380291efe788bda7bba61bbbed522345334ab8c6
[pandora-kernel.git] / kernel / power / snapshot.c
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <asm/io.h>
36
37 #include "power.h"
38
39 static int swsusp_page_is_free(struct page *);
40 static void swsusp_set_page_forbidden(struct page *);
41 static void swsusp_unset_page_forbidden(struct page *);
42
43 /*
44  * Number of bytes to reserve for memory allocations made by device drivers
45  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
46  * cause image creation to fail (tunable via /sys/power/reserved_size).
47  */
48 unsigned long reserved_size;
49
50 void __init hibernate_reserved_size_init(void)
51 {
52         reserved_size = SPARE_PAGES * PAGE_SIZE;
53 }
54
55 /*
56  * Preferred image size in bytes (tunable via /sys/power/image_size).
57  * When it is set to N, swsusp will do its best to ensure the image
58  * size will not exceed N bytes, but if that is impossible, it will
59  * try to create the smallest image possible.
60  */
61 unsigned long image_size;
62
63 void __init hibernate_image_size_init(void)
64 {
65         image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
66 }
67
68 /* List of PBEs needed for restoring the pages that were allocated before
69  * the suspend and included in the suspend image, but have also been
70  * allocated by the "resume" kernel, so their contents cannot be written
71  * directly to their "original" page frames.
72  */
73 struct pbe *restore_pblist;
74
75 /* Pointer to an auxiliary buffer (1 page) */
76 static void *buffer;
77
78 /**
79  *      @safe_needed - on resume, for storing the PBE list and the image,
80  *      we can only use memory pages that do not conflict with the pages
81  *      used before suspend.  The unsafe pages have PageNosaveFree set
82  *      and we count them using unsafe_pages.
83  *
84  *      Each allocated image page is marked as PageNosave and PageNosaveFree
85  *      so that swsusp_free() can release it.
86  */
87
88 #define PG_ANY          0
89 #define PG_SAFE         1
90 #define PG_UNSAFE_CLEAR 1
91 #define PG_UNSAFE_KEEP  0
92
93 static unsigned int allocated_unsafe_pages;
94
95 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
96 {
97         void *res;
98
99         res = (void *)get_zeroed_page(gfp_mask);
100         if (safe_needed)
101                 while (res && swsusp_page_is_free(virt_to_page(res))) {
102                         /* The page is unsafe, mark it for swsusp_free() */
103                         swsusp_set_page_forbidden(virt_to_page(res));
104                         allocated_unsafe_pages++;
105                         res = (void *)get_zeroed_page(gfp_mask);
106                 }
107         if (res) {
108                 swsusp_set_page_forbidden(virt_to_page(res));
109                 swsusp_set_page_free(virt_to_page(res));
110         }
111         return res;
112 }
113
114 unsigned long get_safe_page(gfp_t gfp_mask)
115 {
116         return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
117 }
118
119 static struct page *alloc_image_page(gfp_t gfp_mask)
120 {
121         struct page *page;
122
123         page = alloc_page(gfp_mask);
124         if (page) {
125                 swsusp_set_page_forbidden(page);
126                 swsusp_set_page_free(page);
127         }
128         return page;
129 }
130
131 /**
132  *      free_image_page - free page represented by @addr, allocated with
133  *      get_image_page (page flags set by it must be cleared)
134  */
135
136 static inline void free_image_page(void *addr, int clear_nosave_free)
137 {
138         struct page *page;
139
140         BUG_ON(!virt_addr_valid(addr));
141
142         page = virt_to_page(addr);
143
144         swsusp_unset_page_forbidden(page);
145         if (clear_nosave_free)
146                 swsusp_unset_page_free(page);
147
148         __free_page(page);
149 }
150
151 /* struct linked_page is used to build chains of pages */
152
153 #define LINKED_PAGE_DATA_SIZE   (PAGE_SIZE - sizeof(void *))
154
155 struct linked_page {
156         struct linked_page *next;
157         char data[LINKED_PAGE_DATA_SIZE];
158 } __attribute__((packed));
159
160 static inline void
161 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
162 {
163         while (list) {
164                 struct linked_page *lp = list->next;
165
166                 free_image_page(list, clear_page_nosave);
167                 list = lp;
168         }
169 }
170
171 /**
172   *     struct chain_allocator is used for allocating small objects out of
173   *     a linked list of pages called 'the chain'.
174   *
175   *     The chain grows each time when there is no room for a new object in
176   *     the current page.  The allocated objects cannot be freed individually.
177   *     It is only possible to free them all at once, by freeing the entire
178   *     chain.
179   *
180   *     NOTE: The chain allocator may be inefficient if the allocated objects
181   *     are not much smaller than PAGE_SIZE.
182   */
183
184 struct chain_allocator {
185         struct linked_page *chain;      /* the chain */
186         unsigned int used_space;        /* total size of objects allocated out
187                                          * of the current page
188                                          */
189         gfp_t gfp_mask;         /* mask for allocating pages */
190         int safe_needed;        /* if set, only "safe" pages are allocated */
191 };
192
193 static void
194 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
195 {
196         ca->chain = NULL;
197         ca->used_space = LINKED_PAGE_DATA_SIZE;
198         ca->gfp_mask = gfp_mask;
199         ca->safe_needed = safe_needed;
200 }
201
202 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
203 {
204         void *ret;
205
206         if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
207                 struct linked_page *lp;
208
209                 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
210                 if (!lp)
211                         return NULL;
212
213                 lp->next = ca->chain;
214                 ca->chain = lp;
215                 ca->used_space = 0;
216         }
217         ret = ca->chain->data + ca->used_space;
218         ca->used_space += size;
219         return ret;
220 }
221
222 /**
223  *      Data types related to memory bitmaps.
224  *
225  *      Memory bitmap is a structure consiting of many linked lists of
226  *      objects.  The main list's elements are of type struct zone_bitmap
227  *      and each of them corresonds to one zone.  For each zone bitmap
228  *      object there is a list of objects of type struct bm_block that
229  *      represent each blocks of bitmap in which information is stored.
230  *
231  *      struct memory_bitmap contains a pointer to the main list of zone
232  *      bitmap objects, a struct bm_position used for browsing the bitmap,
233  *      and a pointer to the list of pages used for allocating all of the
234  *      zone bitmap objects and bitmap block objects.
235  *
236  *      NOTE: It has to be possible to lay out the bitmap in memory
237  *      using only allocations of order 0.  Additionally, the bitmap is
238  *      designed to work with arbitrary number of zones (this is over the
239  *      top for now, but let's avoid making unnecessary assumptions ;-).
240  *
241  *      struct zone_bitmap contains a pointer to a list of bitmap block
242  *      objects and a pointer to the bitmap block object that has been
243  *      most recently used for setting bits.  Additionally, it contains the
244  *      pfns that correspond to the start and end of the represented zone.
245  *
246  *      struct bm_block contains a pointer to the memory page in which
247  *      information is stored (in the form of a block of bitmap)
248  *      It also contains the pfns that correspond to the start and end of
249  *      the represented memory area.
250  */
251
252 #define BM_END_OF_MAP   (~0UL)
253
254 #define BM_BITS_PER_BLOCK       (PAGE_SIZE * BITS_PER_BYTE)
255
256 struct bm_block {
257         struct list_head hook;  /* hook into a list of bitmap blocks */
258         unsigned long start_pfn;        /* pfn represented by the first bit */
259         unsigned long end_pfn;  /* pfn represented by the last bit plus 1 */
260         unsigned long *data;    /* bitmap representing pages */
261 };
262
263 static inline unsigned long bm_block_bits(struct bm_block *bb)
264 {
265         return bb->end_pfn - bb->start_pfn;
266 }
267
268 /* strcut bm_position is used for browsing memory bitmaps */
269
270 struct bm_position {
271         struct bm_block *block;
272         int bit;
273 };
274
275 struct memory_bitmap {
276         struct list_head blocks;        /* list of bitmap blocks */
277         struct linked_page *p_list;     /* list of pages used to store zone
278                                          * bitmap objects and bitmap block
279                                          * objects
280                                          */
281         struct bm_position cur; /* most recently used bit position */
282 };
283
284 /* Functions that operate on memory bitmaps */
285
286 static void memory_bm_position_reset(struct memory_bitmap *bm)
287 {
288         bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
289         bm->cur.bit = 0;
290 }
291
292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293
294 /**
295  *      create_bm_block_list - create a list of block bitmap objects
296  *      @pages - number of pages to track
297  *      @list - list to put the allocated blocks into
298  *      @ca - chain allocator to be used for allocating memory
299  */
300 static int create_bm_block_list(unsigned long pages,
301                                 struct list_head *list,
302                                 struct chain_allocator *ca)
303 {
304         unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
305
306         while (nr_blocks-- > 0) {
307                 struct bm_block *bb;
308
309                 bb = chain_alloc(ca, sizeof(struct bm_block));
310                 if (!bb)
311                         return -ENOMEM;
312                 list_add(&bb->hook, list);
313         }
314
315         return 0;
316 }
317
318 struct mem_extent {
319         struct list_head hook;
320         unsigned long start;
321         unsigned long end;
322 };
323
324 /**
325  *      free_mem_extents - free a list of memory extents
326  *      @list - list of extents to empty
327  */
328 static void free_mem_extents(struct list_head *list)
329 {
330         struct mem_extent *ext, *aux;
331
332         list_for_each_entry_safe(ext, aux, list, hook) {
333                 list_del(&ext->hook);
334                 kfree(ext);
335         }
336 }
337
338 /**
339  *      create_mem_extents - create a list of memory extents representing
340  *                           contiguous ranges of PFNs
341  *      @list - list to put the extents into
342  *      @gfp_mask - mask to use for memory allocations
343  */
344 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
345 {
346         struct zone *zone;
347
348         INIT_LIST_HEAD(list);
349
350         for_each_populated_zone(zone) {
351                 unsigned long zone_start, zone_end;
352                 struct mem_extent *ext, *cur, *aux;
353
354                 zone_start = zone->zone_start_pfn;
355                 zone_end = zone->zone_start_pfn + zone->spanned_pages;
356
357                 list_for_each_entry(ext, list, hook)
358                         if (zone_start <= ext->end)
359                                 break;
360
361                 if (&ext->hook == list || zone_end < ext->start) {
362                         /* New extent is necessary */
363                         struct mem_extent *new_ext;
364
365                         new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
366                         if (!new_ext) {
367                                 free_mem_extents(list);
368                                 return -ENOMEM;
369                         }
370                         new_ext->start = zone_start;
371                         new_ext->end = zone_end;
372                         list_add_tail(&new_ext->hook, &ext->hook);
373                         continue;
374                 }
375
376                 /* Merge this zone's range of PFNs with the existing one */
377                 if (zone_start < ext->start)
378                         ext->start = zone_start;
379                 if (zone_end > ext->end)
380                         ext->end = zone_end;
381
382                 /* More merging may be possible */
383                 cur = ext;
384                 list_for_each_entry_safe_continue(cur, aux, list, hook) {
385                         if (zone_end < cur->start)
386                                 break;
387                         if (zone_end < cur->end)
388                                 ext->end = cur->end;
389                         list_del(&cur->hook);
390                         kfree(cur);
391                 }
392         }
393
394         return 0;
395 }
396
397 /**
398   *     memory_bm_create - allocate memory for a memory bitmap
399   */
400 static int
401 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
402 {
403         struct chain_allocator ca;
404         struct list_head mem_extents;
405         struct mem_extent *ext;
406         int error;
407
408         chain_init(&ca, gfp_mask, safe_needed);
409         INIT_LIST_HEAD(&bm->blocks);
410
411         error = create_mem_extents(&mem_extents, gfp_mask);
412         if (error)
413                 return error;
414
415         list_for_each_entry(ext, &mem_extents, hook) {
416                 struct bm_block *bb;
417                 unsigned long pfn = ext->start;
418                 unsigned long pages = ext->end - ext->start;
419
420                 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
421
422                 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
423                 if (error)
424                         goto Error;
425
426                 list_for_each_entry_continue(bb, &bm->blocks, hook) {
427                         bb->data = get_image_page(gfp_mask, safe_needed);
428                         if (!bb->data) {
429                                 error = -ENOMEM;
430                                 goto Error;
431                         }
432
433                         bb->start_pfn = pfn;
434                         if (pages >= BM_BITS_PER_BLOCK) {
435                                 pfn += BM_BITS_PER_BLOCK;
436                                 pages -= BM_BITS_PER_BLOCK;
437                         } else {
438                                 /* This is executed only once in the loop */
439                                 pfn += pages;
440                         }
441                         bb->end_pfn = pfn;
442                 }
443         }
444
445         bm->p_list = ca.chain;
446         memory_bm_position_reset(bm);
447  Exit:
448         free_mem_extents(&mem_extents);
449         return error;
450
451  Error:
452         bm->p_list = ca.chain;
453         memory_bm_free(bm, PG_UNSAFE_CLEAR);
454         goto Exit;
455 }
456
457 /**
458   *     memory_bm_free - free memory occupied by the memory bitmap @bm
459   */
460 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
461 {
462         struct bm_block *bb;
463
464         list_for_each_entry(bb, &bm->blocks, hook)
465                 if (bb->data)
466                         free_image_page(bb->data, clear_nosave_free);
467
468         free_list_of_pages(bm->p_list, clear_nosave_free);
469
470         INIT_LIST_HEAD(&bm->blocks);
471 }
472
473 /**
474  *      memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
475  *      to given pfn.  The cur_zone_bm member of @bm and the cur_block member
476  *      of @bm->cur_zone_bm are updated.
477  */
478 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
479                                 void **addr, unsigned int *bit_nr)
480 {
481         struct bm_block *bb;
482
483         /*
484          * Check if the pfn corresponds to the current bitmap block and find
485          * the block where it fits if this is not the case.
486          */
487         bb = bm->cur.block;
488         if (pfn < bb->start_pfn)
489                 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
490                         if (pfn >= bb->start_pfn)
491                                 break;
492
493         if (pfn >= bb->end_pfn)
494                 list_for_each_entry_continue(bb, &bm->blocks, hook)
495                         if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
496                                 break;
497
498         if (&bb->hook == &bm->blocks)
499                 return -EFAULT;
500
501         /* The block has been found */
502         bm->cur.block = bb;
503         pfn -= bb->start_pfn;
504         bm->cur.bit = pfn + 1;
505         *bit_nr = pfn;
506         *addr = bb->data;
507         return 0;
508 }
509
510 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
511 {
512         void *addr;
513         unsigned int bit;
514         int error;
515
516         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
517         BUG_ON(error);
518         set_bit(bit, addr);
519 }
520
521 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
522 {
523         void *addr;
524         unsigned int bit;
525         int error;
526
527         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528         if (!error)
529                 set_bit(bit, addr);
530         return error;
531 }
532
533 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
534 {
535         void *addr;
536         unsigned int bit;
537         int error;
538
539         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
540         BUG_ON(error);
541         clear_bit(bit, addr);
542 }
543
544 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
545 {
546         void *addr;
547         unsigned int bit;
548         int error;
549
550         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
551         BUG_ON(error);
552         return test_bit(bit, addr);
553 }
554
555 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
556 {
557         void *addr;
558         unsigned int bit;
559
560         return !memory_bm_find_bit(bm, pfn, &addr, &bit);
561 }
562
563 /**
564  *      memory_bm_next_pfn - find the pfn that corresponds to the next set bit
565  *      in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
566  *      returned.
567  *
568  *      It is required to run memory_bm_position_reset() before the first call to
569  *      this function.
570  */
571
572 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
573 {
574         struct bm_block *bb;
575         int bit;
576
577         bb = bm->cur.block;
578         do {
579                 bit = bm->cur.bit;
580                 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
581                 if (bit < bm_block_bits(bb))
582                         goto Return_pfn;
583
584                 bb = list_entry(bb->hook.next, struct bm_block, hook);
585                 bm->cur.block = bb;
586                 bm->cur.bit = 0;
587         } while (&bb->hook != &bm->blocks);
588
589         memory_bm_position_reset(bm);
590         return BM_END_OF_MAP;
591
592  Return_pfn:
593         bm->cur.bit = bit + 1;
594         return bb->start_pfn + bit;
595 }
596
597 /**
598  *      This structure represents a range of page frames the contents of which
599  *      should not be saved during the suspend.
600  */
601
602 struct nosave_region {
603         struct list_head list;
604         unsigned long start_pfn;
605         unsigned long end_pfn;
606 };
607
608 static LIST_HEAD(nosave_regions);
609
610 /**
611  *      register_nosave_region - register a range of page frames the contents
612  *      of which should not be saved during the suspend (to be used in the early
613  *      initialization code)
614  */
615
616 void __init
617 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
618                          int use_kmalloc)
619 {
620         struct nosave_region *region;
621
622         if (start_pfn >= end_pfn)
623                 return;
624
625         if (!list_empty(&nosave_regions)) {
626                 /* Try to extend the previous region (they should be sorted) */
627                 region = list_entry(nosave_regions.prev,
628                                         struct nosave_region, list);
629                 if (region->end_pfn == start_pfn) {
630                         region->end_pfn = end_pfn;
631                         goto Report;
632                 }
633         }
634         if (use_kmalloc) {
635                 /* during init, this shouldn't fail */
636                 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
637                 BUG_ON(!region);
638         } else
639                 /* This allocation cannot fail */
640                 region = alloc_bootmem(sizeof(struct nosave_region));
641         region->start_pfn = start_pfn;
642         region->end_pfn = end_pfn;
643         list_add_tail(&region->list, &nosave_regions);
644  Report:
645         printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
646                 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
647 }
648
649 /*
650  * Set bits in this map correspond to the page frames the contents of which
651  * should not be saved during the suspend.
652  */
653 static struct memory_bitmap *forbidden_pages_map;
654
655 /* Set bits in this map correspond to free page frames. */
656 static struct memory_bitmap *free_pages_map;
657
658 /*
659  * Each page frame allocated for creating the image is marked by setting the
660  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
661  */
662
663 void swsusp_set_page_free(struct page *page)
664 {
665         if (free_pages_map)
666                 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
667 }
668
669 static int swsusp_page_is_free(struct page *page)
670 {
671         return free_pages_map ?
672                 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
673 }
674
675 void swsusp_unset_page_free(struct page *page)
676 {
677         if (free_pages_map)
678                 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
679 }
680
681 static void swsusp_set_page_forbidden(struct page *page)
682 {
683         if (forbidden_pages_map)
684                 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
685 }
686
687 int swsusp_page_is_forbidden(struct page *page)
688 {
689         return forbidden_pages_map ?
690                 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
691 }
692
693 static void swsusp_unset_page_forbidden(struct page *page)
694 {
695         if (forbidden_pages_map)
696                 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
697 }
698
699 /**
700  *      mark_nosave_pages - set bits corresponding to the page frames the
701  *      contents of which should not be saved in a given bitmap.
702  */
703
704 static void mark_nosave_pages(struct memory_bitmap *bm)
705 {
706         struct nosave_region *region;
707
708         if (list_empty(&nosave_regions))
709                 return;
710
711         list_for_each_entry(region, &nosave_regions, list) {
712                 unsigned long pfn;
713
714                 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
715                                 region->start_pfn << PAGE_SHIFT,
716                                 region->end_pfn << PAGE_SHIFT);
717
718                 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
719                         if (pfn_valid(pfn)) {
720                                 /*
721                                  * It is safe to ignore the result of
722                                  * mem_bm_set_bit_check() here, since we won't
723                                  * touch the PFNs for which the error is
724                                  * returned anyway.
725                                  */
726                                 mem_bm_set_bit_check(bm, pfn);
727                         }
728         }
729 }
730
731 /**
732  *      create_basic_memory_bitmaps - create bitmaps needed for marking page
733  *      frames that should not be saved and free page frames.  The pointers
734  *      forbidden_pages_map and free_pages_map are only modified if everything
735  *      goes well, because we don't want the bits to be used before both bitmaps
736  *      are set up.
737  */
738
739 int create_basic_memory_bitmaps(void)
740 {
741         struct memory_bitmap *bm1, *bm2;
742         int error = 0;
743
744         BUG_ON(forbidden_pages_map || free_pages_map);
745
746         bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
747         if (!bm1)
748                 return -ENOMEM;
749
750         error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
751         if (error)
752                 goto Free_first_object;
753
754         bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
755         if (!bm2)
756                 goto Free_first_bitmap;
757
758         error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
759         if (error)
760                 goto Free_second_object;
761
762         forbidden_pages_map = bm1;
763         free_pages_map = bm2;
764         mark_nosave_pages(forbidden_pages_map);
765
766         pr_debug("PM: Basic memory bitmaps created\n");
767
768         return 0;
769
770  Free_second_object:
771         kfree(bm2);
772  Free_first_bitmap:
773         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
774  Free_first_object:
775         kfree(bm1);
776         return -ENOMEM;
777 }
778
779 /**
780  *      free_basic_memory_bitmaps - free memory bitmaps allocated by
781  *      create_basic_memory_bitmaps().  The auxiliary pointers are necessary
782  *      so that the bitmaps themselves are not referred to while they are being
783  *      freed.
784  */
785
786 void free_basic_memory_bitmaps(void)
787 {
788         struct memory_bitmap *bm1, *bm2;
789
790         BUG_ON(!(forbidden_pages_map && free_pages_map));
791
792         bm1 = forbidden_pages_map;
793         bm2 = free_pages_map;
794         forbidden_pages_map = NULL;
795         free_pages_map = NULL;
796         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
797         kfree(bm1);
798         memory_bm_free(bm2, PG_UNSAFE_CLEAR);
799         kfree(bm2);
800
801         pr_debug("PM: Basic memory bitmaps freed\n");
802 }
803
804 /**
805  *      snapshot_additional_pages - estimate the number of additional pages
806  *      be needed for setting up the suspend image data structures for given
807  *      zone (usually the returned value is greater than the exact number)
808  */
809
810 unsigned int snapshot_additional_pages(struct zone *zone)
811 {
812         unsigned int res;
813
814         res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
815         res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
816         return 2 * res;
817 }
818
819 #ifdef CONFIG_HIGHMEM
820 /**
821  *      count_free_highmem_pages - compute the total number of free highmem
822  *      pages, system-wide.
823  */
824
825 static unsigned int count_free_highmem_pages(void)
826 {
827         struct zone *zone;
828         unsigned int cnt = 0;
829
830         for_each_populated_zone(zone)
831                 if (is_highmem(zone))
832                         cnt += zone_page_state(zone, NR_FREE_PAGES);
833
834         return cnt;
835 }
836
837 /**
838  *      saveable_highmem_page - Determine whether a highmem page should be
839  *      included in the suspend image.
840  *
841  *      We should save the page if it isn't Nosave or NosaveFree, or Reserved,
842  *      and it isn't a part of a free chunk of pages.
843  */
844 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
845 {
846         struct page *page;
847
848         if (!pfn_valid(pfn))
849                 return NULL;
850
851         page = pfn_to_page(pfn);
852         if (page_zone(page) != zone)
853                 return NULL;
854
855         BUG_ON(!PageHighMem(page));
856
857         if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
858             PageReserved(page))
859                 return NULL;
860
861         return page;
862 }
863
864 /**
865  *      count_highmem_pages - compute the total number of saveable highmem
866  *      pages.
867  */
868
869 static unsigned int count_highmem_pages(void)
870 {
871         struct zone *zone;
872         unsigned int n = 0;
873
874         for_each_populated_zone(zone) {
875                 unsigned long pfn, max_zone_pfn;
876
877                 if (!is_highmem(zone))
878                         continue;
879
880                 mark_free_pages(zone);
881                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
882                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
883                         if (saveable_highmem_page(zone, pfn))
884                                 n++;
885         }
886         return n;
887 }
888 #else
889 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
890 {
891         return NULL;
892 }
893 #endif /* CONFIG_HIGHMEM */
894
895 /**
896  *      saveable_page - Determine whether a non-highmem page should be included
897  *      in the suspend image.
898  *
899  *      We should save the page if it isn't Nosave, and is not in the range
900  *      of pages statically defined as 'unsaveable', and it isn't a part of
901  *      a free chunk of pages.
902  */
903 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
904 {
905         struct page *page;
906
907         if (!pfn_valid(pfn))
908                 return NULL;
909
910         page = pfn_to_page(pfn);
911         if (page_zone(page) != zone)
912                 return NULL;
913
914         BUG_ON(PageHighMem(page));
915
916         if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
917                 return NULL;
918
919         if (PageReserved(page)
920             && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
921                 return NULL;
922
923         return page;
924 }
925
926 /**
927  *      count_data_pages - compute the total number of saveable non-highmem
928  *      pages.
929  */
930
931 static unsigned int count_data_pages(void)
932 {
933         struct zone *zone;
934         unsigned long pfn, max_zone_pfn;
935         unsigned int n = 0;
936
937         for_each_populated_zone(zone) {
938                 if (is_highmem(zone))
939                         continue;
940
941                 mark_free_pages(zone);
942                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
943                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
944                         if (saveable_page(zone, pfn))
945                                 n++;
946         }
947         return n;
948 }
949
950 /* This is needed, because copy_page and memcpy are not usable for copying
951  * task structs.
952  */
953 static inline void do_copy_page(long *dst, long *src)
954 {
955         int n;
956
957         for (n = PAGE_SIZE / sizeof(long); n; n--)
958                 *dst++ = *src++;
959 }
960
961
962 /**
963  *      safe_copy_page - check if the page we are going to copy is marked as
964  *              present in the kernel page tables (this always is the case if
965  *              CONFIG_DEBUG_PAGEALLOC is not set and in that case
966  *              kernel_page_present() always returns 'true').
967  */
968 static void safe_copy_page(void *dst, struct page *s_page)
969 {
970         if (kernel_page_present(s_page)) {
971                 do_copy_page(dst, page_address(s_page));
972         } else {
973                 kernel_map_pages(s_page, 1, 1);
974                 do_copy_page(dst, page_address(s_page));
975                 kernel_map_pages(s_page, 1, 0);
976         }
977 }
978
979
980 #ifdef CONFIG_HIGHMEM
981 static inline struct page *
982 page_is_saveable(struct zone *zone, unsigned long pfn)
983 {
984         return is_highmem(zone) ?
985                 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
986 }
987
988 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
989 {
990         struct page *s_page, *d_page;
991         void *src, *dst;
992
993         s_page = pfn_to_page(src_pfn);
994         d_page = pfn_to_page(dst_pfn);
995         if (PageHighMem(s_page)) {
996                 src = kmap_atomic(s_page, KM_USER0);
997                 dst = kmap_atomic(d_page, KM_USER1);
998                 do_copy_page(dst, src);
999                 kunmap_atomic(dst, KM_USER1);
1000                 kunmap_atomic(src, KM_USER0);
1001         } else {
1002                 if (PageHighMem(d_page)) {
1003                         /* Page pointed to by src may contain some kernel
1004                          * data modified by kmap_atomic()
1005                          */
1006                         safe_copy_page(buffer, s_page);
1007                         dst = kmap_atomic(d_page, KM_USER0);
1008                         copy_page(dst, buffer);
1009                         kunmap_atomic(dst, KM_USER0);
1010                 } else {
1011                         safe_copy_page(page_address(d_page), s_page);
1012                 }
1013         }
1014 }
1015 #else
1016 #define page_is_saveable(zone, pfn)     saveable_page(zone, pfn)
1017
1018 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1019 {
1020         safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1021                                 pfn_to_page(src_pfn));
1022 }
1023 #endif /* CONFIG_HIGHMEM */
1024
1025 static void
1026 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1027 {
1028         struct zone *zone;
1029         unsigned long pfn;
1030
1031         for_each_populated_zone(zone) {
1032                 unsigned long max_zone_pfn;
1033
1034                 mark_free_pages(zone);
1035                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1036                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1037                         if (page_is_saveable(zone, pfn))
1038                                 memory_bm_set_bit(orig_bm, pfn);
1039         }
1040         memory_bm_position_reset(orig_bm);
1041         memory_bm_position_reset(copy_bm);
1042         for(;;) {
1043                 pfn = memory_bm_next_pfn(orig_bm);
1044                 if (unlikely(pfn == BM_END_OF_MAP))
1045                         break;
1046                 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1047         }
1048 }
1049
1050 /* Total number of image pages */
1051 static unsigned int nr_copy_pages;
1052 /* Number of pages needed for saving the original pfns of the image pages */
1053 static unsigned int nr_meta_pages;
1054 /*
1055  * Numbers of normal and highmem page frames allocated for hibernation image
1056  * before suspending devices.
1057  */
1058 unsigned int alloc_normal, alloc_highmem;
1059 /*
1060  * Memory bitmap used for marking saveable pages (during hibernation) or
1061  * hibernation image pages (during restore)
1062  */
1063 static struct memory_bitmap orig_bm;
1064 /*
1065  * Memory bitmap used during hibernation for marking allocated page frames that
1066  * will contain copies of saveable pages.  During restore it is initially used
1067  * for marking hibernation image pages, but then the set bits from it are
1068  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1069  * used for marking "safe" highmem pages, but it has to be reinitialized for
1070  * this purpose.
1071  */
1072 static struct memory_bitmap copy_bm;
1073
1074 /**
1075  *      swsusp_free - free pages allocated for the suspend.
1076  *
1077  *      Suspend pages are alocated before the atomic copy is made, so we
1078  *      need to release them after the resume.
1079  */
1080
1081 void swsusp_free(void)
1082 {
1083         struct zone *zone;
1084         unsigned long pfn, max_zone_pfn;
1085
1086         for_each_populated_zone(zone) {
1087                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1088                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1089                         if (pfn_valid(pfn)) {
1090                                 struct page *page = pfn_to_page(pfn);
1091
1092                                 if (swsusp_page_is_forbidden(page) &&
1093                                     swsusp_page_is_free(page)) {
1094                                         swsusp_unset_page_forbidden(page);
1095                                         swsusp_unset_page_free(page);
1096                                         __free_page(page);
1097                                 }
1098                         }
1099         }
1100         nr_copy_pages = 0;
1101         nr_meta_pages = 0;
1102         restore_pblist = NULL;
1103         buffer = NULL;
1104         alloc_normal = 0;
1105         alloc_highmem = 0;
1106 }
1107
1108 /* Helper functions used for the shrinking of memory. */
1109
1110 #define GFP_IMAGE       (GFP_KERNEL | __GFP_NOWARN)
1111
1112 /**
1113  * preallocate_image_pages - Allocate a number of pages for hibernation image
1114  * @nr_pages: Number of page frames to allocate.
1115  * @mask: GFP flags to use for the allocation.
1116  *
1117  * Return value: Number of page frames actually allocated
1118  */
1119 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1120 {
1121         unsigned long nr_alloc = 0;
1122
1123         while (nr_pages > 0) {
1124                 struct page *page;
1125
1126                 page = alloc_image_page(mask);
1127                 if (!page)
1128                         break;
1129                 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1130                 if (PageHighMem(page))
1131                         alloc_highmem++;
1132                 else
1133                         alloc_normal++;
1134                 nr_pages--;
1135                 nr_alloc++;
1136         }
1137
1138         return nr_alloc;
1139 }
1140
1141 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1142                                               unsigned long avail_normal)
1143 {
1144         unsigned long alloc;
1145
1146         if (avail_normal <= alloc_normal)
1147                 return 0;
1148
1149         alloc = avail_normal - alloc_normal;
1150         if (nr_pages < alloc)
1151                 alloc = nr_pages;
1152
1153         return preallocate_image_pages(alloc, GFP_IMAGE);
1154 }
1155
1156 #ifdef CONFIG_HIGHMEM
1157 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1158 {
1159         return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1160 }
1161
1162 /**
1163  *  __fraction - Compute (an approximation of) x * (multiplier / base)
1164  */
1165 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1166 {
1167         x *= multiplier;
1168         do_div(x, base);
1169         return (unsigned long)x;
1170 }
1171
1172 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1173                                                 unsigned long highmem,
1174                                                 unsigned long total)
1175 {
1176         unsigned long alloc = __fraction(nr_pages, highmem, total);
1177
1178         return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1179 }
1180 #else /* CONFIG_HIGHMEM */
1181 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1182 {
1183         return 0;
1184 }
1185
1186 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1187                                                 unsigned long highmem,
1188                                                 unsigned long total)
1189 {
1190         return 0;
1191 }
1192 #endif /* CONFIG_HIGHMEM */
1193
1194 /**
1195  * free_unnecessary_pages - Release preallocated pages not needed for the image
1196  */
1197 static void free_unnecessary_pages(void)
1198 {
1199         unsigned long save, to_free_normal, to_free_highmem;
1200
1201         save = count_data_pages();
1202         if (alloc_normal >= save) {
1203                 to_free_normal = alloc_normal - save;
1204                 save = 0;
1205         } else {
1206                 to_free_normal = 0;
1207                 save -= alloc_normal;
1208         }
1209         save += count_highmem_pages();
1210         if (alloc_highmem >= save) {
1211                 to_free_highmem = alloc_highmem - save;
1212         } else {
1213                 to_free_highmem = 0;
1214                 save -= alloc_highmem;
1215                 if (to_free_normal > save)
1216                         to_free_normal -= save;
1217                 else
1218                         to_free_normal = 0;
1219         }
1220
1221         memory_bm_position_reset(&copy_bm);
1222
1223         while (to_free_normal > 0 || to_free_highmem > 0) {
1224                 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1225                 struct page *page = pfn_to_page(pfn);
1226
1227                 if (PageHighMem(page)) {
1228                         if (!to_free_highmem)
1229                                 continue;
1230                         to_free_highmem--;
1231                         alloc_highmem--;
1232                 } else {
1233                         if (!to_free_normal)
1234                                 continue;
1235                         to_free_normal--;
1236                         alloc_normal--;
1237                 }
1238                 memory_bm_clear_bit(&copy_bm, pfn);
1239                 swsusp_unset_page_forbidden(page);
1240                 swsusp_unset_page_free(page);
1241                 __free_page(page);
1242         }
1243 }
1244
1245 /**
1246  * minimum_image_size - Estimate the minimum acceptable size of an image
1247  * @saveable: Number of saveable pages in the system.
1248  *
1249  * We want to avoid attempting to free too much memory too hard, so estimate the
1250  * minimum acceptable size of a hibernation image to use as the lower limit for
1251  * preallocating memory.
1252  *
1253  * We assume that the minimum image size should be proportional to
1254  *
1255  * [number of saveable pages] - [number of pages that can be freed in theory]
1256  *
1257  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1258  * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1259  * minus mapped file pages.
1260  */
1261 static unsigned long minimum_image_size(unsigned long saveable)
1262 {
1263         unsigned long size;
1264
1265         size = global_page_state(NR_SLAB_RECLAIMABLE)
1266                 + global_page_state(NR_ACTIVE_ANON)
1267                 + global_page_state(NR_INACTIVE_ANON)
1268                 + global_page_state(NR_ACTIVE_FILE)
1269                 + global_page_state(NR_INACTIVE_FILE)
1270                 - global_page_state(NR_FILE_MAPPED);
1271
1272         return saveable <= size ? 0 : saveable - size;
1273 }
1274
1275 /**
1276  * hibernate_preallocate_memory - Preallocate memory for hibernation image
1277  *
1278  * To create a hibernation image it is necessary to make a copy of every page
1279  * frame in use.  We also need a number of page frames to be free during
1280  * hibernation for allocations made while saving the image and for device
1281  * drivers, in case they need to allocate memory from their hibernation
1282  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1283  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1284  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1285  * total number of available page frames and allocate at least
1286  *
1287  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1288  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1289  *
1290  * of them, which corresponds to the maximum size of a hibernation image.
1291  *
1292  * If image_size is set below the number following from the above formula,
1293  * the preallocation of memory is continued until the total number of saveable
1294  * pages in the system is below the requested image size or the minimum
1295  * acceptable image size returned by minimum_image_size(), whichever is greater.
1296  */
1297 int hibernate_preallocate_memory(void)
1298 {
1299         struct zone *zone;
1300         unsigned long saveable, size, max_size, count, highmem, pages = 0;
1301         unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1302         struct timeval start, stop;
1303         int error;
1304
1305         printk(KERN_INFO "PM: Preallocating image memory... ");
1306         do_gettimeofday(&start);
1307
1308         error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1309         if (error)
1310                 goto err_out;
1311
1312         error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1313         if (error)
1314                 goto err_out;
1315
1316         alloc_normal = 0;
1317         alloc_highmem = 0;
1318
1319         /* Count the number of saveable data pages. */
1320         save_highmem = count_highmem_pages();
1321         saveable = count_data_pages();
1322
1323         /*
1324          * Compute the total number of page frames we can use (count) and the
1325          * number of pages needed for image metadata (size).
1326          */
1327         count = saveable;
1328         saveable += save_highmem;
1329         highmem = save_highmem;
1330         size = 0;
1331         for_each_populated_zone(zone) {
1332                 size += snapshot_additional_pages(zone);
1333                 if (is_highmem(zone))
1334                         highmem += zone_page_state(zone, NR_FREE_PAGES);
1335                 else
1336                         count += zone_page_state(zone, NR_FREE_PAGES);
1337         }
1338         avail_normal = count;
1339         count += highmem;
1340         count -= totalreserve_pages;
1341
1342         /* Add number of pages required for page keys (s390 only). */
1343         size += page_key_additional_pages(saveable);
1344
1345         /* Compute the maximum number of saveable pages to leave in memory. */
1346         max_size = (count - (size + PAGES_FOR_IO)) / 2
1347                         - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1348         /* Compute the desired number of image pages specified by image_size. */
1349         size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1350         if (size > max_size)
1351                 size = max_size;
1352         /*
1353          * If the desired number of image pages is at least as large as the
1354          * current number of saveable pages in memory, allocate page frames for
1355          * the image and we're done.
1356          */
1357         if (size >= saveable) {
1358                 pages = preallocate_image_highmem(save_highmem);
1359                 pages += preallocate_image_memory(saveable - pages, avail_normal);
1360                 goto out;
1361         }
1362
1363         /* Estimate the minimum size of the image. */
1364         pages = minimum_image_size(saveable);
1365         /*
1366          * To avoid excessive pressure on the normal zone, leave room in it to
1367          * accommodate an image of the minimum size (unless it's already too
1368          * small, in which case don't preallocate pages from it at all).
1369          */
1370         if (avail_normal > pages)
1371                 avail_normal -= pages;
1372         else
1373                 avail_normal = 0;
1374         if (size < pages)
1375                 size = min_t(unsigned long, pages, max_size);
1376
1377         /*
1378          * Let the memory management subsystem know that we're going to need a
1379          * large number of page frames to allocate and make it free some memory.
1380          * NOTE: If this is not done, performance will be hurt badly in some
1381          * test cases.
1382          */
1383         shrink_all_memory(saveable - size);
1384
1385         /*
1386          * The number of saveable pages in memory was too high, so apply some
1387          * pressure to decrease it.  First, make room for the largest possible
1388          * image and fail if that doesn't work.  Next, try to decrease the size
1389          * of the image as much as indicated by 'size' using allocations from
1390          * highmem and non-highmem zones separately.
1391          */
1392         pages_highmem = preallocate_image_highmem(highmem / 2);
1393         alloc = count - max_size;
1394         if (alloc > pages_highmem)
1395                 alloc -= pages_highmem;
1396         else
1397                 alloc = 0;
1398         pages = preallocate_image_memory(alloc, avail_normal);
1399         if (pages < alloc) {
1400                 /* We have exhausted non-highmem pages, try highmem. */
1401                 alloc -= pages;
1402                 pages += pages_highmem;
1403                 pages_highmem = preallocate_image_highmem(alloc);
1404                 if (pages_highmem < alloc)
1405                         goto err_out;
1406                 pages += pages_highmem;
1407                 /*
1408                  * size is the desired number of saveable pages to leave in
1409                  * memory, so try to preallocate (all memory - size) pages.
1410                  */
1411                 alloc = (count - pages) - size;
1412                 pages += preallocate_image_highmem(alloc);
1413         } else {
1414                 /*
1415                  * There are approximately max_size saveable pages at this point
1416                  * and we want to reduce this number down to size.
1417                  */
1418                 alloc = max_size - size;
1419                 size = preallocate_highmem_fraction(alloc, highmem, count);
1420                 pages_highmem += size;
1421                 alloc -= size;
1422                 size = preallocate_image_memory(alloc, avail_normal);
1423                 pages_highmem += preallocate_image_highmem(alloc - size);
1424                 pages += pages_highmem + size;
1425         }
1426
1427         /*
1428          * We only need as many page frames for the image as there are saveable
1429          * pages in memory, but we have allocated more.  Release the excessive
1430          * ones now.
1431          */
1432         free_unnecessary_pages();
1433
1434  out:
1435         do_gettimeofday(&stop);
1436         printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1437         swsusp_show_speed(&start, &stop, pages, "Allocated");
1438
1439         return 0;
1440
1441  err_out:
1442         printk(KERN_CONT "\n");
1443         swsusp_free();
1444         return -ENOMEM;
1445 }
1446
1447 #ifdef CONFIG_HIGHMEM
1448 /**
1449   *     count_pages_for_highmem - compute the number of non-highmem pages
1450   *     that will be necessary for creating copies of highmem pages.
1451   */
1452
1453 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1454 {
1455         unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1456
1457         if (free_highmem >= nr_highmem)
1458                 nr_highmem = 0;
1459         else
1460                 nr_highmem -= free_highmem;
1461
1462         return nr_highmem;
1463 }
1464 #else
1465 static unsigned int
1466 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1467 #endif /* CONFIG_HIGHMEM */
1468
1469 /**
1470  *      enough_free_mem - Make sure we have enough free memory for the
1471  *      snapshot image.
1472  */
1473
1474 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1475 {
1476         struct zone *zone;
1477         unsigned int free = alloc_normal;
1478
1479         for_each_populated_zone(zone)
1480                 if (!is_highmem(zone))
1481                         free += zone_page_state(zone, NR_FREE_PAGES);
1482
1483         nr_pages += count_pages_for_highmem(nr_highmem);
1484         pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1485                 nr_pages, PAGES_FOR_IO, free);
1486
1487         return free > nr_pages + PAGES_FOR_IO;
1488 }
1489
1490 #ifdef CONFIG_HIGHMEM
1491 /**
1492  *      get_highmem_buffer - if there are some highmem pages in the suspend
1493  *      image, we may need the buffer to copy them and/or load their data.
1494  */
1495
1496 static inline int get_highmem_buffer(int safe_needed)
1497 {
1498         buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1499         return buffer ? 0 : -ENOMEM;
1500 }
1501
1502 /**
1503  *      alloc_highmem_image_pages - allocate some highmem pages for the image.
1504  *      Try to allocate as many pages as needed, but if the number of free
1505  *      highmem pages is lesser than that, allocate them all.
1506  */
1507
1508 static inline unsigned int
1509 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1510 {
1511         unsigned int to_alloc = count_free_highmem_pages();
1512
1513         if (to_alloc > nr_highmem)
1514                 to_alloc = nr_highmem;
1515
1516         nr_highmem -= to_alloc;
1517         while (to_alloc-- > 0) {
1518                 struct page *page;
1519
1520                 page = alloc_image_page(__GFP_HIGHMEM);
1521                 memory_bm_set_bit(bm, page_to_pfn(page));
1522         }
1523         return nr_highmem;
1524 }
1525 #else
1526 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1527
1528 static inline unsigned int
1529 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1530 #endif /* CONFIG_HIGHMEM */
1531
1532 /**
1533  *      swsusp_alloc - allocate memory for the suspend image
1534  *
1535  *      We first try to allocate as many highmem pages as there are
1536  *      saveable highmem pages in the system.  If that fails, we allocate
1537  *      non-highmem pages for the copies of the remaining highmem ones.
1538  *
1539  *      In this approach it is likely that the copies of highmem pages will
1540  *      also be located in the high memory, because of the way in which
1541  *      copy_data_pages() works.
1542  */
1543
1544 static int
1545 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1546                 unsigned int nr_pages, unsigned int nr_highmem)
1547 {
1548         if (nr_highmem > 0) {
1549                 if (get_highmem_buffer(PG_ANY))
1550                         goto err_out;
1551                 if (nr_highmem > alloc_highmem) {
1552                         nr_highmem -= alloc_highmem;
1553                         nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1554                 }
1555         }
1556         if (nr_pages > alloc_normal) {
1557                 nr_pages -= alloc_normal;
1558                 while (nr_pages-- > 0) {
1559                         struct page *page;
1560
1561                         page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1562                         if (!page)
1563                                 goto err_out;
1564                         memory_bm_set_bit(copy_bm, page_to_pfn(page));
1565                 }
1566         }
1567
1568         return 0;
1569
1570  err_out:
1571         swsusp_free();
1572         return -ENOMEM;
1573 }
1574
1575 asmlinkage int swsusp_save(void)
1576 {
1577         unsigned int nr_pages, nr_highmem;
1578
1579         printk(KERN_INFO "PM: Creating hibernation image:\n");
1580
1581         drain_local_pages(NULL);
1582         nr_pages = count_data_pages();
1583         nr_highmem = count_highmem_pages();
1584         printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1585
1586         if (!enough_free_mem(nr_pages, nr_highmem)) {
1587                 printk(KERN_ERR "PM: Not enough free memory\n");
1588                 return -ENOMEM;
1589         }
1590
1591         if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1592                 printk(KERN_ERR "PM: Memory allocation failed\n");
1593                 return -ENOMEM;
1594         }
1595
1596         /* During allocating of suspend pagedir, new cold pages may appear.
1597          * Kill them.
1598          */
1599         drain_local_pages(NULL);
1600         copy_data_pages(&copy_bm, &orig_bm);
1601
1602         /*
1603          * End of critical section. From now on, we can write to memory,
1604          * but we should not touch disk. This specially means we must _not_
1605          * touch swap space! Except we must write out our image of course.
1606          */
1607
1608         nr_pages += nr_highmem;
1609         nr_copy_pages = nr_pages;
1610         nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1611
1612         printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1613                 nr_pages);
1614
1615         return 0;
1616 }
1617
1618 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1619 static int init_header_complete(struct swsusp_info *info)
1620 {
1621         memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1622         info->version_code = LINUX_VERSION_CODE;
1623         return 0;
1624 }
1625
1626 static char *check_image_kernel(struct swsusp_info *info)
1627 {
1628         if (info->version_code != LINUX_VERSION_CODE)
1629                 return "kernel version";
1630         if (strcmp(info->uts.sysname,init_utsname()->sysname))
1631                 return "system type";
1632         if (strcmp(info->uts.release,init_utsname()->release))
1633                 return "kernel release";
1634         if (strcmp(info->uts.version,init_utsname()->version))
1635                 return "version";
1636         if (strcmp(info->uts.machine,init_utsname()->machine))
1637                 return "machine";
1638         return NULL;
1639 }
1640 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1641
1642 unsigned long snapshot_get_image_size(void)
1643 {
1644         return nr_copy_pages + nr_meta_pages + 1;
1645 }
1646
1647 static int init_header(struct swsusp_info *info)
1648 {
1649         memset(info, 0, sizeof(struct swsusp_info));
1650         info->num_physpages = num_physpages;
1651         info->image_pages = nr_copy_pages;
1652         info->pages = snapshot_get_image_size();
1653         info->size = info->pages;
1654         info->size <<= PAGE_SHIFT;
1655         return init_header_complete(info);
1656 }
1657
1658 /**
1659  *      pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1660  *      are stored in the array @buf[] (1 page at a time)
1661  */
1662
1663 static inline void
1664 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1665 {
1666         int j;
1667
1668         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1669                 buf[j] = memory_bm_next_pfn(bm);
1670                 if (unlikely(buf[j] == BM_END_OF_MAP))
1671                         break;
1672                 /* Save page key for data page (s390 only). */
1673                 page_key_read(buf + j);
1674         }
1675 }
1676
1677 /**
1678  *      snapshot_read_next - used for reading the system memory snapshot.
1679  *
1680  *      On the first call to it @handle should point to a zeroed
1681  *      snapshot_handle structure.  The structure gets updated and a pointer
1682  *      to it should be passed to this function every next time.
1683  *
1684  *      On success the function returns a positive number.  Then, the caller
1685  *      is allowed to read up to the returned number of bytes from the memory
1686  *      location computed by the data_of() macro.
1687  *
1688  *      The function returns 0 to indicate the end of data stream condition,
1689  *      and a negative number is returned on error.  In such cases the
1690  *      structure pointed to by @handle is not updated and should not be used
1691  *      any more.
1692  */
1693
1694 int snapshot_read_next(struct snapshot_handle *handle)
1695 {
1696         if (handle->cur > nr_meta_pages + nr_copy_pages)
1697                 return 0;
1698
1699         if (!buffer) {
1700                 /* This makes the buffer be freed by swsusp_free() */
1701                 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1702                 if (!buffer)
1703                         return -ENOMEM;
1704         }
1705         if (!handle->cur) {
1706                 int error;
1707
1708                 error = init_header((struct swsusp_info *)buffer);
1709                 if (error)
1710                         return error;
1711                 handle->buffer = buffer;
1712                 memory_bm_position_reset(&orig_bm);
1713                 memory_bm_position_reset(&copy_bm);
1714         } else if (handle->cur <= nr_meta_pages) {
1715                 clear_page(buffer);
1716                 pack_pfns(buffer, &orig_bm);
1717         } else {
1718                 struct page *page;
1719
1720                 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1721                 if (PageHighMem(page)) {
1722                         /* Highmem pages are copied to the buffer,
1723                          * because we can't return with a kmapped
1724                          * highmem page (we may not be called again).
1725                          */
1726                         void *kaddr;
1727
1728                         kaddr = kmap_atomic(page, KM_USER0);
1729                         copy_page(buffer, kaddr);
1730                         kunmap_atomic(kaddr, KM_USER0);
1731                         handle->buffer = buffer;
1732                 } else {
1733                         handle->buffer = page_address(page);
1734                 }
1735         }
1736         handle->cur++;
1737         return PAGE_SIZE;
1738 }
1739
1740 /**
1741  *      mark_unsafe_pages - mark the pages that cannot be used for storing
1742  *      the image during resume, because they conflict with the pages that
1743  *      had been used before suspend
1744  */
1745
1746 static int mark_unsafe_pages(struct memory_bitmap *bm)
1747 {
1748         struct zone *zone;
1749         unsigned long pfn, max_zone_pfn;
1750
1751         /* Clear page flags */
1752         for_each_populated_zone(zone) {
1753                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1754                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1755                         if (pfn_valid(pfn))
1756                                 swsusp_unset_page_free(pfn_to_page(pfn));
1757         }
1758
1759         /* Mark pages that correspond to the "original" pfns as "unsafe" */
1760         memory_bm_position_reset(bm);
1761         do {
1762                 pfn = memory_bm_next_pfn(bm);
1763                 if (likely(pfn != BM_END_OF_MAP)) {
1764                         if (likely(pfn_valid(pfn)))
1765                                 swsusp_set_page_free(pfn_to_page(pfn));
1766                         else
1767                                 return -EFAULT;
1768                 }
1769         } while (pfn != BM_END_OF_MAP);
1770
1771         allocated_unsafe_pages = 0;
1772
1773         return 0;
1774 }
1775
1776 static void
1777 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1778 {
1779         unsigned long pfn;
1780
1781         memory_bm_position_reset(src);
1782         pfn = memory_bm_next_pfn(src);
1783         while (pfn != BM_END_OF_MAP) {
1784                 memory_bm_set_bit(dst, pfn);
1785                 pfn = memory_bm_next_pfn(src);
1786         }
1787 }
1788
1789 static int check_header(struct swsusp_info *info)
1790 {
1791         char *reason;
1792
1793         reason = check_image_kernel(info);
1794         if (!reason && info->num_physpages != num_physpages)
1795                 reason = "memory size";
1796         if (reason) {
1797                 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1798                 return -EPERM;
1799         }
1800         return 0;
1801 }
1802
1803 /**
1804  *      load header - check the image header and copy data from it
1805  */
1806
1807 static int
1808 load_header(struct swsusp_info *info)
1809 {
1810         int error;
1811
1812         restore_pblist = NULL;
1813         error = check_header(info);
1814         if (!error) {
1815                 nr_copy_pages = info->image_pages;
1816                 nr_meta_pages = info->pages - info->image_pages - 1;
1817         }
1818         return error;
1819 }
1820
1821 /**
1822  *      unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1823  *      the corresponding bit in the memory bitmap @bm
1824  */
1825 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1826 {
1827         int j;
1828
1829         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1830                 if (unlikely(buf[j] == BM_END_OF_MAP))
1831                         break;
1832
1833                 /* Extract and buffer page key for data page (s390 only). */
1834                 page_key_memorize(buf + j);
1835
1836                 if (memory_bm_pfn_present(bm, buf[j]))
1837                         memory_bm_set_bit(bm, buf[j]);
1838                 else
1839                         return -EFAULT;
1840         }
1841
1842         return 0;
1843 }
1844
1845 /* List of "safe" pages that may be used to store data loaded from the suspend
1846  * image
1847  */
1848 static struct linked_page *safe_pages_list;
1849
1850 #ifdef CONFIG_HIGHMEM
1851 /* struct highmem_pbe is used for creating the list of highmem pages that
1852  * should be restored atomically during the resume from disk, because the page
1853  * frames they have occupied before the suspend are in use.
1854  */
1855 struct highmem_pbe {
1856         struct page *copy_page; /* data is here now */
1857         struct page *orig_page; /* data was here before the suspend */
1858         struct highmem_pbe *next;
1859 };
1860
1861 /* List of highmem PBEs needed for restoring the highmem pages that were
1862  * allocated before the suspend and included in the suspend image, but have
1863  * also been allocated by the "resume" kernel, so their contents cannot be
1864  * written directly to their "original" page frames.
1865  */
1866 static struct highmem_pbe *highmem_pblist;
1867
1868 /**
1869  *      count_highmem_image_pages - compute the number of highmem pages in the
1870  *      suspend image.  The bits in the memory bitmap @bm that correspond to the
1871  *      image pages are assumed to be set.
1872  */
1873
1874 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1875 {
1876         unsigned long pfn;
1877         unsigned int cnt = 0;
1878
1879         memory_bm_position_reset(bm);
1880         pfn = memory_bm_next_pfn(bm);
1881         while (pfn != BM_END_OF_MAP) {
1882                 if (PageHighMem(pfn_to_page(pfn)))
1883                         cnt++;
1884
1885                 pfn = memory_bm_next_pfn(bm);
1886         }
1887         return cnt;
1888 }
1889
1890 /**
1891  *      prepare_highmem_image - try to allocate as many highmem pages as
1892  *      there are highmem image pages (@nr_highmem_p points to the variable
1893  *      containing the number of highmem image pages).  The pages that are
1894  *      "safe" (ie. will not be overwritten when the suspend image is
1895  *      restored) have the corresponding bits set in @bm (it must be
1896  *      unitialized).
1897  *
1898  *      NOTE: This function should not be called if there are no highmem
1899  *      image pages.
1900  */
1901
1902 static unsigned int safe_highmem_pages;
1903
1904 static struct memory_bitmap *safe_highmem_bm;
1905
1906 static int
1907 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1908 {
1909         unsigned int to_alloc;
1910
1911         if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1912                 return -ENOMEM;
1913
1914         if (get_highmem_buffer(PG_SAFE))
1915                 return -ENOMEM;
1916
1917         to_alloc = count_free_highmem_pages();
1918         if (to_alloc > *nr_highmem_p)
1919                 to_alloc = *nr_highmem_p;
1920         else
1921                 *nr_highmem_p = to_alloc;
1922
1923         safe_highmem_pages = 0;
1924         while (to_alloc-- > 0) {
1925                 struct page *page;
1926
1927                 page = alloc_page(__GFP_HIGHMEM);
1928                 if (!swsusp_page_is_free(page)) {
1929                         /* The page is "safe", set its bit the bitmap */
1930                         memory_bm_set_bit(bm, page_to_pfn(page));
1931                         safe_highmem_pages++;
1932                 }
1933                 /* Mark the page as allocated */
1934                 swsusp_set_page_forbidden(page);
1935                 swsusp_set_page_free(page);
1936         }
1937         memory_bm_position_reset(bm);
1938         safe_highmem_bm = bm;
1939         return 0;
1940 }
1941
1942 /**
1943  *      get_highmem_page_buffer - for given highmem image page find the buffer
1944  *      that suspend_write_next() should set for its caller to write to.
1945  *
1946  *      If the page is to be saved to its "original" page frame or a copy of
1947  *      the page is to be made in the highmem, @buffer is returned.  Otherwise,
1948  *      the copy of the page is to be made in normal memory, so the address of
1949  *      the copy is returned.
1950  *
1951  *      If @buffer is returned, the caller of suspend_write_next() will write
1952  *      the page's contents to @buffer, so they will have to be copied to the
1953  *      right location on the next call to suspend_write_next() and it is done
1954  *      with the help of copy_last_highmem_page().  For this purpose, if
1955  *      @buffer is returned, @last_highmem page is set to the page to which
1956  *      the data will have to be copied from @buffer.
1957  */
1958
1959 static struct page *last_highmem_page;
1960
1961 static void *
1962 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1963 {
1964         struct highmem_pbe *pbe;
1965         void *kaddr;
1966
1967         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1968                 /* We have allocated the "original" page frame and we can
1969                  * use it directly to store the loaded page.
1970                  */
1971                 last_highmem_page = page;
1972                 return buffer;
1973         }
1974         /* The "original" page frame has not been allocated and we have to
1975          * use a "safe" page frame to store the loaded page.
1976          */
1977         pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1978         if (!pbe) {
1979                 swsusp_free();
1980                 return ERR_PTR(-ENOMEM);
1981         }
1982         pbe->orig_page = page;
1983         if (safe_highmem_pages > 0) {
1984                 struct page *tmp;
1985
1986                 /* Copy of the page will be stored in high memory */
1987                 kaddr = buffer;
1988                 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1989                 safe_highmem_pages--;
1990                 last_highmem_page = tmp;
1991                 pbe->copy_page = tmp;
1992         } else {
1993                 /* Copy of the page will be stored in normal memory */
1994                 kaddr = safe_pages_list;
1995                 safe_pages_list = safe_pages_list->next;
1996                 pbe->copy_page = virt_to_page(kaddr);
1997         }
1998         pbe->next = highmem_pblist;
1999         highmem_pblist = pbe;
2000         return kaddr;
2001 }
2002
2003 /**
2004  *      copy_last_highmem_page - copy the contents of a highmem image from
2005  *      @buffer, where the caller of snapshot_write_next() has place them,
2006  *      to the right location represented by @last_highmem_page .
2007  */
2008
2009 static void copy_last_highmem_page(void)
2010 {
2011         if (last_highmem_page) {
2012                 void *dst;
2013
2014                 dst = kmap_atomic(last_highmem_page, KM_USER0);
2015                 copy_page(dst, buffer);
2016                 kunmap_atomic(dst, KM_USER0);
2017                 last_highmem_page = NULL;
2018         }
2019 }
2020
2021 static inline int last_highmem_page_copied(void)
2022 {
2023         return !last_highmem_page;
2024 }
2025
2026 static inline void free_highmem_data(void)
2027 {
2028         if (safe_highmem_bm)
2029                 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2030
2031         if (buffer)
2032                 free_image_page(buffer, PG_UNSAFE_CLEAR);
2033 }
2034 #else
2035 static inline int get_safe_write_buffer(void) { return 0; }
2036
2037 static unsigned int
2038 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2039
2040 static inline int
2041 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2042 {
2043         return 0;
2044 }
2045
2046 static inline void *
2047 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2048 {
2049         return ERR_PTR(-EINVAL);
2050 }
2051
2052 static inline void copy_last_highmem_page(void) {}
2053 static inline int last_highmem_page_copied(void) { return 1; }
2054 static inline void free_highmem_data(void) {}
2055 #endif /* CONFIG_HIGHMEM */
2056
2057 /**
2058  *      prepare_image - use the memory bitmap @bm to mark the pages that will
2059  *      be overwritten in the process of restoring the system memory state
2060  *      from the suspend image ("unsafe" pages) and allocate memory for the
2061  *      image.
2062  *
2063  *      The idea is to allocate a new memory bitmap first and then allocate
2064  *      as many pages as needed for the image data, but not to assign these
2065  *      pages to specific tasks initially.  Instead, we just mark them as
2066  *      allocated and create a lists of "safe" pages that will be used
2067  *      later.  On systems with high memory a list of "safe" highmem pages is
2068  *      also created.
2069  */
2070
2071 #define PBES_PER_LINKED_PAGE    (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2072
2073 static int
2074 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2075 {
2076         unsigned int nr_pages, nr_highmem;
2077         struct linked_page *sp_list, *lp;
2078         int error;
2079
2080         /* If there is no highmem, the buffer will not be necessary */
2081         free_image_page(buffer, PG_UNSAFE_CLEAR);
2082         buffer = NULL;
2083
2084         nr_highmem = count_highmem_image_pages(bm);
2085         error = mark_unsafe_pages(bm);
2086         if (error)
2087                 goto Free;
2088
2089         error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2090         if (error)
2091                 goto Free;
2092
2093         duplicate_memory_bitmap(new_bm, bm);
2094         memory_bm_free(bm, PG_UNSAFE_KEEP);
2095         if (nr_highmem > 0) {
2096                 error = prepare_highmem_image(bm, &nr_highmem);
2097                 if (error)
2098                         goto Free;
2099         }
2100         /* Reserve some safe pages for potential later use.
2101          *
2102          * NOTE: This way we make sure there will be enough safe pages for the
2103          * chain_alloc() in get_buffer().  It is a bit wasteful, but
2104          * nr_copy_pages cannot be greater than 50% of the memory anyway.
2105          */
2106         sp_list = NULL;
2107         /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2108         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2109         nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2110         while (nr_pages > 0) {
2111                 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2112                 if (!lp) {
2113                         error = -ENOMEM;
2114                         goto Free;
2115                 }
2116                 lp->next = sp_list;
2117                 sp_list = lp;
2118                 nr_pages--;
2119         }
2120         /* Preallocate memory for the image */
2121         safe_pages_list = NULL;
2122         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2123         while (nr_pages > 0) {
2124                 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2125                 if (!lp) {
2126                         error = -ENOMEM;
2127                         goto Free;
2128                 }
2129                 if (!swsusp_page_is_free(virt_to_page(lp))) {
2130                         /* The page is "safe", add it to the list */
2131                         lp->next = safe_pages_list;
2132                         safe_pages_list = lp;
2133                 }
2134                 /* Mark the page as allocated */
2135                 swsusp_set_page_forbidden(virt_to_page(lp));
2136                 swsusp_set_page_free(virt_to_page(lp));
2137                 nr_pages--;
2138         }
2139         /* Free the reserved safe pages so that chain_alloc() can use them */
2140         while (sp_list) {
2141                 lp = sp_list->next;
2142                 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2143                 sp_list = lp;
2144         }
2145         return 0;
2146
2147  Free:
2148         swsusp_free();
2149         return error;
2150 }
2151
2152 /**
2153  *      get_buffer - compute the address that snapshot_write_next() should
2154  *      set for its caller to write to.
2155  */
2156
2157 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2158 {
2159         struct pbe *pbe;
2160         struct page *page;
2161         unsigned long pfn = memory_bm_next_pfn(bm);
2162
2163         if (pfn == BM_END_OF_MAP)
2164                 return ERR_PTR(-EFAULT);
2165
2166         page = pfn_to_page(pfn);
2167         if (PageHighMem(page))
2168                 return get_highmem_page_buffer(page, ca);
2169
2170         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2171                 /* We have allocated the "original" page frame and we can
2172                  * use it directly to store the loaded page.
2173                  */
2174                 return page_address(page);
2175
2176         /* The "original" page frame has not been allocated and we have to
2177          * use a "safe" page frame to store the loaded page.
2178          */
2179         pbe = chain_alloc(ca, sizeof(struct pbe));
2180         if (!pbe) {
2181                 swsusp_free();
2182                 return ERR_PTR(-ENOMEM);
2183         }
2184         pbe->orig_address = page_address(page);
2185         pbe->address = safe_pages_list;
2186         safe_pages_list = safe_pages_list->next;
2187         pbe->next = restore_pblist;
2188         restore_pblist = pbe;
2189         return pbe->address;
2190 }
2191
2192 /**
2193  *      snapshot_write_next - used for writing the system memory snapshot.
2194  *
2195  *      On the first call to it @handle should point to a zeroed
2196  *      snapshot_handle structure.  The structure gets updated and a pointer
2197  *      to it should be passed to this function every next time.
2198  *
2199  *      On success the function returns a positive number.  Then, the caller
2200  *      is allowed to write up to the returned number of bytes to the memory
2201  *      location computed by the data_of() macro.
2202  *
2203  *      The function returns 0 to indicate the "end of file" condition,
2204  *      and a negative number is returned on error.  In such cases the
2205  *      structure pointed to by @handle is not updated and should not be used
2206  *      any more.
2207  */
2208
2209 int snapshot_write_next(struct snapshot_handle *handle)
2210 {
2211         static struct chain_allocator ca;
2212         int error = 0;
2213
2214         /* Check if we have already loaded the entire image */
2215         if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2216                 return 0;
2217
2218         handle->sync_read = 1;
2219
2220         if (!handle->cur) {
2221                 if (!buffer)
2222                         /* This makes the buffer be freed by swsusp_free() */
2223                         buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2224
2225                 if (!buffer)
2226                         return -ENOMEM;
2227
2228                 handle->buffer = buffer;
2229         } else if (handle->cur == 1) {
2230                 error = load_header(buffer);
2231                 if (error)
2232                         return error;
2233
2234                 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2235                 if (error)
2236                         return error;
2237
2238                 /* Allocate buffer for page keys. */
2239                 error = page_key_alloc(nr_copy_pages);
2240                 if (error)
2241                         return error;
2242
2243         } else if (handle->cur <= nr_meta_pages + 1) {
2244                 error = unpack_orig_pfns(buffer, &copy_bm);
2245                 if (error)
2246                         return error;
2247
2248                 if (handle->cur == nr_meta_pages + 1) {
2249                         error = prepare_image(&orig_bm, &copy_bm);
2250                         if (error)
2251                                 return error;
2252
2253                         chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2254                         memory_bm_position_reset(&orig_bm);
2255                         restore_pblist = NULL;
2256                         handle->buffer = get_buffer(&orig_bm, &ca);
2257                         handle->sync_read = 0;
2258                         if (IS_ERR(handle->buffer))
2259                                 return PTR_ERR(handle->buffer);
2260                 }
2261         } else {
2262                 copy_last_highmem_page();
2263                 /* Restore page key for data page (s390 only). */
2264                 page_key_write(handle->buffer);
2265                 handle->buffer = get_buffer(&orig_bm, &ca);
2266                 if (IS_ERR(handle->buffer))
2267                         return PTR_ERR(handle->buffer);
2268                 if (handle->buffer != buffer)
2269                         handle->sync_read = 0;
2270         }
2271         handle->cur++;
2272         return PAGE_SIZE;
2273 }
2274
2275 /**
2276  *      snapshot_write_finalize - must be called after the last call to
2277  *      snapshot_write_next() in case the last page in the image happens
2278  *      to be a highmem page and its contents should be stored in the
2279  *      highmem.  Additionally, it releases the memory that will not be
2280  *      used any more.
2281  */
2282
2283 void snapshot_write_finalize(struct snapshot_handle *handle)
2284 {
2285         copy_last_highmem_page();
2286         /* Restore page key for data page (s390 only). */
2287         page_key_write(handle->buffer);
2288         page_key_free();
2289         /* Free only if we have loaded the image entirely */
2290         if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2291                 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2292                 free_highmem_data();
2293         }
2294 }
2295
2296 int snapshot_image_loaded(struct snapshot_handle *handle)
2297 {
2298         return !(!nr_copy_pages || !last_highmem_page_copied() ||
2299                         handle->cur <= nr_meta_pages + nr_copy_pages);
2300 }
2301
2302 #ifdef CONFIG_HIGHMEM
2303 /* Assumes that @buf is ready and points to a "safe" page */
2304 static inline void
2305 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2306 {
2307         void *kaddr1, *kaddr2;
2308
2309         kaddr1 = kmap_atomic(p1, KM_USER0);
2310         kaddr2 = kmap_atomic(p2, KM_USER1);
2311         copy_page(buf, kaddr1);
2312         copy_page(kaddr1, kaddr2);
2313         copy_page(kaddr2, buf);
2314         kunmap_atomic(kaddr2, KM_USER1);
2315         kunmap_atomic(kaddr1, KM_USER0);
2316 }
2317
2318 /**
2319  *      restore_highmem - for each highmem page that was allocated before
2320  *      the suspend and included in the suspend image, and also has been
2321  *      allocated by the "resume" kernel swap its current (ie. "before
2322  *      resume") contents with the previous (ie. "before suspend") one.
2323  *
2324  *      If the resume eventually fails, we can call this function once
2325  *      again and restore the "before resume" highmem state.
2326  */
2327
2328 int restore_highmem(void)
2329 {
2330         struct highmem_pbe *pbe = highmem_pblist;
2331         void *buf;
2332
2333         if (!pbe)
2334                 return 0;
2335
2336         buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2337         if (!buf)
2338                 return -ENOMEM;
2339
2340         while (pbe) {
2341                 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2342                 pbe = pbe->next;
2343         }
2344         free_image_page(buf, PG_UNSAFE_CLEAR);
2345         return 0;
2346 }
2347 #endif /* CONFIG_HIGHMEM */