2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
26 #include <asm/pgtable.h>
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
41 __initdata LIST_HEAD(huge_boot_pages);
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
48 #define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
54 static DEFINE_SPINLOCK(hugetlb_lock);
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
60 spin_unlock(&spool->lock);
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
70 struct hugepage_subpool *spool;
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
76 spin_lock_init(&spool->lock);
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
89 unlock_or_release_subpool(spool);
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
106 spin_unlock(&spool->lock);
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
126 return HUGETLBFS_SB(inode->i_sb)->spool;
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
131 return subpool_inode(vma->vm_file->f_dentry->d_inode);
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantion_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation mutex:
143 * down_write(&mm->mmap_sem);
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
149 struct list_head link;
154 static long region_add(struct list_head *head, long f, long t)
156 struct file_region *rg, *nrg, *trg;
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
163 /* Round our left edge to the current segment if it encloses us. */
167 /* Check for and consume any regions we now overlap with. */
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
190 static long region_chg(struct list_head *head, long f, long t)
192 struct file_region *rg, *nrg;
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
215 /* Round our left edge to the current segment if it encloses us. */
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
234 chg -= rg->to - rg->from;
239 static long region_truncate(struct list_head *head, long end)
241 struct file_region *rg, *trg;
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
248 if (&rg->link == head)
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
255 rg = list_entry(rg->link.next, typeof(*rg), link);
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
262 chg += rg->to - rg->from;
269 static long region_count(struct list_head *head, long f, long t)
271 struct file_region *rg;
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
287 chg += seg_to - seg_from;
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
316 struct hstate *hstate;
318 if (!is_vm_hugetlb_page(vma))
321 hstate = hstate_vma(vma);
323 return 1UL << (hstate->order + PAGE_SHIFT);
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
336 return vma_kernel_pagesize(vma);
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
370 return (unsigned long)vma->vm_private_data;
373 static void set_vma_private_data(struct vm_area_struct *vma,
376 vma->vm_private_data = (void *)value;
381 struct list_head regions;
384 static struct resv_map *resv_map_alloc(void)
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
396 static void resv_map_release(struct kref *ref)
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 if (!(vma->vm_flags & VM_MAYSHARE))
409 return (struct resv_map *)(get_vma_private_data(vma) &
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
435 return (get_vma_private_data(vma) & flag) != 0;
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440 struct vm_area_struct *vma)
442 if (vma->vm_flags & VM_NORESERVE)
445 if (vma->vm_flags & VM_MAYSHARE) {
446 /* Shared mappings always use reserves */
447 h->resv_huge_pages--;
448 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
450 * Only the process that called mmap() has reserves for
453 h->resv_huge_pages--;
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
460 VM_BUG_ON(!is_vm_hugetlb_page(vma));
461 if (!(vma->vm_flags & VM_MAYSHARE))
462 vma->vm_private_data = (void *)0;
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
468 if (vma->vm_flags & VM_MAYSHARE)
470 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
475 static void copy_gigantic_page(struct page *dst, struct page *src)
478 struct hstate *h = page_hstate(src);
479 struct page *dst_base = dst;
480 struct page *src_base = src;
482 for (i = 0; i < pages_per_huge_page(h); ) {
484 copy_highpage(dst, src);
487 dst = mem_map_next(dst, dst_base, i);
488 src = mem_map_next(src, src_base, i);
492 void copy_huge_page(struct page *dst, struct page *src)
495 struct hstate *h = page_hstate(src);
497 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498 copy_gigantic_page(dst, src);
503 for (i = 0; i < pages_per_huge_page(h); i++) {
505 copy_highpage(dst + i, src + i);
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
511 int nid = page_to_nid(page);
512 list_add(&page->lru, &h->hugepage_freelists[nid]);
513 h->free_huge_pages++;
514 h->free_huge_pages_node[nid]++;
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
521 if (list_empty(&h->hugepage_freelists[nid]))
523 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524 list_del(&page->lru);
525 set_page_refcounted(page);
526 h->free_huge_pages--;
527 h->free_huge_pages_node[nid]--;
531 static struct page *dequeue_huge_page_vma(struct hstate *h,
532 struct vm_area_struct *vma,
533 unsigned long address, int avoid_reserve)
535 struct page *page = NULL;
536 struct mempolicy *mpol;
537 nodemask_t *nodemask;
538 struct zonelist *zonelist;
541 unsigned int cpuset_mems_cookie;
544 cpuset_mems_cookie = get_mems_allowed();
545 zonelist = huge_zonelist(vma, address,
546 htlb_alloc_mask, &mpol, &nodemask);
548 * A child process with MAP_PRIVATE mappings created by their parent
549 * have no page reserves. This check ensures that reservations are
550 * not "stolen". The child may still get SIGKILLed
552 if (!vma_has_reserves(vma) &&
553 h->free_huge_pages - h->resv_huge_pages == 0)
556 /* If reserves cannot be used, ensure enough pages are in the pool */
557 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
560 for_each_zone_zonelist_nodemask(zone, z, zonelist,
561 MAX_NR_ZONES - 1, nodemask) {
562 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563 page = dequeue_huge_page_node(h, zone_to_nid(zone));
566 decrement_hugepage_resv_vma(h, vma);
573 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
582 static void update_and_free_page(struct hstate *h, struct page *page)
586 VM_BUG_ON(h->order >= MAX_ORDER);
589 h->nr_huge_pages_node[page_to_nid(page)]--;
590 for (i = 0; i < pages_per_huge_page(h); i++) {
591 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592 1 << PG_referenced | 1 << PG_dirty |
593 1 << PG_active | 1 << PG_reserved |
594 1 << PG_private | 1 << PG_writeback);
596 set_compound_page_dtor(page, NULL);
597 set_page_refcounted(page);
598 arch_release_hugepage(page);
599 __free_pages(page, huge_page_order(h));
602 struct hstate *size_to_hstate(unsigned long size)
607 if (huge_page_size(h) == size)
613 static void free_huge_page(struct page *page)
616 * Can't pass hstate in here because it is called from the
617 * compound page destructor.
619 struct hstate *h = page_hstate(page);
620 int nid = page_to_nid(page);
621 struct hugepage_subpool *spool =
622 (struct hugepage_subpool *)page_private(page);
624 set_page_private(page, 0);
625 page->mapping = NULL;
626 BUG_ON(page_count(page));
627 BUG_ON(page_mapcount(page));
628 INIT_LIST_HEAD(&page->lru);
630 spin_lock(&hugetlb_lock);
631 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
632 update_and_free_page(h, page);
633 h->surplus_huge_pages--;
634 h->surplus_huge_pages_node[nid]--;
636 enqueue_huge_page(h, page);
638 spin_unlock(&hugetlb_lock);
639 hugepage_subpool_put_pages(spool, 1);
642 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
644 set_compound_page_dtor(page, free_huge_page);
645 spin_lock(&hugetlb_lock);
647 h->nr_huge_pages_node[nid]++;
648 spin_unlock(&hugetlb_lock);
649 put_page(page); /* free it into the hugepage allocator */
652 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
655 int nr_pages = 1 << order;
656 struct page *p = page + 1;
658 /* we rely on prep_new_huge_page to set the destructor */
659 set_compound_order(page, order);
661 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
663 set_page_count(p, 0);
664 p->first_page = page;
668 int PageHuge(struct page *page)
670 compound_page_dtor *dtor;
672 if (!PageCompound(page))
675 page = compound_head(page);
676 dtor = get_compound_page_dtor(page);
678 return dtor == free_huge_page;
680 EXPORT_SYMBOL_GPL(PageHuge);
683 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
684 * normal or transparent huge pages.
686 int PageHeadHuge(struct page *page_head)
688 compound_page_dtor *dtor;
690 if (!PageHead(page_head))
693 dtor = get_compound_page_dtor(page_head);
695 return dtor == free_huge_page;
697 EXPORT_SYMBOL_GPL(PageHeadHuge);
699 pgoff_t __basepage_index(struct page *page)
701 struct page *page_head = compound_head(page);
702 pgoff_t index = page_index(page_head);
703 unsigned long compound_idx;
705 if (!PageHuge(page_head))
706 return page_index(page);
708 if (compound_order(page_head) >= MAX_ORDER)
709 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
711 compound_idx = page - page_head;
713 return (index << compound_order(page_head)) + compound_idx;
716 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
720 if (h->order >= MAX_ORDER)
723 page = alloc_pages_exact_node(nid,
724 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
725 __GFP_REPEAT|__GFP_NOWARN,
728 if (arch_prepare_hugepage(page)) {
729 __free_pages(page, huge_page_order(h));
732 prep_new_huge_page(h, page, nid);
739 * common helper functions for hstate_next_node_to_{alloc|free}.
740 * We may have allocated or freed a huge page based on a different
741 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
742 * be outside of *nodes_allowed. Ensure that we use an allowed
743 * node for alloc or free.
745 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
747 nid = next_node(nid, *nodes_allowed);
748 if (nid == MAX_NUMNODES)
749 nid = first_node(*nodes_allowed);
750 VM_BUG_ON(nid >= MAX_NUMNODES);
755 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
757 if (!node_isset(nid, *nodes_allowed))
758 nid = next_node_allowed(nid, nodes_allowed);
763 * returns the previously saved node ["this node"] from which to
764 * allocate a persistent huge page for the pool and advance the
765 * next node from which to allocate, handling wrap at end of node
768 static int hstate_next_node_to_alloc(struct hstate *h,
769 nodemask_t *nodes_allowed)
773 VM_BUG_ON(!nodes_allowed);
775 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
776 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
781 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
788 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
789 next_nid = start_nid;
792 page = alloc_fresh_huge_page_node(h, next_nid);
797 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
798 } while (next_nid != start_nid);
801 count_vm_event(HTLB_BUDDY_PGALLOC);
803 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
809 * helper for free_pool_huge_page() - return the previously saved
810 * node ["this node"] from which to free a huge page. Advance the
811 * next node id whether or not we find a free huge page to free so
812 * that the next attempt to free addresses the next node.
814 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
818 VM_BUG_ON(!nodes_allowed);
820 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
821 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
827 * Free huge page from pool from next node to free.
828 * Attempt to keep persistent huge pages more or less
829 * balanced over allowed nodes.
830 * Called with hugetlb_lock locked.
832 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
839 start_nid = hstate_next_node_to_free(h, nodes_allowed);
840 next_nid = start_nid;
844 * If we're returning unused surplus pages, only examine
845 * nodes with surplus pages.
847 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
848 !list_empty(&h->hugepage_freelists[next_nid])) {
850 list_entry(h->hugepage_freelists[next_nid].next,
852 list_del(&page->lru);
853 h->free_huge_pages--;
854 h->free_huge_pages_node[next_nid]--;
856 h->surplus_huge_pages--;
857 h->surplus_huge_pages_node[next_nid]--;
859 update_and_free_page(h, page);
863 next_nid = hstate_next_node_to_free(h, nodes_allowed);
864 } while (next_nid != start_nid);
869 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
874 if (h->order >= MAX_ORDER)
878 * Assume we will successfully allocate the surplus page to
879 * prevent racing processes from causing the surplus to exceed
882 * This however introduces a different race, where a process B
883 * tries to grow the static hugepage pool while alloc_pages() is
884 * called by process A. B will only examine the per-node
885 * counters in determining if surplus huge pages can be
886 * converted to normal huge pages in adjust_pool_surplus(). A
887 * won't be able to increment the per-node counter, until the
888 * lock is dropped by B, but B doesn't drop hugetlb_lock until
889 * no more huge pages can be converted from surplus to normal
890 * state (and doesn't try to convert again). Thus, we have a
891 * case where a surplus huge page exists, the pool is grown, and
892 * the surplus huge page still exists after, even though it
893 * should just have been converted to a normal huge page. This
894 * does not leak memory, though, as the hugepage will be freed
895 * once it is out of use. It also does not allow the counters to
896 * go out of whack in adjust_pool_surplus() as we don't modify
897 * the node values until we've gotten the hugepage and only the
898 * per-node value is checked there.
900 spin_lock(&hugetlb_lock);
901 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
902 spin_unlock(&hugetlb_lock);
906 h->surplus_huge_pages++;
908 spin_unlock(&hugetlb_lock);
910 if (nid == NUMA_NO_NODE)
911 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
912 __GFP_REPEAT|__GFP_NOWARN,
915 page = alloc_pages_exact_node(nid,
916 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
917 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
919 if (page && arch_prepare_hugepage(page)) {
920 __free_pages(page, huge_page_order(h));
924 spin_lock(&hugetlb_lock);
926 r_nid = page_to_nid(page);
927 set_compound_page_dtor(page, free_huge_page);
929 * We incremented the global counters already
931 h->nr_huge_pages_node[r_nid]++;
932 h->surplus_huge_pages_node[r_nid]++;
933 __count_vm_event(HTLB_BUDDY_PGALLOC);
936 h->surplus_huge_pages--;
937 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
939 spin_unlock(&hugetlb_lock);
945 * This allocation function is useful in the context where vma is irrelevant.
946 * E.g. soft-offlining uses this function because it only cares physical
947 * address of error page.
949 struct page *alloc_huge_page_node(struct hstate *h, int nid)
953 spin_lock(&hugetlb_lock);
954 page = dequeue_huge_page_node(h, nid);
955 spin_unlock(&hugetlb_lock);
958 page = alloc_buddy_huge_page(h, nid);
964 * Increase the hugetlb pool such that it can accommodate a reservation
967 static int gather_surplus_pages(struct hstate *h, int delta)
969 struct list_head surplus_list;
970 struct page *page, *tmp;
972 int needed, allocated;
974 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
976 h->resv_huge_pages += delta;
981 INIT_LIST_HEAD(&surplus_list);
985 spin_unlock(&hugetlb_lock);
986 for (i = 0; i < needed; i++) {
987 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
990 * We were not able to allocate enough pages to
991 * satisfy the entire reservation so we free what
992 * we've allocated so far.
996 list_add(&page->lru, &surplus_list);
1001 * After retaking hugetlb_lock, we need to recalculate 'needed'
1002 * because either resv_huge_pages or free_huge_pages may have changed.
1004 spin_lock(&hugetlb_lock);
1005 needed = (h->resv_huge_pages + delta) -
1006 (h->free_huge_pages + allocated);
1011 * The surplus_list now contains _at_least_ the number of extra pages
1012 * needed to accommodate the reservation. Add the appropriate number
1013 * of pages to the hugetlb pool and free the extras back to the buddy
1014 * allocator. Commit the entire reservation here to prevent another
1015 * process from stealing the pages as they are added to the pool but
1016 * before they are reserved.
1018 needed += allocated;
1019 h->resv_huge_pages += delta;
1022 /* Free the needed pages to the hugetlb pool */
1023 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1026 list_del(&page->lru);
1028 * This page is now managed by the hugetlb allocator and has
1029 * no users -- drop the buddy allocator's reference.
1031 put_page_testzero(page);
1032 VM_BUG_ON(page_count(page));
1033 enqueue_huge_page(h, page);
1035 spin_unlock(&hugetlb_lock);
1037 /* Free unnecessary surplus pages to the buddy allocator */
1039 if (!list_empty(&surplus_list)) {
1040 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1041 list_del(&page->lru);
1045 spin_lock(&hugetlb_lock);
1051 * When releasing a hugetlb pool reservation, any surplus pages that were
1052 * allocated to satisfy the reservation must be explicitly freed if they were
1054 * Called with hugetlb_lock held.
1056 static void return_unused_surplus_pages(struct hstate *h,
1057 unsigned long unused_resv_pages)
1059 unsigned long nr_pages;
1061 /* Uncommit the reservation */
1062 h->resv_huge_pages -= unused_resv_pages;
1064 /* Cannot return gigantic pages currently */
1065 if (h->order >= MAX_ORDER)
1068 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1071 * We want to release as many surplus pages as possible, spread
1072 * evenly across all nodes with memory. Iterate across these nodes
1073 * until we can no longer free unreserved surplus pages. This occurs
1074 * when the nodes with surplus pages have no free pages.
1075 * free_pool_huge_page() will balance the the freed pages across the
1076 * on-line nodes with memory and will handle the hstate accounting.
1078 while (nr_pages--) {
1079 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1081 cond_resched_lock(&hugetlb_lock);
1086 * Determine if the huge page at addr within the vma has an associated
1087 * reservation. Where it does not we will need to logically increase
1088 * reservation and actually increase subpool usage before an allocation
1089 * can occur. Where any new reservation would be required the
1090 * reservation change is prepared, but not committed. Once the page
1091 * has been allocated from the subpool and instantiated the change should
1092 * be committed via vma_commit_reservation. No action is required on
1095 static long vma_needs_reservation(struct hstate *h,
1096 struct vm_area_struct *vma, unsigned long addr)
1098 struct address_space *mapping = vma->vm_file->f_mapping;
1099 struct inode *inode = mapping->host;
1101 if (vma->vm_flags & VM_MAYSHARE) {
1102 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1103 return region_chg(&inode->i_mapping->private_list,
1106 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1111 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1112 struct resv_map *reservations = vma_resv_map(vma);
1114 err = region_chg(&reservations->regions, idx, idx + 1);
1120 static void vma_commit_reservation(struct hstate *h,
1121 struct vm_area_struct *vma, unsigned long addr)
1123 struct address_space *mapping = vma->vm_file->f_mapping;
1124 struct inode *inode = mapping->host;
1126 if (vma->vm_flags & VM_MAYSHARE) {
1127 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1128 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1130 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1131 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1132 struct resv_map *reservations = vma_resv_map(vma);
1134 /* Mark this page used in the map. */
1135 region_add(&reservations->regions, idx, idx + 1);
1139 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1140 unsigned long addr, int avoid_reserve)
1142 struct hugepage_subpool *spool = subpool_vma(vma);
1143 struct hstate *h = hstate_vma(vma);
1148 * Processes that did not create the mapping will have no
1149 * reserves and will not have accounted against subpool
1150 * limit. Check that the subpool limit can be made before
1151 * satisfying the allocation MAP_NORESERVE mappings may also
1152 * need pages and subpool limit allocated allocated if no reserve
1155 chg = vma_needs_reservation(h, vma, addr);
1157 return ERR_PTR(-VM_FAULT_OOM);
1159 if (hugepage_subpool_get_pages(spool, chg))
1160 return ERR_PTR(-VM_FAULT_SIGBUS);
1162 spin_lock(&hugetlb_lock);
1163 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1164 spin_unlock(&hugetlb_lock);
1167 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1169 hugepage_subpool_put_pages(spool, chg);
1170 return ERR_PTR(-VM_FAULT_SIGBUS);
1174 set_page_private(page, (unsigned long)spool);
1176 vma_commit_reservation(h, vma, addr);
1181 int __weak alloc_bootmem_huge_page(struct hstate *h)
1183 struct huge_bootmem_page *m;
1184 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1189 addr = __alloc_bootmem_node_nopanic(
1190 NODE_DATA(hstate_next_node_to_alloc(h,
1191 &node_states[N_HIGH_MEMORY])),
1192 huge_page_size(h), huge_page_size(h), 0);
1196 * Use the beginning of the huge page to store the
1197 * huge_bootmem_page struct (until gather_bootmem
1198 * puts them into the mem_map).
1208 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1209 /* Put them into a private list first because mem_map is not up yet */
1210 list_add(&m->list, &huge_boot_pages);
1215 static void prep_compound_huge_page(struct page *page, int order)
1217 if (unlikely(order > (MAX_ORDER - 1)))
1218 prep_compound_gigantic_page(page, order);
1220 prep_compound_page(page, order);
1223 /* Put bootmem huge pages into the standard lists after mem_map is up */
1224 static void __init gather_bootmem_prealloc(void)
1226 struct huge_bootmem_page *m;
1228 list_for_each_entry(m, &huge_boot_pages, list) {
1229 struct hstate *h = m->hstate;
1232 #ifdef CONFIG_HIGHMEM
1233 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1234 free_bootmem_late((unsigned long)m,
1235 sizeof(struct huge_bootmem_page));
1237 page = virt_to_page(m);
1239 __ClearPageReserved(page);
1240 WARN_ON(page_count(page) != 1);
1241 prep_compound_huge_page(page, h->order);
1242 prep_new_huge_page(h, page, page_to_nid(page));
1244 * If we had gigantic hugepages allocated at boot time, we need
1245 * to restore the 'stolen' pages to totalram_pages in order to
1246 * fix confusing memory reports from free(1) and another
1247 * side-effects, like CommitLimit going negative.
1249 if (h->order > (MAX_ORDER - 1))
1250 totalram_pages += 1 << h->order;
1254 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1258 for (i = 0; i < h->max_huge_pages; ++i) {
1259 if (h->order >= MAX_ORDER) {
1260 if (!alloc_bootmem_huge_page(h))
1262 } else if (!alloc_fresh_huge_page(h,
1263 &node_states[N_HIGH_MEMORY]))
1266 h->max_huge_pages = i;
1269 static void __init hugetlb_init_hstates(void)
1273 for_each_hstate(h) {
1274 /* oversize hugepages were init'ed in early boot */
1275 if (h->order < MAX_ORDER)
1276 hugetlb_hstate_alloc_pages(h);
1280 static char * __init memfmt(char *buf, unsigned long n)
1282 if (n >= (1UL << 30))
1283 sprintf(buf, "%lu GB", n >> 30);
1284 else if (n >= (1UL << 20))
1285 sprintf(buf, "%lu MB", n >> 20);
1287 sprintf(buf, "%lu KB", n >> 10);
1291 static void __init report_hugepages(void)
1295 for_each_hstate(h) {
1297 printk(KERN_INFO "HugeTLB registered %s page size, "
1298 "pre-allocated %ld pages\n",
1299 memfmt(buf, huge_page_size(h)),
1300 h->free_huge_pages);
1304 #ifdef CONFIG_HIGHMEM
1305 static void try_to_free_low(struct hstate *h, unsigned long count,
1306 nodemask_t *nodes_allowed)
1310 if (h->order >= MAX_ORDER)
1313 for_each_node_mask(i, *nodes_allowed) {
1314 struct page *page, *next;
1315 struct list_head *freel = &h->hugepage_freelists[i];
1316 list_for_each_entry_safe(page, next, freel, lru) {
1317 if (count >= h->nr_huge_pages)
1319 if (PageHighMem(page))
1321 list_del(&page->lru);
1322 update_and_free_page(h, page);
1323 h->free_huge_pages--;
1324 h->free_huge_pages_node[page_to_nid(page)]--;
1329 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1330 nodemask_t *nodes_allowed)
1336 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1337 * balanced by operating on them in a round-robin fashion.
1338 * Returns 1 if an adjustment was made.
1340 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1343 int start_nid, next_nid;
1346 VM_BUG_ON(delta != -1 && delta != 1);
1349 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1351 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1352 next_nid = start_nid;
1358 * To shrink on this node, there must be a surplus page
1360 if (!h->surplus_huge_pages_node[nid]) {
1361 next_nid = hstate_next_node_to_alloc(h,
1368 * Surplus cannot exceed the total number of pages
1370 if (h->surplus_huge_pages_node[nid] >=
1371 h->nr_huge_pages_node[nid]) {
1372 next_nid = hstate_next_node_to_free(h,
1378 h->surplus_huge_pages += delta;
1379 h->surplus_huge_pages_node[nid] += delta;
1382 } while (next_nid != start_nid);
1387 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1388 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1389 nodemask_t *nodes_allowed)
1391 unsigned long min_count, ret;
1393 if (h->order >= MAX_ORDER)
1394 return h->max_huge_pages;
1397 * Increase the pool size
1398 * First take pages out of surplus state. Then make up the
1399 * remaining difference by allocating fresh huge pages.
1401 * We might race with alloc_buddy_huge_page() here and be unable
1402 * to convert a surplus huge page to a normal huge page. That is
1403 * not critical, though, it just means the overall size of the
1404 * pool might be one hugepage larger than it needs to be, but
1405 * within all the constraints specified by the sysctls.
1407 spin_lock(&hugetlb_lock);
1408 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1409 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1413 while (count > persistent_huge_pages(h)) {
1415 * If this allocation races such that we no longer need the
1416 * page, free_huge_page will handle it by freeing the page
1417 * and reducing the surplus.
1419 spin_unlock(&hugetlb_lock);
1420 ret = alloc_fresh_huge_page(h, nodes_allowed);
1421 spin_lock(&hugetlb_lock);
1425 /* Bail for signals. Probably ctrl-c from user */
1426 if (signal_pending(current))
1431 * Decrease the pool size
1432 * First return free pages to the buddy allocator (being careful
1433 * to keep enough around to satisfy reservations). Then place
1434 * pages into surplus state as needed so the pool will shrink
1435 * to the desired size as pages become free.
1437 * By placing pages into the surplus state independent of the
1438 * overcommit value, we are allowing the surplus pool size to
1439 * exceed overcommit. There are few sane options here. Since
1440 * alloc_buddy_huge_page() is checking the global counter,
1441 * though, we'll note that we're not allowed to exceed surplus
1442 * and won't grow the pool anywhere else. Not until one of the
1443 * sysctls are changed, or the surplus pages go out of use.
1445 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1446 min_count = max(count, min_count);
1447 try_to_free_low(h, min_count, nodes_allowed);
1448 while (min_count < persistent_huge_pages(h)) {
1449 if (!free_pool_huge_page(h, nodes_allowed, 0))
1451 cond_resched_lock(&hugetlb_lock);
1453 while (count < persistent_huge_pages(h)) {
1454 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1458 ret = persistent_huge_pages(h);
1459 spin_unlock(&hugetlb_lock);
1463 #define HSTATE_ATTR_RO(_name) \
1464 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1466 #define HSTATE_ATTR(_name) \
1467 static struct kobj_attribute _name##_attr = \
1468 __ATTR(_name, 0644, _name##_show, _name##_store)
1470 static struct kobject *hugepages_kobj;
1471 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1473 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1475 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1479 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1480 if (hstate_kobjs[i] == kobj) {
1482 *nidp = NUMA_NO_NODE;
1486 return kobj_to_node_hstate(kobj, nidp);
1489 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1490 struct kobj_attribute *attr, char *buf)
1493 unsigned long nr_huge_pages;
1496 h = kobj_to_hstate(kobj, &nid);
1497 if (nid == NUMA_NO_NODE)
1498 nr_huge_pages = h->nr_huge_pages;
1500 nr_huge_pages = h->nr_huge_pages_node[nid];
1502 return sprintf(buf, "%lu\n", nr_huge_pages);
1505 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1506 struct kobject *kobj, struct kobj_attribute *attr,
1507 const char *buf, size_t len)
1511 unsigned long count;
1513 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1515 err = strict_strtoul(buf, 10, &count);
1519 h = kobj_to_hstate(kobj, &nid);
1520 if (h->order >= MAX_ORDER) {
1525 if (nid == NUMA_NO_NODE) {
1527 * global hstate attribute
1529 if (!(obey_mempolicy &&
1530 init_nodemask_of_mempolicy(nodes_allowed))) {
1531 NODEMASK_FREE(nodes_allowed);
1532 nodes_allowed = &node_states[N_HIGH_MEMORY];
1534 } else if (nodes_allowed) {
1536 * per node hstate attribute: adjust count to global,
1537 * but restrict alloc/free to the specified node.
1539 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1540 init_nodemask_of_node(nodes_allowed, nid);
1542 nodes_allowed = &node_states[N_HIGH_MEMORY];
1544 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1546 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1547 NODEMASK_FREE(nodes_allowed);
1551 NODEMASK_FREE(nodes_allowed);
1555 static ssize_t nr_hugepages_show(struct kobject *kobj,
1556 struct kobj_attribute *attr, char *buf)
1558 return nr_hugepages_show_common(kobj, attr, buf);
1561 static ssize_t nr_hugepages_store(struct kobject *kobj,
1562 struct kobj_attribute *attr, const char *buf, size_t len)
1564 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1566 HSTATE_ATTR(nr_hugepages);
1571 * hstate attribute for optionally mempolicy-based constraint on persistent
1572 * huge page alloc/free.
1574 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1575 struct kobj_attribute *attr, char *buf)
1577 return nr_hugepages_show_common(kobj, attr, buf);
1580 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1581 struct kobj_attribute *attr, const char *buf, size_t len)
1583 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1585 HSTATE_ATTR(nr_hugepages_mempolicy);
1589 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1590 struct kobj_attribute *attr, char *buf)
1592 struct hstate *h = kobj_to_hstate(kobj, NULL);
1593 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1596 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1597 struct kobj_attribute *attr, const char *buf, size_t count)
1600 unsigned long input;
1601 struct hstate *h = kobj_to_hstate(kobj, NULL);
1603 if (h->order >= MAX_ORDER)
1606 err = strict_strtoul(buf, 10, &input);
1610 spin_lock(&hugetlb_lock);
1611 h->nr_overcommit_huge_pages = input;
1612 spin_unlock(&hugetlb_lock);
1616 HSTATE_ATTR(nr_overcommit_hugepages);
1618 static ssize_t free_hugepages_show(struct kobject *kobj,
1619 struct kobj_attribute *attr, char *buf)
1622 unsigned long free_huge_pages;
1625 h = kobj_to_hstate(kobj, &nid);
1626 if (nid == NUMA_NO_NODE)
1627 free_huge_pages = h->free_huge_pages;
1629 free_huge_pages = h->free_huge_pages_node[nid];
1631 return sprintf(buf, "%lu\n", free_huge_pages);
1633 HSTATE_ATTR_RO(free_hugepages);
1635 static ssize_t resv_hugepages_show(struct kobject *kobj,
1636 struct kobj_attribute *attr, char *buf)
1638 struct hstate *h = kobj_to_hstate(kobj, NULL);
1639 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1641 HSTATE_ATTR_RO(resv_hugepages);
1643 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1644 struct kobj_attribute *attr, char *buf)
1647 unsigned long surplus_huge_pages;
1650 h = kobj_to_hstate(kobj, &nid);
1651 if (nid == NUMA_NO_NODE)
1652 surplus_huge_pages = h->surplus_huge_pages;
1654 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1656 return sprintf(buf, "%lu\n", surplus_huge_pages);
1658 HSTATE_ATTR_RO(surplus_hugepages);
1660 static struct attribute *hstate_attrs[] = {
1661 &nr_hugepages_attr.attr,
1662 &nr_overcommit_hugepages_attr.attr,
1663 &free_hugepages_attr.attr,
1664 &resv_hugepages_attr.attr,
1665 &surplus_hugepages_attr.attr,
1667 &nr_hugepages_mempolicy_attr.attr,
1672 static struct attribute_group hstate_attr_group = {
1673 .attrs = hstate_attrs,
1676 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1677 struct kobject **hstate_kobjs,
1678 struct attribute_group *hstate_attr_group)
1681 int hi = h - hstates;
1683 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1684 if (!hstate_kobjs[hi])
1687 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1689 kobject_put(hstate_kobjs[hi]);
1694 static void __init hugetlb_sysfs_init(void)
1699 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1700 if (!hugepages_kobj)
1703 for_each_hstate(h) {
1704 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1705 hstate_kobjs, &hstate_attr_group);
1707 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1715 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1716 * with node sysdevs in node_devices[] using a parallel array. The array
1717 * index of a node sysdev or _hstate == node id.
1718 * This is here to avoid any static dependency of the node sysdev driver, in
1719 * the base kernel, on the hugetlb module.
1721 struct node_hstate {
1722 struct kobject *hugepages_kobj;
1723 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1725 struct node_hstate node_hstates[MAX_NUMNODES];
1728 * A subset of global hstate attributes for node sysdevs
1730 static struct attribute *per_node_hstate_attrs[] = {
1731 &nr_hugepages_attr.attr,
1732 &free_hugepages_attr.attr,
1733 &surplus_hugepages_attr.attr,
1737 static struct attribute_group per_node_hstate_attr_group = {
1738 .attrs = per_node_hstate_attrs,
1742 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1743 * Returns node id via non-NULL nidp.
1745 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1749 for (nid = 0; nid < nr_node_ids; nid++) {
1750 struct node_hstate *nhs = &node_hstates[nid];
1752 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1753 if (nhs->hstate_kobjs[i] == kobj) {
1765 * Unregister hstate attributes from a single node sysdev.
1766 * No-op if no hstate attributes attached.
1768 void hugetlb_unregister_node(struct node *node)
1771 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1773 if (!nhs->hugepages_kobj)
1774 return; /* no hstate attributes */
1777 if (nhs->hstate_kobjs[h - hstates]) {
1778 kobject_put(nhs->hstate_kobjs[h - hstates]);
1779 nhs->hstate_kobjs[h - hstates] = NULL;
1782 kobject_put(nhs->hugepages_kobj);
1783 nhs->hugepages_kobj = NULL;
1787 * hugetlb module exit: unregister hstate attributes from node sysdevs
1790 static void hugetlb_unregister_all_nodes(void)
1795 * disable node sysdev registrations.
1797 register_hugetlbfs_with_node(NULL, NULL);
1800 * remove hstate attributes from any nodes that have them.
1802 for (nid = 0; nid < nr_node_ids; nid++)
1803 hugetlb_unregister_node(&node_devices[nid]);
1807 * Register hstate attributes for a single node sysdev.
1808 * No-op if attributes already registered.
1810 void hugetlb_register_node(struct node *node)
1813 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1816 if (nhs->hugepages_kobj)
1817 return; /* already allocated */
1819 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1820 &node->sysdev.kobj);
1821 if (!nhs->hugepages_kobj)
1824 for_each_hstate(h) {
1825 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1827 &per_node_hstate_attr_group);
1829 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1831 h->name, node->sysdev.id);
1832 hugetlb_unregister_node(node);
1839 * hugetlb init time: register hstate attributes for all registered node
1840 * sysdevs of nodes that have memory. All on-line nodes should have
1841 * registered their associated sysdev by this time.
1843 static void hugetlb_register_all_nodes(void)
1847 for_each_node_state(nid, N_HIGH_MEMORY) {
1848 struct node *node = &node_devices[nid];
1849 if (node->sysdev.id == nid)
1850 hugetlb_register_node(node);
1854 * Let the node sysdev driver know we're here so it can
1855 * [un]register hstate attributes on node hotplug.
1857 register_hugetlbfs_with_node(hugetlb_register_node,
1858 hugetlb_unregister_node);
1860 #else /* !CONFIG_NUMA */
1862 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1870 static void hugetlb_unregister_all_nodes(void) { }
1872 static void hugetlb_register_all_nodes(void) { }
1876 static void __exit hugetlb_exit(void)
1880 hugetlb_unregister_all_nodes();
1882 for_each_hstate(h) {
1883 kobject_put(hstate_kobjs[h - hstates]);
1886 kobject_put(hugepages_kobj);
1888 module_exit(hugetlb_exit);
1890 static int __init hugetlb_init(void)
1892 /* Some platform decide whether they support huge pages at boot
1893 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1894 * there is no such support
1896 if (HPAGE_SHIFT == 0)
1899 if (!size_to_hstate(default_hstate_size)) {
1900 default_hstate_size = HPAGE_SIZE;
1901 if (!size_to_hstate(default_hstate_size))
1902 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1904 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1905 if (default_hstate_max_huge_pages)
1906 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1908 hugetlb_init_hstates();
1910 gather_bootmem_prealloc();
1914 hugetlb_sysfs_init();
1916 hugetlb_register_all_nodes();
1920 module_init(hugetlb_init);
1922 /* Should be called on processing a hugepagesz=... option */
1923 void __init hugetlb_add_hstate(unsigned order)
1928 if (size_to_hstate(PAGE_SIZE << order)) {
1929 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1932 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1934 h = &hstates[max_hstate++];
1936 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1937 h->nr_huge_pages = 0;
1938 h->free_huge_pages = 0;
1939 for (i = 0; i < MAX_NUMNODES; ++i)
1940 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1941 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1942 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1943 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1944 huge_page_size(h)/1024);
1949 static int __init hugetlb_nrpages_setup(char *s)
1952 static unsigned long *last_mhp;
1955 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1956 * so this hugepages= parameter goes to the "default hstate".
1959 mhp = &default_hstate_max_huge_pages;
1961 mhp = &parsed_hstate->max_huge_pages;
1963 if (mhp == last_mhp) {
1964 printk(KERN_WARNING "hugepages= specified twice without "
1965 "interleaving hugepagesz=, ignoring\n");
1969 if (sscanf(s, "%lu", mhp) <= 0)
1973 * Global state is always initialized later in hugetlb_init.
1974 * But we need to allocate >= MAX_ORDER hstates here early to still
1975 * use the bootmem allocator.
1977 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1978 hugetlb_hstate_alloc_pages(parsed_hstate);
1984 __setup("hugepages=", hugetlb_nrpages_setup);
1986 static int __init hugetlb_default_setup(char *s)
1988 default_hstate_size = memparse(s, &s);
1991 __setup("default_hugepagesz=", hugetlb_default_setup);
1993 static unsigned int cpuset_mems_nr(unsigned int *array)
1996 unsigned int nr = 0;
1998 for_each_node_mask(node, cpuset_current_mems_allowed)
2004 #ifdef CONFIG_SYSCTL
2005 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2006 struct ctl_table *table, int write,
2007 void __user *buffer, size_t *length, loff_t *ppos)
2009 struct hstate *h = &default_hstate;
2013 tmp = h->max_huge_pages;
2015 if (write && h->order >= MAX_ORDER)
2019 table->maxlen = sizeof(unsigned long);
2020 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2025 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2026 GFP_KERNEL | __GFP_NORETRY);
2027 if (!(obey_mempolicy &&
2028 init_nodemask_of_mempolicy(nodes_allowed))) {
2029 NODEMASK_FREE(nodes_allowed);
2030 nodes_allowed = &node_states[N_HIGH_MEMORY];
2032 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2034 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2035 NODEMASK_FREE(nodes_allowed);
2041 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2042 void __user *buffer, size_t *length, loff_t *ppos)
2045 return hugetlb_sysctl_handler_common(false, table, write,
2046 buffer, length, ppos);
2050 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2051 void __user *buffer, size_t *length, loff_t *ppos)
2053 return hugetlb_sysctl_handler_common(true, table, write,
2054 buffer, length, ppos);
2056 #endif /* CONFIG_NUMA */
2058 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2059 void __user *buffer,
2060 size_t *length, loff_t *ppos)
2062 proc_dointvec(table, write, buffer, length, ppos);
2063 if (hugepages_treat_as_movable)
2064 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2066 htlb_alloc_mask = GFP_HIGHUSER;
2070 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2071 void __user *buffer,
2072 size_t *length, loff_t *ppos)
2074 struct hstate *h = &default_hstate;
2078 tmp = h->nr_overcommit_huge_pages;
2080 if (write && h->order >= MAX_ORDER)
2084 table->maxlen = sizeof(unsigned long);
2085 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2090 spin_lock(&hugetlb_lock);
2091 h->nr_overcommit_huge_pages = tmp;
2092 spin_unlock(&hugetlb_lock);
2098 #endif /* CONFIG_SYSCTL */
2100 void hugetlb_report_meminfo(struct seq_file *m)
2102 struct hstate *h = &default_hstate;
2104 "HugePages_Total: %5lu\n"
2105 "HugePages_Free: %5lu\n"
2106 "HugePages_Rsvd: %5lu\n"
2107 "HugePages_Surp: %5lu\n"
2108 "Hugepagesize: %8lu kB\n",
2112 h->surplus_huge_pages,
2113 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2116 int hugetlb_report_node_meminfo(int nid, char *buf)
2118 struct hstate *h = &default_hstate;
2120 "Node %d HugePages_Total: %5u\n"
2121 "Node %d HugePages_Free: %5u\n"
2122 "Node %d HugePages_Surp: %5u\n",
2123 nid, h->nr_huge_pages_node[nid],
2124 nid, h->free_huge_pages_node[nid],
2125 nid, h->surplus_huge_pages_node[nid]);
2128 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2129 unsigned long hugetlb_total_pages(void)
2132 unsigned long nr_total_pages = 0;
2135 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2136 return nr_total_pages;
2139 static int hugetlb_acct_memory(struct hstate *h, long delta)
2143 spin_lock(&hugetlb_lock);
2145 * When cpuset is configured, it breaks the strict hugetlb page
2146 * reservation as the accounting is done on a global variable. Such
2147 * reservation is completely rubbish in the presence of cpuset because
2148 * the reservation is not checked against page availability for the
2149 * current cpuset. Application can still potentially OOM'ed by kernel
2150 * with lack of free htlb page in cpuset that the task is in.
2151 * Attempt to enforce strict accounting with cpuset is almost
2152 * impossible (or too ugly) because cpuset is too fluid that
2153 * task or memory node can be dynamically moved between cpusets.
2155 * The change of semantics for shared hugetlb mapping with cpuset is
2156 * undesirable. However, in order to preserve some of the semantics,
2157 * we fall back to check against current free page availability as
2158 * a best attempt and hopefully to minimize the impact of changing
2159 * semantics that cpuset has.
2162 if (gather_surplus_pages(h, delta) < 0)
2165 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2166 return_unused_surplus_pages(h, delta);
2173 return_unused_surplus_pages(h, (unsigned long) -delta);
2176 spin_unlock(&hugetlb_lock);
2180 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2182 struct resv_map *reservations = vma_resv_map(vma);
2185 * This new VMA should share its siblings reservation map if present.
2186 * The VMA will only ever have a valid reservation map pointer where
2187 * it is being copied for another still existing VMA. As that VMA
2188 * has a reference to the reservation map it cannot disappear until
2189 * after this open call completes. It is therefore safe to take a
2190 * new reference here without additional locking.
2193 kref_get(&reservations->refs);
2196 static void resv_map_put(struct vm_area_struct *vma)
2198 struct resv_map *reservations = vma_resv_map(vma);
2202 kref_put(&reservations->refs, resv_map_release);
2205 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2207 struct hstate *h = hstate_vma(vma);
2208 struct resv_map *reservations = vma_resv_map(vma);
2209 struct hugepage_subpool *spool = subpool_vma(vma);
2210 unsigned long reserve;
2211 unsigned long start;
2215 start = vma_hugecache_offset(h, vma, vma->vm_start);
2216 end = vma_hugecache_offset(h, vma, vma->vm_end);
2218 reserve = (end - start) -
2219 region_count(&reservations->regions, start, end);
2224 hugetlb_acct_memory(h, -reserve);
2225 hugepage_subpool_put_pages(spool, reserve);
2231 * We cannot handle pagefaults against hugetlb pages at all. They cause
2232 * handle_mm_fault() to try to instantiate regular-sized pages in the
2233 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2236 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2242 const struct vm_operations_struct hugetlb_vm_ops = {
2243 .fault = hugetlb_vm_op_fault,
2244 .open = hugetlb_vm_op_open,
2245 .close = hugetlb_vm_op_close,
2248 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2255 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2257 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2259 entry = pte_mkyoung(entry);
2260 entry = pte_mkhuge(entry);
2265 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2266 unsigned long address, pte_t *ptep)
2270 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2271 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2272 update_mmu_cache(vma, address, ptep);
2275 static int is_hugetlb_entry_migration(pte_t pte)
2279 if (huge_pte_none(pte) || pte_present(pte))
2281 swp = pte_to_swp_entry(pte);
2282 if (non_swap_entry(swp) && is_migration_entry(swp))
2288 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2292 if (huge_pte_none(pte) || pte_present(pte))
2294 swp = pte_to_swp_entry(pte);
2295 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2301 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2302 struct vm_area_struct *vma)
2304 pte_t *src_pte, *dst_pte, entry;
2305 struct page *ptepage;
2308 struct hstate *h = hstate_vma(vma);
2309 unsigned long sz = huge_page_size(h);
2311 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2313 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2314 src_pte = huge_pte_offset(src, addr);
2317 dst_pte = huge_pte_alloc(dst, addr, sz);
2321 /* If the pagetables are shared don't copy or take references */
2322 if (dst_pte == src_pte)
2325 spin_lock(&dst->page_table_lock);
2326 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2327 entry = huge_ptep_get(src_pte);
2328 if (huge_pte_none(entry)) { /* skip none entry */
2330 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2331 is_hugetlb_entry_hwpoisoned(entry))) {
2332 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2334 if (is_write_migration_entry(swp_entry) && cow) {
2336 * COW mappings require pages in both
2337 * parent and child to be set to read.
2339 make_migration_entry_read(&swp_entry);
2340 entry = swp_entry_to_pte(swp_entry);
2341 set_huge_pte_at(src, addr, src_pte, entry);
2343 set_huge_pte_at(dst, addr, dst_pte, entry);
2346 huge_ptep_set_wrprotect(src, addr, src_pte);
2347 entry = huge_ptep_get(src_pte);
2348 ptepage = pte_page(entry);
2350 page_dup_rmap(ptepage);
2351 set_huge_pte_at(dst, addr, dst_pte, entry);
2353 spin_unlock(&src->page_table_lock);
2354 spin_unlock(&dst->page_table_lock);
2362 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2363 unsigned long end, struct page *ref_page)
2365 struct mm_struct *mm = vma->vm_mm;
2366 unsigned long address;
2371 struct hstate *h = hstate_vma(vma);
2372 unsigned long sz = huge_page_size(h);
2375 * A page gathering list, protected by per file i_mmap_mutex. The
2376 * lock is used to avoid list corruption from multiple unmapping
2377 * of the same page since we are using page->lru.
2379 LIST_HEAD(page_list);
2381 WARN_ON(!is_vm_hugetlb_page(vma));
2382 BUG_ON(start & ~huge_page_mask(h));
2383 BUG_ON(end & ~huge_page_mask(h));
2385 mmu_notifier_invalidate_range_start(mm, start, end);
2386 spin_lock(&mm->page_table_lock);
2387 for (address = start; address < end; address += sz) {
2388 ptep = huge_pte_offset(mm, address);
2392 if (huge_pmd_unshare(mm, &address, ptep))
2396 * If a reference page is supplied, it is because a specific
2397 * page is being unmapped, not a range. Ensure the page we
2398 * are about to unmap is the actual page of interest.
2401 pte = huge_ptep_get(ptep);
2402 if (huge_pte_none(pte))
2404 page = pte_page(pte);
2405 if (page != ref_page)
2409 * Mark the VMA as having unmapped its page so that
2410 * future faults in this VMA will fail rather than
2411 * looking like data was lost
2413 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2416 pte = huge_ptep_get_and_clear(mm, address, ptep);
2417 if (huge_pte_none(pte))
2421 * HWPoisoned hugepage is already unmapped and dropped reference
2423 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2426 page = pte_page(pte);
2428 set_page_dirty(page);
2429 list_add(&page->lru, &page_list);
2431 spin_unlock(&mm->page_table_lock);
2432 flush_tlb_range(vma, start, end);
2433 mmu_notifier_invalidate_range_end(mm, start, end);
2434 list_for_each_entry_safe(page, tmp, &page_list, lru) {
2435 page_remove_rmap(page);
2436 list_del(&page->lru);
2441 void __unmap_hugepage_range_final(struct vm_area_struct *vma,
2442 unsigned long start, unsigned long end,
2443 struct page *ref_page)
2445 __unmap_hugepage_range(vma, start, end, ref_page);
2448 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2449 * test will fail on a vma being torn down, and not grab a page table
2450 * on its way out. We're lucky that the flag has such an appropriate
2451 * name, and can in fact be safely cleared here. We could clear it
2452 * before the __unmap_hugepage_range above, but all that's necessary
2453 * is to clear it before releasing the i_mmap_mutex. This works
2454 * because in the context this is called, the VMA is about to be
2455 * destroyed and the i_mmap_mutex is held.
2457 vma->vm_flags &= ~VM_MAYSHARE;
2460 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2461 unsigned long end, struct page *ref_page)
2463 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2464 __unmap_hugepage_range(vma, start, end, ref_page);
2465 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2469 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2470 * mappping it owns the reserve page for. The intention is to unmap the page
2471 * from other VMAs and let the children be SIGKILLed if they are faulting the
2474 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2475 struct page *page, unsigned long address)
2477 struct hstate *h = hstate_vma(vma);
2478 struct vm_area_struct *iter_vma;
2479 struct address_space *mapping;
2480 struct prio_tree_iter iter;
2484 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2485 * from page cache lookup which is in HPAGE_SIZE units.
2487 address = address & huge_page_mask(h);
2488 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2490 mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2493 * Take the mapping lock for the duration of the table walk. As
2494 * this mapping should be shared between all the VMAs,
2495 * __unmap_hugepage_range() is called as the lock is already held
2497 mutex_lock(&mapping->i_mmap_mutex);
2498 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2499 /* Do not unmap the current VMA */
2500 if (iter_vma == vma)
2504 * Unmap the page from other VMAs without their own reserves.
2505 * They get marked to be SIGKILLed if they fault in these
2506 * areas. This is because a future no-page fault on this VMA
2507 * could insert a zeroed page instead of the data existing
2508 * from the time of fork. This would look like data corruption
2510 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2511 __unmap_hugepage_range(iter_vma,
2512 address, address + huge_page_size(h),
2515 mutex_unlock(&mapping->i_mmap_mutex);
2521 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2523 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2524 unsigned long address, pte_t *ptep, pte_t pte,
2525 struct page *pagecache_page)
2527 struct hstate *h = hstate_vma(vma);
2528 struct page *old_page, *new_page;
2530 int outside_reserve = 0;
2532 old_page = pte_page(pte);
2535 /* If no-one else is actually using this page, avoid the copy
2536 * and just make the page writable */
2537 avoidcopy = (page_mapcount(old_page) == 1);
2539 if (PageAnon(old_page))
2540 page_move_anon_rmap(old_page, vma, address);
2541 set_huge_ptep_writable(vma, address, ptep);
2546 * If the process that created a MAP_PRIVATE mapping is about to
2547 * perform a COW due to a shared page count, attempt to satisfy
2548 * the allocation without using the existing reserves. The pagecache
2549 * page is used to determine if the reserve at this address was
2550 * consumed or not. If reserves were used, a partial faulted mapping
2551 * at the time of fork() could consume its reserves on COW instead
2552 * of the full address range.
2554 if (!(vma->vm_flags & VM_MAYSHARE) &&
2555 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2556 old_page != pagecache_page)
2557 outside_reserve = 1;
2559 page_cache_get(old_page);
2561 /* Drop page_table_lock as buddy allocator may be called */
2562 spin_unlock(&mm->page_table_lock);
2563 new_page = alloc_huge_page(vma, address, outside_reserve);
2565 if (IS_ERR(new_page)) {
2566 page_cache_release(old_page);
2569 * If a process owning a MAP_PRIVATE mapping fails to COW,
2570 * it is due to references held by a child and an insufficient
2571 * huge page pool. To guarantee the original mappers
2572 * reliability, unmap the page from child processes. The child
2573 * may get SIGKILLed if it later faults.
2575 if (outside_reserve) {
2576 BUG_ON(huge_pte_none(pte));
2577 if (unmap_ref_private(mm, vma, old_page, address)) {
2578 BUG_ON(huge_pte_none(pte));
2579 spin_lock(&mm->page_table_lock);
2580 goto retry_avoidcopy;
2585 /* Caller expects lock to be held */
2586 spin_lock(&mm->page_table_lock);
2587 return -PTR_ERR(new_page);
2591 * When the original hugepage is shared one, it does not have
2592 * anon_vma prepared.
2594 if (unlikely(anon_vma_prepare(vma))) {
2595 page_cache_release(new_page);
2596 page_cache_release(old_page);
2597 /* Caller expects lock to be held */
2598 spin_lock(&mm->page_table_lock);
2599 return VM_FAULT_OOM;
2602 copy_user_huge_page(new_page, old_page, address, vma,
2603 pages_per_huge_page(h));
2604 __SetPageUptodate(new_page);
2607 * Retake the page_table_lock to check for racing updates
2608 * before the page tables are altered
2610 spin_lock(&mm->page_table_lock);
2611 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2612 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2614 mmu_notifier_invalidate_range_start(mm,
2615 address & huge_page_mask(h),
2616 (address & huge_page_mask(h)) + huge_page_size(h));
2617 huge_ptep_clear_flush(vma, address, ptep);
2618 set_huge_pte_at(mm, address, ptep,
2619 make_huge_pte(vma, new_page, 1));
2620 page_remove_rmap(old_page);
2621 hugepage_add_new_anon_rmap(new_page, vma, address);
2622 /* Make the old page be freed below */
2623 new_page = old_page;
2624 mmu_notifier_invalidate_range_end(mm,
2625 address & huge_page_mask(h),
2626 (address & huge_page_mask(h)) + huge_page_size(h));
2628 page_cache_release(new_page);
2629 page_cache_release(old_page);
2633 /* Return the pagecache page at a given address within a VMA */
2634 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2635 struct vm_area_struct *vma, unsigned long address)
2637 struct address_space *mapping;
2640 mapping = vma->vm_file->f_mapping;
2641 idx = vma_hugecache_offset(h, vma, address);
2643 return find_lock_page(mapping, idx);
2647 * Return whether there is a pagecache page to back given address within VMA.
2648 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2650 static bool hugetlbfs_pagecache_present(struct hstate *h,
2651 struct vm_area_struct *vma, unsigned long address)
2653 struct address_space *mapping;
2657 mapping = vma->vm_file->f_mapping;
2658 idx = vma_hugecache_offset(h, vma, address);
2660 page = find_get_page(mapping, idx);
2663 return page != NULL;
2666 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2667 unsigned long address, pte_t *ptep, unsigned int flags)
2669 struct hstate *h = hstate_vma(vma);
2670 int ret = VM_FAULT_SIGBUS;
2674 struct address_space *mapping;
2678 * Currently, we are forced to kill the process in the event the
2679 * original mapper has unmapped pages from the child due to a failed
2680 * COW. Warn that such a situation has occurred as it may not be obvious
2682 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2684 "PID %d killed due to inadequate hugepage pool\n",
2689 mapping = vma->vm_file->f_mapping;
2690 idx = vma_hugecache_offset(h, vma, address);
2693 * Use page lock to guard against racing truncation
2694 * before we get page_table_lock.
2697 page = find_lock_page(mapping, idx);
2699 size = i_size_read(mapping->host) >> huge_page_shift(h);
2702 page = alloc_huge_page(vma, address, 0);
2704 ret = -PTR_ERR(page);
2707 clear_huge_page(page, address, pages_per_huge_page(h));
2708 __SetPageUptodate(page);
2710 if (vma->vm_flags & VM_MAYSHARE) {
2712 struct inode *inode = mapping->host;
2714 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2722 spin_lock(&inode->i_lock);
2723 inode->i_blocks += blocks_per_huge_page(h);
2724 spin_unlock(&inode->i_lock);
2725 page_dup_rmap(page);
2728 if (unlikely(anon_vma_prepare(vma))) {
2730 goto backout_unlocked;
2732 hugepage_add_new_anon_rmap(page, vma, address);
2736 * If memory error occurs between mmap() and fault, some process
2737 * don't have hwpoisoned swap entry for errored virtual address.
2738 * So we need to block hugepage fault by PG_hwpoison bit check.
2740 if (unlikely(PageHWPoison(page))) {
2741 ret = VM_FAULT_HWPOISON |
2742 VM_FAULT_SET_HINDEX(h - hstates);
2743 goto backout_unlocked;
2745 page_dup_rmap(page);
2749 * If we are going to COW a private mapping later, we examine the
2750 * pending reservations for this page now. This will ensure that
2751 * any allocations necessary to record that reservation occur outside
2754 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2755 if (vma_needs_reservation(h, vma, address) < 0) {
2757 goto backout_unlocked;
2760 spin_lock(&mm->page_table_lock);
2761 size = i_size_read(mapping->host) >> huge_page_shift(h);
2766 if (!huge_pte_none(huge_ptep_get(ptep)))
2769 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2770 && (vma->vm_flags & VM_SHARED)));
2771 set_huge_pte_at(mm, address, ptep, new_pte);
2773 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2774 /* Optimization, do the COW without a second fault */
2775 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2778 spin_unlock(&mm->page_table_lock);
2784 spin_unlock(&mm->page_table_lock);
2791 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2792 unsigned long address, unsigned int flags)
2797 struct page *page = NULL;
2798 struct page *pagecache_page = NULL;
2799 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2800 struct hstate *h = hstate_vma(vma);
2801 int need_wait_lock = 0;
2803 ptep = huge_pte_offset(mm, address);
2805 entry = huge_ptep_get(ptep);
2806 if (unlikely(is_hugetlb_entry_migration(entry))) {
2807 migration_entry_wait_huge(mm, ptep);
2809 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2810 return VM_FAULT_HWPOISON_LARGE |
2811 VM_FAULT_SET_HINDEX(h - hstates);
2814 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2816 return VM_FAULT_OOM;
2819 * Serialize hugepage allocation and instantiation, so that we don't
2820 * get spurious allocation failures if two CPUs race to instantiate
2821 * the same page in the page cache.
2823 mutex_lock(&hugetlb_instantiation_mutex);
2824 entry = huge_ptep_get(ptep);
2825 if (huge_pte_none(entry)) {
2826 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2833 * entry could be a migration/hwpoison entry at this point, so this
2834 * check prevents the kernel from going below assuming that we have
2835 * a active hugepage in pagecache. This goto expects the 2nd page fault,
2836 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
2839 if (!pte_present(entry))
2843 * If we are going to COW the mapping later, we examine the pending
2844 * reservations for this page now. This will ensure that any
2845 * allocations necessary to record that reservation occur outside the
2846 * spinlock. For private mappings, we also lookup the pagecache
2847 * page now as it is used to determine if a reservation has been
2850 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2851 if (vma_needs_reservation(h, vma, address) < 0) {
2856 if (!(vma->vm_flags & VM_MAYSHARE))
2857 pagecache_page = hugetlbfs_pagecache_page(h,
2861 spin_lock(&mm->page_table_lock);
2862 /* Check for a racing update before calling hugetlb_cow */
2863 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2864 goto out_page_table_lock;
2867 * hugetlb_cow() requires page locks of pte_page(entry) and
2868 * pagecache_page, so here we need take the former one
2869 * when page != pagecache_page or !pagecache_page.
2871 page = pte_page(entry);
2872 if (page != pagecache_page)
2873 if (!trylock_page(page)) {
2875 goto out_page_table_lock;
2880 if (flags & FAULT_FLAG_WRITE) {
2881 if (!pte_write(entry)) {
2882 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2886 entry = pte_mkdirty(entry);
2888 entry = pte_mkyoung(entry);
2889 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2890 flags & FAULT_FLAG_WRITE))
2891 update_mmu_cache(vma, address, ptep);
2893 if (page != pagecache_page)
2896 out_page_table_lock:
2897 spin_unlock(&mm->page_table_lock);
2899 if (pagecache_page) {
2900 unlock_page(pagecache_page);
2901 put_page(pagecache_page);
2904 mutex_unlock(&hugetlb_instantiation_mutex);
2907 * Generally it's safe to hold refcount during waiting page lock. But
2908 * here we just wait to defer the next page fault to avoid busy loop and
2909 * the page is not used after unlocked before returning from the current
2910 * page fault. So we are safe from accessing freed page, even if we wait
2911 * here without taking refcount.
2914 wait_on_page_locked(page);
2918 /* Can be overriden by architectures */
2919 __attribute__((weak)) struct page *
2920 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2921 pud_t *pud, int write)
2927 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2928 struct page **pages, struct vm_area_struct **vmas,
2929 unsigned long *position, int *length, int i,
2932 unsigned long pfn_offset;
2933 unsigned long vaddr = *position;
2934 int remainder = *length;
2935 struct hstate *h = hstate_vma(vma);
2937 spin_lock(&mm->page_table_lock);
2938 while (vaddr < vma->vm_end && remainder) {
2944 * Some archs (sparc64, sh*) have multiple pte_ts to
2945 * each hugepage. We have to make sure we get the
2946 * first, for the page indexing below to work.
2948 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2949 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2952 * When coredumping, it suits get_dump_page if we just return
2953 * an error where there's an empty slot with no huge pagecache
2954 * to back it. This way, we avoid allocating a hugepage, and
2955 * the sparse dumpfile avoids allocating disk blocks, but its
2956 * huge holes still show up with zeroes where they need to be.
2958 if (absent && (flags & FOLL_DUMP) &&
2959 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2965 * We need call hugetlb_fault for both hugepages under migration
2966 * (in which case hugetlb_fault waits for the migration,) and
2967 * hwpoisoned hugepages (in which case we need to prevent the
2968 * caller from accessing to them.) In order to do this, we use
2969 * here is_swap_pte instead of is_hugetlb_entry_migration and
2970 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2971 * both cases, and because we can't follow correct pages
2972 * directly from any kind of swap entries.
2974 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2975 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2978 spin_unlock(&mm->page_table_lock);
2979 ret = hugetlb_fault(mm, vma, vaddr,
2980 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2981 spin_lock(&mm->page_table_lock);
2982 if (!(ret & VM_FAULT_ERROR))
2989 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2990 page = pte_page(huge_ptep_get(pte));
2993 pages[i] = mem_map_offset(page, pfn_offset);
3004 if (vaddr < vma->vm_end && remainder &&
3005 pfn_offset < pages_per_huge_page(h)) {
3007 * We use pfn_offset to avoid touching the pageframes
3008 * of this compound page.
3013 spin_unlock(&mm->page_table_lock);
3014 *length = remainder;
3017 return i ? i : -EFAULT;
3020 void hugetlb_change_protection(struct vm_area_struct *vma,
3021 unsigned long address, unsigned long end, pgprot_t newprot)
3023 struct mm_struct *mm = vma->vm_mm;
3024 unsigned long start = address;
3027 struct hstate *h = hstate_vma(vma);
3029 BUG_ON(address >= end);
3030 flush_cache_range(vma, address, end);
3032 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3033 spin_lock(&mm->page_table_lock);
3034 for (; address < end; address += huge_page_size(h)) {
3035 ptep = huge_pte_offset(mm, address);
3038 if (huge_pmd_unshare(mm, &address, ptep))
3040 if (!huge_pte_none(huge_ptep_get(ptep))) {
3041 pte = huge_ptep_get_and_clear(mm, address, ptep);
3042 pte = pte_mkhuge(pte_modify(pte, newprot));
3043 set_huge_pte_at(mm, address, ptep, pte);
3046 spin_unlock(&mm->page_table_lock);
3048 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3049 * may have cleared our pud entry and done put_page on the page table:
3050 * once we release i_mmap_mutex, another task can do the final put_page
3051 * and that page table be reused and filled with junk.
3053 flush_tlb_range(vma, start, end);
3054 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3057 int hugetlb_reserve_pages(struct inode *inode,
3059 struct vm_area_struct *vma,
3060 vm_flags_t vm_flags)
3063 struct hstate *h = hstate_inode(inode);
3064 struct hugepage_subpool *spool = subpool_inode(inode);
3067 * Only apply hugepage reservation if asked. At fault time, an
3068 * attempt will be made for VM_NORESERVE to allocate a page
3069 * without using reserves
3071 if (vm_flags & VM_NORESERVE)
3075 * Shared mappings base their reservation on the number of pages that
3076 * are already allocated on behalf of the file. Private mappings need
3077 * to reserve the full area even if read-only as mprotect() may be
3078 * called to make the mapping read-write. Assume !vma is a shm mapping
3080 if (!vma || vma->vm_flags & VM_MAYSHARE)
3081 chg = region_chg(&inode->i_mapping->private_list, from, to);
3083 struct resv_map *resv_map = resv_map_alloc();
3089 set_vma_resv_map(vma, resv_map);
3090 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3098 /* There must be enough pages in the subpool for the mapping */
3099 if (hugepage_subpool_get_pages(spool, chg)) {
3105 * Check enough hugepages are available for the reservation.
3106 * Hand the pages back to the subpool if there are not
3108 ret = hugetlb_acct_memory(h, chg);
3110 hugepage_subpool_put_pages(spool, chg);
3115 * Account for the reservations made. Shared mappings record regions
3116 * that have reservations as they are shared by multiple VMAs.
3117 * When the last VMA disappears, the region map says how much
3118 * the reservation was and the page cache tells how much of
3119 * the reservation was consumed. Private mappings are per-VMA and
3120 * only the consumed reservations are tracked. When the VMA
3121 * disappears, the original reservation is the VMA size and the
3122 * consumed reservations are stored in the map. Hence, nothing
3123 * else has to be done for private mappings here
3125 if (!vma || vma->vm_flags & VM_MAYSHARE)
3126 region_add(&inode->i_mapping->private_list, from, to);
3134 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3136 struct hstate *h = hstate_inode(inode);
3137 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3138 struct hugepage_subpool *spool = subpool_inode(inode);
3140 spin_lock(&inode->i_lock);
3141 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3142 spin_unlock(&inode->i_lock);
3144 hugepage_subpool_put_pages(spool, (chg - freed));
3145 hugetlb_acct_memory(h, -(chg - freed));
3148 #ifdef CONFIG_MEMORY_FAILURE
3150 /* Should be called in hugetlb_lock */
3151 static int is_hugepage_on_freelist(struct page *hpage)
3155 struct hstate *h = page_hstate(hpage);
3156 int nid = page_to_nid(hpage);
3158 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3165 * This function is called from memory failure code.
3166 * Assume the caller holds page lock of the head page.
3168 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3170 struct hstate *h = page_hstate(hpage);
3171 int nid = page_to_nid(hpage);
3174 spin_lock(&hugetlb_lock);
3175 if (is_hugepage_on_freelist(hpage)) {
3176 list_del(&hpage->lru);
3177 set_page_refcounted(hpage);
3178 h->free_huge_pages--;
3179 h->free_huge_pages_node[nid]--;
3182 spin_unlock(&hugetlb_lock);