4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
79 unsigned long num_physpages;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
105 static int __init disable_randmaps(char *s)
107 randomize_va_space = 0;
110 __setup("norandmaps", disable_randmaps);
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init init_zero_pfn(void)
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
123 core_initcall(init_zero_pfn);
126 #if defined(SPLIT_RSS_COUNTING)
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 add_mm_counter(mm, i, task->rss_stat.count[i]);
135 task->rss_stat.count[i] = 0;
138 task->rss_stat.events = 0;
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
143 struct task_struct *task = current;
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
148 add_mm_counter(mm, member, val);
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
157 if (unlikely(task != current))
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 __sync_task_rss_stat(task, task->mm);
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
171 val = atomic_long_read(&mm->rss_stat.count[member]);
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
178 return (unsigned long)val;
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
183 __sync_task_rss_stat(task, mm);
185 #else /* SPLIT_RSS_COUNTING */
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
190 static void check_sync_rss_stat(struct task_struct *task)
194 #endif /* SPLIT_RSS_COUNTING */
196 #ifdef HAVE_GENERIC_MMU_GATHER
198 static int tlb_next_batch(struct mmu_gather *tlb)
200 struct mmu_gather_batch *batch;
204 tlb->active = batch->next;
208 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
211 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
218 batch->max = MAX_GATHER_BATCH;
220 tlb->active->next = batch;
227 * Called to initialize an (on-stack) mmu_gather structure for page-table
228 * tear-down from @mm. The @fullmm argument is used when @mm is without
229 * users and we're going to destroy the full address space (exit/execve).
231 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
235 tlb->fullmm = fullmm;
237 tlb->fast_mode = (num_possible_cpus() == 1);
238 tlb->local.next = NULL;
240 tlb->local.max = ARRAY_SIZE(tlb->__pages);
241 tlb->active = &tlb->local;
242 tlb->batch_count = 0;
244 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 void tlb_flush_mmu(struct mmu_gather *tlb)
251 struct mmu_gather_batch *batch;
253 if (!tlb->need_flush)
257 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
258 tlb_table_flush(tlb);
261 if (tlb_fast_mode(tlb))
264 for (batch = &tlb->local; batch; batch = batch->next) {
265 free_pages_and_swap_cache(batch->pages, batch->nr);
268 tlb->active = &tlb->local;
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
275 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
277 struct mmu_gather_batch *batch, *next;
281 /* keep the page table cache within bounds */
284 for (batch = tlb->local.next; batch; batch = next) {
286 free_pages((unsigned long)batch, 0);
288 tlb->local.next = NULL;
292 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
293 * handling the additional races in SMP caused by other CPUs caching valid
294 * mappings in their TLBs. Returns the number of free page slots left.
295 * When out of page slots we must call tlb_flush_mmu().
297 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
299 struct mmu_gather_batch *batch;
303 if (tlb_fast_mode(tlb)) {
304 free_page_and_swap_cache(page);
305 return 1; /* avoid calling tlb_flush_mmu() */
309 batch->pages[batch->nr++] = page;
310 if (batch->nr == batch->max) {
311 if (!tlb_next_batch(tlb))
315 VM_BUG_ON(batch->nr > batch->max);
317 return batch->max - batch->nr;
320 #endif /* HAVE_GENERIC_MMU_GATHER */
322 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
325 * See the comment near struct mmu_table_batch.
328 static void tlb_remove_table_smp_sync(void *arg)
330 /* Simply deliver the interrupt */
333 static void tlb_remove_table_one(void *table)
336 * This isn't an RCU grace period and hence the page-tables cannot be
337 * assumed to be actually RCU-freed.
339 * It is however sufficient for software page-table walkers that rely on
340 * IRQ disabling. See the comment near struct mmu_table_batch.
342 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
343 __tlb_remove_table(table);
346 static void tlb_remove_table_rcu(struct rcu_head *head)
348 struct mmu_table_batch *batch;
351 batch = container_of(head, struct mmu_table_batch, rcu);
353 for (i = 0; i < batch->nr; i++)
354 __tlb_remove_table(batch->tables[i]);
356 free_page((unsigned long)batch);
359 void tlb_table_flush(struct mmu_gather *tlb)
361 struct mmu_table_batch **batch = &tlb->batch;
364 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
369 void tlb_remove_table(struct mmu_gather *tlb, void *table)
371 struct mmu_table_batch **batch = &tlb->batch;
376 * When there's less then two users of this mm there cannot be a
377 * concurrent page-table walk.
379 if (atomic_read(&tlb->mm->mm_users) < 2) {
380 __tlb_remove_table(table);
384 if (*batch == NULL) {
385 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
386 if (*batch == NULL) {
387 tlb_remove_table_one(table);
392 (*batch)->tables[(*batch)->nr++] = table;
393 if ((*batch)->nr == MAX_TABLE_BATCH)
394 tlb_table_flush(tlb);
397 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
400 * If a p?d_bad entry is found while walking page tables, report
401 * the error, before resetting entry to p?d_none. Usually (but
402 * very seldom) called out from the p?d_none_or_clear_bad macros.
405 void pgd_clear_bad(pgd_t *pgd)
411 void pud_clear_bad(pud_t *pud)
417 void pmd_clear_bad(pmd_t *pmd)
424 * Note: this doesn't free the actual pages themselves. That
425 * has been handled earlier when unmapping all the memory regions.
427 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
430 pgtable_t token = pmd_pgtable(*pmd);
432 pte_free_tlb(tlb, token, addr);
436 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
437 unsigned long addr, unsigned long end,
438 unsigned long floor, unsigned long ceiling)
445 pmd = pmd_offset(pud, addr);
447 next = pmd_addr_end(addr, end);
448 if (pmd_none_or_clear_bad(pmd))
450 free_pte_range(tlb, pmd, addr);
451 } while (pmd++, addr = next, addr != end);
461 if (end - 1 > ceiling - 1)
464 pmd = pmd_offset(pud, start);
466 pmd_free_tlb(tlb, pmd, start);
469 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
470 unsigned long addr, unsigned long end,
471 unsigned long floor, unsigned long ceiling)
478 pud = pud_offset(pgd, addr);
480 next = pud_addr_end(addr, end);
481 if (pud_none_or_clear_bad(pud))
483 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
484 } while (pud++, addr = next, addr != end);
490 ceiling &= PGDIR_MASK;
494 if (end - 1 > ceiling - 1)
497 pud = pud_offset(pgd, start);
499 pud_free_tlb(tlb, pud, start);
503 * This function frees user-level page tables of a process.
505 * Must be called with pagetable lock held.
507 void free_pgd_range(struct mmu_gather *tlb,
508 unsigned long addr, unsigned long end,
509 unsigned long floor, unsigned long ceiling)
515 * The next few lines have given us lots of grief...
517 * Why are we testing PMD* at this top level? Because often
518 * there will be no work to do at all, and we'd prefer not to
519 * go all the way down to the bottom just to discover that.
521 * Why all these "- 1"s? Because 0 represents both the bottom
522 * of the address space and the top of it (using -1 for the
523 * top wouldn't help much: the masks would do the wrong thing).
524 * The rule is that addr 0 and floor 0 refer to the bottom of
525 * the address space, but end 0 and ceiling 0 refer to the top
526 * Comparisons need to use "end - 1" and "ceiling - 1" (though
527 * that end 0 case should be mythical).
529 * Wherever addr is brought up or ceiling brought down, we must
530 * be careful to reject "the opposite 0" before it confuses the
531 * subsequent tests. But what about where end is brought down
532 * by PMD_SIZE below? no, end can't go down to 0 there.
534 * Whereas we round start (addr) and ceiling down, by different
535 * masks at different levels, in order to test whether a table
536 * now has no other vmas using it, so can be freed, we don't
537 * bother to round floor or end up - the tests don't need that.
551 if (end - 1 > ceiling - 1)
556 pgd = pgd_offset(tlb->mm, addr);
558 next = pgd_addr_end(addr, end);
559 if (pgd_none_or_clear_bad(pgd))
561 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
562 } while (pgd++, addr = next, addr != end);
565 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
566 unsigned long floor, unsigned long ceiling)
569 struct vm_area_struct *next = vma->vm_next;
570 unsigned long addr = vma->vm_start;
573 * Hide vma from rmap and truncate_pagecache before freeing
576 unlink_anon_vmas(vma);
577 unlink_file_vma(vma);
579 if (is_vm_hugetlb_page(vma)) {
580 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
581 floor, next? next->vm_start: ceiling);
584 * Optimization: gather nearby vmas into one call down
586 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
587 && !is_vm_hugetlb_page(next)) {
590 unlink_anon_vmas(vma);
591 unlink_file_vma(vma);
593 free_pgd_range(tlb, addr, vma->vm_end,
594 floor, next? next->vm_start: ceiling);
600 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
601 pmd_t *pmd, unsigned long address)
603 pgtable_t new = pte_alloc_one(mm, address);
604 int wait_split_huge_page;
609 * Ensure all pte setup (eg. pte page lock and page clearing) are
610 * visible before the pte is made visible to other CPUs by being
611 * put into page tables.
613 * The other side of the story is the pointer chasing in the page
614 * table walking code (when walking the page table without locking;
615 * ie. most of the time). Fortunately, these data accesses consist
616 * of a chain of data-dependent loads, meaning most CPUs (alpha
617 * being the notable exception) will already guarantee loads are
618 * seen in-order. See the alpha page table accessors for the
619 * smp_read_barrier_depends() barriers in page table walking code.
621 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
623 spin_lock(&mm->page_table_lock);
624 wait_split_huge_page = 0;
625 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
627 pmd_populate(mm, pmd, new);
629 } else if (unlikely(pmd_trans_splitting(*pmd)))
630 wait_split_huge_page = 1;
631 spin_unlock(&mm->page_table_lock);
634 if (wait_split_huge_page)
635 wait_split_huge_page(vma->anon_vma, pmd);
639 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
641 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
645 smp_wmb(); /* See comment in __pte_alloc */
647 spin_lock(&init_mm.page_table_lock);
648 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
649 pmd_populate_kernel(&init_mm, pmd, new);
652 VM_BUG_ON(pmd_trans_splitting(*pmd));
653 spin_unlock(&init_mm.page_table_lock);
655 pte_free_kernel(&init_mm, new);
659 static inline void init_rss_vec(int *rss)
661 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
664 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
668 if (current->mm == mm)
669 sync_mm_rss(current, mm);
670 for (i = 0; i < NR_MM_COUNTERS; i++)
672 add_mm_counter(mm, i, rss[i]);
676 * This function is called to print an error when a bad pte
677 * is found. For example, we might have a PFN-mapped pte in
678 * a region that doesn't allow it.
680 * The calling function must still handle the error.
682 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
683 pte_t pte, struct page *page)
685 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
686 pud_t *pud = pud_offset(pgd, addr);
687 pmd_t *pmd = pmd_offset(pud, addr);
688 struct address_space *mapping;
690 static unsigned long resume;
691 static unsigned long nr_shown;
692 static unsigned long nr_unshown;
695 * Allow a burst of 60 reports, then keep quiet for that minute;
696 * or allow a steady drip of one report per second.
698 if (nr_shown == 60) {
699 if (time_before(jiffies, resume)) {
705 "BUG: Bad page map: %lu messages suppressed\n",
712 resume = jiffies + 60 * HZ;
714 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
715 index = linear_page_index(vma, addr);
718 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
720 (long long)pte_val(pte), (long long)pmd_val(*pmd));
724 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
725 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
727 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
730 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
731 (unsigned long)vma->vm_ops->fault);
732 if (vma->vm_file && vma->vm_file->f_op)
733 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
734 (unsigned long)vma->vm_file->f_op->mmap);
736 add_taint(TAINT_BAD_PAGE);
739 static inline int is_cow_mapping(vm_flags_t flags)
741 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
745 static inline int is_zero_pfn(unsigned long pfn)
747 return pfn == zero_pfn;
752 static inline unsigned long my_zero_pfn(unsigned long addr)
759 * vm_normal_page -- This function gets the "struct page" associated with a pte.
761 * "Special" mappings do not wish to be associated with a "struct page" (either
762 * it doesn't exist, or it exists but they don't want to touch it). In this
763 * case, NULL is returned here. "Normal" mappings do have a struct page.
765 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
766 * pte bit, in which case this function is trivial. Secondly, an architecture
767 * may not have a spare pte bit, which requires a more complicated scheme,
770 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
771 * special mapping (even if there are underlying and valid "struct pages").
772 * COWed pages of a VM_PFNMAP are always normal.
774 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
775 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
776 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
777 * mapping will always honor the rule
779 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
781 * And for normal mappings this is false.
783 * This restricts such mappings to be a linear translation from virtual address
784 * to pfn. To get around this restriction, we allow arbitrary mappings so long
785 * as the vma is not a COW mapping; in that case, we know that all ptes are
786 * special (because none can have been COWed).
789 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
791 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
792 * page" backing, however the difference is that _all_ pages with a struct
793 * page (that is, those where pfn_valid is true) are refcounted and considered
794 * normal pages by the VM. The disadvantage is that pages are refcounted
795 * (which can be slower and simply not an option for some PFNMAP users). The
796 * advantage is that we don't have to follow the strict linearity rule of
797 * PFNMAP mappings in order to support COWable mappings.
800 #ifdef __HAVE_ARCH_PTE_SPECIAL
801 # define HAVE_PTE_SPECIAL 1
803 # define HAVE_PTE_SPECIAL 0
805 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
808 unsigned long pfn = pte_pfn(pte);
810 if (HAVE_PTE_SPECIAL) {
811 if (likely(!pte_special(pte)))
813 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
815 if (!is_zero_pfn(pfn))
816 print_bad_pte(vma, addr, pte, NULL);
820 /* !HAVE_PTE_SPECIAL case follows: */
822 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
823 if (vma->vm_flags & VM_MIXEDMAP) {
829 off = (addr - vma->vm_start) >> PAGE_SHIFT;
830 if (pfn == vma->vm_pgoff + off)
832 if (!is_cow_mapping(vma->vm_flags))
837 if (is_zero_pfn(pfn))
840 if (unlikely(pfn > highest_memmap_pfn)) {
841 print_bad_pte(vma, addr, pte, NULL);
846 * NOTE! We still have PageReserved() pages in the page tables.
847 * eg. VDSO mappings can cause them to exist.
850 return pfn_to_page(pfn);
854 * copy one vm_area from one task to the other. Assumes the page tables
855 * already present in the new task to be cleared in the whole range
856 * covered by this vma.
859 static inline unsigned long
860 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
861 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
862 unsigned long addr, int *rss)
864 unsigned long vm_flags = vma->vm_flags;
865 pte_t pte = *src_pte;
868 /* pte contains position in swap or file, so copy. */
869 if (unlikely(!pte_present(pte))) {
870 if (!pte_file(pte)) {
871 swp_entry_t entry = pte_to_swp_entry(pte);
873 if (likely(!non_swap_entry(entry))) {
874 if (swap_duplicate(entry) < 0)
877 /* make sure dst_mm is on swapoff's mmlist. */
878 if (unlikely(list_empty(&dst_mm->mmlist))) {
879 spin_lock(&mmlist_lock);
880 if (list_empty(&dst_mm->mmlist))
881 list_add(&dst_mm->mmlist,
883 spin_unlock(&mmlist_lock);
886 } else if (is_write_migration_entry(entry) &&
887 is_cow_mapping(vm_flags)) {
889 * COW mappings require pages in both parent
890 * and child to be set to read.
892 make_migration_entry_read(&entry);
893 pte = swp_entry_to_pte(entry);
894 set_pte_at(src_mm, addr, src_pte, pte);
901 * If it's a COW mapping, write protect it both
902 * in the parent and the child
904 if (is_cow_mapping(vm_flags)) {
905 ptep_set_wrprotect(src_mm, addr, src_pte);
906 pte = pte_wrprotect(pte);
910 * If it's a shared mapping, mark it clean in
913 if (vm_flags & VM_SHARED)
914 pte = pte_mkclean(pte);
915 pte = pte_mkold(pte);
917 page = vm_normal_page(vma, addr, pte);
928 set_pte_at(dst_mm, addr, dst_pte, pte);
932 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
933 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
934 unsigned long addr, unsigned long end)
936 pte_t *orig_src_pte, *orig_dst_pte;
937 pte_t *src_pte, *dst_pte;
938 spinlock_t *src_ptl, *dst_ptl;
940 int rss[NR_MM_COUNTERS];
941 swp_entry_t entry = (swp_entry_t){0};
946 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
949 src_pte = pte_offset_map(src_pmd, addr);
950 src_ptl = pte_lockptr(src_mm, src_pmd);
951 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
952 orig_src_pte = src_pte;
953 orig_dst_pte = dst_pte;
954 arch_enter_lazy_mmu_mode();
958 * We are holding two locks at this point - either of them
959 * could generate latencies in another task on another CPU.
961 if (progress >= 32) {
963 if (need_resched() ||
964 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
967 if (pte_none(*src_pte)) {
971 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
976 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
978 arch_leave_lazy_mmu_mode();
979 spin_unlock(src_ptl);
980 pte_unmap(orig_src_pte);
981 add_mm_rss_vec(dst_mm, rss);
982 pte_unmap_unlock(orig_dst_pte, dst_ptl);
986 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
995 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
996 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
997 unsigned long addr, unsigned long end)
999 pmd_t *src_pmd, *dst_pmd;
1002 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1005 src_pmd = pmd_offset(src_pud, addr);
1007 next = pmd_addr_end(addr, end);
1008 if (pmd_trans_huge(*src_pmd)) {
1010 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1011 err = copy_huge_pmd(dst_mm, src_mm,
1012 dst_pmd, src_pmd, addr, vma);
1019 if (pmd_none_or_clear_bad(src_pmd))
1021 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1024 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1028 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1029 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1030 unsigned long addr, unsigned long end)
1032 pud_t *src_pud, *dst_pud;
1035 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1038 src_pud = pud_offset(src_pgd, addr);
1040 next = pud_addr_end(addr, end);
1041 if (pud_none_or_clear_bad(src_pud))
1043 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1046 } while (dst_pud++, src_pud++, addr = next, addr != end);
1050 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1051 struct vm_area_struct *vma)
1053 pgd_t *src_pgd, *dst_pgd;
1055 unsigned long addr = vma->vm_start;
1056 unsigned long end = vma->vm_end;
1060 * Don't copy ptes where a page fault will fill them correctly.
1061 * Fork becomes much lighter when there are big shared or private
1062 * readonly mappings. The tradeoff is that copy_page_range is more
1063 * efficient than faulting.
1065 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1070 if (is_vm_hugetlb_page(vma))
1071 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1073 if (unlikely(is_pfn_mapping(vma))) {
1075 * We do not free on error cases below as remove_vma
1076 * gets called on error from higher level routine
1078 ret = track_pfn_vma_copy(vma);
1084 * We need to invalidate the secondary MMU mappings only when
1085 * there could be a permission downgrade on the ptes of the
1086 * parent mm. And a permission downgrade will only happen if
1087 * is_cow_mapping() returns true.
1089 if (is_cow_mapping(vma->vm_flags))
1090 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1093 dst_pgd = pgd_offset(dst_mm, addr);
1094 src_pgd = pgd_offset(src_mm, addr);
1096 next = pgd_addr_end(addr, end);
1097 if (pgd_none_or_clear_bad(src_pgd))
1099 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1100 vma, addr, next))) {
1104 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1106 if (is_cow_mapping(vma->vm_flags))
1107 mmu_notifier_invalidate_range_end(src_mm,
1108 vma->vm_start, end);
1112 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1113 struct vm_area_struct *vma, pmd_t *pmd,
1114 unsigned long addr, unsigned long end,
1115 struct zap_details *details)
1117 struct mm_struct *mm = tlb->mm;
1118 int force_flush = 0;
1119 int rss[NR_MM_COUNTERS];
1126 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1128 arch_enter_lazy_mmu_mode();
1131 if (pte_none(ptent)) {
1135 if (pte_present(ptent)) {
1138 page = vm_normal_page(vma, addr, ptent);
1139 if (unlikely(details) && page) {
1141 * unmap_shared_mapping_pages() wants to
1142 * invalidate cache without truncating:
1143 * unmap shared but keep private pages.
1145 if (details->check_mapping &&
1146 details->check_mapping != page->mapping)
1149 * Each page->index must be checked when
1150 * invalidating or truncating nonlinear.
1152 if (details->nonlinear_vma &&
1153 (page->index < details->first_index ||
1154 page->index > details->last_index))
1157 ptent = ptep_get_and_clear_full(mm, addr, pte,
1159 tlb_remove_tlb_entry(tlb, pte, addr);
1160 if (unlikely(!page))
1162 if (unlikely(details) && details->nonlinear_vma
1163 && linear_page_index(details->nonlinear_vma,
1164 addr) != page->index)
1165 set_pte_at(mm, addr, pte,
1166 pgoff_to_pte(page->index));
1168 rss[MM_ANONPAGES]--;
1170 if (pte_dirty(ptent))
1171 set_page_dirty(page);
1172 if (pte_young(ptent) &&
1173 likely(!VM_SequentialReadHint(vma)))
1174 mark_page_accessed(page);
1175 rss[MM_FILEPAGES]--;
1177 page_remove_rmap(page);
1178 if (unlikely(page_mapcount(page) < 0))
1179 print_bad_pte(vma, addr, ptent, page);
1180 force_flush = !__tlb_remove_page(tlb, page);
1188 * If details->check_mapping, we leave swap entries;
1189 * if details->nonlinear_vma, we leave file entries.
1191 if (unlikely(details))
1193 if (pte_file(ptent)) {
1194 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1195 print_bad_pte(vma, addr, ptent, NULL);
1197 swp_entry_t entry = pte_to_swp_entry(ptent);
1199 if (!non_swap_entry(entry))
1201 if (unlikely(!free_swap_and_cache(entry)))
1202 print_bad_pte(vma, addr, ptent, NULL);
1204 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1205 } while (pte++, addr += PAGE_SIZE, addr != end);
1207 add_mm_rss_vec(mm, rss);
1208 arch_leave_lazy_mmu_mode();
1209 pte_unmap_unlock(start_pte, ptl);
1212 * mmu_gather ran out of room to batch pages, we break out of
1213 * the PTE lock to avoid doing the potential expensive TLB invalidate
1214 * and page-free while holding it.
1226 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1227 struct vm_area_struct *vma, pud_t *pud,
1228 unsigned long addr, unsigned long end,
1229 struct zap_details *details)
1234 pmd = pmd_offset(pud, addr);
1236 next = pmd_addr_end(addr, end);
1237 if (pmd_trans_huge(*pmd)) {
1238 if (next - addr != HPAGE_PMD_SIZE) {
1239 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1240 split_huge_page_pmd(vma->vm_mm, pmd);
1241 } else if (zap_huge_pmd(tlb, vma, pmd))
1246 * Here there can be other concurrent MADV_DONTNEED or
1247 * trans huge page faults running, and if the pmd is
1248 * none or trans huge it can change under us. This is
1249 * because MADV_DONTNEED holds the mmap_sem in read
1252 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1254 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1257 } while (pmd++, addr = next, addr != end);
1262 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1263 struct vm_area_struct *vma, pgd_t *pgd,
1264 unsigned long addr, unsigned long end,
1265 struct zap_details *details)
1270 pud = pud_offset(pgd, addr);
1272 next = pud_addr_end(addr, end);
1273 if (pud_none_or_clear_bad(pud))
1275 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1276 } while (pud++, addr = next, addr != end);
1281 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1282 struct vm_area_struct *vma,
1283 unsigned long addr, unsigned long end,
1284 struct zap_details *details)
1289 if (details && !details->check_mapping && !details->nonlinear_vma)
1292 BUG_ON(addr >= end);
1293 mem_cgroup_uncharge_start();
1294 tlb_start_vma(tlb, vma);
1295 pgd = pgd_offset(vma->vm_mm, addr);
1297 next = pgd_addr_end(addr, end);
1298 if (pgd_none_or_clear_bad(pgd))
1300 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1301 } while (pgd++, addr = next, addr != end);
1302 tlb_end_vma(tlb, vma);
1303 mem_cgroup_uncharge_end();
1309 * unmap_vmas - unmap a range of memory covered by a list of vma's
1310 * @tlb: address of the caller's struct mmu_gather
1311 * @vma: the starting vma
1312 * @start_addr: virtual address at which to start unmapping
1313 * @end_addr: virtual address at which to end unmapping
1314 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1315 * @details: details of nonlinear truncation or shared cache invalidation
1317 * Returns the end address of the unmapping (restart addr if interrupted).
1319 * Unmap all pages in the vma list.
1321 * Only addresses between `start' and `end' will be unmapped.
1323 * The VMA list must be sorted in ascending virtual address order.
1325 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1326 * range after unmap_vmas() returns. So the only responsibility here is to
1327 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1328 * drops the lock and schedules.
1330 unsigned long unmap_vmas(struct mmu_gather *tlb,
1331 struct vm_area_struct *vma, unsigned long start_addr,
1332 unsigned long end_addr, unsigned long *nr_accounted,
1333 struct zap_details *details)
1335 unsigned long start = start_addr;
1336 struct mm_struct *mm = vma->vm_mm;
1338 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1339 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1342 start = max(vma->vm_start, start_addr);
1343 if (start >= vma->vm_end)
1345 end = min(vma->vm_end, end_addr);
1346 if (end <= vma->vm_start)
1349 if (vma->vm_flags & VM_ACCOUNT)
1350 *nr_accounted += (end - start) >> PAGE_SHIFT;
1352 if (unlikely(is_pfn_mapping(vma)))
1353 untrack_pfn_vma(vma, 0, 0);
1355 while (start != end) {
1356 if (unlikely(is_vm_hugetlb_page(vma))) {
1358 * It is undesirable to test vma->vm_file as it
1359 * should be non-null for valid hugetlb area.
1360 * However, vm_file will be NULL in the error
1361 * cleanup path of do_mmap_pgoff. When
1362 * hugetlbfs ->mmap method fails,
1363 * do_mmap_pgoff() nullifies vma->vm_file
1364 * before calling this function to clean up.
1365 * Since no pte has actually been setup, it is
1366 * safe to do nothing in this case.
1369 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1370 __unmap_hugepage_range_final(vma, start, end, NULL);
1371 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1376 start = unmap_page_range(tlb, vma, start, end, details);
1380 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1381 return start; /* which is now the end (or restart) address */
1385 * zap_page_range - remove user pages in a given range
1386 * @vma: vm_area_struct holding the applicable pages
1387 * @address: starting address of pages to zap
1388 * @size: number of bytes to zap
1389 * @details: details of nonlinear truncation or shared cache invalidation
1391 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1392 unsigned long size, struct zap_details *details)
1394 struct mm_struct *mm = vma->vm_mm;
1395 struct mmu_gather tlb;
1396 unsigned long end = address + size;
1397 unsigned long nr_accounted = 0;
1400 tlb_gather_mmu(&tlb, mm, 0);
1401 update_hiwater_rss(mm);
1402 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1403 tlb_finish_mmu(&tlb, address, end);
1408 * zap_vma_ptes - remove ptes mapping the vma
1409 * @vma: vm_area_struct holding ptes to be zapped
1410 * @address: starting address of pages to zap
1411 * @size: number of bytes to zap
1413 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1415 * The entire address range must be fully contained within the vma.
1417 * Returns 0 if successful.
1419 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1422 if (address < vma->vm_start || address + size > vma->vm_end ||
1423 !(vma->vm_flags & VM_PFNMAP))
1425 zap_page_range(vma, address, size, NULL);
1428 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1431 * follow_page - look up a page descriptor from a user-virtual address
1432 * @vma: vm_area_struct mapping @address
1433 * @address: virtual address to look up
1434 * @flags: flags modifying lookup behaviour
1436 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1438 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1439 * an error pointer if there is a mapping to something not represented
1440 * by a page descriptor (see also vm_normal_page()).
1442 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1451 struct mm_struct *mm = vma->vm_mm;
1453 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1454 if (!IS_ERR(page)) {
1455 BUG_ON(flags & FOLL_GET);
1460 pgd = pgd_offset(mm, address);
1461 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1464 pud = pud_offset(pgd, address);
1467 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1468 BUG_ON(flags & FOLL_GET);
1469 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1472 if (unlikely(pud_bad(*pud)))
1475 pmd = pmd_offset(pud, address);
1478 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1479 BUG_ON(flags & FOLL_GET);
1480 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1483 if (pmd_trans_huge(*pmd)) {
1484 if (flags & FOLL_SPLIT) {
1485 split_huge_page_pmd(mm, pmd);
1486 goto split_fallthrough;
1488 spin_lock(&mm->page_table_lock);
1489 if (likely(pmd_trans_huge(*pmd))) {
1490 if (unlikely(pmd_trans_splitting(*pmd))) {
1491 spin_unlock(&mm->page_table_lock);
1492 wait_split_huge_page(vma->anon_vma, pmd);
1494 page = follow_trans_huge_pmd(mm, address,
1496 spin_unlock(&mm->page_table_lock);
1500 spin_unlock(&mm->page_table_lock);
1504 if (unlikely(pmd_bad(*pmd)))
1507 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1510 if (!pte_present(pte))
1512 if ((flags & FOLL_WRITE) && !pte_write(pte))
1515 page = vm_normal_page(vma, address, pte);
1516 if (unlikely(!page)) {
1517 if ((flags & FOLL_DUMP) ||
1518 !is_zero_pfn(pte_pfn(pte)))
1520 page = pte_page(pte);
1523 if (flags & FOLL_GET)
1524 get_page_foll(page);
1525 if (flags & FOLL_TOUCH) {
1526 if ((flags & FOLL_WRITE) &&
1527 !pte_dirty(pte) && !PageDirty(page))
1528 set_page_dirty(page);
1530 * pte_mkyoung() would be more correct here, but atomic care
1531 * is needed to avoid losing the dirty bit: it is easier to use
1532 * mark_page_accessed().
1534 mark_page_accessed(page);
1536 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1538 * The preliminary mapping check is mainly to avoid the
1539 * pointless overhead of lock_page on the ZERO_PAGE
1540 * which might bounce very badly if there is contention.
1542 * If the page is already locked, we don't need to
1543 * handle it now - vmscan will handle it later if and
1544 * when it attempts to reclaim the page.
1546 if (page->mapping && trylock_page(page)) {
1547 lru_add_drain(); /* push cached pages to LRU */
1549 * Because we lock page here and migration is
1550 * blocked by the pte's page reference, we need
1551 * only check for file-cache page truncation.
1554 mlock_vma_page(page);
1559 pte_unmap_unlock(ptep, ptl);
1564 pte_unmap_unlock(ptep, ptl);
1565 return ERR_PTR(-EFAULT);
1568 pte_unmap_unlock(ptep, ptl);
1574 * When core dumping an enormous anonymous area that nobody
1575 * has touched so far, we don't want to allocate unnecessary pages or
1576 * page tables. Return error instead of NULL to skip handle_mm_fault,
1577 * then get_dump_page() will return NULL to leave a hole in the dump.
1578 * But we can only make this optimization where a hole would surely
1579 * be zero-filled if handle_mm_fault() actually did handle it.
1581 if ((flags & FOLL_DUMP) &&
1582 (!vma->vm_ops || !vma->vm_ops->fault))
1583 return ERR_PTR(-EFAULT);
1587 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1589 return stack_guard_page_start(vma, addr) ||
1590 stack_guard_page_end(vma, addr+PAGE_SIZE);
1594 * __get_user_pages() - pin user pages in memory
1595 * @tsk: task_struct of target task
1596 * @mm: mm_struct of target mm
1597 * @start: starting user address
1598 * @nr_pages: number of pages from start to pin
1599 * @gup_flags: flags modifying pin behaviour
1600 * @pages: array that receives pointers to the pages pinned.
1601 * Should be at least nr_pages long. Or NULL, if caller
1602 * only intends to ensure the pages are faulted in.
1603 * @vmas: array of pointers to vmas corresponding to each page.
1604 * Or NULL if the caller does not require them.
1605 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1607 * Returns number of pages pinned. This may be fewer than the number
1608 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1609 * were pinned, returns -errno. Each page returned must be released
1610 * with a put_page() call when it is finished with. vmas will only
1611 * remain valid while mmap_sem is held.
1613 * Must be called with mmap_sem held for read or write.
1615 * __get_user_pages walks a process's page tables and takes a reference to
1616 * each struct page that each user address corresponds to at a given
1617 * instant. That is, it takes the page that would be accessed if a user
1618 * thread accesses the given user virtual address at that instant.
1620 * This does not guarantee that the page exists in the user mappings when
1621 * __get_user_pages returns, and there may even be a completely different
1622 * page there in some cases (eg. if mmapped pagecache has been invalidated
1623 * and subsequently re faulted). However it does guarantee that the page
1624 * won't be freed completely. And mostly callers simply care that the page
1625 * contains data that was valid *at some point in time*. Typically, an IO
1626 * or similar operation cannot guarantee anything stronger anyway because
1627 * locks can't be held over the syscall boundary.
1629 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1630 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1631 * appropriate) must be called after the page is finished with, and
1632 * before put_page is called.
1634 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1635 * or mmap_sem contention, and if waiting is needed to pin all pages,
1636 * *@nonblocking will be set to 0.
1638 * In most cases, get_user_pages or get_user_pages_fast should be used
1639 * instead of __get_user_pages. __get_user_pages should be used only if
1640 * you need some special @gup_flags.
1642 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1643 unsigned long start, int nr_pages, unsigned int gup_flags,
1644 struct page **pages, struct vm_area_struct **vmas,
1648 unsigned long vm_flags;
1653 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1656 * Require read or write permissions.
1657 * If FOLL_FORCE is set, we only require the "MAY" flags.
1659 vm_flags = (gup_flags & FOLL_WRITE) ?
1660 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1661 vm_flags &= (gup_flags & FOLL_FORCE) ?
1662 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1666 struct vm_area_struct *vma;
1668 vma = find_extend_vma(mm, start);
1669 if (!vma && in_gate_area(mm, start)) {
1670 unsigned long pg = start & PAGE_MASK;
1676 /* user gate pages are read-only */
1677 if (gup_flags & FOLL_WRITE)
1678 return i ? : -EFAULT;
1680 pgd = pgd_offset_k(pg);
1682 pgd = pgd_offset_gate(mm, pg);
1683 BUG_ON(pgd_none(*pgd));
1684 pud = pud_offset(pgd, pg);
1685 BUG_ON(pud_none(*pud));
1686 pmd = pmd_offset(pud, pg);
1688 return i ? : -EFAULT;
1689 VM_BUG_ON(pmd_trans_huge(*pmd));
1690 pte = pte_offset_map(pmd, pg);
1691 if (pte_none(*pte)) {
1693 return i ? : -EFAULT;
1695 vma = get_gate_vma(mm);
1699 page = vm_normal_page(vma, start, *pte);
1701 if (!(gup_flags & FOLL_DUMP) &&
1702 is_zero_pfn(pte_pfn(*pte)))
1703 page = pte_page(*pte);
1706 return i ? : -EFAULT;
1717 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1718 !(vm_flags & vma->vm_flags))
1719 return i ? : -EFAULT;
1721 if (is_vm_hugetlb_page(vma)) {
1722 i = follow_hugetlb_page(mm, vma, pages, vmas,
1723 &start, &nr_pages, i, gup_flags);
1729 unsigned int foll_flags = gup_flags;
1732 * If we have a pending SIGKILL, don't keep faulting
1733 * pages and potentially allocating memory.
1735 if (unlikely(fatal_signal_pending(current)))
1736 return i ? i : -ERESTARTSYS;
1739 while (!(page = follow_page(vma, start, foll_flags))) {
1741 unsigned int fault_flags = 0;
1743 /* For mlock, just skip the stack guard page. */
1744 if (foll_flags & FOLL_MLOCK) {
1745 if (stack_guard_page(vma, start))
1748 if (foll_flags & FOLL_WRITE)
1749 fault_flags |= FAULT_FLAG_WRITE;
1751 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1752 if (foll_flags & FOLL_NOWAIT)
1753 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1755 ret = handle_mm_fault(mm, vma, start,
1758 if (ret & VM_FAULT_ERROR) {
1759 if (ret & VM_FAULT_OOM)
1760 return i ? i : -ENOMEM;
1761 if (ret & (VM_FAULT_HWPOISON |
1762 VM_FAULT_HWPOISON_LARGE)) {
1765 else if (gup_flags & FOLL_HWPOISON)
1770 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
1771 return i ? i : -EFAULT;
1776 if (ret & VM_FAULT_MAJOR)
1782 if (ret & VM_FAULT_RETRY) {
1789 * The VM_FAULT_WRITE bit tells us that
1790 * do_wp_page has broken COW when necessary,
1791 * even if maybe_mkwrite decided not to set
1792 * pte_write. We can thus safely do subsequent
1793 * page lookups as if they were reads. But only
1794 * do so when looping for pte_write is futile:
1795 * in some cases userspace may also be wanting
1796 * to write to the gotten user page, which a
1797 * read fault here might prevent (a readonly
1798 * page might get reCOWed by userspace write).
1800 if ((ret & VM_FAULT_WRITE) &&
1801 !(vma->vm_flags & VM_WRITE))
1802 foll_flags &= ~FOLL_WRITE;
1807 return i ? i : PTR_ERR(page);
1811 flush_anon_page(vma, page, start);
1812 flush_dcache_page(page);
1820 } while (nr_pages && start < vma->vm_end);
1824 EXPORT_SYMBOL(__get_user_pages);
1827 * fixup_user_fault() - manually resolve a user page fault
1828 * @tsk: the task_struct to use for page fault accounting, or
1829 * NULL if faults are not to be recorded.
1830 * @mm: mm_struct of target mm
1831 * @address: user address
1832 * @fault_flags:flags to pass down to handle_mm_fault()
1834 * This is meant to be called in the specific scenario where for locking reasons
1835 * we try to access user memory in atomic context (within a pagefault_disable()
1836 * section), this returns -EFAULT, and we want to resolve the user fault before
1839 * Typically this is meant to be used by the futex code.
1841 * The main difference with get_user_pages() is that this function will
1842 * unconditionally call handle_mm_fault() which will in turn perform all the
1843 * necessary SW fixup of the dirty and young bits in the PTE, while
1844 * handle_mm_fault() only guarantees to update these in the struct page.
1846 * This is important for some architectures where those bits also gate the
1847 * access permission to the page because they are maintained in software. On
1848 * such architectures, gup() will not be enough to make a subsequent access
1851 * This should be called with the mm_sem held for read.
1853 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1854 unsigned long address, unsigned int fault_flags)
1856 struct vm_area_struct *vma;
1857 vm_flags_t vm_flags;
1860 vma = find_extend_vma(mm, address);
1861 if (!vma || address < vma->vm_start)
1864 vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1865 if (!(vm_flags & vma->vm_flags))
1868 ret = handle_mm_fault(mm, vma, address, fault_flags);
1869 if (ret & VM_FAULT_ERROR) {
1870 if (ret & VM_FAULT_OOM)
1872 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1874 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
1879 if (ret & VM_FAULT_MAJOR)
1888 * get_user_pages() - pin user pages in memory
1889 * @tsk: the task_struct to use for page fault accounting, or
1890 * NULL if faults are not to be recorded.
1891 * @mm: mm_struct of target mm
1892 * @start: starting user address
1893 * @nr_pages: number of pages from start to pin
1894 * @write: whether pages will be written to by the caller
1895 * @force: whether to force write access even if user mapping is
1896 * readonly. This will result in the page being COWed even
1897 * in MAP_SHARED mappings. You do not want this.
1898 * @pages: array that receives pointers to the pages pinned.
1899 * Should be at least nr_pages long. Or NULL, if caller
1900 * only intends to ensure the pages are faulted in.
1901 * @vmas: array of pointers to vmas corresponding to each page.
1902 * Or NULL if the caller does not require them.
1904 * Returns number of pages pinned. This may be fewer than the number
1905 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1906 * were pinned, returns -errno. Each page returned must be released
1907 * with a put_page() call when it is finished with. vmas will only
1908 * remain valid while mmap_sem is held.
1910 * Must be called with mmap_sem held for read or write.
1912 * get_user_pages walks a process's page tables and takes a reference to
1913 * each struct page that each user address corresponds to at a given
1914 * instant. That is, it takes the page that would be accessed if a user
1915 * thread accesses the given user virtual address at that instant.
1917 * This does not guarantee that the page exists in the user mappings when
1918 * get_user_pages returns, and there may even be a completely different
1919 * page there in some cases (eg. if mmapped pagecache has been invalidated
1920 * and subsequently re faulted). However it does guarantee that the page
1921 * won't be freed completely. And mostly callers simply care that the page
1922 * contains data that was valid *at some point in time*. Typically, an IO
1923 * or similar operation cannot guarantee anything stronger anyway because
1924 * locks can't be held over the syscall boundary.
1926 * If write=0, the page must not be written to. If the page is written to,
1927 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1928 * after the page is finished with, and before put_page is called.
1930 * get_user_pages is typically used for fewer-copy IO operations, to get a
1931 * handle on the memory by some means other than accesses via the user virtual
1932 * addresses. The pages may be submitted for DMA to devices or accessed via
1933 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1934 * use the correct cache flushing APIs.
1936 * See also get_user_pages_fast, for performance critical applications.
1938 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1939 unsigned long start, int nr_pages, int write, int force,
1940 struct page **pages, struct vm_area_struct **vmas)
1942 int flags = FOLL_TOUCH;
1947 flags |= FOLL_WRITE;
1949 flags |= FOLL_FORCE;
1951 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1954 EXPORT_SYMBOL(get_user_pages);
1957 * get_dump_page() - pin user page in memory while writing it to core dump
1958 * @addr: user address
1960 * Returns struct page pointer of user page pinned for dump,
1961 * to be freed afterwards by page_cache_release() or put_page().
1963 * Returns NULL on any kind of failure - a hole must then be inserted into
1964 * the corefile, to preserve alignment with its headers; and also returns
1965 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1966 * allowing a hole to be left in the corefile to save diskspace.
1968 * Called without mmap_sem, but after all other threads have been killed.
1970 #ifdef CONFIG_ELF_CORE
1971 struct page *get_dump_page(unsigned long addr)
1973 struct vm_area_struct *vma;
1976 if (__get_user_pages(current, current->mm, addr, 1,
1977 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1980 flush_cache_page(vma, addr, page_to_pfn(page));
1983 #endif /* CONFIG_ELF_CORE */
1985 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1988 pgd_t * pgd = pgd_offset(mm, addr);
1989 pud_t * pud = pud_alloc(mm, pgd, addr);
1991 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1993 VM_BUG_ON(pmd_trans_huge(*pmd));
1994 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2001 * This is the old fallback for page remapping.
2003 * For historical reasons, it only allows reserved pages. Only
2004 * old drivers should use this, and they needed to mark their
2005 * pages reserved for the old functions anyway.
2007 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2008 struct page *page, pgprot_t prot)
2010 struct mm_struct *mm = vma->vm_mm;
2019 flush_dcache_page(page);
2020 pte = get_locked_pte(mm, addr, &ptl);
2024 if (!pte_none(*pte))
2027 /* Ok, finally just insert the thing.. */
2029 inc_mm_counter_fast(mm, MM_FILEPAGES);
2030 page_add_file_rmap(page);
2031 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2034 pte_unmap_unlock(pte, ptl);
2037 pte_unmap_unlock(pte, ptl);
2043 * vm_insert_page - insert single page into user vma
2044 * @vma: user vma to map to
2045 * @addr: target user address of this page
2046 * @page: source kernel page
2048 * This allows drivers to insert individual pages they've allocated
2051 * The page has to be a nice clean _individual_ kernel allocation.
2052 * If you allocate a compound page, you need to have marked it as
2053 * such (__GFP_COMP), or manually just split the page up yourself
2054 * (see split_page()).
2056 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2057 * took an arbitrary page protection parameter. This doesn't allow
2058 * that. Your vma protection will have to be set up correctly, which
2059 * means that if you want a shared writable mapping, you'd better
2060 * ask for a shared writable mapping!
2062 * The page does not need to be reserved.
2064 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2067 if (addr < vma->vm_start || addr >= vma->vm_end)
2069 if (!page_count(page))
2071 vma->vm_flags |= VM_INSERTPAGE;
2072 return insert_page(vma, addr, page, vma->vm_page_prot);
2074 EXPORT_SYMBOL(vm_insert_page);
2076 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2077 unsigned long pfn, pgprot_t prot)
2079 struct mm_struct *mm = vma->vm_mm;
2085 pte = get_locked_pte(mm, addr, &ptl);
2089 if (!pte_none(*pte))
2092 /* Ok, finally just insert the thing.. */
2093 entry = pte_mkspecial(pfn_pte(pfn, prot));
2094 set_pte_at(mm, addr, pte, entry);
2095 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2099 pte_unmap_unlock(pte, ptl);
2105 * vm_insert_pfn - insert single pfn into user vma
2106 * @vma: user vma to map to
2107 * @addr: target user address of this page
2108 * @pfn: source kernel pfn
2110 * Similar to vm_inert_page, this allows drivers to insert individual pages
2111 * they've allocated into a user vma. Same comments apply.
2113 * This function should only be called from a vm_ops->fault handler, and
2114 * in that case the handler should return NULL.
2116 * vma cannot be a COW mapping.
2118 * As this is called only for pages that do not currently exist, we
2119 * do not need to flush old virtual caches or the TLB.
2121 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2125 pgprot_t pgprot = vma->vm_page_prot;
2127 * Technically, architectures with pte_special can avoid all these
2128 * restrictions (same for remap_pfn_range). However we would like
2129 * consistency in testing and feature parity among all, so we should
2130 * try to keep these invariants in place for everybody.
2132 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2133 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2134 (VM_PFNMAP|VM_MIXEDMAP));
2135 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2136 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2138 if (addr < vma->vm_start || addr >= vma->vm_end)
2140 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2143 ret = insert_pfn(vma, addr, pfn, pgprot);
2146 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2150 EXPORT_SYMBOL(vm_insert_pfn);
2152 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2155 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2157 if (addr < vma->vm_start || addr >= vma->vm_end)
2161 * If we don't have pte special, then we have to use the pfn_valid()
2162 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2163 * refcount the page if pfn_valid is true (hence insert_page rather
2164 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2165 * without pte special, it would there be refcounted as a normal page.
2167 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2170 page = pfn_to_page(pfn);
2171 return insert_page(vma, addr, page, vma->vm_page_prot);
2173 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2175 EXPORT_SYMBOL(vm_insert_mixed);
2178 * maps a range of physical memory into the requested pages. the old
2179 * mappings are removed. any references to nonexistent pages results
2180 * in null mappings (currently treated as "copy-on-access")
2182 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2183 unsigned long addr, unsigned long end,
2184 unsigned long pfn, pgprot_t prot)
2189 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2192 arch_enter_lazy_mmu_mode();
2194 BUG_ON(!pte_none(*pte));
2195 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2197 } while (pte++, addr += PAGE_SIZE, addr != end);
2198 arch_leave_lazy_mmu_mode();
2199 pte_unmap_unlock(pte - 1, ptl);
2203 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2204 unsigned long addr, unsigned long end,
2205 unsigned long pfn, pgprot_t prot)
2210 pfn -= addr >> PAGE_SHIFT;
2211 pmd = pmd_alloc(mm, pud, addr);
2214 VM_BUG_ON(pmd_trans_huge(*pmd));
2216 next = pmd_addr_end(addr, end);
2217 if (remap_pte_range(mm, pmd, addr, next,
2218 pfn + (addr >> PAGE_SHIFT), prot))
2220 } while (pmd++, addr = next, addr != end);
2224 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2225 unsigned long addr, unsigned long end,
2226 unsigned long pfn, pgprot_t prot)
2231 pfn -= addr >> PAGE_SHIFT;
2232 pud = pud_alloc(mm, pgd, addr);
2236 next = pud_addr_end(addr, end);
2237 if (remap_pmd_range(mm, pud, addr, next,
2238 pfn + (addr >> PAGE_SHIFT), prot))
2240 } while (pud++, addr = next, addr != end);
2245 * remap_pfn_range - remap kernel memory to userspace
2246 * @vma: user vma to map to
2247 * @addr: target user address to start at
2248 * @pfn: physical address of kernel memory
2249 * @size: size of map area
2250 * @prot: page protection flags for this mapping
2252 * Note: this is only safe if the mm semaphore is held when called.
2254 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2255 unsigned long pfn, unsigned long size, pgprot_t prot)
2259 unsigned long end = addr + PAGE_ALIGN(size);
2260 struct mm_struct *mm = vma->vm_mm;
2264 * Physically remapped pages are special. Tell the
2265 * rest of the world about it:
2266 * VM_IO tells people not to look at these pages
2267 * (accesses can have side effects).
2268 * VM_RESERVED is specified all over the place, because
2269 * in 2.4 it kept swapout's vma scan off this vma; but
2270 * in 2.6 the LRU scan won't even find its pages, so this
2271 * flag means no more than count its pages in reserved_vm,
2272 * and omit it from core dump, even when VM_IO turned off.
2273 * VM_PFNMAP tells the core MM that the base pages are just
2274 * raw PFN mappings, and do not have a "struct page" associated
2277 * There's a horrible special case to handle copy-on-write
2278 * behaviour that some programs depend on. We mark the "original"
2279 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2281 if (addr == vma->vm_start && end == vma->vm_end) {
2282 vma->vm_pgoff = pfn;
2283 vma->vm_flags |= VM_PFN_AT_MMAP;
2284 } else if (is_cow_mapping(vma->vm_flags))
2287 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2289 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2292 * To indicate that track_pfn related cleanup is not
2293 * needed from higher level routine calling unmap_vmas
2295 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2296 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2300 BUG_ON(addr >= end);
2301 pfn -= addr >> PAGE_SHIFT;
2302 pgd = pgd_offset(mm, addr);
2303 flush_cache_range(vma, addr, end);
2305 next = pgd_addr_end(addr, end);
2306 err = remap_pud_range(mm, pgd, addr, next,
2307 pfn + (addr >> PAGE_SHIFT), prot);
2310 } while (pgd++, addr = next, addr != end);
2313 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2317 EXPORT_SYMBOL(remap_pfn_range);
2320 * vm_iomap_memory - remap memory to userspace
2321 * @vma: user vma to map to
2322 * @start: start of area
2323 * @len: size of area
2325 * This is a simplified io_remap_pfn_range() for common driver use. The
2326 * driver just needs to give us the physical memory range to be mapped,
2327 * we'll figure out the rest from the vma information.
2329 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2330 * whatever write-combining details or similar.
2332 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2334 unsigned long vm_len, pfn, pages;
2336 /* Check that the physical memory area passed in looks valid */
2337 if (start + len < start)
2340 * You *really* shouldn't map things that aren't page-aligned,
2341 * but we've historically allowed it because IO memory might
2342 * just have smaller alignment.
2344 len += start & ~PAGE_MASK;
2345 pfn = start >> PAGE_SHIFT;
2346 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2347 if (pfn + pages < pfn)
2350 /* We start the mapping 'vm_pgoff' pages into the area */
2351 if (vma->vm_pgoff > pages)
2353 pfn += vma->vm_pgoff;
2354 pages -= vma->vm_pgoff;
2356 /* Can we fit all of the mapping? */
2357 vm_len = vma->vm_end - vma->vm_start;
2358 if (vm_len >> PAGE_SHIFT > pages)
2361 /* Ok, let it rip */
2362 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2364 EXPORT_SYMBOL(vm_iomap_memory);
2366 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2367 unsigned long addr, unsigned long end,
2368 pte_fn_t fn, void *data)
2373 spinlock_t *uninitialized_var(ptl);
2375 pte = (mm == &init_mm) ?
2376 pte_alloc_kernel(pmd, addr) :
2377 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2381 BUG_ON(pmd_huge(*pmd));
2383 arch_enter_lazy_mmu_mode();
2385 token = pmd_pgtable(*pmd);
2388 err = fn(pte++, token, addr, data);
2391 } while (addr += PAGE_SIZE, addr != end);
2393 arch_leave_lazy_mmu_mode();
2396 pte_unmap_unlock(pte-1, ptl);
2400 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2401 unsigned long addr, unsigned long end,
2402 pte_fn_t fn, void *data)
2408 BUG_ON(pud_huge(*pud));
2410 pmd = pmd_alloc(mm, pud, addr);
2414 next = pmd_addr_end(addr, end);
2415 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2418 } while (pmd++, addr = next, addr != end);
2422 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2423 unsigned long addr, unsigned long end,
2424 pte_fn_t fn, void *data)
2430 pud = pud_alloc(mm, pgd, addr);
2434 next = pud_addr_end(addr, end);
2435 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2438 } while (pud++, addr = next, addr != end);
2443 * Scan a region of virtual memory, filling in page tables as necessary
2444 * and calling a provided function on each leaf page table.
2446 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2447 unsigned long size, pte_fn_t fn, void *data)
2451 unsigned long end = addr + size;
2454 BUG_ON(addr >= end);
2455 pgd = pgd_offset(mm, addr);
2457 next = pgd_addr_end(addr, end);
2458 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2461 } while (pgd++, addr = next, addr != end);
2465 EXPORT_SYMBOL_GPL(apply_to_page_range);
2468 * handle_pte_fault chooses page fault handler according to an entry
2469 * which was read non-atomically. Before making any commitment, on
2470 * those architectures or configurations (e.g. i386 with PAE) which
2471 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2472 * must check under lock before unmapping the pte and proceeding
2473 * (but do_wp_page is only called after already making such a check;
2474 * and do_anonymous_page can safely check later on).
2476 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2477 pte_t *page_table, pte_t orig_pte)
2480 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2481 if (sizeof(pte_t) > sizeof(unsigned long)) {
2482 spinlock_t *ptl = pte_lockptr(mm, pmd);
2484 same = pte_same(*page_table, orig_pte);
2488 pte_unmap(page_table);
2492 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2495 * If the source page was a PFN mapping, we don't have
2496 * a "struct page" for it. We do a best-effort copy by
2497 * just copying from the original user address. If that
2498 * fails, we just zero-fill it. Live with it.
2500 if (unlikely(!src)) {
2501 void *kaddr = kmap_atomic(dst, KM_USER0);
2502 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2505 * This really shouldn't fail, because the page is there
2506 * in the page tables. But it might just be unreadable,
2507 * in which case we just give up and fill the result with
2510 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2512 kunmap_atomic(kaddr, KM_USER0);
2513 flush_dcache_page(dst);
2515 copy_user_highpage(dst, src, va, vma);
2519 * This routine handles present pages, when users try to write
2520 * to a shared page. It is done by copying the page to a new address
2521 * and decrementing the shared-page counter for the old page.
2523 * Note that this routine assumes that the protection checks have been
2524 * done by the caller (the low-level page fault routine in most cases).
2525 * Thus we can safely just mark it writable once we've done any necessary
2528 * We also mark the page dirty at this point even though the page will
2529 * change only once the write actually happens. This avoids a few races,
2530 * and potentially makes it more efficient.
2532 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2533 * but allow concurrent faults), with pte both mapped and locked.
2534 * We return with mmap_sem still held, but pte unmapped and unlocked.
2536 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2537 unsigned long address, pte_t *page_table, pmd_t *pmd,
2538 spinlock_t *ptl, pte_t orig_pte)
2541 struct page *old_page, *new_page;
2544 int page_mkwrite = 0;
2545 struct page *dirty_page = NULL;
2547 old_page = vm_normal_page(vma, address, orig_pte);
2550 * VM_MIXEDMAP !pfn_valid() case
2552 * We should not cow pages in a shared writeable mapping.
2553 * Just mark the pages writable as we can't do any dirty
2554 * accounting on raw pfn maps.
2556 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2557 (VM_WRITE|VM_SHARED))
2563 * Take out anonymous pages first, anonymous shared vmas are
2564 * not dirty accountable.
2566 if (PageAnon(old_page) && !PageKsm(old_page)) {
2567 if (!trylock_page(old_page)) {
2568 page_cache_get(old_page);
2569 pte_unmap_unlock(page_table, ptl);
2570 lock_page(old_page);
2571 page_table = pte_offset_map_lock(mm, pmd, address,
2573 if (!pte_same(*page_table, orig_pte)) {
2574 unlock_page(old_page);
2577 page_cache_release(old_page);
2579 if (reuse_swap_page(old_page)) {
2581 * The page is all ours. Move it to our anon_vma so
2582 * the rmap code will not search our parent or siblings.
2583 * Protected against the rmap code by the page lock.
2585 page_move_anon_rmap(old_page, vma, address);
2586 unlock_page(old_page);
2589 unlock_page(old_page);
2590 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2591 (VM_WRITE|VM_SHARED))) {
2593 * Only catch write-faults on shared writable pages,
2594 * read-only shared pages can get COWed by
2595 * get_user_pages(.write=1, .force=1).
2597 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2598 struct vm_fault vmf;
2601 vmf.virtual_address = (void __user *)(address &
2603 vmf.pgoff = old_page->index;
2604 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2605 vmf.page = old_page;
2608 * Notify the address space that the page is about to
2609 * become writable so that it can prohibit this or wait
2610 * for the page to get into an appropriate state.
2612 * We do this without the lock held, so that it can
2613 * sleep if it needs to.
2615 page_cache_get(old_page);
2616 pte_unmap_unlock(page_table, ptl);
2618 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2620 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2622 goto unwritable_page;
2624 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2625 lock_page(old_page);
2626 if (!old_page->mapping) {
2627 ret = 0; /* retry the fault */
2628 unlock_page(old_page);
2629 goto unwritable_page;
2632 VM_BUG_ON(!PageLocked(old_page));
2635 * Since we dropped the lock we need to revalidate
2636 * the PTE as someone else may have changed it. If
2637 * they did, we just return, as we can count on the
2638 * MMU to tell us if they didn't also make it writable.
2640 page_table = pte_offset_map_lock(mm, pmd, address,
2642 if (!pte_same(*page_table, orig_pte)) {
2643 unlock_page(old_page);
2649 dirty_page = old_page;
2650 get_page(dirty_page);
2653 flush_cache_page(vma, address, pte_pfn(orig_pte));
2654 entry = pte_mkyoung(orig_pte);
2655 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2656 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2657 update_mmu_cache(vma, address, page_table);
2658 pte_unmap_unlock(page_table, ptl);
2659 ret |= VM_FAULT_WRITE;
2664 if (!page_mkwrite) {
2665 struct address_space *mapping;
2668 lock_page(dirty_page);
2669 dirtied = set_page_dirty(dirty_page);
2670 VM_BUG_ON(PageAnon(dirty_page));
2671 mapping = dirty_page->mapping;
2672 unlock_page(dirty_page);
2674 if (dirtied && mapping) {
2676 * Some device drivers do not set page.mapping
2677 * but still dirty their pages
2679 balance_dirty_pages_ratelimited(mapping);
2683 put_page(dirty_page);
2685 struct address_space *mapping = dirty_page->mapping;
2687 set_page_dirty(dirty_page);
2688 unlock_page(dirty_page);
2689 page_cache_release(dirty_page);
2692 * Some device drivers do not set page.mapping
2693 * but still dirty their pages
2695 balance_dirty_pages_ratelimited(mapping);
2699 /* file_update_time outside page_lock */
2701 file_update_time(vma->vm_file);
2707 * Ok, we need to copy. Oh, well..
2709 page_cache_get(old_page);
2711 pte_unmap_unlock(page_table, ptl);
2713 if (unlikely(anon_vma_prepare(vma)))
2716 if (is_zero_pfn(pte_pfn(orig_pte))) {
2717 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2721 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2724 cow_user_page(new_page, old_page, address, vma);
2726 __SetPageUptodate(new_page);
2728 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2732 * Re-check the pte - we dropped the lock
2734 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2735 if (likely(pte_same(*page_table, orig_pte))) {
2737 if (!PageAnon(old_page)) {
2738 dec_mm_counter_fast(mm, MM_FILEPAGES);
2739 inc_mm_counter_fast(mm, MM_ANONPAGES);
2742 inc_mm_counter_fast(mm, MM_ANONPAGES);
2743 flush_cache_page(vma, address, pte_pfn(orig_pte));
2744 entry = mk_pte(new_page, vma->vm_page_prot);
2745 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2747 * Clear the pte entry and flush it first, before updating the
2748 * pte with the new entry. This will avoid a race condition
2749 * seen in the presence of one thread doing SMC and another
2752 ptep_clear_flush(vma, address, page_table);
2753 page_add_new_anon_rmap(new_page, vma, address);
2755 * We call the notify macro here because, when using secondary
2756 * mmu page tables (such as kvm shadow page tables), we want the
2757 * new page to be mapped directly into the secondary page table.
2759 set_pte_at_notify(mm, address, page_table, entry);
2760 update_mmu_cache(vma, address, page_table);
2763 * Only after switching the pte to the new page may
2764 * we remove the mapcount here. Otherwise another
2765 * process may come and find the rmap count decremented
2766 * before the pte is switched to the new page, and
2767 * "reuse" the old page writing into it while our pte
2768 * here still points into it and can be read by other
2771 * The critical issue is to order this
2772 * page_remove_rmap with the ptp_clear_flush above.
2773 * Those stores are ordered by (if nothing else,)
2774 * the barrier present in the atomic_add_negative
2775 * in page_remove_rmap.
2777 * Then the TLB flush in ptep_clear_flush ensures that
2778 * no process can access the old page before the
2779 * decremented mapcount is visible. And the old page
2780 * cannot be reused until after the decremented
2781 * mapcount is visible. So transitively, TLBs to
2782 * old page will be flushed before it can be reused.
2784 page_remove_rmap(old_page);
2787 /* Free the old page.. */
2788 new_page = old_page;
2789 ret |= VM_FAULT_WRITE;
2791 mem_cgroup_uncharge_page(new_page);
2794 page_cache_release(new_page);
2796 pte_unmap_unlock(page_table, ptl);
2799 * Don't let another task, with possibly unlocked vma,
2800 * keep the mlocked page.
2802 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2803 lock_page(old_page); /* LRU manipulation */
2804 munlock_vma_page(old_page);
2805 unlock_page(old_page);
2807 page_cache_release(old_page);
2811 page_cache_release(new_page);
2815 unlock_page(old_page);
2816 page_cache_release(old_page);
2818 page_cache_release(old_page);
2820 return VM_FAULT_OOM;
2823 page_cache_release(old_page);
2827 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2828 unsigned long start_addr, unsigned long end_addr,
2829 struct zap_details *details)
2831 zap_page_range(vma, start_addr, end_addr - start_addr, details);
2834 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2835 struct zap_details *details)
2837 struct vm_area_struct *vma;
2838 struct prio_tree_iter iter;
2839 pgoff_t vba, vea, zba, zea;
2841 vma_prio_tree_foreach(vma, &iter, root,
2842 details->first_index, details->last_index) {
2844 vba = vma->vm_pgoff;
2845 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2846 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2847 zba = details->first_index;
2850 zea = details->last_index;
2854 unmap_mapping_range_vma(vma,
2855 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2856 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2861 static inline void unmap_mapping_range_list(struct list_head *head,
2862 struct zap_details *details)
2864 struct vm_area_struct *vma;
2867 * In nonlinear VMAs there is no correspondence between virtual address
2868 * offset and file offset. So we must perform an exhaustive search
2869 * across *all* the pages in each nonlinear VMA, not just the pages
2870 * whose virtual address lies outside the file truncation point.
2872 list_for_each_entry(vma, head, shared.vm_set.list) {
2873 details->nonlinear_vma = vma;
2874 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2879 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2880 * @mapping: the address space containing mmaps to be unmapped.
2881 * @holebegin: byte in first page to unmap, relative to the start of
2882 * the underlying file. This will be rounded down to a PAGE_SIZE
2883 * boundary. Note that this is different from truncate_pagecache(), which
2884 * must keep the partial page. In contrast, we must get rid of
2886 * @holelen: size of prospective hole in bytes. This will be rounded
2887 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2889 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2890 * but 0 when invalidating pagecache, don't throw away private data.
2892 void unmap_mapping_range(struct address_space *mapping,
2893 loff_t const holebegin, loff_t const holelen, int even_cows)
2895 struct zap_details details;
2896 pgoff_t hba = holebegin >> PAGE_SHIFT;
2897 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2899 /* Check for overflow. */
2900 if (sizeof(holelen) > sizeof(hlen)) {
2902 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2903 if (holeend & ~(long long)ULONG_MAX)
2904 hlen = ULONG_MAX - hba + 1;
2907 details.check_mapping = even_cows? NULL: mapping;
2908 details.nonlinear_vma = NULL;
2909 details.first_index = hba;
2910 details.last_index = hba + hlen - 1;
2911 if (details.last_index < details.first_index)
2912 details.last_index = ULONG_MAX;
2915 mutex_lock(&mapping->i_mmap_mutex);
2916 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2917 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2918 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2919 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2920 mutex_unlock(&mapping->i_mmap_mutex);
2922 EXPORT_SYMBOL(unmap_mapping_range);
2925 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2926 * but allow concurrent faults), and pte mapped but not yet locked.
2927 * We return with mmap_sem still held, but pte unmapped and unlocked.
2929 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2930 unsigned long address, pte_t *page_table, pmd_t *pmd,
2931 unsigned int flags, pte_t orig_pte)
2934 struct page *page, *swapcache = NULL;
2938 struct mem_cgroup *ptr;
2942 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2945 entry = pte_to_swp_entry(orig_pte);
2946 if (unlikely(non_swap_entry(entry))) {
2947 if (is_migration_entry(entry)) {
2948 migration_entry_wait(mm, pmd, address);
2949 } else if (is_hwpoison_entry(entry)) {
2950 ret = VM_FAULT_HWPOISON;
2952 print_bad_pte(vma, address, orig_pte, NULL);
2953 ret = VM_FAULT_SIGBUS;
2957 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2958 page = lookup_swap_cache(entry);
2960 grab_swap_token(mm); /* Contend for token _before_ read-in */
2961 page = swapin_readahead(entry,
2962 GFP_HIGHUSER_MOVABLE, vma, address);
2965 * Back out if somebody else faulted in this pte
2966 * while we released the pte lock.
2968 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2969 if (likely(pte_same(*page_table, orig_pte)))
2971 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2975 /* Had to read the page from swap area: Major fault */
2976 ret = VM_FAULT_MAJOR;
2977 count_vm_event(PGMAJFAULT);
2978 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2979 } else if (PageHWPoison(page)) {
2981 * hwpoisoned dirty swapcache pages are kept for killing
2982 * owner processes (which may be unknown at hwpoison time)
2984 ret = VM_FAULT_HWPOISON;
2985 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2989 locked = lock_page_or_retry(page, mm, flags);
2990 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2992 ret |= VM_FAULT_RETRY;
2997 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2998 * release the swapcache from under us. The page pin, and pte_same
2999 * test below, are not enough to exclude that. Even if it is still
3000 * swapcache, we need to check that the page's swap has not changed.
3002 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3005 if (ksm_might_need_to_copy(page, vma, address)) {
3007 page = ksm_does_need_to_copy(page, vma, address);
3009 if (unlikely(!page)) {
3017 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3023 * Back out if somebody else already faulted in this pte.
3025 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3026 if (unlikely(!pte_same(*page_table, orig_pte)))
3029 if (unlikely(!PageUptodate(page))) {
3030 ret = VM_FAULT_SIGBUS;
3035 * The page isn't present yet, go ahead with the fault.
3037 * Be careful about the sequence of operations here.
3038 * To get its accounting right, reuse_swap_page() must be called
3039 * while the page is counted on swap but not yet in mapcount i.e.
3040 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3041 * must be called after the swap_free(), or it will never succeed.
3042 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3043 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3044 * in page->private. In this case, a record in swap_cgroup is silently
3045 * discarded at swap_free().
3048 inc_mm_counter_fast(mm, MM_ANONPAGES);
3049 dec_mm_counter_fast(mm, MM_SWAPENTS);
3050 pte = mk_pte(page, vma->vm_page_prot);
3051 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3052 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3053 flags &= ~FAULT_FLAG_WRITE;
3054 ret |= VM_FAULT_WRITE;
3057 flush_icache_page(vma, page);
3058 set_pte_at(mm, address, page_table, pte);
3059 do_page_add_anon_rmap(page, vma, address, exclusive);
3060 /* It's better to call commit-charge after rmap is established */
3061 mem_cgroup_commit_charge_swapin(page, ptr);
3064 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3065 try_to_free_swap(page);
3069 * Hold the lock to avoid the swap entry to be reused
3070 * until we take the PT lock for the pte_same() check
3071 * (to avoid false positives from pte_same). For
3072 * further safety release the lock after the swap_free
3073 * so that the swap count won't change under a
3074 * parallel locked swapcache.
3076 unlock_page(swapcache);
3077 page_cache_release(swapcache);
3080 if (flags & FAULT_FLAG_WRITE) {
3081 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3082 if (ret & VM_FAULT_ERROR)
3083 ret &= VM_FAULT_ERROR;
3087 /* No need to invalidate - it was non-present before */
3088 update_mmu_cache(vma, address, page_table);
3090 pte_unmap_unlock(page_table, ptl);
3094 mem_cgroup_cancel_charge_swapin(ptr);
3095 pte_unmap_unlock(page_table, ptl);
3099 page_cache_release(page);
3101 unlock_page(swapcache);
3102 page_cache_release(swapcache);
3108 * This is like a special single-page "expand_{down|up}wards()",
3109 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3110 * doesn't hit another vma.
3112 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3114 address &= PAGE_MASK;
3115 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3116 struct vm_area_struct *prev = vma->vm_prev;
3119 * Is there a mapping abutting this one below?
3121 * That's only ok if it's the same stack mapping
3122 * that has gotten split..
3124 if (prev && prev->vm_end == address)
3125 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3127 return expand_downwards(vma, address - PAGE_SIZE);
3129 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3130 struct vm_area_struct *next = vma->vm_next;
3132 /* As VM_GROWSDOWN but s/below/above/ */
3133 if (next && next->vm_start == address + PAGE_SIZE)
3134 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3136 return expand_upwards(vma, address + PAGE_SIZE);
3142 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3143 * but allow concurrent faults), and pte mapped but not yet locked.
3144 * We return with mmap_sem still held, but pte unmapped and unlocked.
3146 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3147 unsigned long address, pte_t *page_table, pmd_t *pmd,
3154 pte_unmap(page_table);
3156 /* Check if we need to add a guard page to the stack */
3157 if (check_stack_guard_page(vma, address) < 0)
3158 return VM_FAULT_SIGBUS;
3160 /* Use the zero-page for reads */
3161 if (!(flags & FAULT_FLAG_WRITE)) {
3162 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3163 vma->vm_page_prot));
3164 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3165 if (!pte_none(*page_table))
3170 /* Allocate our own private page. */
3171 if (unlikely(anon_vma_prepare(vma)))
3173 page = alloc_zeroed_user_highpage_movable(vma, address);
3176 __SetPageUptodate(page);
3178 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3181 entry = mk_pte(page, vma->vm_page_prot);
3182 if (vma->vm_flags & VM_WRITE)
3183 entry = pte_mkwrite(pte_mkdirty(entry));
3185 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3186 if (!pte_none(*page_table))
3189 inc_mm_counter_fast(mm, MM_ANONPAGES);
3190 page_add_new_anon_rmap(page, vma, address);
3192 set_pte_at(mm, address, page_table, entry);
3194 /* No need to invalidate - it was non-present before */
3195 update_mmu_cache(vma, address, page_table);
3197 pte_unmap_unlock(page_table, ptl);
3200 mem_cgroup_uncharge_page(page);
3201 page_cache_release(page);
3204 page_cache_release(page);
3206 return VM_FAULT_OOM;
3210 * __do_fault() tries to create a new page mapping. It aggressively
3211 * tries to share with existing pages, but makes a separate copy if
3212 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3213 * the next page fault.
3215 * As this is called only for pages that do not currently exist, we
3216 * do not need to flush old virtual caches or the TLB.
3218 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3219 * but allow concurrent faults), and pte neither mapped nor locked.
3220 * We return with mmap_sem still held, but pte unmapped and unlocked.
3222 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3223 unsigned long address, pmd_t *pmd,
3224 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3229 struct page *cow_page;
3232 struct page *dirty_page = NULL;
3233 struct vm_fault vmf;
3235 int page_mkwrite = 0;
3238 * If we do COW later, allocate page befor taking lock_page()
3239 * on the file cache page. This will reduce lock holding time.
3241 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3243 if (unlikely(anon_vma_prepare(vma)))
3244 return VM_FAULT_OOM;
3246 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3248 return VM_FAULT_OOM;
3250 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3251 page_cache_release(cow_page);
3252 return VM_FAULT_OOM;
3257 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3262 ret = vma->vm_ops->fault(vma, &vmf);
3263 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3267 if (unlikely(PageHWPoison(vmf.page))) {
3268 if (ret & VM_FAULT_LOCKED)
3269 unlock_page(vmf.page);
3270 ret = VM_FAULT_HWPOISON;
3275 * For consistency in subsequent calls, make the faulted page always
3278 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3279 lock_page(vmf.page);
3281 VM_BUG_ON(!PageLocked(vmf.page));
3284 * Should we do an early C-O-W break?
3287 if (flags & FAULT_FLAG_WRITE) {
3288 if (!(vma->vm_flags & VM_SHARED)) {
3291 copy_user_highpage(page, vmf.page, address, vma);
3292 __SetPageUptodate(page);
3295 * If the page will be shareable, see if the backing
3296 * address space wants to know that the page is about
3297 * to become writable
3299 if (vma->vm_ops->page_mkwrite) {
3303 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3304 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3306 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3308 goto unwritable_page;
3310 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3312 if (!page->mapping) {
3313 ret = 0; /* retry the fault */
3315 goto unwritable_page;
3318 VM_BUG_ON(!PageLocked(page));
3325 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3328 * This silly early PAGE_DIRTY setting removes a race
3329 * due to the bad i386 page protection. But it's valid
3330 * for other architectures too.
3332 * Note that if FAULT_FLAG_WRITE is set, we either now have
3333 * an exclusive copy of the page, or this is a shared mapping,
3334 * so we can make it writable and dirty to avoid having to
3335 * handle that later.
3337 /* Only go through if we didn't race with anybody else... */
3338 if (likely(pte_same(*page_table, orig_pte))) {
3339 flush_icache_page(vma, page);
3340 entry = mk_pte(page, vma->vm_page_prot);
3341 if (flags & FAULT_FLAG_WRITE)
3342 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3344 inc_mm_counter_fast(mm, MM_ANONPAGES);
3345 page_add_new_anon_rmap(page, vma, address);
3347 inc_mm_counter_fast(mm, MM_FILEPAGES);
3348 page_add_file_rmap(page);
3349 if (flags & FAULT_FLAG_WRITE) {
3351 get_page(dirty_page);
3354 set_pte_at(mm, address, page_table, entry);
3356 /* no need to invalidate: a not-present page won't be cached */
3357 update_mmu_cache(vma, address, page_table);
3360 mem_cgroup_uncharge_page(cow_page);
3362 page_cache_release(page);
3364 anon = 1; /* no anon but release faulted_page */
3367 pte_unmap_unlock(page_table, ptl);
3370 struct address_space *mapping = page->mapping;
3372 if (set_page_dirty(dirty_page))
3374 unlock_page(dirty_page);
3375 put_page(dirty_page);
3376 if (page_mkwrite && mapping) {
3378 * Some device drivers do not set page.mapping but still
3381 balance_dirty_pages_ratelimited(mapping);
3384 /* file_update_time outside page_lock */
3386 file_update_time(vma->vm_file);
3388 unlock_page(vmf.page);
3390 page_cache_release(vmf.page);
3396 page_cache_release(page);
3399 /* fs's fault handler get error */
3401 mem_cgroup_uncharge_page(cow_page);
3402 page_cache_release(cow_page);
3407 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3408 unsigned long address, pte_t *page_table, pmd_t *pmd,
3409 unsigned int flags, pte_t orig_pte)
3411 pgoff_t pgoff = (((address & PAGE_MASK)
3412 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3414 pte_unmap(page_table);
3415 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3419 * Fault of a previously existing named mapping. Repopulate the pte
3420 * from the encoded file_pte if possible. This enables swappable
3423 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3424 * but allow concurrent faults), and pte mapped but not yet locked.
3425 * We return with mmap_sem still held, but pte unmapped and unlocked.
3427 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3428 unsigned long address, pte_t *page_table, pmd_t *pmd,
3429 unsigned int flags, pte_t orig_pte)
3433 flags |= FAULT_FLAG_NONLINEAR;
3435 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3438 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3440 * Page table corrupted: show pte and kill process.
3442 print_bad_pte(vma, address, orig_pte, NULL);
3443 return VM_FAULT_SIGBUS;
3446 pgoff = pte_to_pgoff(orig_pte);
3447 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3451 * These routines also need to handle stuff like marking pages dirty
3452 * and/or accessed for architectures that don't do it in hardware (most
3453 * RISC architectures). The early dirtying is also good on the i386.
3455 * There is also a hook called "update_mmu_cache()" that architectures
3456 * with external mmu caches can use to update those (ie the Sparc or
3457 * PowerPC hashed page tables that act as extended TLBs).
3459 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3460 * but allow concurrent faults), and pte mapped but not yet locked.
3461 * We return with mmap_sem still held, but pte unmapped and unlocked.
3463 int handle_pte_fault(struct mm_struct *mm,
3464 struct vm_area_struct *vma, unsigned long address,
3465 pte_t *pte, pmd_t *pmd, unsigned int flags)
3471 if (!pte_present(entry)) {
3472 if (pte_none(entry)) {
3474 if (likely(vma->vm_ops->fault))
3475 return do_linear_fault(mm, vma, address,
3476 pte, pmd, flags, entry);
3478 return do_anonymous_page(mm, vma, address,
3481 if (pte_file(entry))
3482 return do_nonlinear_fault(mm, vma, address,
3483 pte, pmd, flags, entry);
3484 return do_swap_page(mm, vma, address,
3485 pte, pmd, flags, entry);
3488 ptl = pte_lockptr(mm, pmd);
3490 if (unlikely(!pte_same(*pte, entry)))
3492 if (flags & FAULT_FLAG_WRITE) {
3493 if (!pte_write(entry))
3494 return do_wp_page(mm, vma, address,
3495 pte, pmd, ptl, entry);
3496 entry = pte_mkdirty(entry);
3498 entry = pte_mkyoung(entry);
3499 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3500 update_mmu_cache(vma, address, pte);
3503 * This is needed only for protection faults but the arch code
3504 * is not yet telling us if this is a protection fault or not.
3505 * This still avoids useless tlb flushes for .text page faults
3508 if (flags & FAULT_FLAG_WRITE)
3509 flush_tlb_fix_spurious_fault(vma, address);
3512 pte_unmap_unlock(pte, ptl);
3517 * By the time we get here, we already hold the mm semaphore
3519 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3520 unsigned long address, unsigned int flags)
3527 __set_current_state(TASK_RUNNING);
3529 count_vm_event(PGFAULT);
3530 mem_cgroup_count_vm_event(mm, PGFAULT);
3532 /* do counter updates before entering really critical section. */
3533 check_sync_rss_stat(current);
3535 if (unlikely(is_vm_hugetlb_page(vma)))
3536 return hugetlb_fault(mm, vma, address, flags);
3539 pgd = pgd_offset(mm, address);
3540 pud = pud_alloc(mm, pgd, address);
3542 return VM_FAULT_OOM;
3543 pmd = pmd_alloc(mm, pud, address);
3545 return VM_FAULT_OOM;
3546 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3548 return do_huge_pmd_anonymous_page(mm, vma, address,
3551 pmd_t orig_pmd = *pmd;
3555 if (pmd_trans_huge(orig_pmd)) {
3556 if (flags & FAULT_FLAG_WRITE &&
3557 !pmd_write(orig_pmd) &&
3558 !pmd_trans_splitting(orig_pmd)) {
3559 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3562 * If COW results in an oom, the huge pmd will
3563 * have been split, so retry the fault on the
3564 * pte for a smaller charge.
3566 if (unlikely(ret & VM_FAULT_OOM))
3575 * Use __pte_alloc instead of pte_alloc_map, because we can't
3576 * run pte_offset_map on the pmd, if an huge pmd could
3577 * materialize from under us from a different thread.
3579 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3580 return VM_FAULT_OOM;
3581 /* if an huge pmd materialized from under us just retry later */
3582 if (unlikely(pmd_trans_huge(*pmd)))
3585 * A regular pmd is established and it can't morph into a huge pmd
3586 * from under us anymore at this point because we hold the mmap_sem
3587 * read mode and khugepaged takes it in write mode. So now it's
3588 * safe to run pte_offset_map().
3590 pte = pte_offset_map(pmd, address);
3592 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3595 #ifndef __PAGETABLE_PUD_FOLDED
3597 * Allocate page upper directory.
3598 * We've already handled the fast-path in-line.
3600 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3602 pud_t *new = pud_alloc_one(mm, address);
3606 smp_wmb(); /* See comment in __pte_alloc */
3608 spin_lock(&mm->page_table_lock);
3609 if (pgd_present(*pgd)) /* Another has populated it */
3612 pgd_populate(mm, pgd, new);
3613 spin_unlock(&mm->page_table_lock);
3616 #endif /* __PAGETABLE_PUD_FOLDED */
3618 #ifndef __PAGETABLE_PMD_FOLDED
3620 * Allocate page middle directory.
3621 * We've already handled the fast-path in-line.
3623 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3625 pmd_t *new = pmd_alloc_one(mm, address);
3629 smp_wmb(); /* See comment in __pte_alloc */
3631 spin_lock(&mm->page_table_lock);
3632 #ifndef __ARCH_HAS_4LEVEL_HACK
3633 if (pud_present(*pud)) /* Another has populated it */
3636 pud_populate(mm, pud, new);
3638 if (pgd_present(*pud)) /* Another has populated it */
3641 pgd_populate(mm, pud, new);
3642 #endif /* __ARCH_HAS_4LEVEL_HACK */
3643 spin_unlock(&mm->page_table_lock);
3646 #endif /* __PAGETABLE_PMD_FOLDED */
3648 int make_pages_present(unsigned long addr, unsigned long end)
3650 int ret, len, write;
3651 struct vm_area_struct * vma;
3653 vma = find_vma(current->mm, addr);
3657 * We want to touch writable mappings with a write fault in order
3658 * to break COW, except for shared mappings because these don't COW
3659 * and we would not want to dirty them for nothing.
3661 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3662 BUG_ON(addr >= end);
3663 BUG_ON(end > vma->vm_end);
3664 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;