494                    proto_method_implemented(proto->disconnect),
2495                    proto_method_implemented(proto->accept),
2496                    proto_method_implemented(proto->ioctl),
2497                    proto_method_implemented(proto->init),
2498                    proto_method_implemented(proto->destroy),
2499                    proto_method_implemented(proto->shutdown),
2500                    proto_method_implemented(proto->setsockopt),
2501                    proto_method_implemented(proto->getsockopt),
2502                    proto_method_implemented(proto->sendmsg),
2503                    proto_method_implemented(proto->recvmsg),
2504                    proto_method_implemented(proto->sendpage),
2505                    proto_method_implemented(proto->bind),
2506                    proto_method_implemented(proto->backlog_rcv),
2507                    proto_method_implemented(proto->hash),
2508                    proto_method_implemented(proto->unhash),
2509                    proto_method_implemented(proto->get_port),
2510                    proto_method_implemented(proto->enter_memory_pressure));
2511 }
2512
2513 static int proto_seq_show(struct seq_file *seq, void *v)
2514 {
2515         if (v == &proto_list)
2516                 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2517                            "protocol",
2518                            "size",
2519                            "sockets",
2520                            "memory",
2521                            "press",
2522                            "maxhdr",
2523                            "slab",
2524                            "module",
2525                            "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2526         else
2527                 proto_seq_printf(seq, list_entry(v, struct proto, node));
2528         return 0;
2529 }
2530
2531 static const struct seq_operations proto_seq_ops = {
2532         .start  = proto_seq_start,
2533         .next   = proto_seq_next,
2534         .stop   = proto_seq_stop,
2535         .show   = proto_seq_show,
2536 };
2537
2538 static int proto_seq_open(struct inode *inode, struct file *file)
2539 {
2540         return seq_open_net(inode, file, &proto_seq_ops,
2541                             sizeof(struct seq_net_private));
2542 }
2543
2544 static const struct file_operations proto_seq_fops = {
2545         .owner          = THIS_MODULE,
2546         .open           = proto_seq_open,
2547         .read           = seq_read,
2548         .llseek         = seq_lseek,
2549         .release        = seq_release_net,
2550 };
2551
2552 static __net_init int proto_init_net(struct net *net)
2553 {
2554         if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2555                 return -ENOMEM;
2556
2557         return 0;
2558 }
2559
2560 static __net_exit void proto_exit_net(struct net *net)
2561 {
2562         proc_net_remove(net, "protocols");
2563 }
2564
2565
2566 static __net_initdata struct pernet_operations proto_net_ops = {
2567         .init = proto_init_net,
2568         .exit = proto_exit_net,
2569 };
2570
2571 static int __init proto_init(void)
2572 {
2573         return register_pernet_subsys(&proto_net_ops);
2574 }
2575
2576 subsys_initcall(proto_init);
2577
2578 #endif /* PROC_FS */