4e2f6033565687f648cbd27e8976ea6c647217fa
[pandora-kernel.git] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73
74 #include <asm/tlb.h>
75 #include <asm/irq_regs.h>
76
77 /*
78  * Convert user-nice values [ -20 ... 0 ... 19 ]
79  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80  * and back.
81  */
82 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
85
86 /*
87  * 'User priority' is the nice value converted to something we
88  * can work with better when scaling various scheduler parameters,
89  * it's a [ 0 ... 39 ] range.
90  */
91 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
94
95 /*
96  * Helpers for converting nanosecond timing to jiffy resolution
97  */
98 #define NS_TO_JIFFIES(TIME)     ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
99
100 #define NICE_0_LOAD             SCHED_LOAD_SCALE
101 #define NICE_0_SHIFT            SCHED_LOAD_SHIFT
102
103 /*
104  * These are the 'tuning knobs' of the scheduler:
105  *
106  * default timeslice is 100 msecs (used only for SCHED_RR tasks).
107  * Timeslices get refilled after they expire.
108  */
109 #define DEF_TIMESLICE           (100 * HZ / 1000)
110
111 /*
112  * single value that denotes runtime == period, ie unlimited time.
113  */
114 #define RUNTIME_INF     ((u64)~0ULL)
115
116 #ifdef CONFIG_SMP
117 /*
118  * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119  * Since cpu_power is a 'constant', we can use a reciprocal divide.
120  */
121 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122 {
123         return reciprocal_divide(load, sg->reciprocal_cpu_power);
124 }
125
126 /*
127  * Each time a sched group cpu_power is changed,
128  * we must compute its reciprocal value
129  */
130 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131 {
132         sg->__cpu_power += val;
133         sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134 }
135 #endif
136
137 static inline int rt_policy(int policy)
138 {
139         if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
140                 return 1;
141         return 0;
142 }
143
144 static inline int task_has_rt_policy(struct task_struct *p)
145 {
146         return rt_policy(p->policy);
147 }
148
149 /*
150  * This is the priority-queue data structure of the RT scheduling class:
151  */
152 struct rt_prio_array {
153         DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
154         struct list_head queue[MAX_RT_PRIO];
155 };
156
157 struct rt_bandwidth {
158         /* nests inside the rq lock: */
159         spinlock_t              rt_runtime_lock;
160         ktime_t                 rt_period;
161         u64                     rt_runtime;
162         struct hrtimer          rt_period_timer;
163 };
164
165 static struct rt_bandwidth def_rt_bandwidth;
166
167 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
168
169 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
170 {
171         struct rt_bandwidth *rt_b =
172                 container_of(timer, struct rt_bandwidth, rt_period_timer);
173         ktime_t now;
174         int overrun;
175         int idle = 0;
176
177         for (;;) {
178                 now = hrtimer_cb_get_time(timer);
179                 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
180
181                 if (!overrun)
182                         break;
183
184                 idle = do_sched_rt_period_timer(rt_b, overrun);
185         }
186
187         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
188 }
189
190 static
191 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
192 {
193         rt_b->rt_period = ns_to_ktime(period);
194         rt_b->rt_runtime = runtime;
195
196         spin_lock_init(&rt_b->rt_runtime_lock);
197
198         hrtimer_init(&rt_b->rt_period_timer,
199                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
200         rt_b->rt_period_timer.function = sched_rt_period_timer;
201         rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
202 }
203
204 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
205 {
206         ktime_t now;
207
208         if (rt_b->rt_runtime == RUNTIME_INF)
209                 return;
210
211         if (hrtimer_active(&rt_b->rt_period_timer))
212                 return;
213
214         spin_lock(&rt_b->rt_runtime_lock);
215         for (;;) {
216                 if (hrtimer_active(&rt_b->rt_period_timer))
217                         break;
218
219                 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
220                 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
221                 hrtimer_start(&rt_b->rt_period_timer,
222                               rt_b->rt_period_timer.expires,
223                               HRTIMER_MODE_ABS);
224         }
225         spin_unlock(&rt_b->rt_runtime_lock);
226 }
227
228 #ifdef CONFIG_RT_GROUP_SCHED
229 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
230 {
231         hrtimer_cancel(&rt_b->rt_period_timer);
232 }
233 #endif
234
235 /*
236  * sched_domains_mutex serializes calls to arch_init_sched_domains,
237  * detach_destroy_domains and partition_sched_domains.
238  */
239 static DEFINE_MUTEX(sched_domains_mutex);
240
241 #ifdef CONFIG_GROUP_SCHED
242
243 #include <linux/cgroup.h>
244
245 struct cfs_rq;
246
247 static LIST_HEAD(task_groups);
248
249 /* task group related information */
250 struct task_group {
251 #ifdef CONFIG_CGROUP_SCHED
252         struct cgroup_subsys_state css;
253 #endif
254
255 #ifdef CONFIG_FAIR_GROUP_SCHED
256         /* schedulable entities of this group on each cpu */
257         struct sched_entity **se;
258         /* runqueue "owned" by this group on each cpu */
259         struct cfs_rq **cfs_rq;
260         unsigned long shares;
261 #endif
262
263 #ifdef CONFIG_RT_GROUP_SCHED
264         struct sched_rt_entity **rt_se;
265         struct rt_rq **rt_rq;
266
267         struct rt_bandwidth rt_bandwidth;
268 #endif
269
270         struct rcu_head rcu;
271         struct list_head list;
272
273         struct task_group *parent;
274         struct list_head siblings;
275         struct list_head children;
276 };
277
278 #ifdef CONFIG_USER_SCHED
279
280 /*
281  * Root task group.
282  *      Every UID task group (including init_task_group aka UID-0) will
283  *      be a child to this group.
284  */
285 struct task_group root_task_group;
286
287 #ifdef CONFIG_FAIR_GROUP_SCHED
288 /* Default task group's sched entity on each cpu */
289 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
290 /* Default task group's cfs_rq on each cpu */
291 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
292 #endif
293
294 #ifdef CONFIG_RT_GROUP_SCHED
295 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
296 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
297 #endif
298 #else
299 #define root_task_group init_task_group
300 #endif
301
302 /* task_group_lock serializes add/remove of task groups and also changes to
303  * a task group's cpu shares.
304  */
305 static DEFINE_SPINLOCK(task_group_lock);
306
307 #ifdef CONFIG_FAIR_GROUP_SCHED
308 #ifdef CONFIG_USER_SCHED
309 # define INIT_TASK_GROUP_LOAD   (2*NICE_0_LOAD)
310 #else
311 # define INIT_TASK_GROUP_LOAD   NICE_0_LOAD
312 #endif
313
314 /*
315  * A weight of 0 or 1 can cause arithmetics problems.
316  * A weight of a cfs_rq is the sum of weights of which entities
317  * are queued on this cfs_rq, so a weight of a entity should not be
318  * too large, so as the shares value of a task group.
319  * (The default weight is 1024 - so there's no practical
320  *  limitation from this.)
321  */
322 #define MIN_SHARES      2
323 #define MAX_SHARES      (1UL << 18)
324
325 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
326 #endif
327
328 /* Default task group.
329  *      Every task in system belong to this group at bootup.
330  */
331 struct task_group init_task_group;
332
333 /* return group to which a task belongs */
334 static inline struct task_group *task_group(struct task_struct *p)
335 {
336         struct task_group *tg;
337
338 #ifdef CONFIG_USER_SCHED
339         tg = p->user->tg;
340 #elif defined(CONFIG_CGROUP_SCHED)
341         tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
342                                 struct task_group, css);
343 #else
344         tg = &init_task_group;
345 #endif
346         return tg;
347 }
348
349 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
350 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
351 {
352 #ifdef CONFIG_FAIR_GROUP_SCHED
353         p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
354         p->se.parent = task_group(p)->se[cpu];
355 #endif
356
357 #ifdef CONFIG_RT_GROUP_SCHED
358         p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
359         p->rt.parent = task_group(p)->rt_se[cpu];
360 #endif
361 }
362
363 #else
364
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
366
367 #endif  /* CONFIG_GROUP_SCHED */
368
369 /* CFS-related fields in a runqueue */
370 struct cfs_rq {
371         struct load_weight load;
372         unsigned long nr_running;
373
374         u64 exec_clock;
375         u64 min_vruntime;
376
377         struct rb_root tasks_timeline;
378         struct rb_node *rb_leftmost;
379
380         struct list_head tasks;
381         struct list_head *balance_iterator;
382
383         /*
384          * 'curr' points to currently running entity on this cfs_rq.
385          * It is set to NULL otherwise (i.e when none are currently running).
386          */
387         struct sched_entity *curr, *next;
388
389         unsigned long nr_spread_over;
390
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392         struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
393
394         /*
395          * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
396          * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
397          * (like users, containers etc.)
398          *
399          * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
400          * list is used during load balance.
401          */
402         struct list_head leaf_cfs_rq_list;
403         struct task_group *tg;  /* group that "owns" this runqueue */
404 #endif
405 };
406
407 /* Real-Time classes' related field in a runqueue: */
408 struct rt_rq {
409         struct rt_prio_array active;
410         unsigned long rt_nr_running;
411 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
412         int highest_prio; /* highest queued rt task prio */
413 #endif
414 #ifdef CONFIG_SMP
415         unsigned long rt_nr_migratory;
416         int overloaded;
417 #endif
418         int rt_throttled;
419         u64 rt_time;
420         u64 rt_runtime;
421         /* Nests inside the rq lock: */
422         spinlock_t rt_runtime_lock;
423
424 #ifdef CONFIG_RT_GROUP_SCHED
425         unsigned long rt_nr_boosted;
426
427         struct rq *rq;
428         struct list_head leaf_rt_rq_list;
429         struct task_group *tg;
430         struct sched_rt_entity *rt_se;
431 #endif
432 };
433
434 #ifdef CONFIG_SMP
435
436 /*
437  * We add the notion of a root-domain which will be used to define per-domain
438  * variables. Each exclusive cpuset essentially defines an island domain by
439  * fully partitioning the member cpus from any other cpuset. Whenever a new
440  * exclusive cpuset is created, we also create and attach a new root-domain
441  * object.
442  *
443  */
444 struct root_domain {
445         atomic_t refcount;
446         cpumask_t span;
447         cpumask_t online;
448
449         /*
450          * The "RT overload" flag: it gets set if a CPU has more than
451          * one runnable RT task.
452          */
453         cpumask_t rto_mask;
454         atomic_t rto_count;
455 };
456
457 /*
458  * By default the system creates a single root-domain with all cpus as
459  * members (mimicking the global state we have today).
460  */
461 static struct root_domain def_root_domain;
462
463 #endif
464
465 /*
466  * This is the main, per-CPU runqueue data structure.
467  *
468  * Locking rule: those places that want to lock multiple runqueues
469  * (such as the load balancing or the thread migration code), lock
470  * acquire operations must be ordered by ascending &runqueue.
471  */
472 struct rq {
473         /* runqueue lock: */
474         spinlock_t lock;
475
476         /*
477          * nr_running and cpu_load should be in the same cacheline because
478          * remote CPUs use both these fields when doing load calculation.
479          */
480         unsigned long nr_running;
481         #define CPU_LOAD_IDX_MAX 5
482         unsigned long cpu_load[CPU_LOAD_IDX_MAX];
483         unsigned char idle_at_tick;
484 #ifdef CONFIG_NO_HZ
485         unsigned long last_tick_seen;
486         unsigned char in_nohz_recently;
487 #endif
488         /* capture load from *all* tasks on this cpu: */
489         struct load_weight load;
490         unsigned long nr_load_updates;
491         u64 nr_switches;
492
493         struct cfs_rq cfs;
494         struct rt_rq rt;
495
496 #ifdef CONFIG_FAIR_GROUP_SCHED
497         /* list of leaf cfs_rq on this cpu: */
498         struct list_head leaf_cfs_rq_list;
499 #endif
500 #ifdef CONFIG_RT_GROUP_SCHED
501         struct list_head leaf_rt_rq_list;
502 #endif
503
504         /*
505          * This is part of a global counter where only the total sum
506          * over all CPUs matters. A task can increase this counter on
507          * one CPU and if it got migrated afterwards it may decrease
508          * it on another CPU. Always updated under the runqueue lock:
509          */
510         unsigned long nr_uninterruptible;
511
512         struct task_struct *curr, *idle;
513         unsigned long next_balance;
514         struct mm_struct *prev_mm;
515
516         u64 clock;
517
518         atomic_t nr_iowait;
519
520 #ifdef CONFIG_SMP
521         struct root_domain *rd;
522         struct sched_domain *sd;
523
524         /* For active balancing */
525         int active_balance;
526         int push_cpu;
527         /* cpu of this runqueue: */
528         int cpu;
529
530         struct task_struct *migration_thread;
531         struct list_head migration_queue;
532 #endif
533
534 #ifdef CONFIG_SCHED_HRTICK
535         unsigned long hrtick_flags;
536         ktime_t hrtick_expire;
537         struct hrtimer hrtick_timer;
538 #endif
539
540 #ifdef CONFIG_SCHEDSTATS
541         /* latency stats */
542         struct sched_info rq_sched_info;
543
544         /* sys_sched_yield() stats */
545         unsigned int yld_exp_empty;
546         unsigned int yld_act_empty;
547         unsigned int yld_both_empty;
548         unsigned int yld_count;
549
550         /* schedule() stats */
551         unsigned int sched_switch;
552         unsigned int sched_count;
553         unsigned int sched_goidle;
554
555         /* try_to_wake_up() stats */
556         unsigned int ttwu_count;
557         unsigned int ttwu_local;
558
559         /* BKL stats */
560         unsigned int bkl_count;
561 #endif
562         struct lock_class_key rq_lock_key;
563 };
564
565 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
566
567 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
568 {
569         rq->curr->sched_class->check_preempt_curr(rq, p);
570 }
571
572 static inline int cpu_of(struct rq *rq)
573 {
574 #ifdef CONFIG_SMP
575         return rq->cpu;
576 #else
577         return 0;
578 #endif
579 }
580
581 /*
582  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
583  * See detach_destroy_domains: synchronize_sched for details.
584  *
585  * The domain tree of any CPU may only be accessed from within
586  * preempt-disabled sections.
587  */
588 #define for_each_domain(cpu, __sd) \
589         for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
590
591 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
592 #define this_rq()               (&__get_cpu_var(runqueues))
593 #define task_rq(p)              cpu_rq(task_cpu(p))
594 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
595
596 static inline void update_rq_clock(struct rq *rq)
597 {
598         rq->clock = sched_clock_cpu(cpu_of(rq));
599 }
600
601 /*
602  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
603  */
604 #ifdef CONFIG_SCHED_DEBUG
605 # define const_debug __read_mostly
606 #else
607 # define const_debug static const
608 #endif
609
610 /*
611  * Debugging: various feature bits
612  */
613
614 #define SCHED_FEAT(name, enabled)       \
615         __SCHED_FEAT_##name ,
616
617 enum {
618 #include "sched_features.h"
619 };
620
621 #undef SCHED_FEAT
622
623 #define SCHED_FEAT(name, enabled)       \
624         (1UL << __SCHED_FEAT_##name) * enabled |
625
626 const_debug unsigned int sysctl_sched_features =
627 #include "sched_features.h"
628         0;
629
630 #undef SCHED_FEAT
631
632 #ifdef CONFIG_SCHED_DEBUG
633 #define SCHED_FEAT(name, enabled)       \
634         #name ,
635
636 static __read_mostly char *sched_feat_names[] = {
637 #include "sched_features.h"
638         NULL
639 };
640
641 #undef SCHED_FEAT
642
643 static int sched_feat_open(struct inode *inode, struct file *filp)
644 {
645         filp->private_data = inode->i_private;
646         return 0;
647 }
648
649 static ssize_t
650 sched_feat_read(struct file *filp, char __user *ubuf,
651                 size_t cnt, loff_t *ppos)
652 {
653         char *buf;
654         int r = 0;
655         int len = 0;
656         int i;
657
658         for (i = 0; sched_feat_names[i]; i++) {
659                 len += strlen(sched_feat_names[i]);
660                 len += 4;
661         }
662
663         buf = kmalloc(len + 2, GFP_KERNEL);
664         if (!buf)
665                 return -ENOMEM;
666
667         for (i = 0; sched_feat_names[i]; i++) {
668                 if (sysctl_sched_features & (1UL << i))
669                         r += sprintf(buf + r, "%s ", sched_feat_names[i]);
670                 else
671                         r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
672         }
673
674         r += sprintf(buf + r, "\n");
675         WARN_ON(r >= len + 2);
676
677         r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
678
679         kfree(buf);
680
681         return r;
682 }
683
684 static ssize_t
685 sched_feat_write(struct file *filp, const char __user *ubuf,
686                 size_t cnt, loff_t *ppos)
687 {
688         char buf[64];
689         char *cmp = buf;
690         int neg = 0;
691         int i;
692
693         if (cnt > 63)
694                 cnt = 63;
695
696         if (copy_from_user(&buf, ubuf, cnt))
697                 return -EFAULT;
698
699         buf[cnt] = 0;
700
701         if (strncmp(buf, "NO_", 3) == 0) {
702                 neg = 1;
703                 cmp += 3;
704         }
705
706         for (i = 0; sched_feat_names[i]; i++) {
707                 int len = strlen(sched_feat_names[i]);
708
709                 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
710                         if (neg)
711                                 sysctl_sched_features &= ~(1UL << i);
712                         else
713                                 sysctl_sched_features |= (1UL << i);
714                         break;
715                 }
716         }
717
718         if (!sched_feat_names[i])
719                 return -EINVAL;
720
721         filp->f_pos += cnt;
722
723         return cnt;
724 }
725
726 static struct file_operations sched_feat_fops = {
727         .open   = sched_feat_open,
728         .read   = sched_feat_read,
729         .write  = sched_feat_write,
730 };
731
732 static __init int sched_init_debug(void)
733 {
734         debugfs_create_file("sched_features", 0644, NULL, NULL,
735                         &sched_feat_fops);
736
737         return 0;
738 }
739 late_initcall(sched_init_debug);
740
741 #endif
742
743 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
744
745 /*
746  * Number of tasks to iterate in a single balance run.
747  * Limited because this is done with IRQs disabled.
748  */
749 const_debug unsigned int sysctl_sched_nr_migrate = 32;
750
751 /*
752  * period over which we measure -rt task cpu usage in us.
753  * default: 1s
754  */
755 unsigned int sysctl_sched_rt_period = 1000000;
756
757 static __read_mostly int scheduler_running;
758
759 /*
760  * part of the period that we allow rt tasks to run in us.
761  * default: 0.95s
762  */
763 int sysctl_sched_rt_runtime = 950000;
764
765 static inline u64 global_rt_period(void)
766 {
767         return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
768 }
769
770 static inline u64 global_rt_runtime(void)
771 {
772         if (sysctl_sched_rt_period < 0)
773                 return RUNTIME_INF;
774
775         return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
776 }
777
778 unsigned long long time_sync_thresh = 100000;
779
780 static DEFINE_PER_CPU(unsigned long long, time_offset);
781 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
782
783 /*
784  * Global lock which we take every now and then to synchronize
785  * the CPUs time. This method is not warp-safe, but it's good
786  * enough to synchronize slowly diverging time sources and thus
787  * it's good enough for tracing:
788  */
789 static DEFINE_SPINLOCK(time_sync_lock);
790 static unsigned long long prev_global_time;
791
792 static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
793 {
794         /*
795          * We want this inlined, to not get tracer function calls
796          * in this critical section:
797          */
798         spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
799         __raw_spin_lock(&time_sync_lock.raw_lock);
800
801         if (time < prev_global_time) {
802                 per_cpu(time_offset, cpu) += prev_global_time - time;
803                 time = prev_global_time;
804         } else {
805                 prev_global_time = time;
806         }
807
808         __raw_spin_unlock(&time_sync_lock.raw_lock);
809         spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
810
811         return time;
812 }
813
814 static unsigned long long __cpu_clock(int cpu)
815 {
816         unsigned long long now;
817
818         /*
819          * Only call sched_clock() if the scheduler has already been
820          * initialized (some code might call cpu_clock() very early):
821          */
822         if (unlikely(!scheduler_running))
823                 return 0;
824
825         now = sched_clock_cpu(cpu);
826
827         return now;
828 }
829
830 /*
831  * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
832  * clock constructed from sched_clock():
833  */
834 unsigned long long cpu_clock(int cpu)
835 {
836         unsigned long long prev_cpu_time, time, delta_time;
837         unsigned long flags;
838
839         local_irq_save(flags);
840         prev_cpu_time = per_cpu(prev_cpu_time, cpu);
841         time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
842         delta_time = time-prev_cpu_time;
843
844         if (unlikely(delta_time > time_sync_thresh)) {
845                 time = __sync_cpu_clock(time, cpu);
846                 per_cpu(prev_cpu_time, cpu) = time;
847         }
848         local_irq_restore(flags);
849
850         return time;
851 }
852 EXPORT_SYMBOL_GPL(cpu_clock);
853
854 #ifndef prepare_arch_switch
855 # define prepare_arch_switch(next)      do { } while (0)
856 #endif
857 #ifndef finish_arch_switch
858 # define finish_arch_switch(prev)       do { } while (0)
859 #endif
860
861 static inline int task_current(struct rq *rq, struct task_struct *p)
862 {
863         return rq->curr == p;
864 }
865
866 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
867 static inline int task_running(struct rq *rq, struct task_struct *p)
868 {
869         return task_current(rq, p);
870 }
871
872 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
873 {
874 }
875
876 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
877 {
878 #ifdef CONFIG_DEBUG_SPINLOCK
879         /* this is a valid case when another task releases the spinlock */
880         rq->lock.owner = current;
881 #endif
882         /*
883          * If we are tracking spinlock dependencies then we have to
884          * fix up the runqueue lock - which gets 'carried over' from
885          * prev into current:
886          */
887         spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
888
889         spin_unlock_irq(&rq->lock);
890 }
891
892 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
893 static inline int task_running(struct rq *rq, struct task_struct *p)
894 {
895 #ifdef CONFIG_SMP
896         return p->oncpu;
897 #else
898         return task_current(rq, p);
899 #endif
900 }
901
902 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
903 {
904 #ifdef CONFIG_SMP
905         /*
906          * We can optimise this out completely for !SMP, because the
907          * SMP rebalancing from interrupt is the only thing that cares
908          * here.
909          */
910         next->oncpu = 1;
911 #endif
912 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
913         spin_unlock_irq(&rq->lock);
914 #else
915         spin_unlock(&rq->lock);
916 #endif
917 }
918
919 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
920 {
921 #ifdef CONFIG_SMP
922         /*
923          * After ->oncpu is cleared, the task can be moved to a different CPU.
924          * We must ensure this doesn't happen until the switch is completely
925          * finished.
926          */
927         smp_wmb();
928         prev->oncpu = 0;
929 #endif
930 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
931         local_irq_enable();
932 #endif
933 }
934 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
935
936 /*
937  * __task_rq_lock - lock the runqueue a given task resides on.
938  * Must be called interrupts disabled.
939  */
940 static inline struct rq *__task_rq_lock(struct task_struct *p)
941         __acquires(rq->lock)
942 {
943         for (;;) {
944                 struct rq *rq = task_rq(p);
945                 spin_lock(&rq->lock);
946                 if (likely(rq == task_rq(p)))
947                         return rq;
948                 spin_unlock(&rq->lock);
949         }
950 }
951
952 /*
953  * task_rq_lock - lock the runqueue a given task resides on and disable
954  * interrupts. Note the ordering: we can safely lookup the task_rq without
955  * explicitly disabling preemption.
956  */
957 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
958         __acquires(rq->lock)
959 {
960         struct rq *rq;
961
962         for (;;) {
963                 local_irq_save(*flags);
964                 rq = task_rq(p);
965                 spin_lock(&rq->lock);
966                 if (likely(rq == task_rq(p)))
967                         return rq;
968                 spin_unlock_irqrestore(&rq->lock, *flags);
969         }
970 }
971
972 static void __task_rq_unlock(struct rq *rq)
973         __releases(rq->lock)
974 {
975         spin_unlock(&rq->lock);
976 }
977
978 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
979         __releases(rq->lock)
980 {
981         spin_unlock_irqrestore(&rq->lock, *flags);
982 }
983
984 /*
985  * this_rq_lock - lock this runqueue and disable interrupts.
986  */
987 static struct rq *this_rq_lock(void)
988         __acquires(rq->lock)
989 {
990         struct rq *rq;
991
992         local_irq_disable();
993         rq = this_rq();
994         spin_lock(&rq->lock);
995
996         return rq;
997 }
998
999 static void __resched_task(struct task_struct *p, int tif_bit);
1000
1001 static inline void resched_task(struct task_struct *p)
1002 {
1003         __resched_task(p, TIF_NEED_RESCHED);
1004 }
1005
1006 #ifdef CONFIG_SCHED_HRTICK
1007 /*
1008  * Use HR-timers to deliver accurate preemption points.
1009  *
1010  * Its all a bit involved since we cannot program an hrt while holding the
1011  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1012  * reschedule event.
1013  *
1014  * When we get rescheduled we reprogram the hrtick_timer outside of the
1015  * rq->lock.
1016  */
1017 static inline void resched_hrt(struct task_struct *p)
1018 {
1019         __resched_task(p, TIF_HRTICK_RESCHED);
1020 }
1021
1022 static inline void resched_rq(struct rq *rq)
1023 {
1024         unsigned long flags;
1025
1026         spin_lock_irqsave(&rq->lock, flags);
1027         resched_task(rq->curr);
1028         spin_unlock_irqrestore(&rq->lock, flags);
1029 }
1030
1031 enum {
1032         HRTICK_SET,             /* re-programm hrtick_timer */
1033         HRTICK_RESET,           /* not a new slice */
1034         HRTICK_BLOCK,           /* stop hrtick operations */
1035 };
1036
1037 /*
1038  * Use hrtick when:
1039  *  - enabled by features
1040  *  - hrtimer is actually high res
1041  */
1042 static inline int hrtick_enabled(struct rq *rq)
1043 {
1044         if (!sched_feat(HRTICK))
1045                 return 0;
1046         if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1047                 return 0;
1048         return hrtimer_is_hres_active(&rq->hrtick_timer);
1049 }
1050
1051 /*
1052  * Called to set the hrtick timer state.
1053  *
1054  * called with rq->lock held and irqs disabled
1055  */
1056 static void hrtick_start(struct rq *rq, u64 delay, int reset)
1057 {
1058         assert_spin_locked(&rq->lock);
1059
1060         /*
1061          * preempt at: now + delay
1062          */
1063         rq->hrtick_expire =
1064                 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1065         /*
1066          * indicate we need to program the timer
1067          */
1068         __set_bit(HRTICK_SET, &rq->hrtick_flags);
1069         if (reset)
1070                 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1071
1072         /*
1073          * New slices are called from the schedule path and don't need a
1074          * forced reschedule.
1075          */
1076         if (reset)
1077                 resched_hrt(rq->curr);
1078 }
1079
1080 static void hrtick_clear(struct rq *rq)
1081 {
1082         if (hrtimer_active(&rq->hrtick_timer))
1083                 hrtimer_cancel(&rq->hrtick_timer);
1084 }
1085
1086 /*
1087  * Update the timer from the possible pending state.
1088  */
1089 static void hrtick_set(struct rq *rq)
1090 {
1091         ktime_t time;
1092         int set, reset;
1093         unsigned long flags;
1094
1095         WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1096
1097         spin_lock_irqsave(&rq->lock, flags);
1098         set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1099         reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1100         time = rq->hrtick_expire;
1101         clear_thread_flag(TIF_HRTICK_RESCHED);
1102         spin_unlock_irqrestore(&rq->lock, flags);
1103
1104         if (set) {
1105                 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1106                 if (reset && !hrtimer_active(&rq->hrtick_timer))
1107                         resched_rq(rq);
1108         } else
1109                 hrtick_clear(rq);
1110 }
1111
1112 /*
1113  * High-resolution timer tick.
1114  * Runs from hardirq context with interrupts disabled.
1115  */
1116 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1117 {
1118         struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1119
1120         WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1121
1122         spin_lock(&rq->lock);
1123         update_rq_clock(rq);
1124         rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1125         spin_unlock(&rq->lock);
1126
1127         return HRTIMER_NORESTART;
1128 }
1129
1130 #ifdef CONFIG_SMP
1131 static void hotplug_hrtick_disable(int cpu)
1132 {
1133         struct rq *rq = cpu_rq(cpu);
1134         unsigned long flags;
1135
1136         spin_lock_irqsave(&rq->lock, flags);
1137         rq->hrtick_flags = 0;
1138         __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1139         spin_unlock_irqrestore(&rq->lock, flags);
1140
1141         hrtick_clear(rq);
1142 }
1143
1144 static void hotplug_hrtick_enable(int cpu)
1145 {
1146         struct rq *rq = cpu_rq(cpu);
1147         unsigned long flags;
1148
1149         spin_lock_irqsave(&rq->lock, flags);
1150         __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1151         spin_unlock_irqrestore(&rq->lock, flags);
1152 }
1153
1154 static int
1155 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1156 {
1157         int cpu = (int)(long)hcpu;
1158
1159         switch (action) {
1160         case CPU_UP_CANCELED:
1161         case CPU_UP_CANCELED_FROZEN:
1162         case CPU_DOWN_PREPARE:
1163         case CPU_DOWN_PREPARE_FROZEN:
1164         case CPU_DEAD:
1165         case CPU_DEAD_FROZEN:
1166                 hotplug_hrtick_disable(cpu);
1167                 return NOTIFY_OK;
1168
1169         case CPU_UP_PREPARE:
1170         case CPU_UP_PREPARE_FROZEN:
1171         case CPU_DOWN_FAILED:
1172         case CPU_DOWN_FAILED_FROZEN:
1173         case CPU_ONLINE:
1174         case CPU_ONLINE_FROZEN:
1175                 hotplug_hrtick_enable(cpu);
1176                 return NOTIFY_OK;
1177         }
1178
1179         return NOTIFY_DONE;
1180 }
1181
1182 static void init_hrtick(void)
1183 {
1184         hotcpu_notifier(hotplug_hrtick, 0);
1185 }
1186 #endif /* CONFIG_SMP */
1187
1188 static void init_rq_hrtick(struct rq *rq)
1189 {
1190         rq->hrtick_flags = 0;
1191         hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1192         rq->hrtick_timer.function = hrtick;
1193         rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1194 }
1195
1196 void hrtick_resched(void)
1197 {
1198         struct rq *rq;
1199         unsigned long flags;
1200
1201         if (!test_thread_flag(TIF_HRTICK_RESCHED))
1202                 return;
1203
1204         local_irq_save(flags);
1205         rq = cpu_rq(smp_processor_id());
1206         hrtick_set(rq);
1207         local_irq_restore(flags);
1208 }
1209 #else
1210 static inline void hrtick_clear(struct rq *rq)
1211 {
1212 }
1213
1214 static inline void hrtick_set(struct rq *rq)
1215 {
1216 }
1217
1218 static inline void init_rq_hrtick(struct rq *rq)
1219 {
1220 }
1221
1222 void hrtick_resched(void)
1223 {
1224 }
1225
1226 static inline void init_hrtick(void)
1227 {
1228 }
1229 #endif
1230
1231 /*
1232  * resched_task - mark a task 'to be rescheduled now'.
1233  *
1234  * On UP this means the setting of the need_resched flag, on SMP it
1235  * might also involve a cross-CPU call to trigger the scheduler on
1236  * the target CPU.
1237  */
1238 #ifdef CONFIG_SMP
1239
1240 #ifndef tsk_is_polling
1241 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1242 #endif
1243
1244 static void __resched_task(struct task_struct *p, int tif_bit)
1245 {
1246         int cpu;
1247
1248         assert_spin_locked(&task_rq(p)->lock);
1249
1250         if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1251                 return;
1252
1253         set_tsk_thread_flag(p, tif_bit);
1254
1255         cpu = task_cpu(p);
1256         if (cpu == smp_processor_id())
1257                 return;
1258
1259         /* NEED_RESCHED must be visible before we test polling */
1260         smp_mb();
1261         if (!tsk_is_polling(p))
1262                 smp_send_reschedule(cpu);
1263 }
1264
1265 static void resched_cpu(int cpu)
1266 {
1267         struct rq *rq = cpu_rq(cpu);
1268         unsigned long flags;
1269
1270         if (!spin_trylock_irqsave(&rq->lock, flags))
1271                 return;
1272         resched_task(cpu_curr(cpu));
1273         spin_unlock_irqrestore(&rq->lock, flags);
1274 }
1275
1276 #ifdef CONFIG_NO_HZ
1277 /*
1278  * When add_timer_on() enqueues a timer into the timer wheel of an
1279  * idle CPU then this timer might expire before the next timer event
1280  * which is scheduled to wake up that CPU. In case of a completely
1281  * idle system the next event might even be infinite time into the
1282  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1283  * leaves the inner idle loop so the newly added timer is taken into
1284  * account when the CPU goes back to idle and evaluates the timer
1285  * wheel for the next timer event.
1286  */
1287 void wake_up_idle_cpu(int cpu)
1288 {
1289         struct rq *rq = cpu_rq(cpu);
1290
1291         if (cpu == smp_processor_id())
1292                 return;
1293
1294         /*
1295          * This is safe, as this function is called with the timer
1296          * wheel base lock of (cpu) held. When the CPU is on the way
1297          * to idle and has not yet set rq->curr to idle then it will
1298          * be serialized on the timer wheel base lock and take the new
1299          * timer into account automatically.
1300          */
1301         if (rq->curr != rq->idle)
1302                 return;
1303
1304         /*
1305          * We can set TIF_RESCHED on the idle task of the other CPU
1306          * lockless. The worst case is that the other CPU runs the
1307          * idle task through an additional NOOP schedule()
1308          */
1309         set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1310
1311         /* NEED_RESCHED must be visible before we test polling */
1312         smp_mb();
1313         if (!tsk_is_polling(rq->idle))
1314                 smp_send_reschedule(cpu);
1315 }
1316 #endif
1317
1318 #else
1319 static void __resched_task(struct task_struct *p, int tif_bit)
1320 {
1321         assert_spin_locked(&task_rq(p)->lock);
1322         set_tsk_thread_flag(p, tif_bit);
1323 }
1324 #endif
1325
1326 #if BITS_PER_LONG == 32
1327 # define WMULT_CONST    (~0UL)
1328 #else
1329 # define WMULT_CONST    (1UL << 32)
1330 #endif
1331
1332 #define WMULT_SHIFT     32
1333
1334 /*
1335  * Shift right and round:
1336  */
1337 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1338
1339 static unsigned long
1340 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1341                 struct load_weight *lw)
1342 {
1343         u64 tmp;
1344
1345         if (!lw->inv_weight) {
1346                 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1347                         lw->inv_weight = 1;
1348                 else
1349                         lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1350                                 / (lw->weight+1);
1351         }
1352
1353         tmp = (u64)delta_exec * weight;
1354         /*
1355          * Check whether we'd overflow the 64-bit multiplication:
1356          */
1357         if (unlikely(tmp > WMULT_CONST))
1358                 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1359                         WMULT_SHIFT/2);
1360         else
1361                 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1362
1363         return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1364 }
1365
1366 static inline unsigned long
1367 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1368 {
1369         return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1370 }
1371
1372 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1373 {
1374         lw->weight += inc;
1375         lw->inv_weight = 0;
1376 }
1377
1378 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1379 {
1380         lw->weight -= dec;
1381         lw->inv_weight = 0;
1382 }
1383
1384 /*
1385  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1386  * of tasks with abnormal "nice" values across CPUs the contribution that
1387  * each task makes to its run queue's load is weighted according to its
1388  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1389  * scaled version of the new time slice allocation that they receive on time
1390  * slice expiry etc.
1391  */
1392
1393 #define WEIGHT_IDLEPRIO         2
1394 #define WMULT_IDLEPRIO          (1 << 31)
1395
1396 /*
1397  * Nice levels are multiplicative, with a gentle 10% change for every
1398  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1399  * nice 1, it will get ~10% less CPU time than another CPU-bound task
1400  * that remained on nice 0.
1401  *
1402  * The "10% effect" is relative and cumulative: from _any_ nice level,
1403  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1404  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1405  * If a task goes up by ~10% and another task goes down by ~10% then
1406  * the relative distance between them is ~25%.)
1407  */
1408 static const int prio_to_weight[40] = {
1409  /* -20 */     88761,     71755,     56483,     46273,     36291,
1410  /* -15 */     29154,     23254,     18705,     14949,     11916,
1411  /* -10 */      9548,      7620,      6100,      4904,      3906,
1412  /*  -5 */      3121,      2501,      1991,      1586,      1277,
1413  /*   0 */      1024,       820,       655,       526,       423,
1414  /*   5 */       335,       272,       215,       172,       137,
1415  /*  10 */       110,        87,        70,        56,        45,
1416  /*  15 */        36,        29,        23,        18,        15,
1417 };
1418
1419 /*
1420  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1421  *
1422  * In cases where the weight does not change often, we can use the
1423  * precalculated inverse to speed up arithmetics by turning divisions
1424  * into multiplications:
1425  */
1426 static const u32 prio_to_wmult[40] = {
1427  /* -20 */     48388,     59856,     76040,     92818,    118348,
1428  /* -15 */    147320,    184698,    229616,    287308,    360437,
1429  /* -10 */    449829,    563644,    704093,    875809,   1099582,
1430  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
1431  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
1432  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
1433  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
1434  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1435 };
1436
1437 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1438
1439 /*
1440  * runqueue iterator, to support SMP load-balancing between different
1441  * scheduling classes, without having to expose their internal data
1442  * structures to the load-balancing proper:
1443  */
1444 struct rq_iterator {
1445         void *arg;
1446         struct task_struct *(*start)(void *);
1447         struct task_struct *(*next)(void *);
1448 };
1449
1450 #ifdef CONFIG_SMP
1451 static unsigned long
1452 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1453               unsigned long max_load_move, struct sched_domain *sd,
1454               enum cpu_idle_type idle, int *all_pinned,
1455               int *this_best_prio, struct rq_iterator *iterator);
1456
1457 static int
1458 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1459                    struct sched_domain *sd, enum cpu_idle_type idle,
1460                    struct rq_iterator *iterator);
1461 #endif
1462
1463 #ifdef CONFIG_CGROUP_CPUACCT
1464 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1465 #else
1466 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1467 #endif
1468
1469 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1470 {
1471         update_load_add(&rq->load, load);
1472 }
1473
1474 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1475 {
1476         update_load_sub(&rq->load, load);
1477 }
1478
1479 #ifdef CONFIG_SMP
1480 static unsigned long source_load(int cpu, int type);
1481 static unsigned long target_load(int cpu, int type);
1482 static unsigned long cpu_avg_load_per_task(int cpu);
1483 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1484 #else /* CONFIG_SMP */
1485
1486 #ifdef CONFIG_FAIR_GROUP_SCHED
1487 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1488 {
1489 }
1490 #endif
1491
1492 #endif /* CONFIG_SMP */
1493
1494 #include "sched_stats.h"
1495 #include "sched_idletask.c"
1496 #include "sched_fair.c"
1497 #include "sched_rt.c"
1498 #ifdef CONFIG_SCHED_DEBUG
1499 # include "sched_debug.c"
1500 #endif
1501
1502 #define sched_class_highest (&rt_sched_class)
1503
1504 static inline void inc_load(struct rq *rq, const struct task_struct *p)
1505 {
1506         update_load_add(&rq->load, p->se.load.weight);
1507 }
1508
1509 static inline void dec_load(struct rq *rq, const struct task_struct *p)
1510 {
1511         update_load_sub(&rq->load, p->se.load.weight);
1512 }
1513
1514 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1515 {
1516         rq->nr_running++;
1517         inc_load(rq, p);
1518 }
1519
1520 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1521 {
1522         rq->nr_running--;
1523         dec_load(rq, p);
1524 }
1525
1526 static void set_load_weight(struct task_struct *p)
1527 {
1528         if (task_has_rt_policy(p)) {
1529                 p->se.load.weight = prio_to_weight[0] * 2;
1530                 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1531                 return;
1532         }
1533
1534         /*
1535          * SCHED_IDLE tasks get minimal weight:
1536          */
1537         if (p->policy == SCHED_IDLE) {
1538                 p->se.load.weight = WEIGHT_IDLEPRIO;
1539                 p->se.load.inv_weight = WMULT_IDLEPRIO;
1540                 return;
1541         }
1542
1543         p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1544         p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1545 }
1546
1547 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1548 {
1549         sched_info_queued(p);
1550         p->sched_class->enqueue_task(rq, p, wakeup);
1551         p->se.on_rq = 1;
1552 }
1553
1554 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1555 {
1556         p->sched_class->dequeue_task(rq, p, sleep);
1557         p->se.on_rq = 0;
1558 }
1559
1560 /*
1561  * __normal_prio - return the priority that is based on the static prio
1562  */
1563 static inline int __normal_prio(struct task_struct *p)
1564 {
1565         return p->static_prio;
1566 }
1567
1568 /*
1569  * Calculate the expected normal priority: i.e. priority
1570  * without taking RT-inheritance into account. Might be
1571  * boosted by interactivity modifiers. Changes upon fork,
1572  * setprio syscalls, and whenever the interactivity
1573  * estimator recalculates.
1574  */
1575 static inline int normal_prio(struct task_struct *p)
1576 {
1577         int prio;
1578
1579         if (task_has_rt_policy(p))
1580                 prio = MAX_RT_PRIO-1 - p->rt_priority;
1581         else
1582                 prio = __normal_prio(p);
1583         return prio;
1584 }
1585
1586 /*
1587  * Calculate the current priority, i.e. the priority
1588  * taken into account by the scheduler. This value might
1589  * be boosted by RT tasks, or might be boosted by
1590  * interactivity modifiers. Will be RT if the task got
1591  * RT-boosted. If not then it returns p->normal_prio.
1592  */
1593 static int effective_prio(struct task_struct *p)
1594 {
1595         p->normal_prio = normal_prio(p);
1596         /*
1597          * If we are RT tasks or we were boosted to RT priority,
1598          * keep the priority unchanged. Otherwise, update priority
1599          * to the normal priority:
1600          */
1601         if (!rt_prio(p->prio))
1602                 return p->normal_prio;
1603         return p->prio;
1604 }
1605
1606 /*
1607  * activate_task - move a task to the runqueue.
1608  */
1609 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1610 {
1611         if (task_contributes_to_load(p))
1612                 rq->nr_uninterruptible--;
1613
1614         enqueue_task(rq, p, wakeup);
1615         inc_nr_running(p, rq);
1616 }
1617
1618 /*
1619  * deactivate_task - remove a task from the runqueue.
1620  */
1621 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1622 {
1623         if (task_contributes_to_load(p))
1624                 rq->nr_uninterruptible++;
1625
1626         dequeue_task(rq, p, sleep);
1627         dec_nr_running(p, rq);
1628 }
1629
1630 /**
1631  * task_curr - is this task currently executing on a CPU?
1632  * @p: the task in question.
1633  */
1634 inline int task_curr(const struct task_struct *p)
1635 {
1636         return cpu_curr(task_cpu(p)) == p;
1637 }
1638
1639 /* Used instead of source_load when we know the type == 0 */
1640 unsigned long weighted_cpuload(const int cpu)
1641 {
1642         return cpu_rq(cpu)->load.weight;
1643 }
1644
1645 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1646 {
1647         set_task_rq(p, cpu);
1648 #ifdef CONFIG_SMP
1649         /*
1650          * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1651          * successfuly executed on another CPU. We must ensure that updates of
1652          * per-task data have been completed by this moment.
1653          */
1654         smp_wmb();
1655         task_thread_info(p)->cpu = cpu;
1656 #endif
1657 }
1658
1659 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1660                                        const struct sched_class *prev_class,
1661                                        int oldprio, int running)
1662 {
1663         if (prev_class != p->sched_class) {
1664                 if (prev_class->switched_from)
1665                         prev_class->switched_from(rq, p, running);
1666                 p->sched_class->switched_to(rq, p, running);
1667         } else
1668                 p->sched_class->prio_changed(rq, p, oldprio, running);
1669 }
1670
1671 #ifdef CONFIG_SMP
1672
1673 /*
1674  * Is this task likely cache-hot:
1675  */
1676 static int
1677 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1678 {
1679         s64 delta;
1680
1681         /*
1682          * Buddy candidates are cache hot:
1683          */
1684         if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1685                 return 1;
1686
1687         if (p->sched_class != &fair_sched_class)
1688                 return 0;
1689
1690         if (sysctl_sched_migration_cost == -1)
1691                 return 1;
1692         if (sysctl_sched_migration_cost == 0)
1693                 return 0;
1694
1695         delta = now - p->se.exec_start;
1696
1697         return delta < (s64)sysctl_sched_migration_cost;
1698 }
1699
1700
1701 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1702 {
1703         int old_cpu = task_cpu(p);
1704         struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1705         struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1706                       *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1707         u64 clock_offset;
1708
1709         clock_offset = old_rq->clock - new_rq->clock;
1710
1711 #ifdef CONFIG_SCHEDSTATS
1712         if (p->se.wait_start)
1713                 p->se.wait_start -= clock_offset;
1714         if (p->se.sleep_start)
1715                 p->se.sleep_start -= clock_offset;
1716         if (p->se.block_start)
1717                 p->se.block_start -= clock_offset;
1718         if (old_cpu != new_cpu) {
1719                 schedstat_inc(p, se.nr_migrations);
1720                 if (task_hot(p, old_rq->clock, NULL))
1721                         schedstat_inc(p, se.nr_forced2_migrations);
1722         }
1723 #endif
1724         p->se.vruntime -= old_cfsrq->min_vruntime -
1725                                          new_cfsrq->min_vruntime;
1726
1727         __set_task_cpu(p, new_cpu);
1728 }
1729
1730 struct migration_req {
1731         struct list_head list;
1732
1733         struct task_struct *task;
1734         int dest_cpu;
1735
1736         struct completion done;
1737 };
1738
1739 /*
1740  * The task's runqueue lock must be held.
1741  * Returns true if you have to wait for migration thread.
1742  */
1743 static int
1744 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1745 {
1746         struct rq *rq = task_rq(p);
1747
1748         /*
1749          * If the task is not on a runqueue (and not running), then
1750          * it is sufficient to simply update the task's cpu field.
1751          */
1752         if (!p->se.on_rq && !task_running(rq, p)) {
1753                 set_task_cpu(p, dest_cpu);
1754                 return 0;
1755         }
1756
1757         init_completion(&req->done);
1758         req->task = p;
1759         req->dest_cpu = dest_cpu;
1760         list_add(&req->list, &rq->migration_queue);
1761
1762         return 1;
1763 }
1764
1765 /*
1766  * wait_task_inactive - wait for a thread to unschedule.
1767  *
1768  * The caller must ensure that the task *will* unschedule sometime soon,
1769  * else this function might spin for a *long* time. This function can't
1770  * be called with interrupts off, or it may introduce deadlock with
1771  * smp_call_function() if an IPI is sent by the same process we are
1772  * waiting to become inactive.
1773  */
1774 void wait_task_inactive(struct task_struct *p)
1775 {
1776         unsigned long flags;
1777         int running, on_rq;
1778         struct rq *rq;
1779
1780         for (;;) {
1781                 /*
1782                  * We do the initial early heuristics without holding
1783                  * any task-queue locks at all. We'll only try to get
1784                  * the runqueue lock when things look like they will
1785                  * work out!
1786                  */
1787                 rq = task_rq(p);
1788
1789                 /*
1790                  * If the task is actively running on another CPU
1791                  * still, just relax and busy-wait without holding
1792                  * any locks.
1793                  *
1794                  * NOTE! Since we don't hold any locks, it's not
1795                  * even sure that "rq" stays as the right runqueue!
1796                  * But we don't care, since "task_running()" will
1797                  * return false if the runqueue has changed and p
1798                  * is actually now running somewhere else!
1799                  */
1800                 while (task_running(rq, p))
1801                         cpu_relax();
1802
1803                 /*
1804                  * Ok, time to look more closely! We need the rq
1805                  * lock now, to be *sure*. If we're wrong, we'll
1806                  * just go back and repeat.
1807                  */
1808                 rq = task_rq_lock(p, &flags);
1809                 running = task_running(rq, p);
1810                 on_rq = p->se.on_rq;
1811                 task_rq_unlock(rq, &flags);
1812
1813                 /*
1814                  * Was it really running after all now that we
1815                  * checked with the proper locks actually held?
1816                  *
1817                  * Oops. Go back and try again..
1818                  */
1819                 if (unlikely(running)) {
1820                         cpu_relax();
1821                         continue;
1822                 }
1823
1824                 /*
1825                  * It's not enough that it's not actively running,
1826                  * it must be off the runqueue _entirely_, and not
1827                  * preempted!
1828                  *
1829                  * So if it wa still runnable (but just not actively
1830                  * running right now), it's preempted, and we should
1831                  * yield - it could be a while.
1832                  */
1833                 if (unlikely(on_rq)) {
1834                         schedule_timeout_uninterruptible(1);
1835                         continue;
1836                 }
1837
1838                 /*
1839                  * Ahh, all good. It wasn't running, and it wasn't
1840                  * runnable, which means that it will never become
1841                  * running in the future either. We're all done!
1842                  */
1843                 break;
1844         }
1845 }
1846
1847 /***
1848  * kick_process - kick a running thread to enter/exit the kernel
1849  * @p: the to-be-kicked thread
1850  *
1851  * Cause a process which is running on another CPU to enter
1852  * kernel-mode, without any delay. (to get signals handled.)
1853  *
1854  * NOTE: this function doesnt have to take the runqueue lock,
1855  * because all it wants to ensure is that the remote task enters
1856  * the kernel. If the IPI races and the task has been migrated
1857  * to another CPU then no harm is done and the purpose has been
1858  * achieved as well.
1859  */
1860 void kick_process(struct task_struct *p)
1861 {
1862         int cpu;
1863
1864         preempt_disable();
1865         cpu = task_cpu(p);
1866         if ((cpu != smp_processor_id()) && task_curr(p))
1867                 smp_send_reschedule(cpu);
1868         preempt_enable();
1869 }
1870
1871 /*
1872  * Return a low guess at the load of a migration-source cpu weighted
1873  * according to the scheduling class and "nice" value.
1874  *
1875  * We want to under-estimate the load of migration sources, to
1876  * balance conservatively.
1877  */
1878 static unsigned long source_load(int cpu, int type)
1879 {
1880         struct rq *rq = cpu_rq(cpu);
1881         unsigned long total = weighted_cpuload(cpu);
1882
1883         if (type == 0)
1884                 return total;
1885
1886         return min(rq->cpu_load[type-1], total);
1887 }
1888
1889 /*
1890  * Return a high guess at the load of a migration-target cpu weighted
1891  * according to the scheduling class and "nice" value.
1892  */
1893 static unsigned long target_load(int cpu, int type)
1894 {
1895         struct rq *rq = cpu_rq(cpu);
1896         unsigned long total = weighted_cpuload(cpu);
1897
1898         if (type == 0)
1899                 return total;
1900
1901         return max(rq->cpu_load[type-1], total);
1902 }
1903
1904 /*
1905  * Return the average load per task on the cpu's run queue
1906  */
1907 static unsigned long cpu_avg_load_per_task(int cpu)
1908 {
1909         struct rq *rq = cpu_rq(cpu);
1910         unsigned long total = weighted_cpuload(cpu);
1911         unsigned long n = rq->nr_running;
1912
1913         return n ? total / n : SCHED_LOAD_SCALE;
1914 }
1915
1916 /*
1917  * find_idlest_group finds and returns the least busy CPU group within the
1918  * domain.
1919  */
1920 static struct sched_group *
1921 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1922 {
1923         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1924         unsigned long min_load = ULONG_MAX, this_load = 0;
1925         int load_idx = sd->forkexec_idx;
1926         int imbalance = 100 + (sd->imbalance_pct-100)/2;
1927
1928         do {
1929                 unsigned long load, avg_load;
1930                 int local_group;
1931                 int i;
1932
1933                 /* Skip over this group if it has no CPUs allowed */
1934                 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1935                         continue;
1936
1937                 local_group = cpu_isset(this_cpu, group->cpumask);
1938
1939                 /* Tally up the load of all CPUs in the group */
1940                 avg_load = 0;
1941
1942                 for_each_cpu_mask(i, group->cpumask) {
1943                         /* Bias balancing toward cpus of our domain */
1944                         if (local_group)
1945                                 load = source_load(i, load_idx);
1946                         else
1947                                 load = target_load(i, load_idx);
1948
1949                         avg_load += load;
1950                 }
1951
1952                 /* Adjust by relative CPU power of the group */
1953                 avg_load = sg_div_cpu_power(group,
1954                                 avg_load * SCHED_LOAD_SCALE);
1955
1956                 if (local_group) {
1957                         this_load = avg_load;
1958                         this = group;
1959                 } else if (avg_load < min_load) {
1960                         min_load = avg_load;
1961                         idlest = group;
1962                 }
1963         } while (group = group->next, group != sd->groups);
1964
1965         if (!idlest || 100*this_load < imbalance*min_load)
1966                 return NULL;
1967         return idlest;
1968 }
1969
1970 /*
1971  * find_idlest_cpu - find the idlest cpu among the cpus in group.
1972  */
1973 static int
1974 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1975                 cpumask_t *tmp)
1976 {
1977         unsigned long load, min_load = ULONG_MAX;
1978         int idlest = -1;
1979         int i;
1980
1981         /* Traverse only the allowed CPUs */
1982         cpus_and(*tmp, group->cpumask, p->cpus_allowed);
1983
1984         for_each_cpu_mask(i, *tmp) {
1985                 load = weighted_cpuload(i);
1986
1987                 if (load < min_load || (load == min_load && i == this_cpu)) {
1988                         min_load = load;
1989                         idlest = i;
1990                 }
1991         }
1992
1993         return idlest;
1994 }
1995
1996 /*
1997  * sched_balance_self: balance the current task (running on cpu) in domains
1998  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1999  * SD_BALANCE_EXEC.
2000  *
2001  * Balance, ie. select the least loaded group.
2002  *
2003  * Returns the target CPU number, or the same CPU if no balancing is needed.
2004  *
2005  * preempt must be disabled.
2006  */
2007 static int sched_balance_self(int cpu, int flag)
2008 {
2009         struct task_struct *t = current;
2010         struct sched_domain *tmp, *sd = NULL;
2011
2012         for_each_domain(cpu, tmp) {
2013                 /*
2014                  * If power savings logic is enabled for a domain, stop there.
2015                  */
2016                 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2017                         break;
2018                 if (tmp->flags & flag)
2019                         sd = tmp;
2020         }
2021
2022         while (sd) {
2023                 cpumask_t span, tmpmask;
2024                 struct sched_group *group;
2025                 int new_cpu, weight;
2026
2027                 if (!(sd->flags & flag)) {
2028                         sd = sd->child;
2029                         continue;
2030                 }
2031
2032                 span = sd->span;
2033                 group = find_idlest_group(sd, t, cpu);
2034                 if (!group) {
2035                         sd = sd->child;
2036                         continue;
2037                 }
2038
2039                 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2040                 if (new_cpu == -1 || new_cpu == cpu) {
2041                         /* Now try balancing at a lower domain level of cpu */
2042                         sd = sd->child;
2043                         continue;
2044                 }
2045
2046                 /* Now try balancing at a lower domain level of new_cpu */
2047                 cpu = new_cpu;
2048                 sd = NULL;
2049                 weight = cpus_weight(span);
2050                 for_each_domain(cpu, tmp) {
2051                         if (weight <= cpus_weight(tmp->span))
2052                                 break;
2053                         if (tmp->flags & flag)
2054                                 sd = tmp;
2055                 }
2056                 /* while loop will break here if sd == NULL */
2057         }
2058
2059         return cpu;
2060 }
2061
2062 #endif /* CONFIG_SMP */
2063
2064 /***
2065  * try_to_wake_up - wake up a thread
2066  * @p: the to-be-woken-up thread
2067  * @state: the mask of task states that can be woken
2068  * @sync: do a synchronous wakeup?
2069  *
2070  * Put it on the run-queue if it's not already there. The "current"
2071  * thread is always on the run-queue (except when the actual
2072  * re-schedule is in progress), and as such you're allowed to do
2073  * the simpler "current->state = TASK_RUNNING" to mark yourself
2074  * runnable without the overhead of this.
2075  *
2076  * returns failure only if the task is already active.
2077  */
2078 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2079 {
2080         int cpu, orig_cpu, this_cpu, success = 0;
2081         unsigned long flags;
2082         long old_state;
2083         struct rq *rq;
2084
2085         if (!sched_feat(SYNC_WAKEUPS))
2086                 sync = 0;
2087
2088         smp_wmb();
2089         rq = task_rq_lock(p, &flags);
2090         old_state = p->state;
2091         if (!(old_state & state))
2092                 goto out;
2093
2094         if (p->se.on_rq)
2095                 goto out_running;
2096
2097         cpu = task_cpu(p);
2098         orig_cpu = cpu;
2099         this_cpu = smp_processor_id();
2100
2101 #ifdef CONFIG_SMP
2102         if (unlikely(task_running(rq, p)))
2103                 goto out_activate;
2104
2105         cpu = p->sched_class->select_task_rq(p, sync);
2106         if (cpu != orig_cpu) {
2107                 set_task_cpu(p, cpu);
2108                 task_rq_unlock(rq, &flags);
2109                 /* might preempt at this point */
2110                 rq = task_rq_lock(p, &flags);
2111                 old_state = p->state;
2112                 if (!(old_state & state))
2113                         goto out;
2114                 if (p->se.on_rq)
2115                         goto out_running;
2116
2117                 this_cpu = smp_processor_id();
2118                 cpu = task_cpu(p);
2119         }
2120
2121 #ifdef CONFIG_SCHEDSTATS
2122         schedstat_inc(rq, ttwu_count);
2123         if (cpu == this_cpu)
2124                 schedstat_inc(rq, ttwu_local);
2125         else {
2126                 struct sched_domain *sd;
2127                 for_each_domain(this_cpu, sd) {
2128                         if (cpu_isset(cpu, sd->span)) {
2129                                 schedstat_inc(sd, ttwu_wake_remote);
2130                                 break;
2131                         }
2132                 }
2133         }
2134 #endif
2135
2136 out_activate:
2137 #endif /* CONFIG_SMP */
2138         schedstat_inc(p, se.nr_wakeups);
2139         if (sync)
2140                 schedstat_inc(p, se.nr_wakeups_sync);
2141         if (orig_cpu != cpu)
2142                 schedstat_inc(p, se.nr_wakeups_migrate);
2143         if (cpu == this_cpu)
2144                 schedstat_inc(p, se.nr_wakeups_local);
2145         else
2146                 schedstat_inc(p, se.nr_wakeups_remote);
2147         update_rq_clock(rq);
2148         activate_task(rq, p, 1);
2149         success = 1;
2150
2151 out_running:
2152         check_preempt_curr(rq, p);
2153
2154         p->state = TASK_RUNNING;
2155 #ifdef CONFIG_SMP
2156         if (p->sched_class->task_wake_up)
2157                 p->sched_class->task_wake_up(rq, p);
2158 #endif
2159 out:
2160         task_rq_unlock(rq, &flags);
2161
2162         return success;
2163 }
2164
2165 int wake_up_process(struct task_struct *p)
2166 {
2167         return try_to_wake_up(p, TASK_ALL, 0);
2168 }
2169 EXPORT_SYMBOL(wake_up_process);
2170
2171 int wake_up_state(struct task_struct *p, unsigned int state)
2172 {
2173         return try_to_wake_up(p, state, 0);
2174 }
2175
2176 /*
2177  * Perform scheduler related setup for a newly forked process p.
2178  * p is forked by current.
2179  *
2180  * __sched_fork() is basic setup used by init_idle() too:
2181  */
2182 static void __sched_fork(struct task_struct *p)
2183 {
2184         p->se.exec_start                = 0;
2185         p->se.sum_exec_runtime          = 0;
2186         p->se.prev_sum_exec_runtime     = 0;
2187         p->se.last_wakeup               = 0;
2188         p->se.avg_overlap               = 0;
2189
2190 #ifdef CONFIG_SCHEDSTATS
2191         p->se.wait_start                = 0;
2192         p->se.sum_sleep_runtime         = 0;
2193         p->se.sleep_start               = 0;
2194         p->se.block_start               = 0;
2195         p->se.sleep_max                 = 0;
2196         p->se.block_max                 = 0;
2197         p->se.exec_max                  = 0;
2198         p->se.slice_max                 = 0;
2199         p->se.wait_max                  = 0;
2200 #endif
2201
2202         INIT_LIST_HEAD(&p->rt.run_list);
2203         p->se.on_rq = 0;
2204         INIT_LIST_HEAD(&p->se.group_node);
2205
2206 #ifdef CONFIG_PREEMPT_NOTIFIERS
2207         INIT_HLIST_HEAD(&p->preempt_notifiers);
2208 #endif
2209
2210         /*
2211          * We mark the process as running here, but have not actually
2212          * inserted it onto the runqueue yet. This guarantees that
2213          * nobody will actually run it, and a signal or other external
2214          * event cannot wake it up and insert it on the runqueue either.
2215          */
2216         p->state = TASK_RUNNING;
2217 }
2218
2219 /*
2220  * fork()/clone()-time setup:
2221  */
2222 void sched_fork(struct task_struct *p, int clone_flags)
2223 {
2224         int cpu = get_cpu();
2225
2226         __sched_fork(p);
2227
2228 #ifdef CONFIG_SMP
2229         cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2230 #endif
2231         set_task_cpu(p, cpu);
2232
2233         /*
2234          * Make sure we do not leak PI boosting priority to the child:
2235          */
2236         p->prio = current->normal_prio;
2237         if (!rt_prio(p->prio))
2238                 p->sched_class = &fair_sched_class;
2239
2240 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2241         if (likely(sched_info_on()))
2242                 memset(&p->sched_info, 0, sizeof(p->sched_info));
2243 #endif
2244 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2245         p->oncpu = 0;
2246 #endif
2247 #ifdef CONFIG_PREEMPT
2248         /* Want to start with kernel preemption disabled. */
2249         task_thread_info(p)->preempt_count = 1;
2250 #endif
2251         put_cpu();
2252 }
2253
2254 /*
2255  * wake_up_new_task - wake up a newly created task for the first time.
2256  *
2257  * This function will do some initial scheduler statistics housekeeping
2258  * that must be done for every newly created context, then puts the task
2259  * on the runqueue and wakes it.
2260  */
2261 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2262 {
2263         unsigned long flags;
2264         struct rq *rq;
2265
2266         rq = task_rq_lock(p, &flags);
2267         BUG_ON(p->state != TASK_RUNNING);
2268         update_rq_clock(rq);
2269
2270         p->prio = effective_prio(p);
2271
2272         if (!p->sched_class->task_new || !current->se.on_rq) {
2273                 activate_task(rq, p, 0);
2274         } else {
2275                 /*
2276                  * Let the scheduling class do new task startup
2277                  * management (if any):
2278                  */
2279                 p->sched_class->task_new(rq, p);
2280                 inc_nr_running(p, rq);
2281         }
2282         check_preempt_curr(rq, p);
2283 #ifdef CONFIG_SMP
2284         if (p->sched_class->task_wake_up)
2285                 p->sched_class->task_wake_up(rq, p);
2286 #endif
2287         task_rq_unlock(rq, &flags);
2288 }
2289
2290 #ifdef CONFIG_PREEMPT_NOTIFIERS
2291
2292 /**
2293  * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2294  * @notifier: notifier struct to register
2295  */
2296 void preempt_notifier_register(struct preempt_notifier *notifier)
2297 {
2298         hlist_add_head(&notifier->link, &current->preempt_notifiers);
2299 }
2300 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2301
2302 /**
2303  * preempt_notifier_unregister - no longer interested in preemption notifications
2304  * @notifier: notifier struct to unregister
2305  *
2306  * This is safe to call from within a preemption notifier.
2307  */
2308 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2309 {
2310         hlist_del(&notifier->link);
2311 }
2312 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2313
2314 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2315 {
2316         struct preempt_notifier *notifier;
2317         struct hlist_node *node;
2318
2319         hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2320                 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2321 }
2322
2323 static void
2324 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2325                                  struct task_struct *next)
2326 {
2327         struct preempt_notifier *notifier;
2328         struct hlist_node *node;
2329
2330         hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2331                 notifier->ops->sched_out(notifier, next);
2332 }
2333
2334 #else
2335
2336 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2337 {
2338 }
2339
2340 static void
2341 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2342                                  struct task_struct *next)
2343 {
2344 }
2345
2346 #endif
2347
2348 /**
2349  * prepare_task_switch - prepare to switch tasks
2350  * @rq: the runqueue preparing to switch
2351  * @prev: the current task that is being switched out
2352  * @next: the task we are going to switch to.
2353  *
2354  * This is called with the rq lock held and interrupts off. It must
2355  * be paired with a subsequent finish_task_switch after the context
2356  * switch.
2357  *
2358  * prepare_task_switch sets up locking and calls architecture specific
2359  * hooks.
2360  */
2361 static inline void
2362 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2363                     struct task_struct *next)
2364 {
2365         fire_sched_out_preempt_notifiers(prev, next);
2366         prepare_lock_switch(rq, next);
2367         prepare_arch_switch(next);
2368 }
2369
2370 /**
2371  * finish_task_switch - clean up after a task-switch
2372  * @rq: runqueue associated with task-switch
2373  * @prev: the thread we just switched away from.
2374  *
2375  * finish_task_switch must be called after the context switch, paired
2376  * with a prepare_task_switch call before the context switch.
2377  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2378  * and do any other architecture-specific cleanup actions.
2379  *
2380  * Note that we may have delayed dropping an mm in context_switch(). If
2381  * so, we finish that here outside of the runqueue lock. (Doing it
2382  * with the lock held can cause deadlocks; see schedule() for
2383  * details.)
2384  */
2385 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2386         __releases(rq->lock)
2387 {
2388         struct mm_struct *mm = rq->prev_mm;
2389         long prev_state;
2390
2391         rq->prev_mm = NULL;
2392
2393         /*
2394          * A task struct has one reference for the use as "current".
2395          * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2396          * schedule one last time. The schedule call will never return, and
2397          * the scheduled task must drop that reference.
2398          * The test for TASK_DEAD must occur while the runqueue locks are
2399          * still held, otherwise prev could be scheduled on another cpu, die
2400          * there before we look at prev->state, and then the reference would
2401          * be dropped twice.
2402          *              Manfred Spraul <manfred@colorfullife.com>
2403          */
2404         prev_state = prev->state;
2405         finish_arch_switch(prev);
2406         finish_lock_switch(rq, prev);
2407 #ifdef CONFIG_SMP
2408         if (current->sched_class->post_schedule)
2409                 current->sched_class->post_schedule(rq);
2410 #endif
2411
2412         fire_sched_in_preempt_notifiers(current);
2413         if (mm)
2414                 mmdrop(mm);
2415         if (unlikely(prev_state == TASK_DEAD)) {
2416                 /*
2417                  * Remove function-return probe instances associated with this
2418                  * task and put them back on the free list.
2419                  */
2420                 kprobe_flush_task(prev);
2421                 put_task_struct(prev);
2422         }
2423 }
2424
2425 /**
2426  * schedule_tail - first thing a freshly forked thread must call.
2427  * @prev: the thread we just switched away from.
2428  */
2429 asmlinkage void schedule_tail(struct task_struct *prev)
2430         __releases(rq->lock)
2431 {
2432         struct rq *rq = this_rq();
2433
2434         finish_task_switch(rq, prev);
2435 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2436         /* In this case, finish_task_switch does not reenable preemption */
2437         preempt_enable();
2438 #endif
2439         if (current->set_child_tid)
2440                 put_user(task_pid_vnr(current), current->set_child_tid);
2441 }
2442
2443 /*
2444  * context_switch - switch to the new MM and the new
2445  * thread's register state.
2446  */
2447 static inline void
2448 context_switch(struct rq *rq, struct task_struct *prev,
2449                struct task_struct *next)
2450 {
2451         struct mm_struct *mm, *oldmm;
2452
2453         prepare_task_switch(rq, prev, next);
2454         mm = next->mm;
2455         oldmm = prev->active_mm;
2456         /*
2457          * For paravirt, this is coupled with an exit in switch_to to
2458          * combine the page table reload and the switch backend into
2459          * one hypercall.
2460          */
2461         arch_enter_lazy_cpu_mode();
2462
2463         if (unlikely(!mm)) {
2464                 next->active_mm = oldmm;
2465                 atomic_inc(&oldmm->mm_count);
2466                 enter_lazy_tlb(oldmm, next);
2467         } else
2468                 switch_mm(oldmm, mm, next);
2469
2470         if (unlikely(!prev->mm)) {
2471                 prev->active_mm = NULL;
2472                 rq->prev_mm = oldmm;
2473         }
2474         /*
2475          * Since the runqueue lock will be released by the next
2476          * task (which is an invalid locking op but in the case
2477          * of the scheduler it's an obvious special-case), so we
2478          * do an early lockdep release here:
2479          */
2480 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2481         spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2482 #endif
2483
2484         /* Here we just switch the register state and the stack. */
2485         switch_to(prev, next, prev);
2486
2487         barrier();
2488         /*
2489          * this_rq must be evaluated again because prev may have moved
2490          * CPUs since it called schedule(), thus the 'rq' on its stack
2491          * frame will be invalid.
2492          */
2493         finish_task_switch(this_rq(), prev);
2494 }
2495
2496 /*
2497  * nr_running, nr_uninterruptible and nr_context_switches:
2498  *
2499  * externally visible scheduler statistics: current number of runnable
2500  * threads, current number of uninterruptible-sleeping threads, total
2501  * number of context switches performed since bootup.
2502  */
2503 unsigned long nr_running(void)
2504 {
2505         unsigned long i, sum = 0;
2506
2507         for_each_online_cpu(i)
2508                 sum += cpu_rq(i)->nr_running;
2509
2510         return sum;
2511 }
2512
2513 unsigned long nr_uninterruptible(void)
2514 {
2515         unsigned long i, sum = 0;
2516
2517         for_each_possible_cpu(i)
2518                 sum += cpu_rq(i)->nr_uninterruptible;
2519
2520         /*
2521          * Since we read the counters lockless, it might be slightly
2522          * inaccurate. Do not allow it to go below zero though:
2523          */
2524         if (unlikely((long)sum < 0))
2525                 sum = 0;
2526
2527         return sum;
2528 }
2529
2530 unsigned long long nr_context_switches(void)
2531 {
2532         int i;
2533         unsigned long long sum = 0;
2534
2535         for_each_possible_cpu(i)
2536                 sum += cpu_rq(i)->nr_switches;
2537
2538         return sum;
2539 }
2540
2541 unsigned long nr_iowait(void)
2542 {
2543         unsigned long i, sum = 0;
2544
2545         for_each_possible_cpu(i)
2546                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2547
2548         return sum;
2549 }
2550
2551 unsigned long nr_active(void)
2552 {
2553         unsigned long i, running = 0, uninterruptible = 0;
2554
2555         for_each_online_cpu(i) {
2556                 running += cpu_rq(i)->nr_running;
2557                 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2558         }
2559
2560         if (unlikely((long)uninterruptible < 0))
2561                 uninterruptible = 0;
2562
2563         return running + uninterruptible;
2564 }
2565
2566 /*
2567  * Update rq->cpu_load[] statistics. This function is usually called every
2568  * scheduler tick (TICK_NSEC).
2569  */
2570 static void update_cpu_load(struct rq *this_rq)
2571 {
2572         unsigned long this_load = this_rq->load.weight;
2573         int i, scale;
2574
2575         this_rq->nr_load_updates++;
2576
2577         /* Update our load: */
2578         for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2579                 unsigned long old_load, new_load;
2580
2581                 /* scale is effectively 1 << i now, and >> i divides by scale */
2582
2583                 old_load = this_rq->cpu_load[i];
2584                 new_load = this_load;
2585                 /*
2586                  * Round up the averaging division if load is increasing. This
2587                  * prevents us from getting stuck on 9 if the load is 10, for
2588                  * example.
2589                  */
2590                 if (new_load > old_load)
2591                         new_load += scale-1;
2592                 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2593         }
2594 }
2595
2596 #ifdef CONFIG_SMP
2597
2598 /*
2599  * double_rq_lock - safely lock two runqueues
2600  *
2601  * Note this does not disable interrupts like task_rq_lock,
2602  * you need to do so manually before calling.
2603  */
2604 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2605         __acquires(rq1->lock)
2606         __acquires(rq2->lock)
2607 {
2608         BUG_ON(!irqs_disabled());
2609         if (rq1 == rq2) {
2610                 spin_lock(&rq1->lock);
2611                 __acquire(rq2->lock);   /* Fake it out ;) */
2612         } else {
2613                 if (rq1 < rq2) {
2614                         spin_lock(&rq1->lock);
2615                         spin_lock(&rq2->lock);
2616                 } else {
2617                         spin_lock(&rq2->lock);
2618                         spin_lock(&rq1->lock);
2619                 }
2620         }
2621         update_rq_clock(rq1);
2622         update_rq_clock(rq2);
2623 }
2624
2625 /*
2626  * double_rq_unlock - safely unlock two runqueues
2627  *
2628  * Note this does not restore interrupts like task_rq_unlock,
2629  * you need to do so manually after calling.
2630  */
2631 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2632         __releases(rq1->lock)
2633         __releases(rq2->lock)
2634 {
2635         spin_unlock(&rq1->lock);
2636         if (rq1 != rq2)
2637                 spin_unlock(&rq2->lock);
2638         else
2639                 __release(rq2->lock);
2640 }
2641
2642 /*
2643  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2644  */
2645 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2646         __releases(this_rq->lock)
2647         __acquires(busiest->lock)
2648         __acquires(this_rq->lock)
2649 {
2650         int ret = 0;
2651
2652         if (unlikely(!irqs_disabled())) {
2653                 /* printk() doesn't work good under rq->lock */
2654                 spin_unlock(&this_rq->lock);
2655                 BUG_ON(1);
2656         }
2657         if (unlikely(!spin_trylock(&busiest->lock))) {
2658                 if (busiest < this_rq) {
2659                         spin_unlock(&this_rq->lock);
2660                         spin_lock(&busiest->lock);
2661                         spin_lock(&this_rq->lock);
2662                         ret = 1;
2663                 } else
2664                         spin_lock(&busiest->lock);
2665         }
2666         return ret;
2667 }
2668
2669 /*
2670  * If dest_cpu is allowed for this process, migrate the task to it.
2671  * This is accomplished by forcing the cpu_allowed mask to only
2672  * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2673  * the cpu_allowed mask is restored.
2674  */
2675 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2676 {
2677         struct migration_req req;
2678         unsigned long flags;
2679         struct rq *rq;
2680
2681         rq = task_rq_lock(p, &flags);
2682         if (!cpu_isset(dest_cpu, p->cpus_allowed)
2683             || unlikely(cpu_is_offline(dest_cpu)))
2684                 goto out;
2685
2686         /* force the process onto the specified CPU */
2687         if (migrate_task(p, dest_cpu, &req)) {
2688                 /* Need to wait for migration thread (might exit: take ref). */
2689                 struct task_struct *mt = rq->migration_thread;
2690
2691                 get_task_struct(mt);
2692                 task_rq_unlock(rq, &flags);
2693                 wake_up_process(mt);
2694                 put_task_struct(mt);
2695                 wait_for_completion(&req.done);
2696
2697                 return;
2698         }
2699 out:
2700         task_rq_unlock(rq, &flags);
2701 }
2702
2703 /*
2704  * sched_exec - execve() is a valuable balancing opportunity, because at
2705  * this point the task has the smallest effective memory and cache footprint.
2706  */
2707 void sched_exec(void)
2708 {
2709         int new_cpu, this_cpu = get_cpu();
2710         new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2711         put_cpu();
2712         if (new_cpu != this_cpu)
2713                 sched_migrate_task(current, new_cpu);
2714 }
2715
2716 /*
2717  * pull_task - move a task from a remote runqueue to the local runqueue.
2718  * Both runqueues must be locked.
2719  */
2720 static void pull_task(struct rq *src_rq, struct task_struct *p,
2721                       struct rq *this_rq, int this_cpu)
2722 {
2723         deactivate_task(src_rq, p, 0);
2724         set_task_cpu(p, this_cpu);
2725         activate_task(this_rq, p, 0);
2726         /*
2727          * Note that idle threads have a prio of MAX_PRIO, for this test
2728          * to be always true for them.
2729          */
2730         check_preempt_curr(this_rq, p);
2731 }
2732
2733 /*
2734  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2735  */
2736 static
2737 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2738                      struct sched_domain *sd, enum cpu_idle_type idle,
2739                      int *all_pinned)
2740 {
2741         /*
2742          * We do not migrate tasks that are:
2743          * 1) running (obviously), or
2744          * 2) cannot be migrated to this CPU due to cpus_allowed, or
2745          * 3) are cache-hot on their current CPU.
2746          */
2747         if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2748                 schedstat_inc(p, se.nr_failed_migrations_affine);
2749                 return 0;
2750         }
2751         *all_pinned = 0;
2752
2753         if (task_running(rq, p)) {
2754                 schedstat_inc(p, se.nr_failed_migrations_running);
2755                 return 0;
2756         }
2757
2758         /*
2759          * Aggressive migration if:
2760          * 1) task is cache cold, or
2761          * 2) too many balance attempts have failed.
2762          */
2763
2764         if (!task_hot(p, rq->clock, sd) ||
2765                         sd->nr_balance_failed > sd->cache_nice_tries) {
2766 #ifdef CONFIG_SCHEDSTATS
2767                 if (task_hot(p, rq->clock, sd)) {
2768                         schedstat_inc(sd, lb_hot_gained[idle]);
2769                         schedstat_inc(p, se.nr_forced_migrations);
2770                 }
2771 #endif
2772                 return 1;
2773         }
2774
2775         if (task_hot(p, rq->clock, sd)) {
2776                 schedstat_inc(p, se.nr_failed_migrations_hot);
2777                 return 0;
2778         }
2779         return 1;
2780 }
2781
2782 static unsigned long
2783 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2784               unsigned long max_load_move, struct sched_domain *sd,
2785               enum cpu_idle_type idle, int *all_pinned,
2786               int *this_best_prio, struct rq_iterator *iterator)
2787 {
2788         int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2789         struct task_struct *p;
2790         long rem_load_move = max_load_move;
2791
2792         if (max_load_move == 0)
2793                 goto out;
2794
2795         pinned = 1;
2796
2797         /*
2798          * Start the load-balancing iterator:
2799          */
2800         p = iterator->start(iterator->arg);
2801 next:
2802         if (!p || loops++ > sysctl_sched_nr_migrate)
2803                 goto out;
2804         /*
2805          * To help distribute high priority tasks across CPUs we don't
2806          * skip a task if it will be the highest priority task (i.e. smallest
2807          * prio value) on its new queue regardless of its load weight
2808          */
2809         skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2810                                                          SCHED_LOAD_SCALE_FUZZ;
2811         if ((skip_for_load && p->prio >= *this_best_prio) ||
2812             !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2813                 p = iterator->next(iterator->arg);
2814                 goto next;
2815         }
2816
2817         pull_task(busiest, p, this_rq, this_cpu);
2818         pulled++;
2819         rem_load_move -= p->se.load.weight;
2820
2821         /*
2822          * We only want to steal up to the prescribed amount of weighted load.
2823          */
2824         if (rem_load_move > 0) {
2825                 if (p->prio < *this_best_prio)
2826                         *this_best_prio = p->prio;
2827                 p = iterator->next(iterator->arg);
2828                 goto next;
2829         }
2830 out:
2831         /*
2832          * Right now, this is one of only two places pull_task() is called,
2833          * so we can safely collect pull_task() stats here rather than
2834          * inside pull_task().
2835          */
2836         schedstat_add(sd, lb_gained[idle], pulled);
2837
2838         if (all_pinned)
2839                 *all_pinned = pinned;
2840
2841         return max_load_move - rem_load_move;
2842 }
2843
2844 /*
2845  * move_tasks tries to move up to max_load_move weighted load from busiest to
2846  * this_rq, as part of a balancing operation within domain "sd".
2847  * Returns 1 if successful and 0 otherwise.
2848  *
2849  * Called with both runqueues locked.
2850  */
2851 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2852                       unsigned long max_load_move,
2853                       struct sched_domain *sd, enum cpu_idle_type idle,
2854                       int *all_pinned)
2855 {
2856         const struct sched_class *class = sched_class_highest;
2857         unsigned long total_load_moved = 0;
2858         int this_best_prio = this_rq->curr->prio;
2859
2860         do {
2861                 total_load_moved +=
2862                         class->load_balance(this_rq, this_cpu, busiest,
2863                                 max_load_move - total_load_moved,
2864                                 sd, idle, all_pinned, &this_best_prio);
2865                 class = class->next;
2866         } while (class && max_load_move > total_load_moved);
2867
2868         return total_load_moved > 0;
2869 }
2870
2871 static int
2872 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2873                    struct sched_domain *sd, enum cpu_idle_type idle,
2874                    struct rq_iterator *iterator)
2875 {
2876         struct task_struct *p = iterator->start(iterator->arg);
2877         int pinned = 0;
2878
2879         while (p) {
2880                 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2881                         pull_task(busiest, p, this_rq, this_cpu);
2882                         /*
2883                          * Right now, this is only the second place pull_task()
2884                          * is called, so we can safely collect pull_task()
2885                          * stats here rather than inside pull_task().
2886                          */
2887                         schedstat_inc(sd, lb_gained[idle]);
2888
2889                         return 1;
2890                 }
2891                 p = iterator->next(iterator->arg);
2892         }
2893
2894         return 0;
2895 }
2896
2897 /*
2898  * move_one_task tries to move exactly one task from busiest to this_rq, as
2899  * part of active balancing operations within "domain".
2900  * Returns 1 if successful and 0 otherwise.
2901  *
2902  * Called with both runqueues locked.
2903  */
2904 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2905                          struct sched_domain *sd, enum cpu_idle_type idle)
2906 {
2907         const struct sched_class *class;
2908
2909         for (class = sched_class_highest; class; class = class->next)
2910                 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2911                         return 1;
2912
2913         return 0;
2914 }
2915
2916 /*
2917  * find_busiest_group finds and returns the busiest CPU group within the
2918  * domain. It calculates and returns the amount of weighted load which
2919  * should be moved to restore balance via the imbalance parameter.
2920  */
2921 static struct sched_group *
2922 find_busiest_group(struct sched_domain *sd, int this_cpu,
2923                    unsigned long *imbalance, enum cpu_idle_type idle,
2924                    int *sd_idle, const cpumask_t *cpus, int *balance)
2925 {
2926         struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2927         unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2928         unsigned long max_pull;
2929         unsigned long busiest_load_per_task, busiest_nr_running;
2930         unsigned long this_load_per_task, this_nr_running;
2931         int load_idx, group_imb = 0;
2932 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2933         int power_savings_balance = 1;
2934         unsigned long leader_nr_running = 0, min_load_per_task = 0;
2935         unsigned long min_nr_running = ULONG_MAX;
2936         struct sched_group *group_min = NULL, *group_leader = NULL;
2937 #endif
2938
2939         max_load = this_load = total_load = total_pwr = 0;
2940         busiest_load_per_task = busiest_nr_running = 0;
2941         this_load_per_task = this_nr_running = 0;
2942         if (idle == CPU_NOT_IDLE)
2943                 load_idx = sd->busy_idx;
2944         else if (idle == CPU_NEWLY_IDLE)
2945                 load_idx = sd->newidle_idx;
2946         else
2947                 load_idx = sd->idle_idx;
2948
2949         do {
2950                 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2951                 int local_group;
2952                 int i;
2953                 int __group_imb = 0;
2954                 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2955                 unsigned long sum_nr_running, sum_weighted_load;
2956
2957                 local_group = cpu_isset(this_cpu, group->cpumask);
2958
2959                 if (local_group)
2960                         balance_cpu = first_cpu(group->cpumask);
2961
2962                 /* Tally up the load of all CPUs in the group */
2963                 sum_weighted_load = sum_nr_running = avg_load = 0;
2964                 max_cpu_load = 0;
2965                 min_cpu_load = ~0UL;
2966
2967                 for_each_cpu_mask(i, group->cpumask) {
2968                         struct rq *rq;
2969
2970                         if (!cpu_isset(i, *cpus))
2971                                 continue;
2972
2973                         rq = cpu_rq(i);
2974
2975                         if (*sd_idle && rq->nr_running)
2976                                 *sd_idle = 0;
2977
2978                         /* Bias balancing toward cpus of our domain */
2979                         if (local_group) {
2980                                 if (idle_cpu(i) && !first_idle_cpu) {
2981                                         first_idle_cpu = 1;
2982                                         balance_cpu = i;
2983                                 }
2984
2985                                 load = target_load(i, load_idx);
2986                         } else {
2987                                 load = source_load(i, load_idx);
2988                                 if (load > max_cpu_load)
2989                                         max_cpu_load = load;
2990                                 if (min_cpu_load > load)
2991                                         min_cpu_load = load;
2992                         }
2993
2994                         avg_load += load;
2995                         sum_nr_running += rq->nr_running;
2996                         sum_weighted_load += weighted_cpuload(i);
2997                 }
2998
2999                 /*
3000                  * First idle cpu or the first cpu(busiest) in this sched group
3001                  * is eligible for doing load balancing at this and above
3002                  * domains. In the newly idle case, we will allow all the cpu's
3003                  * to do the newly idle load balance.
3004                  */
3005                 if (idle != CPU_NEWLY_IDLE && local_group &&
3006                     balance_cpu != this_cpu && balance) {
3007                         *balance = 0;
3008                         goto ret;
3009                 }
3010
3011                 total_load += avg_load;
3012                 total_pwr += group->__cpu_power;
3013
3014                 /* Adjust by relative CPU power of the group */
3015                 avg_load = sg_div_cpu_power(group,
3016                                 avg_load * SCHED_LOAD_SCALE);
3017
3018                 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3019                         __group_imb = 1;
3020
3021                 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3022
3023                 if (local_group) {
3024                         this_load = avg_load;
3025                         this = group;
3026                         this_nr_running = sum_nr_running;
3027                         this_load_per_task = sum_weighted_load;
3028                 } else if (avg_load > max_load &&
3029                            (sum_nr_running > group_capacity || __group_imb)) {
3030                         max_load = avg_load;
3031                         busiest = group;
3032                         busiest_nr_running = sum_nr_running;
3033                         busiest_load_per_task = sum_weighted_load;
3034                         group_imb = __group_imb;
3035                 }
3036
3037 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3038                 /*
3039                  * Busy processors will not participate in power savings
3040                  * balance.
3041                  */
3042                 if (idle == CPU_NOT_IDLE ||
3043                                 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3044                         goto group_next;
3045
3046                 /*
3047                  * If the local group is idle or completely loaded
3048                  * no need to do power savings balance at this domain
3049                  */
3050                 if (local_group && (this_nr_running >= group_capacity ||
3051                                     !this_nr_running))
3052                         power_savings_balance = 0;
3053
3054                 /*
3055                  * If a group is already running at full capacity or idle,
3056                  * don't include that group in power savings calculations
3057                  */
3058                 if (!power_savings_balance || sum_nr_running >= group_capacity
3059                     || !sum_nr_running)
3060                         goto group_next;
3061
3062                 /*
3063                  * Calculate the group which has the least non-idle load.
3064                  * This is the group from where we need to pick up the load
3065                  * for saving power
3066                  */
3067                 if ((sum_nr_running < min_nr_running) ||
3068                     (sum_nr_running == min_nr_running &&
3069                      first_cpu(group->cpumask) <
3070                      first_cpu(group_min->cpumask))) {
3071                         group_min = group;
3072                         min_nr_running = sum_nr_running;
3073                         min_load_per_task = sum_weighted_load /
3074                                                 sum_nr_running;
3075                 }
3076
3077                 /*
3078                  * Calculate the group which is almost near its
3079                  * capacity but still has some space to pick up some load
3080                  * from other group and save more power
3081                  */
3082                 if (sum_nr_running <= group_capacity - 1) {
3083                         if (sum_nr_running > leader_nr_running ||
3084                             (sum_nr_running == leader_nr_running &&
3085                              first_cpu(group->cpumask) >
3086                               first_cpu(group_leader->cpumask))) {
3087                                 group_leader = group;
3088                                 leader_nr_running = sum_nr_running;
3089                         }
3090                 }
3091 group_next:
3092 #endif
3093                 group = group->next;
3094         } while (group != sd->groups);
3095
3096         if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3097                 goto out_balanced;
3098
3099         avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3100
3101         if (this_load >= avg_load ||
3102                         100*max_load <= sd->imbalance_pct*this_load)
3103                 goto out_balanced;
3104
3105         busiest_load_per_task /= busiest_nr_running;
3106         if (group_imb)
3107                 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3108
3109         /*
3110          * We're trying to get all the cpus to the average_load, so we don't
3111          * want to push ourselves above the average load, nor do we wish to
3112          * reduce the max loaded cpu below the average load, as either of these
3113          * actions would just result in more rebalancing later, and ping-pong
3114          * tasks around. Thus we look for the minimum possible imbalance.
3115          * Negative imbalances (*we* are more loaded than anyone else) will
3116          * be counted as no imbalance for these purposes -- we can't fix that
3117          * by pulling tasks to us. Be careful of negative numbers as they'll
3118          * appear as very large values with unsigned longs.
3119          */
3120         if (max_load <= busiest_load_per_task)
3121                 goto out_balanced;
3122
3123         /*
3124          * In the presence of smp nice balancing, certain scenarios can have
3125          * max load less than avg load(as we skip the groups at or below
3126          * its cpu_power, while calculating max_load..)
3127          */
3128         if (max_load < avg_load) {
3129                 *imbalance = 0;
3130                 goto small_imbalance;
3131         }
3132
3133         /* Don't want to pull so many tasks that a group would go idle */
3134         max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3135
3136         /* How much load to actually move to equalise the imbalance */
3137         *imbalance = min(max_pull * busiest->__cpu_power,
3138                                 (avg_load - this_load) * this->__cpu_power)
3139                         / SCHED_LOAD_SCALE;
3140
3141         /*
3142          * if *imbalance is less than the average load per runnable task
3143          * there is no gaurantee that any tasks will be moved so we'll have
3144          * a think about bumping its value to force at least one task to be
3145          * moved
3146          */
3147         if (*imbalance < busiest_load_per_task) {
3148                 unsigned long tmp, pwr_now, pwr_move;
3149                 unsigned int imbn;
3150
3151 small_imbalance:
3152                 pwr_move = pwr_now = 0;
3153                 imbn = 2;
3154                 if (this_nr_running) {
3155                         this_load_per_task /= this_nr_running;
3156                         if (busiest_load_per_task > this_load_per_task)
3157                                 imbn = 1;
3158                 } else
3159                         this_load_per_task = SCHED_LOAD_SCALE;
3160
3161                 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3162                                         busiest_load_per_task * imbn) {
3163                         *imbalance = busiest_load_per_task;
3164                         return busiest;
3165                 }
3166
3167                 /*
3168                  * OK, we don't have enough imbalance to justify moving tasks,
3169                  * however we may be able to increase total CPU power used by
3170                  * moving them.
3171                  */
3172
3173                 pwr_now += busiest->__cpu_power *
3174                                 min(busiest_load_per_task, max_load);
3175                 pwr_now += this->__cpu_power *
3176                                 min(this_load_per_task, this_load);
3177                 pwr_now /= SCHED_LOAD_SCALE;
3178
3179                 /* Amount of load we'd subtract */
3180                 tmp = sg_div_cpu_power(busiest,
3181                                 busiest_load_per_task * SCHED_LOAD_SCALE);
3182                 if (max_load > tmp)
3183                         pwr_move += busiest->__cpu_power *
3184                                 min(busiest_load_per_task, max_load - tmp);
3185
3186                 /* Amount of load we'd add */
3187                 if (max_load * busiest->__cpu_power <
3188                                 busiest_load_per_task * SCHED_LOAD_SCALE)
3189                         tmp = sg_div_cpu_power(this,
3190                                         max_load * busiest->__cpu_power);
3191                 else
3192                         tmp = sg_div_cpu_power(this,
3193                                 busiest_load_per_task * SCHED_LOAD_SCALE);
3194                 pwr_move += this->__cpu_power *
3195                                 min(this_load_per_task, this_load + tmp);
3196                 pwr_move /= SCHED_LOAD_SCALE;
3197
3198                 /* Move if we gain throughput */
3199                 if (pwr_move > pwr_now)
3200                         *imbalance = busiest_load_per_task;
3201         }
3202
3203         return busiest;
3204
3205 out_balanced:
3206 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3207         if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3208                 goto ret;
3209
3210         if (this == group_leader && group_leader != group_min) {
3211                 *imbalance = min_load_per_task;
3212                 return group_min;
3213         }
3214 #endif
3215 ret:
3216         *imbalance = 0;
3217         return NULL;
3218 }
3219
3220 /*
3221  * find_busiest_queue - find the busiest runqueue among the cpus in group.
3222  */
3223 static struct rq *
3224 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3225                    unsigned long imbalance, const cpumask_t *cpus)
3226 {
3227         struct rq *busiest = NULL, *rq;
3228         unsigned long max_load = 0;
3229         int i;
3230
3231         for_each_cpu_mask(i, group->cpumask) {
3232                 unsigned long wl;
3233
3234                 if (!cpu_isset(i, *cpus))
3235                         continue;
3236
3237                 rq = cpu_rq(i);
3238                 wl = weighted_cpuload(i);
3239
3240                 if (rq->nr_running == 1 && wl > imbalance)
3241                         continue;
3242
3243                 if (wl > max_load) {
3244                         max_load = wl;
3245                         busiest = rq;
3246                 }
3247         }
3248
3249         return busiest;
3250 }
3251
3252 /*
3253  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3254  * so long as it is large enough.
3255  */
3256 #define MAX_PINNED_INTERVAL     512
3257
3258 /*
3259  * Check this_cpu to ensure it is balanced within domain. Attempt to move
3260  * tasks if there is an imbalance.
3261  */
3262 static int load_balance(int this_cpu, struct rq *this_rq,
3263                         struct sched_domain *sd, enum cpu_idle_type idle,
3264                         int *balance, cpumask_t *cpus)
3265 {
3266         int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3267         struct sched_group *group;
3268         unsigned long imbalance;
3269         struct rq *busiest;
3270         unsigned long flags;
3271
3272         cpus_setall(*cpus);
3273
3274         /*
3275          * When power savings policy is enabled for the parent domain, idle
3276          * sibling can pick up load irrespective of busy siblings. In this case,
3277          * let the state of idle sibling percolate up as CPU_IDLE, instead of
3278          * portraying it as CPU_NOT_IDLE.
3279          */
3280         if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3281             !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3282                 sd_idle = 1;
3283
3284         schedstat_inc(sd, lb_count[idle]);
3285
3286 redo:
3287         group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3288                                    cpus, balance);
3289
3290         if (*balance == 0)
3291                 goto out_balanced;
3292
3293         if (!group) {
3294                 schedstat_inc(sd, lb_nobusyg[idle]);
3295                 goto out_balanced;
3296         }
3297
3298         busiest = find_busiest_queue(group, idle, imbalance, cpus);
3299         if (!busiest) {
3300                 schedstat_inc(sd, lb_nobusyq[idle]);
3301                 goto out_balanced;
3302         }
3303
3304         BUG_ON(busiest == this_rq);
3305
3306         schedstat_add(sd, lb_imbalance[idle], imbalance);
3307
3308         ld_moved = 0;
3309         if (busiest->nr_running > 1) {
3310                 /*
3311                  * Attempt to move tasks. If find_busiest_group has found
3312                  * an imbalance but busiest->nr_running <= 1, the group is
3313                  * still unbalanced. ld_moved simply stays zero, so it is
3314                  * correctly treated as an imbalance.
3315                  */
3316                 local_irq_save(flags);
3317                 double_rq_lock(this_rq, busiest);
3318                 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3319                                       imbalance, sd, idle, &all_pinned);
3320                 double_rq_unlock(this_rq, busiest);
3321                 local_irq_restore(flags);
3322
3323                 /*
3324                  * some other cpu did the load balance for us.
3325                  */
3326                 if (ld_moved && this_cpu != smp_processor_id())
3327                         resched_cpu(this_cpu);
3328
3329                 /* All tasks on this runqueue were pinned by CPU affinity */
3330                 if (unlikely(all_pinned)) {
3331                         cpu_clear(cpu_of(busiest), *cpus);
3332                         if (!cpus_empty(*cpus))
3333                                 goto redo;
3334                         goto out_balanced;
3335                 }
3336         }
3337
3338         if (!ld_moved) {
3339                 schedstat_inc(sd, lb_failed[idle]);
3340                 sd->nr_balance_failed++;
3341
3342                 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3343
3344                         spin_lock_irqsave(&busiest->lock, flags);
3345
3346                         /* don't kick the migration_thread, if the curr
3347                          * task on busiest cpu can't be moved to this_cpu
3348                          */
3349                         if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3350                                 spin_unlock_irqrestore(&busiest->lock, flags);
3351                                 all_pinned = 1;
3352                                 goto out_one_pinned;
3353                         }
3354
3355                         if (!busiest->active_balance) {
3356                                 busiest->active_balance = 1;
3357                                 busiest->push_cpu = this_cpu;
3358                                 active_balance = 1;
3359                         }
3360                         spin_unlock_irqrestore(&busiest->lock, flags);
3361                         if (active_balance)
3362                                 wake_up_process(busiest->migration_thread);
3363
3364                         /*
3365                          * We've kicked active balancing, reset the failure
3366                          * counter.
3367                          */
3368                         sd->nr_balance_failed = sd->cache_nice_tries+1;
3369                 }
3370         } else
3371                 sd->nr_balance_failed = 0;
3372
3373         if (likely(!active_balance)) {
3374                 /* We were unbalanced, so reset the balancing interval */
3375                 sd->balance_interval = sd->min_interval;
3376         } else {
3377                 /*
3378                  * If we've begun active balancing, start to back off. This
3379                  * case may not be covered by the all_pinned logic if there
3380                  * is only 1 task on the busy runqueue (because we don't call
3381                  * move_tasks).
3382                  */
3383                 if (sd->balance_interval < sd->max_interval)
3384                         sd->balance_interval *= 2;
3385         }
3386
3387         if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3388             !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3389                 return -1;
3390         return ld_moved;
3391
3392 out_balanced:
3393         schedstat_inc(sd, lb_balanced[idle]);
3394
3395         sd->nr_balance_failed = 0;
3396
3397 out_one_pinned:
3398         /* tune up the balancing interval */
3399         if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3400                         (sd->balance_interval < sd->max_interval))
3401                 sd->balance_interval *= 2;
3402
3403         if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3404             !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3405                 return -1;
3406         return 0;
3407 }
3408
3409 /*
3410  * Check this_cpu to ensure it is balanced within domain. Attempt to move
3411  * tasks if there is an imbalance.
3412  *
3413  * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3414  * this_rq is locked.
3415  */
3416 static int
3417 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3418                         cpumask_t *cpus)
3419 {
3420         struct sched_group *group;
3421         struct rq *busiest = NULL;
3422         unsigned long imbalance;
3423         int ld_moved = 0;
3424         int sd_idle = 0;
3425         int all_pinned = 0;
3426
3427         cpus_setall(*cpus);
3428
3429         /*
3430          * When power savings policy is enabled for the parent domain, idle
3431          * sibling can pick up load irrespective of busy siblings. In this case,
3432          * let the state of idle sibling percolate up as IDLE, instead of
3433          * portraying it as CPU_NOT_IDLE.
3434          */
3435         if (sd->flags & SD_SHARE_CPUPOWER &&
3436             !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3437                 sd_idle = 1;
3438
3439         schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3440 redo:
3441         group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3442                                    &sd_idle, cpus, NULL);
3443         if (!group) {
3444                 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3445                 goto out_balanced;
3446         }
3447
3448         busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3449         if (!busiest) {
3450                 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3451                 goto out_balanced;
3452         }
3453
3454         BUG_ON(busiest == this_rq);
3455
3456         schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);