790c5fa7ea3928165474e6966ad92223aa9e4f9c
[pandora-kernel.git] / kernel / irq / handle.c
1 /*
2  * linux/kernel/irq/handle.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
6  *
7  * This file contains the core interrupt handling code.
8  *
9  * Detailed information is available in Documentation/DocBook/genericirq
10  *
11  */
12
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/rculist.h>
19 #include <linux/hash.h>
20
21 #include "internals.h"
22
23 /*
24  * lockdep: we want to handle all irq_desc locks as a single lock-class:
25  */
26 struct lock_class_key irq_desc_lock_class;
27
28 /**
29  * handle_bad_irq - handle spurious and unhandled irqs
30  * @irq:       the interrupt number
31  * @desc:      description of the interrupt
32  *
33  * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
34  */
35 void handle_bad_irq(unsigned int irq, struct irq_desc *desc)
36 {
37         print_irq_desc(irq, desc);
38         kstat_incr_irqs_this_cpu(irq, desc);
39         ack_bad_irq(irq);
40 }
41
42 /*
43  * Linux has a controller-independent interrupt architecture.
44  * Every controller has a 'controller-template', that is used
45  * by the main code to do the right thing. Each driver-visible
46  * interrupt source is transparently wired to the appropriate
47  * controller. Thus drivers need not be aware of the
48  * interrupt-controller.
49  *
50  * The code is designed to be easily extended with new/different
51  * interrupt controllers, without having to do assembly magic or
52  * having to touch the generic code.
53  *
54  * Controller mappings for all interrupt sources:
55  */
56 int nr_irqs = NR_IRQS;
57 EXPORT_SYMBOL_GPL(nr_irqs);
58
59 #ifdef CONFIG_SPARSE_IRQ
60 static struct irq_desc irq_desc_init = {
61         .irq        = -1,
62         .status     = IRQ_DISABLED,
63         .chip       = &no_irq_chip,
64         .handle_irq = handle_bad_irq,
65         .depth      = 1,
66         .lock       = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
67 };
68
69 void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr)
70 {
71         unsigned long bytes;
72         char *ptr;
73         int node;
74
75         /* Compute how many bytes we need per irq and allocate them */
76         bytes = nr * sizeof(unsigned int);
77
78         node = cpu_to_node(cpu);
79         ptr = kzalloc_node(bytes, GFP_ATOMIC, node);
80         printk(KERN_DEBUG "  alloc kstat_irqs on cpu %d node %d\n", cpu, node);
81
82         if (ptr)
83                 desc->kstat_irqs = (unsigned int *)ptr;
84 }
85
86 static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu)
87 {
88         memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
89
90         spin_lock_init(&desc->lock);
91         desc->irq = irq;
92 #ifdef CONFIG_SMP
93         desc->cpu = cpu;
94 #endif
95         lockdep_set_class(&desc->lock, &irq_desc_lock_class);
96         init_kstat_irqs(desc, cpu, nr_cpu_ids);
97         if (!desc->kstat_irqs) {
98                 printk(KERN_ERR "can not alloc kstat_irqs\n");
99                 BUG_ON(1);
100         }
101         if (!init_alloc_desc_masks(desc, cpu, false)) {
102                 printk(KERN_ERR "can not alloc irq_desc cpumasks\n");
103                 BUG_ON(1);
104         }
105         arch_init_chip_data(desc, cpu);
106 }
107
108 /*
109  * Protect the sparse_irqs:
110  */
111 DEFINE_SPINLOCK(sparse_irq_lock);
112
113 struct irq_desc *irq_desc_ptrs[NR_IRQS] __read_mostly;
114
115 static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = {
116         [0 ... NR_IRQS_LEGACY-1] = {
117                 .irq        = -1,
118                 .status     = IRQ_DISABLED,
119                 .chip       = &no_irq_chip,
120                 .handle_irq = handle_bad_irq,
121                 .depth      = 1,
122                 .lock       = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
123         }
124 };
125
126 /* FIXME: use bootmem alloc ...*/
127 static unsigned int kstat_irqs_legacy[NR_IRQS_LEGACY][NR_CPUS];
128
129 int __init early_irq_init(void)
130 {
131         struct irq_desc *desc;
132         int legacy_count;
133         int i;
134
135         printk(KERN_INFO "NR_IRQS:%d nr_irqs:%d\n", NR_IRQS, nr_irqs);
136
137         desc = irq_desc_legacy;
138         legacy_count = ARRAY_SIZE(irq_desc_legacy);
139
140         for (i = 0; i < legacy_count; i++) {
141                 desc[i].irq = i;
142                 desc[i].kstat_irqs = kstat_irqs_legacy[i];
143                 lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
144                 init_alloc_desc_masks(&desc[i], 0, true);
145                 irq_desc_ptrs[i] = desc + i;
146         }
147
148         for (i = legacy_count; i < nr_irqs; i++)
149                 irq_desc_ptrs[i] = NULL;
150
151         return arch_early_irq_init();
152 }
153
154 struct irq_desc *irq_to_desc(unsigned int irq)
155 {
156         return (irq < nr_irqs) ? irq_desc_ptrs[irq] : NULL;
157 }
158
159 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
160 {
161         struct irq_desc *desc;
162         unsigned long flags;
163         int node;
164
165         if (irq >= nr_irqs) {
166                 printk(KERN_WARNING "irq >= nr_irqs in irq_to_desc_alloc: %d %d\n",
167                                 irq, nr_irqs);
168                 WARN_ON(1);
169                 return NULL;
170         }
171
172         desc = irq_desc_ptrs[irq];
173         if (desc)
174                 return desc;
175
176         spin_lock_irqsave(&sparse_irq_lock, flags);
177
178         /* We have to check it to avoid races with another CPU */
179         desc = irq_desc_ptrs[irq];
180         if (desc)
181                 goto out_unlock;
182
183         node = cpu_to_node(cpu);
184         desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node);
185         printk(KERN_DEBUG "  alloc irq_desc for %d on cpu %d node %d\n",
186                  irq, cpu, node);
187         if (!desc) {
188                 printk(KERN_ERR "can not alloc irq_desc\n");
189                 BUG_ON(1);
190         }
191         init_one_irq_desc(irq, desc, cpu);
192
193         irq_desc_ptrs[irq] = desc;
194
195 out_unlock:
196         spin_unlock_irqrestore(&sparse_irq_lock, flags);
197
198         return desc;
199 }
200
201 #else /* !CONFIG_SPARSE_IRQ */
202
203 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
204         [0 ... NR_IRQS-1] = {
205                 .status = IRQ_DISABLED,
206                 .chip = &no_irq_chip,
207                 .handle_irq = handle_bad_irq,
208                 .depth = 1,
209                 .lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock),
210         }
211 };
212
213 int __init early_irq_init(void)
214 {
215         struct irq_desc *desc;
216         int count;
217         int i;
218
219         printk(KERN_INFO "NR_IRQS:%d\n", NR_IRQS);
220
221         desc = irq_desc;
222         count = ARRAY_SIZE(irq_desc);
223
224         for (i = 0; i < count; i++) {
225                 desc[i].irq = i;
226                 init_alloc_desc_masks(&desc[i], 0, true);
227         }
228         return arch_early_irq_init();
229 }
230
231 struct irq_desc *irq_to_desc(unsigned int irq)
232 {
233         return (irq < NR_IRQS) ? irq_desc + irq : NULL;
234 }
235
236 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
237 {
238         return irq_to_desc(irq);
239 }
240 #endif /* !CONFIG_SPARSE_IRQ */
241
242 /*
243  * What should we do if we get a hw irq event on an illegal vector?
244  * Each architecture has to answer this themself.
245  */
246 static void ack_bad(unsigned int irq)
247 {
248         struct irq_desc *desc = irq_to_desc(irq);
249
250         print_irq_desc(irq, desc);
251         ack_bad_irq(irq);
252 }
253
254 /*
255  * NOP functions
256  */
257 static void noop(unsigned int irq)
258 {
259 }
260
261 static unsigned int noop_ret(unsigned int irq)
262 {
263         return 0;
264 }
265
266 /*
267  * Generic no controller implementation
268  */
269 struct irq_chip no_irq_chip = {
270         .name           = "none",
271         .startup        = noop_ret,
272         .shutdown       = noop,
273         .enable         = noop,
274         .disable        = noop,
275         .ack            = ack_bad,
276         .end            = noop,
277 };
278
279 /*
280  * Generic dummy implementation which can be used for
281  * real dumb interrupt sources
282  */
283 struct irq_chip dummy_irq_chip = {
284         .name           = "dummy",
285         .startup        = noop_ret,
286         .shutdown       = noop,
287         .enable         = noop,
288         .disable        = noop,
289         .ack            = noop,
290         .mask           = noop,
291         .unmask         = noop,
292         .end            = noop,
293 };
294
295 /*
296  * Special, empty irq handler:
297  */
298 irqreturn_t no_action(int cpl, void *dev_id)
299 {
300         return IRQ_NONE;
301 }
302
303 /**
304  * handle_IRQ_event - irq action chain handler
305  * @irq:        the interrupt number
306  * @action:     the interrupt action chain for this irq
307  *
308  * Handles the action chain of an irq event
309  */
310 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
311 {
312         irqreturn_t ret, retval = IRQ_NONE;
313         unsigned int status = 0;
314
315         if (!(action->flags & IRQF_DISABLED))
316                 local_irq_enable_in_hardirq();
317
318         do {
319                 ret = action->handler(irq, action->dev_id);
320                 if (ret == IRQ_HANDLED)
321                         status |= action->flags;
322                 retval |= ret;
323                 action = action->next;
324         } while (action);
325
326         if (status & IRQF_SAMPLE_RANDOM)
327                 add_interrupt_randomness(irq);
328         local_irq_disable();
329
330         return retval;
331 }
332
333 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
334 /**
335  * __do_IRQ - original all in one highlevel IRQ handler
336  * @irq:        the interrupt number
337  *
338  * __do_IRQ handles all normal device IRQ's (the special
339  * SMP cross-CPU interrupts have their own specific
340  * handlers).
341  *
342  * This is the original x86 implementation which is used for every
343  * interrupt type.
344  */
345 unsigned int __do_IRQ(unsigned int irq)
346 {
347         struct irq_desc *desc = irq_to_desc(irq);
348         struct irqaction *action;
349         unsigned int status;
350
351         kstat_incr_irqs_this_cpu(irq, desc);
352
353         if (CHECK_IRQ_PER_CPU(desc->status)) {
354                 irqreturn_t action_ret;
355
356                 /*
357                  * No locking required for CPU-local interrupts:
358                  */
359                 if (desc->chip->ack) {
360                         desc->chip->ack(irq);
361                         /* get new one */
362                         desc = irq_remap_to_desc(irq, desc);
363                 }
364                 if (likely(!(desc->status & IRQ_DISABLED))) {
365                         action_ret = handle_IRQ_event(irq, desc->action);
366                         if (!noirqdebug)
367                                 note_interrupt(irq, desc, action_ret);
368                 }
369                 desc->chip->end(irq);
370                 return 1;
371         }
372
373         spin_lock(&desc->lock);
374         if (desc->chip->ack) {
375                 desc->chip->ack(irq);
376                 desc = irq_remap_to_desc(irq, desc);
377         }
378         /*
379          * REPLAY is when Linux resends an IRQ that was dropped earlier
380          * WAITING is used by probe to mark irqs that are being tested
381          */
382         status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
383         status |= IRQ_PENDING; /* we _want_ to handle it */
384
385         /*
386          * If the IRQ is disabled for whatever reason, we cannot
387          * use the action we have.
388          */
389         action = NULL;
390         if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
391                 action = desc->action;
392                 status &= ~IRQ_PENDING; /* we commit to handling */
393                 status |= IRQ_INPROGRESS; /* we are handling it */
394         }
395         desc->status = status;
396
397         /*
398          * If there is no IRQ handler or it was disabled, exit early.
399          * Since we set PENDING, if another processor is handling
400          * a different instance of this same irq, the other processor
401          * will take care of it.
402          */
403         if (unlikely(!action))
404                 goto out;
405
406         /*
407          * Edge triggered interrupts need to remember
408          * pending events.
409          * This applies to any hw interrupts that allow a second
410          * instance of the same irq to arrive while we are in do_IRQ
411          * or in the handler. But the code here only handles the _second_
412          * instance of the irq, not the third or fourth. So it is mostly
413          * useful for irq hardware that does not mask cleanly in an
414          * SMP environment.
415          */
416         for (;;) {
417                 irqreturn_t action_ret;
418
419                 spin_unlock(&desc->lock);
420
421                 action_ret = handle_IRQ_event(irq, action);
422                 if (!noirqdebug)
423                         note_interrupt(irq, desc, action_ret);
424
425                 spin_lock(&desc->lock);
426                 if (likely(!(desc->status & IRQ_PENDING)))
427                         break;
428                 desc->status &= ~IRQ_PENDING;
429         }
430         desc->status &= ~IRQ_INPROGRESS;
431
432 out:
433         /*
434          * The ->end() handler has to deal with interrupts which got
435          * disabled while the handler was running.
436          */
437         desc->chip->end(irq);
438         spin_unlock(&desc->lock);
439
440         return 1;
441 }
442 #endif
443
444 void early_init_irq_lock_class(void)
445 {
446         struct irq_desc *desc;
447         int i;
448
449         for_each_irq_desc(i, desc) {
450                 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
451         }
452 }
453
454 #ifdef CONFIG_SPARSE_IRQ
455 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
456 {
457         struct irq_desc *desc = irq_to_desc(irq);
458         return desc ? desc->kstat_irqs[cpu] : 0;
459 }
460 #endif
461 EXPORT_SYMBOL(kstat_irqs_cpu);
462