e4b5500d3c2d56b9a8eef96ee943e17c53a6e327
[pandora-kernel.git] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
34 #include <linux/socket.h>
35
36 /*
37  * Attempt to steal a page from a pipe buffer. This should perhaps go into
38  * a vm helper function, it's already simplified quite a bit by the
39  * addition of remove_mapping(). If success is returned, the caller may
40  * attempt to reuse this page for another destination.
41  */
42 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
43                                      struct pipe_buffer *buf)
44 {
45         struct page *page = buf->page;
46         struct address_space *mapping;
47
48         lock_page(page);
49
50         mapping = page_mapping(page);
51         if (mapping) {
52                 WARN_ON(!PageUptodate(page));
53
54                 /*
55                  * At least for ext2 with nobh option, we need to wait on
56                  * writeback completing on this page, since we'll remove it
57                  * from the pagecache.  Otherwise truncate wont wait on the
58                  * page, allowing the disk blocks to be reused by someone else
59                  * before we actually wrote our data to them. fs corruption
60                  * ensues.
61                  */
62                 wait_on_page_writeback(page);
63
64                 if (page_has_private(page) &&
65                     !try_to_release_page(page, GFP_KERNEL))
66                         goto out_unlock;
67
68                 /*
69                  * If we succeeded in removing the mapping, set LRU flag
70                  * and return good.
71                  */
72                 if (remove_mapping(mapping, page)) {
73                         buf->flags |= PIPE_BUF_FLAG_LRU;
74                         return 0;
75                 }
76         }
77
78         /*
79          * Raced with truncate or failed to remove page from current
80          * address space, unlock and return failure.
81          */
82 out_unlock:
83         unlock_page(page);
84         return 1;
85 }
86
87 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
88                                         struct pipe_buffer *buf)
89 {
90         page_cache_release(buf->page);
91         buf->flags &= ~PIPE_BUF_FLAG_LRU;
92 }
93
94 /*
95  * Check whether the contents of buf is OK to access. Since the content
96  * is a page cache page, IO may be in flight.
97  */
98 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
99                                        struct pipe_buffer *buf)
100 {
101         struct page *page = buf->page;
102         int err;
103
104         if (!PageUptodate(page)) {
105                 lock_page(page);
106
107                 /*
108                  * Page got truncated/unhashed. This will cause a 0-byte
109                  * splice, if this is the first page.
110                  */
111                 if (!page->mapping) {
112                         err = -ENODATA;
113                         goto error;
114                 }
115
116                 /*
117                  * Uh oh, read-error from disk.
118                  */
119                 if (!PageUptodate(page)) {
120                         err = -EIO;
121                         goto error;
122                 }
123
124                 /*
125                  * Page is ok afterall, we are done.
126                  */
127                 unlock_page(page);
128         }
129
130         return 0;
131 error:
132         unlock_page(page);
133         return err;
134 }
135
136 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
137         .can_merge = 0,
138         .map = generic_pipe_buf_map,
139         .unmap = generic_pipe_buf_unmap,
140         .confirm = page_cache_pipe_buf_confirm,
141         .release = page_cache_pipe_buf_release,
142         .steal = page_cache_pipe_buf_steal,
143         .get = generic_pipe_buf_get,
144 };
145
146 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
147                                     struct pipe_buffer *buf)
148 {
149         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
150                 return 1;
151
152         buf->flags |= PIPE_BUF_FLAG_LRU;
153         return generic_pipe_buf_steal(pipe, buf);
154 }
155
156 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157         .can_merge = 0,
158         .map = generic_pipe_buf_map,
159         .unmap = generic_pipe_buf_unmap,
160         .confirm = generic_pipe_buf_confirm,
161         .release = page_cache_pipe_buf_release,
162         .steal = user_page_pipe_buf_steal,
163         .get = generic_pipe_buf_get,
164 };
165
166 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
167 {
168         smp_mb();
169         if (waitqueue_active(&pipe->wait))
170                 wake_up_interruptible(&pipe->wait);
171         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
172 }
173
174 /**
175  * splice_to_pipe - fill passed data into a pipe
176  * @pipe:       pipe to fill
177  * @spd:        data to fill
178  *
179  * Description:
180  *    @spd contains a map of pages and len/offset tuples, along with
181  *    the struct pipe_buf_operations associated with these pages. This
182  *    function will link that data to the pipe.
183  *
184  */
185 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
186                        struct splice_pipe_desc *spd)
187 {
188         unsigned int spd_pages = spd->nr_pages;
189         int ret, do_wakeup, page_nr;
190
191         if (!spd_pages)
192                 return 0;
193
194         ret = 0;
195         do_wakeup = 0;
196         page_nr = 0;
197
198         pipe_lock(pipe);
199
200         for (;;) {
201                 if (!pipe->readers) {
202                         send_sig(SIGPIPE, current, 0);
203                         if (!ret)
204                                 ret = -EPIPE;
205                         break;
206                 }
207
208                 if (pipe->nrbufs < pipe->buffers) {
209                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
210                         struct pipe_buffer *buf = pipe->bufs + newbuf;
211
212                         buf->page = spd->pages[page_nr];
213                         buf->offset = spd->partial[page_nr].offset;
214                         buf->len = spd->partial[page_nr].len;
215                         buf->private = spd->partial[page_nr].private;
216                         buf->ops = spd->ops;
217                         if (spd->flags & SPLICE_F_GIFT)
218                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
219
220                         pipe->nrbufs++;
221                         page_nr++;
222                         ret += buf->len;
223
224                         if (pipe->inode)
225                                 do_wakeup = 1;
226
227                         if (!--spd->nr_pages)
228                                 break;
229                         if (pipe->nrbufs < pipe->buffers)
230                                 continue;
231
232                         break;
233                 }
234
235                 if (spd->flags & SPLICE_F_NONBLOCK) {
236                         if (!ret)
237                                 ret = -EAGAIN;
238                         break;
239                 }
240
241                 if (signal_pending(current)) {
242                         if (!ret)
243                                 ret = -ERESTARTSYS;
244                         break;
245                 }
246
247                 if (do_wakeup) {
248                         smp_mb();
249                         if (waitqueue_active(&pipe->wait))
250                                 wake_up_interruptible_sync(&pipe->wait);
251                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
252                         do_wakeup = 0;
253                 }
254
255                 pipe->waiting_writers++;
256                 pipe_wait(pipe);
257                 pipe->waiting_writers--;
258         }
259
260         pipe_unlock(pipe);
261
262         if (do_wakeup)
263                 wakeup_pipe_readers(pipe);
264
265         while (page_nr < spd_pages)
266                 spd->spd_release(spd, page_nr++);
267
268         return ret;
269 }
270
271 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
272 {
273         page_cache_release(spd->pages[i]);
274 }
275
276 /*
277  * Check if we need to grow the arrays holding pages and partial page
278  * descriptions.
279  */
280 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
281 {
282         unsigned int buffers = ACCESS_ONCE(pipe->buffers);
283
284         spd->nr_pages_max = buffers;
285         if (buffers <= PIPE_DEF_BUFFERS)
286                 return 0;
287
288         spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
289         spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
290
291         if (spd->pages && spd->partial)
292                 return 0;
293
294         kfree(spd->pages);
295         kfree(spd->partial);
296         return -ENOMEM;
297 }
298
299 void splice_shrink_spd(struct splice_pipe_desc *spd)
300 {
301         if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
302                 return;
303
304         kfree(spd->pages);
305         kfree(spd->partial);
306 }
307
308 static int
309 __generic_file_splice_read(struct file *in, loff_t *ppos,
310                            struct pipe_inode_info *pipe, size_t len,
311                            unsigned int flags)
312 {
313         struct address_space *mapping = in->f_mapping;
314         unsigned int loff, nr_pages, req_pages;
315         struct page *pages[PIPE_DEF_BUFFERS];
316         struct partial_page partial[PIPE_DEF_BUFFERS];
317         struct page *page;
318         pgoff_t index, end_index;
319         loff_t isize;
320         int error, page_nr;
321         struct splice_pipe_desc spd = {
322                 .pages = pages,
323                 .partial = partial,
324                 .nr_pages_max = PIPE_DEF_BUFFERS,
325                 .flags = flags,
326                 .ops = &page_cache_pipe_buf_ops,
327                 .spd_release = spd_release_page,
328         };
329
330         if (splice_grow_spd(pipe, &spd))
331                 return -ENOMEM;
332
333         index = *ppos >> PAGE_CACHE_SHIFT;
334         loff = *ppos & ~PAGE_CACHE_MASK;
335         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
336         nr_pages = min(req_pages, spd.nr_pages_max);
337
338         /*
339          * Lookup the (hopefully) full range of pages we need.
340          */
341         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
342         index += spd.nr_pages;
343
344         /*
345          * If find_get_pages_contig() returned fewer pages than we needed,
346          * readahead/allocate the rest and fill in the holes.
347          */
348         if (spd.nr_pages < nr_pages)
349                 page_cache_sync_readahead(mapping, &in->f_ra, in,
350                                 index, req_pages - spd.nr_pages);
351
352         error = 0;
353         while (spd.nr_pages < nr_pages) {
354                 /*
355                  * Page could be there, find_get_pages_contig() breaks on
356                  * the first hole.
357                  */
358                 page = find_get_page(mapping, index);
359                 if (!page) {
360                         /*
361                          * page didn't exist, allocate one.
362                          */
363                         page = page_cache_alloc_cold(mapping);
364                         if (!page)
365                                 break;
366
367                         error = add_to_page_cache_lru(page, mapping, index,
368                                                 GFP_KERNEL);
369                         if (unlikely(error)) {
370                                 page_cache_release(page);
371                                 if (error == -EEXIST)
372                                         continue;
373                                 break;
374                         }
375                         /*
376                          * add_to_page_cache() locks the page, unlock it
377                          * to avoid convoluting the logic below even more.
378                          */
379                         unlock_page(page);
380                 }
381
382                 spd.pages[spd.nr_pages++] = page;
383                 index++;
384         }
385
386         /*
387          * Now loop over the map and see if we need to start IO on any
388          * pages, fill in the partial map, etc.
389          */
390         index = *ppos >> PAGE_CACHE_SHIFT;
391         nr_pages = spd.nr_pages;
392         spd.nr_pages = 0;
393         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
394                 unsigned int this_len;
395
396                 if (!len)
397                         break;
398
399                 /*
400                  * this_len is the max we'll use from this page
401                  */
402                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
403                 page = spd.pages[page_nr];
404
405                 if (PageReadahead(page))
406                         page_cache_async_readahead(mapping, &in->f_ra, in,
407                                         page, index, req_pages - page_nr);
408
409                 /*
410                  * If the page isn't uptodate, we may need to start io on it
411                  */
412                 if (!PageUptodate(page)) {
413                         lock_page(page);
414
415                         /*
416                          * Page was truncated, or invalidated by the
417                          * filesystem.  Redo the find/create, but this time the
418                          * page is kept locked, so there's no chance of another
419                          * race with truncate/invalidate.
420                          */
421                         if (!page->mapping) {
422                                 unlock_page(page);
423                                 page = find_or_create_page(mapping, index,
424                                                 mapping_gfp_mask(mapping));
425
426                                 if (!page) {
427                                         error = -ENOMEM;
428                                         break;
429                                 }
430                                 page_cache_release(spd.pages[page_nr]);
431                                 spd.pages[page_nr] = page;
432                         }
433                         /*
434                          * page was already under io and is now done, great
435                          */
436                         if (PageUptodate(page)) {
437                                 unlock_page(page);
438                                 goto fill_it;
439                         }
440
441                         /*
442                          * need to read in the page
443                          */
444                         error = mapping->a_ops->readpage(in, page);
445                         if (unlikely(error)) {
446                                 /*
447                                  * We really should re-lookup the page here,
448                                  * but it complicates things a lot. Instead
449                                  * lets just do what we already stored, and
450                                  * we'll get it the next time we are called.
451                                  */
452                                 if (error == AOP_TRUNCATED_PAGE)
453                                         error = 0;
454
455                                 break;
456                         }
457                 }
458 fill_it:
459                 /*
460                  * i_size must be checked after PageUptodate.
461                  */
462                 isize = i_size_read(mapping->host);
463                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
464                 if (unlikely(!isize || index > end_index))
465                         break;
466
467                 /*
468                  * if this is the last page, see if we need to shrink
469                  * the length and stop
470                  */
471                 if (end_index == index) {
472                         unsigned int plen;
473
474                         /*
475                          * max good bytes in this page
476                          */
477                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
478                         if (plen <= loff)
479                                 break;
480
481                         /*
482                          * force quit after adding this page
483                          */
484                         this_len = min(this_len, plen - loff);
485                         len = this_len;
486                 }
487
488                 spd.partial[page_nr].offset = loff;
489                 spd.partial[page_nr].len = this_len;
490                 len -= this_len;
491                 loff = 0;
492                 spd.nr_pages++;
493                 index++;
494         }
495
496         /*
497          * Release any pages at the end, if we quit early. 'page_nr' is how far
498          * we got, 'nr_pages' is how many pages are in the map.
499          */
500         while (page_nr < nr_pages)
501                 page_cache_release(spd.pages[page_nr++]);
502         in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
503
504         if (spd.nr_pages)
505                 error = splice_to_pipe(pipe, &spd);
506
507         splice_shrink_spd(&spd);
508         return error;
509 }
510
511 /**
512  * generic_file_splice_read - splice data from file to a pipe
513  * @in:         file to splice from
514  * @ppos:       position in @in
515  * @pipe:       pipe to splice to
516  * @len:        number of bytes to splice
517  * @flags:      splice modifier flags
518  *
519  * Description:
520  *    Will read pages from given file and fill them into a pipe. Can be
521  *    used as long as the address_space operations for the source implements
522  *    a readpage() hook.
523  *
524  */
525 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
526                                  struct pipe_inode_info *pipe, size_t len,
527                                  unsigned int flags)
528 {
529         loff_t isize, left;
530         int ret;
531
532         isize = i_size_read(in->f_mapping->host);
533         if (unlikely(*ppos >= isize))
534                 return 0;
535
536         left = isize - *ppos;
537         if (unlikely(left < len))
538                 len = left;
539
540         ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
541         if (ret > 0) {
542                 *ppos += ret;
543                 file_accessed(in);
544         }
545
546         return ret;
547 }
548 EXPORT_SYMBOL(generic_file_splice_read);
549
550 static const struct pipe_buf_operations default_pipe_buf_ops = {
551         .can_merge = 0,
552         .map = generic_pipe_buf_map,
553         .unmap = generic_pipe_buf_unmap,
554         .confirm = generic_pipe_buf_confirm,
555         .release = generic_pipe_buf_release,
556         .steal = generic_pipe_buf_steal,
557         .get = generic_pipe_buf_get,
558 };
559
560 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
561                                     struct pipe_buffer *buf)
562 {
563         return 1;
564 }
565
566 /* Pipe buffer operations for a socket and similar. */
567 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
568         .can_merge = 0,
569         .map = generic_pipe_buf_map,
570         .unmap = generic_pipe_buf_unmap,
571         .confirm = generic_pipe_buf_confirm,
572         .release = generic_pipe_buf_release,
573         .steal = generic_pipe_buf_nosteal,
574         .get = generic_pipe_buf_get,
575 };
576 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
577
578 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
579                             unsigned long vlen, loff_t offset)
580 {
581         mm_segment_t old_fs;
582         loff_t pos = offset;
583         ssize_t res;
584
585         old_fs = get_fs();
586         set_fs(get_ds());
587         /* The cast to a user pointer is valid due to the set_fs() */
588         res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
589         set_fs(old_fs);
590
591         return res;
592 }
593
594 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
595                             loff_t pos)
596 {
597         mm_segment_t old_fs;
598         ssize_t res;
599
600         old_fs = get_fs();
601         set_fs(get_ds());
602         /* The cast to a user pointer is valid due to the set_fs() */
603         res = vfs_write(file, (const char __user *)buf, count, &pos);
604         set_fs(old_fs);
605
606         return res;
607 }
608
609 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
610                                  struct pipe_inode_info *pipe, size_t len,
611                                  unsigned int flags)
612 {
613         unsigned int nr_pages;
614         unsigned int nr_freed;
615         size_t offset;
616         struct page *pages[PIPE_DEF_BUFFERS];
617         struct partial_page partial[PIPE_DEF_BUFFERS];
618         struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
619         ssize_t res;
620         size_t this_len;
621         int error;
622         int i;
623         struct splice_pipe_desc spd = {
624                 .pages = pages,
625                 .partial = partial,
626                 .nr_pages_max = PIPE_DEF_BUFFERS,
627                 .flags = flags,
628                 .ops = &default_pipe_buf_ops,
629                 .spd_release = spd_release_page,
630         };
631
632         if (splice_grow_spd(pipe, &spd))
633                 return -ENOMEM;
634
635         res = -ENOMEM;
636         vec = __vec;
637         if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
638                 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
639                 if (!vec)
640                         goto shrink_ret;
641         }
642
643         offset = *ppos & ~PAGE_CACHE_MASK;
644         nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
645
646         for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
647                 struct page *page;
648
649                 page = alloc_page(GFP_USER);
650                 error = -ENOMEM;
651                 if (!page)
652                         goto err;
653
654                 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
655                 vec[i].iov_base = (void __user *) page_address(page);
656                 vec[i].iov_len = this_len;
657                 spd.pages[i] = page;
658                 spd.nr_pages++;
659                 len -= this_len;
660                 offset = 0;
661         }
662
663         res = kernel_readv(in, vec, spd.nr_pages, *ppos);
664         if (res < 0) {
665                 error = res;
666                 goto err;
667         }
668
669         error = 0;
670         if (!res)
671                 goto err;
672
673         nr_freed = 0;
674         for (i = 0; i < spd.nr_pages; i++) {
675                 this_len = min_t(size_t, vec[i].iov_len, res);
676                 spd.partial[i].offset = 0;
677                 spd.partial[i].len = this_len;
678                 if (!this_len) {
679                         __free_page(spd.pages[i]);
680                         spd.pages[i] = NULL;
681                         nr_freed++;
682                 }
683                 res -= this_len;
684         }
685         spd.nr_pages -= nr_freed;
686
687         res = splice_to_pipe(pipe, &spd);
688         if (res > 0)
689                 *ppos += res;
690
691 shrink_ret:
692         if (vec != __vec)
693                 kfree(vec);
694         splice_shrink_spd(&spd);
695         return res;
696
697 err:
698         for (i = 0; i < spd.nr_pages; i++)
699                 __free_page(spd.pages[i]);
700
701         res = error;
702         goto shrink_ret;
703 }
704 EXPORT_SYMBOL(default_file_splice_read);
705
706 /*
707  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
708  * using sendpage(). Return the number of bytes sent.
709  */
710 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
711                             struct pipe_buffer *buf, struct splice_desc *sd)
712 {
713         struct file *file = sd->u.file;
714         loff_t pos = sd->pos;
715         int more;
716
717         if (!likely(file->f_op && file->f_op->sendpage))
718                 return -EINVAL;
719
720         more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
721
722         if (sd->len < sd->total_len && pipe->nrbufs > 1)
723                 more |= MSG_SENDPAGE_NOTLAST;
724
725         return file->f_op->sendpage(file, buf->page, buf->offset,
726                                     sd->len, &pos, more);
727 }
728
729 /*
730  * This is a little more tricky than the file -> pipe splicing. There are
731  * basically three cases:
732  *
733  *      - Destination page already exists in the address space and there
734  *        are users of it. For that case we have no other option that
735  *        copying the data. Tough luck.
736  *      - Destination page already exists in the address space, but there
737  *        are no users of it. Make sure it's uptodate, then drop it. Fall
738  *        through to last case.
739  *      - Destination page does not exist, we can add the pipe page to
740  *        the page cache and avoid the copy.
741  *
742  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
743  * sd->flags), we attempt to migrate pages from the pipe to the output
744  * file address space page cache. This is possible if no one else has
745  * the pipe page referenced outside of the pipe and page cache. If
746  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
747  * a new page in the output file page cache and fill/dirty that.
748  */
749 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
750                  struct splice_desc *sd)
751 {
752         struct file *file = sd->u.file;
753         struct address_space *mapping = file->f_mapping;
754         unsigned int offset, this_len;
755         struct page *page;
756         void *fsdata;
757         int ret;
758
759         offset = sd->pos & ~PAGE_CACHE_MASK;
760
761         this_len = sd->len;
762         if (this_len + offset > PAGE_CACHE_SIZE)
763                 this_len = PAGE_CACHE_SIZE - offset;
764
765         ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
766                                 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
767         if (unlikely(ret))
768                 goto out;
769
770         if (buf->page != page) {
771                 /*
772                  * Careful, ->map() uses KM_USER0!
773                  */
774                 char *src = buf->ops->map(pipe, buf, 1);
775                 char *dst = kmap_atomic(page, KM_USER1);
776
777                 memcpy(dst + offset, src + buf->offset, this_len);
778                 flush_dcache_page(page);
779                 kunmap_atomic(dst, KM_USER1);
780                 buf->ops->unmap(pipe, buf, src);
781         }
782         ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
783                                 page, fsdata);
784 out:
785         return ret;
786 }
787 EXPORT_SYMBOL(pipe_to_file);
788
789 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
790 {
791         smp_mb();
792         if (waitqueue_active(&pipe->wait))
793                 wake_up_interruptible(&pipe->wait);
794         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
795 }
796
797 /**
798  * splice_from_pipe_feed - feed available data from a pipe to a file
799  * @pipe:       pipe to splice from
800  * @sd:         information to @actor
801  * @actor:      handler that splices the data
802  *
803  * Description:
804  *    This function loops over the pipe and calls @actor to do the
805  *    actual moving of a single struct pipe_buffer to the desired
806  *    destination.  It returns when there's no more buffers left in
807  *    the pipe or if the requested number of bytes (@sd->total_len)
808  *    have been copied.  It returns a positive number (one) if the
809  *    pipe needs to be filled with more data, zero if the required
810  *    number of bytes have been copied and -errno on error.
811  *
812  *    This, together with splice_from_pipe_{begin,end,next}, may be
813  *    used to implement the functionality of __splice_from_pipe() when
814  *    locking is required around copying the pipe buffers to the
815  *    destination.
816  */
817 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
818                           splice_actor *actor)
819 {
820         int ret;
821
822         while (pipe->nrbufs) {
823                 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
824                 const struct pipe_buf_operations *ops = buf->ops;
825
826                 sd->len = buf->len;
827                 if (sd->len > sd->total_len)
828                         sd->len = sd->total_len;
829
830                 ret = buf->ops->confirm(pipe, buf);
831                 if (unlikely(ret)) {
832                         if (ret == -ENODATA)
833                                 ret = 0;
834                         return ret;
835                 }
836
837                 ret = actor(pipe, buf, sd);
838                 if (ret <= 0)
839                         return ret;
840
841                 buf->offset += ret;
842                 buf->len -= ret;
843
844                 sd->num_spliced += ret;
845                 sd->len -= ret;
846                 sd->pos += ret;
847                 sd->total_len -= ret;
848
849                 if (!buf->len) {
850                         buf->ops = NULL;
851                         ops->release(pipe, buf);
852                         pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
853                         pipe->nrbufs--;
854                         if (pipe->inode)
855                                 sd->need_wakeup = true;
856                 }
857
858                 if (!sd->total_len)
859                         return 0;
860         }
861
862         return 1;
863 }
864 EXPORT_SYMBOL(splice_from_pipe_feed);
865
866 /**
867  * splice_from_pipe_next - wait for some data to splice from
868  * @pipe:       pipe to splice from
869  * @sd:         information about the splice operation
870  *
871  * Description:
872  *    This function will wait for some data and return a positive
873  *    value (one) if pipe buffers are available.  It will return zero
874  *    or -errno if no more data needs to be spliced.
875  */
876 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
877 {
878         /*
879          * Check for signal early to make process killable when there are
880          * always buffers available
881          */
882         if (signal_pending(current))
883                 return -ERESTARTSYS;
884
885         while (!pipe->nrbufs) {
886                 if (!pipe->writers)
887                         return 0;
888
889                 if (!pipe->waiting_writers && sd->num_spliced)
890                         return 0;
891
892                 if (sd->flags & SPLICE_F_NONBLOCK)
893                         return -EAGAIN;
894
895                 if (signal_pending(current))
896                         return -ERESTARTSYS;
897
898                 if (sd->need_wakeup) {
899                         wakeup_pipe_writers(pipe);
900                         sd->need_wakeup = false;
901                 }
902
903                 pipe_wait(pipe);
904         }
905
906         return 1;
907 }
908 EXPORT_SYMBOL(splice_from_pipe_next);
909
910 /**
911  * splice_from_pipe_begin - start splicing from pipe
912  * @sd:         information about the splice operation
913  *
914  * Description:
915  *    This function should be called before a loop containing
916  *    splice_from_pipe_next() and splice_from_pipe_feed() to
917  *    initialize the necessary fields of @sd.
918  */
919 void splice_from_pipe_begin(struct splice_desc *sd)
920 {
921         sd->num_spliced = 0;
922         sd->need_wakeup = false;
923 }
924 EXPORT_SYMBOL(splice_from_pipe_begin);
925
926 /**
927  * splice_from_pipe_end - finish splicing from pipe
928  * @pipe:       pipe to splice from
929  * @sd:         information about the splice operation
930  *
931  * Description:
932  *    This function will wake up pipe writers if necessary.  It should
933  *    be called after a loop containing splice_from_pipe_next() and
934  *    splice_from_pipe_feed().
935  */
936 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
937 {
938         if (sd->need_wakeup)
939                 wakeup_pipe_writers(pipe);
940 }
941 EXPORT_SYMBOL(splice_from_pipe_end);
942
943 /**
944  * __splice_from_pipe - splice data from a pipe to given actor
945  * @pipe:       pipe to splice from
946  * @sd:         information to @actor
947  * @actor:      handler that splices the data
948  *
949  * Description:
950  *    This function does little more than loop over the pipe and call
951  *    @actor to do the actual moving of a single struct pipe_buffer to
952  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
953  *    pipe_to_user.
954  *
955  */
956 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
957                            splice_actor *actor)
958 {
959         int ret;
960
961         splice_from_pipe_begin(sd);
962         do {
963                 cond_resched();
964                 ret = splice_from_pipe_next(pipe, sd);
965                 if (ret > 0)
966                         ret = splice_from_pipe_feed(pipe, sd, actor);
967         } while (ret > 0);
968         splice_from_pipe_end(pipe, sd);
969
970         return sd->num_spliced ? sd->num_spliced : ret;
971 }
972 EXPORT_SYMBOL(__splice_from_pipe);
973
974 /**
975  * splice_from_pipe - splice data from a pipe to a file
976  * @pipe:       pipe to splice from
977  * @out:        file to splice to
978  * @ppos:       position in @out
979  * @len:        how many bytes to splice
980  * @flags:      splice modifier flags
981  * @actor:      handler that splices the data
982  *
983  * Description:
984  *    See __splice_from_pipe. This function locks the pipe inode,
985  *    otherwise it's identical to __splice_from_pipe().
986  *
987  */
988 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
989                          loff_t *ppos, size_t len, unsigned int flags,
990                          splice_actor *actor)
991 {
992         ssize_t ret;
993         struct splice_desc sd = {
994                 .total_len = len,
995                 .flags = flags,
996                 .pos = *ppos,
997                 .u.file = out,
998         };
999
1000         pipe_lock(pipe);
1001         ret = __splice_from_pipe(pipe, &sd, actor);
1002         pipe_unlock(pipe);
1003
1004         return ret;
1005 }
1006
1007 /**
1008  * generic_file_splice_write - splice data from a pipe to a file
1009  * @pipe:       pipe info
1010  * @out:        file to write to
1011  * @ppos:       position in @out
1012  * @len:        number of bytes to splice
1013  * @flags:      splice modifier flags
1014  *
1015  * Description:
1016  *    Will either move or copy pages (determined by @flags options) from
1017  *    the given pipe inode to the given file.
1018  *
1019  */
1020 ssize_t
1021 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
1022                           loff_t *ppos, size_t len, unsigned int flags)
1023 {
1024         struct address_space *mapping = out->f_mapping;
1025         struct inode *inode = mapping->host;
1026         struct splice_desc sd = {
1027                 .flags = flags,
1028                 .u.file = out,
1029         };
1030         ssize_t ret;
1031
1032         ret = generic_write_checks(out, ppos, &len, S_ISBLK(inode->i_mode));
1033         if (ret)
1034                 return ret;
1035         sd.total_len = len;
1036         sd.pos = *ppos;
1037
1038         pipe_lock(pipe);
1039
1040         splice_from_pipe_begin(&sd);
1041         do {
1042                 ret = splice_from_pipe_next(pipe, &sd);
1043                 if (ret <= 0)
1044                         break;
1045
1046                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1047                 ret = file_remove_suid(out);
1048                 if (!ret) {
1049                         file_update_time(out);
1050                         ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1051                 }
1052                 mutex_unlock(&inode->i_mutex);
1053         } while (ret > 0);
1054         splice_from_pipe_end(pipe, &sd);
1055
1056         pipe_unlock(pipe);
1057
1058         if (sd.num_spliced)
1059                 ret = sd.num_spliced;
1060
1061         if (ret > 0) {
1062                 unsigned long nr_pages;
1063                 int err;
1064
1065                 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1066
1067                 err = generic_write_sync(out, *ppos, ret);
1068                 if (err)
1069                         ret = err;
1070                 else
1071                         *ppos += ret;
1072                 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1073         }
1074
1075         return ret;
1076 }
1077
1078 EXPORT_SYMBOL(generic_file_splice_write);
1079
1080 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1081                           struct splice_desc *sd)
1082 {
1083         int ret;
1084         void *data;
1085
1086         data = buf->ops->map(pipe, buf, 0);
1087         ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1088         buf->ops->unmap(pipe, buf, data);
1089
1090         return ret;
1091 }
1092
1093 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1094                                          struct file *out, loff_t *ppos,
1095                                          size_t len, unsigned int flags)
1096 {
1097         ssize_t ret;
1098
1099         ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1100         if (ret > 0)
1101                 *ppos += ret;
1102
1103         return ret;
1104 }
1105
1106 /**
1107  * generic_splice_sendpage - splice data from a pipe to a socket
1108  * @pipe:       pipe to splice from
1109  * @out:        socket to write to
1110  * @ppos:       position in @out
1111  * @len:        number of bytes to splice
1112  * @flags:      splice modifier flags
1113  *
1114  * Description:
1115  *    Will send @len bytes from the pipe to a network socket. No data copying
1116  *    is involved.
1117  *
1118  */
1119 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1120                                 loff_t *ppos, size_t len, unsigned int flags)
1121 {
1122         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1123 }
1124
1125 EXPORT_SYMBOL(generic_splice_sendpage);
1126
1127 /*
1128  * Attempt to initiate a splice from pipe to file.
1129  */
1130 long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1131                     loff_t *ppos, size_t len, unsigned int flags)
1132 {
1133         ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1134                                 loff_t *, size_t, unsigned int);
1135         int ret;
1136
1137         if (unlikely(!(out->f_mode & FMODE_WRITE)))
1138                 return -EBADF;
1139
1140         if (unlikely(out->f_flags & O_APPEND))
1141                 return -EINVAL;
1142
1143         ret = rw_verify_area(WRITE, out, ppos, len);
1144         if (unlikely(ret < 0))
1145                 return ret;
1146
1147         if (out->f_op && out->f_op->splice_write)
1148                 splice_write = out->f_op->splice_write;
1149         else
1150                 splice_write = default_file_splice_write;
1151
1152         return splice_write(pipe, out, ppos, len, flags);
1153 }
1154 EXPORT_SYMBOL(do_splice_from);
1155
1156 /*
1157  * Attempt to initiate a splice from a file to a pipe.
1158  */
1159 long do_splice_to(struct file *in, loff_t *ppos,
1160                   struct pipe_inode_info *pipe, size_t len,
1161                   unsigned int flags)
1162 {
1163         ssize_t (*splice_read)(struct file *, loff_t *,
1164                                struct pipe_inode_info *, size_t, unsigned int);
1165         int ret;
1166
1167         if (unlikely(!(in->f_mode & FMODE_READ)))
1168                 return -EBADF;
1169
1170         ret = rw_verify_area(READ, in, ppos, len);
1171         if (unlikely(ret < 0))
1172                 return ret;
1173
1174         if (in->f_op && in->f_op->splice_read)
1175                 splice_read = in->f_op->splice_read;
1176         else
1177                 splice_read = default_file_splice_read;
1178
1179         return splice_read(in, ppos, pipe, len, flags);
1180 }
1181 EXPORT_SYMBOL(do_splice_to);
1182
1183 /**
1184  * splice_direct_to_actor - splices data directly between two non-pipes
1185  * @in:         file to splice from
1186  * @sd:         actor information on where to splice to
1187  * @actor:      handles the data splicing
1188  *
1189  * Description:
1190  *    This is a special case helper to splice directly between two
1191  *    points, without requiring an explicit pipe. Internally an allocated
1192  *    pipe is cached in the process, and reused during the lifetime of
1193  *    that process.
1194  *
1195  */
1196 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1197                                splice_direct_actor *actor)
1198 {
1199         struct pipe_inode_info *pipe;
1200         long ret, bytes;
1201         umode_t i_mode;
1202         size_t len;
1203         int i, flags, more;
1204
1205         /*
1206          * We require the input being a regular file, as we don't want to
1207          * randomly drop data for eg socket -> socket splicing. Use the
1208          * piped splicing for that!
1209          */
1210         i_mode = in->f_path.dentry->d_inode->i_mode;
1211         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1212                 return -EINVAL;
1213
1214         /*
1215          * neither in nor out is a pipe, setup an internal pipe attached to
1216          * 'out' and transfer the wanted data from 'in' to 'out' through that
1217          */
1218         pipe = current->splice_pipe;
1219         if (unlikely(!pipe)) {
1220                 pipe = alloc_pipe_info(NULL);
1221                 if (!pipe)
1222                         return -ENOMEM;
1223
1224                 /*
1225                  * We don't have an immediate reader, but we'll read the stuff
1226                  * out of the pipe right after the splice_to_pipe(). So set
1227                  * PIPE_READERS appropriately.
1228                  */
1229                 pipe->readers = 1;
1230
1231                 current->splice_pipe = pipe;
1232         }
1233
1234         /*
1235          * Do the splice.
1236          */
1237         ret = 0;
1238         bytes = 0;
1239         len = sd->total_len;
1240         flags = sd->flags;
1241
1242         /*
1243          * Don't block on output, we have to drain the direct pipe.
1244          */
1245         sd->flags &= ~SPLICE_F_NONBLOCK;
1246         more = sd->flags & SPLICE_F_MORE;
1247
1248         while (len) {
1249                 size_t read_len;
1250                 loff_t pos = sd->pos, prev_pos = pos;
1251
1252                 ret = do_splice_to(in, &pos, pipe, len, flags);
1253                 if (unlikely(ret <= 0))
1254                         goto out_release;
1255
1256                 read_len = ret;
1257                 sd->total_len = read_len;
1258
1259                 /*
1260                  * If more data is pending, set SPLICE_F_MORE
1261                  * If this is the last data and SPLICE_F_MORE was not set
1262                  * initially, clears it.
1263                  */
1264                 if (read_len < len)
1265                         sd->flags |= SPLICE_F_MORE;
1266                 else if (!more)
1267                         sd->flags &= ~SPLICE_F_MORE;
1268                 /*
1269                  * NOTE: nonblocking mode only applies to the input. We
1270                  * must not do the output in nonblocking mode as then we
1271                  * could get stuck data in the internal pipe:
1272                  */
1273                 ret = actor(pipe, sd);
1274                 if (unlikely(ret <= 0)) {
1275                         sd->pos = prev_pos;
1276                         goto out_release;
1277                 }
1278
1279                 bytes += ret;
1280                 len -= ret;
1281                 sd->pos = pos;
1282
1283                 if (ret < read_len) {
1284                         sd->pos = prev_pos + ret;
1285                         goto out_release;
1286                 }
1287         }
1288
1289 done:
1290         pipe->nrbufs = pipe->curbuf = 0;
1291         file_accessed(in);
1292         return bytes;
1293
1294 out_release:
1295         /*
1296          * If we did an incomplete transfer we must release
1297          * the pipe buffers in question:
1298          */
1299         for (i = 0; i < pipe->buffers; i++) {
1300                 struct pipe_buffer *buf = pipe->bufs + i;
1301
1302                 if (buf->ops) {
1303                         buf->ops->release(pipe, buf);
1304                         buf->ops = NULL;
1305                 }
1306         }
1307
1308         if (!bytes)
1309                 bytes = ret;
1310
1311         goto done;
1312 }
1313 EXPORT_SYMBOL(splice_direct_to_actor);
1314
1315 static int direct_splice_actor(struct pipe_inode_info *pipe,
1316                                struct splice_desc *sd)
1317 {
1318         struct file *file = sd->u.file;
1319
1320         return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1321                               sd->flags);
1322 }
1323
1324 /**
1325  * do_splice_direct - splices data directly between two files
1326  * @in:         file to splice from
1327  * @ppos:       input file offset
1328  * @out:        file to splice to
1329  * @len:        number of bytes to splice
1330  * @flags:      splice modifier flags
1331  *
1332  * Description:
1333  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1334  *    doing it in the application would incur an extra system call
1335  *    (splice in + splice out, as compared to just sendfile()). So this helper
1336  *    can splice directly through a process-private pipe.
1337  *
1338  */
1339 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1340                       size_t len, unsigned int flags)
1341 {
1342         struct splice_desc sd = {
1343                 .len            = len,
1344                 .total_len      = len,
1345                 .flags          = flags,
1346                 .pos            = *ppos,
1347                 .u.file         = out,
1348         };
1349         long ret;
1350
1351         ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1352         if (ret > 0)
1353                 *ppos = sd.pos;
1354
1355         return ret;
1356 }
1357
1358 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1359                                struct pipe_inode_info *opipe,
1360                                size_t len, unsigned int flags);
1361
1362 /*
1363  * Determine where to splice to/from.
1364  */
1365 static long do_splice(struct file *in, loff_t __user *off_in,
1366                       struct file *out, loff_t __user *off_out,
1367                       size_t len, unsigned int flags)
1368 {
1369         struct pipe_inode_info *ipipe;
1370         struct pipe_inode_info *opipe;
1371         loff_t offset, *off;
1372         long ret;
1373
1374         ipipe = get_pipe_info(in);
1375         opipe = get_pipe_info(out);
1376
1377         if (ipipe && opipe) {
1378                 if (off_in || off_out)
1379                         return -ESPIPE;
1380
1381                 if (!(in->f_mode & FMODE_READ))
1382                         return -EBADF;
1383
1384                 if (!(out->f_mode & FMODE_WRITE))
1385                         return -EBADF;
1386
1387                 /* Splicing to self would be fun, but... */
1388                 if (ipipe == opipe)
1389                         return -EINVAL;
1390
1391                 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1392         }
1393
1394         if (ipipe) {
1395                 if (off_in)
1396                         return -ESPIPE;
1397                 if (off_out) {
1398                         if (!(out->f_mode & FMODE_PWRITE))
1399                                 return -EINVAL;
1400                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1401                                 return -EFAULT;
1402                         off = &offset;
1403                 } else
1404                         off = &out->f_pos;
1405
1406                 ret = do_splice_from(ipipe, out, off, len, flags);
1407
1408                 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1409                         ret = -EFAULT;
1410
1411                 return ret;
1412         }
1413
1414         if (opipe) {
1415                 if (off_out)
1416                         return -ESPIPE;
1417                 if (off_in) {
1418                         if (!(in->f_mode & FMODE_PREAD))
1419                                 return -EINVAL;
1420                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1421                                 return -EFAULT;
1422                         off = &offset;
1423                 } else
1424                         off = &in->f_pos;
1425
1426                 ret = do_splice_to(in, off, opipe, len, flags);
1427
1428                 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1429                         ret = -EFAULT;
1430
1431                 return ret;
1432         }
1433
1434         return -EINVAL;
1435 }
1436
1437 /*
1438  * Map an iov into an array of pages and offset/length tupples. With the
1439  * partial_page structure, we can map several non-contiguous ranges into
1440  * our ones pages[] map instead of splitting that operation into pieces.
1441  * Could easily be exported as a generic helper for other users, in which
1442  * case one would probably want to add a 'max_nr_pages' parameter as well.
1443  */
1444 static int get_iovec_page_array(const struct iovec __user *iov,
1445                                 unsigned int nr_vecs, struct page **pages,
1446                                 struct partial_page *partial, int aligned,
1447                                 unsigned int pipe_buffers)
1448 {
1449         int buffers = 0, error = 0;
1450
1451         while (nr_vecs) {
1452                 unsigned long off, npages;
1453                 struct iovec entry;
1454                 void __user *base;
1455                 size_t len;
1456                 int i;
1457
1458                 error = -EFAULT;
1459                 if (copy_from_user(&entry, iov, sizeof(entry)))
1460                         break;
1461
1462                 base = entry.iov_base;
1463                 len = entry.iov_len;
1464
1465                 /*
1466                  * Sanity check this iovec. 0 read succeeds.
1467                  */
1468                 error = 0;
1469                 if (unlikely(!len))
1470                         break;
1471                 error = -EFAULT;
1472                 if (!access_ok(VERIFY_READ, base, len))
1473                         break;
1474
1475                 /*
1476                  * Get this base offset and number of pages, then map
1477                  * in the user pages.
1478                  */
1479                 off = (unsigned long) base & ~PAGE_MASK;
1480
1481                 /*
1482                  * If asked for alignment, the offset must be zero and the
1483                  * length a multiple of the PAGE_SIZE.
1484                  */
1485                 error = -EINVAL;
1486                 if (aligned && (off || len & ~PAGE_MASK))
1487                         break;
1488
1489                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1490                 if (npages > pipe_buffers - buffers)
1491                         npages = pipe_buffers - buffers;
1492
1493                 error = get_user_pages_fast((unsigned long)base, npages,
1494                                         0, &pages[buffers]);
1495
1496                 if (unlikely(error <= 0))
1497                         break;
1498
1499                 /*
1500                  * Fill this contiguous range into the partial page map.
1501                  */
1502                 for (i = 0; i < error; i++) {
1503                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1504
1505                         partial[buffers].offset = off;
1506                         partial[buffers].len = plen;
1507
1508                         off = 0;
1509                         len -= plen;
1510                         buffers++;
1511                 }
1512
1513                 /*
1514                  * We didn't complete this iov, stop here since it probably
1515                  * means we have to move some of this into a pipe to
1516                  * be able to continue.
1517                  */
1518                 if (len)
1519                         break;
1520
1521                 /*
1522                  * Don't continue if we mapped fewer pages than we asked for,
1523                  * or if we mapped the max number of pages that we have
1524                  * room for.
1525                  */
1526                 if (error < npages || buffers == pipe_buffers)
1527                         break;
1528
1529                 nr_vecs--;
1530                 iov++;
1531         }
1532
1533         if (buffers)
1534                 return buffers;
1535
1536         return error;
1537 }
1538
1539 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1540                         struct splice_desc *sd)
1541 {
1542         char *src;
1543         int ret;
1544
1545         /*
1546          * See if we can use the atomic maps, by prefaulting in the
1547          * pages and doing an atomic copy
1548          */
1549         if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1550                 src = buf->ops->map(pipe, buf, 1);
1551                 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1552                                                         sd->len);
1553                 buf->ops->unmap(pipe, buf, src);
1554                 if (!ret) {
1555                         ret = sd->len;
1556                         goto out;
1557                 }
1558         }
1559
1560         /*
1561          * No dice, use slow non-atomic map and copy
1562          */
1563         src = buf->ops->map(pipe, buf, 0);
1564
1565         ret = sd->len;
1566         if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1567                 ret = -EFAULT;
1568
1569         buf->ops->unmap(pipe, buf, src);
1570 out:
1571         if (ret > 0)
1572                 sd->u.userptr += ret;
1573         return ret;
1574 }
1575
1576 /*
1577  * For lack of a better implementation, implement vmsplice() to userspace
1578  * as a simple copy of the pipes pages to the user iov.
1579  */
1580 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1581                              unsigned long nr_segs, unsigned int flags)
1582 {
1583         struct pipe_inode_info *pipe;
1584         struct splice_desc sd;
1585         ssize_t size;
1586         int error;
1587         long ret;
1588
1589         pipe = get_pipe_info(file);
1590         if (!pipe)
1591                 return -EBADF;
1592
1593         pipe_lock(pipe);
1594
1595         error = ret = 0;
1596         while (nr_segs) {
1597                 void __user *base;
1598                 size_t len;
1599
1600                 /*
1601                  * Get user address base and length for this iovec.
1602                  */
1603                 error = get_user(base, &iov->iov_base);
1604                 if (unlikely(error))
1605                         break;
1606                 error = get_user(len, &iov->iov_len);
1607                 if (unlikely(error))
1608                         break;
1609
1610                 /*
1611                  * Sanity check this iovec. 0 read succeeds.
1612                  */
1613                 if (unlikely(!len))
1614                         break;
1615                 if (unlikely(!base)) {
1616                         error = -EFAULT;
1617                         break;
1618                 }
1619
1620                 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1621                         error = -EFAULT;
1622                         break;
1623                 }
1624
1625                 sd.len = 0;
1626                 sd.total_len = len;
1627                 sd.flags = flags;
1628                 sd.u.userptr = base;
1629                 sd.pos = 0;
1630
1631                 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1632                 if (size < 0) {
1633                         if (!ret)
1634                                 ret = size;
1635
1636                         break;
1637                 }
1638
1639                 ret += size;
1640
1641                 if (size < len)
1642                         break;
1643
1644                 nr_segs--;
1645                 iov++;
1646         }
1647
1648         pipe_unlock(pipe);
1649
1650         if (!ret)
1651                 ret = error;
1652
1653         return ret;
1654 }
1655
1656 /*
1657  * vmsplice splices a user address range into a pipe. It can be thought of
1658  * as splice-from-memory, where the regular splice is splice-from-file (or
1659  * to file). In both cases the output is a pipe, naturally.
1660  */
1661 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1662                              unsigned long nr_segs, unsigned int flags)
1663 {
1664         struct pipe_inode_info *pipe;
1665         struct page *pages[PIPE_DEF_BUFFERS];
1666         struct partial_page partial[PIPE_DEF_BUFFERS];
1667         struct splice_pipe_desc spd = {
1668                 .pages = pages,
1669                 .partial = partial,
1670                 .nr_pages_max = PIPE_DEF_BUFFERS,
1671                 .flags = flags,
1672                 .ops = &user_page_pipe_buf_ops,
1673                 .spd_release = spd_release_page,
1674         };
1675         long ret;
1676
1677         pipe = get_pipe_info(file);
1678         if (!pipe)
1679                 return -EBADF;
1680
1681         if (splice_grow_spd(pipe, &spd))
1682                 return -ENOMEM;
1683
1684         spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1685                                             spd.partial, flags & SPLICE_F_GIFT,
1686                                             spd.nr_pages_max);
1687         if (spd.nr_pages <= 0)
1688                 ret = spd.nr_pages;
1689         else
1690                 ret = splice_to_pipe(pipe, &spd);
1691
1692         splice_shrink_spd(&spd);
1693         return ret;
1694 }
1695
1696 /*
1697  * Note that vmsplice only really supports true splicing _from_ user memory
1698  * to a pipe, not the other way around. Splicing from user memory is a simple
1699  * operation that can be supported without any funky alignment restrictions
1700  * or nasty vm tricks. We simply map in the user memory and fill them into
1701  * a pipe. The reverse isn't quite as easy, though. There are two possible
1702  * solutions for that:
1703  *
1704  *      - memcpy() the data internally, at which point we might as well just
1705  *        do a regular read() on the buffer anyway.
1706  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1707  *        has restriction limitations on both ends of the pipe).
1708  *
1709  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1710  *
1711  */
1712 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1713                 unsigned long, nr_segs, unsigned int, flags)
1714 {
1715         struct file *file;
1716         long error;
1717         int fput;
1718
1719         if (unlikely(nr_segs > UIO_MAXIOV))
1720                 return -EINVAL;
1721         else if (unlikely(!nr_segs))
1722                 return 0;
1723
1724         error = -EBADF;
1725         file = fget_light(fd, &fput);
1726         if (file) {
1727                 if (file->f_mode & FMODE_WRITE)
1728                         error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1729                 else if (file->f_mode & FMODE_READ)
1730                         error = vmsplice_to_user(file, iov, nr_segs, flags);
1731
1732                 fput_light(file, fput);
1733         }
1734
1735         return error;
1736 }
1737
1738 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1739                 int, fd_out, loff_t __user *, off_out,
1740                 size_t, len, unsigned int, flags)
1741 {
1742         long error;
1743         struct file *in, *out;
1744         int fput_in, fput_out;
1745
1746         if (unlikely(!len))
1747                 return 0;
1748
1749         error = -EBADF;
1750         in = fget_light(fd_in, &fput_in);
1751         if (in) {
1752                 if (in->f_mode & FMODE_READ) {
1753                         out = fget_light(fd_out, &fput_out);
1754                         if (out) {
1755                                 if (out->f_mode & FMODE_WRITE)
1756                                         error = do_splice(in, off_in,
1757                                                           out, off_out,
1758                                                           len, flags);
1759                                 fput_light(out, fput_out);
1760                         }
1761                 }
1762
1763                 fput_light(in, fput_in);
1764         }
1765
1766         return error;
1767 }
1768
1769 /*
1770  * Make sure there's data to read. Wait for input if we can, otherwise
1771  * return an appropriate error.
1772  */
1773 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1774 {
1775         int ret;
1776
1777         /*
1778          * Check ->nrbufs without the inode lock first. This function
1779          * is speculative anyways, so missing one is ok.
1780          */
1781         if (pipe->nrbufs)
1782                 return 0;
1783
1784         ret = 0;
1785         pipe_lock(pipe);
1786
1787         while (!pipe->nrbufs) {
1788                 if (signal_pending(current)) {
1789                         ret = -ERESTARTSYS;
1790                         break;
1791                 }
1792                 if (!pipe->writers)
1793                         break;
1794                 if (!pipe->waiting_writers) {
1795                         if (flags & SPLICE_F_NONBLOCK) {
1796                                 ret = -EAGAIN;
1797                                 break;
1798                         }
1799                 }
1800                 pipe_wait(pipe);
1801         }
1802
1803         pipe_unlock(pipe);
1804         return ret;
1805 }
1806
1807 /*
1808  * Make sure there's writeable room. Wait for room if we can, otherwise
1809  * return an appropriate error.
1810  */
1811 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1812 {
1813         int ret;
1814
1815         /*
1816          * Check ->nrbufs without the inode lock first. This function
1817          * is speculative anyways, so missing one is ok.
1818          */
1819         if (pipe->nrbufs < pipe->buffers)
1820                 return 0;
1821
1822         ret = 0;
1823         pipe_lock(pipe);
1824
1825         while (pipe->nrbufs >= pipe->buffers) {
1826                 if (!pipe->readers) {
1827                         send_sig(SIGPIPE, current, 0);
1828                         ret = -EPIPE;
1829                         break;
1830                 }
1831                 if (flags & SPLICE_F_NONBLOCK) {
1832                         ret = -EAGAIN;
1833                         break;
1834                 }
1835                 if (signal_pending(current)) {
1836                         ret = -ERESTARTSYS;
1837                         break;
1838                 }
1839                 pipe->waiting_writers++;
1840                 pipe_wait(pipe);
1841                 pipe->waiting_writers--;
1842         }
1843
1844         pipe_unlock(pipe);
1845         return ret;
1846 }
1847
1848 /*
1849  * Splice contents of ipipe to opipe.
1850  */
1851 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1852                                struct pipe_inode_info *opipe,
1853                                size_t len, unsigned int flags)
1854 {
1855         struct pipe_buffer *ibuf, *obuf;
1856         int ret = 0, nbuf;
1857         bool input_wakeup = false;
1858
1859
1860 retry:
1861         ret = ipipe_prep(ipipe, flags);
1862         if (ret)
1863                 return ret;
1864
1865         ret = opipe_prep(opipe, flags);
1866         if (ret)
1867                 return ret;
1868
1869         /*
1870          * Potential ABBA deadlock, work around it by ordering lock
1871          * grabbing by pipe info address. Otherwise two different processes
1872          * could deadlock (one doing tee from A -> B, the other from B -> A).
1873          */
1874         pipe_double_lock(ipipe, opipe);
1875
1876         do {
1877                 if (!opipe->readers) {
1878                         send_sig(SIGPIPE, current, 0);
1879                         if (!ret)
1880                                 ret = -EPIPE;
1881                         break;
1882                 }
1883
1884                 if (!ipipe->nrbufs && !ipipe->writers)
1885                         break;
1886
1887                 /*
1888                  * Cannot make any progress, because either the input
1889                  * pipe is empty or the output pipe is full.
1890                  */
1891                 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1892                         /* Already processed some buffers, break */
1893                         if (ret)
1894                                 break;
1895
1896                         if (flags & SPLICE_F_NONBLOCK) {
1897                                 ret = -EAGAIN;
1898                                 break;
1899                         }
1900
1901                         /*
1902                          * We raced with another reader/writer and haven't
1903                          * managed to process any buffers.  A zero return
1904                          * value means EOF, so retry instead.
1905                          */
1906                         pipe_unlock(ipipe);
1907                         pipe_unlock(opipe);
1908                         goto retry;
1909                 }
1910
1911                 ibuf = ipipe->bufs + ipipe->curbuf;
1912                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1913                 obuf = opipe->bufs + nbuf;
1914
1915                 if (len >= ibuf->len) {
1916                         /*
1917                          * Simply move the whole buffer from ipipe to opipe
1918                          */
1919                         *obuf = *ibuf;
1920                         ibuf->ops = NULL;
1921                         opipe->nrbufs++;
1922                         ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1923                         ipipe->nrbufs--;
1924                         input_wakeup = true;
1925                 } else {
1926                         /*
1927                          * Get a reference to this pipe buffer,
1928                          * so we can copy the contents over.
1929                          */
1930                         ibuf->ops->get(ipipe, ibuf);
1931                         *obuf = *ibuf;
1932
1933                         /*
1934                          * Don't inherit the gift flag, we need to
1935                          * prevent multiple steals of this page.
1936                          */
1937                         obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1938
1939                         obuf->len = len;
1940                         opipe->nrbufs++;
1941                         ibuf->offset += obuf->len;
1942                         ibuf->len -= obuf->len;
1943                 }
1944                 ret += obuf->len;
1945                 len -= obuf->len;
1946         } while (len);
1947
1948         pipe_unlock(ipipe);
1949         pipe_unlock(opipe);
1950
1951         /*
1952          * If we put data in the output pipe, wakeup any potential readers.
1953          */
1954         if (ret > 0)
1955                 wakeup_pipe_readers(opipe);
1956
1957         if (input_wakeup)
1958                 wakeup_pipe_writers(ipipe);
1959
1960         return ret;
1961 }
1962
1963 /*
1964  * Link contents of ipipe to opipe.
1965  */
1966 static int link_pipe(struct pipe_inode_info *ipipe,
1967                      struct pipe_inode_info *opipe,
1968                      size_t len, unsigned int flags)
1969 {
1970         struct pipe_buffer *ibuf, *obuf;
1971         int ret = 0, i = 0, nbuf;
1972
1973         /*
1974          * Potential ABBA deadlock, work around it by ordering lock
1975          * grabbing by pipe info address. Otherwise two different processes
1976          * could deadlock (one doing tee from A -> B, the other from B -> A).
1977          */
1978         pipe_double_lock(ipipe, opipe);
1979
1980         do {
1981                 if (!opipe->readers) {
1982                         send_sig(SIGPIPE, current, 0);
1983                         if (!ret)
1984                                 ret = -EPIPE;
1985                         break;
1986                 }
1987
1988                 /*
1989                  * If we have iterated all input buffers or ran out of
1990                  * output room, break.
1991                  */
1992                 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1993                         break;
1994
1995                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1996                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1997
1998                 /*
1999                  * Get a reference to this pipe buffer,
2000                  * so we can copy the contents over.
2001                  */
2002                 ibuf->ops->get(ipipe, ibuf);
2003
2004                 obuf = opipe->bufs + nbuf;
2005                 *obuf = *ibuf;
2006
2007                 /*
2008                  * Don't inherit the gift flag, we need to
2009                  * prevent multiple steals of this page.
2010                  */
2011                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
2012
2013                 if (obuf->len > len)
2014                         obuf->len = len;
2015
2016                 opipe->nrbufs++;
2017                 ret += obuf->len;
2018                 len -= obuf->len;
2019                 i++;
2020         } while (len);
2021
2022         /*
2023          * return EAGAIN if we have the potential of some data in the
2024          * future, otherwise just return 0
2025          */
2026         if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
2027                 ret = -EAGAIN;
2028
2029         pipe_unlock(ipipe);
2030         pipe_unlock(opipe);
2031
2032         /*
2033          * If we put data in the output pipe, wakeup any potential readers.
2034          */
2035         if (ret > 0)
2036                 wakeup_pipe_readers(opipe);
2037
2038         return ret;
2039 }
2040
2041 /*
2042  * This is a tee(1) implementation that works on pipes. It doesn't copy
2043  * any data, it simply references the 'in' pages on the 'out' pipe.
2044  * The 'flags' used are the SPLICE_F_* variants, currently the only
2045  * applicable one is SPLICE_F_NONBLOCK.
2046  */
2047 static long do_tee(struct file *in, struct file *out, size_t len,
2048                    unsigned int flags)
2049 {
2050         struct pipe_inode_info *ipipe = get_pipe_info(in);
2051         struct pipe_inode_info *opipe = get_pipe_info(out);
2052         int ret = -EINVAL;
2053
2054         /*
2055          * Duplicate the contents of ipipe to opipe without actually
2056          * copying the data.
2057          */
2058         if (ipipe && opipe && ipipe != opipe) {
2059                 /*
2060                  * Keep going, unless we encounter an error. The ipipe/opipe
2061                  * ordering doesn't really matter.
2062                  */
2063                 ret = ipipe_prep(ipipe, flags);
2064                 if (!ret) {
2065                         ret = opipe_prep(opipe, flags);
2066                         if (!ret)
2067                                 ret = link_pipe(ipipe, opipe, len, flags);
2068                 }
2069         }
2070
2071         return ret;
2072 }
2073
2074 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2075 {
2076         struct file *in;
2077         int error, fput_in;
2078
2079         if (unlikely(!len))
2080                 return 0;
2081
2082         error = -EBADF;
2083         in = fget_light(fdin, &fput_in);
2084         if (in) {
2085                 if (in->f_mode & FMODE_READ) {
2086                         int fput_out;
2087                         struct file *out = fget_light(fdout, &fput_out);
2088
2089                         if (out) {
2090                                 if (out->f_mode & FMODE_WRITE)
2091                                         error = do_tee(in, out, len, flags);
2092                                 fput_light(out, fput_out);
2093                         }
2094                 }
2095                 fput_light(in, fput_in);
2096         }
2097
2098         return error;
2099 }