07c078e3f5705af70c29ed2166fee76700b66a39
[pandora-kernel.git] / net / core / sock.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Generic socket support routines. Memory allocators, socket lock/release
7  *              handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *              Alan Cox        :       Numerous verify_area() problems
17  *              Alan Cox        :       Connecting on a connecting socket
18  *                                      now returns an error for tcp.
19  *              Alan Cox        :       sock->protocol is set correctly.
20  *                                      and is not sometimes left as 0.
21  *              Alan Cox        :       connect handles icmp errors on a
22  *                                      connect properly. Unfortunately there
23  *                                      is a restart syscall nasty there. I
24  *                                      can't match BSD without hacking the C
25  *                                      library. Ideas urgently sought!
26  *              Alan Cox        :       Disallow bind() to addresses that are
27  *                                      not ours - especially broadcast ones!!
28  *              Alan Cox        :       Socket 1024 _IS_ ok for users. (fencepost)
29  *              Alan Cox        :       sock_wfree/sock_rfree don't destroy sockets,
30  *                                      instead they leave that for the DESTROY timer.
31  *              Alan Cox        :       Clean up error flag in accept
32  *              Alan Cox        :       TCP ack handling is buggy, the DESTROY timer
33  *                                      was buggy. Put a remove_sock() in the handler
34  *                                      for memory when we hit 0. Also altered the timer
35  *                                      code. The ACK stuff can wait and needs major
36  *                                      TCP layer surgery.
37  *              Alan Cox        :       Fixed TCP ack bug, removed remove sock
38  *                                      and fixed timer/inet_bh race.
39  *              Alan Cox        :       Added zapped flag for TCP
40  *              Alan Cox        :       Move kfree_skb into skbuff.c and tidied up surplus code
41  *              Alan Cox        :       for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *              Alan Cox        :       kfree_s calls now are kfree_skbmem so we can track skb resources
43  *              Alan Cox        :       Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *              Alan Cox        :       Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *              Rick Sladkey    :       Relaxed UDP rules for matching packets.
46  *              C.E.Hawkins     :       IFF_PROMISC/SIOCGHWADDR support
47  *      Pauline Middelink       :       identd support
48  *              Alan Cox        :       Fixed connect() taking signals I think.
49  *              Alan Cox        :       SO_LINGER supported
50  *              Alan Cox        :       Error reporting fixes
51  *              Anonymous       :       inet_create tidied up (sk->reuse setting)
52  *              Alan Cox        :       inet sockets don't set sk->type!
53  *              Alan Cox        :       Split socket option code
54  *              Alan Cox        :       Callbacks
55  *              Alan Cox        :       Nagle flag for Charles & Johannes stuff
56  *              Alex            :       Removed restriction on inet fioctl
57  *              Alan Cox        :       Splitting INET from NET core
58  *              Alan Cox        :       Fixed bogus SO_TYPE handling in getsockopt()
59  *              Adam Caldwell   :       Missing return in SO_DONTROUTE/SO_DEBUG code
60  *              Alan Cox        :       Split IP from generic code
61  *              Alan Cox        :       New kfree_skbmem()
62  *              Alan Cox        :       Make SO_DEBUG superuser only.
63  *              Alan Cox        :       Allow anyone to clear SO_DEBUG
64  *                                      (compatibility fix)
65  *              Alan Cox        :       Added optimistic memory grabbing for AF_UNIX throughput.
66  *              Alan Cox        :       Allocator for a socket is settable.
67  *              Alan Cox        :       SO_ERROR includes soft errors.
68  *              Alan Cox        :       Allow NULL arguments on some SO_ opts
69  *              Alan Cox        :       Generic socket allocation to make hooks
70  *                                      easier (suggested by Craig Metz).
71  *              Michael Pall    :       SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *              Jay Schulist    :       Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *              Andi Kleen      :       Add sock_kmalloc()/sock_kfree_s()
79  *              Andi Kleen      :       Fix write_space callback
80  *              Chris Evans     :       Security fixes - signedness again
81  *              Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *              This program is free software; you can redistribute it and/or
87  *              modify it under the terms of the GNU General Public License
88  *              as published by the Free Software Foundation; either version
89  *              2 of the License, or (at your option) any later version.
90  */
91
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
114
115 #include <asm/uaccess.h>
116 #include <asm/system.h>
117
118 #include <linux/netdevice.h>
119 #include <net/protocol.h>
120 #include <linux/skbuff.h>
121 #include <net/net_namespace.h>
122 #include <net/request_sock.h>
123 #include <net/sock.h>
124 #include <linux/net_tstamp.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127 #include <net/cls_cgroup.h>
128
129 #include <linux/filter.h>
130
131 #include <trace/events/sock.h>
132
133 #ifdef CONFIG_INET
134 #include <net/tcp.h>
135 #endif
136
137 /*
138  * Each address family might have different locking rules, so we have
139  * one slock key per address family:
140  */
141 static struct lock_class_key af_family_keys[AF_MAX];
142 static struct lock_class_key af_family_slock_keys[AF_MAX];
143
144 /*
145  * Make lock validator output more readable. (we pre-construct these
146  * strings build-time, so that runtime initialization of socket
147  * locks is fast):
148  */
149 static const char *const af_family_key_strings[AF_MAX+1] = {
150   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
151   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
152   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
153   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
154   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
155   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
156   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
157   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
158   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
159   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
160   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
161   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
162   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
163   "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
164 };
165 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
166   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
167   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
168   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
169   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
170   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
171   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
172   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
173   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
174   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
175   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
176   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
177   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
178   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
179   "slock-AF_NFC"   , "slock-AF_MAX"
180 };
181 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
182   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
183   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
184   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
185   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
186   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
187   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
188   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
189   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
190   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
191   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
192   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
193   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
194   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
195   "clock-AF_NFC"   , "clock-AF_MAX"
196 };
197
198 /*
199  * sk_callback_lock locking rules are per-address-family,
200  * so split the lock classes by using a per-AF key:
201  */
202 static struct lock_class_key af_callback_keys[AF_MAX];
203
204 /* Take into consideration the size of the struct sk_buff overhead in the
205  * determination of these values, since that is non-constant across
206  * platforms.  This makes socket queueing behavior and performance
207  * not depend upon such differences.
208  */
209 #define _SK_MEM_PACKETS         256
210 #define _SK_MEM_OVERHEAD        SKB_TRUESIZE(256)
211 #define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
212 #define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
213
214 /* Run time adjustable parameters. */
215 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
216 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
217 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
218 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
219
220 /* Maximal space eaten by iovec or ancillary data plus some space */
221 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
222 EXPORT_SYMBOL(sysctl_optmem_max);
223
224 #if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
225 int net_cls_subsys_id = -1;
226 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
227 #endif
228
229 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
230 {
231         struct timeval tv;
232
233         if (optlen < sizeof(tv))
234                 return -EINVAL;
235         if (copy_from_user(&tv, optval, sizeof(tv)))
236                 return -EFAULT;
237         if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
238                 return -EDOM;
239
240         if (tv.tv_sec < 0) {
241                 static int warned __read_mostly;
242
243                 *timeo_p = 0;
244                 if (warned < 10 && net_ratelimit()) {
245                         warned++;
246                         printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
247                                "tries to set negative timeout\n",
248                                 current->comm, task_pid_nr(current));
249                 }
250                 return 0;
251         }
252         *timeo_p = MAX_SCHEDULE_TIMEOUT;
253         if (tv.tv_sec == 0 && tv.tv_usec == 0)
254                 return 0;
255         if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
256                 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
257         return 0;
258 }
259
260 static void sock_warn_obsolete_bsdism(const char *name)
261 {
262         static int warned;
263         static char warncomm[TASK_COMM_LEN];
264         if (strcmp(warncomm, current->comm) && warned < 5) {
265                 strcpy(warncomm,  current->comm);
266                 printk(KERN_WARNING "process `%s' is using obsolete "
267                        "%s SO_BSDCOMPAT\n", warncomm, name);
268                 warned++;
269         }
270 }
271
272 static void sock_disable_timestamp(struct sock *sk, int flag)
273 {
274         if (sock_flag(sk, flag)) {
275                 sock_reset_flag(sk, flag);
276                 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
277                     !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
278                         net_disable_timestamp();
279                 }
280         }
281 }
282
283
284 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
285 {
286         int skb_len;
287         unsigned long flags;
288         struct sk_buff_head *list = &sk->sk_receive_queue;
289
290         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
291                 atomic_inc(&sk->sk_drops);
292                 trace_sock_rcvqueue_full(sk, skb);
293                 return -ENOMEM;
294         }
295
296         if (!sk_rmem_schedule(sk, skb->truesize)) {
297                 atomic_inc(&sk->sk_drops);
298                 return -ENOBUFS;
299         }
300
301         skb->dev = NULL;
302         skb_set_owner_r(skb, sk);
303
304         /* Cache the SKB length before we tack it onto the receive
305          * queue.  Once it is added it no longer belongs to us and
306          * may be freed by other threads of control pulling packets
307          * from the queue.
308          */
309         skb_len = skb->len;
310
311         /* we escape from rcu protected region, make sure we dont leak
312          * a norefcounted dst
313          */
314         skb_dst_force(skb);
315
316         spin_lock_irqsave(&list->lock, flags);
317         skb->dropcount = atomic_read(&sk->sk_drops);
318         __skb_queue_tail(list, skb);
319         spin_unlock_irqrestore(&list->lock, flags);
320
321         if (!sock_flag(sk, SOCK_DEAD))
322                 sk->sk_data_ready(sk, skb_len);
323         return 0;
324 }
325 EXPORT_SYMBOL(__sock_queue_rcv_skb);
326
327 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
328 {
329         int err;
330
331         err = sk_filter(sk, skb);
332         if (err)
333                 return err;
334
335         return __sock_queue_rcv_skb(sk, skb);
336 }
337 EXPORT_SYMBOL(sock_queue_rcv_skb);
338
339 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
340                      const int nested, unsigned int trim_cap)
341 {
342         int rc = NET_RX_SUCCESS;
343
344         if (sk_filter_trim_cap(sk, skb, trim_cap))
345                 goto discard_and_relse;
346
347         skb->dev = NULL;
348
349         if (sk_rcvqueues_full(sk, skb)) {
350                 atomic_inc(&sk->sk_drops);
351                 goto discard_and_relse;
352         }
353         if (nested)
354                 bh_lock_sock_nested(sk);
355         else
356                 bh_lock_sock(sk);
357         if (!sock_owned_by_user(sk)) {
358                 /*
359                  * trylock + unlock semantics:
360                  */
361                 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
362
363                 rc = sk_backlog_rcv(sk, skb);
364
365                 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
366         } else if (sk_add_backlog(sk, skb)) {
367                 bh_unlock_sock(sk);
368                 atomic_inc(&sk->sk_drops);
369                 goto discard_and_relse;
370         }
371
372         bh_unlock_sock(sk);
373 out:
374         sock_put(sk);
375         return rc;
376 discard_and_relse:
377         kfree_skb(skb);
378         goto out;
379 }
380 EXPORT_SYMBOL(__sk_receive_skb);
381
382 void sk_reset_txq(struct sock *sk)
383 {
384         sk_tx_queue_clear(sk);
385 }
386 EXPORT_SYMBOL(sk_reset_txq);
387
388 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
389 {
390         struct dst_entry *dst = __sk_dst_get(sk);
391
392         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
393                 sk_tx_queue_clear(sk);
394                 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
395                 dst_release(dst);
396                 return NULL;
397         }
398
399         return dst;
400 }
401 EXPORT_SYMBOL(__sk_dst_check);
402
403 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
404 {
405         struct dst_entry *dst = sk_dst_get(sk);
406
407         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
408                 sk_dst_reset(sk);
409                 dst_release(dst);
410                 return NULL;
411         }
412
413         return dst;
414 }
415 EXPORT_SYMBOL(sk_dst_check);
416
417 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
418 {
419         int ret = -ENOPROTOOPT;
420 #ifdef CONFIG_NETDEVICES
421         struct net *net = sock_net(sk);
422         char devname[IFNAMSIZ];
423         int index;
424
425         /* Sorry... */
426         ret = -EPERM;
427         if (!capable(CAP_NET_RAW))
428                 goto out;
429
430         ret = -EINVAL;
431         if (optlen < 0)
432                 goto out;
433
434         /* Bind this socket to a particular device like "eth0",
435          * as specified in the passed interface name. If the
436          * name is "" or the option length is zero the socket
437          * is not bound.
438          */
439         if (optlen > IFNAMSIZ - 1)
440                 optlen = IFNAMSIZ - 1;
441         memset(devname, 0, sizeof(devname));
442
443         ret = -EFAULT;
444         if (copy_from_user(devname, optval, optlen))
445                 goto out;
446
447         index = 0;
448         if (devname[0] != '\0') {
449                 struct net_device *dev;
450
451                 rcu_read_lock();
452                 dev = dev_get_by_name_rcu(net, devname);
453                 if (dev)
454                         index = dev->ifindex;
455                 rcu_read_unlock();
456                 ret = -ENODEV;
457                 if (!dev)
458                         goto out;
459         }
460
461         lock_sock(sk);
462         sk->sk_bound_dev_if = index;
463         sk_dst_reset(sk);
464         release_sock(sk);
465
466         ret = 0;
467
468 out:
469 #endif
470
471         return ret;
472 }
473
474 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
475 {
476         if (valbool)
477                 sock_set_flag(sk, bit);
478         else
479                 sock_reset_flag(sk, bit);
480 }
481
482 /*
483  *      This is meant for all protocols to use and covers goings on
484  *      at the socket level. Everything here is generic.
485  */
486
487 int sock_setsockopt(struct socket *sock, int level, int optname,
488                     char __user *optval, unsigned int optlen)
489 {
490         struct sock *sk = sock->sk;
491         int val;
492         int valbool;
493         struct linger ling;
494         int ret = 0;
495
496         /*
497          *      Options without arguments
498          */
499
500         if (optname == SO_BINDTODEVICE)
501                 return sock_bindtodevice(sk, optval, optlen);
502
503         if (optlen < sizeof(int))
504                 return -EINVAL;
505
506         if (get_user(val, (int __user *)optval))
507                 return -EFAULT;
508
509         valbool = val ? 1 : 0;
510
511         lock_sock(sk);
512
513         switch (optname) {
514         case SO_DEBUG:
515                 if (val && !capable(CAP_NET_ADMIN))
516                         ret = -EACCES;
517                 else
518                         sock_valbool_flag(sk, SOCK_DBG, valbool);
519                 break;
520         case SO_REUSEADDR:
521                 sk->sk_reuse = valbool;
522                 break;
523         case SO_TYPE:
524         case SO_PROTOCOL:
525         case SO_DOMAIN:
526         case SO_ERROR:
527                 ret = -ENOPROTOOPT;
528                 break;
529         case SO_DONTROUTE:
530                 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
531                 break;
532         case SO_BROADCAST:
533                 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
534                 break;
535         case SO_SNDBUF:
536                 /* Don't error on this BSD doesn't and if you think
537                  * about it this is right. Otherwise apps have to
538                  * play 'guess the biggest size' games. RCVBUF/SNDBUF
539                  * are treated in BSD as hints
540                  */
541                 val = min_t(u32, val, sysctl_wmem_max);
542 set_sndbuf:
543                 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
544                 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
545                 /* Wake up sending tasks if we upped the value. */
546                 sk->sk_write_space(sk);
547                 break;
548
549         case SO_SNDBUFFORCE:
550                 if (!capable(CAP_NET_ADMIN)) {
551                         ret = -EPERM;
552                         break;
553                 }
554                 goto set_sndbuf;
555
556         case SO_RCVBUF:
557                 /* Don't error on this BSD doesn't and if you think
558                  * about it this is right. Otherwise apps have to
559                  * play 'guess the biggest size' games. RCVBUF/SNDBUF
560                  * are treated in BSD as hints
561                  */
562                 val = min_t(u32, val, sysctl_rmem_max);
563 set_rcvbuf:
564                 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
565                 /*
566                  * We double it on the way in to account for
567                  * "struct sk_buff" etc. overhead.   Applications
568                  * assume that the SO_RCVBUF setting they make will
569                  * allow that much actual data to be received on that
570                  * socket.
571                  *
572                  * Applications are unaware that "struct sk_buff" and
573                  * other overheads allocate from the receive buffer
574                  * during socket buffer allocation.
575                  *
576                  * And after considering the possible alternatives,
577                  * returning the value we actually used in getsockopt
578                  * is the most desirable behavior.
579                  */
580                 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
581                 break;
582
583         case SO_RCVBUFFORCE:
584                 if (!capable(CAP_NET_ADMIN)) {
585                         ret = -EPERM;
586                         break;
587                 }
588                 goto set_rcvbuf;
589
590         case SO_KEEPALIVE:
591 #ifdef CONFIG_INET
592                 if (sk->sk_protocol == IPPROTO_TCP &&
593                     sk->sk_type == SOCK_STREAM)
594                         tcp_set_keepalive(sk, valbool);
595 #endif
596                 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
597                 break;
598
599         case SO_OOBINLINE:
600                 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
601                 break;
602
603         case SO_NO_CHECK:
604                 sk->sk_no_check = valbool;
605                 break;
606
607         case SO_PRIORITY:
608                 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
609                         sk->sk_priority = val;
610                 else
611                         ret = -EPERM;
612                 break;
613
614         case SO_LINGER:
615                 if (optlen < sizeof(ling)) {
616                         ret = -EINVAL;  /* 1003.1g */
617                         break;
618                 }
619                 if (copy_from_user(&ling, optval, sizeof(ling))) {
620                         ret = -EFAULT;
621                         break;
622                 }
623                 if (!ling.l_onoff)
624                         sock_reset_flag(sk, SOCK_LINGER);
625                 else {
626 #if (BITS_PER_LONG == 32)
627                         if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
628                                 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
629                         else
630 #endif
631                                 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
632                         sock_set_flag(sk, SOCK_LINGER);
633                 }
634                 break;
635
636         case SO_BSDCOMPAT:
637                 sock_warn_obsolete_bsdism("setsockopt");
638                 break;
639
640         case SO_PASSCRED:
641                 if (valbool)
642                         set_bit(SOCK_PASSCRED, &sock->flags);
643                 else
644                         clear_bit(SOCK_PASSCRED, &sock->flags);
645                 break;
646
647         case SO_TIMESTAMP:
648         case SO_TIMESTAMPNS:
649                 if (valbool)  {
650                         if (optname == SO_TIMESTAMP)
651                                 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
652                         else
653                                 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
654                         sock_set_flag(sk, SOCK_RCVTSTAMP);
655                         sock_enable_timestamp(sk, SOCK_TIMESTAMP);
656                 } else {
657                         sock_reset_flag(sk, SOCK_RCVTSTAMP);
658                         sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
659                 }
660                 break;
661
662         case SO_TIMESTAMPING:
663                 if (val & ~SOF_TIMESTAMPING_MASK) {
664                         ret = -EINVAL;
665                         break;
666                 }
667                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
668                                   val & SOF_TIMESTAMPING_TX_HARDWARE);
669                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
670                                   val & SOF_TIMESTAMPING_TX_SOFTWARE);
671                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
672                                   val & SOF_TIMESTAMPING_RX_HARDWARE);
673                 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
674                         sock_enable_timestamp(sk,
675                                               SOCK_TIMESTAMPING_RX_SOFTWARE);
676                 else
677                         sock_disable_timestamp(sk,
678                                                SOCK_TIMESTAMPING_RX_SOFTWARE);
679                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
680                                   val & SOF_TIMESTAMPING_SOFTWARE);
681                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
682                                   val & SOF_TIMESTAMPING_SYS_HARDWARE);
683                 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
684                                   val & SOF_TIMESTAMPING_RAW_HARDWARE);
685                 break;
686
687         case SO_RCVLOWAT:
688                 if (val < 0)
689                         val = INT_MAX;
690                 sk->sk_rcvlowat = val ? : 1;
691                 break;
692
693         case SO_RCVTIMEO:
694                 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
695                 break;
696
697         case SO_SNDTIMEO:
698                 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
699                 break;
700
701         case SO_ATTACH_FILTER:
702                 ret = -EINVAL;
703                 if (optlen == sizeof(struct sock_fprog)) {
704                         struct sock_fprog fprog;
705
706                         ret = -EFAULT;
707                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
708                                 break;
709
710                         ret = sk_attach_filter(&fprog, sk);
711                 }
712                 break;
713
714         case SO_DETACH_FILTER:
715                 ret = sk_detach_filter(sk);
716                 break;
717
718         case SO_PASSSEC:
719                 if (valbool)
720                         set_bit(SOCK_PASSSEC, &sock->flags);
721                 else
722                         clear_bit(SOCK_PASSSEC, &sock->flags);
723                 break;
724         case SO_MARK:
725                 if (!capable(CAP_NET_ADMIN))
726                         ret = -EPERM;
727                 else
728                         sk->sk_mark = val;
729                 break;
730
731                 /* We implement the SO_SNDLOWAT etc to
732                    not be settable (1003.1g 5.3) */
733         case SO_RXQ_OVFL:
734                 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
735                 break;
736         default:
737                 ret = -ENOPROTOOPT;
738                 break;
739         }
740         release_sock(sk);
741         return ret;
742 }
743 EXPORT_SYMBOL(sock_setsockopt);
744
745
746 void cred_to_ucred(struct pid *pid, const struct cred *cred,
747                    struct ucred *ucred)
748 {
749         ucred->pid = pid_vnr(pid);
750         ucred->uid = ucred->gid = -1;
751         if (cred) {
752                 struct user_namespace *current_ns = current_user_ns();
753
754                 ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
755                 ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
756         }
757 }
758 EXPORT_SYMBOL_GPL(cred_to_ucred);
759
760 void cred_real_to_ucred(struct pid *pid, const struct cred *cred,
761                         struct ucred *ucred)
762 {
763         ucred->pid = pid_vnr(pid);
764         ucred->uid = ucred->gid = -1;
765         if (cred) {
766                 struct user_namespace *current_ns = current_user_ns();
767
768                 ucred->uid = user_ns_map_uid(current_ns, cred, cred->uid);
769                 ucred->gid = user_ns_map_gid(current_ns, cred, cred->gid);
770         }
771 }
772 EXPORT_SYMBOL_GPL(cred_real_to_ucred);
773
774 int sock_getsockopt(struct socket *sock, int level, int optname,
775                     char __user *optval, int __user *optlen)
776 {
777         struct sock *sk = sock->sk;
778
779         union {
780                 int val;
781                 struct linger ling;
782                 struct timeval tm;
783         } v;
784
785         int lv = sizeof(int);
786         int len;
787
788         if (get_user(len, optlen))
789                 return -EFAULT;
790         if (len < 0)
791                 return -EINVAL;
792
793         memset(&v, 0, sizeof(v));
794
795         switch (optname) {
796         case SO_DEBUG:
797                 v.val = sock_flag(sk, SOCK_DBG);
798                 break;
799
800         case SO_DONTROUTE:
801                 v.val = sock_flag(sk, SOCK_LOCALROUTE);
802                 break;
803
804         case SO_BROADCAST:
805                 v.val = !!sock_flag(sk, SOCK_BROADCAST);
806                 break;
807
808         case SO_SNDBUF:
809                 v.val = sk->sk_sndbuf;
810                 break;
811
812         case SO_RCVBUF:
813                 v.val = sk->sk_rcvbuf;
814                 break;
815
816         case SO_REUSEADDR:
817                 v.val = sk->sk_reuse;
818                 break;
819
820         case SO_KEEPALIVE:
821                 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
822                 break;
823
824         case SO_TYPE:
825                 v.val = sk->sk_type;
826                 break;
827
828         case SO_PROTOCOL:
829                 v.val = sk->sk_protocol;
830                 break;
831
832         case SO_DOMAIN:
833                 v.val = sk->sk_family;
834                 break;
835
836         case SO_ERROR:
837                 v.val = -sock_error(sk);
838                 if (v.val == 0)
839                         v.val = xchg(&sk->sk_err_soft, 0);
840                 break;
841
842         case SO_OOBINLINE:
843                 v.val = !!sock_flag(sk, SOCK_URGINLINE);
844                 break;
845
846         case SO_NO_CHECK:
847                 v.val = sk->sk_no_check;
848                 break;
849
850         case SO_PRIORITY:
851                 v.val = sk->sk_priority;
852                 break;
853
854         case SO_LINGER:
855                 lv              = sizeof(v.ling);
856                 v.ling.l_onoff  = !!sock_flag(sk, SOCK_LINGER);
857                 v.ling.l_linger = sk->sk_lingertime / HZ;
858                 break;
859
860         case SO_BSDCOMPAT:
861                 sock_warn_obsolete_bsdism("getsockopt");
862                 break;
863
864         case SO_TIMESTAMP:
865                 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
866                                 !sock_flag(sk, SOCK_RCVTSTAMPNS);
867                 break;
868
869         case SO_TIMESTAMPNS:
870                 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
871                 break;
872
873         case SO_TIMESTAMPING:
874                 v.val = 0;
875                 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
876                         v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
877                 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
878                         v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
879                 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
880                         v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
881                 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
882                         v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
883                 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
884                         v.val |= SOF_TIMESTAMPING_SOFTWARE;
885                 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
886                         v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
887                 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
888                         v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
889                 break;
890
891         case SO_RCVTIMEO:
892                 lv = sizeof(struct timeval);
893                 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
894                         v.tm.tv_sec = 0;
895                         v.tm.tv_usec = 0;
896                 } else {
897                         v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
898                         v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
899                 }
900                 break;
901
902         case SO_SNDTIMEO:
903                 lv = sizeof(struct timeval);
904                 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
905                         v.tm.tv_sec = 0;
906                         v.tm.tv_usec = 0;
907                 } else {
908                         v.tm.tv_sec = sk->sk_sndtimeo / HZ;
909                         v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
910                 }
911                 break;
912
913         case SO_RCVLOWAT:
914                 v.val = sk->sk_rcvlowat;
915                 break;
916
917         case SO_SNDLOWAT:
918                 v.val = 1;
919                 break;
920
921         case SO_PASSCRED:
922                 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
923                 break;
924
925         case SO_PEERCRED:
926         {
927                 struct ucred peercred;
928                 if (len > sizeof(peercred))
929                         len = sizeof(peercred);
930                 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
931                 if (copy_to_user(optval, &peercred, len))
932                         return -EFAULT;
933                 goto lenout;
934         }
935
936         case SO_PEERNAME:
937         {
938                 char address[128];
939
940                 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
941                         return -ENOTCONN;
942                 if (lv < len)
943                         return -EINVAL;
944                 if (copy_to_user(optval, address, len))
945                         return -EFAULT;
946                 goto lenout;
947         }
948
949         /* Dubious BSD thing... Probably nobody even uses it, but
950          * the UNIX standard wants it for whatever reason... -DaveM
951          */
952         case SO_ACCEPTCONN:
953                 v.val = sk->sk_state == TCP_LISTEN;
954                 break;
955
956         case SO_PASSSEC:
957                 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
958                 break;
959
960         case SO_PEERSEC:
961                 return security_socket_getpeersec_stream(sock, optval, optlen, len);
962
963         case SO_MARK:
964                 v.val = sk->sk_mark;
965                 break;
966
967         case SO_RXQ_OVFL:
968                 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
969                 break;
970
971         default:
972                 return -ENOPROTOOPT;
973         }
974
975         if (len > lv)
976                 len = lv;
977         if (copy_to_user(optval, &v, len))
978                 return -EFAULT;
979 lenout:
980         if (put_user(len, optlen))
981                 return -EFAULT;
982         return 0;
983 }
984
985 /*
986  * Initialize an sk_lock.
987  *
988  * (We also register the sk_lock with the lock validator.)
989  */
990 static inline void sock_lock_init(struct sock *sk)
991 {
992         sock_lock_init_class_and_name(sk,
993                         af_family_slock_key_strings[sk->sk_family],
994                         af_family_slock_keys + sk->sk_family,
995                         af_family_key_strings[sk->sk_family],
996                         af_family_keys + sk->sk_family);
997 }
998
999 /*
1000  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1001  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1002  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1003  */
1004 static void sock_copy(struct sock *nsk, const struct sock *osk)
1005 {
1006 #ifdef CONFIG_SECURITY_NETWORK
1007         void *sptr = nsk->sk_security;
1008 #endif
1009         memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1010
1011         memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1012                osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1013
1014 #ifdef CONFIG_SECURITY_NETWORK
1015         nsk->sk_security = sptr;
1016         security_sk_clone(osk, nsk);
1017 #endif
1018 }
1019
1020 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1021 {
1022         unsigned long nulls1, nulls2;
1023
1024         nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1025         nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1026         if (nulls1 > nulls2)
1027                 swap(nulls1, nulls2);
1028
1029         if (nulls1 != 0)
1030                 memset((char *)sk, 0, nulls1);
1031         memset((char *)sk + nulls1 + sizeof(void *), 0,
1032                nulls2 - nulls1 - sizeof(void *));
1033         memset((char *)sk + nulls2 + sizeof(void *), 0,
1034                size - nulls2 - sizeof(void *));
1035 }
1036 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1037
1038 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1039                 int family)
1040 {
1041         struct sock *sk;
1042         struct kmem_cache *slab;
1043
1044         slab = prot->slab;
1045         if (slab != NULL) {
1046                 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1047                 if (!sk)
1048                         return sk;
1049                 if (priority & __GFP_ZERO) {
1050                         if (prot->clear_sk)
1051                                 prot->clear_sk(sk, prot->obj_size);
1052                         else
1053                                 sk_prot_clear_nulls(sk, prot->obj_size);
1054                 }
1055         } else
1056                 sk = kmalloc(prot->obj_size, priority);
1057
1058         if (sk != NULL) {
1059                 kmemcheck_annotate_bitfield(sk, flags);
1060
1061                 if (security_sk_alloc(sk, family, priority))
1062                         goto out_free;
1063
1064                 if (!try_module_get(prot->owner))
1065                         goto out_free_sec;
1066                 sk_tx_queue_clear(sk);
1067         }
1068
1069         return sk;
1070
1071 out_free_sec:
1072         security_sk_free(sk);
1073 out_free:
1074         if (slab != NULL)
1075                 kmem_cache_free(slab, sk);
1076         else
1077                 kfree(sk);
1078         return NULL;
1079 }
1080
1081 static void sk_prot_free(struct proto *prot, struct sock *sk)
1082 {
1083         struct kmem_cache *slab;
1084         struct module *owner;
1085
1086         owner = prot->owner;
1087         slab = prot->slab;
1088
1089         security_sk_free(sk);
1090         if (slab != NULL)
1091                 kmem_cache_free(slab, sk);
1092         else
1093                 kfree(sk);
1094         module_put(owner);
1095 }
1096
1097 #ifdef CONFIG_CGROUPS
1098 void sock_update_classid(struct sock *sk)
1099 {
1100         u32 classid;
1101
1102         rcu_read_lock();  /* doing current task, which cannot vanish. */
1103         classid = task_cls_classid(current);
1104         rcu_read_unlock();
1105         if (classid && classid != sk->sk_classid)
1106                 sk->sk_classid = classid;
1107 }
1108 EXPORT_SYMBOL(sock_update_classid);
1109 #endif
1110
1111 /**
1112  *      sk_alloc - All socket objects are allocated here
1113  *      @net: the applicable net namespace
1114  *      @family: protocol family
1115  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1116  *      @prot: struct proto associated with this new sock instance
1117  */
1118 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1119                       struct proto *prot)
1120 {
1121         struct sock *sk;
1122
1123         sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1124         if (sk) {
1125                 sk->sk_family = family;
1126                 /*
1127                  * See comment in struct sock definition to understand
1128                  * why we need sk_prot_creator -acme
1129                  */
1130                 sk->sk_prot = sk->sk_prot_creator = prot;
1131                 sock_lock_init(sk);
1132                 sock_net_set(sk, get_net(net));
1133                 atomic_set(&sk->sk_wmem_alloc, 1);
1134
1135                 sock_update_classid(sk);
1136         }
1137
1138         return sk;
1139 }
1140 EXPORT_SYMBOL(sk_alloc);
1141
1142 static void __sk_free(struct sock *sk)
1143 {
1144         struct sk_filter *filter;
1145
1146         if (sk->sk_destruct)
1147                 sk->sk_destruct(sk);
1148
1149         filter = rcu_dereference_check(sk->sk_filter,
1150                                        atomic_read(&sk->sk_wmem_alloc) == 0);
1151         if (filter) {
1152                 sk_filter_uncharge(sk, filter);
1153                 RCU_INIT_POINTER(sk->sk_filter, NULL);
1154         }
1155
1156         sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1157         sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1158
1159         if (atomic_read(&sk->sk_omem_alloc))
1160                 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1161                        __func__, atomic_read(&sk->sk_omem_alloc));
1162
1163         if (sk->sk_peer_cred)
1164                 put_cred(sk->sk_peer_cred);
1165         put_pid(sk->sk_peer_pid);
1166         put_net(sock_net(sk));
1167         sk_prot_free(sk->sk_prot_creator, sk);
1168 }
1169
1170 void sk_free(struct sock *sk)
1171 {
1172         /*
1173          * We subtract one from sk_wmem_alloc and can know if
1174          * some packets are still in some tx queue.
1175          * If not null, sock_wfree() will call __sk_free(sk) later
1176          */
1177         if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1178                 __sk_free(sk);
1179 }
1180 EXPORT_SYMBOL(sk_free);
1181
1182 /*
1183  * Last sock_put should drop reference to sk->sk_net. It has already
1184  * been dropped in sk_change_net. Taking reference to stopping namespace
1185  * is not an option.
1186  * Take reference to a socket to remove it from hash _alive_ and after that
1187  * destroy it in the context of init_net.
1188  */
1189 void sk_release_kernel(struct sock *sk)
1190 {
1191         if (sk == NULL || sk->sk_socket == NULL)
1192                 return;
1193
1194         sock_hold(sk);
1195         sock_release(sk->sk_socket);
1196         release_net(sock_net(sk));
1197         sock_net_set(sk, get_net(&init_net));
1198         sock_put(sk);
1199 }
1200 EXPORT_SYMBOL(sk_release_kernel);
1201
1202 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1203 {
1204         struct sock *newsk;
1205
1206         newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1207         if (newsk != NULL) {
1208                 struct sk_filter *filter;
1209
1210                 sock_copy(newsk, sk);
1211
1212                 /* SANITY */
1213                 get_net(sock_net(newsk));
1214                 sk_node_init(&newsk->sk_node);
1215                 sock_lock_init(newsk);
1216                 bh_lock_sock(newsk);
1217                 newsk->sk_backlog.head  = newsk->sk_backlog.tail = NULL;
1218                 newsk->sk_backlog.len = 0;
1219
1220                 atomic_set(&newsk->sk_rmem_alloc, 0);
1221                 /*
1222                  * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1223                  */
1224                 atomic_set(&newsk->sk_wmem_alloc, 1);
1225                 atomic_set(&newsk->sk_omem_alloc, 0);
1226                 skb_queue_head_init(&newsk->sk_receive_queue);
1227                 skb_queue_head_init(&newsk->sk_write_queue);
1228 #ifdef CONFIG_NET_DMA
1229                 skb_queue_head_init(&newsk->sk_async_wait_queue);
1230 #endif
1231
1232                 spin_lock_init(&newsk->sk_dst_lock);
1233                 rwlock_init(&newsk->sk_callback_lock);
1234                 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1235                                 af_callback_keys + newsk->sk_family,
1236                                 af_family_clock_key_strings[newsk->sk_family]);
1237
1238                 newsk->sk_dst_cache     = NULL;
1239                 newsk->sk_wmem_queued   = 0;
1240                 newsk->sk_forward_alloc = 0;
1241                 newsk->sk_send_head     = NULL;
1242                 newsk->sk_userlocks     = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1243
1244                 sock_reset_flag(newsk, SOCK_DONE);
1245                 skb_queue_head_init(&newsk->sk_error_queue);
1246
1247                 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1248                 if (filter != NULL)
1249                         sk_filter_charge(newsk, filter);
1250
1251                 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1252                         /* It is still raw copy of parent, so invalidate
1253                          * destructor and make plain sk_free() */
1254                         newsk->sk_destruct = NULL;
1255                         bh_unlock_sock(newsk);
1256                         sk_free(newsk);
1257                         newsk = NULL;
1258                         goto out;
1259                 }
1260
1261                 newsk->sk_err      = 0;
1262                 newsk->sk_priority = 0;
1263                 /*
1264                  * Before updating sk_refcnt, we must commit prior changes to memory
1265                  * (Documentation/RCU/rculist_nulls.txt for details)
1266                  */
1267                 smp_wmb();
1268                 atomic_set(&newsk->sk_refcnt, 2);
1269
1270                 /*
1271                  * Increment the counter in the same struct proto as the master
1272                  * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1273                  * is the same as sk->sk_prot->socks, as this field was copied
1274                  * with memcpy).
1275                  *
1276                  * This _changes_ the previous behaviour, where
1277                  * tcp_create_openreq_child always was incrementing the
1278                  * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1279                  * to be taken into account in all callers. -acme
1280                  */
1281                 sk_refcnt_debug_inc(newsk);
1282                 sk_set_socket(newsk, NULL);
1283                 newsk->sk_wq = NULL;
1284
1285                 if (newsk->sk_prot->sockets_allocated)
1286                         percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1287
1288                 if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1289                     sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1290                         net_enable_timestamp();
1291         }
1292 out:
1293         return newsk;
1294 }
1295 EXPORT_SYMBOL_GPL(sk_clone);
1296
1297 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1298 {
1299         __sk_dst_set(sk, dst);
1300         sk->sk_route_caps = dst->dev->features;
1301         if (sk->sk_route_caps & NETIF_F_GSO)
1302                 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1303         sk->sk_route_caps &= ~sk->sk_route_nocaps;
1304         if (sk_can_gso(sk)) {
1305                 if (dst->header_len) {
1306                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1307                 } else {
1308                         sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1309                         sk->sk_gso_max_size = dst->dev->gso_max_size;
1310                 }
1311         }
1312 }
1313 EXPORT_SYMBOL_GPL(sk_setup_caps);
1314
1315 void __init sk_init(void)
1316 {
1317         if (totalram_pages <= 4096) {
1318                 sysctl_wmem_max = 32767;
1319                 sysctl_rmem_max = 32767;
1320                 sysctl_wmem_default = 32767;
1321                 sysctl_rmem_default = 32767;
1322         } else if (totalram_pages >= 131072) {
1323                 sysctl_wmem_max = 131071;
1324                 sysctl_rmem_max = 131071;
1325         }
1326 }
1327
1328 /*
1329  *      Simple resource managers for sockets.
1330  */
1331
1332
1333 /*
1334  * Write buffer destructor automatically called from kfree_skb.
1335  */
1336 void sock_wfree(struct sk_buff *skb)
1337 {
1338         struct sock *sk = skb->sk;
1339         unsigned int len = skb->truesize;
1340
1341         if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1342                 /*
1343                  * Keep a reference on sk_wmem_alloc, this will be released
1344                  * after sk_write_space() call
1345                  */
1346                 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1347                 sk->sk_write_space(sk);
1348                 len = 1;
1349         }
1350         /*
1351          * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1352          * could not do because of in-flight packets
1353          */
1354         if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1355                 __sk_free(sk);
1356 }
1357 EXPORT_SYMBOL(sock_wfree);
1358
1359 /*
1360  * Read buffer destructor automatically called from kfree_skb.
1361  */
1362 void sock_rfree(struct sk_buff *skb)
1363 {
1364         struct sock *sk = skb->sk;
1365         unsigned int len = skb->truesize;
1366
1367         atomic_sub(len, &sk->sk_rmem_alloc);
1368         sk_mem_uncharge(sk, len);
1369 }
1370 EXPORT_SYMBOL(sock_rfree);
1371
1372
1373 int sock_i_uid(struct sock *sk)
1374 {
1375         int uid;
1376
1377         read_lock_bh(&sk->sk_callback_lock);
1378         uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1379         read_unlock_bh(&sk->sk_callback_lock);
1380         return uid;
1381 }
1382 EXPORT_SYMBOL(sock_i_uid);
1383
1384 unsigned long sock_i_ino(struct sock *sk)
1385 {
1386         unsigned long ino;
1387
1388         read_lock_bh(&sk->sk_callback_lock);
1389         ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1390         read_unlock_bh(&sk->sk_callback_lock);
1391         return ino;
1392 }
1393 EXPORT_SYMBOL(sock_i_ino);
1394
1395 /*
1396  * Allocate a skb from the socket's send buffer.
1397  */
1398 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1399                              gfp_t priority)
1400 {
1401         if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1402                 struct sk_buff *skb = alloc_skb(size, priority);
1403                 if (skb) {
1404                         skb_set_owner_w(skb, sk);
1405                         return skb;
1406                 }
1407         }
1408         return NULL;
1409 }
1410 EXPORT_SYMBOL(sock_wmalloc);
1411
1412 /*
1413  * Allocate a skb from the socket's receive buffer.
1414  */
1415 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1416                              gfp_t priority)
1417 {
1418         if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1419                 struct sk_buff *skb = alloc_skb(size, priority);
1420                 if (skb) {
1421                         skb_set_owner_r(skb, sk);
1422                         return skb;
1423                 }
1424         }
1425         return NULL;
1426 }
1427
1428 /*
1429  * Allocate a memory block from the socket's option memory buffer.
1430  */
1431 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1432 {
1433         if ((unsigned)size <= sysctl_optmem_max &&
1434             atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1435                 void *mem;
1436                 /* First do the add, to avoid the race if kmalloc
1437                  * might sleep.
1438                  */
1439                 atomic_add(size, &sk->sk_omem_alloc);
1440                 mem = kmalloc(size, priority);
1441                 if (mem)
1442                         return mem;
1443                 atomic_sub(size, &sk->sk_omem_alloc);
1444         }
1445         return NULL;
1446 }
1447 EXPORT_SYMBOL(sock_kmalloc);
1448
1449 /*
1450  * Free an option memory block.
1451  */
1452 void sock_kfree_s(struct sock *sk, void *mem, int size)
1453 {
1454         kfree(mem);
1455         atomic_sub(size, &sk->sk_omem_alloc);
1456 }
1457 EXPORT_SYMBOL(sock_kfree_s);
1458
1459 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1460    I think, these locks should be removed for datagram sockets.
1461  */
1462 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1463 {
1464         DEFINE_WAIT(wait);
1465
1466         clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1467         for (;;) {
1468                 if (!timeo)
1469                         break;
1470                 if (signal_pending(current))
1471                         break;
1472                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1473                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1474                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1475                         break;
1476                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1477                         break;
1478                 if (sk->sk_err)
1479                         break;
1480                 timeo = schedule_timeout(timeo);
1481         }
1482         finish_wait(sk_sleep(sk), &wait);
1483         return timeo;
1484 }
1485
1486
1487 /*
1488  *      Generic send/receive buffer handlers
1489  */
1490
1491 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1492                                      unsigned long data_len, int noblock,
1493                                      int *errcode)
1494 {
1495         struct sk_buff *skb;
1496         gfp_t gfp_mask;
1497         long timeo;
1498         int err;
1499         int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1500
1501         err = -EMSGSIZE;
1502         if (npages > MAX_SKB_FRAGS)
1503                 goto failure;
1504
1505         gfp_mask = sk->sk_allocation;
1506         if (gfp_mask & __GFP_WAIT)
1507                 gfp_mask |= __GFP_REPEAT;
1508
1509         timeo = sock_sndtimeo(sk, noblock);
1510         while (1) {
1511                 err = sock_error(sk);
1512                 if (err != 0)
1513                         goto failure;
1514
1515                 err = -EPIPE;
1516                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1517                         goto failure;
1518
1519                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1520                         skb = alloc_skb(header_len, gfp_mask);
1521                         if (skb) {
1522                                 int i;
1523
1524                                 /* No pages, we're done... */
1525                                 if (!data_len)
1526                                         break;
1527
1528                                 skb->truesize += data_len;
1529                                 skb_shinfo(skb)->nr_frags = npages;
1530                                 for (i = 0; i < npages; i++) {
1531                                         struct page *page;
1532
1533                                         page = alloc_pages(sk->sk_allocation, 0);
1534                                         if (!page) {
1535                                                 err = -ENOBUFS;
1536                                                 skb_shinfo(skb)->nr_frags = i;
1537                                                 kfree_skb(skb);
1538                                                 goto failure;
1539                                         }
1540
1541                                         __skb_fill_page_desc(skb, i,
1542                                                         page, 0,
1543                                                         (data_len >= PAGE_SIZE ?
1544                                                          PAGE_SIZE :
1545                                                          data_len));
1546                                         data_len -= PAGE_SIZE;
1547                                 }
1548
1549                                 /* Full success... */
1550                                 break;
1551                         }
1552                         err = -ENOBUFS;
1553                         goto failure;
1554                 }
1555                 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1556                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1557                 err = -EAGAIN;
1558                 if (!timeo)
1559                         goto failure;
1560                 if (signal_pending(current))
1561                         goto interrupted;
1562                 timeo = sock_wait_for_wmem(sk, timeo);
1563         }
1564
1565         skb_set_owner_w(skb, sk);
1566         return skb;
1567
1568 interrupted:
1569         err = sock_intr_errno(timeo);
1570 failure:
1571         *errcode = err;
1572         return NULL;
1573 }
1574 EXPORT_SYMBOL(sock_alloc_send_pskb);
1575
1576 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1577                                     int noblock, int *errcode)
1578 {
1579         return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1580 }
1581 EXPORT_SYMBOL(sock_alloc_send_skb);
1582
1583 static void __lock_sock(struct sock *sk)
1584         __releases(&sk->sk_lock.slock)
1585         __acquires(&sk->sk_lock.slock)
1586 {
1587         DEFINE_WAIT(wait);
1588
1589         for (;;) {
1590                 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1591                                         TASK_UNINTERRUPTIBLE);
1592                 spin_unlock_bh(&sk->sk_lock.slock);
1593                 schedule();
1594                 spin_lock_bh(&sk->sk_lock.slock);
1595                 if (!sock_owned_by_user(sk))
1596                         break;
1597         }
1598         finish_wait(&sk->sk_lock.wq, &wait);
1599 }
1600
1601 static void __release_sock(struct sock *sk)
1602         __releases(&sk->sk_lock.slock)
1603         __acquires(&sk->sk_lock.slock)
1604 {
1605         struct sk_buff *skb = sk->sk_backlog.head;
1606
1607         do {
1608                 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1609                 bh_unlock_sock(sk);
1610
1611                 do {
1612                         struct sk_buff *next = skb->next;
1613
1614                         WARN_ON_ONCE(skb_dst_is_noref(skb));
1615                         skb->next = NULL;
1616                         sk_backlog_rcv(sk, skb);
1617
1618                         /*
1619                          * We are in process context here with softirqs
1620                          * disabled, use cond_resched_softirq() to preempt.
1621                          * This is safe to do because we've taken the backlog
1622                          * queue private:
1623                          */
1624                         cond_resched_softirq();
1625
1626                         skb = next;
1627                 } while (skb != NULL);
1628
1629                 bh_lock_sock(sk);
1630         } while ((skb = sk->sk_backlog.head) != NULL);
1631
1632         /*
1633          * Doing the zeroing here guarantee we can not loop forever
1634          * while a wild producer attempts to flood us.
1635          */
1636         sk->sk_backlog.len = 0;
1637 }
1638
1639 /**
1640  * sk_wait_data - wait for data to arrive at sk_receive_queue
1641  * @sk:    sock to wait on
1642  * @timeo: for how long
1643  *
1644  * Now socket state including sk->sk_err is changed only under lock,
1645  * hence we may omit checks after joining wait queue.
1646  * We check receive queue before schedule() only as optimization;
1647  * it is very likely that release_sock() added new data.
1648  */
1649 int sk_wait_data(struct sock *sk, long *timeo)
1650 {
1651         int rc;
1652         DEFINE_WAIT(wait);
1653
1654         prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1655         set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1656         rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1657         clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1658         finish_wait(sk_sleep(sk), &wait);
1659         return rc;
1660 }
1661 EXPORT_SYMBOL(sk_wait_data);
1662
1663 /**
1664  *      __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1665  *      @sk: socket
1666  *      @size: memory size to allocate
1667  *      @kind: allocation type
1668  *
1669  *      If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1670  *      rmem allocation. This function assumes that protocols which have
1671  *      memory_pressure use sk_wmem_queued as write buffer accounting.
1672  */
1673 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1674 {
1675         struct proto *prot = sk->sk_prot;
1676         int amt = sk_mem_pages(size);
1677         long allocated;
1678
1679         sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1680         allocated = atomic_long_add_return(amt, prot->memory_allocated);
1681
1682         /* Under limit. */
1683         if (allocated <= prot->sysctl_mem[0]) {
1684                 if (prot->memory_pressure && *prot->memory_pressure)
1685                         *prot->memory_pressure = 0;
1686                 return 1;
1687         }
1688
1689         /* Under pressure. */
1690         if (allocated > prot->sysctl_mem[1])
1691                 if (prot->enter_memory_pressure)
1692                         prot->enter_memory_pressure(sk);
1693
1694         /* Over hard limit. */
1695         if (allocated > prot->sysctl_mem[2])
1696                 goto suppress_allocation;
1697
1698         /* guarantee minimum buffer size under pressure */
1699         if (kind == SK_MEM_RECV) {
1700                 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1701                         return 1;
1702         } else { /* SK_MEM_SEND */
1703                 if (sk->sk_type == SOCK_STREAM) {
1704                         if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1705                                 return 1;
1706                 } else if (atomic_read(&sk->sk_wmem_alloc) <
1707                            prot->sysctl_wmem[0])
1708                                 return 1;
1709         }
1710
1711         if (prot->memory_pressure) {
1712                 int alloc;
1713
1714                 if (!*prot->memory_pressure)
1715                         return 1;
1716                 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1717                 if (prot->sysctl_mem[2] > alloc *
1718                     sk_mem_pages(sk->sk_wmem_queued +
1719                                  atomic_read(&sk->sk_rmem_alloc) +
1720                                  sk->sk_forward_alloc))
1721                         return 1;
1722         }
1723
1724 suppress_allocation:
1725
1726         if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1727                 sk_stream_moderate_sndbuf(sk);
1728
1729                 /* Fail only if socket is _under_ its sndbuf.
1730                  * In this case we cannot block, so that we have to fail.
1731                  */
1732                 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1733                         return 1;
1734         }
1735
1736         trace_sock_exceed_buf_limit(sk, prot, allocated);
1737
1738         /* Alas. Undo changes. */
1739         sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1740         atomic_long_sub(amt, prot->memory_allocated);
1741         return 0;
1742 }
1743 EXPORT_SYMBOL(__sk_mem_schedule);
1744
1745 /**
1746  *      __sk_reclaim - reclaim memory_allocated
1747  *      @sk: socket
1748  */
1749 void __sk_mem_reclaim(struct sock *sk)
1750 {
1751         struct proto *prot = sk->sk_prot;
1752
1753         atomic_long_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1754                    prot->memory_allocated);
1755         sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1756
1757         if (prot->memory_pressure && *prot->memory_pressure &&
1758             (atomic_long_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1759                 *prot->memory_pressure = 0;
1760 }
1761 EXPORT_SYMBOL(__sk_mem_reclaim);
1762
1763
1764 /*
1765  * Set of default routines for initialising struct proto_ops when
1766  * the protocol does not support a particular function. In certain
1767  * cases where it makes no sense for a protocol to have a "do nothing"
1768  * function, some default processing is provided.
1769  */
1770
1771 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1772 {
1773         return -EOPNOTSUPP;
1774 }
1775 EXPORT_SYMBOL(sock_no_bind);
1776
1777 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1778                     int len, int flags)
1779 {
1780         return -EOPNOTSUPP;
1781 }
1782 EXPORT_SYMBOL(sock_no_connect);
1783
1784 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1785 {
1786         return -EOPNOTSUPP;
1787 }
1788 EXPORT_SYMBOL(sock_no_socketpair);
1789
1790 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1791 {
1792         return -EOPNOTSUPP;
1793 }
1794 EXPORT_SYMBOL(sock_no_accept);
1795
1796 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1797                     int *len, int peer)
1798 {
1799         return -EOPNOTSUPP;
1800 }
1801 EXPORT_SYMBOL(sock_no_getname);
1802
1803 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1804 {
1805         return 0;
1806 }
1807 EXPORT_SYMBOL(sock_no_poll);
1808
1809 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1810 {
1811         return -EOPNOTSUPP;
1812 }
1813 EXPORT_SYMBOL(sock_no_ioctl);
1814
1815 int sock_no_listen(struct socket *sock, int backlog)
1816 {
1817         return -EOPNOTSUPP;
1818 }
1819 EXPORT_SYMBOL(sock_no_listen);
1820
1821 int sock_no_shutdown(struct socket *sock, int how)
1822 {
1823         return -EOPNOTSUPP;
1824 }
1825 EXPORT_SYMBOL(sock_no_shutdown);
1826
1827 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1828                     char __user *optval, unsigned int optlen)
1829 {
1830         return -EOPNOTSUPP;
1831 }
1832 EXPORT_SYMBOL(sock_no_setsockopt);
1833
1834 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1835                     char __user *optval, int __user *optlen)
1836 {
1837         return -EOPNOTSUPP;
1838 }
1839 EXPORT_SYMBOL(sock_no_getsockopt);
1840
1841 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1842                     size_t len)
1843 {
1844         return -EOPNOTSUPP;
1845 }
1846 EXPORT_SYMBOL(sock_no_sendmsg);
1847
1848 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1849                     size_t len, int flags)
1850 {
1851         return -EOPNOTSUPP;
1852 }
1853 EXPORT_SYMBOL(sock_no_recvmsg);
1854
1855 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1856 {
1857         /* Mirror missing mmap method error code */
1858         return -ENODEV;
1859 }
1860 EXPORT_SYMBOL(sock_no_mmap);
1861
1862 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1863 {
1864         ssize_t res;
1865         struct msghdr msg = {.msg_flags = flags};
1866         struct kvec iov;
1867         char *kaddr = kmap(page);
1868         iov.iov_base = kaddr + offset;
1869         iov.iov_len = size;
1870         res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1871         kunmap(page);
1872         return res;
1873 }
1874 EXPORT_SYMBOL(sock_no_sendpage);
1875
1876 /*
1877  *      Default Socket Callbacks
1878  */
1879
1880 static void sock_def_wakeup(struct sock *sk)
1881 {
1882         struct socket_wq *wq;
1883
1884         rcu_read_lock();
1885         wq = rcu_dereference(sk->sk_wq);
1886         if (wq_has_sleeper(wq))
1887                 wake_up_interruptible_all(&wq->wait);
1888         rcu_read_unlock();
1889 }
1890
1891 static void sock_def_error_report(struct sock *sk)
1892 {
1893         struct socket_wq *wq;
1894
1895         rcu_read_lock();
1896         wq = rcu_dereference(sk->sk_wq);
1897         if (wq_has_sleeper(wq))
1898                 wake_up_interruptible_poll(&wq->wait, POLLERR);
1899         sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1900         rcu_read_unlock();
1901 }
1902
1903 static void sock_def_readable(struct sock *sk, int len)
1904 {
1905         struct socket_wq *wq;
1906
1907         rcu_read_lock();
1908         wq = rcu_dereference(sk->sk_wq);
1909         if (wq_has_sleeper(wq))
1910                 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
1911                                                 POLLRDNORM | POLLRDBAND);
1912         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1913         rcu_read_unlock();
1914 }
1915
1916 static void sock_def_write_space(struct sock *sk)
1917 {
1918         struct socket_wq *wq;
1919
1920         rcu_read_lock();
1921
1922         /* Do not wake up a writer until he can make "significant"
1923          * progress.  --DaveM
1924          */
1925         if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1926                 wq = rcu_dereference(sk->sk_wq);
1927                 if (wq_has_sleeper(wq))
1928                         wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
1929                                                 POLLWRNORM | POLLWRBAND);
1930
1931                 /* Should agree with poll, otherwise some programs break */
1932                 if (sock_writeable(sk))
1933                         sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1934         }
1935
1936         rcu_read_unlock();
1937 }
1938
1939 static void sock_def_destruct(struct sock *sk)
1940 {
1941         kfree(sk->sk_protinfo);
1942 }
1943
1944 void sk_send_sigurg(struct sock *sk)
1945 {
1946         if (sk->sk_socket && sk->sk_socket->file)
1947                 if (send_sigurg(&sk->sk_socket->file->f_owner))
1948                         sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1949 }
1950 EXPORT_SYMBOL(sk_send_sigurg);
1951
1952 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1953                     unsigned long expires)
1954 {
1955         if (!mod_timer(timer, expires))
1956                 sock_hold(sk);
1957 }
1958 EXPORT_SYMBOL(sk_reset_timer);
1959
1960 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1961 {
1962         if (timer_pending(timer) && del_timer(timer))
1963                 __sock_put(sk);
1964 }
1965 EXPORT_SYMBOL(sk_stop_timer);
1966
1967 void sock_init_data(struct socket *sock, struct sock *sk)
1968 {
1969         skb_queue_head_init(&sk->sk_receive_queue);
1970         skb_queue_head_init(&sk->sk_write_queue);
1971         skb_queue_head_init(&sk->sk_error_queue);
1972 #ifdef CONFIG_NET_DMA
1973         skb_queue_head_init(&sk->sk_async_wait_queue);
1974 #endif
1975
1976         sk->sk_send_head        =       NULL;
1977
1978         init_timer(&sk->sk_timer);
1979
1980         sk->sk_allocation       =       GFP_KERNEL;
1981         sk->sk_rcvbuf           =       sysctl_rmem_default;
1982         sk->sk_sndbuf           =       sysctl_wmem_default;
1983         sk->sk_state            =       TCP_CLOSE;
1984         sk_set_socket(sk, sock);
1985
1986         sock_set_flag(sk, SOCK_ZAPPED);
1987
1988         if (sock) {
1989                 sk->sk_type     =       sock->type;
1990                 sk->sk_wq       =       sock->wq;
1991                 sock->sk        =       sk;
1992         } else
1993                 sk->sk_wq       =       NULL;
1994
1995         spin_lock_init(&sk->sk_dst_lock);
1996         rwlock_init(&sk->sk_callback_lock);
1997         lockdep_set_class_and_name(&sk->sk_callback_lock,
1998                         af_callback_keys + sk->sk_family,
1999                         af_family_clock_key_strings[sk->sk_family]);
2000
2001         sk->sk_state_change     =       sock_def_wakeup;
2002         sk->sk_data_ready       =       sock_def_readable;
2003         sk->sk_write_space      =       sock_def_write_space;
2004         sk->sk_error_report     =       sock_def_error_report;
2005         sk->sk_destruct         =       sock_def_destruct;
2006
2007         sk->sk_sndmsg_page      =       NULL;
2008         sk->sk_sndmsg_off       =       0;
2009
2010         sk->sk_peer_pid         =       NULL;
2011         sk->sk_peer_cred        =       NULL;
2012         sk->sk_write_pending    =       0;
2013         sk->sk_rcvlowat         =       1;
2014         sk->sk_rcvtimeo         =       MAX_SCHEDULE_TIMEOUT;
2015         sk->sk_sndtimeo         =       MAX_SCHEDULE_TIMEOUT;
2016
2017         sk->sk_stamp = ktime_set(-1L, 0);
2018
2019         /*
2020          * Before updating sk_refcnt, we must commit prior changes to memory
2021          * (Documentation/RCU/rculist_nulls.txt for details)
2022          */
2023         smp_wmb();
2024         atomic_set(&sk->sk_refcnt, 1);
2025         atomic_set(&sk->sk_drops, 0);
2026 }
2027 EXPORT_SYMBOL(sock_init_data);
2028
2029 void lock_sock_nested(struct sock *sk, int subclass)
2030 {
2031         might_sleep();
2032         spin_lock_bh(&sk->sk_lock.slock);
2033         if (sk->sk_lock.owned)
2034                 __lock_sock(sk);
2035         sk->sk_lock.owned = 1;
2036         spin_unlock(&sk->sk_lock.slock);
2037         /*
2038          * The sk_lock has mutex_lock() semantics here:
2039          */
2040         mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2041         local_bh_enable();
2042 }
2043 EXPORT_SYMBOL(lock_sock_nested);
2044
2045 void release_sock(struct sock *sk)
2046 {
2047         /*
2048          * The sk_lock has mutex_unlock() semantics:
2049          */
2050         mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2051
2052         spin_lock_bh(&sk->sk_lock.slock);
2053         if (sk->sk_backlog.tail)
2054                 __release_sock(sk);
2055         sk->sk_lock.owned = 0;
2056         if (waitqueue_active(&sk->sk_lock.wq))
2057                 wake_up(&sk->sk_lock.wq);
2058         spin_unlock_bh(&sk->sk_lock.slock);
2059 }
2060 EXPORT_SYMBOL(release_sock);
2061
2062 /**
2063  * lock_sock_fast - fast version of lock_sock
2064  * @sk: socket
2065  *
2066  * This version should be used for very small section, where process wont block
2067  * return false if fast path is taken
2068  *   sk_lock.slock locked, owned = 0, BH disabled
2069  * return true if slow path is taken
2070  *   sk_lock.slock unlocked, owned = 1, BH enabled
2071  */
2072 bool lock_sock_fast(struct sock *sk)
2073 {
2074         might_sleep();
2075         spin_lock_bh(&sk->sk_lock.slock);
2076
2077         if (!sk->sk_lock.owned)
2078                 /*
2079                  * Note : We must disable BH
2080                  */
2081                 return false;
2082
2083         __lock_sock(sk);
2084         sk->sk_lock.owned = 1;
2085         spin_unlock(&sk->sk_lock.slock);
2086         /*
2087          * The sk_lock has mutex_lock() semantics here:
2088          */
2089         mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2090         local_bh_enable();
2091         return true;
2092 }
2093 EXPORT_SYMBOL(lock_sock_fast);
2094
2095 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2096 {
2097         struct timeval tv;
2098         if (!sock_flag(sk, SOCK_TIMESTAMP))
2099                 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2100         tv = ktime_to_timeval(sk->sk_stamp);
2101         if (tv.tv_sec == -1)
2102                 return -ENOENT;
2103         if (tv.tv_sec == 0) {
2104                 sk->sk_stamp = ktime_get_real();
2105                 tv = ktime_to_timeval(sk->sk_stamp);
2106         }
2107         return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2108 }
2109 EXPORT_SYMBOL(sock_get_timestamp);
2110
2111 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2112 {
2113         struct timespec ts;
2114         if (!sock_flag(sk, SOCK_TIMESTAMP))
2115                 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2116         ts = ktime_to_timespec(sk->sk_stamp);
2117         if (ts.tv_sec == -1)
2118                 return -ENOENT;
2119         if (ts.tv_sec == 0) {
2120                 sk->sk_stamp = ktime_get_real();
2121                 ts = ktime_to_timespec(sk->sk_stamp);
2122         }
2123         return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2124 }
2125 EXPORT_SYMBOL(sock_get_timestampns);
2126
2127 void sock_enable_timestamp(struct sock *sk, int flag)
2128 {
2129         if (!sock_flag(sk, flag)) {
2130                 sock_set_flag(sk, flag);
2131                 /*
2132                  * we just set one of the two flags which require net
2133                  * time stamping, but time stamping might have been on
2134                  * already because of the other one
2135                  */
2136                 if (!sock_flag(sk,
2137                                 flag == SOCK_TIMESTAMP ?
2138                                 SOCK_TIMESTAMPING_RX_SOFTWARE :
2139                                 SOCK_TIMESTAMP))
2140                         net_enable_timestamp();
2141         }
2142 }
2143
2144 /*
2145  *      Get a socket option on an socket.
2146  *
2147  *      FIX: POSIX 1003.1g is very ambiguous here. It states that
2148  *      asynchronous errors should be reported by getsockopt. We assume
2149  *      this means if you specify SO_ERROR (otherwise whats the point of it).
2150  */
2151 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2152                            char __user *optval, int __user *optlen)
2153 {
2154         struct sock *sk = sock->sk;
2155
2156         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2157 }
2158 EXPORT_SYMBOL(sock_common_getsockopt);
2159
2160 #ifdef CONFIG_COMPAT
2161 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2162                                   char __user *optval, int __user *optlen)
2163 {
2164         struct sock *sk = sock->sk;
2165
2166         if (sk->sk_prot->compat_getsockopt != NULL)
2167                 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2168                                                       optval, optlen);
2169         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2170 }
2171 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2172 #endif
2173
2174 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2175                         struct msghdr *msg, size_t size, int flags)
2176 {
2177         struct sock *sk = sock->sk;
2178         int addr_len = 0;
2179         int err;
2180
2181         err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2182                                    flags & ~MSG_DONTWAIT, &addr_len);
2183         if (err >= 0)
2184                 msg->msg_namelen = addr_len;
2185         return err;
2186 }
2187 EXPORT_SYMBOL(sock_common_recvmsg);
2188
2189 /*
2190  *      Set socket options on an inet socket.
2191  */
2192 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2193                            char __user *optval, unsigned int optlen)
2194 {
2195         struct sock *sk = sock->sk;
2196
2197         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2198 }
2199 EXPORT_SYMBOL(sock_common_setsockopt);
2200
2201 #ifdef CONFIG_COMPAT
2202 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2203                                   char __user *optval, unsigned int optlen)
2204 {
2205         struct sock *sk = sock->sk;
2206
2207         if (sk->sk_prot->compat_setsockopt != NULL)
2208                 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2209                                                       optval, optlen);
2210         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2211 }
2212 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2213 #endif
2214
2215 void sk_common_release(struct sock *sk)
2216 {
2217         if (sk->sk_prot->destroy)
2218                 sk->sk_prot->destroy(sk);
2219
2220         /*
2221          * Observation: when sock_common_release is called, processes have
2222          * no access to socket. But net still has.
2223          * Step one, detach it from networking:
2224          *
2225          * A. Remove from hash tables.
2226          */
2227
2228         sk->sk_prot->unhash(sk);
2229
2230         /*
2231          * In this point socket cannot receive new packets, but it is possible
2232          * that some packets are in flight because some CPU runs receiver and
2233          * did hash table lookup before we unhashed socket. They will achieve
2234          * receive queue and will be purged by socket destructor.
2235          *
2236          * Also we still have packets pending on receive queue and probably,
2237          * our own packets waiting in device queues. sock_destroy will drain
2238          * receive queue, but transmitted packets will delay socket destruction
2239          * until the last reference will be released.
2240          */
2241
2242         sock_orphan(sk);
2243
2244         xfrm_sk_free_policy(sk);
2245
2246         sk_refcnt_debug_release(sk);
2247         sock_put(sk);
2248 }
2249 EXPORT_SYMBOL(sk_common_release);
2250
2251 static DEFINE_RWLOCK(proto_list_lock);
2252 static LIST_HEAD(proto_list);
2253
2254 #ifdef CONFIG_PROC_FS
2255 #define PROTO_INUSE_NR  64      /* should be enough for the first time */
2256 struct prot_inuse {
2257         int val[PROTO_INUSE_NR];
2258 };
2259
2260 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2261
2262 #ifdef CONFIG_NET_NS
2263 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2264 {
2265         __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2266 }
2267 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2268
2269 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2270 {
2271         int cpu, idx = prot->inuse_idx;
2272         int res = 0;
2273
2274         for_each_possible_cpu(cpu)
2275                 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2276
2277         return res >= 0 ? res : 0;
2278 }
2279 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2280
2281 static int __net_init sock_inuse_init_net(struct net *net)
2282 {
2283         net->core.inuse = alloc_percpu(struct prot_inuse);
2284         return net->core.inuse ? 0 : -ENOMEM;
2285 }
2286
2287 static void __net_exit sock_inuse_exit_net(struct net *net)
2288 {
2289         free_percpu(net->core.inuse);
2290 }
2291
2292 static struct pernet_operations net_inuse_ops = {
2293         .init = sock_inuse_init_net,
2294         .exit = sock_inuse_exit_net,
2295 };
2296
2297 static __init int net_inuse_init(void)
2298 {
2299         if (register_pernet_subsys(&net_inuse_ops))
2300                 panic("Cannot initialize net inuse counters");
2301
2302         return 0;
2303 }
2304
2305 core_initcall(net_inuse_init);
2306 #else
2307 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2308
2309 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2310 {
2311         __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2312 }
2313 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2314
2315 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2316 {
2317         int cpu, idx = prot->inuse_idx;
2318         int res = 0;
2319
2320         for_each_possible_cpu(cpu)
2321                 res += per_cpu(prot_inuse, cpu).val[idx];
2322
2323         return res >= 0 ? res : 0;
2324 }
2325 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2326 #endif
2327
2328 static void assign_proto_idx(struct proto *prot)
2329 {
2330         prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2331
2332         if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2333                 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2334                 return;
2335         }
2336
2337         set_bit(prot->inuse_idx, proto_inuse_idx);
2338 }
2339
2340 static void release_proto_idx(struct proto *prot)
2341 {
2342         if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2343                 clear_bit(prot->inuse_idx, proto_inuse_idx);
2344 }
2345 #else
2346 static inline void assign_proto_idx(struct proto *prot)
2347 {
2348 }
2349
2350 static inline void release_proto_idx(struct proto *prot)
2351 {
2352 }
2353 #endif
2354
2355 int proto_register(struct proto *prot, int alloc_slab)
2356 {
2357         if (alloc_slab) {
2358                 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2359                                         SLAB_HWCACHE_ALIGN | prot->slab_flags,
2360                                         NULL);
2361
2362                 if (prot->slab == NULL) {
2363                         printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2364                                prot->name);
2365                         goto out;
2366                 }
2367
2368                 if (prot->rsk_prot != NULL) {
2369                         prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2370                         if (prot->rsk_prot->slab_name == NULL)
2371                                 goto out_free_sock_slab;
2372
2373                         prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2374                                                                  prot->rsk_prot->obj_size, 0,
2375                                                                  SLAB_HWCACHE_ALIGN, NULL);
2376
2377                         if (prot->rsk_prot->slab == NULL) {
2378                                 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2379                                        prot->name);
2380                                 goto out_free_request_sock_slab_name;
2381                         }
2382                 }
2383
2384                 if (prot->twsk_prot != NULL) {
2385                         prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2386
2387                         if (prot->twsk_prot->twsk_slab_name == NULL)
2388                                 goto out_free_request_sock_slab;
2389
2390                         prot->twsk_prot->twsk_slab =
2391                                 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2392                                                   prot->twsk_prot->twsk_obj_size,
2393                                                   0,
2394                                                   SLAB_HWCACHE_ALIGN |
2395                                                         prot->slab_flags,
2396                                                   NULL);
2397                         if (prot->twsk_prot->twsk_slab == NULL)
2398                                 goto out_free_timewait_sock_slab_name;
2399                 }
2400         }
2401
2402         write_lock(&proto_list_lock);
2403         list_add(&prot->node, &proto_list);
2404         assign_proto_idx(prot);
2405         write_unlock(&proto_list_lock);
2406         return 0;
2407
2408 out_free_timewait_sock_slab_name:
2409         kfree(prot->twsk_prot->twsk_slab_name);
2410 out_free_request_sock_slab:
2411         if (prot->rsk_prot && prot->rsk_prot->slab) {
2412                 kmem_cache_destroy(prot->rsk_prot->slab);
2413                 prot->rsk_prot->slab = NULL;
2414         }
2415 out_free_request_sock_slab_name:
2416         if (prot->rsk_prot)
2417                 kfree(prot->rsk_prot->slab_name);
2418 out_free_sock_slab:
2419         kmem_cache_destroy(prot->slab);
2420         prot->slab = NULL;
2421 out:
2422         return -ENOBUFS;
2423 }
2424 EXPORT_SYMBOL(proto_register);
2425
2426 void proto_unregister(struct proto *prot)
2427 {
2428         write_lock(&proto_list_lock);
2429         release_proto_idx(prot);
2430         list_del(&prot->node);
2431         write_unlock(&proto_list_lock);
2432
2433         if (prot->slab != NULL) {
2434                 kmem_cache_destroy(prot->slab);
2435                 prot->slab = NULL;
2436         }
2437
2438         if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2439                 kmem_cache_destroy(prot->rsk_prot->slab);
2440                 kfree(prot->rsk_prot->slab_name);
2441                 prot->rsk_prot->slab = NULL;
2442         }
2443
2444         if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2445                 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2446                 kfree(prot->twsk_prot->twsk_slab_name);
2447                 prot->twsk_prot->twsk_slab = NULL;
2448         }
2449 }
2450 EXPORT_SYMBOL(proto_unregister);
2451
2452 #ifdef CONFIG_PROC_FS
2453 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2454         __acquires(proto_list_lock)
2455 {
2456         read_lock(&proto_list_lock);
2457         return seq_list_start_head(&proto_list, *pos);
2458 }
2459
2460 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2461 {
2462         return seq_list_next(v, &proto_list, pos);
2463 }
2464
2465 static void proto_seq_stop(struct seq_file *seq, void *v)
2466         __releases(proto_list_lock)
2467 {
2468         read_unlock(&proto_list_lock);
2469 }
2470
2471 static char proto_method_implemented(const void *method)
2472 {
2473         return method == NULL ? 'n' : 'y';
2474 }
2475
2476 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2477 {
2478         seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2479                         "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2480                    proto->name,
2481                    proto->obj_size,
2482                    sock_prot_inuse_get(seq_file_net(seq), proto),
2483                    proto->memory_allocated != NULL ? atomic_long_read(proto->memory_allocated) : -1L,
2484                    proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2485                    proto->max_header,
2486                    proto->slab == NULL ? "no" : "yes",
2487                    module_name(proto->owner),
2488                    proto_method_implemented(proto->close),
2489                    proto_method_implemented(proto->connect),
2490                    proto_method_implemented(proto->disconnect),
2491                    proto_method_implemented(proto->accept),
2492                    proto_method_implemented(proto->ioctl),
2493                    proto_method_implemented(proto->init),
2494                    proto_method_implemented(proto->destroy),
2495                    proto_method_implemented(proto->shutdown),
2496                    proto_method_implemented(proto->setsockopt),
2497                    proto_method_implemented(proto->getsockopt),
2498                    proto_method_implemented(proto->sendmsg),
2499                    proto_method_implemented(proto->recvmsg),
2500                    proto_method_implemented(proto->sendpage),
2501                    proto_method_implemented(proto->bind),
2502                    proto_method_implemented(proto->backlog_rcv),
2503                    proto_method_implemented(proto->hash),
2504                    proto_method_implemented(proto->unhash),
2505                    proto_method_implemented(proto->get_port),
2506                    proto_method_implemented(proto->enter_memory_pressure));
2507 }
2508
2509 static int proto_seq_show(struct seq_file *seq, void *v)
2510 {
2511         if (v == &proto_list)
2512                 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2513                            "protocol",
2514                            "size",
2515                            "sockets",
2516                            "memory",
2517                            "press",
2518                            "maxhdr",
2519                            "slab",
2520                            "module",
2521                            "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2522         else
2523                 proto_seq_printf(seq, list_entry(v, struct proto, node));
2524         return 0;
2525 }
2526
2527 static const struct seq_operations proto_seq_ops = {
2528         .start  = proto_seq_start,
2529         .next   = proto_seq_next,
2530         .stop   = proto_seq_stop,
2531         .show   = proto_seq_show,
2532 };
2533
2534 static int proto_seq_open(struct inode *inode, struct file *file)
2535 {
2536         return seq_open_net(inode, file, &proto_seq_ops,
2537                             sizeof(struct seq_net_private));
2538 }
2539
2540 static const struct file_operations proto_seq_fops = {
2541         .owner          = THIS_MODULE,
2542         .open           = proto_seq_open,
2543         .read           = seq_read,
2544         .llseek         = seq_lseek,
2545         .release        = seq_release_net,
2546 };
2547
2548 static __net_init int proto_init_net(struct net *net)
2549 {
2550         if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2551                 return -ENOMEM;
2552
2553         return 0;
2554 }
2555
2556 static __net_exit void proto_exit_net(struct net *net)
2557 {
2558         proc_net_remove(net, "protocols");
2559 }
2560
2561
2562 static __net_initdata struct pernet_operations proto_net_ops = {
2563         .init = proto_init_net,
2564         .exit = proto_exit_net,
2565 };
2566
2567 static int __init proto_init(void)
2568 {
2569         return register_pernet_subsys(&proto_net_ops);
2570 }
2571
2572 subsys_initcall(proto_init);
2573
2574 #endif /* PROC_FS */