24eed372d2800d0658e237a282cf05815be80c87
[pandora-kernel.git] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55  * Convert user-nice values [ -20 ... 0 ... 19 ]
56  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57  * and back.
58  */
59 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
62
63 /*
64  * 'User priority' is the nice value converted to something we
65  * can work with better when scaling various scheduler parameters,
66  * it's a [ 0 ... 39 ] range.
67  */
68 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
71
72 /*
73  * Some helpers for converting nanosecond timing to jiffy resolution
74  */
75 #define NS_TO_JIFFIES(TIME)     ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME)     ((TIME) * (1000000000 / HZ))
77
78 /*
79  * These are the 'tuning knobs' of the scheduler:
80  *
81  * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82  * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83  * Timeslices get refilled after they expire.
84  */
85 #define MIN_TIMESLICE           max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE           (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT       30
88 #define CHILD_PENALTY            95
89 #define PARENT_PENALTY          100
90 #define EXIT_WEIGHT               3
91 #define PRIO_BONUS_RATIO         25
92 #define MAX_BONUS               (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA         2
94 #define MAX_SLEEP_AVG           (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT        (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG        (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99  * If a task is 'interactive' then we reinsert it in the active
100  * array after it has expired its current timeslice. (it will not
101  * continue to run immediately, it will still roundrobin with
102  * other interactive tasks.)
103  *
104  * This part scales the interactivity limit depending on niceness.
105  *
106  * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107  * Here are a few examples of different nice levels:
108  *
109  *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110  *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111  *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
112  *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113  *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114  *
115  * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116  *  priority range a task can explore, a value of '1' means the
117  *  task is rated interactive.)
118  *
119  * Ie. nice +19 tasks can never get 'interactive' enough to be
120  * reinserted into the active array. And only heavily CPU-hog nice -20
121  * tasks will be expired. Default nice 0 tasks are somewhere between,
122  * it takes some effort for them to get interactive, but it's not
123  * too hard.
124  */
125
126 #define CURRENT_BONUS(p) \
127         (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128                 MAX_SLEEP_AVG)
129
130 #define GRANULARITY     (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
134                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135                         num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
138                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142         (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145         (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148         ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151         (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152                 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155         ((p)->prio < (rq)->curr->prio)
156
157 /*
158  * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159  * to time slice values: [800ms ... 100ms ... 5ms]
160  *
161  * The higher a thread's priority, the bigger timeslices
162  * it gets during one round of execution. But even the lowest
163  * priority thread gets MIN_TIMESLICE worth of execution time.
164  */
165
166 #define SCALE_PRIO(x, prio) \
167         max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static unsigned int task_timeslice(task_t *p)
170 {
171         if (p->static_prio < NICE_TO_PRIO(0))
172                 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173         else
174                 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)       \
177                                 < (long long) (sd)->cache_hot_time)
178
179 /*
180  * These are the runqueue data structures:
181  */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188         unsigned int nr_active;
189         unsigned long bitmap[BITMAP_SIZE];
190         struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194  * This is the main, per-CPU runqueue data structure.
195  *
196  * Locking rule: those places that want to lock multiple runqueues
197  * (such as the load balancing or the thread migration code), lock
198  * acquire operations must be ordered by ascending &runqueue.
199  */
200 struct runqueue {
201         spinlock_t lock;
202
203         /*
204          * nr_running and cpu_load should be in the same cacheline because
205          * remote CPUs use both these fields when doing load calculation.
206          */
207         unsigned long nr_running;
208 #ifdef CONFIG_SMP
209         unsigned long cpu_load[3];
210 #endif
211         unsigned long long nr_switches;
212
213         /*
214          * This is part of a global counter where only the total sum
215          * over all CPUs matters. A task can increase this counter on
216          * one CPU and if it got migrated afterwards it may decrease
217          * it on another CPU. Always updated under the runqueue lock:
218          */
219         unsigned long nr_uninterruptible;
220
221         unsigned long expired_timestamp;
222         unsigned long long timestamp_last_tick;
223         task_t *curr, *idle;
224         struct mm_struct *prev_mm;
225         prio_array_t *active, *expired, arrays[2];
226         int best_expired_prio;
227         atomic_t nr_iowait;
228
229 #ifdef CONFIG_SMP
230         struct sched_domain *sd;
231
232         /* For active balancing */
233         int active_balance;
234         int push_cpu;
235
236         task_t *migration_thread;
237         struct list_head migration_queue;
238 #endif
239
240 #ifdef CONFIG_SCHEDSTATS
241         /* latency stats */
242         struct sched_info rq_sched_info;
243
244         /* sys_sched_yield() stats */
245         unsigned long yld_exp_empty;
246         unsigned long yld_act_empty;
247         unsigned long yld_both_empty;
248         unsigned long yld_cnt;
249
250         /* schedule() stats */
251         unsigned long sched_switch;
252         unsigned long sched_cnt;
253         unsigned long sched_goidle;
254
255         /* try_to_wake_up() stats */
256         unsigned long ttwu_cnt;
257         unsigned long ttwu_local;
258 #endif
259 };
260
261 static DEFINE_PER_CPU(struct runqueue, runqueues);
262
263 /*
264  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
265  * See detach_destroy_domains: synchronize_sched for details.
266  *
267  * The domain tree of any CPU may only be accessed from within
268  * preempt-disabled sections.
269  */
270 #define for_each_domain(cpu, domain) \
271 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
272
273 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
274 #define this_rq()               (&__get_cpu_var(runqueues))
275 #define task_rq(p)              cpu_rq(task_cpu(p))
276 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
277
278 #ifndef prepare_arch_switch
279 # define prepare_arch_switch(next)      do { } while (0)
280 #endif
281 #ifndef finish_arch_switch
282 # define finish_arch_switch(prev)       do { } while (0)
283 #endif
284
285 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
286 static inline int task_running(runqueue_t *rq, task_t *p)
287 {
288         return rq->curr == p;
289 }
290
291 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
292 {
293 }
294
295 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
296 {
297         spin_unlock_irq(&rq->lock);
298 }
299
300 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
301 static inline int task_running(runqueue_t *rq, task_t *p)
302 {
303 #ifdef CONFIG_SMP
304         return p->oncpu;
305 #else
306         return rq->curr == p;
307 #endif
308 }
309
310 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
311 {
312 #ifdef CONFIG_SMP
313         /*
314          * We can optimise this out completely for !SMP, because the
315          * SMP rebalancing from interrupt is the only thing that cares
316          * here.
317          */
318         next->oncpu = 1;
319 #endif
320 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
321         spin_unlock_irq(&rq->lock);
322 #else
323         spin_unlock(&rq->lock);
324 #endif
325 }
326
327 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
328 {
329 #ifdef CONFIG_SMP
330         /*
331          * After ->oncpu is cleared, the task can be moved to a different CPU.
332          * We must ensure this doesn't happen until the switch is completely
333          * finished.
334          */
335         smp_wmb();
336         prev->oncpu = 0;
337 #endif
338 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
339         local_irq_enable();
340 #endif
341 }
342 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
343
344 /*
345  * task_rq_lock - lock the runqueue a given task resides on and disable
346  * interrupts.  Note the ordering: we can safely lookup the task_rq without
347  * explicitly disabling preemption.
348  */
349 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
350         __acquires(rq->lock)
351 {
352         struct runqueue *rq;
353
354 repeat_lock_task:
355         local_irq_save(*flags);
356         rq = task_rq(p);
357         spin_lock(&rq->lock);
358         if (unlikely(rq != task_rq(p))) {
359                 spin_unlock_irqrestore(&rq->lock, *flags);
360                 goto repeat_lock_task;
361         }
362         return rq;
363 }
364
365 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
366         __releases(rq->lock)
367 {
368         spin_unlock_irqrestore(&rq->lock, *flags);
369 }
370
371 #ifdef CONFIG_SCHEDSTATS
372 /*
373  * bump this up when changing the output format or the meaning of an existing
374  * format, so that tools can adapt (or abort)
375  */
376 #define SCHEDSTAT_VERSION 12
377
378 static int show_schedstat(struct seq_file *seq, void *v)
379 {
380         int cpu;
381
382         seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
383         seq_printf(seq, "timestamp %lu\n", jiffies);
384         for_each_online_cpu(cpu) {
385                 runqueue_t *rq = cpu_rq(cpu);
386 #ifdef CONFIG_SMP
387                 struct sched_domain *sd;
388                 int dcnt = 0;
389 #endif
390
391                 /* runqueue-specific stats */
392                 seq_printf(seq,
393                     "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
394                     cpu, rq->yld_both_empty,
395                     rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
396                     rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
397                     rq->ttwu_cnt, rq->ttwu_local,
398                     rq->rq_sched_info.cpu_time,
399                     rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
400
401                 seq_printf(seq, "\n");
402
403 #ifdef CONFIG_SMP
404                 /* domain-specific stats */
405                 preempt_disable();
406                 for_each_domain(cpu, sd) {
407                         enum idle_type itype;
408                         char mask_str[NR_CPUS];
409
410                         cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
411                         seq_printf(seq, "domain%d %s", dcnt++, mask_str);
412                         for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
413                                         itype++) {
414                                 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
415                                     sd->lb_cnt[itype],
416                                     sd->lb_balanced[itype],
417                                     sd->lb_failed[itype],
418                                     sd->lb_imbalance[itype],
419                                     sd->lb_gained[itype],
420                                     sd->lb_hot_gained[itype],
421                                     sd->lb_nobusyq[itype],
422                                     sd->lb_nobusyg[itype]);
423                         }
424                         seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
425                             sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
426                             sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
427                             sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
428                             sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
429                 }
430                 preempt_enable();
431 #endif
432         }
433         return 0;
434 }
435
436 static int schedstat_open(struct inode *inode, struct file *file)
437 {
438         unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
439         char *buf = kmalloc(size, GFP_KERNEL);
440         struct seq_file *m;
441         int res;
442
443         if (!buf)
444                 return -ENOMEM;
445         res = single_open(file, show_schedstat, NULL);
446         if (!res) {
447                 m = file->private_data;
448                 m->buf = buf;
449                 m->size = size;
450         } else
451                 kfree(buf);
452         return res;
453 }
454
455 struct file_operations proc_schedstat_operations = {
456         .open    = schedstat_open,
457         .read    = seq_read,
458         .llseek  = seq_lseek,
459         .release = single_release,
460 };
461
462 # define schedstat_inc(rq, field)       do { (rq)->field++; } while (0)
463 # define schedstat_add(rq, field, amt)  do { (rq)->field += (amt); } while (0)
464 #else /* !CONFIG_SCHEDSTATS */
465 # define schedstat_inc(rq, field)       do { } while (0)
466 # define schedstat_add(rq, field, amt)  do { } while (0)
467 #endif
468
469 /*
470  * rq_lock - lock a given runqueue and disable interrupts.
471  */
472 static inline runqueue_t *this_rq_lock(void)
473         __acquires(rq->lock)
474 {
475         runqueue_t *rq;
476
477         local_irq_disable();
478         rq = this_rq();
479         spin_lock(&rq->lock);
480
481         return rq;
482 }
483
484 #ifdef CONFIG_SCHEDSTATS
485 /*
486  * Called when a process is dequeued from the active array and given
487  * the cpu.  We should note that with the exception of interactive
488  * tasks, the expired queue will become the active queue after the active
489  * queue is empty, without explicitly dequeuing and requeuing tasks in the
490  * expired queue.  (Interactive tasks may be requeued directly to the
491  * active queue, thus delaying tasks in the expired queue from running;
492  * see scheduler_tick()).
493  *
494  * This function is only called from sched_info_arrive(), rather than
495  * dequeue_task(). Even though a task may be queued and dequeued multiple
496  * times as it is shuffled about, we're really interested in knowing how
497  * long it was from the *first* time it was queued to the time that it
498  * finally hit a cpu.
499  */
500 static inline void sched_info_dequeued(task_t *t)
501 {
502         t->sched_info.last_queued = 0;
503 }
504
505 /*
506  * Called when a task finally hits the cpu.  We can now calculate how
507  * long it was waiting to run.  We also note when it began so that we
508  * can keep stats on how long its timeslice is.
509  */
510 static inline void sched_info_arrive(task_t *t)
511 {
512         unsigned long now = jiffies, diff = 0;
513         struct runqueue *rq = task_rq(t);
514
515         if (t->sched_info.last_queued)
516                 diff = now - t->sched_info.last_queued;
517         sched_info_dequeued(t);
518         t->sched_info.run_delay += diff;
519         t->sched_info.last_arrival = now;
520         t->sched_info.pcnt++;
521
522         if (!rq)
523                 return;
524
525         rq->rq_sched_info.run_delay += diff;
526         rq->rq_sched_info.pcnt++;
527 }
528
529 /*
530  * Called when a process is queued into either the active or expired
531  * array.  The time is noted and later used to determine how long we
532  * had to wait for us to reach the cpu.  Since the expired queue will
533  * become the active queue after active queue is empty, without dequeuing
534  * and requeuing any tasks, we are interested in queuing to either. It
535  * is unusual but not impossible for tasks to be dequeued and immediately
536  * requeued in the same or another array: this can happen in sched_yield(),
537  * set_user_nice(), and even load_balance() as it moves tasks from runqueue
538  * to runqueue.
539  *
540  * This function is only called from enqueue_task(), but also only updates
541  * the timestamp if it is already not set.  It's assumed that
542  * sched_info_dequeued() will clear that stamp when appropriate.
543  */
544 static inline void sched_info_queued(task_t *t)
545 {
546         if (!t->sched_info.last_queued)
547                 t->sched_info.last_queued = jiffies;
548 }
549
550 /*
551  * Called when a process ceases being the active-running process, either
552  * voluntarily or involuntarily.  Now we can calculate how long we ran.
553  */
554 static inline void sched_info_depart(task_t *t)
555 {
556         struct runqueue *rq = task_rq(t);
557         unsigned long diff = jiffies - t->sched_info.last_arrival;
558
559         t->sched_info.cpu_time += diff;
560
561         if (rq)
562                 rq->rq_sched_info.cpu_time += diff;
563 }
564
565 /*
566  * Called when tasks are switched involuntarily due, typically, to expiring
567  * their time slice.  (This may also be called when switching to or from
568  * the idle task.)  We are only called when prev != next.
569  */
570 static inline void sched_info_switch(task_t *prev, task_t *next)
571 {
572         struct runqueue *rq = task_rq(prev);
573
574         /*
575          * prev now departs the cpu.  It's not interesting to record
576          * stats about how efficient we were at scheduling the idle
577          * process, however.
578          */
579         if (prev != rq->idle)
580                 sched_info_depart(prev);
581
582         if (next != rq->idle)
583                 sched_info_arrive(next);
584 }
585 #else
586 #define sched_info_queued(t)            do { } while (0)
587 #define sched_info_switch(t, next)      do { } while (0)
588 #endif /* CONFIG_SCHEDSTATS */
589
590 /*
591  * Adding/removing a task to/from a priority array:
592  */
593 static void dequeue_task(struct task_struct *p, prio_array_t *array)
594 {
595         array->nr_active--;
596         list_del(&p->run_list);
597         if (list_empty(array->queue + p->prio))
598                 __clear_bit(p->prio, array->bitmap);
599 }
600
601 static void enqueue_task(struct task_struct *p, prio_array_t *array)
602 {
603         sched_info_queued(p);
604         list_add_tail(&p->run_list, array->queue + p->prio);
605         __set_bit(p->prio, array->bitmap);
606         array->nr_active++;
607         p->array = array;
608 }
609
610 /*
611  * Put task to the end of the run list without the overhead of dequeue
612  * followed by enqueue.
613  */
614 static void requeue_task(struct task_struct *p, prio_array_t *array)
615 {
616         list_move_tail(&p->run_list, array->queue + p->prio);
617 }
618
619 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
620 {
621         list_add(&p->run_list, array->queue + p->prio);
622         __set_bit(p->prio, array->bitmap);
623         array->nr_active++;
624         p->array = array;
625 }
626
627 /*
628  * effective_prio - return the priority that is based on the static
629  * priority but is modified by bonuses/penalties.
630  *
631  * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
632  * into the -5 ... 0 ... +5 bonus/penalty range.
633  *
634  * We use 25% of the full 0...39 priority range so that:
635  *
636  * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
637  * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
638  *
639  * Both properties are important to certain workloads.
640  */
641 static int effective_prio(task_t *p)
642 {
643         int bonus, prio;
644
645         if (rt_task(p))
646                 return p->prio;
647
648         bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
649
650         prio = p->static_prio - bonus;
651         if (prio < MAX_RT_PRIO)
652                 prio = MAX_RT_PRIO;
653         if (prio > MAX_PRIO-1)
654                 prio = MAX_PRIO-1;
655         return prio;
656 }
657
658 /*
659  * __activate_task - move a task to the runqueue.
660  */
661 static inline void __activate_task(task_t *p, runqueue_t *rq)
662 {
663         enqueue_task(p, rq->active);
664         rq->nr_running++;
665 }
666
667 /*
668  * __activate_idle_task - move idle task to the _front_ of runqueue.
669  */
670 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
671 {
672         enqueue_task_head(p, rq->active);
673         rq->nr_running++;
674 }
675
676 static int recalc_task_prio(task_t *p, unsigned long long now)
677 {
678         /* Caller must always ensure 'now >= p->timestamp' */
679         unsigned long long __sleep_time = now - p->timestamp;
680         unsigned long sleep_time;
681
682         if (__sleep_time > NS_MAX_SLEEP_AVG)
683                 sleep_time = NS_MAX_SLEEP_AVG;
684         else
685                 sleep_time = (unsigned long)__sleep_time;
686
687         if (likely(sleep_time > 0)) {
688                 /*
689                  * User tasks that sleep a long time are categorised as
690                  * idle and will get just interactive status to stay active &
691                  * prevent them suddenly becoming cpu hogs and starving
692                  * other processes.
693                  */
694                 if (p->mm && p->activated != -1 &&
695                         sleep_time > INTERACTIVE_SLEEP(p)) {
696                                 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
697                                                 DEF_TIMESLICE);
698                 } else {
699                         /*
700                          * The lower the sleep avg a task has the more
701                          * rapidly it will rise with sleep time.
702                          */
703                         sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
704
705                         /*
706                          * Tasks waking from uninterruptible sleep are
707                          * limited in their sleep_avg rise as they
708                          * are likely to be waiting on I/O
709                          */
710                         if (p->activated == -1 && p->mm) {
711                                 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
712                                         sleep_time = 0;
713                                 else if (p->sleep_avg + sleep_time >=
714                                                 INTERACTIVE_SLEEP(p)) {
715                                         p->sleep_avg = INTERACTIVE_SLEEP(p);
716                                         sleep_time = 0;
717                                 }
718                         }
719
720                         /*
721                          * This code gives a bonus to interactive tasks.
722                          *
723                          * The boost works by updating the 'average sleep time'
724                          * value here, based on ->timestamp. The more time a
725                          * task spends sleeping, the higher the average gets -
726                          * and the higher the priority boost gets as well.
727                          */
728                         p->sleep_avg += sleep_time;
729
730                         if (p->sleep_avg > NS_MAX_SLEEP_AVG)
731                                 p->sleep_avg = NS_MAX_SLEEP_AVG;
732                 }
733         }
734
735         return effective_prio(p);
736 }
737
738 /*
739  * activate_task - move a task to the runqueue and do priority recalculation
740  *
741  * Update all the scheduling statistics stuff. (sleep average
742  * calculation, priority modifiers, etc.)
743  */
744 static void activate_task(task_t *p, runqueue_t *rq, int local)
745 {
746         unsigned long long now;
747
748         now = sched_clock();
749 #ifdef CONFIG_SMP
750         if (!local) {
751                 /* Compensate for drifting sched_clock */
752                 runqueue_t *this_rq = this_rq();
753                 now = (now - this_rq->timestamp_last_tick)
754                         + rq->timestamp_last_tick;
755         }
756 #endif
757
758         p->prio = recalc_task_prio(p, now);
759
760         /*
761          * This checks to make sure it's not an uninterruptible task
762          * that is now waking up.
763          */
764         if (!p->activated) {
765                 /*
766                  * Tasks which were woken up by interrupts (ie. hw events)
767                  * are most likely of interactive nature. So we give them
768                  * the credit of extending their sleep time to the period
769                  * of time they spend on the runqueue, waiting for execution
770                  * on a CPU, first time around:
771                  */
772                 if (in_interrupt())
773                         p->activated = 2;
774                 else {
775                         /*
776                          * Normal first-time wakeups get a credit too for
777                          * on-runqueue time, but it will be weighted down:
778                          */
779                         p->activated = 1;
780                 }
781         }
782         p->timestamp = now;
783
784         __activate_task(p, rq);
785 }
786
787 /*
788  * deactivate_task - remove a task from the runqueue.
789  */
790 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
791 {
792         rq->nr_running--;
793         dequeue_task(p, p->array);
794         p->array = NULL;
795 }
796
797 /*
798  * resched_task - mark a task 'to be rescheduled now'.
799  *
800  * On UP this means the setting of the need_resched flag, on SMP it
801  * might also involve a cross-CPU call to trigger the scheduler on
802  * the target CPU.
803  */
804 #ifdef CONFIG_SMP
805 static void resched_task(task_t *p)
806 {
807         int need_resched, nrpolling;
808
809         assert_spin_locked(&task_rq(p)->lock);
810
811         /* minimise the chance of sending an interrupt to poll_idle() */
812         nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
813         need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
814         nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
815
816         if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
817                 smp_send_reschedule(task_cpu(p));
818 }
819 #else
820 static inline void resched_task(task_t *p)
821 {
822         set_tsk_need_resched(p);
823 }
824 #endif
825
826 /**
827  * task_curr - is this task currently executing on a CPU?
828  * @p: the task in question.
829  */
830 inline int task_curr(const task_t *p)
831 {
832         return cpu_curr(task_cpu(p)) == p;
833 }
834
835 #ifdef CONFIG_SMP
836 typedef struct {
837         struct list_head list;
838
839         task_t *task;
840         int dest_cpu;
841
842         struct completion done;
843 } migration_req_t;
844
845 /*
846  * The task's runqueue lock must be held.
847  * Returns true if you have to wait for migration thread.
848  */
849 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
850 {
851         runqueue_t *rq = task_rq(p);
852
853         /*
854          * If the task is not on a runqueue (and not running), then
855          * it is sufficient to simply update the task's cpu field.
856          */
857         if (!p->array && !task_running(rq, p)) {
858                 set_task_cpu(p, dest_cpu);
859                 return 0;
860         }
861
862         init_completion(&req->done);
863         req->task = p;
864         req->dest_cpu = dest_cpu;
865         list_add(&req->list, &rq->migration_queue);
866         return 1;
867 }
868
869 /*
870  * wait_task_inactive - wait for a thread to unschedule.
871  *
872  * The caller must ensure that the task *will* unschedule sometime soon,
873  * else this function might spin for a *long* time. This function can't
874  * be called with interrupts off, or it may introduce deadlock with
875  * smp_call_function() if an IPI is sent by the same process we are
876  * waiting to become inactive.
877  */
878 void wait_task_inactive(task_t *p)
879 {
880         unsigned long flags;
881         runqueue_t *rq;
882         int preempted;
883
884 repeat:
885         rq = task_rq_lock(p, &flags);
886         /* Must be off runqueue entirely, not preempted. */
887         if (unlikely(p->array || task_running(rq, p))) {
888                 /* If it's preempted, we yield.  It could be a while. */
889                 preempted = !task_running(rq, p);
890                 task_rq_unlock(rq, &flags);
891                 cpu_relax();
892                 if (preempted)
893                         yield();
894                 goto repeat;
895         }
896         task_rq_unlock(rq, &flags);
897 }
898
899 /***
900  * kick_process - kick a running thread to enter/exit the kernel
901  * @p: the to-be-kicked thread
902  *
903  * Cause a process which is running on another CPU to enter
904  * kernel-mode, without any delay. (to get signals handled.)
905  *
906  * NOTE: this function doesnt have to take the runqueue lock,
907  * because all it wants to ensure is that the remote task enters
908  * the kernel. If the IPI races and the task has been migrated
909  * to another CPU then no harm is done and the purpose has been
910  * achieved as well.
911  */
912 void kick_process(task_t *p)
913 {
914         int cpu;
915
916         preempt_disable();
917         cpu = task_cpu(p);
918         if ((cpu != smp_processor_id()) && task_curr(p))
919                 smp_send_reschedule(cpu);
920         preempt_enable();
921 }
922
923 /*
924  * Return a low guess at the load of a migration-source cpu.
925  *
926  * We want to under-estimate the load of migration sources, to
927  * balance conservatively.
928  */
929 static inline unsigned long source_load(int cpu, int type)
930 {
931         runqueue_t *rq = cpu_rq(cpu);
932         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
933         if (type == 0)
934                 return load_now;
935
936         return min(rq->cpu_load[type-1], load_now);
937 }
938
939 /*
940  * Return a high guess at the load of a migration-target cpu
941  */
942 static inline unsigned long target_load(int cpu, int type)
943 {
944         runqueue_t *rq = cpu_rq(cpu);
945         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
946         if (type == 0)
947                 return load_now;
948
949         return max(rq->cpu_load[type-1], load_now);
950 }
951
952 /*
953  * find_idlest_group finds and returns the least busy CPU group within the
954  * domain.
955  */
956 static struct sched_group *
957 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
958 {
959         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
960         unsigned long min_load = ULONG_MAX, this_load = 0;
961         int load_idx = sd->forkexec_idx;
962         int imbalance = 100 + (sd->imbalance_pct-100)/2;
963
964         do {
965                 unsigned long load, avg_load;
966                 int local_group;
967                 int i;
968
969                 /* Skip over this group if it has no CPUs allowed */
970                 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
971                         goto nextgroup;
972
973                 local_group = cpu_isset(this_cpu, group->cpumask);
974
975                 /* Tally up the load of all CPUs in the group */
976                 avg_load = 0;
977
978                 for_each_cpu_mask(i, group->cpumask) {
979                         /* Bias balancing toward cpus of our domain */
980                         if (local_group)
981                                 load = source_load(i, load_idx);
982                         else
983                                 load = target_load(i, load_idx);
984
985                         avg_load += load;
986                 }
987
988                 /* Adjust by relative CPU power of the group */
989                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
990
991                 if (local_group) {
992                         this_load = avg_load;
993                         this = group;
994                 } else if (avg_load < min_load) {
995                         min_load = avg_load;
996                         idlest = group;
997                 }
998 nextgroup:
999                 group = group->next;
1000         } while (group != sd->groups);
1001
1002         if (!idlest || 100*this_load < imbalance*min_load)
1003                 return NULL;
1004         return idlest;
1005 }
1006
1007 /*
1008  * find_idlest_queue - find the idlest runqueue among the cpus in group.
1009  */
1010 static int
1011 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1012 {
1013         cpumask_t tmp;
1014         unsigned long load, min_load = ULONG_MAX;
1015         int idlest = -1;
1016         int i;
1017
1018         /* Traverse only the allowed CPUs */
1019         cpus_and(tmp, group->cpumask, p->cpus_allowed);
1020
1021         for_each_cpu_mask(i, tmp) {
1022                 load = source_load(i, 0);
1023
1024                 if (load < min_load || (load == min_load && i == this_cpu)) {
1025                         min_load = load;
1026                         idlest = i;
1027                 }
1028         }
1029
1030         return idlest;
1031 }
1032
1033 /*
1034  * sched_balance_self: balance the current task (running on cpu) in domains
1035  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1036  * SD_BALANCE_EXEC.
1037  *
1038  * Balance, ie. select the least loaded group.
1039  *
1040  * Returns the target CPU number, or the same CPU if no balancing is needed.
1041  *
1042  * preempt must be disabled.
1043  */
1044 static int sched_balance_self(int cpu, int flag)
1045 {
1046         struct task_struct *t = current;
1047         struct sched_domain *tmp, *sd = NULL;
1048
1049         for_each_domain(cpu, tmp)
1050                 if (tmp->flags & flag)
1051                         sd = tmp;
1052
1053         while (sd) {
1054                 cpumask_t span;
1055                 struct sched_group *group;
1056                 int new_cpu;
1057                 int weight;
1058
1059                 span = sd->span;
1060                 group = find_idlest_group(sd, t, cpu);
1061                 if (!group)
1062                         goto nextlevel;
1063
1064                 new_cpu = find_idlest_cpu(group, t, cpu);
1065                 if (new_cpu == -1 || new_cpu == cpu)
1066                         goto nextlevel;
1067
1068                 /* Now try balancing at a lower domain level */
1069                 cpu = new_cpu;
1070 nextlevel:
1071                 sd = NULL;
1072                 weight = cpus_weight(span);
1073                 for_each_domain(cpu, tmp) {
1074                         if (weight <= cpus_weight(tmp->span))
1075                                 break;
1076                         if (tmp->flags & flag)
1077                                 sd = tmp;
1078                 }
1079                 /* while loop will break here if sd == NULL */
1080         }
1081
1082         return cpu;
1083 }
1084
1085 #endif /* CONFIG_SMP */
1086
1087 /*
1088  * wake_idle() will wake a task on an idle cpu if task->cpu is
1089  * not idle and an idle cpu is available.  The span of cpus to
1090  * search starts with cpus closest then further out as needed,
1091  * so we always favor a closer, idle cpu.
1092  *
1093  * Returns the CPU we should wake onto.
1094  */
1095 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1096 static int wake_idle(int cpu, task_t *p)
1097 {
1098         cpumask_t tmp;
1099         struct sched_domain *sd;
1100         int i;
1101
1102         if (idle_cpu(cpu))
1103                 return cpu;
1104
1105         for_each_domain(cpu, sd) {
1106                 if (sd->flags & SD_WAKE_IDLE) {
1107                         cpus_and(tmp, sd->span, p->cpus_allowed);
1108                         for_each_cpu_mask(i, tmp) {
1109                                 if (idle_cpu(i))
1110                                         return i;
1111                         }
1112                 }
1113                 else
1114                         break;
1115         }
1116         return cpu;
1117 }
1118 #else
1119 static inline int wake_idle(int cpu, task_t *p)
1120 {
1121         return cpu;
1122 }
1123 #endif
1124
1125 /***
1126  * try_to_wake_up - wake up a thread
1127  * @p: the to-be-woken-up thread
1128  * @state: the mask of task states that can be woken
1129  * @sync: do a synchronous wakeup?
1130  *
1131  * Put it on the run-queue if it's not already there. The "current"
1132  * thread is always on the run-queue (except when the actual
1133  * re-schedule is in progress), and as such you're allowed to do
1134  * the simpler "current->state = TASK_RUNNING" to mark yourself
1135  * runnable without the overhead of this.
1136  *
1137  * returns failure only if the task is already active.
1138  */
1139 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1140 {
1141         int cpu, this_cpu, success = 0;
1142         unsigned long flags;
1143         long old_state;
1144         runqueue_t *rq;
1145 #ifdef CONFIG_SMP
1146         unsigned long load, this_load;
1147         struct sched_domain *sd, *this_sd = NULL;
1148         int new_cpu;
1149 #endif
1150
1151         rq = task_rq_lock(p, &flags);
1152         old_state = p->state;
1153         if (!(old_state & state))
1154                 goto out;
1155
1156         if (p->array)
1157                 goto out_running;
1158
1159         cpu = task_cpu(p);
1160         this_cpu = smp_processor_id();
1161
1162 #ifdef CONFIG_SMP
1163         if (unlikely(task_running(rq, p)))
1164                 goto out_activate;
1165
1166         new_cpu = cpu;
1167
1168         schedstat_inc(rq, ttwu_cnt);
1169         if (cpu == this_cpu) {
1170                 schedstat_inc(rq, ttwu_local);
1171                 goto out_set_cpu;
1172         }
1173
1174         for_each_domain(this_cpu, sd) {
1175                 if (cpu_isset(cpu, sd->span)) {
1176                         schedstat_inc(sd, ttwu_wake_remote);
1177                         this_sd = sd;
1178                         break;
1179                 }
1180         }
1181
1182         if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1183                 goto out_set_cpu;
1184
1185         /*
1186          * Check for affine wakeup and passive balancing possibilities.
1187          */
1188         if (this_sd) {
1189                 int idx = this_sd->wake_idx;
1190                 unsigned int imbalance;
1191
1192                 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1193
1194                 load = source_load(cpu, idx);
1195                 this_load = target_load(this_cpu, idx);
1196
1197                 new_cpu = this_cpu; /* Wake to this CPU if we can */
1198
1199                 if (this_sd->flags & SD_WAKE_AFFINE) {
1200                         unsigned long tl = this_load;
1201                         /*
1202                          * If sync wakeup then subtract the (maximum possible)
1203                          * effect of the currently running task from the load
1204                          * of the current CPU:
1205                          */
1206                         if (sync)
1207                                 tl -= SCHED_LOAD_SCALE;
1208
1209                         if ((tl <= load &&
1210                                 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1211                                 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1212                                 /*
1213                                  * This domain has SD_WAKE_AFFINE and
1214                                  * p is cache cold in this domain, and
1215                                  * there is no bad imbalance.
1216                                  */
1217                                 schedstat_inc(this_sd, ttwu_move_affine);
1218                                 goto out_set_cpu;
1219                         }
1220                 }
1221
1222                 /*
1223                  * Start passive balancing when half the imbalance_pct
1224                  * limit is reached.
1225                  */
1226                 if (this_sd->flags & SD_WAKE_BALANCE) {
1227                         if (imbalance*this_load <= 100*load) {
1228                                 schedstat_inc(this_sd, ttwu_move_balance);
1229                                 goto out_set_cpu;
1230                         }
1231                 }
1232         }
1233
1234         new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1235 out_set_cpu:
1236         new_cpu = wake_idle(new_cpu, p);
1237         if (new_cpu != cpu) {
1238                 set_task_cpu(p, new_cpu);
1239                 task_rq_unlock(rq, &flags);
1240                 /* might preempt at this point */
1241                 rq = task_rq_lock(p, &flags);
1242                 old_state = p->state;
1243                 if (!(old_state & state))
1244                         goto out;
1245                 if (p->array)
1246                         goto out_running;
1247
1248                 this_cpu = smp_processor_id();
1249                 cpu = task_cpu(p);
1250         }
1251
1252 out_activate:
1253 #endif /* CONFIG_SMP */
1254         if (old_state == TASK_UNINTERRUPTIBLE) {
1255                 rq->nr_uninterruptible--;
1256                 /*
1257                  * Tasks on involuntary sleep don't earn
1258                  * sleep_avg beyond just interactive state.
1259                  */
1260                 p->activated = -1;
1261         }
1262
1263         /*
1264          * Sync wakeups (i.e. those types of wakeups where the waker
1265          * has indicated that it will leave the CPU in short order)
1266          * don't trigger a preemption, if the woken up task will run on
1267          * this cpu. (in this case the 'I will reschedule' promise of
1268          * the waker guarantees that the freshly woken up task is going
1269          * to be considered on this CPU.)
1270          */
1271         activate_task(p, rq, cpu == this_cpu);
1272         if (!sync || cpu != this_cpu) {
1273                 if (TASK_PREEMPTS_CURR(p, rq))
1274                         resched_task(rq->curr);
1275         }
1276         success = 1;
1277
1278 out_running:
1279         p->state = TASK_RUNNING;
1280 out:
1281         task_rq_unlock(rq, &flags);
1282
1283         return success;
1284 }
1285
1286 int fastcall wake_up_process(task_t *p)
1287 {
1288         return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1289                                  TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1290 }
1291
1292 EXPORT_SYMBOL(wake_up_process);
1293
1294 int fastcall wake_up_state(task_t *p, unsigned int state)
1295 {
1296         return try_to_wake_up(p, state, 0);
1297 }
1298
1299 /*
1300  * Perform scheduler related setup for a newly forked process p.
1301  * p is forked by current.
1302  */
1303 void fastcall sched_fork(task_t *p, int clone_flags)
1304 {
1305         int cpu = get_cpu();
1306
1307 #ifdef CONFIG_SMP
1308         cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1309 #endif
1310         set_task_cpu(p, cpu);
1311
1312         /*
1313          * We mark the process as running here, but have not actually
1314          * inserted it onto the runqueue yet. This guarantees that
1315          * nobody will actually run it, and a signal or other external
1316          * event cannot wake it up and insert it on the runqueue either.
1317          */
1318         p->state = TASK_RUNNING;
1319         INIT_LIST_HEAD(&p->run_list);
1320         p->array = NULL;
1321 #ifdef CONFIG_SCHEDSTATS
1322         memset(&p->sched_info, 0, sizeof(p->sched_info));
1323 #endif
1324 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1325         p->oncpu = 0;
1326 #endif
1327 #ifdef CONFIG_PREEMPT
1328         /* Want to start with kernel preemption disabled. */
1329         p->thread_info->preempt_count = 1;
1330 #endif
1331         /*
1332          * Share the timeslice between parent and child, thus the
1333          * total amount of pending timeslices in the system doesn't change,
1334          * resulting in more scheduling fairness.
1335          */
1336         local_irq_disable();
1337         p->time_slice = (current->time_slice + 1) >> 1;
1338         /*
1339          * The remainder of the first timeslice might be recovered by
1340          * the parent if the child exits early enough.
1341          */
1342         p->first_time_slice = 1;
1343         current->time_slice >>= 1;
1344         p->timestamp = sched_clock();
1345         if (unlikely(!current->time_slice)) {
1346                 /*
1347                  * This case is rare, it happens when the parent has only
1348                  * a single jiffy left from its timeslice. Taking the
1349                  * runqueue lock is not a problem.
1350                  */
1351                 current->time_slice = 1;
1352                 scheduler_tick();
1353         }
1354         local_irq_enable();
1355         put_cpu();
1356 }
1357
1358 /*
1359  * wake_up_new_task - wake up a newly created task for the first time.
1360  *
1361  * This function will do some initial scheduler statistics housekeeping
1362  * that must be done for every newly created context, then puts the task
1363  * on the runqueue and wakes it.
1364  */
1365 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1366 {
1367         unsigned long flags;
1368         int this_cpu, cpu;
1369         runqueue_t *rq, *this_rq;
1370
1371         rq = task_rq_lock(p, &flags);
1372         BUG_ON(p->state != TASK_RUNNING);
1373         this_cpu = smp_processor_id();
1374         cpu = task_cpu(p);
1375
1376         /*
1377          * We decrease the sleep average of forking parents
1378          * and children as well, to keep max-interactive tasks
1379          * from forking tasks that are max-interactive. The parent
1380          * (current) is done further down, under its lock.
1381          */
1382         p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1383                 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1384
1385         p->prio = effective_prio(p);
1386
1387         if (likely(cpu == this_cpu)) {
1388                 if (!(clone_flags & CLONE_VM)) {
1389                         /*
1390                          * The VM isn't cloned, so we're in a good position to
1391                          * do child-runs-first in anticipation of an exec. This
1392                          * usually avoids a lot of COW overhead.
1393                          */
1394                         if (unlikely(!current->array))
1395                                 __activate_task(p, rq);
1396                         else {
1397                                 p->prio = current->prio;
1398                                 list_add_tail(&p->run_list, &current->run_list);
1399                                 p->array = current->array;
1400                                 p->array->nr_active++;
1401                                 rq->nr_running++;
1402                         }
1403                         set_need_resched();
1404                 } else
1405                         /* Run child last */
1406                         __activate_task(p, rq);
1407                 /*
1408                  * We skip the following code due to cpu == this_cpu
1409                  *
1410                  *   task_rq_unlock(rq, &flags);
1411                  *   this_rq = task_rq_lock(current, &flags);
1412                  */
1413                 this_rq = rq;
1414         } else {
1415                 this_rq = cpu_rq(this_cpu);
1416
1417                 /*
1418                  * Not the local CPU - must adjust timestamp. This should
1419                  * get optimised away in the !CONFIG_SMP case.
1420                  */
1421                 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1422                                         + rq->timestamp_last_tick;
1423                 __activate_task(p, rq);
1424                 if (TASK_PREEMPTS_CURR(p, rq))
1425                         resched_task(rq->curr);
1426
1427                 /*
1428                  * Parent and child are on different CPUs, now get the
1429                  * parent runqueue to update the parent's ->sleep_avg:
1430                  */
1431                 task_rq_unlock(rq, &flags);
1432                 this_rq = task_rq_lock(current, &flags);
1433         }
1434         current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1435                 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1436         task_rq_unlock(this_rq, &flags);
1437 }
1438
1439 /*
1440  * Potentially available exiting-child timeslices are
1441  * retrieved here - this way the parent does not get
1442  * penalized for creating too many threads.
1443  *
1444  * (this cannot be used to 'generate' timeslices
1445  * artificially, because any timeslice recovered here
1446  * was given away by the parent in the first place.)
1447  */
1448 void fastcall sched_exit(task_t *p)
1449 {
1450         unsigned long flags;
1451         runqueue_t *rq;
1452
1453         /*
1454          * If the child was a (relative-) CPU hog then decrease
1455          * the sleep_avg of the parent as well.
1456          */
1457         rq = task_rq_lock(p->parent, &flags);
1458         if (p->first_time_slice) {
1459                 p->parent->time_slice += p->time_slice;
1460                 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1461                         p->parent->time_slice = task_timeslice(p);
1462         }
1463         if (p->sleep_avg < p->parent->sleep_avg)
1464                 p->parent->sleep_avg = p->parent->sleep_avg /
1465                 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1466                 (EXIT_WEIGHT + 1);
1467         task_rq_unlock(rq, &flags);
1468 }
1469
1470 /**
1471  * prepare_task_switch - prepare to switch tasks
1472  * @rq: the runqueue preparing to switch
1473  * @next: the task we are going to switch to.
1474  *
1475  * This is called with the rq lock held and interrupts off. It must
1476  * be paired with a subsequent finish_task_switch after the context
1477  * switch.
1478  *
1479  * prepare_task_switch sets up locking and calls architecture specific
1480  * hooks.
1481  */
1482 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1483 {
1484         prepare_lock_switch(rq, next);
1485         prepare_arch_switch(next);
1486 }
1487
1488 /**
1489  * finish_task_switch - clean up after a task-switch
1490  * @rq: runqueue associated with task-switch
1491  * @prev: the thread we just switched away from.
1492  *
1493  * finish_task_switch must be called after the context switch, paired
1494  * with a prepare_task_switch call before the context switch.
1495  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1496  * and do any other architecture-specific cleanup actions.
1497  *
1498  * Note that we may have delayed dropping an mm in context_switch(). If
1499  * so, we finish that here outside of the runqueue lock.  (Doing it
1500  * with the lock held can cause deadlocks; see schedule() for
1501  * details.)
1502  */
1503 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1504         __releases(rq->lock)
1505 {
1506         struct mm_struct *mm = rq->prev_mm;
1507         unsigned long prev_task_flags;
1508
1509         rq->prev_mm = NULL;
1510
1511         /*
1512          * A task struct has one reference for the use as "current".
1513          * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1514          * calls schedule one last time. The schedule call will never return,
1515          * and the scheduled task must drop that reference.
1516          * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1517          * still held, otherwise prev could be scheduled on another cpu, die
1518          * there before we look at prev->state, and then the reference would
1519          * be dropped twice.
1520          *              Manfred Spraul <manfred@colorfullife.com>
1521          */
1522         prev_task_flags = prev->flags;
1523 #ifdef CONFIG_DEBUG_SPINLOCK
1524         /* this is a valid case when another task releases the spinlock */
1525         rq->lock.owner = current;
1526 #endif
1527         finish_arch_switch(prev);
1528         finish_lock_switch(rq, prev);
1529         if (mm)
1530                 mmdrop(mm);
1531         if (unlikely(prev_task_flags & PF_DEAD))
1532                 put_task_struct(prev);
1533 }
1534
1535 /**
1536  * schedule_tail - first thing a freshly forked thread must call.
1537  * @prev: the thread we just switched away from.
1538  */
1539 asmlinkage void schedule_tail(task_t *prev)
1540         __releases(rq->lock)
1541 {
1542         runqueue_t *rq = this_rq();
1543         finish_task_switch(rq, prev);
1544 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1545         /* In this case, finish_task_switch does not reenable preemption */
1546         preempt_enable();
1547 #endif
1548         if (current->set_child_tid)
1549                 put_user(current->pid, current->set_child_tid);
1550 }
1551
1552 /*
1553  * context_switch - switch to the new MM and the new
1554  * thread's register state.
1555  */
1556 static inline
1557 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1558 {
1559         struct mm_struct *mm = next->mm;
1560         struct mm_struct *oldmm = prev->active_mm;
1561
1562         if (unlikely(!mm)) {
1563                 next->active_mm = oldmm;
1564                 atomic_inc(&oldmm->mm_count);
1565                 enter_lazy_tlb(oldmm, next);
1566         } else
1567                 switch_mm(oldmm, mm, next);
1568
1569         if (unlikely(!prev->mm)) {
1570                 prev->active_mm = NULL;
1571                 WARN_ON(rq->prev_mm);
1572                 rq->prev_mm = oldmm;
1573         }
1574
1575         /* Here we just switch the register state and the stack. */
1576         switch_to(prev, next, prev);
1577
1578         return prev;
1579 }
1580
1581 /*
1582  * nr_running, nr_uninterruptible and nr_context_switches:
1583  *
1584  * externally visible scheduler statistics: current number of runnable
1585  * threads, current number of uninterruptible-sleeping threads, total
1586  * number of context switches performed since bootup.
1587  */
1588 unsigned long nr_running(void)
1589 {
1590         unsigned long i, sum = 0;
1591
1592         for_each_online_cpu(i)
1593                 sum += cpu_rq(i)->nr_running;
1594
1595         return sum;
1596 }
1597
1598 unsigned long nr_uninterruptible(void)
1599 {
1600         unsigned long i, sum = 0;
1601
1602         for_each_cpu(i)
1603                 sum += cpu_rq(i)->nr_uninterruptible;
1604
1605         /*
1606          * Since we read the counters lockless, it might be slightly
1607          * inaccurate. Do not allow it to go below zero though:
1608          */
1609         if (unlikely((long)sum < 0))
1610                 sum = 0;
1611
1612         return sum;
1613 }
1614
1615 unsigned long long nr_context_switches(void)
1616 {
1617         unsigned long long i, sum = 0;
1618
1619         for_each_cpu(i)
1620                 sum += cpu_rq(i)->nr_switches;
1621
1622         return sum;
1623 }
1624
1625 unsigned long nr_iowait(void)
1626 {
1627         unsigned long i, sum = 0;
1628
1629         for_each_cpu(i)
1630                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1631
1632         return sum;
1633 }
1634
1635 #ifdef CONFIG_SMP
1636
1637 /*
1638  * double_rq_lock - safely lock two runqueues
1639  *
1640  * Note this does not disable interrupts like task_rq_lock,
1641  * you need to do so manually before calling.
1642  */
1643 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1644         __acquires(rq1->lock)
1645         __acquires(rq2->lock)
1646 {
1647         if (rq1 == rq2) {
1648                 spin_lock(&rq1->lock);
1649                 __acquire(rq2->lock);   /* Fake it out ;) */
1650         } else {
1651                 if (rq1 < rq2) {
1652                         spin_lock(&rq1->lock);
1653                         spin_lock(&rq2->lock);
1654                 } else {
1655                         spin_lock(&rq2->lock);
1656                         spin_lock(&rq1->lock);
1657                 }
1658         }
1659 }
1660
1661 /*
1662  * double_rq_unlock - safely unlock two runqueues
1663  *
1664  * Note this does not restore interrupts like task_rq_unlock,
1665  * you need to do so manually after calling.
1666  */
1667 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1668         __releases(rq1->lock)
1669         __releases(rq2->lock)
1670 {
1671         spin_unlock(&rq1->lock);
1672         if (rq1 != rq2)
1673                 spin_unlock(&rq2->lock);
1674         else
1675                 __release(rq2->lock);
1676 }
1677
1678 /*
1679  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1680  */
1681 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1682         __releases(this_rq->lock)
1683         __acquires(busiest->lock)
1684         __acquires(this_rq->lock)
1685 {
1686         if (unlikely(!spin_trylock(&busiest->lock))) {
1687                 if (busiest < this_rq) {
1688                         spin_unlock(&this_rq->lock);
1689                         spin_lock(&busiest->lock);
1690                         spin_lock(&this_rq->lock);
1691                 } else
1692                         spin_lock(&busiest->lock);
1693         }
1694 }
1695
1696 /*
1697  * If dest_cpu is allowed for this process, migrate the task to it.
1698  * This is accomplished by forcing the cpu_allowed mask to only
1699  * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
1700  * the cpu_allowed mask is restored.
1701  */
1702 static void sched_migrate_task(task_t *p, int dest_cpu)
1703 {
1704         migration_req_t req;
1705         runqueue_t *rq;
1706         unsigned long flags;
1707
1708         rq = task_rq_lock(p, &flags);
1709         if (!cpu_isset(dest_cpu, p->cpus_allowed)
1710             || unlikely(cpu_is_offline(dest_cpu)))
1711                 goto out;
1712
1713         /* force the process onto the specified CPU */
1714         if (migrate_task(p, dest_cpu, &req)) {
1715                 /* Need to wait for migration thread (might exit: take ref). */
1716                 struct task_struct *mt = rq->migration_thread;
1717                 get_task_struct(mt);
1718                 task_rq_unlock(rq, &flags);
1719                 wake_up_process(mt);
1720                 put_task_struct(mt);
1721                 wait_for_completion(&req.done);
1722                 return;
1723         }
1724 out:
1725         task_rq_unlock(rq, &flags);
1726 }
1727
1728 /*
1729  * sched_exec - execve() is a valuable balancing opportunity, because at
1730  * this point the task has the smallest effective memory and cache footprint.
1731  */
1732 void sched_exec(void)
1733 {
1734         int new_cpu, this_cpu = get_cpu();
1735         new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1736         put_cpu();
1737         if (new_cpu != this_cpu)
1738                 sched_migrate_task(current, new_cpu);
1739 }
1740
1741 /*
1742  * pull_task - move a task from a remote runqueue to the local runqueue.
1743  * Both runqueues must be locked.
1744  */
1745 static inline
1746 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1747                runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1748 {
1749         dequeue_task(p, src_array);
1750         src_rq->nr_running--;
1751         set_task_cpu(p, this_cpu);
1752         this_rq->nr_running++;
1753         enqueue_task(p, this_array);
1754         p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1755                                 + this_rq->timestamp_last_tick;
1756         /*
1757          * Note that idle threads have a prio of MAX_PRIO, for this test
1758          * to be always true for them.
1759          */
1760         if (TASK_PREEMPTS_CURR(p, this_rq))
1761                 resched_task(this_rq->curr);
1762 }
1763
1764 /*
1765  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1766  */
1767 static inline
1768 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1769                      struct sched_domain *sd, enum idle_type idle,
1770                      int *all_pinned)
1771 {
1772         /*
1773          * We do not migrate tasks that are:
1774          * 1) running (obviously), or
1775          * 2) cannot be migrated to this CPU due to cpus_allowed, or
1776          * 3) are cache-hot on their current CPU.
1777          */
1778         if (!cpu_isset(this_cpu, p->cpus_allowed))
1779                 return 0;
1780         *all_pinned = 0;
1781
1782         if (task_running(rq, p))
1783                 return 0;
1784
1785         /*
1786          * Aggressive migration if:
1787          * 1) task is cache cold, or
1788          * 2) too many balance attempts have failed.
1789          */
1790
1791         if (sd->nr_balance_failed > sd->cache_nice_tries)
1792                 return 1;
1793
1794         if (task_hot(p, rq->timestamp_last_tick, sd))
1795                 return 0;
1796         return 1;
1797 }
1798
1799 /*
1800  * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1801  * as part of a balancing operation within "domain". Returns the number of
1802  * tasks moved.
1803  *
1804  * Called with both runqueues locked.
1805  */
1806 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1807                       unsigned long max_nr_move, struct sched_domain *sd,
1808                       enum idle_type idle, int *all_pinned)
1809 {
1810         prio_array_t *array, *dst_array;
1811         struct list_head *head, *curr;
1812         int idx, pulled = 0, pinned = 0;
1813         task_t *tmp;
1814
1815         if (max_nr_move == 0)
1816                 goto out;
1817
1818         pinned = 1;
1819
1820         /*
1821          * We first consider expired tasks. Those will likely not be
1822          * executed in the near future, and they are most likely to
1823          * be cache-cold, thus switching CPUs has the least effect
1824          * on them.
1825          */
1826         if (busiest->expired->nr_active) {
1827                 array = busiest->expired;
1828                 dst_array = this_rq->expired;
1829         } else {
1830                 array = busiest->active;
1831                 dst_array = this_rq->active;
1832         }
1833
1834 new_array:
1835         /* Start searching at priority 0: */
1836         idx = 0;
1837 skip_bitmap:
1838         if (!idx)
1839                 idx = sched_find_first_bit(array->bitmap);
1840         else
1841                 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1842         if (idx >= MAX_PRIO) {
1843                 if (array == busiest->expired && busiest->active->nr_active) {
1844                         array = busiest->active;
1845                         dst_array = this_rq->active;
1846                         goto new_array;
1847                 }
1848                 goto out;
1849         }
1850
1851         head = array->queue + idx;
1852         curr = head->prev;
1853 skip_queue:
1854         tmp = list_entry(curr, task_t, run_list);
1855
1856         curr = curr->prev;
1857
1858         if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1859                 if (curr != head)
1860                         goto skip_queue;
1861                 idx++;
1862                 goto skip_bitmap;
1863         }
1864
1865 #ifdef CONFIG_SCHEDSTATS
1866         if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1867                 schedstat_inc(sd, lb_hot_gained[idle]);
1868 #endif
1869
1870         pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1871         pulled++;
1872
1873         /* We only want to steal up to the prescribed number of tasks. */
1874         if (pulled < max_nr_move) {
1875                 if (curr != head)
1876                         goto skip_queue;
1877                 idx++;
1878                 goto skip_bitmap;
1879         }
1880 out:
1881         /*
1882          * Right now, this is the only place pull_task() is called,
1883          * so we can safely collect pull_task() stats here rather than
1884          * inside pull_task().
1885          */
1886         schedstat_add(sd, lb_gained[idle], pulled);
1887
1888         if (all_pinned)
1889                 *all_pinned = pinned;
1890         return pulled;
1891 }
1892
1893 /*
1894  * find_busiest_group finds and returns the busiest CPU group within the
1895  * domain. It calculates and returns the number of tasks which should be
1896  * moved to restore balance via the imbalance parameter.
1897  */
1898 static struct sched_group *
1899 find_busiest_group(struct sched_domain *sd, int this_cpu,
1900                    unsigned long *imbalance, enum idle_type idle)
1901 {
1902         struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1903         unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1904         int load_idx;
1905
1906         max_load = this_load = total_load = total_pwr = 0;
1907         if (idle == NOT_IDLE)
1908                 load_idx = sd->busy_idx;
1909         else if (idle == NEWLY_IDLE)
1910                 load_idx = sd->newidle_idx;
1911         else
1912                 load_idx = sd->idle_idx;
1913
1914         do {
1915                 unsigned long load;
1916                 int local_group;
1917                 int i;
1918
1919                 local_group = cpu_isset(this_cpu, group->cpumask);
1920
1921                 /* Tally up the load of all CPUs in the group */
1922                 avg_load = 0;
1923
1924                 for_each_cpu_mask(i, group->cpumask) {
1925                         /* Bias balancing toward cpus of our domain */
1926                         if (local_group)
1927                                 load = target_load(i, load_idx);
1928                         else
1929                                 load = source_load(i, load_idx);
1930
1931                         avg_load += load;
1932                 }
1933
1934                 total_load += avg_load;
1935                 total_pwr += group->cpu_power;
1936
1937                 /* Adjust by relative CPU power of the group */
1938                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1939
1940                 if (local_group) {
1941                         this_load = avg_load;
1942                         this = group;
1943                 } else if (avg_load > max_load) {
1944                         max_load = avg_load;
1945                         busiest = group;
1946                 }
1947                 group = group->next;
1948         } while (group != sd->groups);
1949
1950         if (!busiest || this_load >= max_load)
1951                 goto out_balanced;
1952
1953         avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1954
1955         if (this_load >= avg_load ||
1956                         100*max_load <= sd->imbalance_pct*this_load)
1957                 goto out_balanced;
1958
1959         /*
1960          * We're trying to get all the cpus to the average_load, so we don't
1961          * want to push ourselves above the average load, nor do we wish to
1962          * reduce the max loaded cpu below the average load, as either of these
1963          * actions would just result in more rebalancing later, and ping-pong
1964          * tasks around. Thus we look for the minimum possible imbalance.
1965          * Negative imbalances (*we* are more loaded than anyone else) will
1966          * be counted as no imbalance for these purposes -- we can't fix that
1967          * by pulling tasks to us.  Be careful of negative numbers as they'll
1968          * appear as very large values with unsigned longs.
1969          */
1970         /* How much load to actually move to equalise the imbalance */
1971         *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1972                                 (avg_load - this_load) * this->cpu_power)
1973                         / SCHED_LOAD_SCALE;
1974
1975         if (*imbalance < SCHED_LOAD_SCALE) {
1976                 unsigned long pwr_now = 0, pwr_move = 0;
1977                 unsigned long tmp;
1978
1979                 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1980                         *imbalance = 1;
1981                         return busiest;
1982                 }
1983
1984                 /*
1985                  * OK, we don't have enough imbalance to justify moving tasks,
1986                  * however we may be able to increase total CPU power used by
1987                  * moving them.
1988                  */
1989
1990                 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
1991                 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
1992                 pwr_now /= SCHED_LOAD_SCALE;
1993
1994                 /* Amount of load we'd subtract */
1995                 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
1996                 if (max_load > tmp)
1997                         pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
1998                                                         max_load - tmp);
1999
2000                 /* Amount of load we'd add */
2001                 if (max_load*busiest->cpu_power <
2002                                 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2003                         tmp = max_load*busiest->cpu_power/this->cpu_power;
2004                 else
2005                         tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2006                 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2007                 pwr_move /= SCHED_LOAD_SCALE;
2008
2009                 /* Move if we gain throughput */
2010                 if (pwr_move <= pwr_now)
2011                         goto out_balanced;
2012
2013                 *imbalance = 1;
2014                 return busiest;
2015         }
2016
2017         /* Get rid of the scaling factor, rounding down as we divide */
2018         *imbalance = *imbalance / SCHED_LOAD_SCALE;
2019         return busiest;
2020
2021 out_balanced:
2022
2023         *imbalance = 0;
2024         return NULL;
2025 }
2026
2027 /*
2028  * find_busiest_queue - find the busiest runqueue among the cpus in group.
2029  */
2030 static runqueue_t *find_busiest_queue(struct sched_group *group)
2031 {
2032         unsigned long load, max_load = 0;
2033         runqueue_t *busiest = NULL;
2034         int i;
2035
2036         for_each_cpu_mask(i, group->cpumask) {
2037                 load = source_load(i, 0);
2038
2039                 if (load > max_load) {
2040                         max_load = load;
2041                         busiest = cpu_rq(i);
2042                 }
2043         }
2044
2045         return busiest;
2046 }
2047
2048 /*
2049  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2050  * so long as it is large enough.
2051  */
2052 #define MAX_PINNED_INTERVAL     512
2053
2054 /*
2055  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2056  * tasks if there is an imbalance.
2057  *
2058  * Called with this_rq unlocked.
2059  */
2060 static int load_balance(int this_cpu, runqueue_t *this_rq,
2061                         struct sched_domain *sd, enum idle_type idle)
2062 {
2063         struct sched_group *group;
2064         runqueue_t *busiest;
2065         unsigned long imbalance;
2066         int nr_moved, all_pinned = 0;
2067         int active_balance = 0;
2068
2069         spin_lock(&this_rq->lock);
2070         schedstat_inc(sd, lb_cnt[idle]);
2071
2072         group = find_busiest_group(sd, this_cpu, &imbalance, idle);
2073         if (!group) {
2074                 schedstat_inc(sd, lb_nobusyg[idle]);
2075                 goto out_balanced;
2076         }
2077
2078         busiest = find_busiest_queue(group);
2079         if (!busiest) {
2080                 schedstat_inc(sd, lb_nobusyq[idle]);
2081                 goto out_balanced;
2082         }
2083
2084         BUG_ON(busiest == this_rq);
2085
2086         schedstat_add(sd, lb_imbalance[idle], imbalance);
2087
2088         nr_moved = 0;
2089         if (busiest->nr_running > 1) {
2090                 /*
2091                  * Attempt to move tasks. If find_busiest_group has found
2092                  * an imbalance but busiest->nr_running <= 1, the group is
2093                  * still unbalanced. nr_moved simply stays zero, so it is
2094                  * correctly treated as an imbalance.
2095                  */
2096                 double_lock_balance(this_rq, busiest);
2097                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2098                                                 imbalance, sd, idle,
2099                                                 &all_pinned);
2100                 spin_unlock(&busiest->lock);
2101
2102                 /* All tasks on this runqueue were pinned by CPU affinity */
2103                 if (unlikely(all_pinned))
2104                         goto out_balanced;
2105         }
2106
2107         spin_unlock(&this_rq->lock);
2108
2109         if (!nr_moved) {
2110                 schedstat_inc(sd, lb_failed[idle]);
2111                 sd->nr_balance_failed++;
2112
2113                 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2114
2115                         spin_lock(&busiest->lock);
2116                         if (!busiest->active_balance) {
2117                                 busiest->active_balance = 1;
2118                                 busiest->push_cpu = this_cpu;
2119                                 active_balance = 1;
2120                         }
2121                         spin_unlock(&busiest->lock);
2122                         if (active_balance)
2123                                 wake_up_process(busiest->migration_thread);
2124
2125                         /*
2126                          * We've kicked active balancing, reset the failure
2127                          * counter.
2128                          */
2129                         sd->nr_balance_failed = sd->cache_nice_tries+1;
2130                 }
2131         } else
2132                 sd->nr_balance_failed = 0;
2133
2134         if (likely(!active_balance)) {
2135                 /* We were unbalanced, so reset the balancing interval */
2136                 sd->balance_interval = sd->min_interval;
2137         } else {
2138                 /*
2139                  * If we've begun active balancing, start to back off. This
2140                  * case may not be covered by the all_pinned logic if there
2141                  * is only 1 task on the busy runqueue (because we don't call
2142                  * move_tasks).
2143                  */
2144                 if (sd->balance_interval < sd->max_interval)
2145                         sd->balance_interval *= 2;
2146         }
2147
2148         return nr_moved;
2149
2150 out_balanced:
2151         spin_unlock(&this_rq->lock);
2152
2153         schedstat_inc(sd, lb_balanced[idle]);
2154
2155         sd->nr_balance_failed = 0;
2156         /* tune up the balancing interval */
2157         if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2158                         (sd->balance_interval < sd->max_interval))
2159                 sd->balance_interval *= 2;
2160
2161         return 0;
2162 }
2163
2164 /*
2165  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2166  * tasks if there is an imbalance.
2167  *
2168  * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2169  * this_rq is locked.
2170  */
2171 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2172                                 struct sched_domain *sd)
2173 {
2174         struct sched_group *group;
2175         runqueue_t *busiest = NULL;
2176         unsigned long imbalance;
2177         int nr_moved = 0;
2178
2179         schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2180         group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2181         if (!group) {
2182                 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2183                 goto out_balanced;
2184         }
2185
2186         busiest = find_busiest_queue(group);
2187         if (!busiest) {
2188                 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2189                 goto out_balanced;
2190         }
2191
2192         BUG_ON(busiest == this_rq);
2193
2194         /* Attempt to move tasks */
2195         double_lock_balance(this_rq, busiest);
2196
2197         schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2198         nr_moved = move_tasks(this_rq, this_cpu, busiest,
2199                                         imbalance, sd, NEWLY_IDLE, NULL);
2200         if (!nr_moved)
2201                 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2202         else
2203                 sd->nr_balance_failed = 0;
2204
2205         spin_unlock(&busiest->lock);
2206         return nr_moved;
2207
2208 out_balanced:
2209         schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2210         sd->nr_balance_failed = 0;
2211         return 0;
2212 }
2213
2214 /*
2215  * idle_balance is called by schedule() if this_cpu is about to become
2216  * idle. Attempts to pull tasks from other CPUs.
2217  */
2218 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2219 {
2220         struct sched_domain *sd;
2221
2222         for_each_domain(this_cpu, sd) {
2223                 if (sd->flags & SD_BALANCE_NEWIDLE) {
2224                         if (load_balance_newidle(this_cpu, this_rq, sd)) {
2225                                 /* We've pulled tasks over so stop searching */
2226                                 break;
2227                         }
2228                 }
2229         }
2230 }
2231
2232 /*
2233  * active_load_balance is run by migration threads. It pushes running tasks
2234  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2235  * running on each physical CPU where possible, and avoids physical /
2236  * logical imbalances.
2237  *
2238  * Called with busiest_rq locked.
2239  */
2240 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2241 {
2242         struct sched_domain *sd;
2243         runqueue_t *target_rq;
2244         int target_cpu = busiest_rq->push_cpu;
2245
2246         if (busiest_rq->nr_running <= 1)
2247                 /* no task to move */
2248                 return;
2249
2250         target_rq = cpu_rq(target_cpu);
2251
2252         /*
2253          * This condition is "impossible", if it occurs
2254          * we need to fix it.  Originally reported by
2255          * Bjorn Helgaas on a 128-cpu setup.
2256          */
2257         BUG_ON(busiest_rq == target_rq);
2258
2259         /* move a task from busiest_rq to target_rq */
2260         double_lock_balance(busiest_rq, target_rq);
2261
2262         /* Search for an sd spanning us and the target CPU. */
2263         for_each_domain(target_cpu, sd)
2264                 if ((sd->flags & SD_LOAD_BALANCE) &&
2265                         cpu_isset(busiest_cpu, sd->span))
2266                                 break;
2267
2268         if (unlikely(sd == NULL))
2269                 goto out;
2270
2271         schedstat_inc(sd, alb_cnt);
2272
2273         if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2274                 schedstat_inc(sd, alb_pushed);
2275         else
2276                 schedstat_inc(sd, alb_failed);
2277 out:
2278         spin_unlock(&target_rq->lock);
2279 }
2280
2281 /*
2282  * rebalance_tick will get called every timer tick, on every CPU.
2283  *
2284  * It checks each scheduling domain to see if it is due to be balanced,
2285  * and initiates a balancing operation if so.
2286  *
2287  * Balancing parameters are set up in arch_init_sched_domains.
2288  */
2289
2290 /* Don't have all balancing operations going off at once */
2291 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2292
2293 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2294                            enum idle_type idle)
2295 {
2296         unsigned long old_load, this_load;
2297         unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2298         struct sched_domain *sd;
2299         int i;
2300
2301         this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2302         /* Update our load */
2303         for (i = 0; i < 3; i++) {
2304                 unsigned long new_load = this_load;
2305                 int scale = 1 << i;
2306                 old_load = this_rq->cpu_load[i];
2307                 /*
2308                  * Round up the averaging division if load is increasing. This
2309                  * prevents us from getting stuck on 9 if the load is 10, for
2310                  * example.
2311                  */
2312                 if (new_load > old_load)
2313                         new_load += scale-1;
2314                 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2315         }
2316
2317         for_each_domain(this_cpu, sd) {
2318                 unsigned long interval;
2319
2320                 if (!(sd->flags & SD_LOAD_BALANCE))
2321                         continue;
2322
2323                 interval = sd->balance_interval;
2324                 if (idle != SCHED_IDLE)
2325                         interval *= sd->busy_factor;
2326
2327                 /* scale ms to jiffies */
2328                 interval = msecs_to_jiffies(interval);
2329                 if (unlikely(!interval))
2330                         interval = 1;
2331
2332                 if (j - sd->last_balance >= interval) {
2333                         if (load_balance(this_cpu, this_rq, sd, idle)) {
2334                                 /* We've pulled tasks over so no longer idle */
2335                                 idle = NOT_IDLE;
2336                         }
2337                         sd->last_balance += interval;
2338                 }
2339         }
2340 }
2341 #else
2342 /*
2343  * on UP we do not need to balance between CPUs:
2344  */
2345 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2346 {
2347 }
2348 static inline void idle_balance(int cpu, runqueue_t *rq)
2349 {
2350 }
2351 #endif
2352
2353 static inline int wake_priority_sleeper(runqueue_t *rq)
2354 {
2355         int ret = 0;
2356 #ifdef CONFIG_SCHED_SMT
2357         spin_lock(&rq->lock);
2358         /*
2359          * If an SMT sibling task has been put to sleep for priority
2360          * reasons reschedule the idle task to see if it can now run.
2361          */
2362         if (rq->nr_running) {
2363                 resched_task(rq->idle);
2364                 ret = 1;
2365         }
2366         spin_unlock(&rq->lock);
2367 #endif
2368         return ret;
2369 }
2370
2371 DEFINE_PER_CPU(struct kernel_stat, kstat);
2372
2373 EXPORT_PER_CPU_SYMBOL(kstat);
2374
2375 /*
2376  * This is called on clock ticks and on context switches.
2377  * Bank in p->sched_time the ns elapsed since the last tick or switch.
2378  */
2379 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2380                                     unsigned long long now)
2381 {
2382         unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2383         p->sched_time += now - last;
2384 }
2385
2386 /*
2387  * Return current->sched_time plus any more ns on the sched_clock
2388  * that have not yet been banked.
2389  */
2390 unsigned long long current_sched_time(const task_t *tsk)
2391 {
2392         unsigned long long ns;
2393         unsigned long flags;
2394         local_irq_save(flags);
2395         ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2396         ns = tsk->sched_time + (sched_clock() - ns);
2397         local_irq_restore(flags);
2398         return ns;
2399 }
2400
2401 /*
2402  * We place interactive tasks back into the active array, if possible.
2403  *
2404  * To guarantee that this does not starve expired tasks we ignore the
2405  * interactivity of a task if the first expired task had to wait more
2406  * than a 'reasonable' amount of time. This deadline timeout is
2407  * load-dependent, as the frequency of array switched decreases with
2408  * increasing number of running tasks. We also ignore the interactivity
2409  * if a better static_prio task has expired:
2410  */
2411 #define EXPIRED_STARVING(rq) \
2412         ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2413                 (jiffies - (rq)->expired_timestamp >= \
2414                         STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2415                         ((rq)->curr->static_prio > (rq)->best_expired_prio))
2416
2417 /*
2418  * Account user cpu time to a process.
2419  * @p: the process that the cpu time gets accounted to
2420  * @hardirq_offset: the offset to subtract from hardirq_count()
2421  * @cputime: the cpu time spent in user space since the last update
2422  */
2423 void account_user_time(struct task_struct *p, cputime_t cputime)
2424 {
2425         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2426         cputime64_t tmp;
2427
2428         p->utime = cputime_add(p->utime, cputime);
2429
2430         /* Add user time to cpustat. */
2431         tmp = cputime_to_cputime64(cputime);
2432         if (TASK_NICE(p) > 0)
2433                 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2434         else
2435                 cpustat->user = cputime64_add(cpustat->user, tmp);
2436 }
2437
2438 /*
2439  * Account system cpu time to a process.
2440  * @p: the process that the cpu time gets accounted to
2441  * @hardirq_offset: the offset to subtract from hardirq_count()
2442  * @cputime: the cpu time spent in kernel space since the last update
2443  */
2444 void account_system_time(struct task_struct *p, int hardirq_offset,
2445                          cputime_t cputime)
2446 {
2447         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2448         runqueue_t *rq = this_rq();
2449         cputime64_t tmp;
2450
2451         p->stime = cputime_add(p->stime, cputime);
2452
2453         /* Add system time to cpustat. */
2454         tmp = cputime_to_cputime64(cputime);
2455         if (hardirq_count() - hardirq_offset)
2456                 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2457         else if (softirq_count())
2458                 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2459         else if (p != rq->idle)
2460                 cpustat->system = cputime64_add(cpustat->system, tmp);
2461         else if (atomic_read(&rq->nr_iowait) > 0)
2462                 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2463         else
2464                 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2465         /* Account for system time used */
2466         acct_update_integrals(p);
2467         /* Update rss highwater mark */
2468         update_mem_hiwater(p);
2469 }
2470
2471 /*
2472  * Account for involuntary wait time.
2473  * @p: the process from which the cpu time has been stolen
2474  * @steal: the cpu time spent in involuntary wait
2475  */
2476 void account_steal_time(struct task_struct *p, cputime_t steal)
2477 {
2478         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2479         cputime64_t tmp = cputime_to_cputime64(steal);
2480         runqueue_t *rq = this_rq();
2481
2482         if (p == rq->idle) {
2483                 p->stime = cputime_add(p->stime, steal);
2484                 if (atomic_read(&rq->nr_iowait) > 0)
2485                         cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2486                 else
2487                         cpustat->idle = cputime64_add(cpustat->idle, tmp);
2488         } else
2489                 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2490 }
2491
2492 /*
2493  * This function gets called by the timer code, with HZ frequency.
2494  * We call it with interrupts disabled.
2495  *
2496  * It also gets called by the fork code, when changing the parent's
2497  * timeslices.
2498  */
2499 void scheduler_tick(void)
2500 {
2501         int cpu = smp_processor_id();
2502         runqueue_t *rq = this_rq();
2503         task_t *p = current;
2504         unsigned long long now = sched_clock();
2505
2506         update_cpu_clock(p, rq, now);
2507
2508         rq->timestamp_last_tick = now;
2509
2510         if (p == rq->idle) {
2511                 if (wake_priority_sleeper(rq))
2512                         goto out;
2513                 rebalance_tick(cpu, rq, SCHED_IDLE);
2514                 return;
2515         }
2516
2517         /* Task might have expired already, but not scheduled off yet */
2518         if (p->array != rq->active) {
2519                 set_tsk_need_resched(p);
2520                 goto out;
2521         }
2522         spin_lock(&rq->lock);
2523         /*
2524          * The task was running during this tick - update the
2525          * time slice counter. Note: we do not update a thread's
2526          * priority until it either goes to sleep or uses up its
2527          * timeslice. This makes it possible for interactive tasks
2528          * to use up their timeslices at their highest priority levels.
2529          */
2530         if (rt_task(p)) {
2531                 /*
2532                  * RR tasks need a special form of timeslice management.
2533                  * FIFO tasks have no timeslices.
2534                  */
2535                 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2536                         p->time_slice = task_timeslice(p);
2537                         p->first_time_slice = 0;
2538                         set_tsk_need_resched(p);
2539
2540                         /* put it at the end of the queue: */
2541                         requeue_task(p, rq->active);
2542                 }
2543                 goto out_unlock;
2544         }
2545         if (!--p->time_slice) {
2546                 dequeue_task(p, rq->active);
2547                 set_tsk_need_resched(p);
2548                 p->prio = effective_prio(p);
2549                 p->time_slice = task_timeslice(p);
2550                 p->first_time_slice = 0;
2551
2552                 if (!rq->expired_timestamp)
2553                         rq->expired_timestamp = jiffies;
2554                 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2555                         enqueue_task(p, rq->expired);
2556                         if (p->static_prio < rq->best_expired_prio)
2557                                 rq->best_expired_prio = p->static_prio;
2558                 } else
2559                         enqueue_task(p, rq->active);
2560         } else {
2561                 /*
2562                  * Prevent a too long timeslice allowing a task to monopolize
2563                  * the CPU. We do this by splitting up the timeslice into
2564                  * smaller pieces.
2565                  *
2566                  * Note: this does not mean the task's timeslices expire or
2567                  * get lost in any way, they just might be preempted by
2568                  * another task of equal priority. (one with higher
2569                  * priority would have preempted this task already.) We
2570                  * requeue this task to the end of the list on this priority
2571                  * level, which is in essence a round-robin of tasks with
2572                  * equal priority.
2573                  *
2574                  * This only applies to tasks in the interactive
2575                  * delta range with at least TIMESLICE_GRANULARITY to requeue.
2576                  */
2577                 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2578                         p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2579                         (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2580                         (p->array == rq->active)) {
2581
2582                         requeue_task(p, rq->active);
2583                         set_tsk_need_resched(p);
2584                 }
2585         }
2586 out_unlock:
2587         spin_unlock(&rq->lock);
2588 out:
2589         rebalance_tick(cpu, rq, NOT_IDLE);
2590 }
2591
2592 #ifdef CONFIG_SCHED_SMT
2593 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2594 {
2595         /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2596         if (rq->curr == rq->idle && rq->nr_running)
2597                 resched_task(rq->idle);
2598 }
2599
2600 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2601 {
2602         struct sched_domain *tmp, *sd = NULL;
2603         cpumask_t sibling_map;
2604         int i;
2605
2606         for_each_domain(this_cpu, tmp)
2607                 if (tmp->flags & SD_SHARE_CPUPOWER)
2608                         sd = tmp;
2609
2610         if (!sd)
2611                 return;
2612
2613         /*
2614          * Unlock the current runqueue because we have to lock in
2615          * CPU order to avoid deadlocks. Caller knows that we might
2616          * unlock. We keep IRQs disabled.
2617          */
2618         spin_unlock(&this_rq->lock);
2619
2620         sibling_map = sd->span;
2621
2622         for_each_cpu_mask(i, sibling_map)
2623                 spin_lock(&cpu_rq(i)->lock);
2624         /*
2625          * We clear this CPU from the mask. This both simplifies the
2626          * inner loop and keps this_rq locked when we exit:
2627          */
2628         cpu_clear(this_cpu, sibling_map);
2629
2630         for_each_cpu_mask(i, sibling_map) {
2631                 runqueue_t *smt_rq = cpu_rq(i);
2632
2633                 wakeup_busy_runqueue(smt_rq);
2634         }
2635
2636         for_each_cpu_mask(i, sibling_map)
2637                 spin_unlock(&cpu_rq(i)->lock);
2638         /*
2639          * We exit with this_cpu's rq still held and IRQs
2640          * still disabled:
2641          */
2642 }
2643
2644 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2645 {
2646         struct sched_domain *tmp, *sd = NULL;
2647         cpumask_t sibling_map;
2648         prio_array_t *array;
2649         int ret = 0, i;
2650         task_t *p;
2651
2652         for_each_domain(this_cpu, tmp)
2653                 if (tmp->flags & SD_SHARE_CPUPOWER)
2654                         sd = tmp;
2655
2656         if (!sd)
2657                 return 0;
2658
2659         /*
2660          * The same locking rules and details apply as for
2661          * wake_sleeping_dependent():
2662          */
2663         spin_unlock(&this_rq->lock);
2664         sibling_map = sd->span;
2665         for_each_cpu_mask(i, sibling_map)
2666                 spin_lock(&cpu_rq(i)->lock);
2667         cpu_clear(this_cpu, sibling_map);
2668
2669         /*
2670          * Establish next task to be run - it might have gone away because
2671          * we released the runqueue lock above:
2672          */
2673         if (!this_rq->nr_running)
2674                 goto out_unlock;
2675         array = this_rq->active;
2676         if (!array->nr_active)
2677                 array = this_rq->expired;
2678         BUG_ON(!array->nr_active);
2679
2680         p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2681                 task_t, run_list);
2682
2683         for_each_cpu_mask(i, sibling_map) {
2684                 runqueue_t *smt_rq = cpu_rq(i);
2685                 task_t *smt_curr = smt_rq->curr;
2686
2687                 /* Kernel threads do not participate in dependent sleeping */
2688                 if (!p->mm || !smt_curr->mm || rt_task(p))
2689                         goto check_smt_task;
2690
2691                 /*
2692                  * If a user task with lower static priority than the
2693                  * running task on the SMT sibling is trying to schedule,
2694                  * delay it till there is proportionately less timeslice
2695                  * left of the sibling task to prevent a lower priority
2696                  * task from using an unfair proportion of the
2697                  * physical cpu's resources. -ck
2698                  */
2699                 if (rt_task(smt_curr)) {
2700                         /*
2701                          * With real time tasks we run non-rt tasks only
2702                          * per_cpu_gain% of the time.
2703                          */
2704                         if ((jiffies % DEF_TIMESLICE) >
2705                                 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2706                                         ret = 1;
2707                 } else
2708                         if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) /
2709                                 100) > task_timeslice(p)))
2710                                         ret = 1;
2711
2712 check_smt_task:
2713                 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2714                         rt_task(smt_curr))
2715                                 continue;
2716                 if (!p->mm) {
2717                         wakeup_busy_runqueue(smt_rq);
2718                         continue;
2719                 }
2720
2721                 /*
2722                  * Reschedule a lower priority task on the SMT sibling for
2723                  * it to be put to sleep, or wake it up if it has been put to
2724                  * sleep for priority reasons to see if it should run now.
2725                  */
2726                 if (rt_task(p)) {
2727                         if ((jiffies % DEF_TIMESLICE) >
2728                                 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2729                                         resched_task(smt_curr);
2730                 } else {
2731                         if ((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
2732                                 task_timeslice(smt_curr))
2733                                         resched_task(smt_curr);
2734                         else
2735                                 wakeup_busy_runqueue(smt_rq);
2736                 }
2737         }
2738 out_unlock:
2739         for_each_cpu_mask(i, sibling_map)
2740                 spin_unlock(&cpu_rq(i)->lock);
2741         return ret;
2742 }
2743 #else
2744 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2745 {
2746 }
2747
2748 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2749 {
2750         return 0;
2751 }
2752 #endif
2753
2754 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2755
2756 void fastcall add_preempt_count(int val)
2757 {
2758         /*
2759          * Underflow?
2760          */
2761         BUG_ON((preempt_count() < 0));
2762         preempt_count() += val;
2763         /*
2764          * Spinlock count overflowing soon?
2765          */
2766         BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2767 }
2768 EXPORT_SYMBOL(add_preempt_count);
2769
2770 void fastcall sub_preempt_count(int val)
2771 {
2772         /*
2773          * Underflow?
2774          */
2775         BUG_ON(val > preempt_count());
2776         /*
2777          * Is the spinlock portion underflowing?
2778          */
2779         BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2780         preempt_count() -= val;
2781 }
2782 EXPORT_SYMBOL(sub_preempt_count);
2783
2784 #endif
2785
2786 /*
2787  * schedule() is the main scheduler function.
2788  */
2789 asmlinkage void __sched schedule(void)
2790 {
2791         long *switch_count;
2792         task_t *prev, *next;
2793         runqueue_t *rq;
2794         prio_array_t *array;
2795         struct list_head *queue;
2796         unsigned long long now;
2797         unsigned long run_time;
2798         int cpu, idx, new_prio;
2799
2800         /*
2801          * Test if we are atomic.  Since do_exit() needs to call into
2802          * schedule() atomically, we ignore that path for now.
2803          * Otherwise, whine if we are scheduling when we should not be.
2804          */
2805         if (likely(!current->exit_state)) {
2806                 if (unlikely(in_atomic())) {
2807                         printk(KERN_ERR "scheduling while atomic: "
2808                                 "%s/0x%08x/%d\n",
2809                                 current->comm, preempt_count(), current->pid);
2810                         dump_stack();
2811                 }
2812         }
2813         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2814
2815 need_resched:
2816         preempt_disable();
2817         prev = current;
2818         release_kernel_lock(prev);
2819 need_resched_nonpreemptible:
2820         rq = this_rq();
2821
2822         /*
2823          * The idle thread is not allowed to schedule!
2824          * Remove this check after it has been exercised a bit.
2825          */
2826         if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2827                 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2828                 dump_stack();
2829         }
2830
2831         schedstat_inc(rq, sched_cnt);
2832         now = sched_clock();
2833         if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2834                 run_time = now - prev->timestamp;
2835                 if (unlikely((long long)(now - prev->timestamp) < 0))
2836                         run_time = 0;
2837         } else
2838                 run_time = NS_MAX_SLEEP_AVG;
2839
2840         /*
2841          * Tasks charged proportionately less run_time at high sleep_avg to
2842          * delay them losing their interactive status
2843          */
2844         run_time /= (CURRENT_BONUS(prev) ? : 1);
2845
2846         spin_lock_irq(&rq->lock);
2847
2848         if (unlikely(prev->flags & PF_DEAD))
2849                 prev->state = EXIT_DEAD;
2850
2851         switch_count = &prev->nivcsw;
2852         if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2853                 switch_count = &prev->nvcsw;
2854                 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2855                                 unlikely(signal_pending(prev))))
2856                         prev->state = TASK_RUNNING;
2857                 else {
2858                         if (prev->state == TASK_UNINTERRUPTIBLE)
2859                                 rq->nr_uninterruptible++;
2860                         deactivate_task(prev, rq);
2861                 }
2862         }
2863
2864         cpu = smp_processor_id();
2865         if (unlikely(!rq->nr_running)) {
2866 go_idle:
2867                 idle_balance(cpu, rq);
2868                 if (!rq->nr_running) {
2869                         next = rq->idle;
2870                         rq->expired_timestamp = 0;
2871                         wake_sleeping_dependent(cpu, rq);
2872                         /*
2873                          * wake_sleeping_dependent() might have released
2874                          * the runqueue, so break out if we got new
2875                          * tasks meanwhile:
2876                          */
2877                         if (!rq->nr_running)
2878                                 goto switch_tasks;
2879                 }
2880         } else {
2881                 if (dependent_sleeper(cpu, rq)) {
2882                         next = rq->idle;
2883                         goto switch_tasks;
2884                 }
2885                 /*
2886                  * dependent_sleeper() releases and reacquires the runqueue
2887                  * lock, hence go into the idle loop if the rq went
2888                  * empty meanwhile:
2889                  */
2890                 if (unlikely(!rq->nr_running))
2891                         goto go_idle;
2892         }
2893
2894         array = rq->active;
2895         if (unlikely(!array->nr_active)) {
2896                 /*
2897                  * Switch the active and expired arrays.
2898                  */
2899                 schedstat_inc(rq, sched_switch);
2900                 rq->active = rq->expired;
2901                 rq->expired = array;
2902                 array = rq->active;
2903                 rq->expired_timestamp = 0;
2904                 rq->best_expired_prio = MAX_PRIO;
2905         }
2906
2907         idx = sched_find_first_bit(array->bitmap);
2908         queue = array->queue + idx;
2909         next = list_entry(queue->next, task_t, run_list);
2910
2911         if (!rt_task(next) && next->activated > 0) {
2912                 unsigned long long delta = now - next->timestamp;
2913                 if (unlikely((long long)(now - next->timestamp) < 0))
2914                         delta = 0;
2915
2916                 if (next->activated == 1)
2917                         delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2918
2919                 array = next->array;
2920                 new_prio = recalc_task_prio(next, next->timestamp + delta);
2921
2922                 if (unlikely(next->prio != new_prio)) {
2923                         dequeue_task(next, array);
2924                         next->prio = new_prio;
2925                         enqueue_task(next, array);
2926                 } else
2927                         requeue_task(next, array);
2928         }
2929         next->activated = 0;
2930 switch_tasks:
2931         if (next == rq->idle)
2932                 schedstat_inc(rq, sched_goidle);
2933         prefetch(next);
2934         prefetch_stack(next);
2935         clear_tsk_need_resched(prev);
2936         rcu_qsctr_inc(task_cpu(prev));
2937
2938         update_cpu_clock(prev, rq, now);
2939
2940         prev->sleep_avg -= run_time;
2941         if ((long)prev->sleep_avg <= 0)
2942                 prev->sleep_avg = 0;
2943         prev->timestamp = prev->last_ran = now;
2944
2945         sched_info_switch(prev, next);
2946         if (likely(prev != next)) {
2947                 next->timestamp = now;
2948                 rq->nr_switches++;
2949                 rq->curr = next;
2950                 ++*switch_count;
2951
2952                 prepare_task_switch(rq, next);
2953                 prev = context_switch(rq, prev, next);
2954                 barrier();
2955                 /*
2956                  * this_rq must be evaluated again because prev may have moved
2957                  * CPUs since it called schedule(), thus the 'rq' on its stack
2958                  * frame will be invalid.
2959                  */
2960                 finish_task_switch(this_rq(), prev);
2961         } else
2962                 spin_unlock_irq(&rq->lock);
2963
2964         prev = current;
2965         if (unlikely(reacquire_kernel_lock(prev) < 0))
2966                 goto need_resched_nonpreemptible;
2967         preempt_enable_no_resched();
2968         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2969                 goto need_resched;
2970 }
2971
2972 EXPORT_SYMBOL(schedule);
2973
2974 #ifdef CONFIG_PREEMPT
2975 /*
2976  * this is is the entry point to schedule() from in-kernel preemption
2977  * off of preempt_enable.  Kernel preemptions off return from interrupt
2978  * occur there and call schedule directly.
2979  */
2980 asmlinkage void __sched preempt_schedule(void)
2981 {
2982         struct thread_info *ti = current_thread_info();
2983 #ifdef CONFIG_PREEMPT_BKL
2984         struct task_struct *task = current;
2985         int saved_lock_depth;
2986 #endif
2987         /*
2988          * If there is a non-zero preempt_count or interrupts are disabled,
2989          * we do not want to preempt the current task.  Just return..
2990          */
2991         if (unlikely(ti->preempt_count || irqs_disabled()))
2992                 return;
2993
2994 need_resched:
2995         add_preempt_count(PREEMPT_ACTIVE);
2996         /*
2997          * We keep the big kernel semaphore locked, but we
2998          * clear ->lock_depth so that schedule() doesnt
2999          * auto-release the semaphore:
3000          */
3001 #ifdef CONFIG_PREEMPT_BKL
3002         saved_lock_depth = task->lock_depth;
3003         task->lock_depth = -1;
3004 #endif
3005         schedule();
3006 #ifdef CONFIG_PREEMPT_BKL
3007         task->lock_depth = saved_lock_depth;
3008 #endif
3009         sub_preempt_count(PREEMPT_ACTIVE);
3010
3011         /* we could miss a preemption opportunity between schedule and now */
3012         barrier();
3013         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3014                 goto need_resched;
3015 }
3016
3017 EXPORT_SYMBOL(preempt_schedule);
3018
3019 /*
3020  * this is is the entry point to schedule() from kernel preemption
3021  * off of irq context.
3022  * Note, that this is called and return with irqs disabled. This will
3023  * protect us against recursive calling from irq.
3024  */
3025 asmlinkage void __sched preempt_schedule_irq(void)
3026 {
3027         struct thread_info *ti = current_thread_info();
3028 #ifdef CONFIG_PREEMPT_BKL
3029         struct task_struct *task = current;
3030         int saved_lock_depth;
3031 #endif
3032         /* Catch callers which need to be fixed*/
3033         BUG_ON(ti->preempt_count || !irqs_disabled());
3034
3035 need_resched:
3036         add_preempt_count(PREEMPT_ACTIVE);
3037         /*
3038          * We keep the big kernel semaphore locked, but we
3039          * clear ->lock_depth so that schedule() doesnt
3040          * auto-release the semaphore:
3041          */
3042 #ifdef CONFIG_PREEMPT_BKL
3043         saved_lock_depth = task->lock_depth;
3044         task->lock_depth = -1;
3045 #endif
3046         local_irq_enable();
3047         schedule();
3048         local_irq_disable();
3049 #ifdef CONFIG_PREEMPT_BKL
3050         task->lock_depth = saved_lock_depth;
3051 #endif
3052         sub_preempt_count(PREEMPT_ACTIVE);
3053
3054         /* we could miss a preemption opportunity between schedule and now */
3055         barrier();
3056         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3057                 goto need_resched;
3058 }
3059
3060 #endif /* CONFIG_PREEMPT */
3061
3062 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3063                           void *key)
3064 {
3065         task_t *p = curr->private;
3066         return try_to_wake_up(p, mode, sync);
3067 }
3068
3069 EXPORT_SYMBOL(default_wake_function);
3070
3071 /*
3072  * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
3073  * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
3074  * number) then we wake all the non-exclusive tasks and one exclusive task.
3075  *
3076  * There are circumstances in which we can try to wake a task which has already
3077  * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
3078  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3079  */
3080 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3081                              int nr_exclusive, int sync, void *key)
3082 {
3083         struct list_head *tmp, *next;
3084
3085         list_for_each_safe(tmp, next, &q->task_list) {
3086                 wait_queue_t *curr;
3087                 unsigned flags;
3088                 curr = list_entry(tmp, wait_queue_t, task_list);
3089                 flags = curr->flags;
3090                 if (curr->func(curr, mode, sync, key) &&
3091                     (flags & WQ_FLAG_EXCLUSIVE) &&
3092                     !--nr_exclusive)
3093                         break;
3094         }
3095 }
3096
3097 /**
3098  * __wake_up - wake up threads blocked on a waitqueue.
3099  * @q: the waitqueue
3100  * @mode: which threads
3101  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3102  * @key: is directly passed to the wakeup function
3103  */
3104 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3105                         int nr_exclusive, void *key)
3106 {
3107         unsigned long flags;
3108
3109         spin_lock_irqsave(&q->lock, flags);
3110         __wake_up_common(q, mode, nr_exclusive, 0, key);
3111         spin_unlock_irqrestore(&q->lock, flags);
3112 }
3113
3114 EXPORT_SYMBOL(__wake_up);
3115
3116 /*
3117  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3118  */
3119 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3120 {
3121         __wake_up_common(q, mode, 1, 0, NULL);
3122 }
3123
3124 /**
3125  * __wake_up_sync - wake up threads blocked on a waitqueue.
3126  * @q: the waitqueue
3127  * @mode: which threads
3128  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3129  *
3130  * The sync wakeup differs that the waker knows that it will schedule
3131  * away soon, so while the target thread will be woken up, it will not
3132  * be migrated to another CPU - ie. the two threads are 'synchronized'
3133  * with each other. This can prevent needless bouncing between CPUs.
3134  *
3135  * On UP it can prevent extra preemption.
3136  */
3137 void fastcall
3138 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3139 {
3140         unsigned long flags;
3141         int sync = 1;
3142
3143         if (unlikely(!q))
3144                 return;
3145
3146         if (unlikely(!nr_exclusive))
3147                 sync = 0;
3148
3149         spin_lock_irqsave(&q->lock, flags);
3150         __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3151         spin_unlock_irqrestore(&q->lock, flags);
3152 }
3153 EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
3154
3155 void fastcall complete(struct completion *x)
3156 {
3157         unsigned long flags;
3158
3159         spin_lock_irqsave(&x->wait.lock, flags);
3160         x->done++;
3161         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3162                          1, 0, NULL);
3163         spin_unlock_irqrestore(&x->wait.lock, flags);
3164 }
3165 EXPORT_SYMBOL(complete);
3166
3167 void fastcall complete_all(struct completion *x)
3168 {
3169         unsigned long flags;
3170
3171         spin_lock_irqsave(&x->wait.lock, flags);
3172         x->done += UINT_MAX/2;
3173         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3174                          0, 0, NULL);
3175         spin_unlock_irqrestore(&x->wait.lock, flags);
3176 }
3177 EXPORT_SYMBOL(complete_all);
3178
3179 void fastcall __sched wait_for_completion(struct completion *x)
3180 {
3181         might_sleep();
3182         spin_lock_irq(&x->wait.lock);
3183         if (!x->done) {
3184                 DECLARE_WAITQUEUE(wait, current);
3185
3186                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3187                 __add_wait_queue_tail(&x->wait, &wait);
3188                 do {
3189                         __set_current_state(TASK_UNINTERRUPTIBLE);
3190                         spin_unlock_irq(&x->wait.lock);
3191                         schedule();
3192                         spin_lock_irq(&x->wait.lock);
3193                 } while (!x->done);
3194                 __remove_wait_queue(&x->wait, &wait);
3195         }
3196         x->done--;
3197         spin_unlock_irq(&x->wait.lock);
3198 }
3199 EXPORT_SYMBOL(wait_for_completion);
3200
3201 unsigned long fastcall __sched
3202 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3203 {
3204         might_sleep();
3205
3206         spin_lock_irq(&x->wait.lock);
3207         if (!x->done) {
3208                 DECLARE_WAITQUEUE(wait, current);
3209
3210                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3211                 __add_wait_queue_tail(&x->wait, &wait);
3212                 do {
3213                         __set_current_state(TASK_UNINTERRUPTIBLE);
3214                         spin_unlock_irq(&x->wait.lock);
3215                         timeout = schedule_timeout(timeout);
3216                         spin_lock_irq(&x->wait.lock);
3217                         if (!timeout) {
3218                                 __remove_wait_queue(&x->wait, &wait);
3219                                 goto out;
3220                         }
3221                 } while (!x->done);
3222                 __remove_wait_queue(&x->wait, &wait);
3223         }
3224         x->done--;
3225 out:
3226         spin_unlock_irq(&x->wait.lock);
3227         return timeout;
3228 }
3229 EXPORT_SYMBOL(wait_for_completion_timeout);
3230
3231 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3232 {
3233         int ret = 0;
3234
3235         might_sleep();
3236
3237         spin_lock_irq(&x->wait.lock);
3238         if (!x->done) {
3239                 DECLARE_WAITQUEUE(wait, current);
3240
3241                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3242                 __add_wait_queue_tail(&x->wait, &wait);
3243                 do {
3244                         if (signal_pending(current)) {
3245                                 ret = -ERESTARTSYS;
3246                                 __remove_wait_queue(&x->wait, &wait);
3247                                 goto out;
3248                         }
3249                         __set_current_state(TASK_INTERRUPTIBLE);
3250                         spin_unlock_irq(&x->wait.lock);
3251                         schedule();
3252                         spin_lock_irq(&x->wait.lock);
3253                 } while (!x->done);
3254                 __remove_wait_queue(&x->wait, &wait);
3255         }
3256         x->done--;
3257 out:
3258         spin_unlock_irq(&x->wait.lock);
3259
3260         return ret;
3261 }
3262 EXPORT_SYMBOL(wait_for_completion_interruptible);
3263
3264 unsigned long fastcall __sched
3265 wait_for_completion_interruptible_timeout(struct completion *x,
3266                                           unsigned long timeout)
3267 {
3268         might_sleep();
3269
3270         spin_lock_irq(&x->wait.lock);
3271         if (!x->done) {
3272                 DECLARE_WAITQUEUE(wait, current);
3273
3274                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3275                 __add_wait_queue_tail(&x->wait, &wait);
3276                 do {
3277                         if (signal_pending(current)) {
3278                                 timeout = -ERESTARTSYS;
3279                                 __remove_wait_queue(&x->wait, &wait);
3280                                 goto out;
3281                         }
3282                         __set_current_state(TASK_INTERRUPTIBLE);
3283                         spin_unlock_irq(&x->wait.lock);
3284                         timeout = schedule_timeout(timeout);
3285                         spin_lock_irq(&x->wait.lock);
3286                         if (!timeout) {
3287                                 __remove_wait_queue(&x->wait, &wait);
3288                                 goto out;
3289                         }
3290                 } while (!x->done);
3291                 __remove_wait_queue(&x->wait, &wait);
3292         }
3293         x->done--;
3294 out:
3295         spin_unlock_irq(&x->wait.lock);
3296         return timeout;
3297 }
3298 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3299
3300
3301 #define SLEEP_ON_VAR                                    \
3302         unsigned long flags;                            \
3303         wait_queue_t wait;                              \
3304         init_waitqueue_entry(&wait, current);
3305
3306 #define SLEEP_ON_HEAD                                   \
3307         spin_lock_irqsave(&q->lock,flags);              \
3308         __add_wait_queue(q, &wait);                     \
3309         spin_unlock(&q->lock);
3310
3311 #define SLEEP_ON_TAIL                                   \
3312         spin_lock_irq(&q->lock);                        \
3313         __remove_wait_queue(q, &wait);                  \
3314         spin_unlock_irqrestore(&q->lock, flags);
3315
3316 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3317 {
3318         SLEEP_ON_VAR
3319
3320         current->state = TASK_INTERRUPTIBLE;
3321
3322         SLEEP_ON_HEAD
3323         schedule();
3324         SLEEP_ON_TAIL
3325 }
3326
3327 EXPORT_SYMBOL(interruptible_sleep_on);
3328
3329 long fastcall __sched
3330 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3331 {
3332         SLEEP_ON_VAR
3333
3334         current->state = TASK_INTERRUPTIBLE;
3335
3336         SLEEP_ON_HEAD
3337         timeout = schedule_timeout(timeout);
3338         SLEEP_ON_TAIL
3339
3340         return timeout;
3341 }
3342
3343 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3344
3345 void fastcall __sched sleep_on(wait_queue_head_t *q)
3346 {
3347         SLEEP_ON_VAR
3348
3349         current->state = TASK_UNINTERRUPTIBLE;
3350
3351         SLEEP_ON_HEAD
3352         schedule();
3353         SLEEP_ON_TAIL
3354 }
3355
3356 EXPORT_SYMBOL(sleep_on);
3357
3358 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3359 {
3360         SLEEP_ON_VAR
3361
3362         current->state = TASK_UNINTERRUPTIBLE;
3363
3364         SLEEP_ON_HEAD
3365         timeout = schedule_timeout(timeout);
3366         SLEEP_ON_TAIL
3367
3368         return timeout;
3369 }
3370
3371 EXPORT_SYMBOL(sleep_on_timeout);
3372
3373 void set_user_nice(task_t *p, long nice)
3374 {
3375         unsigned long flags;
3376         prio_array_t *array;
3377         runqueue_t *rq;
3378         int old_prio, new_prio, delta;
3379
3380         if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3381                 return;
3382         /*
3383          * We have to be careful, if called from sys_setpriority(),
3384          * the task might be in the middle of scheduling on another CPU.
3385          */
3386         rq = task_rq_lock(p, &flags);
3387         /*
3388          * The RT priorities are set via sched_setscheduler(), but we still
3389          * allow the 'normal' nice value to be set - but as expected
3390          * it wont have any effect on scheduling until the task is
3391          * not SCHED_NORMAL:
3392          */
3393         if (rt_task(p)) {
3394                 p->static_prio = NICE_TO_PRIO(nice);
3395                 goto out_unlock;
3396         }
3397         array = p->array;
3398         if (array)
3399                 dequeue_task(p, array);
3400
3401         old_prio = p->prio;
3402         new_prio = NICE_TO_PRIO(nice);
3403         delta = new_prio - old_prio;
3404         p->static_prio = NICE_TO_PRIO(nice);
3405         p->prio += delta;
3406
3407         if (array) {
3408                 enqueue_task(p, array);
3409                 /*
3410                  * If the task increased its priority or is running and
3411                  * lowered its priority, then reschedule its CPU:
3412                  */
3413                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3414                         resched_task(rq->curr);
3415         }
3416 out_unlock:
3417         task_rq_unlock(rq, &flags);
3418 }
3419
3420 EXPORT_SYMBOL(set_user_nice);
3421
3422 /*
3423  * can_nice - check if a task can reduce its nice value
3424  * @p: task
3425  * @nice: nice value
3426  */
3427 int can_nice(const task_t *p, const int nice)
3428 {
3429         /* convert nice value [19,-20] to rlimit style value [1,40] */
3430         int nice_rlim = 20 - nice;
3431         return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3432                 capable(CAP_SYS_NICE));
3433 }
3434
3435 #ifdef __ARCH_WANT_SYS_NICE
3436
3437 /*
3438  * sys_nice - change the priority of the current process.
3439  * @increment: priority increment
3440  *
3441  * sys_setpriority is a more generic, but much slower function that
3442  * does similar things.
3443  */
3444 asmlinkage long sys_nice(int increment)
3445 {
3446         int retval;
3447         long nice;
3448
3449         /*
3450          * Setpriority might change our priority at the same moment.
3451          * We don't have to worry. Conceptually one call occurs first
3452          * and we have a single winner.
3453          */
3454         if (increment < -40)
3455                 increment = -40;
3456         if (increment > 40)
3457                 increment = 40;
3458
3459         nice = PRIO_TO_NICE(current->static_prio) + increment;
3460         if (nice < -20)
3461                 nice = -20;
3462         if (nice > 19)
3463                 nice = 19;
3464
3465         if (increment < 0 && !can_nice(current, nice))
3466                 return -EPERM;
3467
3468         retval = security_task_setnice(current, nice);
3469         if (retval)
3470                 return retval;
3471
3472         set_user_nice(current, nice);
3473         return 0;
3474 }
3475
3476 #endif
3477
3478 /**
3479  * task_prio - return the priority value of a given task.
3480  * @p: the task in question.
3481  *
3482  * This is the priority value as seen by users in /proc.
3483  * RT tasks are offset by -200. Normal tasks are centered
3484  * around 0, value goes from -16 to +15.
3485  */
3486 int task_prio(const task_t *p)
3487 {
3488         return p->prio - MAX_RT_PRIO;
3489 }
3490
3491 /**
3492  * task_nice - return the nice value of a given task.
3493  * @p: the task in question.
3494  */
3495 int task_nice(const task_t *p)
3496 {
3497         return TASK_NICE(p);
3498 }
3499 EXPORT_SYMBOL_GPL(task_nice);
3500
3501 /**
3502  * idle_cpu - is a given cpu idle currently?
3503  * @cpu: the processor in question.
3504  */
3505 int idle_cpu(int cpu)
3506 {
3507         return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3508 }
3509
3510 EXPORT_SYMBOL_GPL(idle_cpu);
3511
3512 /**
3513  * idle_task - return the idle task for a given cpu.
3514  * @cpu: the processor in question.
3515  */
3516 task_t *idle_task(int cpu)
3517 {
3518         return cpu_rq(cpu)->idle;
3519 }
3520
3521 /**
3522  * find_process_by_pid - find a process with a matching PID value.
3523  * @pid: the pid in question.
3524  */
3525 static inline task_t *find_process_by_pid(pid_t pid)
3526 {
3527         return pid ? find_task_by_pid(pid) : current;
3528 }
3529
3530 /* Actually do priority change: must hold rq lock. */
3531 static void __setscheduler(struct task_struct *p, int policy, int prio)
3532 {
3533         BUG_ON(p->array);
3534         p->policy = policy;
3535         p->rt_priority = prio;
3536         if (policy != SCHED_NORMAL)
3537                 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3538         else
3539                 p->prio = p->static_prio;
3540 }
3541
3542 /**
3543  * sched_setscheduler - change the scheduling policy and/or RT priority of
3544  * a thread.
3545  * @p: the task in question.
3546  * @policy: new policy.
3547  * @param: structure containing the new RT priority.
3548  */
3549 int sched_setscheduler(struct task_struct *p, int policy,
3550                        struct sched_param *param)
3551 {
3552         int retval;
3553         int oldprio, oldpolicy = -1;
3554         prio_array_t *array;
3555         unsigned long flags;
3556         runqueue_t *rq;
3557
3558 recheck:
3559         /* double check policy once rq lock held */
3560         if (policy < 0)
3561                 policy = oldpolicy = p->policy;
3562         else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3563                                 policy != SCHED_NORMAL)
3564                         return -EINVAL;
3565         /*
3566          * Valid priorities for SCHED_FIFO and SCHED_RR are
3567          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3568          */
3569         if (param->sched_priority < 0 ||
3570             (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3571             (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3572                 return -EINVAL;
3573         if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3574                 return -EINVAL;
3575
3576         /*
3577          * Allow unprivileged RT tasks to decrease priority:
3578          */
3579         if (!capable(CAP_SYS_NICE)) {
3580                 /* can't change policy */
3581                 if (policy != p->policy &&
3582                         !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3583                         return -EPERM;
3584                 /* can't increase priority */
3585                 if (policy != SCHED_NORMAL &&
3586                     param->sched_priority > p->rt_priority &&
3587                     param->sched_priority >
3588                                 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3589                         return -EPERM;
3590                 /* can't change other user's priorities */
3591                 if ((current->euid != p->euid) &&
3592                     (current->euid != p->uid))
3593                         return -EPERM;
3594         }
3595
3596         retval = security_task_setscheduler(p, policy, param);
3597         if (retval)
3598                 return retval;
3599         /*
3600          * To be able to change p->policy safely, the apropriate
3601          * runqueue lock must be held.
3602          */
3603         rq = task_rq_lock(p, &flags);
3604         /* recheck policy now with rq lock held */
3605         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3606                 policy = oldpolicy = -1;
3607                 task_rq_unlock(rq, &flags);
3608                 goto recheck;
3609         }
3610         array = p->array;
3611         if (array)
3612                 deactivate_task(p, rq);
3613         oldprio = p->prio;
3614         __setscheduler(p, policy, param->sched_priority);
3615         if (array) {
3616                 __activate_task(p, rq);
3617                 /*
3618                  * Reschedule if we are currently running on this runqueue and
3619                  * our priority decreased, or if we are not currently running on
3620                  * this runqueue and our priority is higher than the current's
3621                  */
3622                 if (task_running(rq, p)) {
3623                         if (p->prio > oldprio)
3624                                 resched_task(rq->curr);
3625                 } else if (TASK_PREEMPTS_CURR(p, rq))
3626                         resched_task(rq->curr);
3627         }
3628         task_rq_unlock(rq, &flags);
3629         return 0;
3630 }
3631 EXPORT_SYMBOL_GPL(sched_setscheduler);
3632
3633 static int
3634 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3635 {
3636         int retval;
3637         struct sched_param lparam;
3638         struct task_struct *p;
3639
3640         if (!param || pid < 0)
3641                 return -EINVAL;
3642         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3643                 return -EFAULT;
3644         read_lock_irq(&tasklist_lock);
3645         p = find_process_by_pid(pid);
3646         if (!p) {
3647                 read_unlock_irq(&tasklist_lock);
3648                 return -ESRCH;
3649         }
3650         retval = sched_setscheduler(p, policy, &lparam);
3651         read_unlock_irq(&tasklist_lock);
3652         return retval;
3653 }
3654
3655 /**
3656  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3657  * @pid: the pid in question.
3658  * @policy: new policy.
3659  * @param: structure containing the new RT priority.
3660  */
3661 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3662                                        struct sched_param __user *param)
3663 {
3664         return do_sched_setscheduler(pid, policy, param);
3665 }
3666
3667 /**
3668  * sys_sched_setparam - set/change the RT priority of a thread
3669  * @pid: the pid in question.
3670  * @param: structure containing the new RT priority.
3671  */
3672 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3673 {
3674         return do_sched_setscheduler(pid, -1, param);
3675 }
3676
3677 /**
3678  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3679  * @pid: the pid in question.
3680  */
3681 asmlinkage long sys_sched_getscheduler(pid_t pid)
3682 {
3683         int retval = -EINVAL;
3684         task_t *p;
3685
3686         if (pid < 0)
3687                 goto out_nounlock;
3688
3689         retval = -ESRCH;
3690         read_lock(&tasklist_lock);
3691         p = find_process_by_pid(pid);
3692         if (p) {
3693                 retval = security_task_getscheduler(p);
3694                 if (!retval)
3695                         retval = p->policy;
3696         }
3697         read_unlock(&tasklist_lock);
3698
3699 out_nounlock:
3700         return retval;
3701 }
3702
3703 /**
3704  * sys_sched_getscheduler - get the RT priority of a thread
3705  * @pid: the pid in question.
3706  * @param: structure containing the RT priority.
3707  */
3708 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3709 {
3710         struct sched_param lp;
3711         int retval = -EINVAL;
3712         task_t *p;
3713
3714         if (!param || pid < 0)
3715                 goto out_nounlock;
3716
3717         read_lock(&tasklist_lock);
3718         p = find_process_by_pid(pid);
3719         retval = -ESRCH;
3720         if (!p)
3721                 goto out_unlock;
3722
3723         retval = security_task_getscheduler(p);
3724         if (retval)
3725                 goto out_unlock;
3726
3727         lp.sched_priority = p->rt_priority;
3728         read_unlock(&tasklist_lock);
3729
3730         /*
3731          * This one might sleep, we cannot do it with a spinlock held ...
3732          */
3733         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3734
3735 out_nounlock:
3736         return retval;
3737
3738 out_unlock:
3739         read_unlock(&tasklist_lock);
3740         return retval;
3741 }
3742
3743 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3744 {
3745         task_t *p;
3746         int retval;
3747         cpumask_t cpus_allowed;
3748
3749         lock_cpu_hotplug();
3750         read_lock(&tasklist_lock);
3751
3752         p = find_process_by_pid(pid);
3753         if (!p) {
3754                 read_unlock(&tasklist_lock);
3755                 unlock_cpu_hotplug();
3756                 return -ESRCH;
3757         }
3758
3759         /*
3760          * It is not safe to call set_cpus_allowed with the
3761          * tasklist_lock held.  We will bump the task_struct's
3762          * usage count and then drop tasklist_lock.
3763          */
3764         get_task_struct(p);
3765         read_unlock(&tasklist_lock);
3766
3767         retval = -EPERM;
3768         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3769                         !capable(CAP_SYS_NICE))
3770                 goto out_unlock;
3771
3772         cpus_allowed = cpuset_cpus_allowed(p);
3773         cpus_and(new_mask, new_mask, cpus_allowed);
3774         retval = set_cpus_allowed(p, new_mask);
3775
3776 out_unlock:
3777         put_task_struct(p);
3778         unlock_cpu_hotplug();
3779         return retval;
3780 }
3781
3782 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3783                              cpumask_t *new_mask)
3784 {
3785         if (len < sizeof(cpumask_t)) {
3786                 memset(new_mask, 0, sizeof(cpumask_t));
3787         } else if (len > sizeof(cpumask_t)) {
3788                 len = sizeof(cpumask_t);
3789         }
3790         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3791 }
3792
3793 /**
3794  * sys_sched_setaffinity - set the cpu affinity of a process
3795  * @pid: pid of the process
3796  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3797  * @user_mask_ptr: user-space pointer to the new cpu mask
3798  */
3799 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3800                                       unsigned long __user *user_mask_ptr)
3801 {
3802         cpumask_t new_mask;
3803         int retval;
3804
3805         retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3806         if (retval)
3807                 return retval;
3808
3809         return sched_setaffinity(pid, new_mask);
3810 }
3811
3812 /*
3813  * Represents all cpu's present in the system
3814  * In systems capable of hotplug, this map could dynamically grow
3815  * as new cpu's are detected in the system via any platform specific
3816  * method, such as ACPI for e.g.
3817  */
3818
3819 cpumask_t cpu_present_map;
3820 EXPORT_SYMBOL(cpu_present_map);
3821
3822 #ifndef CONFIG_SMP
3823 cpumask_t cpu_online_map = CPU_MASK_ALL;
3824 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3825 #endif
3826
3827 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3828 {
3829         int retval;
3830         task_t *p;
3831
3832         lock_cpu_hotplug();
3833         read_lock(&tasklist_lock);
3834
3835         retval = -ESRCH;
3836         p = find_process_by_pid(pid);
3837         if (!p)
3838                 goto out_unlock;
3839
3840         retval = 0;
3841         cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3842
3843 out_unlock:
3844         read_unlock(&tasklist_lock);
3845         unlock_cpu_hotplug();
3846         if (retval)
3847                 return retval;
3848
3849         return 0;
3850 }
3851
3852 /**
3853  * sys_sched_getaffinity - get the cpu affinity of a process
3854  * @pid: pid of the process
3855  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3856  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3857  */
3858 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3859                                       unsigned long __user *user_mask_ptr)
3860 {
3861         int ret;
3862         cpumask_t mask;
3863
3864         if (len < sizeof(cpumask_t))
3865                 return -EINVAL;
3866
3867         ret = sched_getaffinity(pid, &mask);
3868         if (ret < 0)
3869                 return ret;
3870
3871         if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3872                 return -EFAULT;
3873
3874         return sizeof(cpumask_t);
3875 }
3876
3877 /**
3878  * sys_sched_yield - yield the current processor to other threads.
3879  *
3880  * this function yields the current CPU by moving the calling thread
3881  * to the expired array. If there are no other threads running on this
3882  * CPU then this function will return.
3883  */
3884 asmlinkage long sys_sched_yield(void)
3885 {
3886         runqueue_t *rq = this_rq_lock();
3887         prio_array_t *array = current->array;
3888         prio_array_t *target = rq->expired;
3889
3890         schedstat_inc(rq, yld_cnt);
3891         /*
3892          * We implement yielding by moving the task into the expired
3893          * queue.
3894          *
3895          * (special rule: RT tasks will just roundrobin in the active
3896          *  array.)
3897          */
3898         if (rt_task(current))
3899                 target = rq->active;
3900
3901         if (current->array->nr_active == 1) {
3902                 schedstat_inc(rq, yld_act_empty);
3903                 if (!rq->expired->nr_active)
3904                         schedstat_inc(rq, yld_both_empty);
3905         } else if (!rq->expired->nr_active)
3906                 schedstat_inc(rq, yld_exp_empty);
3907
3908         if (array != target) {
3909                 dequeue_task(current, array);
3910                 enqueue_task(current, target);
3911         } else
3912                 /*
3913                  * requeue_task is cheaper so perform that if possible.
3914                  */
3915                 requeue_task(current, array);
3916
3917         /*
3918          * Since we are going to call schedule() anyway, there's
3919          * no need to preempt or enable interrupts:
3920          */
3921         __release(rq->lock);
3922         _raw_spin_unlock(&rq->lock);
3923         preempt_enable_no_resched();
3924
3925         schedule();
3926
3927         return 0;
3928 }
3929
3930 static inline void __cond_resched(void)
3931 {
3932         /*
3933          * The BKS might be reacquired before we have dropped
3934          * PREEMPT_ACTIVE, which could trigger a second
3935          * cond_resched() call.
3936          */
3937         if (unlikely(preempt_count()))
3938                 return;
3939         do {
3940                 add_preempt_count(PREEMPT_ACTIVE);
3941                 schedule();
3942                 sub_preempt_count(PREEMPT_ACTIVE);
3943         } while (need_resched());
3944 }
3945
3946 int __sched cond_resched(void)
3947 {
3948         if (need_resched()) {
3949                 __cond_resched();
3950                 return 1;
3951         }
3952         return 0;
3953 }
3954
3955 EXPORT_SYMBOL(cond_resched);
3956
3957 /*
3958  * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3959  * call schedule, and on return reacquire the lock.
3960  *
3961  * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
3962  * operations here to prevent schedule() from being called twice (once via
3963  * spin_unlock(), once by hand).
3964  */
3965 int cond_resched_lock(spinlock_t *lock)
3966 {
3967         int ret = 0;
3968
3969         if (need_lockbreak(lock)) {
3970                 spin_unlock(lock);
3971                 cpu_relax();
3972                 ret = 1;
3973                 spin_lock(lock);
3974         }
3975         if (need_resched()) {
3976                 _raw_spin_unlock(lock);
3977                 preempt_enable_no_resched();
3978                 __cond_resched();
3979                 ret = 1;
3980                 spin_lock(lock);
3981         }
3982         return ret;
3983 }
3984
3985 EXPORT_SYMBOL(cond_resched_lock);
3986
3987 int __sched cond_resched_softirq(void)
3988 {
3989         BUG_ON(!in_softirq());
3990
3991         if (need_resched()) {
3992                 __local_bh_enable();
3993                 __cond_resched();
3994                 local_bh_disable();
3995                 return 1;
3996         }
3997         return 0;
3998 }
3999
4000 EXPORT_SYMBOL(cond_resched_softirq);
4001
4002
4003 /**
4004  * yield - yield the current processor to other threads.
4005  *
4006  * this is a shortcut for kernel-space yielding - it marks the
4007  * thread runnable and calls sys_sched_yield().
4008  */
4009 void __sched yield(void)
4010 {
4011         set_current_state(TASK_RUNNING);
4012         sys_sched_yield();
4013 }
4014
4015 EXPORT_SYMBOL(yield);
4016
4017 /*
4018  * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
4019  * that process accounting knows that this is a task in IO wait state.
4020  *
4021  * But don't do that if it is a deliberate, throttling IO wait (this task
4022  * has set its backing_dev_info: the queue against which it should throttle)
4023  */
4024 void __sched io_schedule(void)
4025 {
4026         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4027
4028         atomic_inc(&rq->nr_iowait);
4029         schedule();
4030         atomic_dec(&rq->nr_iowait);
4031 }
4032
4033 EXPORT_SYMBOL(io_schedule);
4034
4035 long __sched io_schedule_timeout(long timeout)
4036 {
4037         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4038         long ret;
4039
4040         atomic_inc(&rq->nr_iowait);
4041         ret = schedule_timeout(timeout);
4042         atomic_dec(&rq->nr_iowait);
4043         return ret;
4044 }
4045
4046 /**
4047  * sys_sched_get_priority_max - return maximum RT priority.
4048  * @policy: scheduling class.
4049  *
4050  * this syscall returns the maximum rt_priority that can be used
4051  * by a given scheduling class.
4052  */
4053 asmlinkage long sys_sched_get_priority_max(int policy)
4054 {
4055         int ret = -EINVAL;
4056
4057         switch (policy) {
4058         case SCHED_FIFO:
4059         case SCHED_RR:
4060                 ret = MAX_USER_RT_PRIO-1;
4061                 break;
4062         case SCHED_NORMAL:
4063                 ret = 0;
4064                 break;
4065         }
4066         return ret;
4067 }
4068
4069 /**
4070  * sys_sched_get_priority_min - return minimum RT priority.
4071  * @policy: scheduling class.
4072  *
4073  * this syscall returns the minimum rt_priority that can be used
4074  * by a given scheduling class.
4075  */
4076 asmlinkage long sys_sched_get_priority_min(int policy)
4077 {
4078         int ret = -EINVAL;
4079
4080         switch (policy) {
4081         case SCHED_FIFO:
4082         case SCHED_RR:
4083                 ret = 1;
4084                 break;
4085         case SCHED_NORMAL:
4086                 ret = 0;
4087         }
4088         return ret;
4089 }
4090
4091 /**
4092  * sys_sched_rr_get_interval - return the default timeslice of a process.
4093  * @pid: pid of the process.
4094  * @interval: userspace pointer to the timeslice value.
4095  *
4096  * this syscall writes the default timeslice value of a given process
4097  * into the user-space timespec buffer. A value of '0' means infinity.
4098  */
4099 asmlinkage
4100 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4101 {
4102         int retval = -EINVAL;
4103         struct timespec t;
4104         task_t *p;
4105
4106         if (pid < 0)
4107                 goto out_nounlock;
4108
4109         retval = -ESRCH;
4110         read_lock(&tasklist_lock);
4111         p = find_process_by_pid(pid);
4112         if (!p)
4113                 goto out_unlock;
4114
4115         retval = security_task_getscheduler(p);
4116         if (retval)
4117                 goto out_unlock;
4118
4119         jiffies_to_timespec(p->policy & SCHED_FIFO ?
4120                                 0 : task_timeslice(p), &t);
4121         read_unlock(&tasklist_lock);
4122         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4123 out_nounlock:
4124         return retval;
4125 out_unlock:
4126         read_unlock(&tasklist_lock);
4127         return retval;
4128 }
4129
4130 static inline struct task_struct *eldest_child(struct task_struct *p)
4131 {
4132         if (list_empty(&p->children)) return NULL;
4133         return list_entry(p->children.next,struct task_struct,sibling);
4134 }
4135
4136 static inline struct task_struct *older_sibling(struct task_struct *p)
4137 {
4138         if (p->sibling.prev==&p->parent->children) return NULL;
4139         return list_entry(p->sibling.prev,struct task_struct,sibling);
4140 }
4141
4142 static inline struct task_struct *younger_sibling(struct task_struct *p)
4143 {
4144         if (p->sibling.next==&p->parent->children) return NULL;
4145         return list_entry(p->sibling.next,struct task_struct,sibling);
4146 }
4147
4148 static void show_task(task_t *p)
4149 {
4150         task_t *relative;
4151         unsigned state;
4152         unsigned long free = 0;
4153         static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4154
4155         printk("%-13.13s ", p->comm);
4156         state = p->state ? __ffs(p->state) + 1 : 0;
4157         if (state < ARRAY_SIZE(stat_nam))
4158                 printk(stat_nam[state]);
4159         else
4160                 printk("?");
4161 #if (BITS_PER_LONG == 32)
4162         if (state == TASK_RUNNING)
4163                 printk(" running ");
4164         else
4165                 printk(" %08lX ", thread_saved_pc(p));
4166 #else
4167         if (state == TASK_RUNNING)
4168                 printk("  running task   ");
4169         else
4170                 printk(" %016lx ", thread_saved_pc(p));
4171 #endif
4172 #ifdef CONFIG_DEBUG_STACK_USAGE
4173         {
4174                 unsigned long *n = (unsigned long *) (p->thread_info+1);
4175                 while (!*n)
4176                         n++;
4177                 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4178         }
4179 #endif
4180         printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4181         if ((relative = eldest_child(p)))
4182                 printk("%5d ", relative->pid);
4183         else
4184                 printk("      ");
4185         if ((relative = younger_sibling(p)))
4186                 printk("%7d", relative->pid);
4187         else
4188                 printk("       ");
4189         if ((relative = older_sibling(p)))
4190                 printk(" %5d", relative->pid);
4191         else
4192                 printk("      ");
4193         if (!p->mm)
4194                 printk(" (L-TLB)\n");
4195         else
4196                 printk(" (NOTLB)\n");
4197
4198         if (state != TASK_RUNNING)
4199                 show_stack(p, NULL);
4200 }
4201
4202 void show_state(void)
4203 {
4204         task_t *g, *p;
4205
4206 #if (BITS_PER_LONG == 32)
4207         printk("\n"
4208                "                                               sibling\n");
4209         printk("  task             PC      pid father child younger older\n");
4210 #else
4211         printk("\n"
4212                "                                                       sibling\n");
4213         printk("  task                 PC          pid father child younger older\n");
4214 #endif
4215         read_lock(&tasklist_lock);
4216         do_each_thread(g, p) {
4217                 /*
4218                  * reset the NMI-timeout, listing all files on a slow
4219                  * console might take alot of time:
4220                  */
4221                 touch_nmi_watchdog();
4222                 show_task(p);
4223         } while_each_thread(g, p);
4224
4225         read_unlock(&tasklist_lock);
4226 }
4227
4228 /**
4229  * init_idle - set up an idle thread for a given CPU
4230  * @idle: task in question
4231  * @cpu: cpu the idle task belongs to
4232  *
4233  * NOTE: this function does not set the idle thread's NEED_RESCHED
4234  * flag, to make booting more robust.
4235  */
4236 void __devinit init_idle(task_t *idle, int cpu)
4237 {
4238         runqueue_t *rq = cpu_rq(cpu);
4239         unsigned long flags;
4240
4241         idle->sleep_avg = 0;
4242         idle->array = NULL;
4243         idle->prio = MAX_PRIO;
4244         idle->state = TASK_RUNNING;
4245         idle->cpus_allowed = cpumask_of_cpu(cpu);
4246         set_task_cpu(idle, cpu);
4247
4248         spin_lock_irqsave(&rq->lock, flags);
4249         rq->curr = rq->idle = idle;
4250 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4251         idle->oncpu = 1;
4252 #endif
4253         spin_unlock_irqrestore(&rq->lock, flags);
4254
4255         /* Set the preempt count _outside_ the spinlocks! */
4256 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4257         idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4258 #else
4259         idle->thread_info->preempt_count = 0;
4260 #endif
4261 }
4262
4263 /*
4264  * In a system that switches off the HZ timer nohz_cpu_mask
4265  * indicates which cpus entered this state. This is used
4266  * in the rcu update to wait only for active cpus. For system
4267  * which do not switch off the HZ timer nohz_cpu_mask should
4268  * always be CPU_MASK_NONE.
4269  */
4270 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4271
4272 #ifdef CONFIG_SMP
4273 /*
4274  * This is how migration works:
4275  *
4276  * 1) we queue a migration_req_t structure in the source CPU's
4277  *    runqueue and wake up that CPU's migration thread.
4278  * 2) we down() the locked semaphore => thread blocks.
4279  * 3) migration thread wakes up (implicitly it forces the migrated
4280  *    thread off the CPU)
4281  * 4) it gets the migration request and checks whether the migrated
4282  *    task is still in the wrong runqueue.
4283  * 5) if it's in the wrong runqueue then the migration thread removes
4284  *    it and puts it into the right queue.
4285  * 6) migration thread up()s the semaphore.
4286  * 7) we wake up and the migration is done.
4287  */
4288
4289 /*
4290  * Change a given task's CPU affinity. Migrate the thread to a
4291  * proper CPU and schedule it away if the CPU it's executing on
4292  * is removed from the allowed bitmask.
4293  *
4294  * NOTE: the caller must have a valid reference to the task, the
4295  * task must not exit() & deallocate itself prematurely.  The
4296  * call is not atomic; no spinlocks may be held.
4297  */
4298 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4299 {
4300         unsigned long flags;
4301         int ret = 0;
4302         migration_req_t req;
4303         runqueue_t *rq;
4304
4305         rq = task_rq_lock(p, &flags);
4306         if (!cpus_intersects(new_mask, cpu_online_map)) {
4307                 ret = -EINVAL;
4308                 goto out;
4309         }
4310
4311         p->cpus_allowed = new_mask;
4312         /* Can the task run on the task's current CPU? If so, we're done */
4313         if (cpu_isset(task_cpu(p), new_mask))
4314                 goto out;
4315
4316         if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4317                 /* Need help from migration thread: drop lock and wait. */
4318                 task_rq_unlock(rq, &flags);
4319                 wake_up_process(rq->migration_thread);
4320                 wait_for_completion(&req.done);
4321                 tlb_migrate_finish(p->mm);
4322                 return 0;
4323         }
4324 out:
4325         task_rq_unlock(rq, &flags);
4326         return ret;
4327 }
4328
4329 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4330
4331 /*
4332  * Move (not current) task off this cpu, onto dest cpu.  We're doing
4333  * this because either it can't run here any more (set_cpus_allowed()
4334  * away from this CPU, or CPU going down), or because we're
4335  * attempting to rebalance this task on exec (sched_exec).
4336  *
4337  * So we race with normal scheduler movements, but that's OK, as long
4338  * as the task is no longer on this CPU.
4339  */
4340 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4341 {
4342         runqueue_t *rq_dest, *rq_src;
4343
4344         if (unlikely(cpu_is_offline(dest_cpu)))
4345                 return;
4346
4347         rq_src = cpu_rq(src_cpu);
4348         rq_dest = cpu_rq(dest_cpu);
4349
4350         double_rq_lock(rq_src, rq_dest);
4351         /* Already moved. */
4352         if (task_cpu(p) != src_cpu)
4353                 goto out;
4354         /* Affinity changed (again). */
4355         if (!cpu_isset(dest_cpu, p->cpus_allowed))
4356                 goto out;
4357
4358         set_task_cpu(p, dest_cpu);
4359         if (p->array) {
4360                 /*
4361                  * Sync timestamp with rq_dest's before activating.
4362                  * The same thing could be achieved by doing this step
4363                  * afterwards, and pretending it was a local activate.
4364                  * This way is cleaner and logically correct.
4365                  */
4366                 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4367                                 + rq_dest->timestamp_last_tick;
4368                 deactivate_task(p, rq_src);
4369                 activate_task(p, rq_dest, 0);
4370                 if (TASK_PREEMPTS_CURR(p, rq_dest))
4371                         resched_task(rq_dest->curr);
4372         }
4373
4374 out:
4375         double_rq_unlock(rq_src, rq_dest);
4376 }
4377
4378 /*
4379  * migration_thread - this is a highprio system thread that performs
4380  * thread migration by bumping thread off CPU then 'pushing' onto
4381  * another runqueue.
4382  */
4383 static int migration_thread(void *data)
4384 {
4385         runqueue_t *rq;
4386         int cpu = (long)data;
4387
4388         rq = cpu_rq(cpu);
4389         BUG_ON(rq->migration_thread != current);
4390
4391         set_current_state(TASK_INTERRUPTIBLE);
4392         while (!kthread_should_stop()) {
4393                 struct list_head *head;
4394                 migration_req_t *req;
4395
4396                 try_to_freeze();
4397
4398                 spin_lock_irq(&rq->lock);
4399
4400                 if (cpu_is_offline(cpu)) {
4401                         spin_unlock_irq(&rq->lock);
4402                         goto wait_to_die;
4403                 }
4404
4405                 if (rq->active_balance) {
4406                         active_load_balance(rq, cpu);
4407                         rq->active_balance = 0;
4408                 }
4409
4410                 head = &rq->migration_queue;
4411
4412                 if (list_empty(head)) {
4413                         spin_unlock_irq(&rq->lock);
4414                         schedule();
4415                         set_current_state(TASK_INTERRUPTIBLE);
4416                         continue;
4417                 }
4418                 req = list_entry(head->next, migration_req_t, list);
4419                 list_del_init(head->next);
4420
4421                 spin_unlock(&rq->lock);
4422                 __migrate_task(req->task, cpu, req->dest_cpu);
4423                 local_irq_enable();
4424
4425                 complete(&req->done);
4426         }
4427         __set_current_state(TASK_RUNNING);
4428         return 0;
4429
4430 wait_to_die:
4431         /* Wait for kthread_stop */
4432         set_current_state(TASK_INTERRUPTIBLE);
4433         while (!kthread_should_stop()) {
4434                 schedule();
4435                 set_current_state(TASK_INTERRUPTIBLE);
4436         }
4437         __set_current_state(TASK_RUNNING);
4438         return 0;
4439 }
4440
4441 #ifdef CONFIG_HOTPLUG_CPU
4442 /* Figure out where task on dead CPU should go, use force if neccessary. */
4443 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4444 {
4445         int dest_cpu;
4446         cpumask_t mask;
4447
4448         /* On same node? */
4449         mask = node_to_cpumask(cpu_to_node(dead_cpu));
4450         cpus_and(mask, mask, tsk->cpus_allowed);
4451         dest_cpu = any_online_cpu(mask);
4452
4453         /* On any allowed CPU? */
4454         if (dest_cpu == NR_CPUS)
4455                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4456
4457         /* No more Mr. Nice Guy. */
4458         if (dest_cpu == NR_CPUS) {
4459                 cpus_setall(tsk->cpus_allowed);
4460                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4461
4462                 /*
4463                  * Don't tell them about moving exiting tasks or
4464                  * kernel threads (both mm NULL), since they never
4465                  * leave kernel.
4466                  */
4467                 if (tsk->mm && printk_ratelimit())
4468                         printk(KERN_INFO "process %d (%s) no "
4469                                "longer affine to cpu%d\n",
4470                                tsk->pid, tsk->comm, dead_cpu);
4471         }
4472         __migrate_task(tsk, dead_cpu, dest_cpu);
4473 }
4474
4475 /*
4476  * While a dead CPU has no uninterruptible tasks queued at this point,
4477  * it might still have a nonzero ->nr_uninterruptible counter, because
4478  * for performance reasons the counter is not stricly tracking tasks to
4479  * their home CPUs. So we just add the counter to another CPU's counter,
4480  * to keep the global sum constant after CPU-down:
4481  */
4482 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4483 {
4484         runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4485         unsigned long flags;
4486
4487         local_irq_save(flags);
4488         double_rq_lock(rq_src, rq_dest);
4489         rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4490         rq_src->nr_uninterruptible = 0;
4491         double_rq_unlock(rq_src, rq_dest);
4492         local_irq_restore(flags);
4493 }
4494
4495 /* Run through task list and migrate tasks from the dead cpu. */
4496 static void migrate_live_tasks(int src_cpu)
4497 {
4498         struct task_struct *tsk, *t;
4499
4500         write_lock_irq(&tasklist_lock);
4501
4502         do_each_thread(t, tsk) {
4503                 if (tsk == current)
4504                         continue;
4505
4506                 if (task_cpu(tsk) == src_cpu)
4507                         move_task_off_dead_cpu(src_cpu, tsk);
4508         } while_each_thread(t, tsk);
4509
4510         write_unlock_irq(&tasklist_lock);
4511 }
4512
4513 /* Schedules idle task to be the next runnable task on current CPU.
4514  * It does so by boosting its priority to highest possible and adding it to
4515  * the _front_ of runqueue. Used by CPU offline code.
4516  */
4517 void sched_idle_next(void)
4518 {
4519         int cpu = smp_processor_id();
4520         runqueue_t *rq = this_rq();
4521         struct task_struct *p = rq->idle;
4522         unsigned long flags;
4523
4524         /* cpu has to be offline */
4525         BUG_ON(cpu_online(cpu));
4526
4527         /* Strictly not necessary since rest of the CPUs are stopped by now
4528          * and interrupts disabled on current cpu.
4529          */
4530         spin_lock_irqsave(&rq->lock, flags);
4531
4532         __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4533         /* Add idle task to _front_ of it's priority queue */
4534         __activate_idle_task(p, rq);
4535
4536         spin_unlock_irqrestore(&rq->lock, flags);
4537 }
4538
4539 /* Ensures that the idle task is using init_mm right before its cpu goes
4540  * offline.
4541  */
4542 void idle_task_exit(void)
4543 {
4544         struct mm_struct *mm = current->active_mm;
4545
4546         BUG_ON(cpu_online(smp_processor_id()));
4547
4548         if (mm != &init_mm)
4549                 switch_mm(mm, &init_mm, current);
4550         mmdrop(mm);
4551 }
4552
4553 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4554 {
4555         struct runqueue *rq = cpu_rq(dead_cpu);
4556
4557         /* Must be exiting, otherwise would be on tasklist. */
4558         BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4559
4560         /* Cannot have done final schedule yet: would have vanished. */
4561         BUG_ON(tsk->flags & PF_DEAD);
4562
4563         get_task_struct(tsk);
4564
4565         /*
4566          * Drop lock around migration; if someone else moves it,
4567          * that's OK.  No task can be added to this CPU, so iteration is
4568          * fine.
4569          */
4570         spin_unlock_irq(&rq->lock);
4571         move_task_off_dead_cpu(dead_cpu, tsk);
4572         spin_lock_irq(&rq->lock);
4573
4574         put_task_struct(tsk);
4575 }
4576
4577 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4578 static void migrate_dead_tasks(unsigned int dead_cpu)
4579 {
4580         unsigned arr, i;
4581         struct runqueue *rq = cpu_rq(dead_cpu);
4582
4583         for (arr = 0; arr < 2; arr++) {
4584                 for (i = 0; i < MAX_PRIO; i++) {
4585                         struct list_head *list = &rq->arrays[arr].queue[i];
4586                         while (!list_empty(list))
4587                                 migrate_dead(dead_cpu,
4588                                              list_entry(list->next, task_t,
4589                                                         run_list));
4590                 }
4591         }
4592 }
4593 #endif /* CONFIG_HOTPLUG_CPU */
4594
4595 /*
4596  * migration_call - callback that gets triggered when a CPU is added.
4597  * Here we can start up the necessary migration thread for the new CPU.
4598  */
4599 static int migration_call(struct notifier_block *nfb, unsigned long action,
4600                           void *hcpu)
4601 {
4602         int cpu = (long)hcpu;
4603         struct task_struct *p;
4604         struct runqueue *rq;
4605         unsigned long flags;
4606
4607         switch (action) {
4608         case CPU_UP_PREPARE:
4609                 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4610                 if (IS_ERR(p))
4611                         return NOTIFY_BAD;
4612                 p->flags |= PF_NOFREEZE;
4613                 kthread_bind(p, cpu);
4614                 /* Must be high prio: stop_machine expects to yield to it. */
4615                 rq = task_rq_lock(p, &flags);
4616                 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4617                 task_rq_unlock(rq, &flags);
4618                 cpu_rq(cpu)->migration_thread = p;
4619                 break;
4620         case CPU_ONLINE:
4621                 /* Strictly unneccessary, as first user will wake it. */
4622                 wake_up_process(cpu_rq(cpu)->migration_thread);
4623                 break;
4624 #ifdef CONFIG_HOTPLUG_CPU
4625         case CPU_UP_CANCELED:
4626                 /* Unbind it from offline cpu so it can run.  Fall thru. */
4627                 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4628                 kthread_stop(cpu_rq(cpu)->migration_thread);
4629                 cpu_rq(cpu)->migration_thread = NULL;
4630                 break;
4631         case CPU_DEAD:
4632                 migrate_live_tasks(cpu);
4633                 rq = cpu_rq(cpu);
4634                 kthread_stop(rq->migration_thread);
4635                 rq->migration_thread = NULL;
4636                 /* Idle task back to normal (off runqueue, low prio) */
4637                 rq = task_rq_lock(rq->idle, &flags);
4638                 deactivate_task(rq->idle, rq);
4639                 rq->idle->static_prio = MAX_PRIO;
4640                 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4641                 migrate_dead_tasks(cpu);
4642                 task_rq_unlock(rq, &flags);
4643                 migrate_nr_uninterruptible(rq);
4644                 BUG_ON(rq->nr_running != 0);
4645
4646                 /* No need to migrate the tasks: it was best-effort if
4647                  * they didn't do lock_cpu_hotplug().  Just wake up
4648                  * the requestors. */
4649                 spin_lock_irq(&rq->lock);
4650                 while (!list_empty(&rq->migration_queue)) {
4651                         migration_req_t *req;
4652                         req = list_entry(rq->migration_queue.next,
4653                                          migration_req_t, list);
4654                         list_del_init(&req->list);
4655                         complete(&req->done);
4656                 }
4657                 spin_unlock_irq(&rq->lock);
4658                 break;
4659 #endif
4660         }
4661         return NOTIFY_OK;
4662 }
4663
4664 /* Register at highest priority so that task migration (migrate_all_tasks)
4665  * happens before everything else.
4666  */
4667 static struct notifier_block __devinitdata migration_notifier = {
4668         .notifier_call = migration_call,
4669         .priority = 10
4670 };
4671
4672 int __init migration_init(void)
4673 {
4674         void *cpu = (void *)(long)smp_processor_id();
4675         /* Start one for boot CPU. */
4676         migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4677         migration_call(&migration_notifier, CPU_ONLINE, cpu);
4678         register_cpu_notifier(&migration_notifier);
4679         return 0;
4680 }
4681 #endif
4682
4683 #ifdef CONFIG_SMP
4684 #undef SCHED_DOMAIN_DEBUG
4685 #ifdef SCHED_DOMAIN_DEBUG
4686 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4687 {
4688         int level = 0;
4689
4690         if (!sd) {
4691                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4692                 return;
4693         }
4694
4695         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4696
4697         do {
4698                 int i;
4699                 char str[NR_CPUS];
4700                 struct sched_group *group = sd->groups;
4701                 cpumask_t groupmask;
4702
4703                 cpumask_scnprintf(str, NR_CPUS, sd->span);
4704                 cpus_clear(groupmask);
4705
4706                 printk(KERN_DEBUG);
4707                 for (i = 0; i < level + 1; i++)
4708                         printk(" ");
4709                 printk("domain %d: ", level);
4710
4711                 if (!(sd->flags & SD_LOAD_BALANCE)) {
4712                         printk("does not load-balance\n");
4713                         if (sd->parent)
4714                                 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4715                         break;
4716                 }
4717
4718                 printk("span %s\n", str);
4719
4720                 if (!cpu_isset(cpu, sd->span))
4721                         printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4722                 if (!cpu_isset(cpu, group->cpumask))
4723                         printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4724
4725                 printk(KERN_DEBUG);
4726                 for (i = 0; i < level + 2; i++)
4727                         printk(" ");
4728                 printk("groups:");
4729                 do {
4730                         if (!group) {
4731                                 printk("\n");
4732                                 printk(KERN_ERR "ERROR: group is NULL\n");
4733                                 break;
4734                         }
4735
4736                         if (!group->cpu_power) {
4737                                 printk("\n");
4738                                 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4739                         }
4740
4741                         if (!cpus_weight(group->cpumask)) {
4742                                 printk("\n");
4743                                 printk(KERN_ERR "ERROR: empty group\n");
4744                         }
4745
4746                         if (cpus_intersects(groupmask, group->cpumask)) {
4747                                 printk("\n");
4748                                 printk(KERN_ERR "ERROR: repeated CPUs\n");
4749                         }
4750
4751                         cpus_or(groupmask, groupmask, group->cpumask);
4752
4753                         cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4754                         printk(" %s", str);
4755
4756                         group = group->next;
4757                 } while (group != sd->groups);
4758                 printk("\n");
4759
4760                 if (!cpus_equal(sd->span, groupmask))
4761                         printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4762
4763                 level++;
4764                 sd = sd->parent;
4765
4766                 if (sd) {
4767                         if (!cpus_subset(groupmask, sd->span))
4768                                 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4769                 }
4770
4771         } while (sd);
4772 }
4773 #else
4774 #define sched_domain_debug(sd, cpu) {}
4775 #endif
4776
4777 static int sd_degenerate(struct sched_domain *sd)
4778 {
4779         if (cpus_weight(sd->span) == 1)
4780                 return 1;
4781
4782         /* Following flags need at least 2 groups */
4783         if (sd->flags & (SD_LOAD_BALANCE |
4784                          SD_BALANCE_NEWIDLE |
4785                          SD_BALANCE_FORK |
4786                          SD_BALANCE_EXEC)) {
4787                 if (sd->groups != sd->groups->next)
4788                         return 0;
4789         }
4790
4791         /* Following flags don't use groups */
4792         if (sd->flags & (SD_WAKE_IDLE |
4793                          SD_WAKE_AFFINE |
4794                          SD_WAKE_BALANCE))
4795                 return 0;
4796
4797         return 1;
4798 }
4799
4800 static int sd_parent_degenerate(struct sched_domain *sd,
4801                                                 struct sched_domain *parent)
4802 {
4803         unsigned long cflags = sd->flags, pflags = parent->flags;
4804
4805         if (sd_degenerate(parent))
4806                 return 1;
4807
4808         if (!cpus_equal(sd->span, parent->span))
4809                 return 0;
4810
4811         /* Does parent contain flags not in child? */
4812         /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4813         if (cflags & SD_WAKE_AFFINE)
4814                 pflags &= ~SD_WAKE_BALANCE;
4815         /* Flags needing groups don't count if only 1 group in parent */
4816         if (parent->groups == parent->groups->next) {
4817                 pflags &= ~(SD_LOAD_BALANCE |
4818                                 SD_BALANCE_NEWIDLE |
4819                                 SD_BALANCE_FORK |
4820                                 SD_BALANCE_EXEC);
4821         }
4822         if (~cflags & pflags)
4823                 return 0;
4824
4825         return 1;
4826 }
4827
4828 /*
4829  * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
4830  * hold the hotplug lock.
4831  */
4832 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4833 {
4834         runqueue_t *rq = cpu_rq(cpu);
4835         struct sched_domain *tmp;
4836
4837         /* Remove the sched domains which do not contribute to scheduling. */
4838         for (tmp = sd; tmp; tmp = tmp->parent) {
4839                 struct sched_domain *parent = tmp->parent;
4840                 if (!parent)
4841                         break;
4842                 if (sd_parent_degenerate(tmp, parent))
4843                         tmp->parent = parent->parent;
4844         }
4845
4846         if (sd && sd_degenerate(sd))
4847                 sd = sd->parent;
4848
4849         sched_domain_debug(sd, cpu);
4850
4851         rcu_assign_pointer(rq->sd, sd);
4852 }
4853
4854 /* cpus with isolated domains */
4855 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4856
4857 /* Setup the mask of cpus configured for isolated domains */
4858 static int __init isolated_cpu_setup(char *str)
4859 {
4860         int ints[NR_CPUS], i;
4861
4862         str = get_options(str, ARRAY_SIZE(ints), ints);
4863         cpus_clear(cpu_isolated_map);
4864         for (i = 1; i <= ints[0]; i++)
4865                 if (ints[i] < NR_CPUS)
4866                         cpu_set(ints[i], cpu_isolated_map);
4867         return 1;
4868 }
4869
4870 __setup ("isolcpus=", isolated_cpu_setup);
4871
4872 /*
4873  * init_sched_build_groups takes an array of groups, the cpumask we wish
4874  * to span, and a pointer to a function which identifies what group a CPU
4875  * belongs to. The return value of group_fn must be a valid index into the
4876  * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4877  * keep track of groups covered with a cpumask_t).
4878  *
4879  * init_sched_build_groups will build a circular linked list of the groups
4880  * covered by the given span, and will set each group's ->cpumask correctly,
4881  * and ->cpu_power to 0.
4882  */
4883 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4884                                     int (*group_fn)(int cpu))
4885 {
4886         struct sched_group *first = NULL, *last = NULL;
4887         cpumask_t covered = CPU_MASK_NONE;
4888         int i;
4889
4890         for_each_cpu_mask(i, span) {
4891                 int group = group_fn(i);
4892                 struct sched_group *sg = &groups[group];
4893                 int j;
4894
4895                 if (cpu_isset(i, covered))
4896                         continue;
4897
4898                 sg->cpumask = CPU_MASK_NONE;
4899                 sg->cpu_power = 0;
4900
4901                 for_each_cpu_mask(j, span) {
4902                         if (group_fn(j) != group)
4903                                 continue;
4904
4905                         cpu_set(j, covered);
4906                         cpu_set(j, sg->cpumask);
4907                 }
4908                 if (!first)
4909                         first = sg;
4910                 if (last)
4911                         last->next = sg;
4912                 last = sg;
4913         }
4914         last->next = first;
4915 }
4916
4917 #define SD_NODES_PER_DOMAIN 16
4918
4919 #ifdef CONFIG_NUMA
4920 /**
4921  * find_next_best_node - find the next node to include in a sched_domain
4922  * @node: node whose sched_domain we're building
4923  * @used_nodes: nodes already in the sched_domain
4924  *
4925  * Find the next node to include in a given scheduling domain.  Simply
4926  * finds the closest node not already in the @used_nodes map.
4927  *
4928  * Should use nodemask_t.
4929  */
4930 static int find_next_best_node(int node, unsigned long *used_nodes)
4931 {
4932         int i, n, val, min_val, best_node = 0;
4933
4934         min_val = INT_MAX;
4935
4936         for (i = 0; i < MAX_NUMNODES; i++) {
4937                 /* Start at @node */
4938                 n = (node + i) % MAX_NUMNODES;
4939
4940                 if (!nr_cpus_node(n))
4941                         continue;
4942
4943                 /* Skip already used nodes */
4944                 if (test_bit(n, used_nodes))
4945                         continue;
4946
4947                 /* Simple min distance search */
4948                 val = node_distance(node, n);
4949
4950                 if (val < min_val) {
4951                         min_val = val;
4952                         best_node = n;
4953                 }
4954         }
4955
4956         set_bit(best_node, used_nodes);
4957         return best_node;
4958 }
4959
4960 /**
4961  * sched_domain_node_span - get a cpumask for a node's sched_domain
4962  * @node: node whose cpumask we're constructing
4963  * @size: number of nodes to include in this span
4964  *
4965  * Given a node, construct a good cpumask for its sched_domain to span.  It
4966  * should be one that prevents unnecessary balancing, but also spreads tasks
4967  * out optimally.
4968  */
4969 static cpumask_t sched_domain_node_span(int node)
4970 {
4971         int i;
4972         cpumask_t span, nodemask;
4973         DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
4974
4975         cpus_clear(span);
4976         bitmap_zero(used_nodes, MAX_NUMNODES);
4977
4978         nodemask = node_to_cpumask(node);
4979         cpus_or(span, span, nodemask);
4980         set_bit(node, used_nodes);
4981
4982         for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
4983                 int next_node = find_next_best_node(node, used_nodes);
4984                 nodemask = node_to_cpumask(next_node);
4985                 cpus_or(span, span, nodemask);
4986         }
4987
4988         return span;
4989 }
4990 #endif
4991
4992 /*
4993  * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
4994  * can switch it on easily if needed.
4995  */
4996 #ifdef CONFIG_SCHED_SMT
4997 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
4998 static struct sched_group sched_group_cpus[NR_CPUS];
4999 static int cpu_to_cpu_group(int cpu)
5000 {
5001         return cpu;
5002 }
5003 #endif
5004
5005 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5006 static struct sched_group sched_group_phys[NR_CPUS];
5007 static int cpu_to_phys_group(int cpu)
5008 {
5009 #ifdef CONFIG_SCHED_SMT
5010         return first_cpu(cpu_sibling_map[cpu]);
5011 #else
5012         return cpu;
5013 #endif
5014 }
5015
5016 #ifdef CONFIG_NUMA
5017 /*
5018  * The init_sched_build_groups can't handle what we want to do with node
5019  * groups, so roll our own. Now each node has its own list of groups which
5020  * gets dynamically allocated.
5021  */
5022 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5023 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5024
5025 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5026 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5027
5028 static int cpu_to_allnodes_group(int cpu)
5029 {
5030         return cpu_to_node(cpu);
5031 }
5032 #endif
5033
5034 /*
5035  * Build sched domains for a given set of cpus and attach the sched domains
5036  * to the individual cpus
5037  */
5038 void build_sched_domains(const cpumask_t *cpu_map)
5039 {
5040         int i;
5041 #ifdef CONFIG_NUMA
5042         struct sched_group **sched_group_nodes = NULL;
5043         struct sched_group *sched_group_allnodes = NULL;
5044
5045         /*
5046          * Allocate the per-node list of sched groups
5047          */
5048         sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5049                                            GFP_ATOMIC);
5050         if (!sched_group_nodes) {
5051                 printk(KERN_WARNING "Can not alloc sched group node list\n");
5052                 return;
5053         }
5054         sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5055 #endif
5056
5057         /*
5058          * Set up domains for cpus specified by the cpu_map.
5059          */
5060         for_each_cpu_mask(i, *cpu_map) {
5061                 int group;
5062                 struct sched_domain *sd = NULL, *p;
5063                 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5064
5065                 cpus_and(nodemask, nodemask, *cpu_map);
5066
5067 #ifdef CONFIG_NUMA
5068                 if (cpus_weight(*cpu_map)
5069                                 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5070                         if (!sched_group_allnodes) {
5071                                 sched_group_allnodes
5072                                         = kmalloc(sizeof(struct sched_group)
5073                                                         * MAX_NUMNODES,
5074                                                   GFP_KERNEL);
5075                                 if (!sched_group_allnodes) {
5076                                         printk(KERN_WARNING
5077                                         "Can not alloc allnodes sched group\n");
5078                                         break;
5079                                 }
5080                                 sched_group_allnodes_bycpu[i]
5081                                                 = sched_group_allnodes;
5082                         }
5083                         sd = &per_cpu(allnodes_domains, i);
5084                         *sd = SD_ALLNODES_INIT;
5085                         sd->span = *cpu_map;
5086                         group = cpu_to_allnodes_group(i);
5087                         sd->groups = &sched_group_allnodes[group];
5088                         p = sd;
5089                 } else
5090                         p = NULL;
5091
5092                 sd = &per_cpu(node_domains, i);
5093                 *sd = SD_NODE_INIT;
5094                 sd->span = sched_domain_node_span(cpu_to_node(i));
5095                 sd->parent = p;
5096                 cpus_and(sd->span, sd->span, *cpu_map);
5097 #endif
5098
5099                 p = sd;
5100                 sd = &per_cpu(phys_domains, i);
5101                 group = cpu_to_phys_group(i);
5102                 *sd = SD_CPU_INIT;
5103                 sd->span = nodemask;
5104                 sd->parent = p;
5105                 sd->groups = &sched_group_phys[group];
5106
5107 #ifdef CONFIG_SCHED_SMT
5108                 p = sd;
5109                 sd = &per_cpu(cpu_domains, i);
5110                 group = cpu_to_cpu_group(i);
5111                 *sd = SD_SIBLING_INIT;
5112                 sd->span = cpu_sibling_map[i];
5113                 cpus_and(sd->span, sd->span, *cpu_map);
5114                 sd->parent = p;
5115                 sd->groups = &sched_group_cpus[group];
5116 #endif
5117         }
5118
5119 #ifdef CONFIG_SCHED_SMT
5120         /* Set up CPU (sibling) groups */
5121         for_each_cpu_mask(i, *cpu_map) {
5122                 cpumask_t this_sibling_map = cpu_sibling_map[i];
5123                 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5124                 if (i != first_cpu(this_sibling_map))
5125                         continue;
5126
5127                 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5128                                                 &cpu_to_cpu_group);
5129         }
5130 #endif
5131
5132         /* Set up physical groups */
5133         for (i = 0; i < MAX_NUMNODES; i++) {
5134                 cpumask_t nodemask = node_to_cpumask(i);
5135
5136                 cpus_and(nodemask, nodemask, *cpu_map);
5137                 if (cpus_empty(nodemask))
5138                         continue;
5139
5140                 init_sched_build_groups(sched_group_phys, nodemask,
5141                                                 &cpu_to_phys_group);
5142         }
5143
5144 #ifdef CONFIG_NUMA
5145         /* Set up node groups */
5146         if (sched_group_allnodes)
5147                 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5148                                         &cpu_to_allnodes_group);
5149
5150         for (i = 0; i < MAX_NUMNODES; i++) {
5151                 /* Set up node groups */
5152                 struct sched_group *sg, *prev;
5153                 cpumask_t nodemask = node_to_cpumask(i);
5154                 cpumask_t domainspan;
5155                 cpumask_t covered = CPU_MASK_NONE;
5156                 int j;
5157
5158                 cpus_and(nodemask, nodemask, *cpu_map);
5159                 if (cpus_empty(nodemask)) {
5160                         sched_group_nodes[i] = NULL;
5161                         continue;
5162                 }
5163
5164                 domainspan = sched_domain_node_span(i);
5165                 cpus_and(domainspan, domainspan, *cpu_map);
5166
5167                 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5168                 sched_group_nodes[i] = sg;
5169                 for_each_cpu_mask(j, nodemask) {
5170                         struct sched_domain *sd;
5171                         sd = &per_cpu(node_domains, j);
5172                         sd->groups = sg;
5173                         if (sd->groups == NULL) {
5174                                 /* Turn off balancing if we have no groups */
5175                                 sd->flags = 0;
5176                         }
5177                 }
5178                 if (!sg) {
5179                         printk(KERN_WARNING
5180                         "Can not alloc domain group for node %d\n", i);
5181                         continue;
5182                 }
5183                 sg->cpu_power = 0;
5184                 sg->cpumask = nodemask;
5185                 cpus_or(covered, covered, nodemask);
5186                 prev = sg;
5187
5188                 for (j = 0; j < MAX_NUMNODES; j++) {
5189                         cpumask_t tmp, notcovered;
5190                         int n = (i + j) % MAX_NUMNODES;
5191
5192                         cpus_complement(notcovered, covered);
5193                         cpus_and(tmp, notcovered, *cpu_map);
5194                         cpus_and(tmp, tmp, domainspan);
5195                         if (cpus_empty(tmp))
5196                                 break;
5197
5198                         nodemask = node_to_cpumask(n);
5199                         cpus_and(tmp, tmp, nodemask);
5200                         if (cpus_empty(tmp))
5201                                 continue;
5202
5203                         sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5204                         if (!sg) {
5205                                 printk(KERN_WARNING
5206                                 "Can not alloc domain group for node %d\n", j);
5207                                 break;
5208                         }
5209                         sg->cpu_power = 0;
5210                         sg->cpumask = tmp;
5211                         cpus_or(covered, covered, tmp);
5212                         prev->next = sg;
5213                         prev = sg;
5214                 }
5215                 prev->next = sched_group_nodes[i];
5216         }
5217 #endif
5218
5219         /* Calculate CPU power for physical packages and nodes */
5220         for_each_cpu_mask(i, *cpu_map) {
5221                 int power;
5222                 struct sched_domain *sd;
5223 #ifdef CONFIG_SCHED_SMT
5224                 sd = &per_cpu(cpu_domains, i);
5225                 power = SCHED_LOAD_SCALE;
5226                 sd->groups->cpu_power = power;
5227 #endif
5228
5229                 sd = &per_cpu(phys_domains, i);
5230                 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5231                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5232                 sd->groups->cpu_power = power;
5233
5234 #ifdef CONFIG_NUMA
5235                 sd = &per_cpu(allnodes_domains, i);
5236                 if (sd->groups) {
5237                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5238                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5239                         sd->groups->cpu_power = power;
5240                 }
5241 #endif
5242         }
5243
5244 #ifdef CONFIG_NUMA
5245         for (i = 0; i < MAX_NUMNODES; i++) {
5246                 struct sched_group *sg = sched_group_nodes[i];
5247                 int j;
5248
5249                 if (sg == NULL)
5250                         continue;
5251 next_sg:
5252                 for_each_cpu_mask(j, sg->cpumask) {
5253                         struct sched_domain *sd;
5254                         int power;
5255
5256                         sd = &per_cpu(phys_domains, j);
5257                         if (j != first_cpu(sd->groups->cpumask)) {
5258                                 /*
5259                                  * Only add "power" once for each
5260                                  * physical package.
5261                                  */
5262                                 continue;
5263                         }
5264                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5265                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5266
5267                         sg->cpu_power += power;
5268                 }
5269                 sg = sg->next;
5270                 if (sg != sched_group_nodes[i])
5271                         goto next_sg;
5272         }
5273 #endif
5274
5275         /* Attach the domains */
5276         for_each_cpu_mask(i, *cpu_map) {
5277                 struct sched_domain *sd;
5278 #ifdef CONFIG_SCHED_SMT
5279                 sd = &per_cpu(cpu_domains, i);
5280 #else
5281                 sd = &per_cpu(phys_domains, i);
5282 #endif
5283                 cpu_attach_domain(sd, i);
5284         }
5285 }
5286 /*
5287  * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
5288  */
5289 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5290 {
5291         cpumask_t cpu_default_map;
5292
5293         /*
5294          * Setup mask for cpus without special case scheduling requirements.
5295          * For now this just excludes isolated cpus, but could be used to
5296          * exclude other special cases in the future.
5297          */
5298         cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5299
5300         build_sched_domains(&cpu_default_map);
5301 }
5302
5303 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5304 {
5305 #ifdef CONFIG_NUMA
5306         int i;
5307         int cpu;
5308
5309         for_each_cpu_mask(cpu, *cpu_map) {
5310                 struct sched_group *sched_group_allnodes
5311                         = sched_group_allnodes_bycpu[cpu];
5312                 struct sched_group **sched_group_nodes
5313                         = sched_group_nodes_bycpu[cpu];
5314
5315                 if (sched_group_allnodes) {
5316                         kfree(sched_group_allnodes);
5317                         sched_group_allnodes_bycpu[cpu] = NULL;
5318                 }
5319
5320                 if (!sched_group_nodes)
5321                         continue;
5322
5323                 for (i = 0; i < MAX_NUMNODES; i++) {
5324                         cpumask_t nodemask = node_to_cpumask(i);
5325                         struct sched_group *oldsg, *sg = sched_group_nodes[i];
5326
5327                         cpus_and(nodemask, nodemask, *cpu_map);
5328                         if (cpus_empty(nodemask))
5329                                 continue;
5330
5331                         if (sg == NULL)
5332                                 continue;
5333                         sg = sg->next;
5334 next_sg:
5335                         oldsg = sg;
5336                         sg = sg->next;
5337                         kfree(oldsg);
5338                         if (oldsg != sched_group_nodes[i])
5339                                 goto next_sg;
5340                 }
5341                 kfree(sched_group_nodes);
5342                 sched_group_nodes_bycpu[cpu] = NULL;
5343         }
5344 #endif
5345 }
5346
5347 /*
5348  * Detach sched domains from a group of cpus specified in cpu_map
5349  * These cpus will now be attached to the NULL domain
5350  */
5351 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5352 {
5353         int i;
5354
5355         for_each_cpu_mask(i, *cpu_map)
5356                 cpu_attach_domain(NULL, i);
5357         synchronize_sched();
5358         arch_destroy_sched_domains(cpu_map);
5359 }
5360
5361 /*
5362  * Partition sched domains as specified by the cpumasks below.
5363  * This attaches all cpus from the cpumasks to the NULL domain,
5364  * waits for a RCU quiescent period, recalculates sched
5365  * domain information and then attaches them back to the
5366  * correct sched domains
5367  * Call with hotplug lock held
5368  */
5369 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5370 {
5371         cpumask_t change_map;
5372
5373         cpus_and(*partition1, *partition1, cpu_online_map);
5374         cpus_and(*partition2, *partition2, cpu_online_map);
5375         cpus_or(change_map, *partition1, *partition2);
5376
5377         /* Detach sched domains from all of the affected cpus */
5378         detach_destroy_domains(&change_map);
5379         if (!cpus_empty(*partition1))
5380                 build_sched_domains(partition1);
5381         if (!cpus_empty(*partition2))
5382                 build_sched_domains(partition2);
5383 }
5384
5385 #ifdef CONFIG_HOTPLUG_CPU
5386 /*
5387  * Force a reinitialization of the sched domains hierarchy.  The domains
5388  * and groups cannot be updated in place without racing with the balancing
5389  * code, so we temporarily attach all running cpus to the NULL domain
5390  * which will prevent rebalancing while the sched domains are recalculated.
5391  */
5392 static int update_sched_domains(struct notifier_block *nfb,
5393                                 unsigned long action, void *hcpu)
5394 {
5395         switch (action) {
5396         case CPU_UP_PREPARE:
5397         case CPU_DOWN_PREPARE:
5398                 detach_destroy_domains(&cpu_online_map);
5399                 return NOTIFY_OK;
5400
5401         case CPU_UP_CANCELED:
5402         case CPU_DOWN_FAILED:
5403         case CPU_ONLINE:
5404         case CPU_DEAD:
5405                 /*
5406                  * Fall through and re-initialise the domains.
5407                  */
5408                 break;
5409         default:
5410                 return NOTIFY_DONE;
5411         }
5412
5413         /* The hotplug lock is already held by cpu_up/cpu_down */
5414         arch_init_sched_domains(&cpu_online_map);
5415
5416         return NOTIFY_OK;
5417 }
5418 #endif
5419
5420 void __init sched_init_smp(void)
5421 {
5422         lock_cpu_hotplug();
5423         arch_init_sched_domains(&cpu_online_map);
5424         unlock_cpu_hotplug();
5425         /* XXX: Theoretical race here - CPU may be hotplugged now */
5426         hotcpu_notifier(update_sched_domains, 0);
5427 }
5428 #else
5429 void __init sched_init_smp(void)
5430 {
5431 }
5432 #endif /* CONFIG_SMP */
5433
5434 int in_sched_functions(unsigned long addr)
5435 {
5436         /* Linker adds these: start and end of __sched functions */
5437         extern char __sched_text_start[], __sched_text_end[];
5438         return in_lock_functions(addr) ||
5439                 (addr >= (unsigned long)__sched_text_start
5440                 && addr < (unsigned long)__sched_text_end);
5441 }
5442
5443 void __init sched_init(void)
5444 {
5445         runqueue_t *rq;
5446         int i, j, k;
5447
5448         for (i = 0; i < NR_CPUS; i++) {
5449                 prio_array_t *array;
5450
5451                 rq = cpu_rq(i);
5452                 spin_lock_init(&rq->lock);
5453                 rq->nr_running = 0;
5454                 rq->active = rq->arrays;
5455                 rq->expired = rq->arrays + 1;
5456                 rq->best_expired_prio = MAX_PRIO;
5457
5458 #ifdef CONFIG_SMP
5459                 rq->sd = NULL;
5460                 for (j = 1; j < 3; j++)
5461                         rq->cpu_load[j] = 0;
5462                 rq->active_balance = 0;
5463                 rq->push_cpu = 0;
5464                 rq->migration_thread = NULL;
5465                 INIT_LIST_HEAD(&rq->migration_queue);
5466 #endif
5467                 atomic_set(&rq->nr_iowait, 0);
5468
5469                 for (j = 0; j < 2; j++) {
5470                         array = rq->arrays + j;
5471                         for (k = 0; k < MAX_PRIO; k++) {
5472                                 INIT_LIST_HEAD(array->queue + k);
5473                                 __clear_bit(k, array->bitmap);
5474                         }
5475                         // delimiter for bitsearch
5476                         __set_bit(MAX_PRIO, array->bitmap);
5477                 }
5478         }
5479
5480         /*
5481          * The boot idle thread does lazy MMU switching as well:
5482          */
5483         atomic_inc(&init_mm.mm_count);
5484         enter_lazy_tlb(&init_mm, current);
5485
5486         /*
5487          * Make us the idle thread. Technically, schedule() should not be
5488          * called from this thread, however somewhere below it might be,
5489          * but because we are the idle thread, we just pick up running again
5490          * when this runqueue becomes "idle".
5491          */
5492         init_idle(current, smp_processor_id());
5493 }
5494
5495 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5496 void __might_sleep(char *file, int line)
5497 {
5498 #if defined(in_atomic)
5499         static unsigned long prev_jiffy;        /* ratelimiting */
5500
5501         if ((in_atomic() || irqs_disabled()) &&
5502             system_state == SYSTEM_RUNNING && !oops_in_progress) {
5503                 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5504                         return;
5505                 prev_jiffy = jiffies;
5506                 printk(KERN_ERR "Debug: sleeping function called from invalid"
5507                                 " context at %s:%d\n", file, line);
5508                 printk("in_atomic():%d, irqs_disabled():%d\n",
5509                         in_atomic(), irqs_disabled());
5510                 dump_stack();
5511         }
5512 #endif
5513 }
5514 EXPORT_SYMBOL(__might_sleep);
5515 #endif
5516
5517 #ifdef CONFIG_MAGIC_SYSRQ
5518 void normalize_rt_tasks(void)
5519 {
5520         struct task_struct *p;
5521         prio_array_t *array;
5522         unsigned long flags;
5523         runqueue_t *rq;
5524
5525         read_lock_irq(&tasklist_lock);
5526         for_each_process (p) {
5527                 if (!rt_task(p))
5528                         continue;
5529
5530                 rq = task_rq_lock(p, &flags);
5531
5532                 array = p->array;
5533                 if (array)
5534                         deactivate_task(p, task_rq(p));
5535                 __setscheduler(p, SCHED_NORMAL, 0);
5536                 if (array) {
5537                         __activate_task(p, task_rq(p));
5538                         resched_task(rq->curr);
5539                 }
5540
5541                 task_rq_unlock(rq, &flags);
5542         }
5543         read_unlock_irq(&tasklist_lock);
5544 }
5545
5546 #endif /* CONFIG_MAGIC_SYSRQ */