e3b6fc8c0b7b545c65dea56e9f2d8bdaaf3d1f69
[pandora-kernel.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/filemap.h>
40
41 /*
42  * FIXME: remove all knowledge of the buffer layer from the core VM
43  */
44 #include <linux/buffer_head.h> /* for try_to_free_buffers */
45
46 #include <asm/mman.h>
47
48 /*
49  * Shared mappings implemented 30.11.1994. It's not fully working yet,
50  * though.
51  *
52  * Shared mappings now work. 15.8.1995  Bruno.
53  *
54  * finished 'unifying' the page and buffer cache and SMP-threaded the
55  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56  *
57  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58  */
59
60 /*
61  * Lock ordering:
62  *
63  *  ->i_mmap_mutex              (truncate_pagecache)
64  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
65  *      ->swap_lock             (exclusive_swap_page, others)
66  *        ->mapping->tree_lock
67  *
68  *  ->i_mutex
69  *    ->i_mmap_mutex            (truncate->unmap_mapping_range)
70  *
71  *  ->mmap_sem
72  *    ->i_mmap_mutex
73  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
74  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
75  *
76  *  ->mmap_sem
77  *    ->lock_page               (access_process_vm)
78  *
79  *  ->i_mutex                   (generic_file_buffered_write)
80  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
81  *
82  *  bdi->wb.list_lock
83  *    sb_lock                   (fs/fs-writeback.c)
84  *    ->mapping->tree_lock      (__sync_single_inode)
85  *
86  *  ->i_mmap_mutex
87  *    ->anon_vma.lock           (vma_adjust)
88  *
89  *  ->anon_vma.lock
90  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
91  *
92  *  ->page_table_lock or pte_lock
93  *    ->swap_lock               (try_to_unmap_one)
94  *    ->private_lock            (try_to_unmap_one)
95  *    ->tree_lock               (try_to_unmap_one)
96  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
97  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
98  *    ->private_lock            (page_remove_rmap->set_page_dirty)
99  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
100  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
101  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
103  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
104  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
105  *
106  * ->i_mmap_mutex
107  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
108  */
109
110 /*
111  * Delete a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold the mapping's tree_lock.
114  */
115 void __delete_from_page_cache(struct page *page)
116 {
117         struct address_space *mapping = page->mapping;
118
119         trace_mm_filemap_delete_from_page_cache(page);
120         /*
121          * if we're uptodate, flush out into the cleancache, otherwise
122          * invalidate any existing cleancache entries.  We can't leave
123          * stale data around in the cleancache once our page is gone
124          */
125         if (PageUptodate(page) && PageMappedToDisk(page))
126                 cleancache_put_page(page);
127         else
128                 cleancache_invalidate_page(mapping, page);
129
130         radix_tree_delete(&mapping->page_tree, page->index);
131         page->mapping = NULL;
132         /* Leave page->index set: truncation lookup relies upon it */
133         mapping->nrpages--;
134         __dec_zone_page_state(page, NR_FILE_PAGES);
135         if (PageSwapBacked(page))
136                 __dec_zone_page_state(page, NR_SHMEM);
137         BUG_ON(page_mapped(page));
138
139         /*
140          * Some filesystems seem to re-dirty the page even after
141          * the VM has canceled the dirty bit (eg ext3 journaling).
142          *
143          * Fix it up by doing a final dirty accounting check after
144          * having removed the page entirely.
145          */
146         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
147                 dec_zone_page_state(page, NR_FILE_DIRTY);
148                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
149         }
150 }
151
152 /**
153  * delete_from_page_cache - delete page from page cache
154  * @page: the page which the kernel is trying to remove from page cache
155  *
156  * This must be called only on pages that have been verified to be in the page
157  * cache and locked.  It will never put the page into the free list, the caller
158  * has a reference on the page.
159  */
160 void delete_from_page_cache(struct page *page)
161 {
162         struct address_space *mapping = page->mapping;
163         void (*freepage)(struct page *);
164
165         BUG_ON(!PageLocked(page));
166
167         freepage = mapping->a_ops->freepage;
168         spin_lock_irq(&mapping->tree_lock);
169         __delete_from_page_cache(page);
170         spin_unlock_irq(&mapping->tree_lock);
171         mem_cgroup_uncharge_cache_page(page);
172
173         if (freepage)
174                 freepage(page);
175         page_cache_release(page);
176 }
177 EXPORT_SYMBOL(delete_from_page_cache);
178
179 static int sleep_on_page(void *word)
180 {
181         io_schedule();
182         return 0;
183 }
184
185 static int sleep_on_page_killable(void *word)
186 {
187         sleep_on_page(word);
188         return fatal_signal_pending(current) ? -EINTR : 0;
189 }
190
191 static int filemap_check_errors(struct address_space *mapping)
192 {
193         int ret = 0;
194         /* Check for outstanding write errors */
195         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
196                 ret = -ENOSPC;
197         if (test_and_clear_bit(AS_EIO, &mapping->flags))
198                 ret = -EIO;
199         return ret;
200 }
201
202 /**
203  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
204  * @mapping:    address space structure to write
205  * @start:      offset in bytes where the range starts
206  * @end:        offset in bytes where the range ends (inclusive)
207  * @sync_mode:  enable synchronous operation
208  *
209  * Start writeback against all of a mapping's dirty pages that lie
210  * within the byte offsets <start, end> inclusive.
211  *
212  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
213  * opposed to a regular memory cleansing writeback.  The difference between
214  * these two operations is that if a dirty page/buffer is encountered, it must
215  * be waited upon, and not just skipped over.
216  */
217 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218                                 loff_t end, int sync_mode)
219 {
220         int ret;
221         struct writeback_control wbc = {
222                 .sync_mode = sync_mode,
223                 .nr_to_write = LONG_MAX,
224                 .range_start = start,
225                 .range_end = end,
226         };
227
228         if (!mapping_cap_writeback_dirty(mapping))
229                 return 0;
230
231         ret = do_writepages(mapping, &wbc);
232         return ret;
233 }
234
235 static inline int __filemap_fdatawrite(struct address_space *mapping,
236         int sync_mode)
237 {
238         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
239 }
240
241 int filemap_fdatawrite(struct address_space *mapping)
242 {
243         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
244 }
245 EXPORT_SYMBOL(filemap_fdatawrite);
246
247 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
248                                 loff_t end)
249 {
250         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
251 }
252 EXPORT_SYMBOL(filemap_fdatawrite_range);
253
254 /**
255  * filemap_flush - mostly a non-blocking flush
256  * @mapping:    target address_space
257  *
258  * This is a mostly non-blocking flush.  Not suitable for data-integrity
259  * purposes - I/O may not be started against all dirty pages.
260  */
261 int filemap_flush(struct address_space *mapping)
262 {
263         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
264 }
265 EXPORT_SYMBOL(filemap_flush);
266
267 /**
268  * filemap_fdatawait_range - wait for writeback to complete
269  * @mapping:            address space structure to wait for
270  * @start_byte:         offset in bytes where the range starts
271  * @end_byte:           offset in bytes where the range ends (inclusive)
272  *
273  * Walk the list of under-writeback pages of the given address space
274  * in the given range and wait for all of them.
275  */
276 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
277                             loff_t end_byte)
278 {
279         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
280         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
281         struct pagevec pvec;
282         int nr_pages;
283         int ret2, ret = 0;
284
285         if (end_byte < start_byte)
286                 goto out;
287
288         pagevec_init(&pvec, 0);
289         while ((index <= end) &&
290                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
291                         PAGECACHE_TAG_WRITEBACK,
292                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
293                 unsigned i;
294
295                 for (i = 0; i < nr_pages; i++) {
296                         struct page *page = pvec.pages[i];
297
298                         /* until radix tree lookup accepts end_index */
299                         if (page->index > end)
300                                 continue;
301
302                         wait_on_page_writeback(page);
303                         if (TestClearPageError(page))
304                                 ret = -EIO;
305                 }
306                 pagevec_release(&pvec);
307                 cond_resched();
308         }
309 out:
310         ret2 = filemap_check_errors(mapping);
311         if (!ret)
312                 ret = ret2;
313
314         return ret;
315 }
316 EXPORT_SYMBOL(filemap_fdatawait_range);
317
318 /**
319  * filemap_fdatawait - wait for all under-writeback pages to complete
320  * @mapping: address space structure to wait for
321  *
322  * Walk the list of under-writeback pages of the given address space
323  * and wait for all of them.
324  */
325 int filemap_fdatawait(struct address_space *mapping)
326 {
327         loff_t i_size = i_size_read(mapping->host);
328
329         if (i_size == 0)
330                 return 0;
331
332         return filemap_fdatawait_range(mapping, 0, i_size - 1);
333 }
334 EXPORT_SYMBOL(filemap_fdatawait);
335
336 int filemap_write_and_wait(struct address_space *mapping)
337 {
338         int err = 0;
339
340         if (mapping->nrpages) {
341                 err = filemap_fdatawrite(mapping);
342                 /*
343                  * Even if the above returned error, the pages may be
344                  * written partially (e.g. -ENOSPC), so we wait for it.
345                  * But the -EIO is special case, it may indicate the worst
346                  * thing (e.g. bug) happened, so we avoid waiting for it.
347                  */
348                 if (err != -EIO) {
349                         int err2 = filemap_fdatawait(mapping);
350                         if (!err)
351                                 err = err2;
352                 }
353         } else {
354                 err = filemap_check_errors(mapping);
355         }
356         return err;
357 }
358 EXPORT_SYMBOL(filemap_write_and_wait);
359
360 /**
361  * filemap_write_and_wait_range - write out & wait on a file range
362  * @mapping:    the address_space for the pages
363  * @lstart:     offset in bytes where the range starts
364  * @lend:       offset in bytes where the range ends (inclusive)
365  *
366  * Write out and wait upon file offsets lstart->lend, inclusive.
367  *
368  * Note that `lend' is inclusive (describes the last byte to be written) so
369  * that this function can be used to write to the very end-of-file (end = -1).
370  */
371 int filemap_write_and_wait_range(struct address_space *mapping,
372                                  loff_t lstart, loff_t lend)
373 {
374         int err = 0;
375
376         if (mapping->nrpages) {
377                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
378                                                  WB_SYNC_ALL);
379                 /* See comment of filemap_write_and_wait() */
380                 if (err != -EIO) {
381                         int err2 = filemap_fdatawait_range(mapping,
382                                                 lstart, lend);
383                         if (!err)
384                                 err = err2;
385                 }
386         } else {
387                 err = filemap_check_errors(mapping);
388         }
389         return err;
390 }
391 EXPORT_SYMBOL(filemap_write_and_wait_range);
392
393 /**
394  * replace_page_cache_page - replace a pagecache page with a new one
395  * @old:        page to be replaced
396  * @new:        page to replace with
397  * @gfp_mask:   allocation mode
398  *
399  * This function replaces a page in the pagecache with a new one.  On
400  * success it acquires the pagecache reference for the new page and
401  * drops it for the old page.  Both the old and new pages must be
402  * locked.  This function does not add the new page to the LRU, the
403  * caller must do that.
404  *
405  * The remove + add is atomic.  The only way this function can fail is
406  * memory allocation failure.
407  */
408 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
409 {
410         int error;
411
412         VM_BUG_ON(!PageLocked(old));
413         VM_BUG_ON(!PageLocked(new));
414         VM_BUG_ON(new->mapping);
415
416         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
417         if (!error) {
418                 struct address_space *mapping = old->mapping;
419                 void (*freepage)(struct page *);
420
421                 pgoff_t offset = old->index;
422                 freepage = mapping->a_ops->freepage;
423
424                 page_cache_get(new);
425                 new->mapping = mapping;
426                 new->index = offset;
427
428                 spin_lock_irq(&mapping->tree_lock);
429                 __delete_from_page_cache(old);
430                 error = radix_tree_insert(&mapping->page_tree, offset, new);
431                 BUG_ON(error);
432                 mapping->nrpages++;
433                 __inc_zone_page_state(new, NR_FILE_PAGES);
434                 if (PageSwapBacked(new))
435                         __inc_zone_page_state(new, NR_SHMEM);
436                 spin_unlock_irq(&mapping->tree_lock);
437                 /* mem_cgroup codes must not be called under tree_lock */
438                 mem_cgroup_replace_page_cache(old, new);
439                 radix_tree_preload_end();
440                 if (freepage)
441                         freepage(old);
442                 page_cache_release(old);
443         }
444
445         return error;
446 }
447 EXPORT_SYMBOL_GPL(replace_page_cache_page);
448
449 /**
450  * add_to_page_cache_locked - add a locked page to the pagecache
451  * @page:       page to add
452  * @mapping:    the page's address_space
453  * @offset:     page index
454  * @gfp_mask:   page allocation mode
455  *
456  * This function is used to add a page to the pagecache. It must be locked.
457  * This function does not add the page to the LRU.  The caller must do that.
458  */
459 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
460                 pgoff_t offset, gfp_t gfp_mask)
461 {
462         int error;
463
464         VM_BUG_ON(!PageLocked(page));
465         VM_BUG_ON(PageSwapBacked(page));
466
467         error = mem_cgroup_cache_charge(page, current->mm,
468                                         gfp_mask & GFP_RECLAIM_MASK);
469         if (error)
470                 goto out;
471
472         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
473         if (error == 0) {
474                 page_cache_get(page);
475                 page->mapping = mapping;
476                 page->index = offset;
477
478                 spin_lock_irq(&mapping->tree_lock);
479                 error = radix_tree_insert(&mapping->page_tree, offset, page);
480                 if (likely(!error)) {
481                         mapping->nrpages++;
482                         __inc_zone_page_state(page, NR_FILE_PAGES);
483                         spin_unlock_irq(&mapping->tree_lock);
484                         trace_mm_filemap_add_to_page_cache(page);
485                 } else {
486                         page->mapping = NULL;
487                         /* Leave page->index set: truncation relies upon it */
488                         spin_unlock_irq(&mapping->tree_lock);
489                         mem_cgroup_uncharge_cache_page(page);
490                         page_cache_release(page);
491                 }
492                 radix_tree_preload_end();
493         } else
494                 mem_cgroup_uncharge_cache_page(page);
495 out:
496         return error;
497 }
498 EXPORT_SYMBOL(add_to_page_cache_locked);
499
500 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
501                                 pgoff_t offset, gfp_t gfp_mask)
502 {
503         int ret;
504
505         ret = add_to_page_cache(page, mapping, offset, gfp_mask);
506         if (ret == 0)
507                 lru_cache_add_file(page);
508         return ret;
509 }
510 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
511
512 #ifdef CONFIG_NUMA
513 struct page *__page_cache_alloc(gfp_t gfp)
514 {
515         int n;
516         struct page *page;
517
518         if (cpuset_do_page_mem_spread()) {
519                 unsigned int cpuset_mems_cookie;
520                 do {
521                         cpuset_mems_cookie = get_mems_allowed();
522                         n = cpuset_mem_spread_node();
523                         page = alloc_pages_exact_node(n, gfp, 0);
524                 } while (!put_mems_allowed(cpuset_mems_cookie) && !page);
525
526                 return page;
527         }
528         return alloc_pages(gfp, 0);
529 }
530 EXPORT_SYMBOL(__page_cache_alloc);
531 #endif
532
533 /*
534  * In order to wait for pages to become available there must be
535  * waitqueues associated with pages. By using a hash table of
536  * waitqueues where the bucket discipline is to maintain all
537  * waiters on the same queue and wake all when any of the pages
538  * become available, and for the woken contexts to check to be
539  * sure the appropriate page became available, this saves space
540  * at a cost of "thundering herd" phenomena during rare hash
541  * collisions.
542  */
543 static wait_queue_head_t *page_waitqueue(struct page *page)
544 {
545         const struct zone *zone = page_zone(page);
546
547         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
548 }
549
550 static inline void wake_up_page(struct page *page, int bit)
551 {
552         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
553 }
554
555 void wait_on_page_bit(struct page *page, int bit_nr)
556 {
557         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
558
559         if (test_bit(bit_nr, &page->flags))
560                 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
561                                                         TASK_UNINTERRUPTIBLE);
562 }
563 EXPORT_SYMBOL(wait_on_page_bit);
564
565 int wait_on_page_bit_killable(struct page *page, int bit_nr)
566 {
567         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
568
569         if (!test_bit(bit_nr, &page->flags))
570                 return 0;
571
572         return __wait_on_bit(page_waitqueue(page), &wait,
573                              sleep_on_page_killable, TASK_KILLABLE);
574 }
575
576 /**
577  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
578  * @page: Page defining the wait queue of interest
579  * @waiter: Waiter to add to the queue
580  *
581  * Add an arbitrary @waiter to the wait queue for the nominated @page.
582  */
583 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
584 {
585         wait_queue_head_t *q = page_waitqueue(page);
586         unsigned long flags;
587
588         spin_lock_irqsave(&q->lock, flags);
589         __add_wait_queue(q, waiter);
590         spin_unlock_irqrestore(&q->lock, flags);
591 }
592 EXPORT_SYMBOL_GPL(add_page_wait_queue);
593
594 /**
595  * unlock_page - unlock a locked page
596  * @page: the page
597  *
598  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
599  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
600  * mechananism between PageLocked pages and PageWriteback pages is shared.
601  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
602  *
603  * The mb is necessary to enforce ordering between the clear_bit and the read
604  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
605  */
606 void unlock_page(struct page *page)
607 {
608         VM_BUG_ON(!PageLocked(page));
609         clear_bit_unlock(PG_locked, &page->flags);
610         smp_mb__after_clear_bit();
611         wake_up_page(page, PG_locked);
612 }
613 EXPORT_SYMBOL(unlock_page);
614
615 /**
616  * end_page_writeback - end writeback against a page
617  * @page: the page
618  */
619 void end_page_writeback(struct page *page)
620 {
621         if (TestClearPageReclaim(page))
622                 rotate_reclaimable_page(page);
623
624         if (!test_clear_page_writeback(page))
625                 BUG();
626
627         smp_mb__after_clear_bit();
628         wake_up_page(page, PG_writeback);
629 }
630 EXPORT_SYMBOL(end_page_writeback);
631
632 /**
633  * __lock_page - get a lock on the page, assuming we need to sleep to get it
634  * @page: the page to lock
635  */
636 void __lock_page(struct page *page)
637 {
638         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
639
640         __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
641                                                         TASK_UNINTERRUPTIBLE);
642 }
643 EXPORT_SYMBOL(__lock_page);
644
645 int __lock_page_killable(struct page *page)
646 {
647         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
648
649         return __wait_on_bit_lock(page_waitqueue(page), &wait,
650                                         sleep_on_page_killable, TASK_KILLABLE);
651 }
652 EXPORT_SYMBOL_GPL(__lock_page_killable);
653
654 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
655                          unsigned int flags)
656 {
657         if (flags & FAULT_FLAG_ALLOW_RETRY) {
658                 /*
659                  * CAUTION! In this case, mmap_sem is not released
660                  * even though return 0.
661                  */
662                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
663                         return 0;
664
665                 up_read(&mm->mmap_sem);
666                 if (flags & FAULT_FLAG_KILLABLE)
667                         wait_on_page_locked_killable(page);
668                 else
669                         wait_on_page_locked(page);
670                 return 0;
671         } else {
672                 if (flags & FAULT_FLAG_KILLABLE) {
673                         int ret;
674
675                         ret = __lock_page_killable(page);
676                         if (ret) {
677                                 up_read(&mm->mmap_sem);
678                                 return 0;
679                         }
680                 } else
681                         __lock_page(page);
682                 return 1;
683         }
684 }
685
686 /**
687  * find_get_page - find and get a page reference
688  * @mapping: the address_space to search
689  * @offset: the page index
690  *
691  * Is there a pagecache struct page at the given (mapping, offset) tuple?
692  * If yes, increment its refcount and return it; if no, return NULL.
693  */
694 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
695 {
696         void **pagep;
697         struct page *page;
698
699         rcu_read_lock();
700 repeat:
701         page = NULL;
702         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
703         if (pagep) {
704                 page = radix_tree_deref_slot(pagep);
705                 if (unlikely(!page))
706                         goto out;
707                 if (radix_tree_exception(page)) {
708                         if (radix_tree_deref_retry(page))
709                                 goto repeat;
710                         /*
711                          * Otherwise, shmem/tmpfs must be storing a swap entry
712                          * here as an exceptional entry: so return it without
713                          * attempting to raise page count.
714                          */
715                         goto out;
716                 }
717                 if (!page_cache_get_speculative(page))
718                         goto repeat;
719
720                 /*
721                  * Has the page moved?
722                  * This is part of the lockless pagecache protocol. See
723                  * include/linux/pagemap.h for details.
724                  */
725                 if (unlikely(page != *pagep)) {
726                         page_cache_release(page);
727                         goto repeat;
728                 }
729         }
730 out:
731         rcu_read_unlock();
732
733         return page;
734 }
735 EXPORT_SYMBOL(find_get_page);
736
737 /**
738  * find_lock_page - locate, pin and lock a pagecache page
739  * @mapping: the address_space to search
740  * @offset: the page index
741  *
742  * Locates the desired pagecache page, locks it, increments its reference
743  * count and returns its address.
744  *
745  * Returns zero if the page was not present. find_lock_page() may sleep.
746  */
747 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
748 {
749         struct page *page;
750
751 repeat:
752         page = find_get_page(mapping, offset);
753         if (page && !radix_tree_exception(page)) {
754                 lock_page(page);
755                 /* Has the page been truncated? */
756                 if (unlikely(page->mapping != mapping)) {
757                         unlock_page(page);
758                         page_cache_release(page);
759                         goto repeat;
760                 }
761                 VM_BUG_ON(page->index != offset);
762         }
763         return page;
764 }
765 EXPORT_SYMBOL(find_lock_page);
766
767 /**
768  * find_or_create_page - locate or add a pagecache page
769  * @mapping: the page's address_space
770  * @index: the page's index into the mapping
771  * @gfp_mask: page allocation mode
772  *
773  * Locates a page in the pagecache.  If the page is not present, a new page
774  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
775  * LRU list.  The returned page is locked and has its reference count
776  * incremented.
777  *
778  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
779  * allocation!
780  *
781  * find_or_create_page() returns the desired page's address, or zero on
782  * memory exhaustion.
783  */
784 struct page *find_or_create_page(struct address_space *mapping,
785                 pgoff_t index, gfp_t gfp_mask)
786 {
787         struct page *page;
788         int err;
789 repeat:
790         page = find_lock_page(mapping, index);
791         if (!page) {
792                 page = __page_cache_alloc(gfp_mask);
793                 if (!page)
794                         return NULL;
795                 /*
796                  * We want a regular kernel memory (not highmem or DMA etc)
797                  * allocation for the radix tree nodes, but we need to honour
798                  * the context-specific requirements the caller has asked for.
799                  * GFP_RECLAIM_MASK collects those requirements.
800                  */
801                 err = add_to_page_cache_lru(page, mapping, index,
802                         (gfp_mask & GFP_RECLAIM_MASK));
803                 if (unlikely(err)) {
804                         page_cache_release(page);
805                         page = NULL;
806                         if (err == -EEXIST)
807                                 goto repeat;
808                 }
809         }
810         return page;
811 }
812 EXPORT_SYMBOL(find_or_create_page);
813
814 /**
815  * find_get_pages - gang pagecache lookup
816  * @mapping:    The address_space to search
817  * @start:      The starting page index
818  * @nr_pages:   The maximum number of pages
819  * @pages:      Where the resulting pages are placed
820  *
821  * find_get_pages() will search for and return a group of up to
822  * @nr_pages pages in the mapping.  The pages are placed at @pages.
823  * find_get_pages() takes a reference against the returned pages.
824  *
825  * The search returns a group of mapping-contiguous pages with ascending
826  * indexes.  There may be holes in the indices due to not-present pages.
827  *
828  * find_get_pages() returns the number of pages which were found.
829  */
830 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
831                             unsigned int nr_pages, struct page **pages)
832 {
833         struct radix_tree_iter iter;
834         void **slot;
835         unsigned ret = 0;
836
837         if (unlikely(!nr_pages))
838                 return 0;
839
840         rcu_read_lock();
841 restart:
842         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
843                 struct page *page;
844 repeat:
845                 page = radix_tree_deref_slot(slot);
846                 if (unlikely(!page))
847                         continue;
848
849                 if (radix_tree_exception(page)) {
850                         if (radix_tree_deref_retry(page)) {
851                                 /*
852                                  * Transient condition which can only trigger
853                                  * when entry at index 0 moves out of or back
854                                  * to root: none yet gotten, safe to restart.
855                                  */
856                                 WARN_ON(iter.index);
857                                 goto restart;
858                         }
859                         /*
860                          * Otherwise, shmem/tmpfs must be storing a swap entry
861                          * here as an exceptional entry: so skip over it -
862                          * we only reach this from invalidate_mapping_pages().
863                          */
864                         continue;
865                 }
866
867                 if (!page_cache_get_speculative(page))
868                         goto repeat;
869
870                 /* Has the page moved? */
871                 if (unlikely(page != *slot)) {
872                         page_cache_release(page);
873                         goto repeat;
874                 }
875
876                 pages[ret] = page;
877                 if (++ret == nr_pages)
878                         break;
879         }
880
881         rcu_read_unlock();
882         return ret;
883 }
884
885 /**
886  * find_get_pages_contig - gang contiguous pagecache lookup
887  * @mapping:    The address_space to search
888  * @index:      The starting page index
889  * @nr_pages:   The maximum number of pages
890  * @pages:      Where the resulting pages are placed
891  *
892  * find_get_pages_contig() works exactly like find_get_pages(), except
893  * that the returned number of pages are guaranteed to be contiguous.
894  *
895  * find_get_pages_contig() returns the number of pages which were found.
896  */
897 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
898                                unsigned int nr_pages, struct page **pages)
899 {
900         struct radix_tree_iter iter;
901         void **slot;
902         unsigned int ret = 0;
903
904         if (unlikely(!nr_pages))
905                 return 0;
906
907         rcu_read_lock();
908 restart:
909         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
910                 struct page *page;
911 repeat:
912                 page = radix_tree_deref_slot(slot);
913                 /* The hole, there no reason to continue */
914                 if (unlikely(!page))
915                         break;
916
917                 if (radix_tree_exception(page)) {
918                         if (radix_tree_deref_retry(page)) {
919                                 /*
920                                  * Transient condition which can only trigger
921                                  * when entry at index 0 moves out of or back
922                                  * to root: none yet gotten, safe to restart.
923                                  */
924                                 goto restart;
925                         }
926                         /*
927                          * Otherwise, shmem/tmpfs must be storing a swap entry
928                          * here as an exceptional entry: so stop looking for
929                          * contiguous pages.
930                          */
931                         break;
932                 }
933
934                 if (!page_cache_get_speculative(page))
935                         goto repeat;
936
937                 /* Has the page moved? */
938                 if (unlikely(page != *slot)) {
939                         page_cache_release(page);
940                         goto repeat;
941                 }
942
943                 /*
944                  * must check mapping and index after taking the ref.
945                  * otherwise we can get both false positives and false
946                  * negatives, which is just confusing to the caller.
947                  */
948                 if (page->mapping == NULL || page->index != iter.index) {
949                         page_cache_release(page);
950                         break;
951                 }
952
953                 pages[ret] = page;
954                 if (++ret == nr_pages)
955                         break;
956         }
957         rcu_read_unlock();
958         return ret;
959 }
960 EXPORT_SYMBOL(find_get_pages_contig);
961
962 /**
963  * find_get_pages_tag - find and return pages that match @tag
964  * @mapping:    the address_space to search
965  * @index:      the starting page index
966  * @tag:        the tag index
967  * @nr_pages:   the maximum number of pages
968  * @pages:      where the resulting pages are placed
969  *
970  * Like find_get_pages, except we only return pages which are tagged with
971  * @tag.   We update @index to index the next page for the traversal.
972  */
973 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
974                         int tag, unsigned int nr_pages, struct page **pages)
975 {
976         struct radix_tree_iter iter;
977         void **slot;
978         unsigned ret = 0;
979
980         if (unlikely(!nr_pages))
981                 return 0;
982
983         rcu_read_lock();
984 restart:
985         radix_tree_for_each_tagged(slot, &mapping->page_tree,
986                                    &iter, *index, tag) {
987                 struct page *page;
988 repeat:
989                 page = radix_tree_deref_slot(slot);
990                 if (unlikely(!page))
991                         continue;
992
993                 if (radix_tree_exception(page)) {
994                         if (radix_tree_deref_retry(page)) {
995                                 /*
996                                  * Transient condition which can only trigger
997                                  * when entry at index 0 moves out of or back
998                                  * to root: none yet gotten, safe to restart.
999                                  */
1000                                 goto restart;
1001                         }
1002                         /*
1003                          * This function is never used on a shmem/tmpfs
1004                          * mapping, so a swap entry won't be found here.
1005                          */
1006                         BUG();
1007                 }
1008
1009                 if (!page_cache_get_speculative(page))
1010                         goto repeat;
1011
1012                 /* Has the page moved? */
1013                 if (unlikely(page != *slot)) {
1014                         page_cache_release(page);
1015                         goto repeat;
1016                 }
1017
1018                 pages[ret] = page;
1019                 if (++ret == nr_pages)
1020                         break;
1021         }
1022
1023         rcu_read_unlock();
1024
1025         if (ret)
1026                 *index = pages[ret - 1]->index + 1;
1027
1028         return ret;
1029 }
1030 EXPORT_SYMBOL(find_get_pages_tag);
1031
1032 /**
1033  * grab_cache_page_nowait - returns locked page at given index in given cache
1034  * @mapping: target address_space
1035  * @index: the page index
1036  *
1037  * Same as grab_cache_page(), but do not wait if the page is unavailable.
1038  * This is intended for speculative data generators, where the data can
1039  * be regenerated if the page couldn't be grabbed.  This routine should
1040  * be safe to call while holding the lock for another page.
1041  *
1042  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1043  * and deadlock against the caller's locked page.
1044  */
1045 struct page *
1046 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1047 {
1048         struct page *page = find_get_page(mapping, index);
1049
1050         if (page) {
1051                 if (trylock_page(page))
1052                         return page;
1053                 page_cache_release(page);
1054                 return NULL;
1055         }
1056         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1057         if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1058                 page_cache_release(page);
1059                 page = NULL;
1060         }
1061         return page;
1062 }
1063 EXPORT_SYMBOL(grab_cache_page_nowait);
1064
1065 /*
1066  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1067  * a _large_ part of the i/o request. Imagine the worst scenario:
1068  *
1069  *      ---R__________________________________________B__________
1070  *         ^ reading here                             ^ bad block(assume 4k)
1071  *
1072  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1073  * => failing the whole request => read(R) => read(R+1) =>
1074  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1075  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1076  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1077  *
1078  * It is going insane. Fix it by quickly scaling down the readahead size.
1079  */
1080 static void shrink_readahead_size_eio(struct file *filp,
1081                                         struct file_ra_state *ra)
1082 {
1083         ra->ra_pages /= 4;
1084 }
1085
1086 /**
1087  * do_generic_file_read - generic file read routine
1088  * @filp:       the file to read
1089  * @ppos:       current file position
1090  * @desc:       read_descriptor
1091  * @actor:      read method
1092  *
1093  * This is a generic file read routine, and uses the
1094  * mapping->a_ops->readpage() function for the actual low-level stuff.
1095  *
1096  * This is really ugly. But the goto's actually try to clarify some
1097  * of the logic when it comes to error handling etc.
1098  */
1099 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1100                 read_descriptor_t *desc, read_actor_t actor)
1101 {
1102         struct address_space *mapping = filp->f_mapping;
1103         struct inode *inode = mapping->host;
1104         struct file_ra_state *ra = &filp->f_ra;
1105         pgoff_t index;
1106         pgoff_t last_index;
1107         pgoff_t prev_index;
1108         unsigned long offset;      /* offset into pagecache page */
1109         unsigned int prev_offset;
1110         int error;
1111
1112         index = *ppos >> PAGE_CACHE_SHIFT;
1113         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1114         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1115         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1116         offset = *ppos & ~PAGE_CACHE_MASK;
1117
1118         for (;;) {
1119                 struct page *page;
1120                 pgoff_t end_index;
1121                 loff_t isize;
1122                 unsigned long nr, ret;
1123
1124                 cond_resched();
1125 find_page:
1126                 page = find_get_page(mapping, index);
1127                 if (!page) {
1128                         page_cache_sync_readahead(mapping,
1129                                         ra, filp,
1130                                         index, last_index - index);
1131                         page = find_get_page(mapping, index);
1132                         if (unlikely(page == NULL))
1133                                 goto no_cached_page;
1134                 }
1135                 if (PageReadahead(page)) {
1136                         page_cache_async_readahead(mapping,
1137                                         ra, filp, page,
1138                                         index, last_index - index);
1139                 }
1140                 if (!PageUptodate(page)) {
1141                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1142                                         !mapping->a_ops->is_partially_uptodate)
1143                                 goto page_not_up_to_date;
1144                         if (!trylock_page(page))
1145                                 goto page_not_up_to_date;
1146                         /* Did it get truncated before we got the lock? */
1147                         if (!page->mapping)
1148                                 goto page_not_up_to_date_locked;
1149                         if (!mapping->a_ops->is_partially_uptodate(page,
1150                                                                 desc, offset))
1151                                 goto page_not_up_to_date_locked;
1152                         unlock_page(page);
1153                 }
1154 page_ok:
1155                 /*
1156                  * i_size must be checked after we know the page is Uptodate.
1157                  *
1158                  * Checking i_size after the check allows us to calculate
1159                  * the correct value for "nr", which means the zero-filled
1160                  * part of the page is not copied back to userspace (unless
1161                  * another truncate extends the file - this is desired though).
1162                  */
1163
1164                 isize = i_size_read(inode);
1165                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1166                 if (unlikely(!isize || index > end_index)) {
1167                         page_cache_release(page);
1168                         goto out;
1169                 }
1170
1171                 /* nr is the maximum number of bytes to copy from this page */
1172                 nr = PAGE_CACHE_SIZE;
1173                 if (index == end_index) {
1174                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1175                         if (nr <= offset) {
1176                                 page_cache_release(page);
1177                                 goto out;
1178                         }
1179                 }
1180                 nr = nr - offset;
1181
1182                 /* If users can be writing to this page using arbitrary
1183                  * virtual addresses, take care about potential aliasing
1184                  * before reading the page on the kernel side.
1185                  */
1186                 if (mapping_writably_mapped(mapping))
1187                         flush_dcache_page(page);
1188
1189                 /*
1190                  * When a sequential read accesses a page several times,
1191                  * only mark it as accessed the first time.
1192                  */
1193                 if (prev_index != index || offset != prev_offset)
1194                         mark_page_accessed(page);
1195                 prev_index = index;
1196
1197                 /*
1198                  * Ok, we have the page, and it's up-to-date, so
1199                  * now we can copy it to user space...
1200                  *
1201                  * The actor routine returns how many bytes were actually used..
1202                  * NOTE! This may not be the same as how much of a user buffer
1203                  * we filled up (we may be padding etc), so we can only update
1204                  * "pos" here (the actor routine has to update the user buffer
1205                  * pointers and the remaining count).
1206                  */
1207                 ret = actor(desc, page, offset, nr);
1208                 offset += ret;
1209                 index += offset >> PAGE_CACHE_SHIFT;
1210                 offset &= ~PAGE_CACHE_MASK;
1211                 prev_offset = offset;
1212
1213                 page_cache_release(page);
1214                 if (ret == nr && desc->count)
1215                         continue;
1216                 goto out;
1217
1218 page_not_up_to_date:
1219                 /* Get exclusive access to the page ... */
1220                 error = lock_page_killable(page);
1221                 if (unlikely(error))
1222                         goto readpage_error;
1223
1224 page_not_up_to_date_locked:
1225                 /* Did it get truncated before we got the lock? */
1226                 if (!page->mapping) {
1227                         unlock_page(page);
1228                         page_cache_release(page);
1229                         continue;
1230                 }
1231
1232                 /* Did somebody else fill it already? */
1233                 if (PageUptodate(page)) {
1234                         unlock_page(page);
1235                         goto page_ok;
1236                 }
1237
1238 readpage:
1239                 /*
1240                  * A previous I/O error may have been due to temporary
1241                  * failures, eg. multipath errors.
1242                  * PG_error will be set again if readpage fails.
1243                  */
1244                 ClearPageError(page);
1245                 /* Start the actual read. The read will unlock the page. */
1246                 error = mapping->a_ops->readpage(filp, page);
1247
1248                 if (unlikely(error)) {
1249                         if (error == AOP_TRUNCATED_PAGE) {
1250                                 page_cache_release(page);
1251                                 goto find_page;
1252                         }
1253                         goto readpage_error;
1254                 }
1255
1256                 if (!PageUptodate(page)) {
1257                         error = lock_page_killable(page);
1258                         if (unlikely(error))
1259                                 goto readpage_error;
1260                         if (!PageUptodate(page)) {
1261                                 if (page->mapping == NULL) {
1262                                         /*
1263                                          * invalidate_mapping_pages got it
1264                                          */
1265                                         unlock_page(page);
1266                                         page_cache_release(page);
1267                                         goto find_page;
1268                                 }
1269                                 unlock_page(page);
1270                                 shrink_readahead_size_eio(filp, ra);
1271                                 error = -EIO;
1272                                 goto readpage_error;
1273                         }
1274                         unlock_page(page);
1275                 }
1276
1277                 goto page_ok;
1278
1279 readpage_error:
1280                 /* UHHUH! A synchronous read error occurred. Report it */
1281                 desc->error = error;
1282                 page_cache_release(page);
1283                 goto out;
1284
1285 no_cached_page:
1286                 /*
1287                  * Ok, it wasn't cached, so we need to create a new
1288                  * page..
1289                  */
1290                 page = page_cache_alloc_cold(mapping);
1291                 if (!page) {
1292                         desc->error = -ENOMEM;
1293                         goto out;
1294                 }
1295                 error = add_to_page_cache_lru(page, mapping,
1296                                                 index, GFP_KERNEL);
1297                 if (error) {
1298                         page_cache_release(page);
1299                         if (error == -EEXIST)
1300                                 goto find_page;
1301                         desc->error = error;
1302                         goto out;
1303                 }
1304                 goto readpage;
1305         }
1306
1307 out:
1308         ra->prev_pos = prev_index;
1309         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1310         ra->prev_pos |= prev_offset;
1311
1312         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1313         file_accessed(filp);
1314 }
1315
1316 int file_read_actor(read_descriptor_t *desc, struct page *page,
1317                         unsigned long offset, unsigned long size)
1318 {
1319         char *kaddr;
1320         unsigned long left, count = desc->count;
1321
1322         if (size > count)
1323                 size = count;
1324
1325         /*
1326          * Faults on the destination of a read are common, so do it before
1327          * taking the kmap.
1328          */
1329         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1330                 kaddr = kmap_atomic(page);
1331                 left = __copy_to_user_inatomic(desc->arg.buf,
1332                                                 kaddr + offset, size);
1333                 kunmap_atomic(kaddr);
1334                 if (left == 0)
1335                         goto success;
1336         }
1337
1338         /* Do it the slow way */
1339         kaddr = kmap(page);
1340         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1341         kunmap(page);
1342
1343         if (left) {
1344                 size -= left;
1345                 desc->error = -EFAULT;
1346         }
1347 success:
1348         desc->count = count - size;
1349         desc->written += size;
1350         desc->arg.buf += size;
1351         return size;
1352 }
1353
1354 /*
1355  * Performs necessary checks before doing a write
1356  * @iov:        io vector request
1357  * @nr_segs:    number of segments in the iovec
1358  * @count:      number of bytes to write
1359  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1360  *
1361  * Adjust number of segments and amount of bytes to write (nr_segs should be
1362  * properly initialized first). Returns appropriate error code that caller
1363  * should return or zero in case that write should be allowed.
1364  */
1365 int generic_segment_checks(const struct iovec *iov,
1366                         unsigned long *nr_segs, size_t *count, int access_flags)
1367 {
1368         unsigned long   seg;
1369         size_t cnt = 0;
1370         for (seg = 0; seg < *nr_segs; seg++) {
1371                 const struct iovec *iv = &iov[seg];
1372
1373                 /*
1374                  * If any segment has a negative length, or the cumulative
1375                  * length ever wraps negative then return -EINVAL.
1376                  */
1377                 cnt += iv->iov_len;
1378                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1379                         return -EINVAL;
1380                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1381                         continue;
1382                 if (seg == 0)
1383                         return -EFAULT;
1384                 *nr_segs = seg;
1385                 cnt -= iv->iov_len;     /* This segment is no good */
1386                 break;
1387         }
1388         *count = cnt;
1389         return 0;
1390 }
1391 EXPORT_SYMBOL(generic_segment_checks);
1392
1393 /**
1394  * generic_file_aio_read - generic filesystem read routine
1395  * @iocb:       kernel I/O control block
1396  * @iov:        io vector request
1397  * @nr_segs:    number of segments in the iovec
1398  * @pos:        current file position
1399  *
1400  * This is the "read()" routine for all filesystems
1401  * that can use the page cache directly.
1402  */
1403 ssize_t
1404 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1405                 unsigned long nr_segs, loff_t pos)
1406 {
1407         struct file *filp = iocb->ki_filp;
1408         ssize_t retval;
1409         unsigned long seg = 0;
1410         size_t count;
1411         loff_t *ppos = &iocb->ki_pos;
1412
1413         count = 0;
1414         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1415         if (retval)
1416                 return retval;
1417
1418         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1419         if (filp->f_flags & O_DIRECT) {
1420                 loff_t size;
1421                 struct address_space *mapping;
1422                 struct inode *inode;
1423
1424                 mapping = filp->f_mapping;
1425                 inode = mapping->host;
1426                 if (!count)
1427                         goto out; /* skip atime */
1428                 size = i_size_read(inode);
1429                 if (pos < size) {
1430                         retval = filemap_write_and_wait_range(mapping, pos,
1431                                         pos + iov_length(iov, nr_segs) - 1);
1432                         if (!retval) {
1433                                 retval = mapping->a_ops->direct_IO(READ, iocb,
1434                                                         iov, pos, nr_segs);
1435                         }
1436                         if (retval > 0) {
1437                                 *ppos = pos + retval;
1438                                 count -= retval;
1439                         }
1440
1441                         /*
1442                          * Btrfs can have a short DIO read if we encounter
1443                          * compressed extents, so if there was an error, or if
1444                          * we've already read everything we wanted to, or if
1445                          * there was a short read because we hit EOF, go ahead
1446                          * and return.  Otherwise fallthrough to buffered io for
1447                          * the rest of the read.
1448                          */
1449                         if (retval < 0 || !count || *ppos >= size) {
1450                                 file_accessed(filp);
1451                                 goto out;
1452                         }
1453                 }
1454         }
1455
1456         count = retval;
1457         for (seg = 0; seg < nr_segs; seg++) {
1458                 read_descriptor_t desc;
1459                 loff_t offset = 0;
1460
1461                 /*
1462                  * If we did a short DIO read we need to skip the section of the
1463                  * iov that we've already read data into.
1464                  */
1465                 if (count) {
1466                         if (count > iov[seg].iov_len) {
1467                                 count -= iov[seg].iov_len;
1468                                 continue;
1469                         }
1470                         offset = count;
1471                         count = 0;
1472                 }
1473
1474                 desc.written = 0;
1475                 desc.arg.buf = iov[seg].iov_base + offset;
1476                 desc.count = iov[seg].iov_len - offset;
1477                 if (desc.count == 0)
1478                         continue;
1479                 desc.error = 0;
1480                 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1481                 retval += desc.written;
1482                 if (desc.error) {
1483                         retval = retval ?: desc.error;
1484                         break;
1485                 }
1486                 if (desc.count > 0)
1487                         break;
1488         }
1489 out:
1490         return retval;
1491 }
1492 EXPORT_SYMBOL(generic_file_aio_read);
1493
1494 #ifdef CONFIG_MMU
1495 /**
1496  * page_cache_read - adds requested page to the page cache if not already there
1497  * @file:       file to read
1498  * @offset:     page index
1499  *
1500  * This adds the requested page to the page cache if it isn't already there,
1501  * and schedules an I/O to read in its contents from disk.
1502  */
1503 static int page_cache_read(struct file *file, pgoff_t offset)
1504 {
1505         struct address_space *mapping = file->f_mapping;
1506         struct page *page; 
1507         int ret;
1508
1509         do {
1510                 page = page_cache_alloc_cold(mapping);
1511                 if (!page)
1512                         return -ENOMEM;
1513
1514                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1515                 if (ret == 0)
1516                         ret = mapping->a_ops->readpage(file, page);
1517                 else if (ret == -EEXIST)
1518                         ret = 0; /* losing race to add is OK */
1519
1520                 page_cache_release(page);
1521
1522         } while (ret == AOP_TRUNCATED_PAGE);
1523                 
1524         return ret;
1525 }
1526
1527 #define MMAP_LOTSAMISS  (100)
1528
1529 /*
1530  * Synchronous readahead happens when we don't even find
1531  * a page in the page cache at all.
1532  */
1533 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1534                                    struct file_ra_state *ra,
1535                                    struct file *file,
1536                                    pgoff_t offset)
1537 {
1538         unsigned long ra_pages;
1539         struct address_space *mapping = file->f_mapping;
1540
1541         /* If we don't want any read-ahead, don't bother */
1542         if (vma->vm_flags & VM_RAND_READ)
1543                 return;
1544         if (!ra->ra_pages)
1545                 return;
1546
1547         if (vma->vm_flags & VM_SEQ_READ) {
1548                 page_cache_sync_readahead(mapping, ra, file, offset,
1549                                           ra->ra_pages);
1550                 return;
1551         }
1552
1553         /* Avoid banging the cache line if not needed */
1554         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1555                 ra->mmap_miss++;
1556
1557         /*
1558          * Do we miss much more than hit in this file? If so,
1559          * stop bothering with read-ahead. It will only hurt.
1560          */
1561         if (ra->mmap_miss > MMAP_LOTSAMISS)
1562                 return;
1563
1564         /*
1565          * mmap read-around
1566          */
1567         ra_pages = max_sane_readahead(ra->ra_pages);
1568         ra->start = max_t(long, 0, offset - ra_pages / 2);
1569         ra->size = ra_pages;
1570         ra->async_size = ra_pages / 4;
1571         ra_submit(ra, mapping, file);
1572 }
1573
1574 /*
1575  * Asynchronous readahead happens when we find the page and PG_readahead,
1576  * so we want to possibly extend the readahead further..
1577  */
1578 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1579                                     struct file_ra_state *ra,
1580                                     struct file *file,
1581                                     struct page *page,
1582                                     pgoff_t offset)
1583 {
1584         struct address_space *mapping = file->f_mapping;
1585
1586         /* If we don't want any read-ahead, don't bother */
1587         if (vma->vm_flags & VM_RAND_READ)
1588                 return;
1589         if (ra->mmap_miss > 0)
1590                 ra->mmap_miss--;
1591         if (PageReadahead(page))
1592                 page_cache_async_readahead(mapping, ra, file,
1593                                            page, offset, ra->ra_pages);
1594 }
1595
1596 /**
1597  * filemap_fault - read in file data for page fault handling
1598  * @vma:        vma in which the fault was taken
1599  * @vmf:        struct vm_fault containing details of the fault
1600  *
1601  * filemap_fault() is invoked via the vma operations vector for a
1602  * mapped memory region to read in file data during a page fault.
1603  *
1604  * The goto's are kind of ugly, but this streamlines the normal case of having
1605  * it in the page cache, and handles the special cases reasonably without
1606  * having a lot of duplicated code.
1607  */
1608 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1609 {
1610         int error;
1611         struct file *file = vma->vm_file;
1612         struct address_space *mapping = file->f_mapping;
1613         struct file_ra_state *ra = &file->f_ra;
1614         struct inode *inode = mapping->host;
1615         pgoff_t offset = vmf->pgoff;
1616         struct page *page;
1617         bool memcg_oom;
1618         pgoff_t size;
1619         int ret = 0;
1620
1621         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1622         if (offset >= size)
1623                 return VM_FAULT_SIGBUS;
1624
1625         /*
1626          * Do we have something in the page cache already?  Either
1627          * way, try readahead, but disable the memcg OOM killer for it
1628          * as readahead is optional and no errors are propagated up
1629          * the fault stack.  The OOM killer is enabled while trying to
1630          * instantiate the faulting page individually below.
1631          */
1632         page = find_get_page(mapping, offset);
1633         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1634                 /*
1635                  * We found the page, so try async readahead before
1636                  * waiting for the lock.
1637                  */
1638                 memcg_oom = mem_cgroup_toggle_oom(false);
1639                 do_async_mmap_readahead(vma, ra, file, page, offset);
1640                 mem_cgroup_toggle_oom(memcg_oom);
1641         } else if (!page) {
1642                 /* No page in the page cache at all */
1643                 memcg_oom = mem_cgroup_toggle_oom(false);
1644                 do_sync_mmap_readahead(vma, ra, file, offset);
1645                 mem_cgroup_toggle_oom(memcg_oom);
1646                 count_vm_event(PGMAJFAULT);
1647                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1648                 ret = VM_FAULT_MAJOR;
1649 retry_find:
1650                 page = find_get_page(mapping, offset);
1651                 if (!page)
1652                         goto no_cached_page;
1653         }
1654
1655         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1656                 page_cache_release(page);
1657                 return ret | VM_FAULT_RETRY;
1658         }
1659
1660         /* Did it get truncated? */
1661         if (unlikely(page->mapping != mapping)) {
1662                 unlock_page(page);
1663                 put_page(page);
1664                 goto retry_find;
1665         }
1666         VM_BUG_ON(page->index != offset);
1667
1668         /*
1669          * We have a locked page in the page cache, now we need to check
1670          * that it's up-to-date. If not, it is going to be due to an error.
1671          */
1672         if (unlikely(!PageUptodate(page)))
1673                 goto page_not_uptodate;
1674
1675         /*
1676          * Found the page and have a reference on it.
1677          * We must recheck i_size under page lock.
1678          */
1679         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1680         if (unlikely(offset >= size)) {
1681                 unlock_page(page);
1682                 page_cache_release(page);
1683                 return VM_FAULT_SIGBUS;
1684         }
1685
1686         vmf->page = page;
1687         return ret | VM_FAULT_LOCKED;
1688
1689 no_cached_page:
1690         /*
1691          * We're only likely to ever get here if MADV_RANDOM is in
1692          * effect.
1693          */
1694         error = page_cache_read(file, offset);
1695
1696         /*
1697          * The page we want has now been added to the page cache.
1698          * In the unlikely event that someone removed it in the
1699          * meantime, we'll just come back here and read it again.
1700          */
1701         if (error >= 0)
1702                 goto retry_find;
1703
1704         /*
1705          * An error return from page_cache_read can result if the
1706          * system is low on memory, or a problem occurs while trying
1707          * to schedule I/O.
1708          */
1709         if (error == -ENOMEM)
1710                 return VM_FAULT_OOM;
1711         return VM_FAULT_SIGBUS;
1712
1713 page_not_uptodate:
1714         /*
1715          * Umm, take care of errors if the page isn't up-to-date.
1716          * Try to re-read it _once_. We do this synchronously,
1717          * because there really aren't any performance issues here
1718          * and we need to check for errors.
1719          */
1720         ClearPageError(page);
1721         error = mapping->a_ops->readpage(file, page);
1722         if (!error) {
1723                 wait_on_page_locked(page);
1724                 if (!PageUptodate(page))
1725                         error = -EIO;
1726         }
1727         page_cache_release(page);
1728
1729         if (!error || error == AOP_TRUNCATED_PAGE)
1730                 goto retry_find;
1731
1732         /* Things didn't work out. Return zero to tell the mm layer so. */
1733         shrink_readahead_size_eio(file, ra);
1734         return VM_FAULT_SIGBUS;
1735 }
1736 EXPORT_SYMBOL(filemap_fault);
1737
1738 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1739 {
1740         struct page *page = vmf->page;
1741         struct inode *inode = file_inode(vma->vm_file);
1742         int ret = VM_FAULT_LOCKED;
1743
1744         sb_start_pagefault(inode->i_sb);
1745         file_update_time(vma->vm_file);
1746         lock_page(page);
1747         if (page->mapping != inode->i_mapping) {
1748                 unlock_page(page);
1749                 ret = VM_FAULT_NOPAGE;
1750                 goto out;
1751         }
1752         /*
1753          * We mark the page dirty already here so that when freeze is in
1754          * progress, we are guaranteed that writeback during freezing will
1755          * see the dirty page and writeprotect it again.
1756          */
1757         set_page_dirty(page);
1758         wait_for_stable_page(page);
1759 out:
1760         sb_end_pagefault(inode->i_sb);
1761         return ret;
1762 }
1763 EXPORT_SYMBOL(filemap_page_mkwrite);
1764
1765 const struct vm_operations_struct generic_file_vm_ops = {
1766         .fault          = filemap_fault,
1767         .page_mkwrite   = filemap_page_mkwrite,
1768         .remap_pages    = generic_file_remap_pages,
1769 };
1770
1771 /* This is used for a general mmap of a disk file */
1772
1773 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1774 {
1775         struct address_space *mapping = file->f_mapping;
1776
1777         if (!mapping->a_ops->readpage)
1778                 return -ENOEXEC;
1779         file_accessed(file);
1780         vma->vm_ops = &generic_file_vm_ops;
1781         return 0;
1782 }
1783
1784 /*
1785  * This is for filesystems which do not implement ->writepage.
1786  */
1787 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1788 {
1789         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1790                 return -EINVAL;
1791         return generic_file_mmap(file, vma);
1792 }
1793 #else
1794 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1795 {
1796         return -ENOSYS;
1797 }
1798 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1799 {
1800         return -ENOSYS;
1801 }
1802 #endif /* CONFIG_MMU */
1803
1804 EXPORT_SYMBOL(generic_file_mmap);
1805 EXPORT_SYMBOL(generic_file_readonly_mmap);
1806
1807 static struct page *__read_cache_page(struct address_space *mapping,
1808                                 pgoff_t index,
1809                                 int (*filler)(void *, struct page *),
1810                                 void *data,
1811                                 gfp_t gfp)
1812 {
1813         struct page *page;
1814         int err;
1815 repeat:
1816         page = find_get_page(mapping, index);
1817         if (!page) {
1818                 page = __page_cache_alloc(gfp | __GFP_COLD);
1819                 if (!page)
1820                         return ERR_PTR(-ENOMEM);
1821                 err = add_to_page_cache_lru(page, mapping, index, gfp);
1822                 if (unlikely(err)) {
1823                         page_cache_release(page);
1824                         if (err == -EEXIST)
1825                                 goto repeat;
1826                         /* Presumably ENOMEM for radix tree node */
1827                         return ERR_PTR(err);
1828                 }
1829                 err = filler(data, page);
1830                 if (err < 0) {
1831                         page_cache_release(page);
1832                         page = ERR_PTR(err);
1833                 }
1834         }
1835         return page;
1836 }
1837
1838 static struct page *do_read_cache_page(struct address_space *mapping,
1839                                 pgoff_t index,
1840                                 int (*filler)(void *, struct page *),
1841                                 void *data,
1842                                 gfp_t gfp)
1843
1844 {
1845         struct page *page;
1846         int err;
1847
1848 retry:
1849         page = __read_cache_page(mapping, index, filler, data, gfp);
1850         if (IS_ERR(page))
1851                 return page;
1852         if (PageUptodate(page))
1853                 goto out;
1854
1855         lock_page(page);
1856         if (!page->mapping) {
1857                 unlock_page(page);
1858                 page_cache_release(page);
1859                 goto retry;
1860         }
1861         if (PageUptodate(page)) {
1862                 unlock_page(page);
1863                 goto out;
1864         }
1865         err = filler(data, page);
1866         if (err < 0) {
1867                 page_cache_release(page);
1868                 return ERR_PTR(err);
1869         }
1870 out:
1871         mark_page_accessed(page);
1872         return page;
1873 }
1874
1875 /**
1876  * read_cache_page_async - read into page cache, fill it if needed
1877  * @mapping:    the page's address_space
1878  * @index:      the page index
1879  * @filler:     function to perform the read
1880  * @data:       first arg to filler(data, page) function, often left as NULL
1881  *
1882  * Same as read_cache_page, but don't wait for page to become unlocked
1883  * after submitting it to the filler.
1884  *
1885  * Read into the page cache. If a page already exists, and PageUptodate() is
1886  * not set, try to fill the page but don't wait for it to become unlocked.
1887  *
1888  * If the page does not get brought uptodate, return -EIO.
1889  */
1890 struct page *read_cache_page_async(struct address_space *mapping,
1891                                 pgoff_t index,
1892                                 int (*filler)(void *, struct page *),
1893                                 void *data)
1894 {
1895         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1896 }
1897 EXPORT_SYMBOL(read_cache_page_async);
1898
1899 static struct page *wait_on_page_read(struct page *page)
1900 {
1901         if (!IS_ERR(page)) {
1902                 wait_on_page_locked(page);
1903                 if (!PageUptodate(page)) {
1904                         page_cache_release(page);
1905                         page = ERR_PTR(-EIO);
1906                 }
1907         }
1908         return page;
1909 }
1910
1911 /**
1912  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1913  * @mapping:    the page's address_space
1914  * @index:      the page index
1915  * @gfp:        the page allocator flags to use if allocating
1916  *
1917  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1918  * any new page allocations done using the specified allocation flags.
1919  *
1920  * If the page does not get brought uptodate, return -EIO.
1921  */
1922 struct page *read_cache_page_gfp(struct address_space *mapping,
1923                                 pgoff_t index,
1924                                 gfp_t gfp)
1925 {
1926         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1927
1928         return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1929 }
1930 EXPORT_SYMBOL(read_cache_page_gfp);
1931
1932 /**
1933  * read_cache_page - read into page cache, fill it if needed
1934  * @mapping:    the page's address_space
1935  * @index:      the page index
1936  * @filler:     function to perform the read
1937  * @data:       first arg to filler(data, page) function, often left as NULL
1938  *
1939  * Read into the page cache. If a page already exists, and PageUptodate() is
1940  * not set, try to fill the page then wait for it to become unlocked.
1941  *
1942  * If the page does not get brought uptodate, return -EIO.
1943  */
1944 struct page *read_cache_page(struct address_space *mapping,
1945                                 pgoff_t index,
1946                                 int (*filler)(void *, struct page *),
1947                                 void *data)
1948 {
1949         return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1950 }
1951 EXPORT_SYMBOL(read_cache_page);
1952
1953 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1954                         const struct iovec *iov, size_t base, size_t bytes)
1955 {
1956         size_t copied = 0, left = 0;
1957
1958         while (bytes) {
1959                 char __user *buf = iov->iov_base + base;
1960                 int copy = min(bytes, iov->iov_len - base);
1961
1962                 base = 0;
1963                 left = __copy_from_user_inatomic(vaddr, buf, copy);
1964                 copied += copy;
1965                 bytes -= copy;
1966                 vaddr += copy;
1967                 iov++;
1968
1969                 if (unlikely(left))
1970                         break;
1971         }
1972         return copied - left;
1973 }
1974
1975 /*
1976  * Copy as much as we can into the page and return the number of bytes which
1977  * were successfully copied.  If a fault is encountered then return the number of
1978  * bytes which were copied.
1979  */
1980 size_t iov_iter_copy_from_user_atomic(struct page *page,
1981                 struct iov_iter *i, unsigned long offset, size_t bytes)
1982 {
1983         char *kaddr;
1984         size_t copied;
1985
1986         BUG_ON(!in_atomic());
1987         kaddr = kmap_atomic(page);
1988         if (likely(i->nr_segs == 1)) {
1989                 int left;
1990                 char __user *buf = i->iov->iov_base + i->iov_offset;
1991                 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1992                 copied = bytes - left;
1993         } else {
1994                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1995                                                 i->iov, i->iov_offset, bytes);
1996         }
1997         kunmap_atomic(kaddr);
1998
1999         return copied;
2000 }
2001 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2002
2003 /*
2004  * This has the same sideeffects and return value as
2005  * iov_iter_copy_from_user_atomic().
2006  * The difference is that it attempts to resolve faults.
2007  * Page must not be locked.
2008  */
2009 size_t iov_iter_copy_from_user(struct page *page,
2010                 struct iov_iter *i, unsigned long offset, size_t bytes)
2011 {
2012         char *kaddr;
2013         size_t copied;
2014
2015         kaddr = kmap(page);
2016         if (likely(i->nr_segs == 1)) {
2017                 int left;
2018                 char __user *buf = i->iov->iov_base + i->iov_offset;
2019                 left = __copy_from_user(kaddr + offset, buf, bytes);
2020                 copied = bytes - left;
2021         } else {
2022                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2023                                                 i->iov, i->iov_offset, bytes);
2024         }
2025         kunmap(page);
2026         return copied;
2027 }
2028 EXPORT_SYMBOL(iov_iter_copy_from_user);
2029
2030 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2031 {
2032         BUG_ON(i->count < bytes);
2033
2034         if (likely(i->nr_segs == 1)) {
2035                 i->iov_offset += bytes;
2036                 i->count -= bytes;
2037         } else {
2038                 const struct iovec *iov = i->iov;
2039                 size_t base = i->iov_offset;
2040                 unsigned long nr_segs = i->nr_segs;
2041
2042                 /*
2043                  * The !iov->iov_len check ensures we skip over unlikely
2044                  * zero-length segments (without overruning the iovec).
2045                  */
2046                 while (bytes || unlikely(i->count && !iov->iov_len)) {
2047                         int copy;
2048
2049                         copy = min(bytes, iov->iov_len - base);
2050                         BUG_ON(!i->count || i->count < copy);
2051                         i->count -= copy;
2052                         bytes -= copy;
2053                         base += copy;
2054                         if (iov->iov_len == base) {
2055                                 iov++;
2056                                 nr_segs--;
2057                                 base = 0;
2058                         }
2059                 }
2060                 i->iov = iov;
2061                 i->iov_offset = base;
2062                 i->nr_segs = nr_segs;
2063         }
2064 }
2065 EXPORT_SYMBOL(iov_iter_advance);
2066
2067 /*
2068  * Fault in the first iovec of the given iov_iter, to a maximum length
2069  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2070  * accessed (ie. because it is an invalid address).
2071  *
2072  * writev-intensive code may want this to prefault several iovecs -- that
2073  * would be possible (callers must not rely on the fact that _only_ the
2074  * first iovec will be faulted with the current implementation).
2075  */
2076 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2077 {
2078         char __user *buf = i->iov->iov_base + i->iov_offset;
2079         bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2080         return fault_in_pages_readable(buf, bytes);
2081 }
2082 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2083
2084 /*
2085  * Return the count of just the current iov_iter segment.
2086  */
2087 size_t iov_iter_single_seg_count(const struct iov_iter *i)
2088 {
2089         const struct iovec *iov = i->iov;
2090         if (i->nr_segs == 1)
2091                 return i->count;
2092         else
2093                 return min(i->count, iov->iov_len - i->iov_offset);
2094 }
2095 EXPORT_SYMBOL(iov_iter_single_seg_count);
2096
2097 /*
2098  * Performs necessary checks before doing a write
2099  *
2100  * Can adjust writing position or amount of bytes to write.
2101  * Returns appropriate error code that caller should return or
2102  * zero in case that write should be allowed.
2103  */
2104 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2105 {
2106         struct inode *inode = file->f_mapping->host;
2107         unsigned long limit = rlimit(RLIMIT_FSIZE);
2108
2109         if (unlikely(*pos < 0))
2110                 return -EINVAL;
2111
2112         if (!isblk) {
2113                 /* FIXME: this is for backwards compatibility with 2.4 */
2114                 if (file->f_flags & O_APPEND)
2115                         *pos = i_size_read(inode);
2116
2117                 if (limit != RLIM_INFINITY) {
2118                         if (*pos >= limit) {
2119                                 send_sig(SIGXFSZ, current, 0);
2120                                 return -EFBIG;
2121                         }
2122                         if (*count > limit - (typeof(limit))*pos) {
2123                                 *count = limit - (typeof(limit))*pos;
2124                         }
2125                 }
2126         }
2127
2128         /*
2129          * LFS rule
2130          */
2131         if (unlikely(*pos + *count > MAX_NON_LFS &&
2132                                 !(file->f_flags & O_LARGEFILE))) {
2133                 if (*pos >= MAX_NON_LFS) {
2134                         return -EFBIG;
2135                 }
2136                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2137                         *count = MAX_NON_LFS - (unsigned long)*pos;
2138                 }
2139         }
2140
2141         /*
2142          * Are we about to exceed the fs block limit ?
2143          *
2144          * If we have written data it becomes a short write.  If we have
2145          * exceeded without writing data we send a signal and return EFBIG.
2146          * Linus frestrict idea will clean these up nicely..
2147          */
2148         if (likely(!isblk)) {
2149                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2150                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2151                                 return -EFBIG;
2152                         }
2153                         /* zero-length writes at ->s_maxbytes are OK */
2154                 }
2155
2156                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2157                         *count = inode->i_sb->s_maxbytes - *pos;
2158         } else {
2159 #ifdef CONFIG_BLOCK
2160                 loff_t isize;
2161                 if (bdev_read_only(I_BDEV(inode)))
2162                         return -EPERM;
2163                 isize = i_size_read(inode);
2164                 if (*pos >= isize) {
2165                         if (*count || *pos > isize)
2166                                 return -ENOSPC;
2167                 }
2168
2169                 if (*pos + *count > isize)
2170                         *count = isize - *pos;
2171 #else
2172                 return -EPERM;
2173 #endif
2174         }
2175         return 0;
2176 }
2177 EXPORT_SYMBOL(generic_write_checks);
2178
2179 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2180                                 loff_t pos, unsigned len, unsigned flags,
2181                                 struct page **pagep, void **fsdata)
2182 {
2183         const struct address_space_operations *aops = mapping->a_ops;
2184
2185         return aops->write_begin(file, mapping, pos, len, flags,
2186                                                         pagep, fsdata);
2187 }
2188 EXPORT_SYMBOL(pagecache_write_begin);
2189
2190 int pagecache_write_end(struct file *file, struct address_space *mapping,
2191                                 loff_t pos, unsigned len, unsigned copied,
2192                                 struct page *page, void *fsdata)
2193 {
2194         const struct address_space_operations *aops = mapping->a_ops;
2195
2196         mark_page_accessed(page);
2197         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2198 }
2199 EXPORT_SYMBOL(pagecache_write_end);
2200
2201 ssize_t
2202 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2203                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2204                 size_t count, size_t ocount)
2205 {
2206         struct file     *file = iocb->ki_filp;
2207         struct address_space *mapping = file->f_mapping;
2208         struct inode    *inode = mapping->host;
2209         ssize_t         written;
2210         size_t          write_len;
2211         pgoff_t         end;
2212
2213         if (count != ocount)
2214                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2215
2216         write_len = iov_length(iov, *nr_segs);
2217         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2218
2219         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2220         if (written)
2221                 goto out;
2222
2223         /*
2224          * After a write we want buffered reads to be sure to go to disk to get
2225          * the new data.  We invalidate clean cached page from the region we're
2226          * about to write.  We do this *before* the write so that we can return
2227          * without clobbering -EIOCBQUEUED from ->direct_IO().
2228          */
2229         if (mapping->nrpages) {
2230                 written = invalidate_inode_pages2_range(mapping,
2231                                         pos >> PAGE_CACHE_SHIFT, end);
2232                 /*
2233                  * If a page can not be invalidated, return 0 to fall back
2234                  * to buffered write.
2235                  */
2236                 if (written) {
2237                         if (written == -EBUSY)
2238                                 return 0;
2239                         goto out;
2240                 }
2241         }
2242
2243         written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2244
2245         /*
2246          * Finally, try again to invalidate clean pages which might have been
2247          * cached by non-direct readahead, or faulted in by get_user_pages()
2248          * if the source of the write was an mmap'ed region of the file
2249          * we're writing.  Either one is a pretty crazy thing to do,
2250          * so we don't support it 100%.  If this invalidation
2251          * fails, tough, the write still worked...
2252          */
2253         if (mapping->nrpages) {
2254                 invalidate_inode_pages2_range(mapping,
2255                                               pos >> PAGE_CACHE_SHIFT, end);
2256         }
2257
2258         if (written > 0) {
2259                 pos += written;
2260                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2261                         i_size_write(inode, pos);
2262                         mark_inode_dirty(inode);
2263                 }
2264                 *ppos = pos;
2265         }
2266 out:
2267         return written;
2268 }
2269 EXPORT_SYMBOL(generic_file_direct_write);
2270
2271 /*
2272  * Find or create a page at the given pagecache position. Return the locked
2273  * page. This function is specifically for buffered writes.
2274  */
2275 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2276                                         pgoff_t index, unsigned flags)
2277 {
2278         int status;
2279         gfp_t gfp_mask;
2280         struct page *page;
2281         gfp_t gfp_notmask = 0;
2282
2283         gfp_mask = mapping_gfp_mask(mapping);
2284         if (mapping_cap_account_dirty(mapping))
2285                 gfp_mask |= __GFP_WRITE;
2286         if (flags & AOP_FLAG_NOFS)
2287                 gfp_notmask = __GFP_FS;
2288 repeat:
2289         page = find_lock_page(mapping, index);
2290         if (page)
2291                 goto found;
2292
2293         page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2294         if (!page)
2295                 return NULL;
2296         status = add_to_page_cache_lru(page, mapping, index,
2297                                                 GFP_KERNEL & ~gfp_notmask);
2298         if (unlikely(status)) {
2299                 page_cache_release(page);
2300                 if (status == -EEXIST)
2301                         goto repeat;
2302                 return NULL;
2303         }
2304 found:
2305         wait_for_stable_page(page);
2306         return page;
2307 }
2308 EXPORT_SYMBOL(grab_cache_page_write_begin);
2309
2310 static ssize_t generic_perform_write(struct file *file,
2311                                 struct iov_iter *i, loff_t pos)
2312 {
2313         struct address_space *mapping = file->f_mapping;
2314         const struct address_space_operations *a_ops = mapping->a_ops;
2315         long status = 0;
2316         ssize_t written = 0;
2317         unsigned int flags = 0;
2318
2319         /*
2320          * Copies from kernel address space cannot fail (NFSD is a big user).
2321          */
2322         if (segment_eq(get_fs(), KERNEL_DS))
2323                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2324
2325         do {
2326                 struct page *page;
2327                 unsigned long offset;   /* Offset into pagecache page */
2328                 unsigned long bytes;    /* Bytes to write to page */
2329                 size_t copied;          /* Bytes copied from user */
2330                 void *fsdata;
2331
2332                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2333                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2334                                                 iov_iter_count(i));
2335
2336 again:
2337                 /*
2338                  * Bring in the user page that we will copy from _first_.
2339                  * Otherwise there's a nasty deadlock on copying from the
2340                  * same page as we're writing to, without it being marked
2341                  * up-to-date.
2342                  *
2343                  * Not only is this an optimisation, but it is also required
2344                  * to check that the address is actually valid, when atomic
2345                  * usercopies are used, below.
2346                  */
2347                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2348                         status = -EFAULT;
2349                         break;
2350                 }
2351
2352                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2353                                                 &page, &fsdata);
2354                 if (unlikely(status))
2355                         break;
2356
2357                 if (mapping_writably_mapped(mapping))
2358                         flush_dcache_page(page);
2359
2360                 pagefault_disable();
2361                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2362                 pagefault_enable();
2363                 flush_dcache_page(page);
2364
2365                 mark_page_accessed(page);
2366                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2367                                                 page, fsdata);
2368                 if (unlikely(status < 0))
2369                         break;
2370                 copied = status;
2371
2372                 cond_resched();
2373
2374                 iov_iter_advance(i, copied);
2375                 if (unlikely(copied == 0)) {
2376                         /*
2377                          * If we were unable to copy any data at all, we must
2378                          * fall back to a single segment length write.
2379                          *
2380                          * If we didn't fallback here, we could livelock
2381                          * because not all segments in the iov can be copied at
2382                          * once without a pagefault.
2383                          */
2384                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2385                                                 iov_iter_single_seg_count(i));
2386                         goto again;
2387                 }
2388                 pos += copied;
2389                 written += copied;
2390
2391                 balance_dirty_pages_ratelimited(mapping);
2392                 if (fatal_signal_pending(current)) {
2393                         status = -EINTR;
2394                         break;
2395                 }
2396         } while (iov_iter_count(i));
2397
2398         return written ? written : status;
2399 }
2400
2401 ssize_t
2402 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2403                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2404                 size_t count, ssize_t written)
2405 {
2406         struct file *file = iocb->ki_filp;
2407         ssize_t status;
2408         struct iov_iter i;
2409
2410         iov_iter_init(&i, iov, nr_segs, count, written);
2411         status = generic_perform_write(file, &i, pos);
2412
2413         if (likely(status >= 0)) {
2414                 written += status;
2415                 *ppos = pos + status;
2416         }
2417         
2418         return written ? written : status;
2419 }
2420 EXPORT_SYMBOL(generic_file_buffered_write);
2421
2422 /**
2423  * __generic_file_aio_write - write data to a file
2424  * @iocb:       IO state structure (file, offset, etc.)
2425  * @iov:        vector with data to write
2426  * @nr_segs:    number of segments in the vector
2427  * @ppos:       position where to write
2428  *
2429  * This function does all the work needed for actually writing data to a
2430  * file. It does all basic checks, removes SUID from the file, updates
2431  * modification times and calls proper subroutines depending on whether we
2432  * do direct IO or a standard buffered write.
2433  *
2434  * It expects i_mutex to be grabbed unless we work on a block device or similar
2435  * object which does not need locking at all.
2436  *
2437  * This function does *not* take care of syncing data in case of O_SYNC write.
2438  * A caller has to handle it. This is mainly due to the fact that we want to
2439  * avoid syncing under i_mutex.
2440  */
2441 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2442                                  unsigned long nr_segs, loff_t *ppos)
2443 {
2444         struct file *file = iocb->ki_filp;
2445         struct address_space * mapping = file->f_mapping;
2446         size_t ocount;          /* original count */
2447         size_t count;           /* after file limit checks */
2448         struct inode    *inode = mapping->host;
2449         loff_t          pos;
2450         ssize_t         written;
2451         ssize_t         err;
2452
2453         ocount = 0;
2454         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2455         if (err)
2456                 return err;
2457
2458         count = ocount;
2459         pos = *ppos;
2460
2461         /* We can write back this queue in page reclaim */
2462         current->backing_dev_info = mapping->backing_dev_info;
2463         written = 0;
2464
2465         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2466         if (err)
2467                 goto out;
2468
2469         if (count == 0)
2470                 goto out;
2471
2472         err = file_remove_suid(file);
2473         if (err)
2474                 goto out;
2475
2476         err = file_update_time(file);
2477         if (err)
2478                 goto out;
2479
2480         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2481         if (unlikely(file->f_flags & O_DIRECT)) {
2482                 loff_t endbyte;
2483                 ssize_t written_buffered;
2484
2485                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2486                                                         ppos, count, ocount);
2487                 if (written < 0 || written == count)
2488                         goto out;
2489                 /*
2490                  * direct-io write to a hole: fall through to buffered I/O
2491                  * for completing the rest of the request.
2492                  */
2493                 pos += written;
2494                 count -= written;
2495                 written_buffered = generic_file_buffered_write(iocb, iov,
2496                                                 nr_segs, pos, ppos, count,
2497                                                 written);
2498                 /*
2499                  * If generic_file_buffered_write() retuned a synchronous error
2500                  * then we want to return the number of bytes which were
2501                  * direct-written, or the error code if that was zero.  Note
2502                  * that this differs from normal direct-io semantics, which
2503                  * will return -EFOO even if some bytes were written.
2504                  */
2505                 if (written_buffered < 0) {
2506                         err = written_buffered;
2507                         goto out;
2508                 }
2509
2510                 /*
2511                  * We need to ensure that the page cache pages are written to
2512                  * disk and invalidated to preserve the expected O_DIRECT
2513                  * semantics.
2514                  */
2515                 endbyte = pos + written_buffered - written - 1;
2516                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2517                 if (err == 0) {
2518                         written = written_buffered;
2519                         invalidate_mapping_pages(mapping,
2520                                                  pos >> PAGE_CACHE_SHIFT,
2521                                                  endbyte >> PAGE_CACHE_SHIFT);
2522                 } else {
2523                         /*
2524                          * We don't know how much we wrote, so just return
2525                          * the number of bytes which were direct-written
2526                          */
2527                 }
2528         } else {
2529                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2530                                 pos, ppos, count, written);
2531         }
2532 out:
2533         current->backing_dev_info = NULL;
2534         return written ? written : err;
2535 }
2536 EXPORT_SYMBOL(__generic_file_aio_write);
2537
2538 /**
2539  * generic_file_aio_write - write data to a file
2540  * @iocb:       IO state structure
2541  * @iov:        vector with data to write
2542  * @nr_segs:    number of segments in the vector
2543  * @pos:        position in file where to write
2544  *
2545  * This is a wrapper around __generic_file_aio_write() to be used by most
2546  * filesystems. It takes care of syncing the file in case of O_SYNC file
2547  * and acquires i_mutex as needed.
2548  */
2549 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2550                 unsigned long nr_segs, loff_t pos)
2551 {
2552         struct file *file = iocb->ki_filp;
2553         struct inode *inode = file->f_mapping->host;
2554         ssize_t ret;
2555
2556         BUG_ON(iocb->ki_pos != pos);
2557
2558         mutex_lock(&inode->i_mutex);
2559         ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2560         mutex_unlock(&inode->i_mutex);
2561
2562         if (ret > 0) {
2563                 ssize_t err;
2564
2565                 err = generic_write_sync(file, pos, ret);
2566                 if (err < 0 && ret > 0)
2567                         ret = err;
2568         }
2569         return ret;
2570 }
2571 EXPORT_SYMBOL(generic_file_aio_write);
2572
2573 /**
2574  * try_to_release_page() - release old fs-specific metadata on a page
2575  *
2576  * @page: the page which the kernel is trying to free
2577  * @gfp_mask: memory allocation flags (and I/O mode)
2578  *
2579  * The address_space is to try to release any data against the page
2580  * (presumably at page->private).  If the release was successful, return `1'.
2581  * Otherwise return zero.
2582  *
2583  * This may also be called if PG_fscache is set on a page, indicating that the
2584  * page is known to the local caching routines.
2585  *
2586  * The @gfp_mask argument specifies whether I/O may be performed to release
2587  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2588  *
2589  */
2590 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2591 {
2592         struct address_space * const mapping = page->mapping;
2593
2594         BUG_ON(!PageLocked(page));
2595         if (PageWriteback(page))
2596                 return 0;
2597
2598         if (mapping && mapping->a_ops->releasepage)
2599                 return mapping->a_ops->releasepage(page, gfp_mask);
2600         return try_to_free_buffers(page);
2601 }
2602
2603 EXPORT_SYMBOL(try_to_release_page);