4b5200f5f35ac96f176a75482fee45ca995ce8d5
[pandora-kernel.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59
60 #include <asm/io.h>
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
63 #include <asm/tlb.h>
64 #include <asm/tlbflush.h>
65 #include <asm/pgtable.h>
66
67 #include "internal.h"
68
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr;
72 struct page *mem_map;
73
74 EXPORT_SYMBOL(max_mapnr);
75 EXPORT_SYMBOL(mem_map);
76 #endif
77
78 unsigned long num_physpages;
79 /*
80  * A number of key systems in x86 including ioremap() rely on the assumption
81  * that high_memory defines the upper bound on direct map memory, then end
82  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
83  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84  * and ZONE_HIGHMEM.
85  */
86 void * high_memory;
87
88 EXPORT_SYMBOL(num_physpages);
89 EXPORT_SYMBOL(high_memory);
90
91 /*
92  * Randomize the address space (stacks, mmaps, brk, etc.).
93  *
94  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95  *   as ancient (libc5 based) binaries can segfault. )
96  */
97 int randomize_va_space __read_mostly =
98 #ifdef CONFIG_COMPAT_BRK
99                                         1;
100 #else
101                                         2;
102 #endif
103
104 static int __init disable_randmaps(char *s)
105 {
106         randomize_va_space = 0;
107         return 1;
108 }
109 __setup("norandmaps", disable_randmaps);
110
111
112 /*
113  * If a p?d_bad entry is found while walking page tables, report
114  * the error, before resetting entry to p?d_none.  Usually (but
115  * very seldom) called out from the p?d_none_or_clear_bad macros.
116  */
117
118 void pgd_clear_bad(pgd_t *pgd)
119 {
120         pgd_ERROR(*pgd);
121         pgd_clear(pgd);
122 }
123
124 void pud_clear_bad(pud_t *pud)
125 {
126         pud_ERROR(*pud);
127         pud_clear(pud);
128 }
129
130 void pmd_clear_bad(pmd_t *pmd)
131 {
132         pmd_ERROR(*pmd);
133         pmd_clear(pmd);
134 }
135
136 /*
137  * Note: this doesn't free the actual pages themselves. That
138  * has been handled earlier when unmapping all the memory regions.
139  */
140 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
141                            unsigned long addr)
142 {
143         pgtable_t token = pmd_pgtable(*pmd);
144         pmd_clear(pmd);
145         pte_free_tlb(tlb, token, addr);
146         tlb->mm->nr_ptes--;
147 }
148
149 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
150                                 unsigned long addr, unsigned long end,
151                                 unsigned long floor, unsigned long ceiling)
152 {
153         pmd_t *pmd;
154         unsigned long next;
155         unsigned long start;
156
157         start = addr;
158         pmd = pmd_offset(pud, addr);
159         do {
160                 next = pmd_addr_end(addr, end);
161                 if (pmd_none_or_clear_bad(pmd))
162                         continue;
163                 free_pte_range(tlb, pmd, addr);
164         } while (pmd++, addr = next, addr != end);
165
166         start &= PUD_MASK;
167         if (start < floor)
168                 return;
169         if (ceiling) {
170                 ceiling &= PUD_MASK;
171                 if (!ceiling)
172                         return;
173         }
174         if (end - 1 > ceiling - 1)
175                 return;
176
177         pmd = pmd_offset(pud, start);
178         pud_clear(pud);
179         pmd_free_tlb(tlb, pmd, start);
180 }
181
182 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
183                                 unsigned long addr, unsigned long end,
184                                 unsigned long floor, unsigned long ceiling)
185 {
186         pud_t *pud;
187         unsigned long next;
188         unsigned long start;
189
190         start = addr;
191         pud = pud_offset(pgd, addr);
192         do {
193                 next = pud_addr_end(addr, end);
194                 if (pud_none_or_clear_bad(pud))
195                         continue;
196                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
197         } while (pud++, addr = next, addr != end);
198
199         start &= PGDIR_MASK;
200         if (start < floor)
201                 return;
202         if (ceiling) {
203                 ceiling &= PGDIR_MASK;
204                 if (!ceiling)
205                         return;
206         }
207         if (end - 1 > ceiling - 1)
208                 return;
209
210         pud = pud_offset(pgd, start);
211         pgd_clear(pgd);
212         pud_free_tlb(tlb, pud, start);
213 }
214
215 /*
216  * This function frees user-level page tables of a process.
217  *
218  * Must be called with pagetable lock held.
219  */
220 void free_pgd_range(struct mmu_gather *tlb,
221                         unsigned long addr, unsigned long end,
222                         unsigned long floor, unsigned long ceiling)
223 {
224         pgd_t *pgd;
225         unsigned long next;
226         unsigned long start;
227
228         /*
229          * The next few lines have given us lots of grief...
230          *
231          * Why are we testing PMD* at this top level?  Because often
232          * there will be no work to do at all, and we'd prefer not to
233          * go all the way down to the bottom just to discover that.
234          *
235          * Why all these "- 1"s?  Because 0 represents both the bottom
236          * of the address space and the top of it (using -1 for the
237          * top wouldn't help much: the masks would do the wrong thing).
238          * The rule is that addr 0 and floor 0 refer to the bottom of
239          * the address space, but end 0 and ceiling 0 refer to the top
240          * Comparisons need to use "end - 1" and "ceiling - 1" (though
241          * that end 0 case should be mythical).
242          *
243          * Wherever addr is brought up or ceiling brought down, we must
244          * be careful to reject "the opposite 0" before it confuses the
245          * subsequent tests.  But what about where end is brought down
246          * by PMD_SIZE below? no, end can't go down to 0 there.
247          *
248          * Whereas we round start (addr) and ceiling down, by different
249          * masks at different levels, in order to test whether a table
250          * now has no other vmas using it, so can be freed, we don't
251          * bother to round floor or end up - the tests don't need that.
252          */
253
254         addr &= PMD_MASK;
255         if (addr < floor) {
256                 addr += PMD_SIZE;
257                 if (!addr)
258                         return;
259         }
260         if (ceiling) {
261                 ceiling &= PMD_MASK;
262                 if (!ceiling)
263                         return;
264         }
265         if (end - 1 > ceiling - 1)
266                 end -= PMD_SIZE;
267         if (addr > end - 1)
268                 return;
269
270         start = addr;
271         pgd = pgd_offset(tlb->mm, addr);
272         do {
273                 next = pgd_addr_end(addr, end);
274                 if (pgd_none_or_clear_bad(pgd))
275                         continue;
276                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
277         } while (pgd++, addr = next, addr != end);
278 }
279
280 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
281                 unsigned long floor, unsigned long ceiling)
282 {
283         while (vma) {
284                 struct vm_area_struct *next = vma->vm_next;
285                 unsigned long addr = vma->vm_start;
286
287                 /*
288                  * Hide vma from rmap and vmtruncate before freeing pgtables
289                  */
290                 anon_vma_unlink(vma);
291                 unlink_file_vma(vma);
292
293                 if (is_vm_hugetlb_page(vma)) {
294                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
295                                 floor, next? next->vm_start: ceiling);
296                 } else {
297                         /*
298                          * Optimization: gather nearby vmas into one call down
299                          */
300                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
301                                && !is_vm_hugetlb_page(next)) {
302                                 vma = next;
303                                 next = vma->vm_next;
304                                 anon_vma_unlink(vma);
305                                 unlink_file_vma(vma);
306                         }
307                         free_pgd_range(tlb, addr, vma->vm_end,
308                                 floor, next? next->vm_start: ceiling);
309                 }
310                 vma = next;
311         }
312 }
313
314 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
315 {
316         pgtable_t new = pte_alloc_one(mm, address);
317         if (!new)
318                 return -ENOMEM;
319
320         /*
321          * Ensure all pte setup (eg. pte page lock and page clearing) are
322          * visible before the pte is made visible to other CPUs by being
323          * put into page tables.
324          *
325          * The other side of the story is the pointer chasing in the page
326          * table walking code (when walking the page table without locking;
327          * ie. most of the time). Fortunately, these data accesses consist
328          * of a chain of data-dependent loads, meaning most CPUs (alpha
329          * being the notable exception) will already guarantee loads are
330          * seen in-order. See the alpha page table accessors for the
331          * smp_read_barrier_depends() barriers in page table walking code.
332          */
333         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
334
335         spin_lock(&mm->page_table_lock);
336         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
337                 mm->nr_ptes++;
338                 pmd_populate(mm, pmd, new);
339                 new = NULL;
340         }
341         spin_unlock(&mm->page_table_lock);
342         if (new)
343                 pte_free(mm, new);
344         return 0;
345 }
346
347 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
348 {
349         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
350         if (!new)
351                 return -ENOMEM;
352
353         smp_wmb(); /* See comment in __pte_alloc */
354
355         spin_lock(&init_mm.page_table_lock);
356         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
357                 pmd_populate_kernel(&init_mm, pmd, new);
358                 new = NULL;
359         }
360         spin_unlock(&init_mm.page_table_lock);
361         if (new)
362                 pte_free_kernel(&init_mm, new);
363         return 0;
364 }
365
366 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
367 {
368         if (file_rss)
369                 add_mm_counter(mm, file_rss, file_rss);
370         if (anon_rss)
371                 add_mm_counter(mm, anon_rss, anon_rss);
372 }
373
374 /*
375  * This function is called to print an error when a bad pte
376  * is found. For example, we might have a PFN-mapped pte in
377  * a region that doesn't allow it.
378  *
379  * The calling function must still handle the error.
380  */
381 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
382                           pte_t pte, struct page *page)
383 {
384         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
385         pud_t *pud = pud_offset(pgd, addr);
386         pmd_t *pmd = pmd_offset(pud, addr);
387         struct address_space *mapping;
388         pgoff_t index;
389         static unsigned long resume;
390         static unsigned long nr_shown;
391         static unsigned long nr_unshown;
392
393         /*
394          * Allow a burst of 60 reports, then keep quiet for that minute;
395          * or allow a steady drip of one report per second.
396          */
397         if (nr_shown == 60) {
398                 if (time_before(jiffies, resume)) {
399                         nr_unshown++;
400                         return;
401                 }
402                 if (nr_unshown) {
403                         printk(KERN_ALERT
404                                 "BUG: Bad page map: %lu messages suppressed\n",
405                                 nr_unshown);
406                         nr_unshown = 0;
407                 }
408                 nr_shown = 0;
409         }
410         if (nr_shown++ == 0)
411                 resume = jiffies + 60 * HZ;
412
413         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
414         index = linear_page_index(vma, addr);
415
416         printk(KERN_ALERT
417                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
418                 current->comm,
419                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
420         if (page) {
421                 printk(KERN_ALERT
422                 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
423                 page, (void *)page->flags, page_count(page),
424                 page_mapcount(page), page->mapping, page->index);
425         }
426         printk(KERN_ALERT
427                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
428                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
429         /*
430          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
431          */
432         if (vma->vm_ops)
433                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
434                                 (unsigned long)vma->vm_ops->fault);
435         if (vma->vm_file && vma->vm_file->f_op)
436                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
437                                 (unsigned long)vma->vm_file->f_op->mmap);
438         dump_stack();
439         add_taint(TAINT_BAD_PAGE);
440 }
441
442 static inline int is_cow_mapping(unsigned int flags)
443 {
444         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
445 }
446
447 /*
448  * vm_normal_page -- This function gets the "struct page" associated with a pte.
449  *
450  * "Special" mappings do not wish to be associated with a "struct page" (either
451  * it doesn't exist, or it exists but they don't want to touch it). In this
452  * case, NULL is returned here. "Normal" mappings do have a struct page.
453  *
454  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
455  * pte bit, in which case this function is trivial. Secondly, an architecture
456  * may not have a spare pte bit, which requires a more complicated scheme,
457  * described below.
458  *
459  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
460  * special mapping (even if there are underlying and valid "struct pages").
461  * COWed pages of a VM_PFNMAP are always normal.
462  *
463  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
464  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
465  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
466  * mapping will always honor the rule
467  *
468  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
469  *
470  * And for normal mappings this is false.
471  *
472  * This restricts such mappings to be a linear translation from virtual address
473  * to pfn. To get around this restriction, we allow arbitrary mappings so long
474  * as the vma is not a COW mapping; in that case, we know that all ptes are
475  * special (because none can have been COWed).
476  *
477  *
478  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
479  *
480  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
481  * page" backing, however the difference is that _all_ pages with a struct
482  * page (that is, those where pfn_valid is true) are refcounted and considered
483  * normal pages by the VM. The disadvantage is that pages are refcounted
484  * (which can be slower and simply not an option for some PFNMAP users). The
485  * advantage is that we don't have to follow the strict linearity rule of
486  * PFNMAP mappings in order to support COWable mappings.
487  *
488  */
489 #ifdef __HAVE_ARCH_PTE_SPECIAL
490 # define HAVE_PTE_SPECIAL 1
491 #else
492 # define HAVE_PTE_SPECIAL 0
493 #endif
494 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
495                                 pte_t pte)
496 {
497         unsigned long pfn = pte_pfn(pte);
498
499         if (HAVE_PTE_SPECIAL) {
500                 if (likely(!pte_special(pte)))
501                         goto check_pfn;
502                 if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
503                         print_bad_pte(vma, addr, pte, NULL);
504                 return NULL;
505         }
506
507         /* !HAVE_PTE_SPECIAL case follows: */
508
509         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
510                 if (vma->vm_flags & VM_MIXEDMAP) {
511                         if (!pfn_valid(pfn))
512                                 return NULL;
513                         goto out;
514                 } else {
515                         unsigned long off;
516                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
517                         if (pfn == vma->vm_pgoff + off)
518                                 return NULL;
519                         if (!is_cow_mapping(vma->vm_flags))
520                                 return NULL;
521                 }
522         }
523
524 check_pfn:
525         if (unlikely(pfn > highest_memmap_pfn)) {
526                 print_bad_pte(vma, addr, pte, NULL);
527                 return NULL;
528         }
529
530         /*
531          * NOTE! We still have PageReserved() pages in the page tables.
532          * eg. VDSO mappings can cause them to exist.
533          */
534 out:
535         return pfn_to_page(pfn);
536 }
537
538 /*
539  * copy one vm_area from one task to the other. Assumes the page tables
540  * already present in the new task to be cleared in the whole range
541  * covered by this vma.
542  */
543
544 static inline void
545 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
546                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
547                 unsigned long addr, int *rss)
548 {
549         unsigned long vm_flags = vma->vm_flags;
550         pte_t pte = *src_pte;
551         struct page *page;
552
553         /* pte contains position in swap or file, so copy. */
554         if (unlikely(!pte_present(pte))) {
555                 if (!pte_file(pte)) {
556                         swp_entry_t entry = pte_to_swp_entry(pte);
557
558                         swap_duplicate(entry);
559                         /* make sure dst_mm is on swapoff's mmlist. */
560                         if (unlikely(list_empty(&dst_mm->mmlist))) {
561                                 spin_lock(&mmlist_lock);
562                                 if (list_empty(&dst_mm->mmlist))
563                                         list_add(&dst_mm->mmlist,
564                                                  &src_mm->mmlist);
565                                 spin_unlock(&mmlist_lock);
566                         }
567                         if (is_write_migration_entry(entry) &&
568                                         is_cow_mapping(vm_flags)) {
569                                 /*
570                                  * COW mappings require pages in both parent
571                                  * and child to be set to read.
572                                  */
573                                 make_migration_entry_read(&entry);
574                                 pte = swp_entry_to_pte(entry);
575                                 set_pte_at(src_mm, addr, src_pte, pte);
576                         }
577                 }
578                 goto out_set_pte;
579         }
580
581         /*
582          * If it's a COW mapping, write protect it both
583          * in the parent and the child
584          */
585         if (is_cow_mapping(vm_flags)) {
586                 ptep_set_wrprotect(src_mm, addr, src_pte);
587                 pte = pte_wrprotect(pte);
588         }
589
590         /*
591          * If it's a shared mapping, mark it clean in
592          * the child
593          */
594         if (vm_flags & VM_SHARED)
595                 pte = pte_mkclean(pte);
596         pte = pte_mkold(pte);
597
598         page = vm_normal_page(vma, addr, pte);
599         if (page) {
600                 get_page(page);
601                 page_dup_rmap(page);
602                 rss[PageAnon(page)]++;
603         }
604
605 out_set_pte:
606         set_pte_at(dst_mm, addr, dst_pte, pte);
607 }
608
609 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
610                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
611                 unsigned long addr, unsigned long end)
612 {
613         pte_t *src_pte, *dst_pte;
614         spinlock_t *src_ptl, *dst_ptl;
615         int progress = 0;
616         int rss[2];
617
618 again:
619         rss[1] = rss[0] = 0;
620         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
621         if (!dst_pte)
622                 return -ENOMEM;
623         src_pte = pte_offset_map_nested(src_pmd, addr);
624         src_ptl = pte_lockptr(src_mm, src_pmd);
625         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
626         arch_enter_lazy_mmu_mode();
627
628         do {
629                 /*
630                  * We are holding two locks at this point - either of them
631                  * could generate latencies in another task on another CPU.
632                  */
633                 if (progress >= 32) {
634                         progress = 0;
635                         if (need_resched() ||
636                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
637                                 break;
638                 }
639                 if (pte_none(*src_pte)) {
640                         progress++;
641                         continue;
642                 }
643                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
644                 progress += 8;
645         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
646
647         arch_leave_lazy_mmu_mode();
648         spin_unlock(src_ptl);
649         pte_unmap_nested(src_pte - 1);
650         add_mm_rss(dst_mm, rss[0], rss[1]);
651         pte_unmap_unlock(dst_pte - 1, dst_ptl);
652         cond_resched();
653         if (addr != end)
654                 goto again;
655         return 0;
656 }
657
658 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
659                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
660                 unsigned long addr, unsigned long end)
661 {
662         pmd_t *src_pmd, *dst_pmd;
663         unsigned long next;
664
665         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
666         if (!dst_pmd)
667                 return -ENOMEM;
668         src_pmd = pmd_offset(src_pud, addr);
669         do {
670                 next = pmd_addr_end(addr, end);
671                 if (pmd_none_or_clear_bad(src_pmd))
672                         continue;
673                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
674                                                 vma, addr, next))
675                         return -ENOMEM;
676         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
677         return 0;
678 }
679
680 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
681                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
682                 unsigned long addr, unsigned long end)
683 {
684         pud_t *src_pud, *dst_pud;
685         unsigned long next;
686
687         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
688         if (!dst_pud)
689                 return -ENOMEM;
690         src_pud = pud_offset(src_pgd, addr);
691         do {
692                 next = pud_addr_end(addr, end);
693                 if (pud_none_or_clear_bad(src_pud))
694                         continue;
695                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
696                                                 vma, addr, next))
697                         return -ENOMEM;
698         } while (dst_pud++, src_pud++, addr = next, addr != end);
699         return 0;
700 }
701
702 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
703                 struct vm_area_struct *vma)
704 {
705         pgd_t *src_pgd, *dst_pgd;
706         unsigned long next;
707         unsigned long addr = vma->vm_start;
708         unsigned long end = vma->vm_end;
709         int ret;
710
711         /*
712          * Don't copy ptes where a page fault will fill them correctly.
713          * Fork becomes much lighter when there are big shared or private
714          * readonly mappings. The tradeoff is that copy_page_range is more
715          * efficient than faulting.
716          */
717         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
718                 if (!vma->anon_vma)
719                         return 0;
720         }
721
722         if (is_vm_hugetlb_page(vma))
723                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
724
725         if (unlikely(is_pfn_mapping(vma))) {
726                 /*
727                  * We do not free on error cases below as remove_vma
728                  * gets called on error from higher level routine
729                  */
730                 ret = track_pfn_vma_copy(vma);
731                 if (ret)
732                         return ret;
733         }
734
735         /*
736          * We need to invalidate the secondary MMU mappings only when
737          * there could be a permission downgrade on the ptes of the
738          * parent mm. And a permission downgrade will only happen if
739          * is_cow_mapping() returns true.
740          */
741         if (is_cow_mapping(vma->vm_flags))
742                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
743
744         ret = 0;
745         dst_pgd = pgd_offset(dst_mm, addr);
746         src_pgd = pgd_offset(src_mm, addr);
747         do {
748                 next = pgd_addr_end(addr, end);
749                 if (pgd_none_or_clear_bad(src_pgd))
750                         continue;
751                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
752                                             vma, addr, next))) {
753                         ret = -ENOMEM;
754                         break;
755                 }
756         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
757
758         if (is_cow_mapping(vma->vm_flags))
759                 mmu_notifier_invalidate_range_end(src_mm,
760                                                   vma->vm_start, end);
761         return ret;
762 }
763
764 static unsigned long zap_pte_range(struct mmu_gather *tlb,
765                                 struct vm_area_struct *vma, pmd_t *pmd,
766                                 unsigned long addr, unsigned long end,
767                                 long *zap_work, struct zap_details *details)
768 {
769         struct mm_struct *mm = tlb->mm;
770         pte_t *pte;
771         spinlock_t *ptl;
772         int file_rss = 0;
773         int anon_rss = 0;
774
775         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
776         arch_enter_lazy_mmu_mode();
777         do {
778                 pte_t ptent = *pte;
779                 if (pte_none(ptent)) {
780                         (*zap_work)--;
781                         continue;
782                 }
783
784                 (*zap_work) -= PAGE_SIZE;
785
786                 if (pte_present(ptent)) {
787                         struct page *page;
788
789                         page = vm_normal_page(vma, addr, ptent);
790                         if (unlikely(details) && page) {
791                                 /*
792                                  * unmap_shared_mapping_pages() wants to
793                                  * invalidate cache without truncating:
794                                  * unmap shared but keep private pages.
795                                  */
796                                 if (details->check_mapping &&
797                                     details->check_mapping != page->mapping)
798                                         continue;
799                                 /*
800                                  * Each page->index must be checked when
801                                  * invalidating or truncating nonlinear.
802                                  */
803                                 if (details->nonlinear_vma &&
804                                     (page->index < details->first_index ||
805                                      page->index > details->last_index))
806                                         continue;
807                         }
808                         ptent = ptep_get_and_clear_full(mm, addr, pte,
809                                                         tlb->fullmm);
810                         tlb_remove_tlb_entry(tlb, pte, addr);
811                         if (unlikely(!page))
812                                 continue;
813                         if (unlikely(details) && details->nonlinear_vma
814                             && linear_page_index(details->nonlinear_vma,
815                                                 addr) != page->index)
816                                 set_pte_at(mm, addr, pte,
817                                            pgoff_to_pte(page->index));
818                         if (PageAnon(page))
819                                 anon_rss--;
820                         else {
821                                 if (pte_dirty(ptent))
822                                         set_page_dirty(page);
823                                 if (pte_young(ptent) &&
824                                     likely(!VM_SequentialReadHint(vma)))
825                                         mark_page_accessed(page);
826                                 file_rss--;
827                         }
828                         page_remove_rmap(page);
829                         if (unlikely(page_mapcount(page) < 0))
830                                 print_bad_pte(vma, addr, ptent, page);
831                         tlb_remove_page(tlb, page);
832                         continue;
833                 }
834                 /*
835                  * If details->check_mapping, we leave swap entries;
836                  * if details->nonlinear_vma, we leave file entries.
837                  */
838                 if (unlikely(details))
839                         continue;
840                 if (pte_file(ptent)) {
841                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
842                                 print_bad_pte(vma, addr, ptent, NULL);
843                 } else if
844                   (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
845                         print_bad_pte(vma, addr, ptent, NULL);
846                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
847         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
848
849         add_mm_rss(mm, file_rss, anon_rss);
850         arch_leave_lazy_mmu_mode();
851         pte_unmap_unlock(pte - 1, ptl);
852
853         return addr;
854 }
855
856 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
857                                 struct vm_area_struct *vma, pud_t *pud,
858                                 unsigned long addr, unsigned long end,
859                                 long *zap_work, struct zap_details *details)
860 {
861         pmd_t *pmd;
862         unsigned long next;
863
864         pmd = pmd_offset(pud, addr);
865         do {
866                 next = pmd_addr_end(addr, end);
867                 if (pmd_none_or_clear_bad(pmd)) {
868                         (*zap_work)--;
869                         continue;
870                 }
871                 next = zap_pte_range(tlb, vma, pmd, addr, next,
872                                                 zap_work, details);
873         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
874
875         return addr;
876 }
877
878 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
879                                 struct vm_area_struct *vma, pgd_t *pgd,
880                                 unsigned long addr, unsigned long end,
881                                 long *zap_work, struct zap_details *details)
882 {
883         pud_t *pud;
884         unsigned long next;
885
886         pud = pud_offset(pgd, addr);
887         do {
888                 next = pud_addr_end(addr, end);
889                 if (pud_none_or_clear_bad(pud)) {
890                         (*zap_work)--;
891                         continue;
892                 }
893                 next = zap_pmd_range(tlb, vma, pud, addr, next,
894                                                 zap_work, details);
895         } while (pud++, addr = next, (addr != end && *zap_work > 0));
896
897         return addr;
898 }
899
900 static unsigned long unmap_page_range(struct mmu_gather *tlb,
901                                 struct vm_area_struct *vma,
902                                 unsigned long addr, unsigned long end,
903                                 long *zap_work, struct zap_details *details)
904 {
905         pgd_t *pgd;
906         unsigned long next;
907
908         if (details && !details->check_mapping && !details->nonlinear_vma)
909                 details = NULL;
910
911         BUG_ON(addr >= end);
912         tlb_start_vma(tlb, vma);
913         pgd = pgd_offset(vma->vm_mm, addr);
914         do {
915                 next = pgd_addr_end(addr, end);
916                 if (pgd_none_or_clear_bad(pgd)) {
917                         (*zap_work)--;
918                         continue;
919                 }
920                 next = zap_pud_range(tlb, vma, pgd, addr, next,
921                                                 zap_work, details);
922         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
923         tlb_end_vma(tlb, vma);
924
925         return addr;
926 }
927
928 #ifdef CONFIG_PREEMPT
929 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
930 #else
931 /* No preempt: go for improved straight-line efficiency */
932 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
933 #endif
934
935 /**
936  * unmap_vmas - unmap a range of memory covered by a list of vma's
937  * @tlbp: address of the caller's struct mmu_gather
938  * @vma: the starting vma
939  * @start_addr: virtual address at which to start unmapping
940  * @end_addr: virtual address at which to end unmapping
941  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
942  * @details: details of nonlinear truncation or shared cache invalidation
943  *
944  * Returns the end address of the unmapping (restart addr if interrupted).
945  *
946  * Unmap all pages in the vma list.
947  *
948  * We aim to not hold locks for too long (for scheduling latency reasons).
949  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
950  * return the ending mmu_gather to the caller.
951  *
952  * Only addresses between `start' and `end' will be unmapped.
953  *
954  * The VMA list must be sorted in ascending virtual address order.
955  *
956  * unmap_vmas() assumes that the caller will flush the whole unmapped address
957  * range after unmap_vmas() returns.  So the only responsibility here is to
958  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
959  * drops the lock and schedules.
960  */
961 unsigned long unmap_vmas(struct mmu_gather **tlbp,
962                 struct vm_area_struct *vma, unsigned long start_addr,
963                 unsigned long end_addr, unsigned long *nr_accounted,
964                 struct zap_details *details)
965 {
966         long zap_work = ZAP_BLOCK_SIZE;
967         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
968         int tlb_start_valid = 0;
969         unsigned long start = start_addr;
970         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
971         int fullmm = (*tlbp)->fullmm;
972         struct mm_struct *mm = vma->vm_mm;
973
974         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
975         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
976                 unsigned long end;
977
978                 start = max(vma->vm_start, start_addr);
979                 if (start >= vma->vm_end)
980                         continue;
981                 end = min(vma->vm_end, end_addr);
982                 if (end <= vma->vm_start)
983                         continue;
984
985                 if (vma->vm_flags & VM_ACCOUNT)
986                         *nr_accounted += (end - start) >> PAGE_SHIFT;
987
988                 if (unlikely(is_pfn_mapping(vma)))
989                         untrack_pfn_vma(vma, 0, 0);
990
991                 while (start != end) {
992                         if (!tlb_start_valid) {
993                                 tlb_start = start;
994                                 tlb_start_valid = 1;
995                         }
996
997                         if (unlikely(is_vm_hugetlb_page(vma))) {
998                                 /*
999                                  * It is undesirable to test vma->vm_file as it
1000                                  * should be non-null for valid hugetlb area.
1001                                  * However, vm_file will be NULL in the error
1002                                  * cleanup path of do_mmap_pgoff. When
1003                                  * hugetlbfs ->mmap method fails,
1004                                  * do_mmap_pgoff() nullifies vma->vm_file
1005                                  * before calling this function to clean up.
1006                                  * Since no pte has actually been setup, it is
1007                                  * safe to do nothing in this case.
1008                                  */
1009                                 if (vma->vm_file) {
1010                                         unmap_hugepage_range(vma, start, end, NULL);
1011                                         zap_work -= (end - start) /
1012                                         pages_per_huge_page(hstate_vma(vma));
1013                                 }
1014
1015                                 start = end;
1016                         } else
1017                                 start = unmap_page_range(*tlbp, vma,
1018                                                 start, end, &zap_work, details);
1019
1020                         if (zap_work > 0) {
1021                                 BUG_ON(start != end);
1022                                 break;
1023                         }
1024
1025                         tlb_finish_mmu(*tlbp, tlb_start, start);
1026
1027                         if (need_resched() ||
1028                                 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1029                                 if (i_mmap_lock) {
1030                                         *tlbp = NULL;
1031                                         goto out;
1032                                 }
1033                                 cond_resched();
1034                         }
1035
1036                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1037                         tlb_start_valid = 0;
1038                         zap_work = ZAP_BLOCK_SIZE;
1039                 }
1040         }
1041 out:
1042         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1043         return start;   /* which is now the end (or restart) address */
1044 }
1045
1046 /**
1047  * zap_page_range - remove user pages in a given range
1048  * @vma: vm_area_struct holding the applicable pages
1049  * @address: starting address of pages to zap
1050  * @size: number of bytes to zap
1051  * @details: details of nonlinear truncation or shared cache invalidation
1052  */
1053 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1054                 unsigned long size, struct zap_details *details)
1055 {
1056         struct mm_struct *mm = vma->vm_mm;
1057         struct mmu_gather *tlb;
1058         unsigned long end = address + size;
1059         unsigned long nr_accounted = 0;
1060
1061         lru_add_drain();
1062         tlb = tlb_gather_mmu(mm, 0);
1063         update_hiwater_rss(mm);
1064         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1065         if (tlb)
1066                 tlb_finish_mmu(tlb, address, end);
1067         return end;
1068 }
1069
1070 /**
1071  * zap_vma_ptes - remove ptes mapping the vma
1072  * @vma: vm_area_struct holding ptes to be zapped
1073  * @address: starting address of pages to zap
1074  * @size: number of bytes to zap
1075  *
1076  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1077  *
1078  * The entire address range must be fully contained within the vma.
1079  *
1080  * Returns 0 if successful.
1081  */
1082 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1083                 unsigned long size)
1084 {
1085         if (address < vma->vm_start || address + size > vma->vm_end ||
1086                         !(vma->vm_flags & VM_PFNMAP))
1087                 return -1;
1088         zap_page_range(vma, address, size, NULL);
1089         return 0;
1090 }
1091 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1092
1093 /*
1094  * Do a quick page-table lookup for a single page.
1095  */
1096 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1097                         unsigned int flags)
1098 {
1099         pgd_t *pgd;
1100         pud_t *pud;
1101         pmd_t *pmd;
1102         pte_t *ptep, pte;
1103         spinlock_t *ptl;
1104         struct page *page;
1105         struct mm_struct *mm = vma->vm_mm;
1106
1107         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1108         if (!IS_ERR(page)) {
1109                 BUG_ON(flags & FOLL_GET);
1110                 goto out;
1111         }
1112
1113         page = NULL;
1114         pgd = pgd_offset(mm, address);
1115         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1116                 goto no_page_table;
1117
1118         pud = pud_offset(pgd, address);
1119         if (pud_none(*pud))
1120                 goto no_page_table;
1121         if (pud_huge(*pud)) {
1122                 BUG_ON(flags & FOLL_GET);
1123                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1124                 goto out;
1125         }
1126         if (unlikely(pud_bad(*pud)))
1127                 goto no_page_table;
1128
1129         pmd = pmd_offset(pud, address);
1130         if (pmd_none(*pmd))
1131                 goto no_page_table;
1132         if (pmd_huge(*pmd)) {
1133                 BUG_ON(flags & FOLL_GET);
1134                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1135                 goto out;
1136         }
1137         if (unlikely(pmd_bad(*pmd)))
1138                 goto no_page_table;
1139
1140         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1141
1142         pte = *ptep;
1143         if (!pte_present(pte))
1144                 goto no_page;
1145         if ((flags & FOLL_WRITE) && !pte_write(pte))
1146                 goto unlock;
1147         page = vm_normal_page(vma, address, pte);
1148         if (unlikely(!page))
1149                 goto bad_page;
1150
1151         if (flags & FOLL_GET)
1152                 get_page(page);
1153         if (flags & FOLL_TOUCH) {
1154                 if ((flags & FOLL_WRITE) &&
1155                     !pte_dirty(pte) && !PageDirty(page))
1156                         set_page_dirty(page);
1157                 /*
1158                  * pte_mkyoung() would be more correct here, but atomic care
1159                  * is needed to avoid losing the dirty bit: it is easier to use
1160                  * mark_page_accessed().
1161                  */
1162                 mark_page_accessed(page);
1163         }
1164 unlock:
1165         pte_unmap_unlock(ptep, ptl);
1166 out:
1167         return page;
1168
1169 bad_page:
1170         pte_unmap_unlock(ptep, ptl);
1171         return ERR_PTR(-EFAULT);
1172
1173 no_page:
1174         pte_unmap_unlock(ptep, ptl);
1175         if (!pte_none(pte))
1176                 return page;
1177         /* Fall through to ZERO_PAGE handling */
1178 no_page_table:
1179         /*
1180          * When core dumping an enormous anonymous area that nobody
1181          * has touched so far, we don't want to allocate page tables.
1182          */
1183         if (flags & FOLL_ANON) {
1184                 page = ZERO_PAGE(0);
1185                 if (flags & FOLL_GET)
1186                         get_page(page);
1187                 BUG_ON(flags & FOLL_WRITE);
1188         }
1189         return page;
1190 }
1191
1192 /* Can we do the FOLL_ANON optimization? */
1193 static inline int use_zero_page(struct vm_area_struct *vma)
1194 {
1195         /*
1196          * We don't want to optimize FOLL_ANON for make_pages_present()
1197          * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1198          * we want to get the page from the page tables to make sure
1199          * that we serialize and update with any other user of that
1200          * mapping.
1201          */
1202         if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1203                 return 0;
1204         /*
1205          * And if we have a fault routine, it's not an anonymous region.
1206          */
1207         return !vma->vm_ops || !vma->vm_ops->fault;
1208 }
1209
1210
1211
1212 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1213                      unsigned long start, int nr_pages, int flags,
1214                      struct page **pages, struct vm_area_struct **vmas)
1215 {
1216         int i;
1217         unsigned int vm_flags = 0;
1218         int write = !!(flags & GUP_FLAGS_WRITE);
1219         int force = !!(flags & GUP_FLAGS_FORCE);
1220
1221         if (nr_pages <= 0)
1222                 return 0;
1223         /* 
1224          * Require read or write permissions.
1225          * If 'force' is set, we only require the "MAY" flags.
1226          */
1227         vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1228         vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1229         i = 0;
1230
1231         do {
1232                 struct vm_area_struct *vma;
1233                 unsigned int foll_flags;
1234
1235                 vma = find_extend_vma(mm, start);
1236                 if (!vma && in_gate_area(tsk, start)) {
1237                         unsigned long pg = start & PAGE_MASK;
1238                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1239                         pgd_t *pgd;
1240                         pud_t *pud;
1241                         pmd_t *pmd;
1242                         pte_t *pte;
1243
1244                         /* user gate pages are read-only */
1245                         if (write)
1246                                 return i ? : -EFAULT;
1247                         if (pg > TASK_SIZE)
1248                                 pgd = pgd_offset_k(pg);
1249                         else
1250                                 pgd = pgd_offset_gate(mm, pg);
1251                         BUG_ON(pgd_none(*pgd));
1252                         pud = pud_offset(pgd, pg);
1253                         BUG_ON(pud_none(*pud));
1254                         pmd = pmd_offset(pud, pg);
1255                         if (pmd_none(*pmd))
1256                                 return i ? : -EFAULT;
1257                         pte = pte_offset_map(pmd, pg);
1258                         if (pte_none(*pte)) {
1259                                 pte_unmap(pte);
1260                                 return i ? : -EFAULT;
1261                         }
1262                         if (pages) {
1263                                 struct page *page = vm_normal_page(gate_vma, start, *pte);
1264                                 pages[i] = page;
1265                                 if (page)
1266                                         get_page(page);
1267                         }
1268                         pte_unmap(pte);
1269                         if (vmas)
1270                                 vmas[i] = gate_vma;
1271                         i++;
1272                         start += PAGE_SIZE;
1273                         nr_pages--;
1274                         continue;
1275                 }
1276
1277                 if (!vma ||
1278                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1279                     !(vm_flags & vma->vm_flags))
1280                         return i ? : -EFAULT;
1281
1282                 if (is_vm_hugetlb_page(vma)) {
1283                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1284                                                 &start, &nr_pages, i, write);
1285                         continue;
1286                 }
1287
1288                 foll_flags = FOLL_TOUCH;
1289                 if (pages)
1290                         foll_flags |= FOLL_GET;
1291                 if (!write && use_zero_page(vma))
1292                         foll_flags |= FOLL_ANON;
1293
1294                 do {
1295                         struct page *page;
1296
1297                         /*
1298                          * If we have a pending SIGKILL, don't keep faulting
1299                          * pages and potentially allocating memory.
1300                          */
1301                         if (unlikely(fatal_signal_pending(current)))
1302                                 return i ? i : -ERESTARTSYS;
1303
1304                         if (write)
1305                                 foll_flags |= FOLL_WRITE;
1306
1307                         cond_resched();
1308                         while (!(page = follow_page(vma, start, foll_flags))) {
1309                                 int ret;
1310
1311                                 ret = handle_mm_fault(mm, vma, start,
1312                                         (foll_flags & FOLL_WRITE) ?
1313                                         FAULT_FLAG_WRITE : 0);
1314
1315                                 if (ret & VM_FAULT_ERROR) {
1316                                         if (ret & VM_FAULT_OOM)
1317                                                 return i ? i : -ENOMEM;
1318                                         else if (ret & VM_FAULT_SIGBUS)
1319                                                 return i ? i : -EFAULT;
1320                                         BUG();
1321                                 }
1322                                 if (ret & VM_FAULT_MAJOR)
1323                                         tsk->maj_flt++;
1324                                 else
1325                                         tsk->min_flt++;
1326
1327                                 /*
1328                                  * The VM_FAULT_WRITE bit tells us that
1329                                  * do_wp_page has broken COW when necessary,
1330                                  * even if maybe_mkwrite decided not to set
1331                                  * pte_write. We can thus safely do subsequent
1332                                  * page lookups as if they were reads. But only
1333                                  * do so when looping for pte_write is futile:
1334                                  * in some cases userspace may also be wanting
1335                                  * to write to the gotten user page, which a
1336                                  * read fault here might prevent (a readonly
1337                                  * page might get reCOWed by userspace write).
1338                                  */
1339                                 if ((ret & VM_FAULT_WRITE) &&
1340                                     !(vma->vm_flags & VM_WRITE))
1341                                         foll_flags &= ~FOLL_WRITE;
1342
1343                                 cond_resched();
1344                         }
1345                         if (IS_ERR(page))
1346                                 return i ? i : PTR_ERR(page);
1347                         if (pages) {
1348                                 pages[i] = page;
1349
1350                                 flush_anon_page(vma, page, start);
1351                                 flush_dcache_page(page);
1352                         }
1353                         if (vmas)
1354                                 vmas[i] = vma;
1355                         i++;
1356                         start += PAGE_SIZE;
1357                         nr_pages--;
1358                 } while (nr_pages && start < vma->vm_end);
1359         } while (nr_pages);
1360         return i;
1361 }
1362
1363 /**
1364  * get_user_pages() - pin user pages in memory
1365  * @tsk:        task_struct of target task
1366  * @mm:         mm_struct of target mm
1367  * @start:      starting user address
1368  * @nr_pages:   number of pages from start to pin
1369  * @write:      whether pages will be written to by the caller
1370  * @force:      whether to force write access even if user mapping is
1371  *              readonly. This will result in the page being COWed even
1372  *              in MAP_SHARED mappings. You do not want this.
1373  * @pages:      array that receives pointers to the pages pinned.
1374  *              Should be at least nr_pages long. Or NULL, if caller
1375  *              only intends to ensure the pages are faulted in.
1376  * @vmas:       array of pointers to vmas corresponding to each page.
1377  *              Or NULL if the caller does not require them.
1378  *
1379  * Returns number of pages pinned. This may be fewer than the number
1380  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1381  * were pinned, returns -errno. Each page returned must be released
1382  * with a put_page() call when it is finished with. vmas will only
1383  * remain valid while mmap_sem is held.
1384  *
1385  * Must be called with mmap_sem held for read or write.
1386  *
1387  * get_user_pages walks a process's page tables and takes a reference to
1388  * each struct page that each user address corresponds to at a given
1389  * instant. That is, it takes the page that would be accessed if a user
1390  * thread accesses the given user virtual address at that instant.
1391  *
1392  * This does not guarantee that the page exists in the user mappings when
1393  * get_user_pages returns, and there may even be a completely different
1394  * page there in some cases (eg. if mmapped pagecache has been invalidated
1395  * and subsequently re faulted). However it does guarantee that the page
1396  * won't be freed completely. And mostly callers simply care that the page
1397  * contains data that was valid *at some point in time*. Typically, an IO
1398  * or similar operation cannot guarantee anything stronger anyway because
1399  * locks can't be held over the syscall boundary.
1400  *
1401  * If write=0, the page must not be written to. If the page is written to,
1402  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1403  * after the page is finished with, and before put_page is called.
1404  *
1405  * get_user_pages is typically used for fewer-copy IO operations, to get a
1406  * handle on the memory by some means other than accesses via the user virtual
1407  * addresses. The pages may be submitted for DMA to devices or accessed via
1408  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1409  * use the correct cache flushing APIs.
1410  *
1411  * See also get_user_pages_fast, for performance critical applications.
1412  */
1413 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1414                 unsigned long start, int nr_pages, int write, int force,
1415                 struct page **pages, struct vm_area_struct **vmas)
1416 {
1417         int flags = 0;
1418
1419         if (write)
1420                 flags |= GUP_FLAGS_WRITE;
1421         if (force)
1422                 flags |= GUP_FLAGS_FORCE;
1423
1424         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1425 }
1426
1427 EXPORT_SYMBOL(get_user_pages);
1428
1429 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1430                         spinlock_t **ptl)
1431 {
1432         pgd_t * pgd = pgd_offset(mm, addr);
1433         pud_t * pud = pud_alloc(mm, pgd, addr);
1434         if (pud) {
1435                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1436                 if (pmd)
1437                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1438         }
1439         return NULL;
1440 }
1441
1442 /*
1443  * This is the old fallback for page remapping.
1444  *
1445  * For historical reasons, it only allows reserved pages. Only
1446  * old drivers should use this, and they needed to mark their
1447  * pages reserved for the old functions anyway.
1448  */
1449 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1450                         struct page *page, pgprot_t prot)
1451 {
1452         struct mm_struct *mm = vma->vm_mm;
1453         int retval;
1454         pte_t *pte;
1455         spinlock_t *ptl;
1456
1457         retval = -EINVAL;
1458         if (PageAnon(page))
1459                 goto out;
1460         retval = -ENOMEM;
1461         flush_dcache_page(page);
1462         pte = get_locked_pte(mm, addr, &ptl);
1463         if (!pte)
1464                 goto out;
1465         retval = -EBUSY;
1466         if (!pte_none(*pte))
1467                 goto out_unlock;
1468
1469         /* Ok, finally just insert the thing.. */
1470         get_page(page);
1471         inc_mm_counter(mm, file_rss);
1472         page_add_file_rmap(page);
1473         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1474
1475         retval = 0;
1476         pte_unmap_unlock(pte, ptl);
1477         return retval;
1478 out_unlock:
1479         pte_unmap_unlock(pte, ptl);
1480 out:
1481         return retval;
1482 }
1483
1484 /**
1485  * vm_insert_page - insert single page into user vma
1486  * @vma: user vma to map to
1487  * @addr: target user address of this page
1488  * @page: source kernel page
1489  *
1490  * This allows drivers to insert individual pages they've allocated
1491  * into a user vma.
1492  *
1493  * The page has to be a nice clean _individual_ kernel allocation.
1494  * If you allocate a compound page, you need to have marked it as
1495  * such (__GFP_COMP), or manually just split the page up yourself
1496  * (see split_page()).
1497  *
1498  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1499  * took an arbitrary page protection parameter. This doesn't allow
1500  * that. Your vma protection will have to be set up correctly, which
1501  * means that if you want a shared writable mapping, you'd better
1502  * ask for a shared writable mapping!
1503  *
1504  * The page does not need to be reserved.
1505  */
1506 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1507                         struct page *page)
1508 {
1509         if (addr < vma->vm_start || addr >= vma->vm_end)
1510                 return -EFAULT;
1511         if (!page_count(page))
1512                 return -EINVAL;
1513         vma->vm_flags |= VM_INSERTPAGE;
1514         return insert_page(vma, addr, page, vma->vm_page_prot);
1515 }
1516 EXPORT_SYMBOL(vm_insert_page);
1517
1518 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1519                         unsigned long pfn, pgprot_t prot)
1520 {
1521         struct mm_struct *mm = vma->vm_mm;
1522         int retval;
1523         pte_t *pte, entry;
1524         spinlock_t *ptl;
1525
1526         retval = -ENOMEM;
1527         pte = get_locked_pte(mm, addr, &ptl);
1528         if (!pte)
1529                 goto out;
1530         retval = -EBUSY;
1531         if (!pte_none(*pte))
1532                 goto out_unlock;
1533
1534         /* Ok, finally just insert the thing.. */
1535         entry = pte_mkspecial(pfn_pte(pfn, prot));
1536         set_pte_at(mm, addr, pte, entry);
1537         update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1538
1539         retval = 0;
1540 out_unlock:
1541         pte_unmap_unlock(pte, ptl);
1542 out:
1543         return retval;
1544 }
1545
1546 /**
1547  * vm_insert_pfn - insert single pfn into user vma
1548  * @vma: user vma to map to
1549  * @addr: target user address of this page
1550  * @pfn: source kernel pfn
1551  *
1552  * Similar to vm_inert_page, this allows drivers to insert individual pages
1553  * they've allocated into a user vma. Same comments apply.
1554  *
1555  * This function should only be called from a vm_ops->fault handler, and
1556  * in that case the handler should return NULL.
1557  *
1558  * vma cannot be a COW mapping.
1559  *
1560  * As this is called only for pages that do not currently exist, we
1561  * do not need to flush old virtual caches or the TLB.
1562  */
1563 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1564                         unsigned long pfn)
1565 {
1566         int ret;
1567         pgprot_t pgprot = vma->vm_page_prot;
1568         /*
1569          * Technically, architectures with pte_special can avoid all these
1570          * restrictions (same for remap_pfn_range).  However we would like
1571          * consistency in testing and feature parity among all, so we should
1572          * try to keep these invariants in place for everybody.
1573          */
1574         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1575         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1576                                                 (VM_PFNMAP|VM_MIXEDMAP));
1577         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1578         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1579
1580         if (addr < vma->vm_start || addr >= vma->vm_end)
1581                 return -EFAULT;
1582         if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1583                 return -EINVAL;
1584
1585         ret = insert_pfn(vma, addr, pfn, pgprot);
1586
1587         if (ret)
1588                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1589
1590         return ret;
1591 }
1592 EXPORT_SYMBOL(vm_insert_pfn);
1593
1594 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1595                         unsigned long pfn)
1596 {
1597         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1598
1599         if (addr < vma->vm_start || addr >= vma->vm_end)
1600                 return -EFAULT;
1601
1602         /*
1603          * If we don't have pte special, then we have to use the pfn_valid()
1604          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1605          * refcount the page if pfn_valid is true (hence insert_page rather
1606          * than insert_pfn).
1607          */
1608         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1609                 struct page *page;
1610
1611                 page = pfn_to_page(pfn);
1612                 return insert_page(vma, addr, page, vma->vm_page_prot);
1613         }
1614         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1615 }
1616 EXPORT_SYMBOL(vm_insert_mixed);
1617
1618 /*
1619  * maps a range of physical memory into the requested pages. the old
1620  * mappings are removed. any references to nonexistent pages results
1621  * in null mappings (currently treated as "copy-on-access")
1622  */
1623 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1624                         unsigned long addr, unsigned long end,
1625                         unsigned long pfn, pgprot_t prot)
1626 {
1627         pte_t *pte;
1628         spinlock_t *ptl;
1629
1630         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1631         if (!pte)
1632                 return -ENOMEM;
1633         arch_enter_lazy_mmu_mode();
1634         do {
1635                 BUG_ON(!pte_none(*pte));
1636                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1637                 pfn++;
1638         } while (pte++, addr += PAGE_SIZE, addr != end);
1639         arch_leave_lazy_mmu_mode();
1640         pte_unmap_unlock(pte - 1, ptl);
1641         return 0;
1642 }
1643
1644 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1645                         unsigned long addr, unsigned long end,
1646                         unsigned long pfn, pgprot_t prot)
1647 {
1648         pmd_t *pmd;
1649         unsigned long next;
1650
1651         pfn -= addr >> PAGE_SHIFT;
1652         pmd = pmd_alloc(mm, pud, addr);
1653         if (!pmd)
1654                 return -ENOMEM;
1655         do {
1656                 next = pmd_addr_end(addr, end);
1657                 if (remap_pte_range(mm, pmd, addr, next,
1658                                 pfn + (addr >> PAGE_SHIFT), prot))
1659                         return -ENOMEM;
1660         } while (pmd++, addr = next, addr != end);
1661         return 0;
1662 }
1663
1664 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1665                         unsigned long addr, unsigned long end,
1666                         unsigned long pfn, pgprot_t prot)
1667 {
1668         pud_t *pud;
1669         unsigned long next;
1670
1671         pfn -= addr >> PAGE_SHIFT;
1672         pud = pud_alloc(mm, pgd, addr);
1673         if (!pud)
1674                 return -ENOMEM;
1675         do {
1676                 next = pud_addr_end(addr, end);
1677                 if (remap_pmd_range(mm, pud, addr, next,
1678                                 pfn + (addr >> PAGE_SHIFT), prot))
1679                         return -ENOMEM;
1680         } while (pud++, addr = next, addr != end);
1681         return 0;
1682 }
1683
1684 /**
1685  * remap_pfn_range - remap kernel memory to userspace
1686  * @vma: user vma to map to
1687  * @addr: target user address to start at
1688  * @pfn: physical address of kernel memory
1689  * @size: size of map area
1690  * @prot: page protection flags for this mapping
1691  *
1692  *  Note: this is only safe if the mm semaphore is held when called.
1693  */
1694 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1695                     unsigned long pfn, unsigned long size, pgprot_t prot)
1696 {
1697         pgd_t *pgd;
1698         unsigned long next;
1699         unsigned long end = addr + PAGE_ALIGN(size);
1700         struct mm_struct *mm = vma->vm_mm;
1701         int err;
1702
1703         /*
1704          * Physically remapped pages are special. Tell the
1705          * rest of the world about it:
1706          *   VM_IO tells people not to look at these pages
1707          *      (accesses can have side effects).
1708          *   VM_RESERVED is specified all over the place, because
1709          *      in 2.4 it kept swapout's vma scan off this vma; but
1710          *      in 2.6 the LRU scan won't even find its pages, so this
1711          *      flag means no more than count its pages in reserved_vm,
1712          *      and omit it from core dump, even when VM_IO turned off.
1713          *   VM_PFNMAP tells the core MM that the base pages are just
1714          *      raw PFN mappings, and do not have a "struct page" associated
1715          *      with them.
1716          *
1717          * There's a horrible special case to handle copy-on-write
1718          * behaviour that some programs depend on. We mark the "original"
1719          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1720          */
1721         if (addr == vma->vm_start && end == vma->vm_end) {
1722                 vma->vm_pgoff = pfn;
1723                 vma->vm_flags |= VM_PFN_AT_MMAP;
1724         } else if (is_cow_mapping(vma->vm_flags))
1725                 return -EINVAL;
1726
1727         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1728
1729         err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1730         if (err) {
1731                 /*
1732                  * To indicate that track_pfn related cleanup is not
1733                  * needed from higher level routine calling unmap_vmas
1734                  */
1735                 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1736                 vma->vm_flags &= ~VM_PFN_AT_MMAP;
1737                 return -EINVAL;
1738         }
1739
1740         BUG_ON(addr >= end);
1741         pfn -= addr >> PAGE_SHIFT;
1742         pgd = pgd_offset(mm, addr);
1743         flush_cache_range(vma, addr, end);
1744         do {
1745                 next = pgd_addr_end(addr, end);
1746                 err = remap_pud_range(mm, pgd, addr, next,
1747                                 pfn + (addr >> PAGE_SHIFT), prot);
1748                 if (err)
1749                         break;
1750         } while (pgd++, addr = next, addr != end);
1751
1752         if (err)
1753                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1754
1755         return err;
1756 }
1757 EXPORT_SYMBOL(remap_pfn_range);
1758
1759 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1760                                      unsigned long addr, unsigned long end,
1761                                      pte_fn_t fn, void *data)
1762 {
1763         pte_t *pte;
1764         int err;
1765         pgtable_t token;
1766         spinlock_t *uninitialized_var(ptl);
1767
1768         pte = (mm == &init_mm) ?
1769                 pte_alloc_kernel(pmd, addr) :
1770                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1771         if (!pte)
1772                 return -ENOMEM;
1773
1774         BUG_ON(pmd_huge(*pmd));
1775
1776         arch_enter_lazy_mmu_mode();
1777
1778         token = pmd_pgtable(*pmd);
1779
1780         do {
1781                 err = fn(pte, token, addr, data);
1782                 if (err)
1783                         break;
1784         } while (pte++, addr += PAGE_SIZE, addr != end);
1785
1786         arch_leave_lazy_mmu_mode();
1787
1788         if (mm != &init_mm)
1789                 pte_unmap_unlock(pte-1, ptl);
1790         return err;
1791 }
1792
1793 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1794                                      unsigned long addr, unsigned long end,
1795                                      pte_fn_t fn, void *data)
1796 {
1797         pmd_t *pmd;
1798         unsigned long next;
1799         int err;
1800
1801         BUG_ON(pud_huge(*pud));
1802
1803         pmd = pmd_alloc(mm, pud, addr);
1804         if (!pmd)
1805                 return -ENOMEM;
1806         do {
1807                 next = pmd_addr_end(addr, end);
1808                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1809                 if (err)
1810                         break;
1811         } while (pmd++, addr = next, addr != end);
1812         return err;
1813 }
1814
1815 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1816                                      unsigned long addr, unsigned long end,
1817                                      pte_fn_t fn, void *data)
1818 {
1819         pud_t *pud;
1820         unsigned long next;
1821         int err;
1822
1823         pud = pud_alloc(mm, pgd, addr);
1824         if (!pud)
1825                 return -ENOMEM;
1826         do {
1827                 next = pud_addr_end(addr, end);
1828                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1829                 if (err)
1830                         break;
1831         } while (pud++, addr = next, addr != end);
1832         return err;
1833 }
1834
1835 /*
1836  * Scan a region of virtual memory, filling in page tables as necessary
1837  * and calling a provided function on each leaf page table.
1838  */
1839 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1840                         unsigned long size, pte_fn_t fn, void *data)
1841 {
1842         pgd_t *pgd;
1843         unsigned long next;
1844         unsigned long start = addr, end = addr + size;
1845         int err;
1846
1847         BUG_ON(addr >= end);
1848         mmu_notifier_invalidate_range_start(mm, start, end);
1849         pgd = pgd_offset(mm, addr);
1850         do {
1851                 next = pgd_addr_end(addr, end);
1852                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1853                 if (err)
1854                         break;
1855         } while (pgd++, addr = next, addr != end);
1856         mmu_notifier_invalidate_range_end(mm, start, end);
1857         return err;
1858 }
1859 EXPORT_SYMBOL_GPL(apply_to_page_range);
1860
1861 /*
1862  * handle_pte_fault chooses page fault handler according to an entry
1863  * which was read non-atomically.  Before making any commitment, on
1864  * those architectures or configurations (e.g. i386 with PAE) which
1865  * might give a mix of unmatched parts, do_swap_page and do_file_page
1866  * must check under lock before unmapping the pte and proceeding
1867  * (but do_wp_page is only called after already making such a check;
1868  * and do_anonymous_page and do_no_page can safely check later on).
1869  */
1870 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1871                                 pte_t *page_table, pte_t orig_pte)
1872 {
1873         int same = 1;
1874 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1875         if (sizeof(pte_t) > sizeof(unsigned long)) {
1876                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1877                 spin_lock(ptl);
1878                 same = pte_same(*page_table, orig_pte);
1879                 spin_unlock(ptl);
1880         }
1881 #endif
1882         pte_unmap(page_table);
1883         return same;
1884 }
1885
1886 /*
1887  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1888  * servicing faults for write access.  In the normal case, do always want
1889  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1890  * that do not have writing enabled, when used by access_process_vm.
1891  */
1892 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1893 {
1894         if (likely(vma->vm_flags & VM_WRITE))
1895                 pte = pte_mkwrite(pte);
1896         return pte;
1897 }
1898
1899 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1900 {
1901         /*
1902          * If the source page was a PFN mapping, we don't have
1903          * a "struct page" for it. We do a best-effort copy by
1904          * just copying from the original user address. If that
1905          * fails, we just zero-fill it. Live with it.
1906          */
1907         if (unlikely(!src)) {
1908                 void *kaddr = kmap_atomic(dst, KM_USER0);
1909                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1910
1911                 /*
1912                  * This really shouldn't fail, because the page is there
1913                  * in the page tables. But it might just be unreadable,
1914                  * in which case we just give up and fill the result with
1915                  * zeroes.
1916                  */
1917                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1918                         memset(kaddr, 0, PAGE_SIZE);
1919                 kunmap_atomic(kaddr, KM_USER0);
1920                 flush_dcache_page(dst);
1921         } else
1922                 copy_user_highpage(dst, src, va, vma);
1923 }
1924
1925 /*
1926  * This routine handles present pages, when users try to write
1927  * to a shared page. It is done by copying the page to a new address
1928  * and decrementing the shared-page counter for the old page.
1929  *
1930  * Note that this routine assumes that the protection checks have been
1931  * done by the caller (the low-level page fault routine in most cases).
1932  * Thus we can safely just mark it writable once we've done any necessary
1933  * COW.
1934  *
1935  * We also mark the page dirty at this point even though the page will
1936  * change only once the write actually happens. This avoids a few races,
1937  * and potentially makes it more efficient.
1938  *
1939  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1940  * but allow concurrent faults), with pte both mapped and locked.
1941  * We return with mmap_sem still held, but pte unmapped and unlocked.
1942  */
1943 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1944                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1945                 spinlock_t *ptl, pte_t orig_pte)
1946 {
1947         struct page *old_page, *new_page;
1948         pte_t entry;
1949         int reuse = 0, ret = 0;
1950         int page_mkwrite = 0;
1951         struct page *dirty_page = NULL;
1952
1953         old_page = vm_normal_page(vma, address, orig_pte);
1954         if (!old_page) {
1955                 /*
1956                  * VM_MIXEDMAP !pfn_valid() case
1957                  *
1958                  * We should not cow pages in a shared writeable mapping.
1959                  * Just mark the pages writable as we can't do any dirty
1960                  * accounting on raw pfn maps.
1961                  */
1962                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1963                                      (VM_WRITE|VM_SHARED))
1964                         goto reuse;
1965                 goto gotten;
1966         }
1967
1968         /*
1969          * Take out anonymous pages first, anonymous shared vmas are
1970          * not dirty accountable.
1971          */
1972         if (PageAnon(old_page) && !PageKsm(old_page)) {
1973                 if (!trylock_page(old_page)) {
1974                         page_cache_get(old_page);
1975                         pte_unmap_unlock(page_table, ptl);
1976                         lock_page(old_page);
1977                         page_table = pte_offset_map_lock(mm, pmd, address,
1978                                                          &ptl);
1979                         if (!pte_same(*page_table, orig_pte)) {
1980                                 unlock_page(old_page);
1981                                 page_cache_release(old_page);
1982                                 goto unlock;
1983                         }
1984                         page_cache_release(old_page);
1985                 }
1986                 reuse = reuse_swap_page(old_page);
1987                 unlock_page(old_page);
1988         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1989                                         (VM_WRITE|VM_SHARED))) {
1990                 /*
1991                  * Only catch write-faults on shared writable pages,
1992                  * read-only shared pages can get COWed by
1993                  * get_user_pages(.write=1, .force=1).
1994                  */
1995                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1996                         struct vm_fault vmf;
1997                         int tmp;
1998
1999                         vmf.virtual_address = (void __user *)(address &
2000                                                                 PAGE_MASK);
2001                         vmf.pgoff = old_page->index;
2002                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2003                         vmf.page = old_page;
2004
2005                         /*
2006                          * Notify the address space that the page is about to
2007                          * become writable so that it can prohibit this or wait
2008                          * for the page to get into an appropriate state.
2009                          *
2010                          * We do this without the lock held, so that it can
2011                          * sleep if it needs to.
2012                          */
2013                         page_cache_get(old_page);
2014                         pte_unmap_unlock(page_table, ptl);
2015
2016                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2017                         if (unlikely(tmp &
2018                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2019                                 ret = tmp;
2020                                 goto unwritable_page;
2021                         }
2022                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2023                                 lock_page(old_page);
2024                                 if (!old_page->mapping) {
2025                                         ret = 0; /* retry the fault */
2026                                         unlock_page(old_page);
2027                                         goto unwritable_page;
2028                                 }
2029                         } else
2030                                 VM_BUG_ON(!PageLocked(old_page));
2031
2032                         /*
2033                          * Since we dropped the lock we need to revalidate
2034                          * the PTE as someone else may have changed it.  If
2035                          * they did, we just return, as we can count on the
2036                          * MMU to tell us if they didn't also make it writable.
2037                          */
2038                         page_table = pte_offset_map_lock(mm, pmd, address,
2039                                                          &ptl);
2040                         if (!pte_same(*page_table, orig_pte)) {
2041                                 unlock_page(old_page);
2042                                 page_cache_release(old_page);
2043                                 goto unlock;
2044                         }
2045
2046                         page_mkwrite = 1;
2047                 }
2048                 dirty_page = old_page;
2049                 get_page(dirty_page);
2050                 reuse = 1;
2051         }
2052
2053         if (reuse) {
2054 reuse:
2055                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2056                 entry = pte_mkyoung(orig_pte);
2057                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2058                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2059                         update_mmu_cache(vma, address, entry);
2060                 ret |= VM_FAULT_WRITE;
2061                 goto unlock;
2062         }
2063
2064         /*
2065          * Ok, we need to copy. Oh, well..
2066          */
2067         page_cache_get(old_page);
2068 gotten:
2069         pte_unmap_unlock(page_table, ptl);
2070
2071         if (unlikely(anon_vma_prepare(vma)))
2072                 goto oom;
2073         VM_BUG_ON(old_page == ZERO_PAGE(0));
2074         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2075         if (!new_page)
2076                 goto oom;
2077         /*
2078          * Don't let another task, with possibly unlocked vma,
2079          * keep the mlocked page.
2080          */
2081         if ((vma->vm_flags & VM_LOCKED) && old_page) {
2082                 lock_page(old_page);    /* for LRU manipulation */
2083                 clear_page_mlock(old_page);
2084                 unlock_page(old_page);
2085         }
2086         cow_user_page(new_page, old_page, address, vma);
2087         __SetPageUptodate(new_page);
2088
2089         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2090                 goto oom_free_new;
2091
2092         /*
2093          * Re-check the pte - we dropped the lock
2094          */
2095         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2096         if (likely(pte_same(*page_table, orig_pte))) {
2097                 if (old_page) {
2098                         if (!PageAnon(old_page)) {
2099                                 dec_mm_counter(mm, file_rss);
2100                                 inc_mm_counter(mm, anon_rss);
2101                         }
2102                 } else
2103                         inc_mm_counter(mm, anon_rss);
2104                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2105                 entry = mk_pte(new_page, vma->vm_page_prot);
2106                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2107                 /*
2108                  * Clear the pte entry and flush it first, before updating the
2109                  * pte with the new entry. This will avoid a race condition
2110                  * seen in the presence of one thread doing SMC and another
2111                  * thread doing COW.
2112                  */
2113                 ptep_clear_flush(vma, address, page_table);
2114                 page_add_new_anon_rmap(new_page, vma, address);
2115                 /*
2116                  * We call the notify macro here because, when using secondary
2117                  * mmu page tables (such as kvm shadow page tables), we want the
2118                  * new page to be mapped directly into the secondary page table.
2119                  */
2120                 set_pte_at_notify(mm, address, page_table, entry);
2121                 update_mmu_cache(vma, address, entry);
2122                 if (old_page) {
2123                         /*
2124                          * Only after switching the pte to the new page may
2125                          * we remove the mapcount here. Otherwise another
2126                          * process may come and find the rmap count decremented
2127                          * before the pte is switched to the new page, and
2128                          * "reuse" the old page writing into it while our pte
2129                          * here still points into it and can be read by other
2130                          * threads.
2131                          *
2132                          * The critical issue is to order this
2133                          * page_remove_rmap with the ptp_clear_flush above.
2134                          * Those stores are ordered by (if nothing else,)
2135                          * the barrier present in the atomic_add_negative
2136                          * in page_remove_rmap.
2137                          *
2138                          * Then the TLB flush in ptep_clear_flush ensures that
2139                          * no process can access the old page before the
2140                          * decremented mapcount is visible. And the old page
2141                          * cannot be reused until after the decremented
2142                          * mapcount is visible. So transitively, TLBs to
2143                          * old page will be flushed before it can be reused.
2144                          */
2145                         page_remove_rmap(old_page);
2146                 }
2147
2148                 /* Free the old page.. */
2149                 new_page = old_page;
2150                 ret |= VM_FAULT_WRITE;
2151         } else
2152                 mem_cgroup_uncharge_page(new_page);
2153
2154         if (new_page)
2155                 page_cache_release(new_page);
2156         if (old_page)
2157                 page_cache_release(old_page);
2158 unlock:
2159         pte_unmap_unlock(page_table, ptl);
2160         if (dirty_page) {
2161                 /*
2162                  * Yes, Virginia, this is actually required to prevent a race
2163                  * with clear_page_dirty_for_io() from clearing the page dirty
2164                  * bit after it clear all dirty ptes, but before a racing
2165                  * do_wp_page installs a dirty pte.
2166                  *
2167                  * do_no_page is protected similarly.
2168                  */
2169                 if (!page_mkwrite) {
2170                         wait_on_page_locked(dirty_page);
2171                         set_page_dirty_balance(dirty_page, page_mkwrite);
2172                 }
2173                 put_page(dirty_page);
2174                 if (page_mkwrite) {
2175                         struct address_space *mapping = dirty_page->mapping;
2176
2177                         set_page_dirty(dirty_page);
2178                         unlock_page(dirty_page);
2179                         page_cache_release(dirty_page);
2180                         if (mapping)    {
2181                                 /*
2182                                  * Some device drivers do not set page.mapping
2183                                  * but still dirty their pages
2184                                  */
2185                                 balance_dirty_pages_ratelimited(mapping);
2186                         }
2187                 }
2188
2189                 /* file_update_time outside page_lock */
2190                 if (vma->vm_file)
2191                         file_update_time(vma->vm_file);
2192         }
2193         return ret;
2194 oom_free_new:
2195         page_cache_release(new_page);
2196 oom:
2197         if (old_page) {
2198                 if (page_mkwrite) {
2199                         unlock_page(old_page);
2200                         page_cache_release(old_page);
2201                 }
2202                 page_cache_release(old_page);
2203         }
2204         return VM_FAULT_OOM;
2205
2206 unwritable_page:
2207         page_cache_release(old_page);
2208         return ret;
2209 }
2210
2211 /*
2212  * Helper functions for unmap_mapping_range().
2213  *
2214  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2215  *
2216  * We have to restart searching the prio_tree whenever we drop the lock,
2217  * since the iterator is only valid while the lock is held, and anyway
2218  * a later vma might be split and reinserted earlier while lock dropped.
2219  *
2220  * The list of nonlinear vmas could be handled more efficiently, using
2221  * a placeholder, but handle it in the same way until a need is shown.
2222  * It is important to search the prio_tree before nonlinear list: a vma
2223  * may become nonlinear and be shifted from prio_tree to nonlinear list
2224  * while the lock is dropped; but never shifted from list to prio_tree.
2225  *
2226  * In order to make forward progress despite restarting the search,
2227  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2228  * quickly skip it next time around.  Since the prio_tree search only
2229  * shows us those vmas affected by unmapping the range in question, we
2230  * can't efficiently keep all vmas in step with mapping->truncate_count:
2231  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2232  * mapping->truncate_count and vma->vm_truncate_count are protected by
2233  * i_mmap_lock.
2234  *
2235  * In order to make forward progress despite repeatedly restarting some
2236  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2237  * and restart from that address when we reach that vma again.  It might
2238  * have been split or merged, shrunk or extended, but never shifted: so
2239  * restart_addr remains valid so long as it remains in the vma's range.
2240  * unmap_mapping_range forces truncate_count to leap over page-aligned
2241  * values so we can save vma's restart_addr in its truncate_count field.
2242  */
2243 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2244
2245 static void reset_vma_truncate_counts(struct address_space *mapping)
2246 {
2247         struct vm_area_struct *vma;
2248         struct prio_tree_iter iter;
2249
2250         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2251                 vma->vm_truncate_count = 0;
2252         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2253                 vma->vm_truncate_count = 0;
2254 }
2255
2256 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2257                 unsigned long start_addr, unsigned long end_addr,
2258                 struct zap_details *details)
2259 {
2260         unsigned long restart_addr;
2261         int need_break;
2262
2263         /*
2264          * files that support invalidating or truncating portions of the
2265          * file from under mmaped areas must have their ->fault function
2266          * return a locked page (and set VM_FAULT_LOCKED in the return).
2267          * This provides synchronisation against concurrent unmapping here.
2268          */
2269
2270 again:
2271         restart_addr = vma->vm_truncate_count;
2272         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2273                 start_addr = restart_addr;
2274                 if (start_addr >= end_addr) {
2275                         /* Top of vma has been split off since last time */
2276                         vma->vm_truncate_count = details->truncate_count;
2277                         return 0;
2278                 }
2279         }
2280
2281         restart_addr = zap_page_range(vma, start_addr,
2282                                         end_addr - start_addr, details);
2283         need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2284
2285         if (restart_addr >= end_addr) {
2286                 /* We have now completed this vma: mark it so */
2287                 vma->vm_truncate_count = details->truncate_count;
2288                 if (!need_break)
2289                         return 0;
2290         } else {
2291                 /* Note restart_addr in vma's truncate_count field */
2292                 vma->vm_truncate_count = restart_addr;
2293                 if (!need_break)
2294                         goto again;
2295         }
2296
2297         spin_unlock(details->i_mmap_lock);
2298         cond_resched();
2299         spin_lock(details->i_mmap_lock);
2300         return -EINTR;
2301 }
2302
2303 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2304                                             struct zap_details *details)
2305 {
2306         struct vm_area_struct *vma;
2307         struct prio_tree_iter iter;
2308         pgoff_t vba, vea, zba, zea;
2309
2310 restart:
2311         vma_prio_tree_foreach(vma, &iter, root,
2312                         details->first_index, details->last_index) {
2313                 /* Skip quickly over those we have already dealt with */
2314                 if (vma->vm_truncate_count == details->truncate_count)
2315                         continue;
2316
2317                 vba = vma->vm_pgoff;
2318                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2319                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2320                 zba = details->first_index;
2321                 if (zba < vba)
2322                         zba = vba;
2323                 zea = details->last_index;
2324                 if (zea > vea)
2325                         zea = vea;
2326
2327                 if (unmap_mapping_range_vma(vma,
2328                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2329                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2330                                 details) < 0)
2331                         goto restart;
2332         }
2333 }
2334
2335 static inline void unmap_mapping_range_list(struct list_head *head,
2336                                             struct zap_details *details)
2337 {
2338         struct vm_area_struct *vma;
2339
2340         /*
2341          * In nonlinear VMAs there is no correspondence between virtual address
2342          * offset and file offset.  So we must perform an exhaustive search
2343          * across *all* the pages in each nonlinear VMA, not just the pages
2344          * whose virtual address lies outside the file truncation point.
2345          */
2346 restart:
2347         list_for_each_entry(vma, head, shared.vm_set.list) {
2348                 /* Skip quickly over those we have already dealt with */
2349                 if (vma->vm_truncate_count == details->truncate_count)
2350                         continue;
2351                 details->nonlinear_vma = vma;
2352                 if (unmap_mapping_range_vma(vma, vma->vm_start,
2353                                         vma->vm_end, details) < 0)
2354                         goto restart;
2355         }
2356 }
2357
2358 /**
2359  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2360  * @mapping: the address space containing mmaps to be unmapped.
2361  * @holebegin: byte in first page to unmap, relative to the start of
2362  * the underlying file.  This will be rounded down to a PAGE_SIZE
2363  * boundary.  Note that this is different from vmtruncate(), which
2364  * must keep the partial page.  In contrast, we must get rid of
2365  * partial pages.
2366  * @holelen: size of prospective hole in bytes.  This will be rounded
2367  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2368  * end of the file.
2369  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2370  * but 0 when invalidating pagecache, don't throw away private data.
2371  */
2372 void unmap_mapping_range(struct address_space *mapping,
2373                 loff_t const holebegin, loff_t const holelen, int even_cows)
2374 {
2375         struct zap_details details;
2376         pgoff_t hba = holebegin >> PAGE_SHIFT;
2377         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2378
2379         /* Check for overflow. */
2380         if (sizeof(holelen) > sizeof(hlen)) {
2381                 long long holeend =
2382                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2383                 if (holeend & ~(long long)ULONG_MAX)
2384                         hlen = ULONG_MAX - hba + 1;
2385         }
2386
2387         details.check_mapping = even_cows? NULL: mapping;
2388         details.nonlinear_vma = NULL;
2389         details.first_index = hba;
2390         details.last_index = hba + hlen - 1;
2391         if (details.last_index < details.first_index)
2392                 details.last_index = ULONG_MAX;
2393         details.i_mmap_lock = &mapping->i_mmap_lock;
2394
2395         spin_lock(&mapping->i_mmap_lock);
2396
2397         /* Protect against endless unmapping loops */
2398         mapping->truncate_count++;
2399         if (unlikely(is_restart_addr(mapping->truncate_count))) {
2400                 if (mapping->truncate_count == 0)
2401                         reset_vma_truncate_counts(mapping);
2402                 mapping->truncate_count++;
2403         }
2404         details.truncate_count = mapping->truncate_count;
2405
2406         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2407                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2408         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2409                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2410         spin_unlock(&mapping->i_mmap_lock);
2411 }
2412 EXPORT_SYMBOL(unmap_mapping_range);
2413
2414 /**
2415  * vmtruncate - unmap mappings "freed" by truncate() syscall
2416  * @inode: inode of the file used
2417  * @offset: file offset to start truncating
2418  *
2419  * NOTE! We have to be ready to update the memory sharing
2420  * between the file and the memory map for a potential last
2421  * incomplete page.  Ugly, but necessary.
2422  */
2423 int vmtruncate(struct inode * inode, loff_t offset)
2424 {
2425         if (inode->i_size < offset) {
2426                 unsigned long limit;
2427
2428                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2429                 if (limit != RLIM_INFINITY && offset > limit)
2430                         goto out_sig;
2431                 if (offset > inode->i_sb->s_maxbytes)
2432                         goto out_big;
2433                 i_size_write(inode, offset);
2434         } else {
2435                 struct address_space *mapping = inode->i_mapping;
2436
2437                 /*
2438                  * truncation of in-use swapfiles is disallowed - it would
2439                  * cause subsequent swapout to scribble on the now-freed
2440                  * blocks.
2441                  */
2442                 if (IS_SWAPFILE(inode))
2443                         return -ETXTBSY;
2444                 i_size_write(inode, offset);
2445
2446                 /*
2447                  * unmap_mapping_range is called twice, first simply for
2448                  * efficiency so that truncate_inode_pages does fewer
2449                  * single-page unmaps.  However after this first call, and
2450                  * before truncate_inode_pages finishes, it is possible for
2451                  * private pages to be COWed, which remain after
2452                  * truncate_inode_pages finishes, hence the second
2453                  * unmap_mapping_range call must be made for correctness.
2454                  */
2455                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2456                 truncate_inode_pages(mapping, offset);
2457                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2458         }
2459
2460         if (inode->i_op->truncate)
2461                 inode->i_op->truncate(inode);
2462         return 0;
2463
2464 out_sig:
2465         send_sig(SIGXFSZ, current, 0);
2466 out_big:
2467         return -EFBIG;
2468 }
2469 EXPORT_SYMBOL(vmtruncate);
2470
2471 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2472 {
2473         struct address_space *mapping = inode->i_mapping;
2474
2475         /*
2476          * If the underlying filesystem is not going to provide
2477          * a way to truncate a range of blocks (punch a hole) -
2478          * we should return failure right now.
2479          */
2480         if (!inode->i_op->truncate_range)
2481                 return -ENOSYS;
2482
2483         mutex_lock(&inode->i_mutex);
2484         down_write(&inode->i_alloc_sem);
2485         unmap_mapping_range(mapping, offset, (end - offset), 1);
2486         truncate_inode_pages_range(mapping, offset, end);
2487         unmap_mapping_range(mapping, offset, (end - offset), 1);
2488         inode->i_op->truncate_range(inode, offset, end);
2489         up_write(&inode->i_alloc_sem);
2490         mutex_unlock(&inode->i_mutex);
2491
2492         return 0;
2493 }
2494
2495 /*
2496  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2497  * but allow concurrent faults), and pte mapped but not yet locked.
2498  * We return with mmap_sem still held, but pte unmapped and unlocked.
2499  */
2500 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2501                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2502                 unsigned int flags, pte_t orig_pte)
2503 {
2504         spinlock_t *ptl;
2505         struct page *page;
2506         swp_entry_t entry;
2507         pte_t pte;
2508         struct mem_cgroup *ptr = NULL;
2509         int ret = 0;
2510
2511         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2512                 goto out;
2513
2514         entry = pte_to_swp_entry(orig_pte);
2515         if (is_migration_entry(entry)) {
2516                 migration_entry_wait(mm, pmd, address);
2517                 goto out;
2518         }
2519         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2520         page = lookup_swap_cache(entry);
2521         if (!page) {
2522                 grab_swap_token(mm); /* Contend for token _before_ read-in */
2523                 page = swapin_readahead(entry,
2524                                         GFP_HIGHUSER_MOVABLE, vma, address);
2525                 if (!page) {
2526                         /*
2527                          * Back out if somebody else faulted in this pte
2528                          * while we released the pte lock.
2529                          */
2530                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2531                         if (likely(pte_same(*page_table, orig_pte)))
2532                                 ret = VM_FAULT_OOM;
2533                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2534                         goto unlock;
2535                 }
2536
2537                 /* Had to read the page from swap area: Major fault */
2538                 ret = VM_FAULT_MAJOR;
2539                 count_vm_event(PGMAJFAULT);
2540         }
2541
2542         lock_page(page);
2543         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2544
2545         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2546                 ret = VM_FAULT_OOM;
2547                 goto out_page;
2548         }
2549
2550         /*
2551          * Back out if somebody else already faulted in this pte.
2552          */
2553         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2554         if (unlikely(!pte_same(*page_table, orig_pte)))
2555                 goto out_nomap;
2556
2557         if (unlikely(!PageUptodate(page))) {
2558                 ret = VM_FAULT_SIGBUS;
2559                 goto out_nomap;
2560         }
2561
2562         /*
2563          * The page isn't present yet, go ahead with the fault.
2564          *
2565          * Be careful about the sequence of operations here.
2566          * To get its accounting right, reuse_swap_page() must be called
2567          * while the page is counted on swap but not yet in mapcount i.e.
2568          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2569          * must be called after the swap_free(), or it will never succeed.
2570          * Because delete_from_swap_page() may be called by reuse_swap_page(),
2571          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2572          * in page->private. In this case, a record in swap_cgroup  is silently
2573          * discarded at swap_free().
2574          */
2575
2576         inc_mm_counter(mm, anon_rss);
2577         pte = mk_pte(page, vma->vm_page_prot);
2578         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2579                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2580                 flags &= ~FAULT_FLAG_WRITE;
2581         }
2582         flush_icache_page(vma, page);
2583         set_pte_at(mm, address, page_table, pte);
2584         page_add_anon_rmap(page, vma, address);
2585         /* It's better to call commit-charge after rmap is established */
2586         mem_cgroup_commit_charge_swapin(page, ptr);
2587
2588         swap_free(entry);
2589         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2590                 try_to_free_swap(page);
2591         unlock_page(page);
2592
2593         if (flags & FAULT_FLAG_WRITE) {
2594                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2595                 if (ret & VM_FAULT_ERROR)
2596                         ret &= VM_FAULT_ERROR;
2597                 goto out;
2598         }
2599
2600         /* No need to invalidate - it was non-present before */
2601         update_mmu_cache(vma, address, pte);
2602 unlock:
2603         pte_unmap_unlock(page_table, ptl);
2604 out:
2605         return ret;
2606 out_nomap:
2607         mem_cgroup_cancel_charge_swapin(ptr);
2608         pte_unmap_unlock(page_table, ptl);
2609 out_page:
2610         unlock_page(page);
2611         page_cache_release(page);
2612         return ret;
2613 }
2614
2615 /*
2616  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2617  * but allow concurrent faults), and pte mapped but not yet locked.
2618  * We return with mmap_sem still held, but pte unmapped and unlocked.
2619  */
2620 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2621                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2622                 unsigned int flags)
2623 {
2624         struct page *page;
2625         spinlock_t *ptl;
2626         pte_t entry;
2627
2628         /* Allocate our own private page. */
2629         pte_unmap(page_table);
2630
2631         if (unlikely(anon_vma_prepare(vma)))
2632                 goto oom;
2633         page = alloc_zeroed_user_highpage_movable(vma, address);
2634         if (!page)
2635                 goto oom;
2636         __SetPageUptodate(page);
2637
2638         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2639                 goto oom_free_page;
2640
2641         entry = mk_pte(page, vma->vm_page_prot);
2642         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2643
2644         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2645         if (!pte_none(*page_table))
2646                 goto release;
2647
2648         inc_mm_counter(mm, anon_rss);
2649         page_add_new_anon_rmap(page, vma, address);
2650         set_pte_at(mm, address, page_table, entry);
2651
2652         /* No need to invalidate - it was non-present before */
2653         update_mmu_cache(vma, address, entry);
2654 unlock:
2655         pte_unmap_unlock(page_table, ptl);
2656         return 0;
2657 release:
2658         mem_cgroup_uncharge_page(page);
2659         page_cache_release(page);
2660         goto unlock;
2661 oom_free_page:
2662         page_cache_release(page);
2663 oom:
2664         return VM_FAULT_OOM;
2665 }
2666
2667 /*
2668  * __do_fault() tries to create a new page mapping. It aggressively
2669  * tries to share with existing pages, but makes a separate copy if
2670  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2671  * the next page fault.
2672  *
2673  * As this is called only for pages that do not currently exist, we
2674  * do not need to flush old virtual caches or the TLB.
2675  *
2676  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2677  * but allow concurrent faults), and pte neither mapped nor locked.
2678  * We return with mmap_sem still held, but pte unmapped and unlocked.
2679  */
2680 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2681                 unsigned long address, pmd_t *pmd,
2682                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2683 {
2684         pte_t *page_table;
2685         spinlock_t *ptl;
2686         struct page *page;
2687         pte_t entry;
2688         int anon = 0;
2689         int charged = 0;
2690         struct page *dirty_page = NULL;
2691         struct vm_fault vmf;
2692         int ret;
2693         int page_mkwrite = 0;
2694
2695         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2696         vmf.pgoff = pgoff;
2697         vmf.flags = flags;
2698         vmf.page = NULL;
2699
2700         ret = vma->vm_ops->fault(vma, &vmf);
2701         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2702                 return ret;
2703
2704         /*
2705          * For consistency in subsequent calls, make the faulted page always
2706          * locked.
2707          */
2708         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2709                 lock_page(vmf.page);
2710         else
2711                 VM_BUG_ON(!PageLocked(vmf.page));
2712
2713         /*
2714          * Should we do an early C-O-W break?
2715          */
2716         page = vmf.page;
2717         if (flags & FAULT_FLAG_WRITE) {
2718                 if (!(vma->vm_flags & VM_SHARED)) {
2719                         anon = 1;
2720                         if (unlikely(anon_vma_prepare(vma))) {
2721                                 ret = VM_FAULT_OOM;
2722                                 goto out;
2723                         }
2724                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2725                                                 vma, address);
2726                         if (!page) {
2727                                 ret = VM_FAULT_OOM;
2728                                 goto out;
2729                         }
2730                         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2731                                 ret = VM_FAULT_OOM;
2732                                 page_cache_release(page);
2733                                 goto out;
2734                         }
2735                         charged = 1;
2736                         /*
2737                          * Don't let another task, with possibly unlocked vma,
2738                          * keep the mlocked page.
2739                          */
2740                         if (vma->vm_flags & VM_LOCKED)
2741                                 clear_page_mlock(vmf.page);
2742                         copy_user_highpage(page, vmf.page, address, vma);
2743                         __SetPageUptodate(page);
2744                 } else {
2745                         /*
2746                          * If the page will be shareable, see if the backing
2747                          * address space wants to know that the page is about
2748                          * to become writable
2749                          */
2750                         if (vma->vm_ops->page_mkwrite) {
2751                                 int tmp;
2752
2753                                 unlock_page(page);
2754                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2755                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2756                                 if (unlikely(tmp &
2757                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2758                                         ret = tmp;
2759                                         goto unwritable_page;
2760                                 }
2761                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2762                                         lock_page(page);
2763                                         if (!page->mapping) {
2764                                                 ret = 0; /* retry the fault */
2765                                                 unlock_page(page);
2766                                                 goto unwritable_page;
2767                                         }
2768                                 } else
2769                                         VM_BUG_ON(!PageLocked(page));
2770                                 page_mkwrite = 1;
2771                         }
2772                 }
2773
2774         }
2775
2776         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2777
2778         /*
2779          * This silly early PAGE_DIRTY setting removes a race
2780          * due to the bad i386 page protection. But it's valid
2781          * for other architectures too.
2782          *
2783          * Note that if FAULT_FLAG_WRITE is set, we either now have
2784          * an exclusive copy of the page, or this is a shared mapping,
2785          * so we can make it writable and dirty to avoid having to
2786          * handle that later.
2787          */
2788         /* Only go through if we didn't race with anybody else... */
2789         if (likely(pte_same(*page_table, orig_pte))) {
2790                 flush_icache_page(vma, page);
2791                 entry = mk_pte(page, vma->vm_page_prot);
2792                 if (flags & FAULT_FLAG_WRITE)
2793                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2794                 if (anon) {
2795                         inc_mm_counter(mm, anon_rss);
2796                         page_add_new_anon_rmap(page, vma, address);
2797                 } else {
2798                         inc_mm_counter(mm, file_rss);
2799                         page_add_file_rmap(page);
2800                         if (flags & FAULT_FLAG_WRITE) {
2801                                 dirty_page = page;
2802                                 get_page(dirty_page);
2803                         }
2804                 }
2805                 set_pte_at(mm, address, page_table, entry);
2806
2807                 /* no need to invalidate: a not-present page won't be cached */
2808                 update_mmu_cache(vma, address, entry);
2809         } else {
2810                 if (charged)
2811                         mem_cgroup_uncharge_page(page);
2812                 if (anon)
2813                         page_cache_release(page);
2814                 else
2815                         anon = 1; /* no anon but release faulted_page */
2816         }
2817
2818         pte_unmap_unlock(page_table, ptl);
2819
2820 out:
2821         if (dirty_page) {
2822                 struct address_space *mapping = page->mapping;
2823
2824                 if (set_page_dirty(dirty_page))
2825                         page_mkwrite = 1;
2826                 unlock_page(dirty_page);
2827                 put_page(dirty_page);
2828                 if (page_mkwrite && mapping) {
2829                         /*
2830                          * Some device drivers do not set page.mapping but still
2831                          * dirty their pages
2832                          */
2833                         balance_dirty_pages_ratelimited(mapping);
2834                 }
2835
2836                 /* file_update_time outside page_lock */
2837                 if (vma->vm_file)
2838                         file_update_time(vma->vm_file);
2839         } else {
2840                 unlock_page(vmf.page);
2841                 if (anon)
2842                         page_cache_release(vmf.page);
2843         }
2844
2845         return ret;
2846
2847 unwritable_page:
2848         page_cache_release(page);
2849         return ret;
2850 }
2851
2852 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2853                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2854                 unsigned int flags, pte_t orig_pte)
2855 {
2856         pgoff_t pgoff = (((address & PAGE_MASK)
2857                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2858
2859         pte_unmap(page_table);
2860         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2861 }
2862
2863 /*
2864  * Fault of a previously existing named mapping. Repopulate the pte
2865  * from the encoded file_pte if possible. This enables swappable
2866  * nonlinear vmas.
2867  *
2868  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2869  * but allow concurrent faults), and pte mapped but not yet locked.
2870  * We return with mmap_sem still held, but pte unmapped and unlocked.
2871  */
2872 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2873                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2874                 unsigned int flags, pte_t orig_pte)
2875 {
2876         pgoff_t pgoff;
2877
2878         flags |= FAULT_FLAG_NONLINEAR;
2879
2880         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2881                 return 0;
2882
2883         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2884                 /*
2885                  * Page table corrupted: show pte and kill process.
2886                  */
2887                 print_bad_pte(vma, address, orig_pte, NULL);
2888                 return VM_FAULT_OOM;
2889         }
2890
2891         pgoff = pte_to_pgoff(orig_pte);
2892         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2893 }
2894
2895 /*
2896  * These routines also need to handle stuff like marking pages dirty
2897  * and/or accessed for architectures that don't do it in hardware (most
2898  * RISC architectures).  The early dirtying is also good on the i386.
2899  *
2900  * There is also a hook called "update_mmu_cache()" that architectures
2901  * with external mmu caches can use to update those (ie the Sparc or
2902  * PowerPC hashed page tables that act as extended TLBs).
2903  *
2904  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2905  * but allow concurrent faults), and pte mapped but not yet locked.
2906  * We return with mmap_sem still held, but pte unmapped and unlocked.
2907  */
2908 static inline int handle_pte_fault(struct mm_struct *mm,
2909                 struct vm_area_struct *vma, unsigned long address,
2910                 pte_t *pte, pmd_t *pmd, unsigned int flags)
2911 {
2912         pte_t entry;
2913         spinlock_t *ptl;
2914
2915         entry = *pte;
2916         if (!pte_present(entry)) {
2917                 if (pte_none(entry)) {
2918                         if (vma->vm_ops) {
2919                                 if (likely(vma->vm_ops->fault))
2920                                         return do_linear_fault(mm, vma, address,
2921                                                 pte, pmd, flags, entry);
2922                         }
2923                         return do_anonymous_page(mm, vma, address,
2924                                                  pte, pmd, flags);
2925                 }
2926                 if (pte_file(entry))
2927                         return do_nonlinear_fault(mm, vma, address,
2928                                         pte, pmd, flags, entry);
2929                 return do_swap_page(mm, vma, address,
2930                                         pte, pmd, flags, entry);
2931         }
2932
2933         ptl = pte_lockptr(mm, pmd);
2934         spin_lock(ptl);
2935         if (unlikely(!pte_same(*pte, entry)))
2936                 goto unlock;
2937         if (flags & FAULT_FLAG_WRITE) {
2938                 if (!pte_write(entry))
2939                         return do_wp_page(mm, vma, address,
2940                                         pte, pmd, ptl, entry);
2941                 entry = pte_mkdirty(entry);
2942         }
2943         entry = pte_mkyoung(entry);
2944         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
2945                 update_mmu_cache(vma, address, entry);
2946         } else {
2947                 /*
2948                  * This is needed only for protection faults but the arch code
2949                  * is not yet telling us if this is a protection fault or not.
2950                  * This still avoids useless tlb flushes for .text page faults
2951                  * with threads.
2952                  */
2953                 if (flags & FAULT_FLAG_WRITE)
2954                         flush_tlb_page(vma, address);
2955         }
2956 unlock:
2957         pte_unmap_unlock(pte, ptl);
2958         return 0;
2959 }
2960
2961 /*
2962  * By the time we get here, we already hold the mm semaphore
2963  */
2964 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2965                 unsigned long address, unsigned int flags)
2966 {
2967         pgd_t *pgd;
2968         pud_t *pud;
2969         pmd_t *pmd;
2970         pte_t *pte;
2971
2972         __set_current_state(TASK_RUNNING);
2973
2974         count_vm_event(PGFAULT);
2975
2976         if (unlikely(is_vm_hugetlb_page(vma)))
2977                 return hugetlb_fault(mm, vma, address, flags);
2978
2979         pgd = pgd_offset(mm, address);
2980         pud = pud_alloc(mm, pgd, address);
2981         if (!pud)
2982                 return VM_FAULT_OOM;
2983         pmd = pmd_alloc(mm, pud, address);
2984         if (!pmd)
2985                 return VM_FAULT_OOM;
2986         pte = pte_alloc_map(mm, pmd, address);
2987         if (!pte)
2988                 return VM_FAULT_OOM;
2989
2990         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
2991 }
2992
2993 #ifndef __PAGETABLE_PUD_FOLDED
2994 /*
2995  * Allocate page upper directory.
2996  * We've already handled the fast-path in-line.
2997  */
2998 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2999 {
3000         pud_t *new = pud_alloc_one(mm, address);
3001         if (!new)
3002                 return -ENOMEM;
3003
3004         smp_wmb(); /* See comment in __pte_alloc */
3005
3006         spin_lock(&mm->page_table_lock);
3007         if (pgd_present(*pgd))          /* Another has populated it */
3008                 pud_free(mm, new);
3009         else
3010                 pgd_populate(mm, pgd, new);
3011         spin_unlock(&mm->page_table_lock);
3012         return 0;
3013 }
3014 #endif /* __PAGETABLE_PUD_FOLDED */
3015
3016 #ifndef __PAGETABLE_PMD_FOLDED
3017 /*
3018  * Allocate page middle directory.
3019  * We've already handled the fast-path in-line.
3020  */
3021 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3022 {
3023         pmd_t *new = pmd_alloc_one(mm, address);
3024         if (!new)
3025                 return -ENOMEM;
3026
3027         smp_wmb(); /* See comment in __pte_alloc */
3028
3029         spin_lock(&mm->page_table_lock);
3030 #ifndef __ARCH_HAS_4LEVEL_HACK
3031         if (pud_present(*pud))          /* Another has populated it */
3032                 pmd_free(mm, new);
3033         else
3034                 pud_populate(mm, pud, new);
3035 #else
3036         if (pgd_present(*pud))          /* Another has populated it */
3037                 pmd_free(mm, new);
3038         else
3039                 pgd_populate(mm, pud, new);
3040 #endif /* __ARCH_HAS_4LEVEL_HACK */
3041         spin_unlock(&mm->page_table_lock);
3042         return 0;
3043 }
3044 #endif /* __PAGETABLE_PMD_FOLDED */
3045
3046 int make_pages_present(unsigned long addr, unsigned long end)
3047 {
3048         int ret, len, write;
3049         struct vm_area_struct * vma;
3050
3051         vma = find_vma(current->mm, addr);
3052         if (!vma)
3053                 return -ENOMEM;
3054         write = (vma->vm_flags & VM_WRITE) != 0;
3055         BUG_ON(addr >= end);
3056         BUG_ON(end > vma->vm_end);
3057         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3058         ret = get_user_pages(current, current->mm, addr,
3059                         len, write, 0, NULL, NULL);
3060         if (ret < 0)
3061                 return ret;
3062         return ret == len ? 0 : -EFAULT;
3063 }
3064
3065 #if !defined(__HAVE_ARCH_GATE_AREA)
3066
3067 #if defined(AT_SYSINFO_EHDR)
3068 static struct vm_area_struct gate_vma;
3069
3070 static int __init gate_vma_init(void)
3071 {
3072         gate_vma.vm_mm = NULL;
3073         gate_vma.vm_start = FIXADDR_USER_START;
3074         gate_vma.vm_end = FIXADDR_USER_END;
3075         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3076         gate_vma.vm_page_prot = __P101;
3077         /*
3078          * Make sure the vDSO gets into every core dump.
3079          * Dumping its contents makes post-mortem fully interpretable later
3080          * without matching up the same kernel and hardware config to see
3081          * what PC values meant.
3082          */
3083         gate_vma.vm_flags |= VM_ALWAYSDUMP;
3084         return 0;
3085 }
3086 __initcall(gate_vma_init);
3087 #endif
3088
3089 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3090 {
3091 #ifdef AT_SYSINFO_EHDR
3092         return &gate_vma;
3093 #else
3094         return NULL;
3095 #endif
3096 }
3097
3098 int in_gate_area_no_task(unsigned long addr)
3099 {
3100 #ifdef AT_SYSINFO_EHDR
3101         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3102                 return 1;
3103 #endif
3104         return 0;
3105 }
3106
3107 #endif  /* __HAVE_ARCH_GATE_AREA */
3108
3109 static int follow_pte(struct mm_struct *mm, unsigned long address,
3110                 pte_t **ptepp, spinlock_t **ptlp)
3111 {
3112         pgd_t *pgd;
3113         pud_t *pud;
3114         pmd_t *pmd;
3115         pte_t *ptep;
3116
3117         pgd = pgd_offset(mm, address);
3118         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3119                 goto out;
3120
3121         pud = pud_offset(pgd, address);
3122         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3123                 goto out;
3124
3125         pmd = pmd_offset(pud, address);
3126         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3127                 goto out;
3128
3129         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3130         if (pmd_huge(*pmd))
3131                 goto out;
3132
3133         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3134         if (!ptep)
3135                 goto out;
3136         if (!pte_present(*ptep))
3137                 goto unlock;
3138         *ptepp = ptep;
3139         return 0;
3140 unlock:
3141         pte_unmap_unlock(ptep, *ptlp);
3142 out:
3143         return -EINVAL;
3144 }
3145
3146 /**
3147  * follow_pfn - look up PFN at a user virtual address
3148  * @vma: memory mapping
3149  * @address: user virtual address
3150  * @pfn: location to store found PFN
3151  *
3152  * Only IO mappings and raw PFN mappings are allowed.
3153  *
3154  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3155  */
3156 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3157         unsigned long *pfn)
3158 {
3159         int ret = -EINVAL;
3160         spinlock_t *ptl;
3161         pte_t *ptep;
3162
3163         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3164                 return ret;
3165
3166         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3167         if (ret)
3168                 return ret;
3169         *pfn = pte_pfn(*ptep);
3170         pte_unmap_unlock(ptep, ptl);
3171         return 0;
3172 }
3173 EXPORT_SYMBOL(follow_pfn);
3174
3175 #ifdef CONFIG_HAVE_IOREMAP_PROT
3176 int follow_phys(struct vm_area_struct *vma,
3177                 unsigned long address, unsigned int flags,
3178                 unsigned long *prot, resource_size_t *phys)
3179 {
3180         int ret = -EINVAL;
3181         pte_t *ptep, pte;
3182         spinlock_t *ptl;
3183
3184         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3185                 goto out;
3186
3187         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3188                 goto out;
3189         pte = *ptep;
3190
3191         if ((flags & FOLL_WRITE) && !pte_write(pte))
3192                 goto unlock;
3193
3194         *prot = pgprot_val(pte_pgprot(pte));
3195         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3196
3197         ret = 0;
3198 unlock:
3199         pte_unmap_unlock(ptep, ptl);
3200 out:
3201         return ret;
3202 }
3203
3204 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3205                         void *buf, int len, int write)
3206 {
3207         resource_size_t phys_addr;
3208         unsigned long prot = 0;
3209         void __iomem *maddr;
3210         int offset = addr & (PAGE_SIZE-1);
3211
3212         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3213                 return -EINVAL;
3214
3215         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3216         if (write)
3217                 memcpy_toio(maddr + offset, buf, len);
3218         else
3219                 memcpy_fromio(buf, maddr + offset, len);
3220         iounmap(maddr);
3221
3222         return len;
3223 }
3224 #endif
3225
3226 /*
3227  * Access another process' address space.
3228  * Source/target buffer must be kernel space,
3229  * Do not walk the page table directly, use get_user_pages
3230  */
3231 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3232 {
3233         struct mm_struct *mm;
3234         struct vm_area_struct *vma;
3235         void *old_buf = buf;
3236
3237         mm = get_task_mm(tsk);
3238         if (!mm)
3239                 return 0;
3240
3241         down_read(&mm->mmap_sem);
3242         /* ignore errors, just check how much was successfully transferred */
3243         while (len) {
3244                 int bytes, ret, offset;
3245                 void *maddr;
3246                 struct page *page = NULL;
3247
3248                 ret = get_user_pages(tsk, mm, addr, 1,
3249                                 write, 1, &page, &vma);
3250                 if (ret <= 0) {
3251                         /*
3252                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3253                          * we can access using slightly different code.
3254                          */
3255 #ifdef CONFIG_HAVE_IOREMAP_PROT
3256                         vma = find_vma(mm, addr);
3257                         if (!vma)
3258                                 break;
3259                         if (vma->vm_ops && vma->vm_ops->access)
3260                                 ret = vma->vm_ops->access(vma, addr, buf,
3261                                                           len, write);
3262                         if (ret <= 0)
3263 #endif
3264                                 break;
3265                         bytes = ret;
3266                 } else {
3267                         bytes = len;
3268                         offset = addr & (PAGE_SIZE-1);
3269                         if (bytes > PAGE_SIZE-offset)
3270                                 bytes = PAGE_SIZE-offset;
3271
3272                         maddr = kmap(page);
3273                         if (write) {
3274                                 copy_to_user_page(vma, page, addr,
3275                                                   maddr + offset, buf, bytes);
3276                                 set_page_dirty_lock(page);
3277                         } else {
3278                                 copy_from_user_page(vma, page, addr,
3279                                                     buf, maddr + offset, bytes);
3280                         }
3281                         kunmap(page);
3282                         page_cache_release(page);
3283                 }
3284                 len -= bytes;
3285                 buf += bytes;
3286                 addr += bytes;
3287         }
3288         up_read(&mm->mmap_sem);
3289         mmput(mm);
3290
3291         return buf - old_buf;
3292 }
3293
3294 /*
3295  * Print the name of a VMA.
3296  */
3297 void print_vma_addr(char *prefix, unsigned long ip)
3298 {
3299         struct mm_struct *mm = current->mm;
3300         struct vm_area_struct *vma;
3301
3302         /*
3303          * Do not print if we are in atomic
3304          * contexts (in exception stacks, etc.):
3305          */
3306         if (preempt_count())
3307                 return;
3308
3309         down_read(&mm->mmap_sem);
3310         vma = find_vma(mm, ip);
3311         if (vma && vma->vm_file) {
3312                 struct file *f = vma->vm_file;
3313                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3314                 if (buf) {
3315                         char *p, *s;
3316
3317                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3318                         if (IS_ERR(p))
3319                                 p = "?";
3320                         s = strrchr(p, '/');
3321                         if (s)
3322                                 p = s+1;
3323                         printk("%s%s[%lx+%lx]", prefix, p,
3324                                         vma->vm_start,
3325                                         vma->vm_end - vma->vm_start);
3326                         free_page((unsigned long)buf);
3327                 }
3328         }
3329         up_read(&current->mm->mmap_sem);
3330 }
3331
3332 #ifdef CONFIG_PROVE_LOCKING
3333 void might_fault(void)
3334 {
3335         /*
3336          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3337          * holding the mmap_sem, this is safe because kernel memory doesn't
3338          * get paged out, therefore we'll never actually fault, and the
3339          * below annotations will generate false positives.
3340          */
3341         if (segment_eq(get_fs(), KERNEL_DS))
3342                 return;
3343
3344         might_sleep();
3345         /*
3346          * it would be nicer only to annotate paths which are not under
3347          * pagefault_disable, however that requires a larger audit and
3348          * providing helpers like get_user_atomic.
3349          */
3350         if (!in_atomic() && current->mm)
3351                 might_lock_read(&current->mm->mmap_sem);
3352 }
3353 EXPORT_SYMBOL(might_fault);
3354 #endif