7e033809ef5fdd5406803bb7f6abf5bbdbaf8a75
[pandora-kernel.git] / kernel / sys.c
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/config.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kexec.h>
21 #include <linux/workqueue.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31
32 #include <linux/compat.h>
33 #include <linux/syscalls.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/io.h>
37 #include <asm/unistd.h>
38
39 #ifndef SET_UNALIGN_CTL
40 # define SET_UNALIGN_CTL(a,b)   (-EINVAL)
41 #endif
42 #ifndef GET_UNALIGN_CTL
43 # define GET_UNALIGN_CTL(a,b)   (-EINVAL)
44 #endif
45 #ifndef SET_FPEMU_CTL
46 # define SET_FPEMU_CTL(a,b)     (-EINVAL)
47 #endif
48 #ifndef GET_FPEMU_CTL
49 # define GET_FPEMU_CTL(a,b)     (-EINVAL)
50 #endif
51 #ifndef SET_FPEXC_CTL
52 # define SET_FPEXC_CTL(a,b)     (-EINVAL)
53 #endif
54 #ifndef GET_FPEXC_CTL
55 # define GET_FPEXC_CTL(a,b)     (-EINVAL)
56 #endif
57
58 /*
59  * this is where the system-wide overflow UID and GID are defined, for
60  * architectures that now have 32-bit UID/GID but didn't in the past
61  */
62
63 int overflowuid = DEFAULT_OVERFLOWUID;
64 int overflowgid = DEFAULT_OVERFLOWGID;
65
66 #ifdef CONFIG_UID16
67 EXPORT_SYMBOL(overflowuid);
68 EXPORT_SYMBOL(overflowgid);
69 #endif
70
71 /*
72  * the same as above, but for filesystems which can only store a 16-bit
73  * UID and GID. as such, this is needed on all architectures
74  */
75
76 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
77 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
78
79 EXPORT_SYMBOL(fs_overflowuid);
80 EXPORT_SYMBOL(fs_overflowgid);
81
82 /*
83  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
84  */
85
86 int C_A_D = 1;
87 int cad_pid = 1;
88
89 /*
90  *      Notifier list for kernel code which wants to be called
91  *      at shutdown. This is used to stop any idling DMA operations
92  *      and the like. 
93  */
94
95 static struct notifier_block *reboot_notifier_list;
96 static DEFINE_RWLOCK(notifier_lock);
97
98 /**
99  *      notifier_chain_register - Add notifier to a notifier chain
100  *      @list: Pointer to root list pointer
101  *      @n: New entry in notifier chain
102  *
103  *      Adds a notifier to a notifier chain.
104  *
105  *      Currently always returns zero.
106  */
107  
108 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
109 {
110         write_lock(&notifier_lock);
111         while(*list)
112         {
113                 if(n->priority > (*list)->priority)
114                         break;
115                 list= &((*list)->next);
116         }
117         n->next = *list;
118         *list=n;
119         write_unlock(&notifier_lock);
120         return 0;
121 }
122
123 EXPORT_SYMBOL(notifier_chain_register);
124
125 /**
126  *      notifier_chain_unregister - Remove notifier from a notifier chain
127  *      @nl: Pointer to root list pointer
128  *      @n: New entry in notifier chain
129  *
130  *      Removes a notifier from a notifier chain.
131  *
132  *      Returns zero on success, or %-ENOENT on failure.
133  */
134  
135 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
136 {
137         write_lock(&notifier_lock);
138         while((*nl)!=NULL)
139         {
140                 if((*nl)==n)
141                 {
142                         *nl=n->next;
143                         write_unlock(&notifier_lock);
144                         return 0;
145                 }
146                 nl=&((*nl)->next);
147         }
148         write_unlock(&notifier_lock);
149         return -ENOENT;
150 }
151
152 EXPORT_SYMBOL(notifier_chain_unregister);
153
154 /**
155  *      notifier_call_chain - Call functions in a notifier chain
156  *      @n: Pointer to root pointer of notifier chain
157  *      @val: Value passed unmodified to notifier function
158  *      @v: Pointer passed unmodified to notifier function
159  *
160  *      Calls each function in a notifier chain in turn.
161  *
162  *      If the return value of the notifier can be and'd
163  *      with %NOTIFY_STOP_MASK, then notifier_call_chain
164  *      will return immediately, with the return value of
165  *      the notifier function which halted execution.
166  *      Otherwise, the return value is the return value
167  *      of the last notifier function called.
168  */
169  
170 int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
171 {
172         int ret=NOTIFY_DONE;
173         struct notifier_block *nb = *n;
174
175         while(nb)
176         {
177                 ret=nb->notifier_call(nb,val,v);
178                 if(ret&NOTIFY_STOP_MASK)
179                 {
180                         return ret;
181                 }
182                 nb=nb->next;
183         }
184         return ret;
185 }
186
187 EXPORT_SYMBOL(notifier_call_chain);
188
189 /**
190  *      register_reboot_notifier - Register function to be called at reboot time
191  *      @nb: Info about notifier function to be called
192  *
193  *      Registers a function with the list of functions
194  *      to be called at reboot time.
195  *
196  *      Currently always returns zero, as notifier_chain_register
197  *      always returns zero.
198  */
199  
200 int register_reboot_notifier(struct notifier_block * nb)
201 {
202         return notifier_chain_register(&reboot_notifier_list, nb);
203 }
204
205 EXPORT_SYMBOL(register_reboot_notifier);
206
207 /**
208  *      unregister_reboot_notifier - Unregister previously registered reboot notifier
209  *      @nb: Hook to be unregistered
210  *
211  *      Unregisters a previously registered reboot
212  *      notifier function.
213  *
214  *      Returns zero on success, or %-ENOENT on failure.
215  */
216  
217 int unregister_reboot_notifier(struct notifier_block * nb)
218 {
219         return notifier_chain_unregister(&reboot_notifier_list, nb);
220 }
221
222 EXPORT_SYMBOL(unregister_reboot_notifier);
223
224 static int set_one_prio(struct task_struct *p, int niceval, int error)
225 {
226         int no_nice;
227
228         if (p->uid != current->euid &&
229                 p->euid != current->euid && !capable(CAP_SYS_NICE)) {
230                 error = -EPERM;
231                 goto out;
232         }
233         if (niceval < task_nice(p) && !can_nice(p, niceval)) {
234                 error = -EACCES;
235                 goto out;
236         }
237         no_nice = security_task_setnice(p, niceval);
238         if (no_nice) {
239                 error = no_nice;
240                 goto out;
241         }
242         if (error == -ESRCH)
243                 error = 0;
244         set_user_nice(p, niceval);
245 out:
246         return error;
247 }
248
249 asmlinkage long sys_setpriority(int which, int who, int niceval)
250 {
251         struct task_struct *g, *p;
252         struct user_struct *user;
253         int error = -EINVAL;
254
255         if (which > 2 || which < 0)
256                 goto out;
257
258         /* normalize: avoid signed division (rounding problems) */
259         error = -ESRCH;
260         if (niceval < -20)
261                 niceval = -20;
262         if (niceval > 19)
263                 niceval = 19;
264
265         read_lock(&tasklist_lock);
266         switch (which) {
267                 case PRIO_PROCESS:
268                         if (!who)
269                                 who = current->pid;
270                         p = find_task_by_pid(who);
271                         if (p)
272                                 error = set_one_prio(p, niceval, error);
273                         break;
274                 case PRIO_PGRP:
275                         if (!who)
276                                 who = process_group(current);
277                         do_each_task_pid(who, PIDTYPE_PGID, p) {
278                                 error = set_one_prio(p, niceval, error);
279                         } while_each_task_pid(who, PIDTYPE_PGID, p);
280                         break;
281                 case PRIO_USER:
282                         user = current->user;
283                         if (!who)
284                                 who = current->uid;
285                         else
286                                 if ((who != current->uid) && !(user = find_user(who)))
287                                         goto out_unlock;        /* No processes for this user */
288
289                         do_each_thread(g, p)
290                                 if (p->uid == who)
291                                         error = set_one_prio(p, niceval, error);
292                         while_each_thread(g, p);
293                         if (who != current->uid)
294                                 free_uid(user);         /* For find_user() */
295                         break;
296         }
297 out_unlock:
298         read_unlock(&tasklist_lock);
299 out:
300         return error;
301 }
302
303 /*
304  * Ugh. To avoid negative return values, "getpriority()" will
305  * not return the normal nice-value, but a negated value that
306  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
307  * to stay compatible.
308  */
309 asmlinkage long sys_getpriority(int which, int who)
310 {
311         struct task_struct *g, *p;
312         struct user_struct *user;
313         long niceval, retval = -ESRCH;
314
315         if (which > 2 || which < 0)
316                 return -EINVAL;
317
318         read_lock(&tasklist_lock);
319         switch (which) {
320                 case PRIO_PROCESS:
321                         if (!who)
322                                 who = current->pid;
323                         p = find_task_by_pid(who);
324                         if (p) {
325                                 niceval = 20 - task_nice(p);
326                                 if (niceval > retval)
327                                         retval = niceval;
328                         }
329                         break;
330                 case PRIO_PGRP:
331                         if (!who)
332                                 who = process_group(current);
333                         do_each_task_pid(who, PIDTYPE_PGID, p) {
334                                 niceval = 20 - task_nice(p);
335                                 if (niceval > retval)
336                                         retval = niceval;
337                         } while_each_task_pid(who, PIDTYPE_PGID, p);
338                         break;
339                 case PRIO_USER:
340                         user = current->user;
341                         if (!who)
342                                 who = current->uid;
343                         else
344                                 if ((who != current->uid) && !(user = find_user(who)))
345                                         goto out_unlock;        /* No processes for this user */
346
347                         do_each_thread(g, p)
348                                 if (p->uid == who) {
349                                         niceval = 20 - task_nice(p);
350                                         if (niceval > retval)
351                                                 retval = niceval;
352                                 }
353                         while_each_thread(g, p);
354                         if (who != current->uid)
355                                 free_uid(user);         /* for find_user() */
356                         break;
357         }
358 out_unlock:
359         read_unlock(&tasklist_lock);
360
361         return retval;
362 }
363
364 void kernel_restart(char *cmd)
365 {
366         notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
367         system_state = SYSTEM_RESTART;
368         device_suspend(PMSG_FREEZE);
369         device_shutdown();
370         if (!cmd) {
371                 printk(KERN_EMERG "Restarting system.\n");
372         } else {
373                 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
374         }
375         printk(".\n");
376         machine_restart(cmd);
377 }
378 EXPORT_SYMBOL_GPL(kernel_restart);
379
380 void kernel_kexec(void)
381 {
382 #ifdef CONFIG_KEXEC
383         struct kimage *image;
384         image = xchg(&kexec_image, 0);
385         if (!image) {
386                 return;
387         }
388         notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
389         system_state = SYSTEM_RESTART;
390         device_suspend(PMSG_FREEZE);
391         device_shutdown();
392         printk(KERN_EMERG "Starting new kernel\n");
393         machine_shutdown();
394         machine_kexec(image);
395 #endif
396 }
397 EXPORT_SYMBOL_GPL(kernel_kexec);
398
399 void kernel_halt(void)
400 {
401         notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
402         system_state = SYSTEM_HALT;
403         device_suspend(PMSG_SUSPEND);
404         device_shutdown();
405         printk(KERN_EMERG "System halted.\n");
406         machine_halt();
407 }
408 EXPORT_SYMBOL_GPL(kernel_halt);
409
410 void kernel_power_off(void)
411 {
412         notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
413         system_state = SYSTEM_POWER_OFF;
414         device_suspend(PMSG_SUSPEND);
415         device_shutdown();
416         printk(KERN_EMERG "Power down.\n");
417         machine_power_off();
418 }
419 EXPORT_SYMBOL_GPL(kernel_power_off);
420
421 /*
422  * Reboot system call: for obvious reasons only root may call it,
423  * and even root needs to set up some magic numbers in the registers
424  * so that some mistake won't make this reboot the whole machine.
425  * You can also set the meaning of the ctrl-alt-del-key here.
426  *
427  * reboot doesn't sync: do that yourself before calling this.
428  */
429 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
430 {
431         char buffer[256];
432
433         /* We only trust the superuser with rebooting the system. */
434         if (!capable(CAP_SYS_BOOT))
435                 return -EPERM;
436
437         /* For safety, we require "magic" arguments. */
438         if (magic1 != LINUX_REBOOT_MAGIC1 ||
439             (magic2 != LINUX_REBOOT_MAGIC2 &&
440                         magic2 != LINUX_REBOOT_MAGIC2A &&
441                         magic2 != LINUX_REBOOT_MAGIC2B &&
442                         magic2 != LINUX_REBOOT_MAGIC2C))
443                 return -EINVAL;
444
445         lock_kernel();
446         switch (cmd) {
447         case LINUX_REBOOT_CMD_RESTART:
448                 kernel_restart(NULL);
449                 break;
450
451         case LINUX_REBOOT_CMD_CAD_ON:
452                 C_A_D = 1;
453                 break;
454
455         case LINUX_REBOOT_CMD_CAD_OFF:
456                 C_A_D = 0;
457                 break;
458
459         case LINUX_REBOOT_CMD_HALT:
460                 kernel_halt();
461                 unlock_kernel();
462                 do_exit(0);
463                 break;
464
465         case LINUX_REBOOT_CMD_POWER_OFF:
466                 kernel_power_off();
467                 unlock_kernel();
468                 do_exit(0);
469                 break;
470
471         case LINUX_REBOOT_CMD_RESTART2:
472                 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
473                         unlock_kernel();
474                         return -EFAULT;
475                 }
476                 buffer[sizeof(buffer) - 1] = '\0';
477
478                 kernel_restart(buffer);
479                 break;
480
481         case LINUX_REBOOT_CMD_KEXEC:
482                 kernel_kexec();
483                 unlock_kernel();
484                 return -EINVAL;
485
486 #ifdef CONFIG_SOFTWARE_SUSPEND
487         case LINUX_REBOOT_CMD_SW_SUSPEND:
488                 {
489                         int ret = software_suspend();
490                         unlock_kernel();
491                         return ret;
492                 }
493 #endif
494
495         default:
496                 unlock_kernel();
497                 return -EINVAL;
498         }
499         unlock_kernel();
500         return 0;
501 }
502
503 static void deferred_cad(void *dummy)
504 {
505         notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
506         machine_restart(NULL);
507 }
508
509 /*
510  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
511  * As it's called within an interrupt, it may NOT sync: the only choice
512  * is whether to reboot at once, or just ignore the ctrl-alt-del.
513  */
514 void ctrl_alt_del(void)
515 {
516         static DECLARE_WORK(cad_work, deferred_cad, NULL);
517
518         if (C_A_D)
519                 schedule_work(&cad_work);
520         else
521                 kill_proc(cad_pid, SIGINT, 1);
522 }
523         
524
525 /*
526  * Unprivileged users may change the real gid to the effective gid
527  * or vice versa.  (BSD-style)
528  *
529  * If you set the real gid at all, or set the effective gid to a value not
530  * equal to the real gid, then the saved gid is set to the new effective gid.
531  *
532  * This makes it possible for a setgid program to completely drop its
533  * privileges, which is often a useful assertion to make when you are doing
534  * a security audit over a program.
535  *
536  * The general idea is that a program which uses just setregid() will be
537  * 100% compatible with BSD.  A program which uses just setgid() will be
538  * 100% compatible with POSIX with saved IDs. 
539  *
540  * SMP: There are not races, the GIDs are checked only by filesystem
541  *      operations (as far as semantic preservation is concerned).
542  */
543 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
544 {
545         int old_rgid = current->gid;
546         int old_egid = current->egid;
547         int new_rgid = old_rgid;
548         int new_egid = old_egid;
549         int retval;
550
551         retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
552         if (retval)
553                 return retval;
554
555         if (rgid != (gid_t) -1) {
556                 if ((old_rgid == rgid) ||
557                     (current->egid==rgid) ||
558                     capable(CAP_SETGID))
559                         new_rgid = rgid;
560                 else
561                         return -EPERM;
562         }
563         if (egid != (gid_t) -1) {
564                 if ((old_rgid == egid) ||
565                     (current->egid == egid) ||
566                     (current->sgid == egid) ||
567                     capable(CAP_SETGID))
568                         new_egid = egid;
569                 else {
570                         return -EPERM;
571                 }
572         }
573         if (new_egid != old_egid)
574         {
575                 current->mm->dumpable = suid_dumpable;
576                 smp_wmb();
577         }
578         if (rgid != (gid_t) -1 ||
579             (egid != (gid_t) -1 && egid != old_rgid))
580                 current->sgid = new_egid;
581         current->fsgid = new_egid;
582         current->egid = new_egid;
583         current->gid = new_rgid;
584         key_fsgid_changed(current);
585         return 0;
586 }
587
588 /*
589  * setgid() is implemented like SysV w/ SAVED_IDS 
590  *
591  * SMP: Same implicit races as above.
592  */
593 asmlinkage long sys_setgid(gid_t gid)
594 {
595         int old_egid = current->egid;
596         int retval;
597
598         retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
599         if (retval)
600                 return retval;
601
602         if (capable(CAP_SETGID))
603         {
604                 if(old_egid != gid)
605                 {
606                         current->mm->dumpable = suid_dumpable;
607                         smp_wmb();
608                 }
609                 current->gid = current->egid = current->sgid = current->fsgid = gid;
610         }
611         else if ((gid == current->gid) || (gid == current->sgid))
612         {
613                 if(old_egid != gid)
614                 {
615                         current->mm->dumpable = suid_dumpable;
616                         smp_wmb();
617                 }
618                 current->egid = current->fsgid = gid;
619         }
620         else
621                 return -EPERM;
622
623         key_fsgid_changed(current);
624         return 0;
625 }
626   
627 static int set_user(uid_t new_ruid, int dumpclear)
628 {
629         struct user_struct *new_user;
630
631         new_user = alloc_uid(new_ruid);
632         if (!new_user)
633                 return -EAGAIN;
634
635         if (atomic_read(&new_user->processes) >=
636                                 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
637                         new_user != &root_user) {
638                 free_uid(new_user);
639                 return -EAGAIN;
640         }
641
642         switch_uid(new_user);
643
644         if(dumpclear)
645         {
646                 current->mm->dumpable = suid_dumpable;
647                 smp_wmb();
648         }
649         current->uid = new_ruid;
650         return 0;
651 }
652
653 /*
654  * Unprivileged users may change the real uid to the effective uid
655  * or vice versa.  (BSD-style)
656  *
657  * If you set the real uid at all, or set the effective uid to a value not
658  * equal to the real uid, then the saved uid is set to the new effective uid.
659  *
660  * This makes it possible for a setuid program to completely drop its
661  * privileges, which is often a useful assertion to make when you are doing
662  * a security audit over a program.
663  *
664  * The general idea is that a program which uses just setreuid() will be
665  * 100% compatible with BSD.  A program which uses just setuid() will be
666  * 100% compatible with POSIX with saved IDs. 
667  */
668 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
669 {
670         int old_ruid, old_euid, old_suid, new_ruid, new_euid;
671         int retval;
672
673         retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
674         if (retval)
675                 return retval;
676
677         new_ruid = old_ruid = current->uid;
678         new_euid = old_euid = current->euid;
679         old_suid = current->suid;
680
681         if (ruid != (uid_t) -1) {
682                 new_ruid = ruid;
683                 if ((old_ruid != ruid) &&
684                     (current->euid != ruid) &&
685                     !capable(CAP_SETUID))
686                         return -EPERM;
687         }
688
689         if (euid != (uid_t) -1) {
690                 new_euid = euid;
691                 if ((old_ruid != euid) &&
692                     (current->euid != euid) &&
693                     (current->suid != euid) &&
694                     !capable(CAP_SETUID))
695                         return -EPERM;
696         }
697
698         if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
699                 return -EAGAIN;
700
701         if (new_euid != old_euid)
702         {
703                 current->mm->dumpable = suid_dumpable;
704                 smp_wmb();
705         }
706         current->fsuid = current->euid = new_euid;
707         if (ruid != (uid_t) -1 ||
708             (euid != (uid_t) -1 && euid != old_ruid))
709                 current->suid = current->euid;
710         current->fsuid = current->euid;
711
712         key_fsuid_changed(current);
713
714         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
715 }
716
717
718                 
719 /*
720  * setuid() is implemented like SysV with SAVED_IDS 
721  * 
722  * Note that SAVED_ID's is deficient in that a setuid root program
723  * like sendmail, for example, cannot set its uid to be a normal 
724  * user and then switch back, because if you're root, setuid() sets
725  * the saved uid too.  If you don't like this, blame the bright people
726  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
727  * will allow a root program to temporarily drop privileges and be able to
728  * regain them by swapping the real and effective uid.  
729  */
730 asmlinkage long sys_setuid(uid_t uid)
731 {
732         int old_euid = current->euid;
733         int old_ruid, old_suid, new_ruid, new_suid;
734         int retval;
735
736         retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
737         if (retval)
738                 return retval;
739
740         old_ruid = new_ruid = current->uid;
741         old_suid = current->suid;
742         new_suid = old_suid;
743         
744         if (capable(CAP_SETUID)) {
745                 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
746                         return -EAGAIN;
747                 new_suid = uid;
748         } else if ((uid != current->uid) && (uid != new_suid))
749                 return -EPERM;
750
751         if (old_euid != uid)
752         {
753                 current->mm->dumpable = suid_dumpable;
754                 smp_wmb();
755         }
756         current->fsuid = current->euid = uid;
757         current->suid = new_suid;
758
759         key_fsuid_changed(current);
760
761         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
762 }
763
764
765 /*
766  * This function implements a generic ability to update ruid, euid,
767  * and suid.  This allows you to implement the 4.4 compatible seteuid().
768  */
769 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
770 {
771         int old_ruid = current->uid;
772         int old_euid = current->euid;
773         int old_suid = current->suid;
774         int retval;
775
776         retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
777         if (retval)
778                 return retval;
779
780         if (!capable(CAP_SETUID)) {
781                 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
782                     (ruid != current->euid) && (ruid != current->suid))
783                         return -EPERM;
784                 if ((euid != (uid_t) -1) && (euid != current->uid) &&
785                     (euid != current->euid) && (euid != current->suid))
786                         return -EPERM;
787                 if ((suid != (uid_t) -1) && (suid != current->uid) &&
788                     (suid != current->euid) && (suid != current->suid))
789                         return -EPERM;
790         }
791         if (ruid != (uid_t) -1) {
792                 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
793                         return -EAGAIN;
794         }
795         if (euid != (uid_t) -1) {
796                 if (euid != current->euid)
797                 {
798                         current->mm->dumpable = suid_dumpable;
799                         smp_wmb();
800                 }
801                 current->euid = euid;
802         }
803         current->fsuid = current->euid;
804         if (suid != (uid_t) -1)
805                 current->suid = suid;
806
807         key_fsuid_changed(current);
808
809         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
810 }
811
812 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
813 {
814         int retval;
815
816         if (!(retval = put_user(current->uid, ruid)) &&
817             !(retval = put_user(current->euid, euid)))
818                 retval = put_user(current->suid, suid);
819
820         return retval;
821 }
822
823 /*
824  * Same as above, but for rgid, egid, sgid.
825  */
826 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
827 {
828         int retval;
829
830         retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
831         if (retval)
832                 return retval;
833
834         if (!capable(CAP_SETGID)) {
835                 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
836                     (rgid != current->egid) && (rgid != current->sgid))
837                         return -EPERM;
838                 if ((egid != (gid_t) -1) && (egid != current->gid) &&
839                     (egid != current->egid) && (egid != current->sgid))
840                         return -EPERM;
841                 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
842                     (sgid != current->egid) && (sgid != current->sgid))
843                         return -EPERM;
844         }
845         if (egid != (gid_t) -1) {
846                 if (egid != current->egid)
847                 {
848                         current->mm->dumpable = suid_dumpable;
849                         smp_wmb();
850                 }
851                 current->egid = egid;
852         }
853         current->fsgid = current->egid;
854         if (rgid != (gid_t) -1)
855                 current->gid = rgid;
856         if (sgid != (gid_t) -1)
857                 current->sgid = sgid;
858
859         key_fsgid_changed(current);
860         return 0;
861 }
862
863 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
864 {
865         int retval;
866
867         if (!(retval = put_user(current->gid, rgid)) &&
868             !(retval = put_user(current->egid, egid)))
869                 retval = put_user(current->sgid, sgid);
870
871         return retval;
872 }
873
874
875 /*
876  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
877  * is used for "access()" and for the NFS daemon (letting nfsd stay at
878  * whatever uid it wants to). It normally shadows "euid", except when
879  * explicitly set by setfsuid() or for access..
880  */
881 asmlinkage long sys_setfsuid(uid_t uid)
882 {
883         int old_fsuid;
884
885         old_fsuid = current->fsuid;
886         if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
887                 return old_fsuid;
888
889         if (uid == current->uid || uid == current->euid ||
890             uid == current->suid || uid == current->fsuid || 
891             capable(CAP_SETUID))
892         {
893                 if (uid != old_fsuid)
894                 {
895                         current->mm->dumpable = suid_dumpable;
896                         smp_wmb();
897                 }
898                 current->fsuid = uid;
899         }
900
901         key_fsuid_changed(current);
902
903         security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
904
905         return old_fsuid;
906 }
907
908 /*
909  * Samma pÃ¥ svenska..
910  */
911 asmlinkage long sys_setfsgid(gid_t gid)
912 {
913         int old_fsgid;
914
915         old_fsgid = current->fsgid;
916         if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
917                 return old_fsgid;
918
919         if (gid == current->gid || gid == current->egid ||
920             gid == current->sgid || gid == current->fsgid || 
921             capable(CAP_SETGID))
922         {
923                 if (gid != old_fsgid)
924                 {
925                         current->mm->dumpable = suid_dumpable;
926                         smp_wmb();
927                 }
928                 current->fsgid = gid;
929                 key_fsgid_changed(current);
930         }
931         return old_fsgid;
932 }
933
934 asmlinkage long sys_times(struct tms __user * tbuf)
935 {
936         /*
937          *      In the SMP world we might just be unlucky and have one of
938          *      the times increment as we use it. Since the value is an
939          *      atomically safe type this is just fine. Conceptually its
940          *      as if the syscall took an instant longer to occur.
941          */
942         if (tbuf) {
943                 struct tms tmp;
944                 cputime_t utime, stime, cutime, cstime;
945
946 #ifdef CONFIG_SMP
947                 if (thread_group_empty(current)) {
948                         /*
949                          * Single thread case without the use of any locks.
950                          *
951                          * We may race with release_task if two threads are
952                          * executing. However, release task first adds up the
953                          * counters (__exit_signal) before  removing the task
954                          * from the process tasklist (__unhash_process).
955                          * __exit_signal also acquires and releases the
956                          * siglock which results in the proper memory ordering
957                          * so that the list modifications are always visible
958                          * after the counters have been updated.
959                          *
960                          * If the counters have been updated by the second thread
961                          * but the thread has not yet been removed from the list
962                          * then the other branch will be executing which will
963                          * block on tasklist_lock until the exit handling of the
964                          * other task is finished.
965                          *
966                          * This also implies that the sighand->siglock cannot
967                          * be held by another processor. So we can also
968                          * skip acquiring that lock.
969                          */
970                         utime = cputime_add(current->signal->utime, current->utime);
971                         stime = cputime_add(current->signal->utime, current->stime);
972                         cutime = current->signal->cutime;
973                         cstime = current->signal->cstime;
974                 } else
975 #endif
976                 {
977
978                         /* Process with multiple threads */
979                         struct task_struct *tsk = current;
980                         struct task_struct *t;
981
982                         read_lock(&tasklist_lock);
983                         utime = tsk->signal->utime;
984                         stime = tsk->signal->stime;
985                         t = tsk;
986                         do {
987                                 utime = cputime_add(utime, t->utime);
988                                 stime = cputime_add(stime, t->stime);
989                                 t = next_thread(t);
990                         } while (t != tsk);
991
992                         /*
993                          * While we have tasklist_lock read-locked, no dying thread
994                          * can be updating current->signal->[us]time.  Instead,
995                          * we got their counts included in the live thread loop.
996                          * However, another thread can come in right now and
997                          * do a wait call that updates current->signal->c[us]time.
998                          * To make sure we always see that pair updated atomically,
999                          * we take the siglock around fetching them.
1000                          */
1001                         spin_lock_irq(&tsk->sighand->siglock);
1002                         cutime = tsk->signal->cutime;
1003                         cstime = tsk->signal->cstime;
1004                         spin_unlock_irq(&tsk->sighand->siglock);
1005                         read_unlock(&tasklist_lock);
1006                 }
1007                 tmp.tms_utime = cputime_to_clock_t(utime);
1008                 tmp.tms_stime = cputime_to_clock_t(stime);
1009                 tmp.tms_cutime = cputime_to_clock_t(cutime);
1010                 tmp.tms_cstime = cputime_to_clock_t(cstime);
1011                 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1012                         return -EFAULT;
1013         }
1014         return (long) jiffies_64_to_clock_t(get_jiffies_64());
1015 }
1016
1017 /*
1018  * This needs some heavy checking ...
1019  * I just haven't the stomach for it. I also don't fully
1020  * understand sessions/pgrp etc. Let somebody who does explain it.
1021  *
1022  * OK, I think I have the protection semantics right.... this is really
1023  * only important on a multi-user system anyway, to make sure one user
1024  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1025  *
1026  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1027  * LBT 04.03.94
1028  */
1029
1030 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1031 {
1032         struct task_struct *p;
1033         int err = -EINVAL;
1034
1035         if (!pid)
1036                 pid = current->pid;
1037         if (!pgid)
1038                 pgid = pid;
1039         if (pgid < 0)
1040                 return -EINVAL;
1041
1042         /* From this point forward we keep holding onto the tasklist lock
1043          * so that our parent does not change from under us. -DaveM
1044          */
1045         write_lock_irq(&tasklist_lock);
1046
1047         err = -ESRCH;
1048         p = find_task_by_pid(pid);
1049         if (!p)
1050                 goto out;
1051
1052         err = -EINVAL;
1053         if (!thread_group_leader(p))
1054                 goto out;
1055
1056         if (p->parent == current || p->real_parent == current) {
1057                 err = -EPERM;
1058                 if (p->signal->session != current->signal->session)
1059                         goto out;
1060                 err = -EACCES;
1061                 if (p->did_exec)
1062                         goto out;
1063         } else {
1064                 err = -ESRCH;
1065                 if (p != current)
1066                         goto out;
1067         }
1068
1069         err = -EPERM;
1070         if (p->signal->leader)
1071                 goto out;
1072
1073         if (pgid != pid) {
1074                 struct task_struct *p;
1075
1076                 do_each_task_pid(pgid, PIDTYPE_PGID, p) {
1077                         if (p->signal->session == current->signal->session)
1078                                 goto ok_pgid;
1079                 } while_each_task_pid(pgid, PIDTYPE_PGID, p);
1080                 goto out;
1081         }
1082
1083 ok_pgid:
1084         err = security_task_setpgid(p, pgid);
1085         if (err)
1086                 goto out;
1087
1088         if (process_group(p) != pgid) {
1089                 detach_pid(p, PIDTYPE_PGID);
1090                 p->signal->pgrp = pgid;
1091                 attach_pid(p, PIDTYPE_PGID, pgid);
1092         }
1093
1094         err = 0;
1095 out:
1096         /* All paths lead to here, thus we are safe. -DaveM */
1097         write_unlock_irq(&tasklist_lock);
1098         return err;
1099 }
1100
1101 asmlinkage long sys_getpgid(pid_t pid)
1102 {
1103         if (!pid) {
1104                 return process_group(current);
1105         } else {
1106                 int retval;
1107                 struct task_struct *p;
1108
1109                 read_lock(&tasklist_lock);
1110                 p = find_task_by_pid(pid);
1111
1112                 retval = -ESRCH;
1113                 if (p) {
1114                         retval = security_task_getpgid(p);
1115                         if (!retval)
1116                                 retval = process_group(p);
1117                 }
1118                 read_unlock(&tasklist_lock);
1119                 return retval;
1120         }
1121 }
1122
1123 #ifdef __ARCH_WANT_SYS_GETPGRP
1124
1125 asmlinkage long sys_getpgrp(void)
1126 {
1127         /* SMP - assuming writes are word atomic this is fine */
1128         return process_group(current);
1129 }
1130
1131 #endif
1132
1133 asmlinkage long sys_getsid(pid_t pid)
1134 {
1135         if (!pid) {
1136                 return current->signal->session;
1137         } else {
1138                 int retval;
1139                 struct task_struct *p;
1140
1141                 read_lock(&tasklist_lock);
1142                 p = find_task_by_pid(pid);
1143
1144                 retval = -ESRCH;
1145                 if(p) {
1146                         retval = security_task_getsid(p);
1147                         if (!retval)
1148                                 retval = p->signal->session;
1149                 }
1150                 read_unlock(&tasklist_lock);
1151                 return retval;
1152         }
1153 }
1154
1155 asmlinkage long sys_setsid(void)
1156 {
1157         struct pid *pid;
1158         int err = -EPERM;
1159
1160         if (!thread_group_leader(current))
1161                 return -EINVAL;
1162
1163         down(&tty_sem);
1164         write_lock_irq(&tasklist_lock);
1165
1166         pid = find_pid(PIDTYPE_PGID, current->pid);
1167         if (pid)
1168                 goto out;
1169
1170         current->signal->leader = 1;
1171         __set_special_pids(current->pid, current->pid);
1172         current->signal->tty = NULL;
1173         current->signal->tty_old_pgrp = 0;
1174         err = process_group(current);
1175 out:
1176         write_unlock_irq(&tasklist_lock);
1177         up(&tty_sem);
1178         return err;
1179 }
1180
1181 /*
1182  * Supplementary group IDs
1183  */
1184
1185 /* init to 2 - one for init_task, one to ensure it is never freed */
1186 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1187
1188 struct group_info *groups_alloc(int gidsetsize)
1189 {
1190         struct group_info *group_info;
1191         int nblocks;
1192         int i;
1193
1194         nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1195         /* Make sure we always allocate at least one indirect block pointer */
1196         nblocks = nblocks ? : 1;
1197         group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1198         if (!group_info)
1199                 return NULL;
1200         group_info->ngroups = gidsetsize;
1201         group_info->nblocks = nblocks;
1202         atomic_set(&group_info->usage, 1);
1203
1204         if (gidsetsize <= NGROUPS_SMALL) {
1205                 group_info->blocks[0] = group_info->small_block;
1206         } else {
1207                 for (i = 0; i < nblocks; i++) {
1208                         gid_t *b;
1209                         b = (void *)__get_free_page(GFP_USER);
1210                         if (!b)
1211                                 goto out_undo_partial_alloc;
1212                         group_info->blocks[i] = b;
1213                 }
1214         }
1215         return group_info;
1216
1217 out_undo_partial_alloc:
1218         while (--i >= 0) {
1219                 free_page((unsigned long)group_info->blocks[i]);
1220         }
1221         kfree(group_info);
1222         return NULL;
1223 }
1224
1225 EXPORT_SYMBOL(groups_alloc);
1226
1227 void groups_free(struct group_info *group_info)
1228 {
1229         if (group_info->blocks[0] != group_info->small_block) {
1230                 int i;
1231                 for (i = 0; i < group_info->nblocks; i++)
1232                         free_page((unsigned long)group_info->blocks[i]);
1233         }
1234         kfree(group_info);
1235 }
1236
1237 EXPORT_SYMBOL(groups_free);
1238
1239 /* export the group_info to a user-space array */
1240 static int groups_to_user(gid_t __user *grouplist,
1241     struct group_info *group_info)
1242 {
1243         int i;
1244         int count = group_info->ngroups;
1245
1246         for (i = 0; i < group_info->nblocks; i++) {
1247                 int cp_count = min(NGROUPS_PER_BLOCK, count);
1248                 int off = i * NGROUPS_PER_BLOCK;
1249                 int len = cp_count * sizeof(*grouplist);
1250
1251                 if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1252                         return -EFAULT;
1253
1254                 count -= cp_count;
1255         }
1256         return 0;
1257 }
1258
1259 /* fill a group_info from a user-space array - it must be allocated already */
1260 static int groups_from_user(struct group_info *group_info,
1261     gid_t __user *grouplist)
1262  {
1263         int i;
1264         int count = group_info->ngroups;
1265
1266         for (i = 0; i < group_info->nblocks; i++) {
1267                 int cp_count = min(NGROUPS_PER_BLOCK, count);
1268                 int off = i * NGROUPS_PER_BLOCK;
1269                 int len = cp_count * sizeof(*grouplist);
1270
1271                 if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1272                         return -EFAULT;
1273
1274                 count -= cp_count;
1275         }
1276         return 0;
1277 }
1278
1279 /* a simple Shell sort */
1280 static void groups_sort(struct group_info *group_info)
1281 {
1282         int base, max, stride;
1283         int gidsetsize = group_info->ngroups;
1284
1285         for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1286                 ; /* nothing */
1287         stride /= 3;
1288
1289         while (stride) {
1290                 max = gidsetsize - stride;
1291                 for (base = 0; base < max; base++) {
1292                         int left = base;
1293                         int right = left + stride;
1294                         gid_t tmp = GROUP_AT(group_info, right);
1295
1296                         while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1297                                 GROUP_AT(group_info, right) =
1298                                     GROUP_AT(group_info, left);
1299                                 right = left;
1300                                 left -= stride;
1301                         }
1302                         GROUP_AT(group_info, right) = tmp;
1303                 }
1304                 stride /= 3;
1305         }
1306 }
1307
1308 /* a simple bsearch */
1309 int groups_search(struct group_info *group_info, gid_t grp)
1310 {
1311         int left, right;
1312
1313         if (!group_info)
1314                 return 0;
1315
1316         left = 0;
1317         right = group_info->ngroups;
1318         while (left < right) {
1319                 int mid = (left+right)/2;
1320                 int cmp = grp - GROUP_AT(group_info, mid);
1321                 if (cmp > 0)
1322                         left = mid + 1;
1323                 else if (cmp < 0)
1324                         right = mid;
1325                 else
1326                         return 1;
1327         }
1328         return 0;
1329 }
1330
1331 /* validate and set current->group_info */
1332 int set_current_groups(struct group_info *group_info)
1333 {
1334         int retval;
1335         struct group_info *old_info;
1336
1337         retval = security_task_setgroups(group_info);
1338         if (retval)
1339                 return retval;
1340
1341         groups_sort(group_info);
1342         get_group_info(group_info);
1343
1344         task_lock(current);
1345         old_info = current->group_info;
1346         current->group_info = group_info;
1347         task_unlock(current);
1348
1349         put_group_info(old_info);
1350
1351         return 0;
1352 }
1353
1354 EXPORT_SYMBOL(set_current_groups);
1355
1356 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1357 {
1358         int i = 0;
1359
1360         /*
1361          *      SMP: Nobody else can change our grouplist. Thus we are
1362          *      safe.
1363          */
1364
1365         if (gidsetsize < 0)
1366                 return -EINVAL;
1367
1368         /* no need to grab task_lock here; it cannot change */
1369         get_group_info(current->group_info);
1370         i = current->group_info->ngroups;
1371         if (gidsetsize) {
1372                 if (i > gidsetsize) {
1373                         i = -EINVAL;
1374                         goto out;
1375                 }
1376                 if (groups_to_user(grouplist, current->group_info)) {
1377                         i = -EFAULT;
1378                         goto out;
1379                 }
1380         }
1381 out:
1382         put_group_info(current->group_info);
1383         return i;
1384 }
1385
1386 /*
1387  *      SMP: Our groups are copy-on-write. We can set them safely
1388  *      without another task interfering.
1389  */
1390  
1391 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1392 {
1393         struct group_info *group_info;
1394         int retval;
1395
1396         if (!capable(CAP_SETGID))
1397                 return -EPERM;
1398         if ((unsigned)gidsetsize > NGROUPS_MAX)
1399                 return -EINVAL;
1400
1401         group_info = groups_alloc(gidsetsize);
1402         if (!group_info)
1403                 return -ENOMEM;
1404         retval = groups_from_user(group_info, grouplist);
1405         if (retval) {
1406                 put_group_info(group_info);
1407                 return retval;
1408         }
1409
1410         retval = set_current_groups(group_info);
1411         put_group_info(group_info);
1412
1413         return retval;
1414 }
1415
1416 /*
1417  * Check whether we're fsgid/egid or in the supplemental group..
1418  */
1419 int in_group_p(gid_t grp)
1420 {
1421         int retval = 1;
1422         if (grp != current->fsgid) {
1423                 get_group_info(current->group_info);
1424                 retval = groups_search(current->group_info, grp);
1425                 put_group_info(current->group_info);
1426         }
1427         return retval;
1428 }
1429
1430 EXPORT_SYMBOL(in_group_p);
1431
1432 int in_egroup_p(gid_t grp)
1433 {
1434         int retval = 1;
1435         if (grp != current->egid) {
1436                 get_group_info(current->group_info);
1437                 retval = groups_search(current->group_info, grp);
1438                 put_group_info(current->group_info);
1439         }
1440         return retval;
1441 }
1442
1443 EXPORT_SYMBOL(in_egroup_p);
1444
1445 DECLARE_RWSEM(uts_sem);
1446
1447 EXPORT_SYMBOL(uts_sem);
1448
1449 asmlinkage long sys_newuname(struct new_utsname __user * name)
1450 {
1451         int errno = 0;
1452
1453         down_read(&uts_sem);
1454         if (copy_to_user(name,&system_utsname,sizeof *name))
1455                 errno = -EFAULT;
1456         up_read(&uts_sem);
1457         return errno;
1458 }
1459
1460 asmlinkage long sys_sethostname(char __user *name, int len)
1461 {
1462         int errno;
1463         char tmp[__NEW_UTS_LEN];
1464
1465         if (!capable(CAP_SYS_ADMIN))
1466                 return -EPERM;
1467         if (len < 0 || len > __NEW_UTS_LEN)
1468                 return -EINVAL;
1469         down_write(&uts_sem);
1470         errno = -EFAULT;
1471         if (!copy_from_user(tmp, name, len)) {
1472                 memcpy(system_utsname.nodename, tmp, len);
1473                 system_utsname.nodename[len] = 0;
1474                 errno = 0;
1475         }
1476         up_write(&uts_sem);
1477         return errno;
1478 }
1479
1480 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1481
1482 asmlinkage long sys_gethostname(char __user *name, int len)
1483 {
1484         int i, errno;
1485
1486         if (len < 0)
1487                 return -EINVAL;
1488         down_read(&uts_sem);
1489         i = 1 + strlen(system_utsname.nodename);
1490         if (i > len)
1491                 i = len;
1492         errno = 0;
1493         if (copy_to_user(name, system_utsname.nodename, i))
1494                 errno = -EFAULT;
1495         up_read(&uts_sem);
1496         return errno;
1497 }
1498
1499 #endif
1500
1501 /*
1502  * Only setdomainname; getdomainname can be implemented by calling
1503  * uname()
1504  */
1505 asmlinkage long sys_setdomainname(char __user *name, int len)
1506 {
1507         int errno;
1508         char tmp[__NEW_UTS_LEN];
1509
1510         if (!capable(CAP_SYS_ADMIN))
1511                 return -EPERM;
1512         if (len < 0 || len > __NEW_UTS_LEN)
1513                 return -EINVAL;
1514
1515         down_write(&uts_sem);
1516         errno = -EFAULT;
1517         if (!copy_from_user(tmp, name, len)) {
1518                 memcpy(system_utsname.domainname, tmp, len);
1519                 system_utsname.domainname[len] = 0;
1520                 errno = 0;
1521         }
1522         up_write(&uts_sem);
1523         return errno;
1524 }
1525
1526 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1527 {
1528         if (resource >= RLIM_NLIMITS)
1529                 return -EINVAL;
1530         else {
1531                 struct rlimit value;
1532                 task_lock(current->group_leader);
1533                 value = current->signal->rlim[resource];
1534                 task_unlock(current->group_leader);
1535                 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1536         }
1537 }
1538
1539 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1540
1541 /*
1542  *      Back compatibility for getrlimit. Needed for some apps.
1543  */
1544  
1545 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1546 {
1547         struct rlimit x;
1548         if (resource >= RLIM_NLIMITS)
1549                 return -EINVAL;
1550
1551         task_lock(current->group_leader);
1552         x = current->signal->rlim[resource];
1553         task_unlock(current->group_leader);
1554         if(x.rlim_cur > 0x7FFFFFFF)
1555                 x.rlim_cur = 0x7FFFFFFF;
1556         if(x.rlim_max > 0x7FFFFFFF)
1557                 x.rlim_max = 0x7FFFFFFF;
1558         return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1559 }
1560
1561 #endif
1562
1563 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1564 {
1565         struct rlimit new_rlim, *old_rlim;
1566         int retval;
1567
1568         if (resource >= RLIM_NLIMITS)
1569                 return -EINVAL;
1570         if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1571                 return -EFAULT;
1572        if (new_rlim.rlim_cur > new_rlim.rlim_max)
1573                return -EINVAL;
1574         old_rlim = current->signal->rlim + resource;
1575         if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1576             !capable(CAP_SYS_RESOURCE))
1577                 return -EPERM;
1578         if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1579                         return -EPERM;
1580
1581         retval = security_task_setrlimit(resource, &new_rlim);
1582         if (retval)
1583                 return retval;
1584
1585         task_lock(current->group_leader);
1586         *old_rlim = new_rlim;
1587         task_unlock(current->group_leader);
1588
1589         if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY &&
1590             (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
1591              new_rlim.rlim_cur <= cputime_to_secs(
1592                      current->signal->it_prof_expires))) {
1593                 cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur);
1594                 read_lock(&tasklist_lock);
1595                 spin_lock_irq(&current->sighand->siglock);
1596                 set_process_cpu_timer(current, CPUCLOCK_PROF,
1597                                       &cputime, NULL);
1598                 spin_unlock_irq(&current->sighand->siglock);
1599                 read_unlock(&tasklist_lock);
1600         }
1601
1602         return 0;
1603 }
1604
1605 /*
1606  * It would make sense to put struct rusage in the task_struct,
1607  * except that would make the task_struct be *really big*.  After
1608  * task_struct gets moved into malloc'ed memory, it would
1609  * make sense to do this.  It will make moving the rest of the information
1610  * a lot simpler!  (Which we're not doing right now because we're not
1611  * measuring them yet).
1612  *
1613  * This expects to be called with tasklist_lock read-locked or better,
1614  * and the siglock not locked.  It may momentarily take the siglock.
1615  *
1616  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1617  * races with threads incrementing their own counters.  But since word
1618  * reads are atomic, we either get new values or old values and we don't
1619  * care which for the sums.  We always take the siglock to protect reading
1620  * the c* fields from p->signal from races with exit.c updating those
1621  * fields when reaping, so a sample either gets all the additions of a
1622  * given child after it's reaped, or none so this sample is before reaping.
1623  */
1624
1625 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1626 {
1627         struct task_struct *t;
1628         unsigned long flags;
1629         cputime_t utime, stime;
1630
1631         memset((char *) r, 0, sizeof *r);
1632
1633         if (unlikely(!p->signal))
1634                 return;
1635
1636         switch (who) {
1637                 case RUSAGE_CHILDREN:
1638                         spin_lock_irqsave(&p->sighand->siglock, flags);
1639                         utime = p->signal->cutime;
1640                         stime = p->signal->cstime;
1641                         r->ru_nvcsw = p->signal->cnvcsw;
1642                         r->ru_nivcsw = p->signal->cnivcsw;
1643                         r->ru_minflt = p->signal->cmin_flt;
1644                         r->ru_majflt = p->signal->cmaj_flt;
1645                         spin_unlock_irqrestore(&p->sighand->siglock, flags);
1646                         cputime_to_timeval(utime, &r->ru_utime);
1647                         cputime_to_timeval(stime, &r->ru_stime);
1648                         break;
1649                 case RUSAGE_SELF:
1650                         spin_lock_irqsave(&p->sighand->siglock, flags);
1651                         utime = stime = cputime_zero;
1652                         goto sum_group;
1653                 case RUSAGE_BOTH:
1654                         spin_lock_irqsave(&p->sighand->siglock, flags);
1655                         utime = p->signal->cutime;
1656                         stime = p->signal->cstime;
1657                         r->ru_nvcsw = p->signal->cnvcsw;
1658                         r->ru_nivcsw = p->signal->cnivcsw;
1659                         r->ru_minflt = p->signal->cmin_flt;
1660                         r->ru_majflt = p->signal->cmaj_flt;
1661                 sum_group:
1662                         utime = cputime_add(utime, p->signal->utime);
1663                         stime = cputime_add(stime, p->signal->stime);
1664                         r->ru_nvcsw += p->signal->nvcsw;
1665                         r->ru_nivcsw += p->signal->nivcsw;
1666                         r->ru_minflt += p->signal->min_flt;
1667                         r->ru_majflt += p->signal->maj_flt;
1668                         t = p;
1669                         do {
1670                                 utime = cputime_add(utime, t->utime);
1671                                 stime = cputime_add(stime, t->stime);
1672                                 r->ru_nvcsw += t->nvcsw;
1673                                 r->ru_nivcsw += t->nivcsw;
1674                                 r->ru_minflt += t->min_flt;
1675                                 r->ru_majflt += t->maj_flt;
1676                                 t = next_thread(t);
1677                         } while (t != p);
1678                         spin_unlock_irqrestore(&p->sighand->siglock, flags);
1679                         cputime_to_timeval(utime, &r->ru_utime);
1680                         cputime_to_timeval(stime, &r->ru_stime);
1681                         break;
1682                 default:
1683                         BUG();
1684         }
1685 }
1686
1687 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1688 {
1689         struct rusage r;
1690         read_lock(&tasklist_lock);
1691         k_getrusage(p, who, &r);
1692         read_unlock(&tasklist_lock);
1693         return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1694 }
1695
1696 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1697 {
1698         if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1699                 return -EINVAL;
1700         return getrusage(current, who, ru);
1701 }
1702
1703 asmlinkage long sys_umask(int mask)
1704 {
1705         mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1706         return mask;
1707 }
1708     
1709 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1710                           unsigned long arg4, unsigned long arg5)
1711 {
1712         long error;
1713         int sig;
1714
1715         error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1716         if (error)
1717                 return error;
1718
1719         switch (option) {
1720                 case PR_SET_PDEATHSIG:
1721                         sig = arg2;
1722                         if (!valid_signal(sig)) {
1723                                 error = -EINVAL;
1724                                 break;
1725                         }
1726                         current->pdeath_signal = sig;
1727                         break;
1728                 case PR_GET_PDEATHSIG:
1729                         error = put_user(current->pdeath_signal, (int __user *)arg2);
1730                         break;
1731                 case PR_GET_DUMPABLE:
1732                         if (current->mm->dumpable)
1733                                 error = 1;
1734                         break;
1735                 case PR_SET_DUMPABLE:
1736                         if (arg2 < 0 || arg2 > 2) {
1737                                 error = -EINVAL;
1738                                 break;
1739                         }
1740                         current->mm->dumpable = arg2;
1741                         break;
1742
1743                 case PR_SET_UNALIGN:
1744                         error = SET_UNALIGN_CTL(current, arg2);
1745                         break;
1746                 case PR_GET_UNALIGN:
1747                         error = GET_UNALIGN_CTL(current, arg2);
1748                         break;
1749                 case PR_SET_FPEMU:
1750                         error = SET_FPEMU_CTL(current, arg2);
1751                         break;
1752                 case PR_GET_FPEMU:
1753                         error = GET_FPEMU_CTL(current, arg2);
1754                         break;
1755                 case PR_SET_FPEXC:
1756                         error = SET_FPEXC_CTL(current, arg2);
1757                         break;
1758                 case PR_GET_FPEXC:
1759                         error = GET_FPEXC_CTL(current, arg2);
1760                         break;
1761                 case PR_GET_TIMING:
1762                         error = PR_TIMING_STATISTICAL;
1763                         break;
1764                 case PR_SET_TIMING:
1765                         if (arg2 == PR_TIMING_STATISTICAL)
1766                                 error = 0;
1767                         else
1768                                 error = -EINVAL;
1769                         break;
1770
1771                 case PR_GET_KEEPCAPS:
1772                         if (current->keep_capabilities)
1773                                 error = 1;
1774                         break;
1775                 case PR_SET_KEEPCAPS:
1776                         if (arg2 != 0 && arg2 != 1) {
1777                                 error = -EINVAL;
1778                                 break;
1779                         }
1780                         current->keep_capabilities = arg2;
1781                         break;
1782                 case PR_SET_NAME: {
1783                         struct task_struct *me = current;
1784                         unsigned char ncomm[sizeof(me->comm)];
1785
1786                         ncomm[sizeof(me->comm)-1] = 0;
1787                         if (strncpy_from_user(ncomm, (char __user *)arg2,
1788                                                 sizeof(me->comm)-1) < 0)
1789                                 return -EFAULT;
1790                         set_task_comm(me, ncomm);
1791                         return 0;
1792                 }
1793                 case PR_GET_NAME: {
1794                         struct task_struct *me = current;
1795                         unsigned char tcomm[sizeof(me->comm)];
1796
1797                         get_task_comm(tcomm, me);
1798                         if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1799                                 return -EFAULT;
1800                         return 0;
1801                 }
1802                 default:
1803                         error = -EINVAL;
1804                         break;
1805         }
1806         return error;
1807 }