f5255442ae2bddfc39c8cecc53a93f64b816d8f8
[pandora-kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int order;
99
100         /*
101          * Intend to reclaim enough continuous memory rather than reclaim
102          * enough amount of memory. i.e, mode for high order allocation.
103          */
104         reclaim_mode_t reclaim_mode;
105
106         /* Which cgroup do we reclaim from */
107         struct mem_cgroup *mem_cgroup;
108
109         /*
110          * Nodemask of nodes allowed by the caller. If NULL, all nodes
111          * are scanned.
112          */
113         nodemask_t      *nodemask;
114 };
115
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field)                    \
120         do {                                                            \
121                 if ((_page)->lru.prev != _base) {                       \
122                         struct page *prev;                              \
123                                                                         \
124                         prev = lru_to_page(&(_page->lru));              \
125                         prefetch(&prev->_field);                        \
126                 }                                                       \
127         } while (0)
128 #else
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
134         do {                                                            \
135                 if ((_page)->lru.prev != _base) {                       \
136                         struct page *prev;                              \
137                                                                         \
138                         prev = lru_to_page(&(_page->lru));              \
139                         prefetchw(&prev->_field);                       \
140                 }                                                       \
141         } while (0)
142 #else
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144 #endif
145
146 /*
147  * From 0 .. 100.  Higher means more swappy.
148  */
149 int vm_swappiness = 60;
150 long vm_total_pages;    /* The total number of pages which the VM controls */
151
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
154
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
157 #else
158 #define scanning_global_lru(sc) (1)
159 #endif
160
161 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162                                                   struct scan_control *sc)
163 {
164         if (!scanning_global_lru(sc))
165                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
167         return &zone->reclaim_stat;
168 }
169
170 static unsigned long zone_nr_lru_pages(struct zone *zone,
171                                 struct scan_control *sc, enum lru_list lru)
172 {
173         if (!scanning_global_lru(sc))
174                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175                                 zone_to_nid(zone), zone_idx(zone), BIT(lru));
176
177         return zone_page_state(zone, NR_LRU_BASE + lru);
178 }
179
180
181 /*
182  * Add a shrinker callback to be called from the vm
183  */
184 void register_shrinker(struct shrinker *shrinker)
185 {
186         shrinker->nr = 0;
187         down_write(&shrinker_rwsem);
188         list_add_tail(&shrinker->list, &shrinker_list);
189         up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192
193 /*
194  * Remove one
195  */
196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198         down_write(&shrinker_rwsem);
199         list_del(&shrinker->list);
200         up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203
204 static inline int do_shrinker_shrink(struct shrinker *shrinker,
205                                      struct shrink_control *sc,
206                                      unsigned long nr_to_scan)
207 {
208         sc->nr_to_scan = nr_to_scan;
209         return (*shrinker->shrink)(shrinker, sc);
210 }
211
212 #define SHRINK_BATCH 128
213 /*
214  * Call the shrink functions to age shrinkable caches
215  *
216  * Here we assume it costs one seek to replace a lru page and that it also
217  * takes a seek to recreate a cache object.  With this in mind we age equal
218  * percentages of the lru and ageable caches.  This should balance the seeks
219  * generated by these structures.
220  *
221  * If the vm encountered mapped pages on the LRU it increase the pressure on
222  * slab to avoid swapping.
223  *
224  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225  *
226  * `lru_pages' represents the number of on-LRU pages in all the zones which
227  * are eligible for the caller's allocation attempt.  It is used for balancing
228  * slab reclaim versus page reclaim.
229  *
230  * Returns the number of slab objects which we shrunk.
231  */
232 unsigned long shrink_slab(struct shrink_control *shrink,
233                           unsigned long nr_pages_scanned,
234                           unsigned long lru_pages)
235 {
236         struct shrinker *shrinker;
237         unsigned long ret = 0;
238
239         if (nr_pages_scanned == 0)
240                 nr_pages_scanned = SWAP_CLUSTER_MAX;
241
242         if (!down_read_trylock(&shrinker_rwsem)) {
243                 /* Assume we'll be able to shrink next time */
244                 ret = 1;
245                 goto out;
246         }
247
248         list_for_each_entry(shrinker, &shrinker_list, list) {
249                 unsigned long long delta;
250                 long total_scan;
251                 long max_pass;
252                 int shrink_ret = 0;
253                 long nr;
254                 long new_nr;
255                 long batch_size = shrinker->batch ? shrinker->batch
256                                                   : SHRINK_BATCH;
257
258                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
259                 if (max_pass <= 0)
260                         continue;
261
262                 /*
263                  * copy the current shrinker scan count into a local variable
264                  * and zero it so that other concurrent shrinker invocations
265                  * don't also do this scanning work.
266                  */
267                 do {
268                         nr = shrinker->nr;
269                 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
270
271                 total_scan = nr;
272                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
273                 delta *= max_pass;
274                 do_div(delta, lru_pages + 1);
275                 total_scan += delta;
276                 if (total_scan < 0) {
277                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
278                                "delete nr=%ld\n",
279                                shrinker->shrink, total_scan);
280                         total_scan = max_pass;
281                 }
282
283                 /*
284                  * We need to avoid excessive windup on filesystem shrinkers
285                  * due to large numbers of GFP_NOFS allocations causing the
286                  * shrinkers to return -1 all the time. This results in a large
287                  * nr being built up so when a shrink that can do some work
288                  * comes along it empties the entire cache due to nr >>>
289                  * max_pass.  This is bad for sustaining a working set in
290                  * memory.
291                  *
292                  * Hence only allow the shrinker to scan the entire cache when
293                  * a large delta change is calculated directly.
294                  */
295                 if (delta < max_pass / 4)
296                         total_scan = min(total_scan, max_pass / 2);
297
298                 /*
299                  * Avoid risking looping forever due to too large nr value:
300                  * never try to free more than twice the estimate number of
301                  * freeable entries.
302                  */
303                 if (total_scan > max_pass * 2)
304                         total_scan = max_pass * 2;
305
306                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
307                                         nr_pages_scanned, lru_pages,
308                                         max_pass, delta, total_scan);
309
310                 while (total_scan >= batch_size) {
311                         int nr_before;
312
313                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
314                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
315                                                         batch_size);
316                         if (shrink_ret == -1)
317                                 break;
318                         if (shrink_ret < nr_before)
319                                 ret += nr_before - shrink_ret;
320                         count_vm_events(SLABS_SCANNED, batch_size);
321                         total_scan -= batch_size;
322
323                         cond_resched();
324                 }
325
326                 /*
327                  * move the unused scan count back into the shrinker in a
328                  * manner that handles concurrent updates. If we exhausted the
329                  * scan, there is no need to do an update.
330                  */
331                 do {
332                         nr = shrinker->nr;
333                         new_nr = total_scan + nr;
334                         if (total_scan <= 0)
335                                 break;
336                 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
337
338                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
339         }
340         up_read(&shrinker_rwsem);
341 out:
342         cond_resched();
343         return ret;
344 }
345
346 static void set_reclaim_mode(int priority, struct scan_control *sc,
347                                    bool sync)
348 {
349         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
350
351         /*
352          * Initially assume we are entering either lumpy reclaim or
353          * reclaim/compaction.Depending on the order, we will either set the
354          * sync mode or just reclaim order-0 pages later.
355          */
356         if (COMPACTION_BUILD)
357                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
358         else
359                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
360
361         /*
362          * Avoid using lumpy reclaim or reclaim/compaction if possible by
363          * restricting when its set to either costly allocations or when
364          * under memory pressure
365          */
366         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
367                 sc->reclaim_mode |= syncmode;
368         else if (sc->order && priority < DEF_PRIORITY - 2)
369                 sc->reclaim_mode |= syncmode;
370         else
371                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
372 }
373
374 static void reset_reclaim_mode(struct scan_control *sc)
375 {
376         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
377 }
378
379 static inline int is_page_cache_freeable(struct page *page)
380 {
381         /*
382          * A freeable page cache page is referenced only by the caller
383          * that isolated the page, the page cache radix tree and
384          * optional buffer heads at page->private.
385          */
386         return page_count(page) - page_has_private(page) == 2;
387 }
388
389 static int may_write_to_queue(struct backing_dev_info *bdi,
390                               struct scan_control *sc)
391 {
392         if (current->flags & PF_SWAPWRITE)
393                 return 1;
394         if (!bdi_write_congested(bdi))
395                 return 1;
396         if (bdi == current->backing_dev_info)
397                 return 1;
398
399         /* lumpy reclaim for hugepage often need a lot of write */
400         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
401                 return 1;
402         return 0;
403 }
404
405 /*
406  * We detected a synchronous write error writing a page out.  Probably
407  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
408  * fsync(), msync() or close().
409  *
410  * The tricky part is that after writepage we cannot touch the mapping: nothing
411  * prevents it from being freed up.  But we have a ref on the page and once
412  * that page is locked, the mapping is pinned.
413  *
414  * We're allowed to run sleeping lock_page() here because we know the caller has
415  * __GFP_FS.
416  */
417 static void handle_write_error(struct address_space *mapping,
418                                 struct page *page, int error)
419 {
420         lock_page(page);
421         if (page_mapping(page) == mapping)
422                 mapping_set_error(mapping, error);
423         unlock_page(page);
424 }
425
426 /* possible outcome of pageout() */
427 typedef enum {
428         /* failed to write page out, page is locked */
429         PAGE_KEEP,
430         /* move page to the active list, page is locked */
431         PAGE_ACTIVATE,
432         /* page has been sent to the disk successfully, page is unlocked */
433         PAGE_SUCCESS,
434         /* page is clean and locked */
435         PAGE_CLEAN,
436 } pageout_t;
437
438 /*
439  * pageout is called by shrink_page_list() for each dirty page.
440  * Calls ->writepage().
441  */
442 static pageout_t pageout(struct page *page, struct address_space *mapping,
443                          struct scan_control *sc)
444 {
445         /*
446          * If the page is dirty, only perform writeback if that write
447          * will be non-blocking.  To prevent this allocation from being
448          * stalled by pagecache activity.  But note that there may be
449          * stalls if we need to run get_block().  We could test
450          * PagePrivate for that.
451          *
452          * If this process is currently in __generic_file_aio_write() against
453          * this page's queue, we can perform writeback even if that
454          * will block.
455          *
456          * If the page is swapcache, write it back even if that would
457          * block, for some throttling. This happens by accident, because
458          * swap_backing_dev_info is bust: it doesn't reflect the
459          * congestion state of the swapdevs.  Easy to fix, if needed.
460          */
461         if (!is_page_cache_freeable(page))
462                 return PAGE_KEEP;
463         if (!mapping) {
464                 /*
465                  * Some data journaling orphaned pages can have
466                  * page->mapping == NULL while being dirty with clean buffers.
467                  */
468                 if (page_has_private(page)) {
469                         if (try_to_free_buffers(page)) {
470                                 ClearPageDirty(page);
471                                 printk("%s: orphaned page\n", __func__);
472                                 return PAGE_CLEAN;
473                         }
474                 }
475                 return PAGE_KEEP;
476         }
477         if (mapping->a_ops->writepage == NULL)
478                 return PAGE_ACTIVATE;
479         if (!may_write_to_queue(mapping->backing_dev_info, sc))
480                 return PAGE_KEEP;
481
482         if (clear_page_dirty_for_io(page)) {
483                 int res;
484                 struct writeback_control wbc = {
485                         .sync_mode = WB_SYNC_NONE,
486                         .nr_to_write = SWAP_CLUSTER_MAX,
487                         .range_start = 0,
488                         .range_end = LLONG_MAX,
489                         .for_reclaim = 1,
490                 };
491
492                 SetPageReclaim(page);
493                 res = mapping->a_ops->writepage(page, &wbc);
494                 if (res < 0)
495                         handle_write_error(mapping, page, res);
496                 if (res == AOP_WRITEPAGE_ACTIVATE) {
497                         ClearPageReclaim(page);
498                         return PAGE_ACTIVATE;
499                 }
500
501                 if (!PageWriteback(page)) {
502                         /* synchronous write or broken a_ops? */
503                         ClearPageReclaim(page);
504                 }
505                 trace_mm_vmscan_writepage(page,
506                         trace_reclaim_flags(page, sc->reclaim_mode));
507                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
508                 return PAGE_SUCCESS;
509         }
510
511         return PAGE_CLEAN;
512 }
513
514 /*
515  * Same as remove_mapping, but if the page is removed from the mapping, it
516  * gets returned with a refcount of 0.
517  */
518 static int __remove_mapping(struct address_space *mapping, struct page *page)
519 {
520         BUG_ON(!PageLocked(page));
521         BUG_ON(mapping != page_mapping(page));
522
523         spin_lock_irq(&mapping->tree_lock);
524         /*
525          * The non racy check for a busy page.
526          *
527          * Must be careful with the order of the tests. When someone has
528          * a ref to the page, it may be possible that they dirty it then
529          * drop the reference. So if PageDirty is tested before page_count
530          * here, then the following race may occur:
531          *
532          * get_user_pages(&page);
533          * [user mapping goes away]
534          * write_to(page);
535          *                              !PageDirty(page)    [good]
536          * SetPageDirty(page);
537          * put_page(page);
538          *                              !page_count(page)   [good, discard it]
539          *
540          * [oops, our write_to data is lost]
541          *
542          * Reversing the order of the tests ensures such a situation cannot
543          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
544          * load is not satisfied before that of page->_count.
545          *
546          * Note that if SetPageDirty is always performed via set_page_dirty,
547          * and thus under tree_lock, then this ordering is not required.
548          */
549         if (!page_freeze_refs(page, 2))
550                 goto cannot_free;
551         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
552         if (unlikely(PageDirty(page))) {
553                 page_unfreeze_refs(page, 2);
554                 goto cannot_free;
555         }
556
557         if (PageSwapCache(page)) {
558                 swp_entry_t swap = { .val = page_private(page) };
559                 __delete_from_swap_cache(page);
560                 spin_unlock_irq(&mapping->tree_lock);
561                 swapcache_free(swap, page);
562         } else {
563                 void (*freepage)(struct page *);
564
565                 freepage = mapping->a_ops->freepage;
566
567                 __delete_from_page_cache(page);
568                 spin_unlock_irq(&mapping->tree_lock);
569                 mem_cgroup_uncharge_cache_page(page);
570
571                 if (freepage != NULL)
572                         freepage(page);
573         }
574
575         return 1;
576
577 cannot_free:
578         spin_unlock_irq(&mapping->tree_lock);
579         return 0;
580 }
581
582 /*
583  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
584  * someone else has a ref on the page, abort and return 0.  If it was
585  * successfully detached, return 1.  Assumes the caller has a single ref on
586  * this page.
587  */
588 int remove_mapping(struct address_space *mapping, struct page *page)
589 {
590         if (__remove_mapping(mapping, page)) {
591                 /*
592                  * Unfreezing the refcount with 1 rather than 2 effectively
593                  * drops the pagecache ref for us without requiring another
594                  * atomic operation.
595                  */
596                 page_unfreeze_refs(page, 1);
597                 return 1;
598         }
599         return 0;
600 }
601
602 /**
603  * putback_lru_page - put previously isolated page onto appropriate LRU list
604  * @page: page to be put back to appropriate lru list
605  *
606  * Add previously isolated @page to appropriate LRU list.
607  * Page may still be unevictable for other reasons.
608  *
609  * lru_lock must not be held, interrupts must be enabled.
610  */
611 void putback_lru_page(struct page *page)
612 {
613         int lru;
614         int active = !!TestClearPageActive(page);
615         int was_unevictable = PageUnevictable(page);
616
617         VM_BUG_ON(PageLRU(page));
618
619 redo:
620         ClearPageUnevictable(page);
621
622         if (page_evictable(page, NULL)) {
623                 /*
624                  * For evictable pages, we can use the cache.
625                  * In event of a race, worst case is we end up with an
626                  * unevictable page on [in]active list.
627                  * We know how to handle that.
628                  */
629                 lru = active + page_lru_base_type(page);
630                 lru_cache_add_lru(page, lru);
631         } else {
632                 /*
633                  * Put unevictable pages directly on zone's unevictable
634                  * list.
635                  */
636                 lru = LRU_UNEVICTABLE;
637                 add_page_to_unevictable_list(page);
638                 /*
639                  * When racing with an mlock or AS_UNEVICTABLE clearing
640                  * (page is unlocked) make sure that if the other thread
641                  * does not observe our setting of PG_lru and fails
642                  * isolation/check_move_unevictable_page,
643                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
644                  * the page back to the evictable list.
645                  *
646                  * The other side is TestClearPageMlocked() or shmem_lock().
647                  */
648                 smp_mb();
649         }
650
651         /*
652          * page's status can change while we move it among lru. If an evictable
653          * page is on unevictable list, it never be freed. To avoid that,
654          * check after we added it to the list, again.
655          */
656         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
657                 if (!isolate_lru_page(page)) {
658                         put_page(page);
659                         goto redo;
660                 }
661                 /* This means someone else dropped this page from LRU
662                  * So, it will be freed or putback to LRU again. There is
663                  * nothing to do here.
664                  */
665         }
666
667         if (was_unevictable && lru != LRU_UNEVICTABLE)
668                 count_vm_event(UNEVICTABLE_PGRESCUED);
669         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
670                 count_vm_event(UNEVICTABLE_PGCULLED);
671
672         put_page(page);         /* drop ref from isolate */
673 }
674
675 enum page_references {
676         PAGEREF_RECLAIM,
677         PAGEREF_RECLAIM_CLEAN,
678         PAGEREF_KEEP,
679         PAGEREF_ACTIVATE,
680 };
681
682 static enum page_references page_check_references(struct page *page,
683                                                   struct scan_control *sc)
684 {
685         int referenced_ptes, referenced_page;
686         unsigned long vm_flags;
687
688         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
689         referenced_page = TestClearPageReferenced(page);
690
691         /* Lumpy reclaim - ignore references */
692         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
693                 return PAGEREF_RECLAIM;
694
695         /*
696          * Mlock lost the isolation race with us.  Let try_to_unmap()
697          * move the page to the unevictable list.
698          */
699         if (vm_flags & VM_LOCKED)
700                 return PAGEREF_RECLAIM;
701
702         if (referenced_ptes) {
703                 if (PageAnon(page))
704                         return PAGEREF_ACTIVATE;
705                 /*
706                  * All mapped pages start out with page table
707                  * references from the instantiating fault, so we need
708                  * to look twice if a mapped file page is used more
709                  * than once.
710                  *
711                  * Mark it and spare it for another trip around the
712                  * inactive list.  Another page table reference will
713                  * lead to its activation.
714                  *
715                  * Note: the mark is set for activated pages as well
716                  * so that recently deactivated but used pages are
717                  * quickly recovered.
718                  */
719                 SetPageReferenced(page);
720
721                 if (referenced_page)
722                         return PAGEREF_ACTIVATE;
723
724                 return PAGEREF_KEEP;
725         }
726
727         /* Reclaim if clean, defer dirty pages to writeback */
728         if (referenced_page && !PageSwapBacked(page))
729                 return PAGEREF_RECLAIM_CLEAN;
730
731         return PAGEREF_RECLAIM;
732 }
733
734 static noinline_for_stack void free_page_list(struct list_head *free_pages)
735 {
736         struct pagevec freed_pvec;
737         struct page *page, *tmp;
738
739         pagevec_init(&freed_pvec, 1);
740
741         list_for_each_entry_safe(page, tmp, free_pages, lru) {
742                 list_del(&page->lru);
743                 if (!pagevec_add(&freed_pvec, page)) {
744                         __pagevec_free(&freed_pvec);
745                         pagevec_reinit(&freed_pvec);
746                 }
747         }
748
749         pagevec_free(&freed_pvec);
750 }
751
752 /*
753  * shrink_page_list() returns the number of reclaimed pages
754  */
755 static unsigned long shrink_page_list(struct list_head *page_list,
756                                       struct zone *zone,
757                                       struct scan_control *sc,
758                                       int priority,
759                                       unsigned long *ret_nr_dirty,
760                                       unsigned long *ret_nr_writeback)
761 {
762         LIST_HEAD(ret_pages);
763         LIST_HEAD(free_pages);
764         int pgactivate = 0;
765         unsigned long nr_dirty = 0;
766         unsigned long nr_congested = 0;
767         unsigned long nr_reclaimed = 0;
768         unsigned long nr_writeback = 0;
769
770         cond_resched();
771
772         while (!list_empty(page_list)) {
773                 enum page_references references;
774                 struct address_space *mapping;
775                 struct page *page;
776                 int may_enter_fs;
777
778                 cond_resched();
779
780                 page = lru_to_page(page_list);
781                 list_del(&page->lru);
782
783                 if (!trylock_page(page))
784                         goto keep;
785
786                 VM_BUG_ON(PageActive(page));
787                 VM_BUG_ON(page_zone(page) != zone);
788
789                 sc->nr_scanned++;
790
791                 if (unlikely(!page_evictable(page, NULL)))
792                         goto cull_mlocked;
793
794                 if (!sc->may_unmap && page_mapped(page))
795                         goto keep_locked;
796
797                 /* Double the slab pressure for mapped and swapcache pages */
798                 if (page_mapped(page) || PageSwapCache(page))
799                         sc->nr_scanned++;
800
801                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
802                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
803
804                 if (PageWriteback(page)) {
805                         nr_writeback++;
806                         /*
807                          * Synchronous reclaim cannot queue pages for
808                          * writeback due to the possibility of stack overflow
809                          * but if it encounters a page under writeback, wait
810                          * for the IO to complete.
811                          */
812                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
813                             may_enter_fs)
814                                 wait_on_page_writeback(page);
815                         else {
816                                 unlock_page(page);
817                                 goto keep_lumpy;
818                         }
819                 }
820
821                 references = page_check_references(page, sc);
822                 switch (references) {
823                 case PAGEREF_ACTIVATE:
824                         goto activate_locked;
825                 case PAGEREF_KEEP:
826                         goto keep_locked;
827                 case PAGEREF_RECLAIM:
828                 case PAGEREF_RECLAIM_CLEAN:
829                         ; /* try to reclaim the page below */
830                 }
831
832                 /*
833                  * Anonymous process memory has backing store?
834                  * Try to allocate it some swap space here.
835                  */
836                 if (PageAnon(page) && !PageSwapCache(page)) {
837                         if (!(sc->gfp_mask & __GFP_IO))
838                                 goto keep_locked;
839                         if (!add_to_swap(page))
840                                 goto activate_locked;
841                         may_enter_fs = 1;
842                 }
843
844                 mapping = page_mapping(page);
845
846                 /*
847                  * The page is mapped into the page tables of one or more
848                  * processes. Try to unmap it here.
849                  */
850                 if (page_mapped(page) && mapping) {
851                         switch (try_to_unmap(page, TTU_UNMAP)) {
852                         case SWAP_FAIL:
853                                 goto activate_locked;
854                         case SWAP_AGAIN:
855                                 goto keep_locked;
856                         case SWAP_MLOCK:
857                                 goto cull_mlocked;
858                         case SWAP_SUCCESS:
859                                 ; /* try to free the page below */
860                         }
861                 }
862
863                 if (PageDirty(page)) {
864                         nr_dirty++;
865
866                         /*
867                          * Only kswapd can writeback filesystem pages to
868                          * avoid risk of stack overflow but do not writeback
869                          * unless under significant pressure.
870                          */
871                         if (page_is_file_cache(page) &&
872                                         (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
873                                 /*
874                                  * Immediately reclaim when written back.
875                                  * Similar in principal to deactivate_page()
876                                  * except we already have the page isolated
877                                  * and know it's dirty
878                                  */
879                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
880                                 SetPageReclaim(page);
881
882                                 goto keep_locked;
883                         }
884
885                         if (references == PAGEREF_RECLAIM_CLEAN)
886                                 goto keep_locked;
887                         if (!may_enter_fs)
888                                 goto keep_locked;
889                         if (!sc->may_writepage)
890                                 goto keep_locked;
891
892                         /* Page is dirty, try to write it out here */
893                         switch (pageout(page, mapping, sc)) {
894                         case PAGE_KEEP:
895                                 nr_congested++;
896                                 goto keep_locked;
897                         case PAGE_ACTIVATE:
898                                 goto activate_locked;
899                         case PAGE_SUCCESS:
900                                 if (PageWriteback(page))
901                                         goto keep_lumpy;
902                                 if (PageDirty(page))
903                                         goto keep;
904
905                                 /*
906                                  * A synchronous write - probably a ramdisk.  Go
907                                  * ahead and try to reclaim the page.
908                                  */
909                                 if (!trylock_page(page))
910                                         goto keep;
911                                 if (PageDirty(page) || PageWriteback(page))
912                                         goto keep_locked;
913                                 mapping = page_mapping(page);
914                         case PAGE_CLEAN:
915                                 ; /* try to free the page below */
916                         }
917                 }
918
919                 /*
920                  * If the page has buffers, try to free the buffer mappings
921                  * associated with this page. If we succeed we try to free
922                  * the page as well.
923                  *
924                  * We do this even if the page is PageDirty().
925                  * try_to_release_page() does not perform I/O, but it is
926                  * possible for a page to have PageDirty set, but it is actually
927                  * clean (all its buffers are clean).  This happens if the
928                  * buffers were written out directly, with submit_bh(). ext3
929                  * will do this, as well as the blockdev mapping.
930                  * try_to_release_page() will discover that cleanness and will
931                  * drop the buffers and mark the page clean - it can be freed.
932                  *
933                  * Rarely, pages can have buffers and no ->mapping.  These are
934                  * the pages which were not successfully invalidated in
935                  * truncate_complete_page().  We try to drop those buffers here
936                  * and if that worked, and the page is no longer mapped into
937                  * process address space (page_count == 1) it can be freed.
938                  * Otherwise, leave the page on the LRU so it is swappable.
939                  */
940                 if (page_has_private(page)) {
941                         if (!try_to_release_page(page, sc->gfp_mask))
942                                 goto activate_locked;
943                         if (!mapping && page_count(page) == 1) {
944                                 unlock_page(page);
945                                 if (put_page_testzero(page))
946                                         goto free_it;
947                                 else {
948                                         /*
949                                          * rare race with speculative reference.
950                                          * the speculative reference will free
951                                          * this page shortly, so we may
952                                          * increment nr_reclaimed here (and
953                                          * leave it off the LRU).
954                                          */
955                                         nr_reclaimed++;
956                                         continue;
957                                 }
958                         }
959                 }
960
961                 if (!mapping || !__remove_mapping(mapping, page))
962                         goto keep_locked;
963
964                 /*
965                  * At this point, we have no other references and there is
966                  * no way to pick any more up (removed from LRU, removed
967                  * from pagecache). Can use non-atomic bitops now (and
968                  * we obviously don't have to worry about waking up a process
969                  * waiting on the page lock, because there are no references.
970                  */
971                 __clear_page_locked(page);
972 free_it:
973                 nr_reclaimed++;
974
975                 /*
976                  * Is there need to periodically free_page_list? It would
977                  * appear not as the counts should be low
978                  */
979                 list_add(&page->lru, &free_pages);
980                 continue;
981
982 cull_mlocked:
983                 if (PageSwapCache(page))
984                         try_to_free_swap(page);
985                 unlock_page(page);
986                 putback_lru_page(page);
987                 reset_reclaim_mode(sc);
988                 continue;
989
990 activate_locked:
991                 /* Not a candidate for swapping, so reclaim swap space. */
992                 if (PageSwapCache(page) && vm_swap_full())
993                         try_to_free_swap(page);
994                 VM_BUG_ON(PageActive(page));
995                 SetPageActive(page);
996                 pgactivate++;
997 keep_locked:
998                 unlock_page(page);
999 keep:
1000                 reset_reclaim_mode(sc);
1001 keep_lumpy:
1002                 list_add(&page->lru, &ret_pages);
1003                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1004         }
1005
1006         /*
1007          * Tag a zone as congested if all the dirty pages encountered were
1008          * backed by a congested BDI. In this case, reclaimers should just
1009          * back off and wait for congestion to clear because further reclaim
1010          * will encounter the same problem
1011          */
1012         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
1013                 zone_set_flag(zone, ZONE_CONGESTED);
1014
1015         free_page_list(&free_pages);
1016
1017         list_splice(&ret_pages, page_list);
1018         count_vm_events(PGACTIVATE, pgactivate);
1019         *ret_nr_dirty += nr_dirty;
1020         *ret_nr_writeback += nr_writeback;
1021         return nr_reclaimed;
1022 }
1023
1024 /*
1025  * Attempt to remove the specified page from its LRU.  Only take this page
1026  * if it is of the appropriate PageActive status.  Pages which are being
1027  * freed elsewhere are also ignored.
1028  *
1029  * page:        page to consider
1030  * mode:        one of the LRU isolation modes defined above
1031  *
1032  * returns 0 on success, -ve errno on failure.
1033  */
1034 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1035 {
1036         bool all_lru_mode;
1037         int ret = -EINVAL;
1038
1039         /* Only take pages on the LRU. */
1040         if (!PageLRU(page))
1041                 return ret;
1042
1043         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1044                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1045
1046         /*
1047          * When checking the active state, we need to be sure we are
1048          * dealing with comparible boolean values.  Take the logical not
1049          * of each.
1050          */
1051         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1052                 return ret;
1053
1054         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1055                 return ret;
1056
1057         /*
1058          * When this function is being called for lumpy reclaim, we
1059          * initially look into all LRU pages, active, inactive and
1060          * unevictable; only give shrink_page_list evictable pages.
1061          */
1062         if (PageUnevictable(page))
1063                 return ret;
1064
1065         ret = -EBUSY;
1066
1067         if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1068                 return ret;
1069
1070         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1071                 return ret;
1072
1073         if (likely(get_page_unless_zero(page))) {
1074                 /*
1075                  * Be careful not to clear PageLRU until after we're
1076                  * sure the page is not being freed elsewhere -- the
1077                  * page release code relies on it.
1078                  */
1079                 ClearPageLRU(page);
1080                 ret = 0;
1081         }
1082
1083         return ret;
1084 }
1085
1086 /*
1087  * zone->lru_lock is heavily contended.  Some of the functions that
1088  * shrink the lists perform better by taking out a batch of pages
1089  * and working on them outside the LRU lock.
1090  *
1091  * For pagecache intensive workloads, this function is the hottest
1092  * spot in the kernel (apart from copy_*_user functions).
1093  *
1094  * Appropriate locks must be held before calling this function.
1095  *
1096  * @nr_to_scan: The number of pages to look through on the list.
1097  * @src:        The LRU list to pull pages off.
1098  * @dst:        The temp list to put pages on to.
1099  * @scanned:    The number of pages that were scanned.
1100  * @order:      The caller's attempted allocation order
1101  * @mode:       One of the LRU isolation modes
1102  * @file:       True [1] if isolating file [!anon] pages
1103  *
1104  * returns how many pages were moved onto *@dst.
1105  */
1106 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1107                 struct list_head *src, struct list_head *dst,
1108                 unsigned long *scanned, int order, isolate_mode_t mode,
1109                 int file)
1110 {
1111         unsigned long nr_taken = 0;
1112         unsigned long nr_lumpy_taken = 0;
1113         unsigned long nr_lumpy_dirty = 0;
1114         unsigned long nr_lumpy_failed = 0;
1115         unsigned long scan;
1116
1117         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1118                 struct page *page;
1119                 unsigned long pfn;
1120                 unsigned long end_pfn;
1121                 unsigned long page_pfn;
1122                 int zone_id;
1123
1124                 page = lru_to_page(src);
1125                 prefetchw_prev_lru_page(page, src, flags);
1126
1127                 VM_BUG_ON(!PageLRU(page));
1128
1129                 switch (__isolate_lru_page(page, mode, file)) {
1130                 case 0:
1131                         list_move(&page->lru, dst);
1132                         mem_cgroup_del_lru(page);
1133                         nr_taken += hpage_nr_pages(page);
1134                         break;
1135
1136                 case -EBUSY:
1137                         /* else it is being freed elsewhere */
1138                         list_move(&page->lru, src);
1139                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1140                         continue;
1141
1142                 default:
1143                         BUG();
1144                 }
1145
1146                 if (!order)
1147                         continue;
1148
1149                 /*
1150                  * Attempt to take all pages in the order aligned region
1151                  * surrounding the tag page.  Only take those pages of
1152                  * the same active state as that tag page.  We may safely
1153                  * round the target page pfn down to the requested order
1154                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1155                  * where that page is in a different zone we will detect
1156                  * it from its zone id and abort this block scan.
1157                  */
1158                 zone_id = page_zone_id(page);
1159                 page_pfn = page_to_pfn(page);
1160                 pfn = page_pfn & ~((1 << order) - 1);
1161                 end_pfn = pfn + (1 << order);
1162                 for (; pfn < end_pfn; pfn++) {
1163                         struct page *cursor_page;
1164
1165                         /* The target page is in the block, ignore it. */
1166                         if (unlikely(pfn == page_pfn))
1167                                 continue;
1168
1169                         /* Avoid holes within the zone. */
1170                         if (unlikely(!pfn_valid_within(pfn)))
1171                                 break;
1172
1173                         cursor_page = pfn_to_page(pfn);
1174
1175                         /* Check that we have not crossed a zone boundary. */
1176                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1177                                 break;
1178
1179                         /*
1180                          * If we don't have enough swap space, reclaiming of
1181                          * anon page which don't already have a swap slot is
1182                          * pointless.
1183                          */
1184                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1185                             !PageSwapCache(cursor_page))
1186                                 break;
1187
1188                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1189                                 list_move(&cursor_page->lru, dst);
1190                                 mem_cgroup_del_lru(cursor_page);
1191                                 nr_taken += hpage_nr_pages(page);
1192                                 nr_lumpy_taken++;
1193                                 if (PageDirty(cursor_page))
1194                                         nr_lumpy_dirty++;
1195                                 scan++;
1196                         } else {
1197                                 /*
1198                                  * Check if the page is freed already.
1199                                  *
1200                                  * We can't use page_count() as that
1201                                  * requires compound_head and we don't
1202                                  * have a pin on the page here. If a
1203                                  * page is tail, we may or may not
1204                                  * have isolated the head, so assume
1205                                  * it's not free, it'd be tricky to
1206                                  * track the head status without a
1207                                  * page pin.
1208                                  */
1209                                 if (!PageTail(cursor_page) &&
1210                                     !atomic_read(&cursor_page->_count))
1211                                         continue;
1212                                 break;
1213                         }
1214                 }
1215
1216                 /* If we break out of the loop above, lumpy reclaim failed */
1217                 if (pfn < end_pfn)
1218                         nr_lumpy_failed++;
1219         }
1220
1221         *scanned = scan;
1222
1223         trace_mm_vmscan_lru_isolate(order,
1224                         nr_to_scan, scan,
1225                         nr_taken,
1226                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1227                         mode);
1228         return nr_taken;
1229 }
1230
1231 static unsigned long isolate_pages_global(unsigned long nr,
1232                                         struct list_head *dst,
1233                                         unsigned long *scanned, int order,
1234                                         isolate_mode_t mode,
1235                                         struct zone *z, int active, int file)
1236 {
1237         int lru = LRU_BASE;
1238         if (active)
1239                 lru += LRU_ACTIVE;
1240         if (file)
1241                 lru += LRU_FILE;
1242         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1243                                                                 mode, file);
1244 }
1245
1246 /*
1247  * clear_active_flags() is a helper for shrink_active_list(), clearing
1248  * any active bits from the pages in the list.
1249  */
1250 static unsigned long clear_active_flags(struct list_head *page_list,
1251                                         unsigned int *count)
1252 {
1253         int nr_active = 0;
1254         int lru;
1255         struct page *page;
1256
1257         list_for_each_entry(page, page_list, lru) {
1258                 int numpages = hpage_nr_pages(page);
1259                 lru = page_lru_base_type(page);
1260                 if (PageActive(page)) {
1261                         lru += LRU_ACTIVE;
1262                         ClearPageActive(page);
1263                         nr_active += numpages;
1264                 }
1265                 if (count)
1266                         count[lru] += numpages;
1267         }
1268
1269         return nr_active;
1270 }
1271
1272 /**
1273  * isolate_lru_page - tries to isolate a page from its LRU list
1274  * @page: page to isolate from its LRU list
1275  *
1276  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1277  * vmstat statistic corresponding to whatever LRU list the page was on.
1278  *
1279  * Returns 0 if the page was removed from an LRU list.
1280  * Returns -EBUSY if the page was not on an LRU list.
1281  *
1282  * The returned page will have PageLRU() cleared.  If it was found on
1283  * the active list, it will have PageActive set.  If it was found on
1284  * the unevictable list, it will have the PageUnevictable bit set. That flag
1285  * may need to be cleared by the caller before letting the page go.
1286  *
1287  * The vmstat statistic corresponding to the list on which the page was
1288  * found will be decremented.
1289  *
1290  * Restrictions:
1291  * (1) Must be called with an elevated refcount on the page. This is a
1292  *     fundamentnal difference from isolate_lru_pages (which is called
1293  *     without a stable reference).
1294  * (2) the lru_lock must not be held.
1295  * (3) interrupts must be enabled.
1296  */
1297 int isolate_lru_page(struct page *page)
1298 {
1299         int ret = -EBUSY;
1300
1301         VM_BUG_ON(!page_count(page));
1302
1303         if (PageLRU(page)) {
1304                 struct zone *zone = page_zone(page);
1305
1306                 spin_lock_irq(&zone->lru_lock);
1307                 if (PageLRU(page)) {
1308                         int lru = page_lru(page);
1309                         ret = 0;
1310                         get_page(page);
1311                         ClearPageLRU(page);
1312
1313                         del_page_from_lru_list(zone, page, lru);
1314                 }
1315                 spin_unlock_irq(&zone->lru_lock);
1316         }
1317         return ret;
1318 }
1319
1320 /*
1321  * Are there way too many processes in the direct reclaim path already?
1322  */
1323 static int too_many_isolated(struct zone *zone, int file,
1324                 struct scan_control *sc)
1325 {
1326         unsigned long inactive, isolated;
1327
1328         if (current_is_kswapd())
1329                 return 0;
1330
1331         if (!scanning_global_lru(sc))
1332                 return 0;
1333
1334         if (file) {
1335                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1336                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1337         } else {
1338                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1339                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1340         }
1341
1342         return isolated > inactive;
1343 }
1344
1345 /*
1346  * TODO: Try merging with migrations version of putback_lru_pages
1347  */
1348 static noinline_for_stack void
1349 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1350                                 unsigned long nr_anon, unsigned long nr_file,
1351                                 struct list_head *page_list)
1352 {
1353         struct page *page;
1354         struct pagevec pvec;
1355         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1356
1357         pagevec_init(&pvec, 1);
1358
1359         /*
1360          * Put back any unfreeable pages.
1361          */
1362         spin_lock(&zone->lru_lock);
1363         while (!list_empty(page_list)) {
1364                 int lru;
1365                 page = lru_to_page(page_list);
1366                 VM_BUG_ON(PageLRU(page));
1367                 list_del(&page->lru);
1368                 if (unlikely(!page_evictable(page, NULL))) {
1369                         spin_unlock_irq(&zone->lru_lock);
1370                         putback_lru_page(page);
1371                         spin_lock_irq(&zone->lru_lock);
1372                         continue;
1373                 }
1374                 SetPageLRU(page);
1375                 lru = page_lru(page);
1376                 add_page_to_lru_list(zone, page, lru);
1377                 if (is_active_lru(lru)) {
1378                         int file = is_file_lru(lru);
1379                         int numpages = hpage_nr_pages(page);
1380                         reclaim_stat->recent_rotated[file] += numpages;
1381                 }
1382                 if (!pagevec_add(&pvec, page)) {
1383                         spin_unlock_irq(&zone->lru_lock);
1384                         __pagevec_release(&pvec);
1385                         spin_lock_irq(&zone->lru_lock);
1386                 }
1387         }
1388         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1389         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1390
1391         spin_unlock_irq(&zone->lru_lock);
1392         pagevec_release(&pvec);
1393 }
1394
1395 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1396                                         struct scan_control *sc,
1397                                         unsigned long *nr_anon,
1398                                         unsigned long *nr_file,
1399                                         struct list_head *isolated_list)
1400 {
1401         unsigned long nr_active;
1402         unsigned int count[NR_LRU_LISTS] = { 0, };
1403         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1404
1405         nr_active = clear_active_flags(isolated_list, count);
1406         __count_vm_events(PGDEACTIVATE, nr_active);
1407
1408         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1409                               -count[LRU_ACTIVE_FILE]);
1410         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1411                               -count[LRU_INACTIVE_FILE]);
1412         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1413                               -count[LRU_ACTIVE_ANON]);
1414         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1415                               -count[LRU_INACTIVE_ANON]);
1416
1417         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1418         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1419         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1420         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1421
1422         reclaim_stat->recent_scanned[0] += *nr_anon;
1423         reclaim_stat->recent_scanned[1] += *nr_file;
1424 }
1425
1426 /*
1427  * Returns true if a direct reclaim should wait on pages under writeback.
1428  *
1429  * If we are direct reclaiming for contiguous pages and we do not reclaim
1430  * everything in the list, try again and wait for writeback IO to complete.
1431  * This will stall high-order allocations noticeably. Only do that when really
1432  * need to free the pages under high memory pressure.
1433  */
1434 static inline bool should_reclaim_stall(unsigned long nr_taken,
1435                                         unsigned long nr_freed,
1436                                         int priority,
1437                                         struct scan_control *sc)
1438 {
1439         int lumpy_stall_priority;
1440
1441         /* kswapd should not stall on sync IO */
1442         if (current_is_kswapd())
1443                 return false;
1444
1445         /* Only stall on lumpy reclaim */
1446         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1447                 return false;
1448
1449         /* If we have reclaimed everything on the isolated list, no stall */
1450         if (nr_freed == nr_taken)
1451                 return false;
1452
1453         /*
1454          * For high-order allocations, there are two stall thresholds.
1455          * High-cost allocations stall immediately where as lower
1456          * order allocations such as stacks require the scanning
1457          * priority to be much higher before stalling.
1458          */
1459         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1460                 lumpy_stall_priority = DEF_PRIORITY;
1461         else
1462                 lumpy_stall_priority = DEF_PRIORITY / 3;
1463
1464         return priority <= lumpy_stall_priority;
1465 }
1466
1467 /*
1468  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1469  * of reclaimed pages
1470  */
1471 static noinline_for_stack unsigned long
1472 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1473                         struct scan_control *sc, int priority, int file)
1474 {
1475         LIST_HEAD(page_list);
1476         unsigned long nr_scanned;
1477         unsigned long nr_reclaimed = 0;
1478         unsigned long nr_taken;
1479         unsigned long nr_anon;
1480         unsigned long nr_file;
1481         unsigned long nr_dirty = 0;
1482         unsigned long nr_writeback = 0;
1483         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1484
1485         while (unlikely(too_many_isolated(zone, file, sc))) {
1486                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1487
1488                 /* We are about to die and free our memory. Return now. */
1489                 if (fatal_signal_pending(current))
1490                         return SWAP_CLUSTER_MAX;
1491         }
1492
1493         set_reclaim_mode(priority, sc, false);
1494         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1495                 reclaim_mode |= ISOLATE_ACTIVE;
1496
1497         lru_add_drain();
1498
1499         if (!sc->may_unmap)
1500                 reclaim_mode |= ISOLATE_UNMAPPED;
1501         if (!sc->may_writepage)
1502                 reclaim_mode |= ISOLATE_CLEAN;
1503
1504         spin_lock_irq(&zone->lru_lock);
1505
1506         if (scanning_global_lru(sc)) {
1507                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1508                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1509                 zone->pages_scanned += nr_scanned;
1510                 if (current_is_kswapd())
1511                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1512                                                nr_scanned);
1513                 else
1514                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1515                                                nr_scanned);
1516         } else {
1517                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1518                         &nr_scanned, sc->order, reclaim_mode, zone,
1519                         sc->mem_cgroup, 0, file);
1520                 /*
1521                  * mem_cgroup_isolate_pages() keeps track of
1522                  * scanned pages on its own.
1523                  */
1524         }
1525
1526         if (nr_taken == 0) {
1527                 spin_unlock_irq(&zone->lru_lock);
1528                 return 0;
1529         }
1530
1531         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1532
1533         spin_unlock_irq(&zone->lru_lock);
1534
1535         nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
1536                                                 &nr_dirty, &nr_writeback);
1537
1538         /* Check if we should syncronously wait for writeback */
1539         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1540                 set_reclaim_mode(priority, sc, true);
1541                 nr_reclaimed += shrink_page_list(&page_list, zone, sc,
1542                                         priority, &nr_dirty, &nr_writeback);
1543         }
1544
1545         local_irq_disable();
1546         if (current_is_kswapd())
1547                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1548         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1549
1550         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1551
1552         /*
1553          * If reclaim is isolating dirty pages under writeback, it implies
1554          * that the long-lived page allocation rate is exceeding the page
1555          * laundering rate. Either the global limits are not being effective
1556          * at throttling processes due to the page distribution throughout
1557          * zones or there is heavy usage of a slow backing device. The
1558          * only option is to throttle from reclaim context which is not ideal
1559          * as there is no guarantee the dirtying process is throttled in the
1560          * same way balance_dirty_pages() manages.
1561          *
1562          * This scales the number of dirty pages that must be under writeback
1563          * before throttling depending on priority. It is a simple backoff
1564          * function that has the most effect in the range DEF_PRIORITY to
1565          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1566          * in trouble and reclaim is considered to be in trouble.
1567          *
1568          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1569          * DEF_PRIORITY-1  50% must be PageWriteback
1570          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1571          * ...
1572          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1573          *                     isolated page is PageWriteback
1574          */
1575         if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1576                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1577
1578         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1579                 zone_idx(zone),
1580                 nr_scanned, nr_reclaimed,
1581                 priority,
1582                 trace_shrink_flags(file, sc->reclaim_mode));
1583         return nr_reclaimed;
1584 }
1585
1586 /*
1587  * This moves pages from the active list to the inactive list.
1588  *
1589  * We move them the other way if the page is referenced by one or more
1590  * processes, from rmap.
1591  *
1592  * If the pages are mostly unmapped, the processing is fast and it is
1593  * appropriate to hold zone->lru_lock across the whole operation.  But if
1594  * the pages are mapped, the processing is slow (page_referenced()) so we
1595  * should drop zone->lru_lock around each page.  It's impossible to balance
1596  * this, so instead we remove the pages from the LRU while processing them.
1597  * It is safe to rely on PG_active against the non-LRU pages in here because
1598  * nobody will play with that bit on a non-LRU page.
1599  *
1600  * The downside is that we have to touch page->_count against each page.
1601  * But we had to alter page->flags anyway.
1602  */
1603
1604 static void move_active_pages_to_lru(struct zone *zone,
1605                                      struct list_head *list,
1606                                      enum lru_list lru)
1607 {
1608         unsigned long pgmoved = 0;
1609         struct pagevec pvec;
1610         struct page *page;
1611
1612         pagevec_init(&pvec, 1);
1613
1614         while (!list_empty(list)) {
1615                 page = lru_to_page(list);
1616
1617                 VM_BUG_ON(PageLRU(page));
1618                 SetPageLRU(page);
1619
1620                 list_move(&page->lru, &zone->lru[lru].list);
1621                 mem_cgroup_add_lru_list(page, lru);
1622                 pgmoved += hpage_nr_pages(page);
1623
1624                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1625                         spin_unlock_irq(&zone->lru_lock);
1626                         if (buffer_heads_over_limit)
1627                                 pagevec_strip(&pvec);
1628                         __pagevec_release(&pvec);
1629                         spin_lock_irq(&zone->lru_lock);
1630                 }
1631         }
1632         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1633         if (!is_active_lru(lru))
1634                 __count_vm_events(PGDEACTIVATE, pgmoved);
1635 }
1636
1637 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1638                         struct scan_control *sc, int priority, int file)
1639 {
1640         unsigned long nr_taken;
1641         unsigned long pgscanned;
1642         unsigned long vm_flags;
1643         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1644         LIST_HEAD(l_active);
1645         LIST_HEAD(l_inactive);
1646         struct page *page;
1647         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1648         unsigned long nr_rotated = 0;
1649         isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1650
1651         lru_add_drain();
1652
1653         if (!sc->may_unmap)
1654                 reclaim_mode |= ISOLATE_UNMAPPED;
1655         if (!sc->may_writepage)
1656                 reclaim_mode |= ISOLATE_CLEAN;
1657
1658         spin_lock_irq(&zone->lru_lock);
1659         if (scanning_global_lru(sc)) {
1660                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1661                                                 &pgscanned, sc->order,
1662                                                 reclaim_mode, zone,
1663                                                 1, file);
1664                 zone->pages_scanned += pgscanned;
1665         } else {
1666                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1667                                                 &pgscanned, sc->order,
1668                                                 reclaim_mode, zone,
1669                                                 sc->mem_cgroup, 1, file);
1670                 /*
1671                  * mem_cgroup_isolate_pages() keeps track of
1672                  * scanned pages on its own.
1673                  */
1674         }
1675
1676         reclaim_stat->recent_scanned[file] += nr_taken;
1677
1678         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1679         if (file)
1680                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1681         else
1682                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1683         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1684         spin_unlock_irq(&zone->lru_lock);
1685
1686         while (!list_empty(&l_hold)) {
1687                 cond_resched();
1688                 page = lru_to_page(&l_hold);
1689                 list_del(&page->lru);
1690
1691                 if (unlikely(!page_evictable(page, NULL))) {
1692                         putback_lru_page(page);
1693                         continue;
1694                 }
1695
1696                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1697                         nr_rotated += hpage_nr_pages(page);
1698                         /*
1699                          * Identify referenced, file-backed active pages and
1700                          * give them one more trip around the active list. So
1701                          * that executable code get better chances to stay in
1702                          * memory under moderate memory pressure.  Anon pages
1703                          * are not likely to be evicted by use-once streaming
1704                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1705                          * so we ignore them here.
1706                          */
1707                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1708                                 list_add(&page->lru, &l_active);
1709                                 continue;
1710                         }
1711                 }
1712
1713                 ClearPageActive(page);  /* we are de-activating */
1714                 list_add(&page->lru, &l_inactive);
1715         }
1716
1717         /*
1718          * Move pages back to the lru list.
1719          */
1720         spin_lock_irq(&zone->lru_lock);
1721         /*
1722          * Count referenced pages from currently used mappings as rotated,
1723          * even though only some of them are actually re-activated.  This
1724          * helps balance scan pressure between file and anonymous pages in
1725          * get_scan_ratio.
1726          */
1727         reclaim_stat->recent_rotated[file] += nr_rotated;
1728
1729         move_active_pages_to_lru(zone, &l_active,
1730                                                 LRU_ACTIVE + file * LRU_FILE);
1731         move_active_pages_to_lru(zone, &l_inactive,
1732                                                 LRU_BASE   + file * LRU_FILE);
1733         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1734         spin_unlock_irq(&zone->lru_lock);
1735 }
1736
1737 #ifdef CONFIG_SWAP
1738 static int inactive_anon_is_low_global(struct zone *zone)
1739 {
1740         unsigned long active, inactive;
1741
1742         active = zone_page_state(zone, NR_ACTIVE_ANON);
1743         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1744
1745         if (inactive * zone->inactive_ratio < active)
1746                 return 1;
1747
1748         return 0;
1749 }
1750
1751 /**
1752  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1753  * @zone: zone to check
1754  * @sc:   scan control of this context
1755  *
1756  * Returns true if the zone does not have enough inactive anon pages,
1757  * meaning some active anon pages need to be deactivated.
1758  */
1759 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1760 {
1761         int low;
1762
1763         /*
1764          * If we don't have swap space, anonymous page deactivation
1765          * is pointless.
1766          */
1767         if (!total_swap_pages)
1768                 return 0;
1769
1770         if (scanning_global_lru(sc))
1771                 low = inactive_anon_is_low_global(zone);
1772         else
1773                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup, zone);
1774         return low;
1775 }
1776 #else
1777 static inline int inactive_anon_is_low(struct zone *zone,
1778                                         struct scan_control *sc)
1779 {
1780         return 0;
1781 }
1782 #endif
1783
1784 static int inactive_file_is_low_global(struct zone *zone)
1785 {
1786         unsigned long active, inactive;
1787
1788         active = zone_page_state(zone, NR_ACTIVE_FILE);
1789         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1790
1791         return (active > inactive);
1792 }
1793
1794 /**
1795  * inactive_file_is_low - check if file pages need to be deactivated
1796  * @zone: zone to check
1797  * @sc:   scan control of this context
1798  *
1799  * When the system is doing streaming IO, memory pressure here
1800  * ensures that active file pages get deactivated, until more
1801  * than half of the file pages are on the inactive list.
1802  *
1803  * Once we get to that situation, protect the system's working
1804  * set from being evicted by disabling active file page aging.
1805  *
1806  * This uses a different ratio than the anonymous pages, because
1807  * the page cache uses a use-once replacement algorithm.
1808  */
1809 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1810 {
1811         int low;
1812
1813         if (scanning_global_lru(sc))
1814                 low = inactive_file_is_low_global(zone);
1815         else
1816                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup, zone);
1817         return low;
1818 }
1819
1820 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1821                                 int file)
1822 {
1823         if (file)
1824                 return inactive_file_is_low(zone, sc);
1825         else
1826                 return inactive_anon_is_low(zone, sc);
1827 }
1828
1829 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1830         struct zone *zone, struct scan_control *sc, int priority)
1831 {
1832         int file = is_file_lru(lru);
1833
1834         if (is_active_lru(lru)) {
1835                 if (inactive_list_is_low(zone, sc, file))
1836                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1837                 return 0;
1838         }
1839
1840         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1841 }
1842
1843 static int vmscan_swappiness(struct scan_control *sc)
1844 {
1845         if (scanning_global_lru(sc))
1846                 return vm_swappiness;
1847         return mem_cgroup_swappiness(sc->mem_cgroup);
1848 }
1849
1850 /*
1851  * Determine how aggressively the anon and file LRU lists should be
1852  * scanned.  The relative value of each set of LRU lists is determined
1853  * by looking at the fraction of the pages scanned we did rotate back
1854  * onto the active list instead of evict.
1855  *
1856  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1857  */
1858 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1859                                         unsigned long *nr, int priority)
1860 {
1861         unsigned long anon, file, free;
1862         unsigned long anon_prio, file_prio;
1863         unsigned long ap, fp;
1864         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1865         u64 fraction[2], denominator;
1866         enum lru_list l;
1867         int noswap = 0;
1868         bool force_scan = false;
1869
1870         /*
1871          * If the zone or memcg is small, nr[l] can be 0.  This
1872          * results in no scanning on this priority and a potential
1873          * priority drop.  Global direct reclaim can go to the next
1874          * zone and tends to have no problems. Global kswapd is for
1875          * zone balancing and it needs to scan a minimum amount. When
1876          * reclaiming for a memcg, a priority drop can cause high
1877          * latencies, so it's better to scan a minimum amount there as
1878          * well.
1879          */
1880         if (scanning_global_lru(sc) && current_is_kswapd())
1881                 force_scan = true;
1882         if (!scanning_global_lru(sc))
1883                 force_scan = true;
1884
1885         /* If we have no swap space, do not bother scanning anon pages. */
1886         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1887                 noswap = 1;
1888                 fraction[0] = 0;
1889                 fraction[1] = 1;
1890                 denominator = 1;
1891                 goto out;
1892         }
1893
1894         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1895                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1896         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1897                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1898
1899         if (scanning_global_lru(sc)) {
1900                 free  = zone_page_state(zone, NR_FREE_PAGES);
1901                 /* If we have very few page cache pages,
1902                    force-scan anon pages. */
1903                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1904                         fraction[0] = 1;
1905                         fraction[1] = 0;
1906                         denominator = 1;
1907                         goto out;
1908                 }
1909         }
1910
1911         /*
1912          * With swappiness at 100, anonymous and file have the same priority.
1913          * This scanning priority is essentially the inverse of IO cost.
1914          */
1915         anon_prio = vmscan_swappiness(sc);
1916         file_prio = 200 - vmscan_swappiness(sc);
1917
1918         /*
1919          * OK, so we have swap space and a fair amount of page cache
1920          * pages.  We use the recently rotated / recently scanned
1921          * ratios to determine how valuable each cache is.
1922          *
1923          * Because workloads change over time (and to avoid overflow)
1924          * we keep these statistics as a floating average, which ends
1925          * up weighing recent references more than old ones.
1926          *
1927          * anon in [0], file in [1]
1928          */
1929         spin_lock_irq(&zone->lru_lock);
1930         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1931                 reclaim_stat->recent_scanned[0] /= 2;
1932                 reclaim_stat->recent_rotated[0] /= 2;
1933         }
1934
1935         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1936                 reclaim_stat->recent_scanned[1] /= 2;
1937                 reclaim_stat->recent_rotated[1] /= 2;
1938         }
1939
1940         /*
1941          * The amount of pressure on anon vs file pages is inversely
1942          * proportional to the fraction of recently scanned pages on
1943          * each list that were recently referenced and in active use.
1944          */
1945         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1946         ap /= reclaim_stat->recent_rotated[0] + 1;
1947
1948         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1949         fp /= reclaim_stat->recent_rotated[1] + 1;
1950         spin_unlock_irq(&zone->lru_lock);
1951
1952         fraction[0] = ap;
1953         fraction[1] = fp;
1954         denominator = ap + fp + 1;
1955 out:
1956         for_each_evictable_lru(l) {
1957                 int file = is_file_lru(l);
1958                 unsigned long scan;
1959
1960                 scan = zone_nr_lru_pages(zone, sc, l);
1961                 if (priority || noswap) {
1962                         scan >>= priority;
1963                         if (!scan && force_scan)
1964                                 scan = SWAP_CLUSTER_MAX;
1965                         scan = div64_u64(scan * fraction[file], denominator);
1966                 }
1967                 nr[l] = scan;
1968         }
1969 }
1970
1971 /*
1972  * Reclaim/compaction depends on a number of pages being freed. To avoid
1973  * disruption to the system, a small number of order-0 pages continue to be
1974  * rotated and reclaimed in the normal fashion. However, by the time we get
1975  * back to the allocator and call try_to_compact_zone(), we ensure that
1976  * there are enough free pages for it to be likely successful
1977  */
1978 static inline bool should_continue_reclaim(struct zone *zone,
1979                                         unsigned long nr_reclaimed,
1980                                         unsigned long nr_scanned,
1981                                         struct scan_control *sc)
1982 {
1983         unsigned long pages_for_compaction;
1984         unsigned long inactive_lru_pages;
1985
1986         /* If not in reclaim/compaction mode, stop */
1987         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1988                 return false;
1989
1990         /* Consider stopping depending on scan and reclaim activity */
1991         if (sc->gfp_mask & __GFP_REPEAT) {
1992                 /*
1993                  * For __GFP_REPEAT allocations, stop reclaiming if the
1994                  * full LRU list has been scanned and we are still failing
1995                  * to reclaim pages. This full LRU scan is potentially
1996                  * expensive but a __GFP_REPEAT caller really wants to succeed
1997                  */
1998                 if (!nr_reclaimed && !nr_scanned)
1999                         return false;
2000         } else {
2001                 /*
2002                  * For non-__GFP_REPEAT allocations which can presumably
2003                  * fail without consequence, stop if we failed to reclaim
2004                  * any pages from the last SWAP_CLUSTER_MAX number of
2005                  * pages that were scanned. This will return to the
2006                  * caller faster at the risk reclaim/compaction and
2007                  * the resulting allocation attempt fails
2008                  */
2009                 if (!nr_reclaimed)
2010                         return false;
2011         }
2012
2013         /*
2014          * If we have not reclaimed enough pages for compaction and the
2015          * inactive lists are large enough, continue reclaiming
2016          */
2017         pages_for_compaction = (2UL << sc->order);
2018         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
2019                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2020         if (sc->nr_reclaimed < pages_for_compaction &&
2021                         inactive_lru_pages > pages_for_compaction)
2022                 return true;
2023
2024         /* If compaction would go ahead or the allocation would succeed, stop */
2025         switch (compaction_suitable(zone, sc->order)) {
2026         case COMPACT_PARTIAL:
2027         case COMPACT_CONTINUE:
2028                 return false;
2029         default:
2030                 return true;
2031         }
2032 }
2033
2034 /*
2035  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2036  */
2037 static void shrink_zone(int priority, struct zone *zone,
2038                                 struct scan_control *sc)
2039 {
2040         unsigned long nr[NR_LRU_LISTS];
2041         unsigned long nr_to_scan;
2042         enum lru_list l;
2043         unsigned long nr_reclaimed, nr_scanned;
2044         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2045         struct blk_plug plug;
2046
2047 restart:
2048         nr_reclaimed = 0;
2049         nr_scanned = sc->nr_scanned;
2050         get_scan_count(zone, sc, nr, priority);
2051
2052         blk_start_plug(&plug);
2053         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2054                                         nr[LRU_INACTIVE_FILE]) {
2055                 for_each_evictable_lru(l) {
2056                         if (nr[l]) {
2057                                 nr_to_scan = min_t(unsigned long,
2058                                                    nr[l], SWAP_CLUSTER_MAX);
2059                                 nr[l] -= nr_to_scan;
2060
2061                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2062                                                             zone, sc, priority);
2063                         }
2064                 }
2065                 /*
2066                  * On large memory systems, scan >> priority can become
2067                  * really large. This is fine for the starting priority;
2068                  * we want to put equal scanning pressure on each zone.
2069                  * However, if the VM has a harder time of freeing pages,
2070                  * with multiple processes reclaiming pages, the total
2071                  * freeing target can get unreasonably large.
2072                  */
2073                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2074                         break;
2075         }
2076         blk_finish_plug(&plug);
2077         sc->nr_reclaimed += nr_reclaimed;
2078
2079         /*
2080          * Even if we did not try to evict anon pages at all, we want to
2081          * rebalance the anon lru active/inactive ratio.
2082          */
2083         if (inactive_anon_is_low(zone, sc))
2084                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2085
2086         /* reclaim/compaction might need reclaim to continue */
2087         if (should_continue_reclaim(zone, nr_reclaimed,
2088                                         sc->nr_scanned - nr_scanned, sc))
2089                 goto restart;
2090
2091         throttle_vm_writeout(sc->gfp_mask);
2092 }
2093
2094 /*
2095  * This is the direct reclaim path, for page-allocating processes.  We only
2096  * try to reclaim pages from zones which will satisfy the caller's allocation
2097  * request.
2098  *
2099  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2100  * Because:
2101  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2102  *    allocation or
2103  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2104  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2105  *    zone defense algorithm.
2106  *
2107  * If a zone is deemed to be full of pinned pages then just give it a light
2108  * scan then give up on it.
2109  *
2110  * This function returns true if a zone is being reclaimed for a costly
2111  * high-order allocation and compaction is either ready to begin or deferred.
2112  * This indicates to the caller that it should retry the allocation or fail.
2113  */
2114 static bool shrink_zones(int priority, struct zonelist *zonelist,
2115                                         struct scan_control *sc)
2116 {
2117         struct zoneref *z;
2118         struct zone *zone;
2119         unsigned long nr_soft_reclaimed;
2120         unsigned long nr_soft_scanned;
2121         bool should_abort_reclaim = false;
2122
2123         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2124                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2125                 if (!populated_zone(zone))
2126                         continue;
2127                 /*
2128                  * Take care memory controller reclaiming has small influence
2129                  * to global LRU.
2130                  */
2131                 if (scanning_global_lru(sc)) {
2132                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2133                                 continue;
2134                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2135                                 continue;       /* Let kswapd poll it */
2136                         if (COMPACTION_BUILD) {
2137                                 /*
2138                                  * If we already have plenty of memory free for
2139                                  * compaction in this zone, don't free any more.
2140                                  * Even though compaction is invoked for any
2141                                  * non-zero order, only frequent costly order
2142                                  * reclamation is disruptive enough to become a
2143                                  * noticable problem, like transparent huge page
2144                                  * allocations.
2145                                  */
2146                                 if (sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2147                                         (compaction_suitable(zone, sc->order) ||
2148                                          compaction_deferred(zone))) {
2149                                         should_abort_reclaim = true;
2150                                         continue;
2151                                 }
2152                         }
2153                         /*
2154                          * This steals pages from memory cgroups over softlimit
2155                          * and returns the number of reclaimed pages and
2156                          * scanned pages. This works for global memory pressure
2157                          * and balancing, not for a memcg's limit.
2158                          */
2159                         nr_soft_scanned = 0;
2160                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2161                                                 sc->order, sc->gfp_mask,
2162                                                 &nr_soft_scanned);
2163                         sc->nr_reclaimed += nr_soft_reclaimed;
2164                         sc->nr_scanned += nr_soft_scanned;
2165                         /* need some check for avoid more shrink_zone() */
2166                 }
2167
2168                 shrink_zone(priority, zone, sc);
2169         }
2170
2171         return should_abort_reclaim;
2172 }
2173
2174 static bool zone_reclaimable(struct zone *zone)
2175 {
2176         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2177 }
2178
2179 /* All zones in zonelist are unreclaimable? */
2180 static bool all_unreclaimable(struct zonelist *zonelist,
2181                 struct scan_control *sc)
2182 {
2183         struct zoneref *z;
2184         struct zone *zone;
2185
2186         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2187                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2188                 if (!populated_zone(zone))
2189                         continue;
2190                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2191                         continue;
2192                 if (!zone->all_unreclaimable)
2193                         return false;
2194         }
2195
2196         return true;
2197 }
2198
2199 /*
2200  * This is the main entry point to direct page reclaim.
2201  *
2202  * If a full scan of the inactive list fails to free enough memory then we
2203  * are "out of memory" and something needs to be killed.
2204  *
2205  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2206  * high - the zone may be full of dirty or under-writeback pages, which this
2207  * caller can't do much about.  We kick the writeback threads and take explicit
2208  * naps in the hope that some of these pages can be written.  But if the
2209  * allocating task holds filesystem locks which prevent writeout this might not
2210  * work, and the allocation attempt will fail.
2211  *
2212  * returns:     0, if no pages reclaimed
2213  *              else, the number of pages reclaimed
2214  */
2215 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2216                                         struct scan_control *sc,
2217                                         struct shrink_control *shrink)
2218 {
2219         int priority;
2220         unsigned long total_scanned = 0;
2221         struct reclaim_state *reclaim_state = current->reclaim_state;
2222         struct zoneref *z;
2223         struct zone *zone;
2224         unsigned long writeback_threshold;
2225
2226         get_mems_allowed();
2227         delayacct_freepages_start();
2228
2229         if (scanning_global_lru(sc))
2230                 count_vm_event(ALLOCSTALL);
2231
2232         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2233                 sc->nr_scanned = 0;
2234                 if (!priority)
2235                         disable_swap_token(sc->mem_cgroup);
2236                 if (shrink_zones(priority, zonelist, sc))
2237                         break;
2238
2239                 /*
2240                  * Don't shrink slabs when reclaiming memory from
2241                  * over limit cgroups
2242                  */
2243                 if (scanning_global_lru(sc)) {
2244                         unsigned long lru_pages = 0;
2245                         for_each_zone_zonelist(zone, z, zonelist,
2246                                         gfp_zone(sc->gfp_mask)) {
2247                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2248                                         continue;
2249
2250                                 lru_pages += zone_reclaimable_pages(zone);
2251                         }
2252
2253                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2254                         if (reclaim_state) {
2255                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2256                                 reclaim_state->reclaimed_slab = 0;
2257                         }
2258                 }
2259                 total_scanned += sc->nr_scanned;
2260                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2261                         goto out;
2262
2263                 /*
2264                  * Try to write back as many pages as we just scanned.  This
2265                  * tends to cause slow streaming writers to write data to the
2266                  * disk smoothly, at the dirtying rate, which is nice.   But
2267                  * that's undesirable in laptop mode, where we *want* lumpy
2268                  * writeout.  So in laptop mode, write out the whole world.
2269                  */
2270                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2271                 if (total_scanned > writeback_threshold) {
2272                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2273                                                 WB_REASON_TRY_TO_FREE_PAGES);
2274                         sc->may_writepage = 1;
2275                 }
2276
2277                 /* Take a nap, wait for some writeback to complete */
2278                 if (!sc->hibernation_mode && sc->nr_scanned &&
2279                     priority < DEF_PRIORITY - 2) {
2280                         struct zone *preferred_zone;
2281
2282                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2283                                                 &cpuset_current_mems_allowed,
2284                                                 &preferred_zone);
2285                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2286                 }
2287         }
2288
2289 out:
2290         delayacct_freepages_end();
2291         put_mems_allowed();
2292
2293         if (sc->nr_reclaimed)
2294                 return sc->nr_reclaimed;
2295
2296         /*
2297          * As hibernation is going on, kswapd is freezed so that it can't mark
2298          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2299          * check.
2300          */
2301         if (oom_killer_disabled)
2302                 return 0;
2303
2304         /* top priority shrink_zones still had more to do? don't OOM, then */
2305         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2306                 return 1;
2307
2308         return 0;
2309 }
2310
2311 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2312                                 gfp_t gfp_mask, nodemask_t *nodemask)
2313 {
2314         unsigned long nr_reclaimed;
2315         struct scan_control sc = {
2316                 .gfp_mask = gfp_mask,
2317                 .may_writepage = !laptop_mode,
2318                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2319                 .may_unmap = 1,
2320                 .may_swap = 1,
2321                 .order = order,
2322                 .mem_cgroup = NULL,
2323                 .nodemask = nodemask,
2324         };
2325         struct shrink_control shrink = {
2326                 .gfp_mask = sc.gfp_mask,
2327         };
2328
2329         trace_mm_vmscan_direct_reclaim_begin(order,
2330                                 sc.may_writepage,
2331                                 gfp_mask);
2332
2333         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2334
2335         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2336
2337         return nr_reclaimed;
2338 }
2339
2340 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2341
2342 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2343                                                 gfp_t gfp_mask, bool noswap,
2344                                                 struct zone *zone,
2345                                                 unsigned long *nr_scanned)
2346 {
2347         struct scan_control sc = {
2348                 .nr_scanned = 0,
2349                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2350                 .may_writepage = !laptop_mode,
2351                 .may_unmap = 1,
2352                 .may_swap = !noswap,
2353                 .order = 0,
2354                 .mem_cgroup = mem,
2355         };
2356
2357         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2358                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2359
2360         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2361                                                       sc.may_writepage,
2362                                                       sc.gfp_mask);
2363
2364         /*
2365          * NOTE: Although we can get the priority field, using it
2366          * here is not a good idea, since it limits the pages we can scan.
2367          * if we don't reclaim here, the shrink_zone from balance_pgdat
2368          * will pick up pages from other mem cgroup's as well. We hack
2369          * the priority and make it zero.
2370          */
2371         shrink_zone(0, zone, &sc);
2372
2373         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2374
2375         *nr_scanned = sc.nr_scanned;
2376         return sc.nr_reclaimed;
2377 }
2378
2379 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2380                                            gfp_t gfp_mask,
2381                                            bool noswap)
2382 {
2383         struct zonelist *zonelist;
2384         unsigned long nr_reclaimed;
2385         int nid;
2386         struct scan_control sc = {
2387                 .may_writepage = !laptop_mode,
2388                 .may_unmap = 1,
2389                 .may_swap = !noswap,
2390                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2391                 .order = 0,
2392                 .mem_cgroup = mem_cont,
2393                 .nodemask = NULL, /* we don't care the placement */
2394                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2395                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2396         };
2397         struct shrink_control shrink = {
2398                 .gfp_mask = sc.gfp_mask,
2399         };
2400
2401         /*
2402          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2403          * take care of from where we get pages. So the node where we start the
2404          * scan does not need to be the current node.
2405          */
2406         nid = mem_cgroup_select_victim_node(mem_cont);
2407
2408         zonelist = NODE_DATA(nid)->node_zonelists;
2409
2410         trace_mm_vmscan_memcg_reclaim_begin(0,
2411                                             sc.may_writepage,
2412                                             sc.gfp_mask);
2413
2414         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2415
2416         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2417
2418         return nr_reclaimed;
2419 }
2420 #endif
2421
2422 /*
2423  * pgdat_balanced is used when checking if a node is balanced for high-order
2424  * allocations. Only zones that meet watermarks and are in a zone allowed
2425  * by the callers classzone_idx are added to balanced_pages. The total of
2426  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2427  * for the node to be considered balanced. Forcing all zones to be balanced
2428  * for high orders can cause excessive reclaim when there are imbalanced zones.
2429  * The choice of 25% is due to
2430  *   o a 16M DMA zone that is balanced will not balance a zone on any
2431  *     reasonable sized machine
2432  *   o On all other machines, the top zone must be at least a reasonable
2433  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2434  *     would need to be at least 256M for it to be balance a whole node.
2435  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2436  *     to balance a node on its own. These seemed like reasonable ratios.
2437  */
2438 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2439                                                 int classzone_idx)
2440 {
2441         unsigned long present_pages = 0;
2442         int i;
2443
2444         for (i = 0; i <= classzone_idx; i++)
2445                 present_pages += pgdat->node_zones[i].present_pages;
2446
2447         /* A special case here: if zone has no page, we think it's balanced */
2448         return balanced_pages >= (present_pages >> 2);
2449 }
2450
2451 /* is kswapd sleeping prematurely? */
2452 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2453                                         int classzone_idx)
2454 {
2455         int i;
2456         unsigned long balanced = 0;
2457         bool all_zones_ok = true;
2458
2459         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2460         if (remaining)
2461                 return true;
2462
2463         /* Check the watermark levels */
2464         for (i = 0; i <= classzone_idx; i++) {
2465                 struct zone *zone = pgdat->node_zones + i;
2466
2467                 if (!populated_zone(zone))
2468                         continue;
2469
2470                 /*
2471                  * balance_pgdat() skips over all_unreclaimable after
2472                  * DEF_PRIORITY. Effectively, it considers them balanced so
2473                  * they must be considered balanced here as well if kswapd
2474                  * is to sleep
2475                  */
2476                 if (zone->all_unreclaimable) {
2477                         balanced += zone->present_pages;
2478                         continue;
2479                 }
2480
2481                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2482                                                         i, 0))
2483                         all_zones_ok = false;
2484                 else
2485                         balanced += zone->present_pages;
2486         }
2487
2488         /*
2489          * For high-order requests, the balanced zones must contain at least
2490          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2491          * must be balanced
2492          */
2493         if (order)
2494                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2495         else
2496                 return !all_zones_ok;
2497 }
2498
2499 /*
2500  * For kswapd, balance_pgdat() will work across all this node's zones until
2501  * they are all at high_wmark_pages(zone).
2502  *
2503  * Returns the final order kswapd was reclaiming at
2504  *
2505  * There is special handling here for zones which are full of pinned pages.
2506  * This can happen if the pages are all mlocked, or if they are all used by
2507  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2508  * What we do is to detect the case where all pages in the zone have been
2509  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2510  * dead and from now on, only perform a short scan.  Basically we're polling
2511  * the zone for when the problem goes away.
2512  *
2513  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2514  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2515  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2516  * lower zones regardless of the number of free pages in the lower zones. This
2517  * interoperates with the page allocator fallback scheme to ensure that aging
2518  * of pages is balanced across the zones.
2519  */
2520 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2521                                                         int *classzone_idx)
2522 {
2523         int all_zones_ok;
2524         unsigned long balanced;
2525         int priority;
2526         int i;
2527         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2528         unsigned long total_scanned;
2529         struct reclaim_state *reclaim_state = current->reclaim_state;
2530         unsigned long nr_soft_reclaimed;
2531         unsigned long nr_soft_scanned;
2532         struct scan_control sc = {
2533                 .gfp_mask = GFP_KERNEL,
2534                 .may_unmap = 1,
2535                 .may_swap = 1,
2536                 /*
2537                  * kswapd doesn't want to be bailed out while reclaim. because
2538                  * we want to put equal scanning pressure on each zone.
2539                  */
2540                 .nr_to_reclaim = ULONG_MAX,
2541                 .order = order,
2542                 .mem_cgroup = NULL,
2543         };
2544         struct shrink_control shrink = {
2545                 .gfp_mask = sc.gfp_mask,
2546         };
2547 loop_again:
2548         total_scanned = 0;
2549         sc.nr_reclaimed = 0;
2550         sc.may_writepage = !laptop_mode;
2551         count_vm_event(PAGEOUTRUN);
2552
2553         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2554                 unsigned long lru_pages = 0;
2555                 int has_under_min_watermark_zone = 0;
2556
2557                 /* The swap token gets in the way of swapout... */
2558                 if (!priority)
2559                         disable_swap_token(NULL);
2560
2561                 all_zones_ok = 1;
2562                 balanced = 0;
2563
2564                 /*
2565                  * Scan in the highmem->dma direction for the highest
2566                  * zone which needs scanning
2567                  */
2568                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2569                         struct zone *zone = pgdat->node_zones + i;
2570
2571                         if (!populated_zone(zone))
2572                                 continue;
2573
2574                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2575                                 continue;
2576
2577                         /*
2578                          * Do some background aging of the anon list, to give
2579                          * pages a chance to be referenced before reclaiming.
2580                          */
2581                         if (inactive_anon_is_low(zone, &sc))
2582                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2583                                                         &sc, priority, 0);
2584
2585                         if (!zone_watermark_ok_safe(zone, order,
2586                                         high_wmark_pages(zone), 0, 0)) {
2587                                 end_zone = i;
2588                                 break;
2589                         } else {
2590                                 /* If balanced, clear the congested flag */
2591                                 zone_clear_flag(zone, ZONE_CONGESTED);
2592                         }
2593                 }
2594                 if (i < 0)
2595                         goto out;
2596
2597                 for (i = 0; i <= end_zone; i++) {
2598                         struct zone *zone = pgdat->node_zones + i;
2599
2600                         lru_pages += zone_reclaimable_pages(zone);
2601                 }
2602
2603                 /*
2604                  * Now scan the zone in the dma->highmem direction, stopping
2605                  * at the last zone which needs scanning.
2606                  *
2607                  * We do this because the page allocator works in the opposite
2608                  * direction.  This prevents the page allocator from allocating
2609                  * pages behind kswapd's direction of progress, which would
2610                  * cause too much scanning of the lower zones.
2611                  */
2612                 for (i = 0; i <= end_zone; i++) {
2613                         struct zone *zone = pgdat->node_zones + i;
2614                         int nr_slab;
2615                         unsigned long balance_gap;
2616
2617                         if (!populated_zone(zone))
2618                                 continue;
2619
2620                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2621                                 continue;
2622
2623                         sc.nr_scanned = 0;
2624
2625                         nr_soft_scanned = 0;
2626                         /*
2627                          * Call soft limit reclaim before calling shrink_zone.
2628                          */
2629                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2630                                                         order, sc.gfp_mask,
2631                                                         &nr_soft_scanned);
2632                         sc.nr_reclaimed += nr_soft_reclaimed;
2633                         total_scanned += nr_soft_scanned;
2634
2635                         /*
2636                          * We put equal pressure on every zone, unless
2637                          * one zone has way too many pages free
2638                          * already. The "too many pages" is defined
2639                          * as the high wmark plus a "gap" where the
2640                          * gap is either the low watermark or 1%
2641                          * of the zone, whichever is smaller.
2642                          */
2643                         balance_gap = min(low_wmark_pages(zone),
2644                                 (zone->present_pages +
2645                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2646                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2647                         if (!zone_watermark_ok_safe(zone, order,
2648                                         high_wmark_pages(zone) + balance_gap,
2649                                         end_zone, 0)) {
2650                                 shrink_zone(priority, zone, &sc);
2651
2652                                 reclaim_state->reclaimed_slab = 0;
2653                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2654                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2655                                 total_scanned += sc.nr_scanned;
2656
2657                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2658                                         zone->all_unreclaimable = 1;
2659                         }
2660
2661                         /*
2662                          * If we've done a decent amount of scanning and
2663                          * the reclaim ratio is low, start doing writepage
2664                          * even in laptop mode
2665                          */
2666                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2667                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2668                                 sc.may_writepage = 1;
2669
2670                         if (zone->all_unreclaimable) {
2671                                 if (end_zone && end_zone == i)
2672                                         end_zone--;
2673                                 continue;
2674                         }
2675
2676                         if (!zone_watermark_ok_safe(zone, order,
2677                                         high_wmark_pages(zone), end_zone, 0)) {
2678                                 all_zones_ok = 0;
2679                                 /*
2680                                  * We are still under min water mark.  This
2681                                  * means that we have a GFP_ATOMIC allocation
2682                                  * failure risk. Hurry up!
2683                                  */
2684                                 if (!zone_watermark_ok_safe(zone, order,
2685                                             min_wmark_pages(zone), end_zone, 0))
2686                                         has_under_min_watermark_zone = 1;
2687                         } else {
2688                                 /*
2689                                  * If a zone reaches its high watermark,
2690                                  * consider it to be no longer congested. It's
2691                                  * possible there are dirty pages backed by
2692                                  * congested BDIs but as pressure is relieved,
2693                                  * spectulatively avoid congestion waits
2694                                  */
2695                                 zone_clear_flag(zone, ZONE_CONGESTED);
2696                                 if (i <= *classzone_idx)
2697                                         balanced += zone->present_pages;
2698                         }
2699
2700                 }
2701                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2702                         break;          /* kswapd: all done */
2703                 /*
2704                  * OK, kswapd is getting into trouble.  Take a nap, then take
2705                  * another pass across the zones.
2706                  */
2707                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2708                         if (has_under_min_watermark_zone)
2709                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2710                         else
2711                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2712                 }
2713
2714                 /*
2715                  * We do this so kswapd doesn't build up large priorities for
2716                  * example when it is freeing in parallel with allocators. It
2717                  * matches the direct reclaim path behaviour in terms of impact
2718                  * on zone->*_priority.
2719                  */
2720                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2721                         break;
2722         }
2723 out:
2724
2725         /*
2726          * order-0: All zones must meet high watermark for a balanced node
2727          * high-order: Balanced zones must make up at least 25% of the node
2728          *             for the node to be balanced
2729          */
2730         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2731                 cond_resched();
2732
2733                 try_to_freeze();
2734
2735                 /*
2736                  * Fragmentation may mean that the system cannot be
2737                  * rebalanced for high-order allocations in all zones.
2738                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2739                  * it means the zones have been fully scanned and are still
2740                  * not balanced. For high-order allocations, there is
2741                  * little point trying all over again as kswapd may
2742                  * infinite loop.
2743                  *
2744                  * Instead, recheck all watermarks at order-0 as they
2745                  * are the most important. If watermarks are ok, kswapd will go
2746                  * back to sleep. High-order users can still perform direct
2747                  * reclaim if they wish.
2748                  */
2749                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2750                         order = sc.order = 0;
2751
2752                 goto loop_again;
2753         }
2754
2755         /*
2756          * If kswapd was reclaiming at a higher order, it has the option of
2757          * sleeping without all zones being balanced. Before it does, it must
2758          * ensure that the watermarks for order-0 on *all* zones are met and
2759          * that the congestion flags are cleared. The congestion flag must
2760          * be cleared as kswapd is the only mechanism that clears the flag
2761          * and it is potentially going to sleep here.
2762          */
2763         if (order) {
2764                 for (i = 0; i <= end_zone; i++) {
2765                         struct zone *zone = pgdat->node_zones + i;
2766
2767                         if (!populated_zone(zone))
2768                                 continue;
2769
2770                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2771                                 continue;
2772
2773                         /* Confirm the zone is balanced for order-0 */
2774                         if (!zone_watermark_ok(zone, 0,
2775                                         high_wmark_pages(zone), 0, 0)) {
2776                                 order = sc.order = 0;
2777                                 goto loop_again;
2778                         }
2779
2780                         /* If balanced, clear the congested flag */
2781                         zone_clear_flag(zone, ZONE_CONGESTED);
2782                         if (i <= *classzone_idx)
2783                                 balanced += zone->present_pages;
2784                 }
2785         }
2786
2787         /*
2788          * Return the order we were reclaiming at so sleeping_prematurely()
2789          * makes a decision on the order we were last reclaiming at. However,
2790          * if another caller entered the allocator slow path while kswapd
2791          * was awake, order will remain at the higher level
2792          */
2793         *classzone_idx = end_zone;
2794         return order;
2795 }
2796
2797 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2798 {
2799         long remaining = 0;
2800         DEFINE_WAIT(wait);
2801
2802         if (freezing(current) || kthread_should_stop())
2803                 return;
2804
2805         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2806
2807         /* Try to sleep for a short interval */
2808         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2809                 remaining = schedule_timeout(HZ/10);
2810                 finish_wait(&pgdat->kswapd_wait, &wait);
2811                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2812         }
2813
2814         /*
2815          * After a short sleep, check if it was a premature sleep. If not, then
2816          * go fully to sleep until explicitly woken up.
2817          */
2818         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2819                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2820
2821                 /*
2822                  * vmstat counters are not perfectly accurate and the estimated
2823                  * value for counters such as NR_FREE_PAGES can deviate from the
2824                  * true value by nr_online_cpus * threshold. To avoid the zone
2825                  * watermarks being breached while under pressure, we reduce the
2826                  * per-cpu vmstat threshold while kswapd is awake and restore
2827                  * them before going back to sleep.
2828                  */
2829                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2830                 schedule();
2831                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2832         } else {
2833                 if (remaining)
2834                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2835                 else
2836                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2837         }
2838         finish_wait(&pgdat->kswapd_wait, &wait);
2839 }
2840
2841 /*
2842  * The background pageout daemon, started as a kernel thread
2843  * from the init process.
2844  *
2845  * This basically trickles out pages so that we have _some_
2846  * free memory available even if there is no other activity
2847  * that frees anything up. This is needed for things like routing
2848  * etc, where we otherwise might have all activity going on in
2849  * asynchronous contexts that cannot page things out.
2850  *
2851  * If there are applications that are active memory-allocators
2852  * (most normal use), this basically shouldn't matter.
2853  */
2854 static int kswapd(void *p)
2855 {
2856         unsigned long order, new_order;
2857         unsigned balanced_order;
2858         int classzone_idx, new_classzone_idx;
2859         int balanced_classzone_idx;
2860         pg_data_t *pgdat = (pg_data_t*)p;
2861         struct task_struct *tsk = current;
2862
2863         struct reclaim_state reclaim_state = {
2864                 .reclaimed_slab = 0,
2865         };
2866         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2867
2868         lockdep_set_current_reclaim_state(GFP_KERNEL);
2869
2870         if (!cpumask_empty(cpumask))
2871                 set_cpus_allowed_ptr(tsk, cpumask);
2872         current->reclaim_state = &reclaim_state;
2873
2874         /*
2875          * Tell the memory management that we're a "memory allocator",
2876          * and that if we need more memory we should get access to it
2877          * regardless (see "__alloc_pages()"). "kswapd" should
2878          * never get caught in the normal page freeing logic.
2879          *
2880          * (Kswapd normally doesn't need memory anyway, but sometimes
2881          * you need a small amount of memory in order to be able to
2882          * page out something else, and this flag essentially protects
2883          * us from recursively trying to free more memory as we're
2884          * trying to free the first piece of memory in the first place).
2885          */
2886         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2887         set_freezable();
2888
2889         order = new_order = 0;
2890         balanced_order = 0;
2891         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2892         balanced_classzone_idx = classzone_idx;
2893         for ( ; ; ) {
2894                 int ret;
2895
2896                 /*
2897                  * If the last balance_pgdat was unsuccessful it's unlikely a
2898                  * new request of a similar or harder type will succeed soon
2899                  * so consider going to sleep on the basis we reclaimed at
2900                  */
2901                 if (balanced_classzone_idx >= new_classzone_idx &&
2902                                         balanced_order == new_order) {
2903                         new_order = pgdat->kswapd_max_order;
2904                         new_classzone_idx = pgdat->classzone_idx;
2905                         pgdat->kswapd_max_order =  0;
2906                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2907                 }
2908
2909                 if (order < new_order || classzone_idx > new_classzone_idx) {
2910                         /*
2911                          * Don't sleep if someone wants a larger 'order'
2912                          * allocation or has tigher zone constraints
2913                          */
2914                         order = new_order;
2915                         classzone_idx = new_classzone_idx;
2916                 } else {
2917                         kswapd_try_to_sleep(pgdat, balanced_order,
2918                                                 balanced_classzone_idx);
2919                         order = pgdat->kswapd_max_order;
2920                         classzone_idx = pgdat->classzone_idx;
2921                         new_order = order;
2922                         new_classzone_idx = classzone_idx;
2923                         pgdat->kswapd_max_order = 0;
2924                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2925                 }
2926
2927                 ret = try_to_freeze();
2928                 if (kthread_should_stop())
2929                         break;
2930
2931                 /*
2932                  * We can speed up thawing tasks if we don't call balance_pgdat
2933                  * after returning from the refrigerator
2934                  */
2935                 if (!ret) {
2936                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2937                         balanced_classzone_idx = classzone_idx;
2938                         balanced_order = balance_pgdat(pgdat, order,
2939                                                 &balanced_classzone_idx);
2940                 }
2941         }
2942         return 0;
2943 }
2944
2945 /*
2946  * A zone is low on free memory, so wake its kswapd task to service it.
2947  */
2948 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2949 {
2950         pg_data_t *pgdat;
2951
2952         if (!populated_zone(zone))
2953                 return;
2954
2955         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2956                 return;
2957         pgdat = zone->zone_pgdat;
2958         if (pgdat->kswapd_max_order < order) {
2959                 pgdat->kswapd_max_order = order;
2960                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2961         }
2962         if (!waitqueue_active(&pgdat->kswapd_wait))
2963                 return;
2964         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2965                 return;
2966
2967         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2968         wake_up_interruptible(&pgdat->kswapd_wait);
2969 }
2970
2971 /*
2972  * The reclaimable count would be mostly accurate.
2973  * The less reclaimable pages may be
2974  * - mlocked pages, which will be moved to unevictable list when encountered
2975  * - mapped pages, which may require several travels to be reclaimed
2976  * - dirty pages, which is not "instantly" reclaimable
2977  */
2978 unsigned long global_reclaimable_pages(void)
2979 {
2980         int nr;
2981
2982         nr = global_page_state(NR_ACTIVE_FILE) +
2983              global_page_state(NR_INACTIVE_FILE);
2984
2985         if (nr_swap_pages > 0)
2986                 nr += global_page_state(NR_ACTIVE_ANON) +
2987                       global_page_state(NR_INACTIVE_ANON);
2988
2989         return nr;
2990 }
2991
2992 unsigned long zone_reclaimable_pages(struct zone *zone)
2993 {
2994         int nr;
2995
2996         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2997              zone_page_state(zone, NR_INACTIVE_FILE);
2998
2999         if (nr_swap_pages > 0)
3000                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3001                       zone_page_state(zone, NR_INACTIVE_ANON);
3002
3003         return nr;
3004 }
3005
3006 #ifdef CONFIG_HIBERNATION
3007 /*
3008  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3009  * freed pages.
3010  *
3011  * Rather than trying to age LRUs the aim is to preserve the overall
3012  * LRU order by reclaiming preferentially
3013  * inactive > active > active referenced > active mapped
3014  */
3015 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3016 {
3017         struct reclaim_state reclaim_state;
3018         struct scan_control sc = {
3019                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3020                 .may_swap = 1,
3021                 .may_unmap = 1,
3022                 .may_writepage = 1,
3023                 .nr_to_reclaim = nr_to_reclaim,
3024                 .hibernation_mode = 1,
3025                 .order = 0,
3026         };
3027         struct shrink_control shrink = {
3028                 .gfp_mask = sc.gfp_mask,
3029         };
3030         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3031         struct task_struct *p = current;
3032         unsigned long nr_reclaimed;
3033
3034         p->flags |= PF_MEMALLOC;
3035         lockdep_set_current_reclaim_state(sc.gfp_mask);
3036         reclaim_state.reclaimed_slab = 0;
3037         p->reclaim_state = &reclaim_state;
3038
3039         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3040
3041         p->reclaim_state = NULL;
3042         lockdep_clear_current_reclaim_state();
3043         p->flags &= ~PF_MEMALLOC;
3044
3045         return nr_reclaimed;
3046 }
3047 #endif /* CONFIG_HIBERNATION */
3048
3049 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3050    not required for correctness.  So if the last cpu in a node goes
3051    away, we get changed to run anywhere: as the first one comes back,
3052    restore their cpu bindings. */
3053 static int __devinit cpu_callback(struct notifier_block *nfb,
3054                                   unsigned long action, void *hcpu)
3055 {
3056         int nid;
3057
3058         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3059                 for_each_node_state(nid, N_HIGH_MEMORY) {
3060                         pg_data_t *pgdat = NODE_DATA(nid);
3061                         const struct cpumask *mask;
3062
3063                         mask = cpumask_of_node(pgdat->node_id);
3064
3065                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3066                                 /* One of our CPUs online: restore mask */
3067                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3068                 }
3069         }
3070         return NOTIFY_OK;
3071 }
3072
3073 /*
3074  * This kswapd start function will be called by init and node-hot-add.
3075  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3076  */
3077 int kswapd_run(int nid)
3078 {
3079         pg_data_t *pgdat = NODE_DATA(nid);
3080         int ret = 0;
3081
3082         if (pgdat->kswapd)
3083                 return 0;
3084
3085         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3086         if (IS_ERR(pgdat->kswapd)) {
3087                 /* failure at boot is fatal */
3088                 BUG_ON(system_state == SYSTEM_BOOTING);
3089                 printk("Failed to start kswapd on node %d\n",nid);
3090                 ret = -1;
3091         }
3092         return ret;
3093 }
3094
3095 /*
3096  * Called by memory hotplug when all memory in a node is offlined.
3097  */
3098 void kswapd_stop(int nid)
3099 {
3100         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3101
3102         if (kswapd)
3103                 kthread_stop(kswapd);
3104 }
3105
3106 static int __init kswapd_init(void)
3107 {
3108         int nid;
3109
3110         swap_setup();
3111         for_each_node_state(nid, N_HIGH_MEMORY)
3112                 kswapd_run(nid);
3113         hotcpu_notifier(cpu_callback, 0);
3114         return 0;
3115 }
3116
3117 module_init(kswapd_init)
3118
3119 #ifdef CONFIG_NUMA
3120 /*
3121  * Zone reclaim mode
3122  *
3123  * If non-zero call zone_reclaim when the number of free pages falls below
3124  * the watermarks.
3125  */
3126 int zone_reclaim_mode __read_mostly;
3127
3128 #define RECLAIM_OFF 0
3129 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3130 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3131 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3132
3133 /*
3134  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3135  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3136  * a zone.
3137  */
3138 #define ZONE_RECLAIM_PRIORITY 4
3139
3140 /*
3141  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3142  * occur.
3143  */
3144 int sysctl_min_unmapped_ratio = 1;
3145
3146 /*
3147  * If the number of slab pages in a zone grows beyond this percentage then
3148  * slab reclaim needs to occur.
3149  */
3150 int sysctl_min_slab_ratio = 5;
3151
3152 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3153 {
3154         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3155         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3156                 zone_page_state(zone, NR_ACTIVE_FILE);
3157
3158         /*
3159          * It's possible for there to be more file mapped pages than
3160          * accounted for by the pages on the file LRU lists because
3161          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3162          */
3163         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3164 }
3165
3166 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3167 static long zone_pagecache_reclaimable(struct zone *zone)
3168 {
3169         long nr_pagecache_reclaimable;
3170         long delta = 0;
3171
3172         /*
3173          * If RECLAIM_SWAP is set, then all file pages are considered
3174          * potentially reclaimable. Otherwise, we have to worry about
3175          * pages like swapcache and zone_unmapped_file_pages() provides
3176          * a better estimate
3177          */
3178         if (zone_reclaim_mode & RECLAIM_SWAP)
3179                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3180         else
3181                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3182
3183         /* If we can't clean pages, remove dirty pages from consideration */
3184         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3185                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3186
3187         /* Watch for any possible underflows due to delta */
3188         if (unlikely(delta > nr_pagecache_reclaimable))
3189                 delta = nr_pagecache_reclaimable;
3190
3191         return nr_pagecache_reclaimable - delta;
3192 }
3193
3194 /*
3195  * Try to free up some pages from this zone through reclaim.
3196  */
3197 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3198 {
3199         /* Minimum pages needed in order to stay on node */
3200         const unsigned long nr_pages = 1 << order;
3201         struct task_struct *p = current;
3202         struct reclaim_state reclaim_state;
3203         int priority;
3204         struct scan_control sc = {
3205                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3206                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3207                 .may_swap = 1,
3208                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3209                                        SWAP_CLUSTER_MAX),
3210                 .gfp_mask = gfp_mask,
3211                 .order = order,
3212         };
3213         struct shrink_control shrink = {
3214                 .gfp_mask = sc.gfp_mask,
3215         };
3216         unsigned long nr_slab_pages0, nr_slab_pages1;
3217
3218         cond_resched();
3219         /*
3220          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3221          * and we also need to be able to write out pages for RECLAIM_WRITE
3222          * and RECLAIM_SWAP.
3223          */
3224         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3225         lockdep_set_current_reclaim_state(gfp_mask);
3226         reclaim_state.reclaimed_slab = 0;
3227         p->reclaim_state = &reclaim_state;
3228
3229         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3230                 /*
3231                  * Free memory by calling shrink zone with increasing
3232                  * priorities until we have enough memory freed.
3233                  */
3234                 priority = ZONE_RECLAIM_PRIORITY;
3235                 do {
3236                         shrink_zone(priority, zone, &sc);
3237                         priority--;
3238                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3239         }
3240
3241         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3242         if (nr_slab_pages0 > zone->min_slab_pages) {
3243                 /*
3244                  * shrink_slab() does not currently allow us to determine how
3245                  * many pages were freed in this zone. So we take the current
3246                  * number of slab pages and shake the slab until it is reduced
3247                  * by the same nr_pages that we used for reclaiming unmapped
3248                  * pages.
3249                  *
3250                  * Note that shrink_slab will free memory on all zones and may
3251                  * take a long time.
3252                  */
3253                 for (;;) {
3254                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3255
3256                         /* No reclaimable slab or very low memory pressure */
3257                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3258                                 break;
3259
3260                         /* Freed enough memory */
3261                         nr_slab_pages1 = zone_page_state(zone,
3262                                                         NR_SLAB_RECLAIMABLE);
3263                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3264                                 break;
3265                 }
3266
3267                 /*
3268                  * Update nr_reclaimed by the number of slab pages we
3269                  * reclaimed from this zone.
3270                  */
3271                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3272                 if (nr_slab_pages1 < nr_slab_pages0)
3273                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3274         }
3275
3276         p->reclaim_state = NULL;
3277         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3278         lockdep_clear_current_reclaim_state();
3279         return sc.nr_reclaimed >= nr_pages;
3280 }
3281
3282 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3283 {
3284         int node_id;
3285         int ret;
3286
3287         /*
3288          * Zone reclaim reclaims unmapped file backed pages and
3289          * slab pages if we are over the defined limits.
3290          *
3291          * A small portion of unmapped file backed pages is needed for
3292          * file I/O otherwise pages read by file I/O will be immediately
3293          * thrown out if the zone is overallocated. So we do not reclaim
3294          * if less than a specified percentage of the zone is used by
3295          * unmapped file backed pages.
3296          */
3297         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3298             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3299                 return ZONE_RECLAIM_FULL;
3300
3301         if (zone->all_unreclaimable)
3302                 return ZONE_RECLAIM_FULL;
3303
3304         /*
3305          * Do not scan if the allocation should not be delayed.
3306          */
3307         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3308                 return ZONE_RECLAIM_NOSCAN;
3309
3310         /*
3311          * Only run zone reclaim on the local zone or on zones that do not
3312          * have associated processors. This will favor the local processor
3313          * over remote processors and spread off node memory allocations
3314          * as wide as possible.
3315          */
3316         node_id = zone_to_nid(zone);
3317         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3318                 return ZONE_RECLAIM_NOSCAN;
3319
3320         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3321                 return ZONE_RECLAIM_NOSCAN;
3322
3323         ret = __zone_reclaim(zone, gfp_mask, order);
3324         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3325
3326         if (!ret)
3327                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3328
3329         return ret;
3330 }
3331 #endif
3332
3333 /*
3334  * page_evictable - test whether a page is evictable
3335  * @page: the page to test
3336  * @vma: the VMA in which the page is or will be mapped, may be NULL
3337  *
3338  * Test whether page is evictable--i.e., should be placed on active/inactive
3339  * lists vs unevictable list.  The vma argument is !NULL when called from the
3340  * fault path to determine how to instantate a new page.
3341  *
3342  * Reasons page might not be evictable:
3343  * (1) page's mapping marked unevictable
3344  * (2) page is part of an mlocked VMA
3345  *
3346  */
3347 int page_evictable(struct page *page, struct vm_area_struct *vma)
3348 {
3349
3350         if (mapping_unevictable(page_mapping(page)))
3351                 return 0;
3352
3353         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3354                 return 0;
3355
3356         return 1;
3357 }
3358
3359 /**
3360  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3361  * @page: page to check evictability and move to appropriate lru list
3362  * @zone: zone page is in
3363  *
3364  * Checks a page for evictability and moves the page to the appropriate
3365  * zone lru list.
3366  *
3367  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3368  * have PageUnevictable set.
3369  */
3370 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3371 {
3372         VM_BUG_ON(PageActive(page));
3373
3374 retry:
3375         ClearPageUnevictable(page);
3376         if (page_evictable(page, NULL)) {
3377                 enum lru_list l = page_lru_base_type(page);
3378
3379                 __dec_zone_state(zone, NR_UNEVICTABLE);
3380                 list_move(&page->lru, &zone->lru[l].list);
3381                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3382                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3383                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3384         } else {
3385                 /*
3386                  * rotate unevictable list
3387                  */
3388                 SetPageUnevictable(page);
3389                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3390                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3391                 if (page_evictable(page, NULL))
3392                         goto retry;
3393         }
3394 }
3395
3396 /**
3397  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3398  * @mapping: struct address_space to scan for evictable pages
3399  *
3400  * Scan all pages in mapping.  Check unevictable pages for
3401  * evictability and move them to the appropriate zone lru list.
3402  */
3403 void scan_mapping_unevictable_pages(struct address_space *mapping)
3404 {
3405         pgoff_t next = 0;
3406         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3407                          PAGE_CACHE_SHIFT;
3408         struct zone *zone;
3409         struct pagevec pvec;
3410
3411         if (mapping->nrpages == 0)
3412                 return;
3413
3414         pagevec_init(&pvec, 0);
3415         while (next < end &&
3416                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3417                 int i;
3418                 int pg_scanned = 0;
3419
3420                 zone = NULL;
3421
3422                 for (i = 0; i < pagevec_count(&pvec); i++) {
3423                         struct page *page = pvec.pages[i];
3424                         pgoff_t page_index = page->index;
3425                         struct zone *pagezone = page_zone(page);
3426
3427                         pg_scanned++;
3428                         if (page_index > next)
3429                                 next = page_index;
3430                         next++;
3431
3432                         if (pagezone != zone) {
3433                                 if (zone)
3434                                         spin_unlock_irq(&zone->lru_lock);
3435                                 zone = pagezone;
3436                                 spin_lock_irq(&zone->lru_lock);
3437                         }
3438
3439                         if (PageLRU(page) && PageUnevictable(page))
3440                                 check_move_unevictable_page(page, zone);
3441                 }
3442                 if (zone)
3443                         spin_unlock_irq(&zone->lru_lock);
3444                 pagevec_release(&pvec);
3445
3446                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3447         }
3448
3449 }
3450
3451 static void warn_scan_unevictable_pages(void)
3452 {
3453         printk_once(KERN_WARNING
3454                     "The scan_unevictable_pages sysctl/node-interface has been "
3455                     "disabled for lack of a legitimate use case.  If you have "
3456                     "one, please send an email to linux-mm@kvack.org.\n");
3457 }
3458
3459 /*
3460  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3461  * all nodes' unevictable lists for evictable pages
3462  */
3463 unsigned long scan_unevictable_pages;
3464
3465 int scan_unevictable_handler(struct ctl_table *table, int write,
3466                            void __user *buffer,
3467                            size_t *length, loff_t *ppos)
3468 {
3469         warn_scan_unevictable_pages();
3470         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3471         scan_unevictable_pages = 0;
3472         return 0;
3473 }
3474
3475 #ifdef CONFIG_NUMA
3476 /*
3477  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3478  * a specified node's per zone unevictable lists for evictable pages.
3479  */
3480
3481 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3482                                           struct sysdev_attribute *attr,
3483                                           char *buf)
3484 {
3485         warn_scan_unevictable_pages();
3486         return sprintf(buf, "0\n");     /* always zero; should fit... */
3487 }
3488
3489 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3490                                            struct sysdev_attribute *attr,
3491                                         const char *buf, size_t count)
3492 {
3493         warn_scan_unevictable_pages();
3494         return 1;
3495 }
3496
3497
3498 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3499                         read_scan_unevictable_node,
3500                         write_scan_unevictable_node);
3501
3502 int scan_unevictable_register_node(struct node *node)
3503 {
3504         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3505 }
3506
3507 void scan_unevictable_unregister_node(struct node *node)
3508 {
3509         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3510 }
3511 #endif