768514dc0c4c56ff30669bb0abb04688102eb347
[pandora-kernel.git] / fs / nfs / nfs4proc.c
1 /*
2  *  fs/nfs/nfs4proc.c
3  *
4  *  Client-side procedure declarations for NFSv4.
5  *
6  *  Copyright (c) 2002 The Regents of the University of Michigan.
7  *  All rights reserved.
8  *
9  *  Kendrick Smith <kmsmith@umich.edu>
10  *  Andy Adamson   <andros@umich.edu>
11  *
12  *  Redistribution and use in source and binary forms, with or without
13  *  modification, are permitted provided that the following conditions
14  *  are met:
15  *
16  *  1. Redistributions of source code must retain the above copyright
17  *     notice, this list of conditions and the following disclaimer.
18  *  2. Redistributions in binary form must reproduce the above copyright
19  *     notice, this list of conditions and the following disclaimer in the
20  *     documentation and/or other materials provided with the distribution.
21  *  3. Neither the name of the University nor the names of its
22  *     contributors may be used to endorse or promote products derived
23  *     from this software without specific prior written permission.
24  *
25  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28  *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32  *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37
38 #include <linux/mm.h>
39 #include <linux/utsname.h>
40 #include <linux/delay.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/sunrpc/clnt.h>
44 #include <linux/nfs.h>
45 #include <linux/nfs4.h>
46 #include <linux/nfs_fs.h>
47 #include <linux/nfs_page.h>
48 #include <linux/smp_lock.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51
52 #include "nfs4_fs.h"
53 #include "delegation.h"
54 #include "iostat.h"
55
56 #define NFSDBG_FACILITY         NFSDBG_PROC
57
58 #define NFS4_POLL_RETRY_MIN     (1*HZ)
59 #define NFS4_POLL_RETRY_MAX     (15*HZ)
60
61 struct nfs4_opendata;
62 static int _nfs4_proc_open(struct nfs4_opendata *data);
63 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
64 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
65 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry);
66 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
67 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp);
68 extern u32 *nfs4_decode_dirent(u32 *p, struct nfs_entry *entry, int plus);
69 extern struct rpc_procinfo nfs4_procedures[];
70
71 /* Prevent leaks of NFSv4 errors into userland */
72 int nfs4_map_errors(int err)
73 {
74         if (err < -1000) {
75                 dprintk("%s could not handle NFSv4 error %d\n",
76                                 __FUNCTION__, -err);
77                 return -EIO;
78         }
79         return err;
80 }
81
82 /*
83  * This is our standard bitmap for GETATTR requests.
84  */
85 const u32 nfs4_fattr_bitmap[2] = {
86         FATTR4_WORD0_TYPE
87         | FATTR4_WORD0_CHANGE
88         | FATTR4_WORD0_SIZE
89         | FATTR4_WORD0_FSID
90         | FATTR4_WORD0_FILEID,
91         FATTR4_WORD1_MODE
92         | FATTR4_WORD1_NUMLINKS
93         | FATTR4_WORD1_OWNER
94         | FATTR4_WORD1_OWNER_GROUP
95         | FATTR4_WORD1_RAWDEV
96         | FATTR4_WORD1_SPACE_USED
97         | FATTR4_WORD1_TIME_ACCESS
98         | FATTR4_WORD1_TIME_METADATA
99         | FATTR4_WORD1_TIME_MODIFY
100 };
101
102 const u32 nfs4_statfs_bitmap[2] = {
103         FATTR4_WORD0_FILES_AVAIL
104         | FATTR4_WORD0_FILES_FREE
105         | FATTR4_WORD0_FILES_TOTAL,
106         FATTR4_WORD1_SPACE_AVAIL
107         | FATTR4_WORD1_SPACE_FREE
108         | FATTR4_WORD1_SPACE_TOTAL
109 };
110
111 const u32 nfs4_pathconf_bitmap[2] = {
112         FATTR4_WORD0_MAXLINK
113         | FATTR4_WORD0_MAXNAME,
114         0
115 };
116
117 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
118                         | FATTR4_WORD0_MAXREAD
119                         | FATTR4_WORD0_MAXWRITE
120                         | FATTR4_WORD0_LEASE_TIME,
121                         0
122 };
123
124 static void nfs4_setup_readdir(u64 cookie, u32 *verifier, struct dentry *dentry,
125                 struct nfs4_readdir_arg *readdir)
126 {
127         u32 *start, *p;
128
129         BUG_ON(readdir->count < 80);
130         if (cookie > 2) {
131                 readdir->cookie = cookie;
132                 memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
133                 return;
134         }
135
136         readdir->cookie = 0;
137         memset(&readdir->verifier, 0, sizeof(readdir->verifier));
138         if (cookie == 2)
139                 return;
140         
141         /*
142          * NFSv4 servers do not return entries for '.' and '..'
143          * Therefore, we fake these entries here.  We let '.'
144          * have cookie 0 and '..' have cookie 1.  Note that
145          * when talking to the server, we always send cookie 0
146          * instead of 1 or 2.
147          */
148         start = p = (u32 *)kmap_atomic(*readdir->pages, KM_USER0);
149         
150         if (cookie == 0) {
151                 *p++ = xdr_one;                                  /* next */
152                 *p++ = xdr_zero;                   /* cookie, first word */
153                 *p++ = xdr_one;                   /* cookie, second word */
154                 *p++ = xdr_one;                             /* entry len */
155                 memcpy(p, ".\0\0\0", 4);                        /* entry */
156                 p++;
157                 *p++ = xdr_one;                         /* bitmap length */
158                 *p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
159                 *p++ = htonl(8);              /* attribute buffer length */
160                 p = xdr_encode_hyper(p, dentry->d_inode->i_ino);
161         }
162         
163         *p++ = xdr_one;                                  /* next */
164         *p++ = xdr_zero;                   /* cookie, first word */
165         *p++ = xdr_two;                   /* cookie, second word */
166         *p++ = xdr_two;                             /* entry len */
167         memcpy(p, "..\0\0", 4);                         /* entry */
168         p++;
169         *p++ = xdr_one;                         /* bitmap length */
170         *p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
171         *p++ = htonl(8);              /* attribute buffer length */
172         p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino);
173
174         readdir->pgbase = (char *)p - (char *)start;
175         readdir->count -= readdir->pgbase;
176         kunmap_atomic(start, KM_USER0);
177 }
178
179 static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
180 {
181         struct nfs4_client *clp = server->nfs4_state;
182         spin_lock(&clp->cl_lock);
183         if (time_before(clp->cl_last_renewal,timestamp))
184                 clp->cl_last_renewal = timestamp;
185         spin_unlock(&clp->cl_lock);
186 }
187
188 static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo)
189 {
190         struct nfs_inode *nfsi = NFS_I(dir);
191
192         spin_lock(&dir->i_lock);
193         nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA;
194         if (cinfo->before == nfsi->change_attr && cinfo->atomic)
195                 nfsi->change_attr = cinfo->after;
196         spin_unlock(&dir->i_lock);
197 }
198
199 struct nfs4_opendata {
200         atomic_t count;
201         struct nfs_openargs o_arg;
202         struct nfs_openres o_res;
203         struct nfs_open_confirmargs c_arg;
204         struct nfs_open_confirmres c_res;
205         struct nfs_fattr f_attr;
206         struct nfs_fattr dir_attr;
207         struct dentry *dentry;
208         struct dentry *dir;
209         struct nfs4_state_owner *owner;
210         struct iattr attrs;
211         unsigned long timestamp;
212         int rpc_status;
213         int cancelled;
214 };
215
216 static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry,
217                 struct nfs4_state_owner *sp, int flags,
218                 const struct iattr *attrs)
219 {
220         struct dentry *parent = dget_parent(dentry);
221         struct inode *dir = parent->d_inode;
222         struct nfs_server *server = NFS_SERVER(dir);
223         struct nfs4_opendata *p;
224
225         p = kzalloc(sizeof(*p), GFP_KERNEL);
226         if (p == NULL)
227                 goto err;
228         p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
229         if (p->o_arg.seqid == NULL)
230                 goto err_free;
231         atomic_set(&p->count, 1);
232         p->dentry = dget(dentry);
233         p->dir = parent;
234         p->owner = sp;
235         atomic_inc(&sp->so_count);
236         p->o_arg.fh = NFS_FH(dir);
237         p->o_arg.open_flags = flags,
238         p->o_arg.clientid = server->nfs4_state->cl_clientid;
239         p->o_arg.id = sp->so_id;
240         p->o_arg.name = &dentry->d_name;
241         p->o_arg.server = server;
242         p->o_arg.bitmask = server->attr_bitmask;
243         p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
244         p->o_res.f_attr = &p->f_attr;
245         p->o_res.dir_attr = &p->dir_attr;
246         p->o_res.server = server;
247         nfs_fattr_init(&p->f_attr);
248         nfs_fattr_init(&p->dir_attr);
249         if (flags & O_EXCL) {
250                 u32 *s = (u32 *) p->o_arg.u.verifier.data;
251                 s[0] = jiffies;
252                 s[1] = current->pid;
253         } else if (flags & O_CREAT) {
254                 p->o_arg.u.attrs = &p->attrs;
255                 memcpy(&p->attrs, attrs, sizeof(p->attrs));
256         }
257         p->c_arg.fh = &p->o_res.fh;
258         p->c_arg.stateid = &p->o_res.stateid;
259         p->c_arg.seqid = p->o_arg.seqid;
260         return p;
261 err_free:
262         kfree(p);
263 err:
264         dput(parent);
265         return NULL;
266 }
267
268 static void nfs4_opendata_free(struct nfs4_opendata *p)
269 {
270         if (p != NULL && atomic_dec_and_test(&p->count)) {
271                 nfs_free_seqid(p->o_arg.seqid);
272                 nfs4_put_state_owner(p->owner);
273                 dput(p->dir);
274                 dput(p->dentry);
275                 kfree(p);
276         }
277 }
278
279 /* Helper for asynchronous RPC calls */
280 static int nfs4_call_async(struct rpc_clnt *clnt,
281                 const struct rpc_call_ops *tk_ops, void *calldata)
282 {
283         struct rpc_task *task;
284
285         if (!(task = rpc_new_task(clnt, RPC_TASK_ASYNC, tk_ops, calldata)))
286                 return -ENOMEM;
287         rpc_execute(task);
288         return 0;
289 }
290
291 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
292 {
293         sigset_t oldset;
294         int ret;
295
296         rpc_clnt_sigmask(task->tk_client, &oldset);
297         ret = rpc_wait_for_completion_task(task);
298         rpc_clnt_sigunmask(task->tk_client, &oldset);
299         return ret;
300 }
301
302 static inline void update_open_stateflags(struct nfs4_state *state, mode_t open_flags)
303 {
304         switch (open_flags) {
305                 case FMODE_WRITE:
306                         state->n_wronly++;
307                         break;
308                 case FMODE_READ:
309                         state->n_rdonly++;
310                         break;
311                 case FMODE_READ|FMODE_WRITE:
312                         state->n_rdwr++;
313         }
314 }
315
316 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
317 {
318         struct inode *inode = state->inode;
319
320         open_flags &= (FMODE_READ|FMODE_WRITE);
321         /* Protect against nfs4_find_state_byowner() */
322         spin_lock(&state->owner->so_lock);
323         spin_lock(&inode->i_lock);
324         memcpy(&state->stateid, stateid, sizeof(state->stateid));
325         update_open_stateflags(state, open_flags);
326         nfs4_state_set_mode_locked(state, state->state | open_flags);
327         spin_unlock(&inode->i_lock);
328         spin_unlock(&state->owner->so_lock);
329 }
330
331 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
332 {
333         struct inode *inode;
334         struct nfs4_state *state = NULL;
335
336         if (!(data->f_attr.valid & NFS_ATTR_FATTR))
337                 goto out;
338         inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
339         if (IS_ERR(inode))
340                 goto out;
341         state = nfs4_get_open_state(inode, data->owner);
342         if (state == NULL)
343                 goto put_inode;
344         update_open_stateid(state, &data->o_res.stateid, data->o_arg.open_flags);
345 put_inode:
346         iput(inode);
347 out:
348         return state;
349 }
350
351 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
352 {
353         struct nfs_inode *nfsi = NFS_I(state->inode);
354         struct nfs_open_context *ctx;
355
356         spin_lock(&state->inode->i_lock);
357         list_for_each_entry(ctx, &nfsi->open_files, list) {
358                 if (ctx->state != state)
359                         continue;
360                 get_nfs_open_context(ctx);
361                 spin_unlock(&state->inode->i_lock);
362                 return ctx;
363         }
364         spin_unlock(&state->inode->i_lock);
365         return ERR_PTR(-ENOENT);
366 }
367
368 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, nfs4_stateid *stateid)
369 {
370         int ret;
371
372         opendata->o_arg.open_flags = openflags;
373         ret = _nfs4_proc_open(opendata);
374         if (ret != 0)
375                 return ret; 
376         memcpy(stateid->data, opendata->o_res.stateid.data,
377                         sizeof(stateid->data));
378         return 0;
379 }
380
381 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
382 {
383         nfs4_stateid stateid;
384         struct nfs4_state *newstate;
385         int mode = 0;
386         int delegation = 0;
387         int ret;
388
389         /* memory barrier prior to reading state->n_* */
390         smp_rmb();
391         if (state->n_rdwr != 0) {
392                 ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &stateid);
393                 if (ret != 0)
394                         return ret;
395                 mode |= FMODE_READ|FMODE_WRITE;
396                 if (opendata->o_res.delegation_type != 0)
397                         delegation = opendata->o_res.delegation_type;
398                 smp_rmb();
399         }
400         if (state->n_wronly != 0) {
401                 ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &stateid);
402                 if (ret != 0)
403                         return ret;
404                 mode |= FMODE_WRITE;
405                 if (opendata->o_res.delegation_type != 0)
406                         delegation = opendata->o_res.delegation_type;
407                 smp_rmb();
408         }
409         if (state->n_rdonly != 0) {
410                 ret = nfs4_open_recover_helper(opendata, FMODE_READ, &stateid);
411                 if (ret != 0)
412                         return ret;
413                 mode |= FMODE_READ;
414         }
415         clear_bit(NFS_DELEGATED_STATE, &state->flags);
416         if (mode == 0)
417                 return 0;
418         if (opendata->o_res.delegation_type == 0)
419                 opendata->o_res.delegation_type = delegation;
420         opendata->o_arg.open_flags |= mode;
421         newstate = nfs4_opendata_to_nfs4_state(opendata);
422         if (newstate != NULL) {
423                 if (opendata->o_res.delegation_type != 0) {
424                         struct nfs_inode *nfsi = NFS_I(newstate->inode);
425                         int delegation_flags = 0;
426                         if (nfsi->delegation)
427                                 delegation_flags = nfsi->delegation->flags;
428                         if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM))
429                                 nfs_inode_set_delegation(newstate->inode,
430                                                 opendata->owner->so_cred,
431                                                 &opendata->o_res);
432                         else
433                                 nfs_inode_reclaim_delegation(newstate->inode,
434                                                 opendata->owner->so_cred,
435                                                 &opendata->o_res);
436                 }
437                 nfs4_close_state(newstate, opendata->o_arg.open_flags);
438         }
439         if (newstate != state)
440                 return -ESTALE;
441         return 0;
442 }
443
444 /*
445  * OPEN_RECLAIM:
446  *      reclaim state on the server after a reboot.
447  */
448 static int _nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
449 {
450         struct nfs_delegation *delegation = NFS_I(state->inode)->delegation;
451         struct nfs4_opendata *opendata;
452         int delegation_type = 0;
453         int status;
454
455         if (delegation != NULL) {
456                 if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
457                         memcpy(&state->stateid, &delegation->stateid,
458                                         sizeof(state->stateid));
459                         set_bit(NFS_DELEGATED_STATE, &state->flags);
460                         return 0;
461                 }
462                 delegation_type = delegation->type;
463         }
464         opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
465         if (opendata == NULL)
466                 return -ENOMEM;
467         opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
468         opendata->o_arg.fh = NFS_FH(state->inode);
469         nfs_copy_fh(&opendata->o_res.fh, opendata->o_arg.fh);
470         opendata->o_arg.u.delegation_type = delegation_type;
471         status = nfs4_open_recover(opendata, state);
472         nfs4_opendata_free(opendata);
473         return status;
474 }
475
476 static int nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
477 {
478         struct nfs_server *server = NFS_SERVER(state->inode);
479         struct nfs4_exception exception = { };
480         int err;
481         do {
482                 err = _nfs4_do_open_reclaim(sp, state, dentry);
483                 if (err != -NFS4ERR_DELAY)
484                         break;
485                 nfs4_handle_exception(server, err, &exception);
486         } while (exception.retry);
487         return err;
488 }
489
490 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
491 {
492         struct nfs_open_context *ctx;
493         int ret;
494
495         ctx = nfs4_state_find_open_context(state);
496         if (IS_ERR(ctx))
497                 return PTR_ERR(ctx);
498         ret = nfs4_do_open_reclaim(sp, state, ctx->dentry);
499         put_nfs_open_context(ctx);
500         return ret;
501 }
502
503 static int _nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
504 {
505         struct nfs4_state_owner  *sp  = state->owner;
506         struct nfs4_opendata *opendata;
507         int ret;
508
509         if (!test_bit(NFS_DELEGATED_STATE, &state->flags))
510                 return 0;
511         opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
512         if (opendata == NULL)
513                 return -ENOMEM;
514         opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
515         memcpy(opendata->o_arg.u.delegation.data, state->stateid.data,
516                         sizeof(opendata->o_arg.u.delegation.data));
517         ret = nfs4_open_recover(opendata, state);
518         nfs4_opendata_free(opendata);
519         return ret;
520 }
521
522 int nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
523 {
524         struct nfs4_exception exception = { };
525         struct nfs_server *server = NFS_SERVER(dentry->d_inode);
526         int err;
527         do {
528                 err = _nfs4_open_delegation_recall(dentry, state);
529                 switch (err) {
530                         case 0:
531                                 return err;
532                         case -NFS4ERR_STALE_CLIENTID:
533                         case -NFS4ERR_STALE_STATEID:
534                         case -NFS4ERR_EXPIRED:
535                                 /* Don't recall a delegation if it was lost */
536                                 nfs4_schedule_state_recovery(server->nfs4_state);
537                                 return err;
538                 }
539                 err = nfs4_handle_exception(server, err, &exception);
540         } while (exception.retry);
541         return err;
542 }
543
544 static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata)
545 {
546         struct nfs4_opendata *data = calldata;
547         struct  rpc_message msg = {
548                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
549                 .rpc_argp = &data->c_arg,
550                 .rpc_resp = &data->c_res,
551                 .rpc_cred = data->owner->so_cred,
552         };
553         data->timestamp = jiffies;
554         rpc_call_setup(task, &msg, 0);
555 }
556
557 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
558 {
559         struct nfs4_opendata *data = calldata;
560
561         data->rpc_status = task->tk_status;
562         if (RPC_ASSASSINATED(task))
563                 return;
564         if (data->rpc_status == 0) {
565                 memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
566                                 sizeof(data->o_res.stateid.data));
567                 renew_lease(data->o_res.server, data->timestamp);
568         }
569         nfs_increment_open_seqid(data->rpc_status, data->c_arg.seqid);
570         nfs_confirm_seqid(&data->owner->so_seqid, data->rpc_status);
571 }
572
573 static void nfs4_open_confirm_release(void *calldata)
574 {
575         struct nfs4_opendata *data = calldata;
576         struct nfs4_state *state = NULL;
577
578         /* If this request hasn't been cancelled, do nothing */
579         if (data->cancelled == 0)
580                 goto out_free;
581         /* In case of error, no cleanup! */
582         if (data->rpc_status != 0)
583                 goto out_free;
584         nfs_confirm_seqid(&data->owner->so_seqid, 0);
585         state = nfs4_opendata_to_nfs4_state(data);
586         if (state != NULL)
587                 nfs4_close_state(state, data->o_arg.open_flags);
588 out_free:
589         nfs4_opendata_free(data);
590 }
591
592 static const struct rpc_call_ops nfs4_open_confirm_ops = {
593         .rpc_call_prepare = nfs4_open_confirm_prepare,
594         .rpc_call_done = nfs4_open_confirm_done,
595         .rpc_release = nfs4_open_confirm_release,
596 };
597
598 /*
599  * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
600  */
601 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
602 {
603         struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
604         struct rpc_task *task;
605         int status;
606
607         atomic_inc(&data->count);
608         /*
609          * If rpc_run_task() ends up calling ->rpc_release(), we
610          * want to ensure that it takes the 'error' code path.
611          */
612         data->rpc_status = -ENOMEM;
613         task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_confirm_ops, data);
614         if (IS_ERR(task))
615                 return PTR_ERR(task);
616         status = nfs4_wait_for_completion_rpc_task(task);
617         if (status != 0) {
618                 data->cancelled = 1;
619                 smp_wmb();
620         } else
621                 status = data->rpc_status;
622         rpc_release_task(task);
623         return status;
624 }
625
626 static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
627 {
628         struct nfs4_opendata *data = calldata;
629         struct nfs4_state_owner *sp = data->owner;
630         struct rpc_message msg = {
631                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
632                 .rpc_argp = &data->o_arg,
633                 .rpc_resp = &data->o_res,
634                 .rpc_cred = sp->so_cred,
635         };
636         
637         if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
638                 return;
639         /* Update sequence id. */
640         data->o_arg.id = sp->so_id;
641         data->o_arg.clientid = sp->so_client->cl_clientid;
642         if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS)
643                 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
644         data->timestamp = jiffies;
645         rpc_call_setup(task, &msg, 0);
646 }
647
648 static void nfs4_open_done(struct rpc_task *task, void *calldata)
649 {
650         struct nfs4_opendata *data = calldata;
651
652         data->rpc_status = task->tk_status;
653         if (RPC_ASSASSINATED(task))
654                 return;
655         if (task->tk_status == 0) {
656                 switch (data->o_res.f_attr->mode & S_IFMT) {
657                         case S_IFREG:
658                                 break;
659                         case S_IFLNK:
660                                 data->rpc_status = -ELOOP;
661                                 break;
662                         case S_IFDIR:
663                                 data->rpc_status = -EISDIR;
664                                 break;
665                         default:
666                                 data->rpc_status = -ENOTDIR;
667                 }
668                 renew_lease(data->o_res.server, data->timestamp);
669         }
670         nfs_increment_open_seqid(data->rpc_status, data->o_arg.seqid);
671 }
672
673 static void nfs4_open_release(void *calldata)
674 {
675         struct nfs4_opendata *data = calldata;
676         struct nfs4_state *state = NULL;
677
678         /* If this request hasn't been cancelled, do nothing */
679         if (data->cancelled == 0)
680                 goto out_free;
681         /* In case of error, no cleanup! */
682         if (data->rpc_status != 0)
683                 goto out_free;
684         /* In case we need an open_confirm, no cleanup! */
685         if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
686                 goto out_free;
687         nfs_confirm_seqid(&data->owner->so_seqid, 0);
688         state = nfs4_opendata_to_nfs4_state(data);
689         if (state != NULL)
690                 nfs4_close_state(state, data->o_arg.open_flags);
691 out_free:
692         nfs4_opendata_free(data);
693 }
694
695 static const struct rpc_call_ops nfs4_open_ops = {
696         .rpc_call_prepare = nfs4_open_prepare,
697         .rpc_call_done = nfs4_open_done,
698         .rpc_release = nfs4_open_release,
699 };
700
701 /*
702  * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
703  */
704 static int _nfs4_proc_open(struct nfs4_opendata *data)
705 {
706         struct inode *dir = data->dir->d_inode;
707         struct nfs_server *server = NFS_SERVER(dir);
708         struct nfs_openargs *o_arg = &data->o_arg;
709         struct nfs_openres *o_res = &data->o_res;
710         struct rpc_task *task;
711         int status;
712
713         atomic_inc(&data->count);
714         /*
715          * If rpc_run_task() ends up calling ->rpc_release(), we
716          * want to ensure that it takes the 'error' code path.
717          */
718         data->rpc_status = -ENOMEM;
719         task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_ops, data);
720         if (IS_ERR(task))
721                 return PTR_ERR(task);
722         status = nfs4_wait_for_completion_rpc_task(task);
723         if (status != 0) {
724                 data->cancelled = 1;
725                 smp_wmb();
726         } else
727                 status = data->rpc_status;
728         rpc_release_task(task);
729         if (status != 0)
730                 return status;
731
732         if (o_arg->open_flags & O_CREAT) {
733                 update_changeattr(dir, &o_res->cinfo);
734                 nfs_post_op_update_inode(dir, o_res->dir_attr);
735         } else
736                 nfs_refresh_inode(dir, o_res->dir_attr);
737         if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
738                 status = _nfs4_proc_open_confirm(data);
739                 if (status != 0)
740                         return status;
741         }
742         nfs_confirm_seqid(&data->owner->so_seqid, 0);
743         if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
744                 return server->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr);
745         return 0;
746 }
747
748 static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags)
749 {
750         struct nfs_access_entry cache;
751         int mask = 0;
752         int status;
753
754         if (openflags & FMODE_READ)
755                 mask |= MAY_READ;
756         if (openflags & FMODE_WRITE)
757                 mask |= MAY_WRITE;
758         status = nfs_access_get_cached(inode, cred, &cache);
759         if (status == 0)
760                 goto out;
761
762         /* Be clever: ask server to check for all possible rights */
763         cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
764         cache.cred = cred;
765         cache.jiffies = jiffies;
766         status = _nfs4_proc_access(inode, &cache);
767         if (status != 0)
768                 return status;
769         nfs_access_add_cache(inode, &cache);
770 out:
771         if ((cache.mask & mask) == mask)
772                 return 0;
773         return -EACCES;
774 }
775
776 int nfs4_recover_expired_lease(struct nfs_server *server)
777 {
778         struct nfs4_client *clp = server->nfs4_state;
779
780         if (test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state))
781                 nfs4_schedule_state_recovery(clp);
782         return nfs4_wait_clnt_recover(server->client, clp);
783 }
784
785 /*
786  * OPEN_EXPIRED:
787  *      reclaim state on the server after a network partition.
788  *      Assumes caller holds the appropriate lock
789  */
790 static int _nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
791 {
792         struct inode *inode = state->inode;
793         struct nfs_delegation *delegation = NFS_I(inode)->delegation;
794         struct nfs4_opendata *opendata;
795         int openflags = state->state & (FMODE_READ|FMODE_WRITE);
796         int ret;
797
798         if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
799                 ret = _nfs4_do_access(inode, sp->so_cred, openflags);
800                 if (ret < 0)
801                         return ret;
802                 memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid));
803                 set_bit(NFS_DELEGATED_STATE, &state->flags);
804                 return 0;
805         }
806         opendata = nfs4_opendata_alloc(dentry, sp, openflags, NULL);
807         if (opendata == NULL)
808                 return -ENOMEM;
809         ret = nfs4_open_recover(opendata, state);
810         if (ret == -ESTALE) {
811                 /* Invalidate the state owner so we don't ever use it again */
812                 nfs4_drop_state_owner(sp);
813                 d_drop(dentry);
814         }
815         nfs4_opendata_free(opendata);
816         return ret;
817 }
818
819 static inline int nfs4_do_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
820 {
821         struct nfs_server *server = NFS_SERVER(dentry->d_inode);
822         struct nfs4_exception exception = { };
823         int err;
824
825         do {
826                 err = _nfs4_open_expired(sp, state, dentry);
827                 if (err == -NFS4ERR_DELAY)
828                         nfs4_handle_exception(server, err, &exception);
829         } while (exception.retry);
830         return err;
831 }
832
833 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
834 {
835         struct nfs_open_context *ctx;
836         int ret;
837
838         ctx = nfs4_state_find_open_context(state);
839         if (IS_ERR(ctx))
840                 return PTR_ERR(ctx);
841         ret = nfs4_do_open_expired(sp, state, ctx->dentry);
842         put_nfs_open_context(ctx);
843         return ret;
844 }
845
846 /*
847  * Returns a referenced nfs4_state if there is an open delegation on the file
848  */
849 static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res)
850 {
851         struct nfs_delegation *delegation;
852         struct nfs_server *server = NFS_SERVER(inode);
853         struct nfs4_client *clp = server->nfs4_state;
854         struct nfs_inode *nfsi = NFS_I(inode);
855         struct nfs4_state_owner *sp = NULL;
856         struct nfs4_state *state = NULL;
857         int open_flags = flags & (FMODE_READ|FMODE_WRITE);
858         int err;
859
860         err = -ENOMEM;
861         if (!(sp = nfs4_get_state_owner(server, cred))) {
862                 dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__);
863                 return err;
864         }
865         err = nfs4_recover_expired_lease(server);
866         if (err != 0)
867                 goto out_put_state_owner;
868         /* Protect against reboot recovery - NOTE ORDER! */
869         down_read(&clp->cl_sem);
870         /* Protect against delegation recall */
871         down_read(&nfsi->rwsem);
872         delegation = NFS_I(inode)->delegation;
873         err = -ENOENT;
874         if (delegation == NULL || (delegation->type & open_flags) != open_flags)
875                 goto out_err;
876         err = -ENOMEM;
877         state = nfs4_get_open_state(inode, sp);
878         if (state == NULL)
879                 goto out_err;
880
881         err = -ENOENT;
882         if ((state->state & open_flags) == open_flags) {
883                 spin_lock(&inode->i_lock);
884                 update_open_stateflags(state, open_flags);
885                 spin_unlock(&inode->i_lock);
886                 goto out_ok;
887         } else if (state->state != 0)
888                 goto out_put_open_state;
889
890         lock_kernel();
891         err = _nfs4_do_access(inode, cred, open_flags);
892         unlock_kernel();
893         if (err != 0)
894                 goto out_put_open_state;
895         set_bit(NFS_DELEGATED_STATE, &state->flags);
896         update_open_stateid(state, &delegation->stateid, open_flags);
897 out_ok:
898         nfs4_put_state_owner(sp);
899         up_read(&nfsi->rwsem);
900         up_read(&clp->cl_sem);
901         *res = state;
902         return 0;
903 out_put_open_state:
904         nfs4_put_open_state(state);
905 out_err:
906         up_read(&nfsi->rwsem);
907         up_read(&clp->cl_sem);
908         if (err != -EACCES)
909                 nfs_inode_return_delegation(inode);
910 out_put_state_owner:
911         nfs4_put_state_owner(sp);
912         return err;
913 }
914
915 static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred)
916 {
917         struct nfs4_exception exception = { };
918         struct nfs4_state *res = ERR_PTR(-EIO);
919         int err;
920
921         do {
922                 err = _nfs4_open_delegated(inode, flags, cred, &res);
923                 if (err == 0)
924                         break;
925                 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode),
926                                         err, &exception));
927         } while (exception.retry);
928         return res;
929 }
930
931 /*
932  * Returns a referenced nfs4_state
933  */
934 static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
935 {
936         struct nfs4_state_owner  *sp;
937         struct nfs4_state     *state = NULL;
938         struct nfs_server       *server = NFS_SERVER(dir);
939         struct nfs4_client *clp = server->nfs4_state;
940         struct nfs4_opendata *opendata;
941         int                     status;
942
943         /* Protect against reboot recovery conflicts */
944         status = -ENOMEM;
945         if (!(sp = nfs4_get_state_owner(server, cred))) {
946                 dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
947                 goto out_err;
948         }
949         status = nfs4_recover_expired_lease(server);
950         if (status != 0)
951                 goto err_put_state_owner;
952         down_read(&clp->cl_sem);
953         status = -ENOMEM;
954         opendata = nfs4_opendata_alloc(dentry, sp, flags, sattr);
955         if (opendata == NULL)
956                 goto err_put_state_owner;
957
958         status = _nfs4_proc_open(opendata);
959         if (status != 0)
960                 goto err_opendata_free;
961
962         status = -ENOMEM;
963         state = nfs4_opendata_to_nfs4_state(opendata);
964         if (state == NULL)
965                 goto err_opendata_free;
966         if (opendata->o_res.delegation_type != 0)
967                 nfs_inode_set_delegation(state->inode, cred, &opendata->o_res);
968         nfs4_opendata_free(opendata);
969         nfs4_put_state_owner(sp);
970         up_read(&clp->cl_sem);
971         *res = state;
972         return 0;
973 err_opendata_free:
974         nfs4_opendata_free(opendata);
975 err_put_state_owner:
976         nfs4_put_state_owner(sp);
977 out_err:
978         /* Note: clp->cl_sem must be released before nfs4_put_open_state()! */
979         up_read(&clp->cl_sem);
980         *res = NULL;
981         return status;
982 }
983
984
985 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred)
986 {
987         struct nfs4_exception exception = { };
988         struct nfs4_state *res;
989         int status;
990
991         do {
992                 status = _nfs4_do_open(dir, dentry, flags, sattr, cred, &res);
993                 if (status == 0)
994                         break;
995                 /* NOTE: BAD_SEQID means the server and client disagree about the
996                  * book-keeping w.r.t. state-changing operations
997                  * (OPEN/CLOSE/LOCK/LOCKU...)
998                  * It is actually a sign of a bug on the client or on the server.
999                  *
1000                  * If we receive a BAD_SEQID error in the particular case of
1001                  * doing an OPEN, we assume that nfs_increment_open_seqid() will
1002                  * have unhashed the old state_owner for us, and that we can
1003                  * therefore safely retry using a new one. We should still warn
1004                  * the user though...
1005                  */
1006                 if (status == -NFS4ERR_BAD_SEQID) {
1007                         printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n");
1008                         exception.retry = 1;
1009                         continue;
1010                 }
1011                 /*
1012                  * BAD_STATEID on OPEN means that the server cancelled our
1013                  * state before it received the OPEN_CONFIRM.
1014                  * Recover by retrying the request as per the discussion
1015                  * on Page 181 of RFC3530.
1016                  */
1017                 if (status == -NFS4ERR_BAD_STATEID) {
1018                         exception.retry = 1;
1019                         continue;
1020                 }
1021                 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
1022                                         status, &exception));
1023         } while (exception.retry);
1024         return res;
1025 }
1026
1027 static int _nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1028                 struct iattr *sattr, struct nfs4_state *state)
1029 {
1030         struct nfs_server *server = NFS_SERVER(inode);
1031         struct nfs_setattrargs  arg = {
1032                 .fh             = NFS_FH(inode),
1033                 .iap            = sattr,
1034                 .server         = server,
1035                 .bitmask = server->attr_bitmask,
1036         };
1037         struct nfs_setattrres  res = {
1038                 .fattr          = fattr,
1039                 .server         = server,
1040         };
1041         struct rpc_message msg = {
1042                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
1043                 .rpc_argp       = &arg,
1044                 .rpc_resp       = &res,
1045         };
1046         unsigned long timestamp = jiffies;
1047         int status;
1048
1049         nfs_fattr_init(fattr);
1050
1051         if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) {
1052                 /* Use that stateid */
1053         } else if (state != NULL) {
1054                 msg.rpc_cred = state->owner->so_cred;
1055                 nfs4_copy_stateid(&arg.stateid, state, current->files);
1056         } else
1057                 memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
1058
1059         status = rpc_call_sync(server->client, &msg, 0);
1060         if (status == 0 && state != NULL)
1061                 renew_lease(server, timestamp);
1062         return status;
1063 }
1064
1065 static int nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1066                 struct iattr *sattr, struct nfs4_state *state)
1067 {
1068         struct nfs_server *server = NFS_SERVER(inode);
1069         struct nfs4_exception exception = { };
1070         int err;
1071         do {
1072                 err = nfs4_handle_exception(server,
1073                                 _nfs4_do_setattr(inode, fattr, sattr, state),
1074                                 &exception);
1075         } while (exception.retry);
1076         return err;
1077 }
1078
1079 struct nfs4_closedata {
1080         struct inode *inode;
1081         struct nfs4_state *state;
1082         struct nfs_closeargs arg;
1083         struct nfs_closeres res;
1084         struct nfs_fattr fattr;
1085         unsigned long timestamp;
1086 };
1087
1088 static void nfs4_free_closedata(void *data)
1089 {
1090         struct nfs4_closedata *calldata = data;
1091         struct nfs4_state_owner *sp = calldata->state->owner;
1092
1093         nfs4_put_open_state(calldata->state);
1094         nfs_free_seqid(calldata->arg.seqid);
1095         nfs4_put_state_owner(sp);
1096         kfree(calldata);
1097 }
1098
1099 static void nfs4_close_done(struct rpc_task *task, void *data)
1100 {
1101         struct nfs4_closedata *calldata = data;
1102         struct nfs4_state *state = calldata->state;
1103         struct nfs_server *server = NFS_SERVER(calldata->inode);
1104
1105         if (RPC_ASSASSINATED(task))
1106                 return;
1107         /* hmm. we are done with the inode, and in the process of freeing
1108          * the state_owner. we keep this around to process errors
1109          */
1110         nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid);
1111         switch (task->tk_status) {
1112                 case 0:
1113                         memcpy(&state->stateid, &calldata->res.stateid,
1114                                         sizeof(state->stateid));
1115                         renew_lease(server, calldata->timestamp);
1116                         break;
1117                 case -NFS4ERR_STALE_STATEID:
1118                 case -NFS4ERR_EXPIRED:
1119                         nfs4_schedule_state_recovery(server->nfs4_state);
1120                         break;
1121                 default:
1122                         if (nfs4_async_handle_error(task, server) == -EAGAIN) {
1123                                 rpc_restart_call(task);
1124                                 return;
1125                         }
1126         }
1127         nfs_refresh_inode(calldata->inode, calldata->res.fattr);
1128 }
1129
1130 static void nfs4_close_prepare(struct rpc_task *task, void *data)
1131 {
1132         struct nfs4_closedata *calldata = data;
1133         struct nfs4_state *state = calldata->state;
1134         struct rpc_message msg = {
1135                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
1136                 .rpc_argp = &calldata->arg,
1137                 .rpc_resp = &calldata->res,
1138                 .rpc_cred = state->owner->so_cred,
1139         };
1140         int mode = 0, old_mode;
1141
1142         if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
1143                 return;
1144         /* Recalculate the new open mode in case someone reopened the file
1145          * while we were waiting in line to be scheduled.
1146          */
1147         spin_lock(&state->owner->so_lock);
1148         spin_lock(&calldata->inode->i_lock);
1149         mode = old_mode = state->state;
1150         if (state->n_rdwr == 0) {
1151                 if (state->n_rdonly == 0)
1152                         mode &= ~FMODE_READ;
1153                 if (state->n_wronly == 0)
1154                         mode &= ~FMODE_WRITE;
1155         }
1156         nfs4_state_set_mode_locked(state, mode);
1157         spin_unlock(&calldata->inode->i_lock);
1158         spin_unlock(&state->owner->so_lock);
1159         if (mode == old_mode || test_bit(NFS_DELEGATED_STATE, &state->flags)) {
1160                 /* Note: exit _without_ calling nfs4_close_done */
1161                 task->tk_action = NULL;
1162                 return;
1163         }
1164         nfs_fattr_init(calldata->res.fattr);
1165         if (mode != 0)
1166                 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1167         calldata->arg.open_flags = mode;
1168         calldata->timestamp = jiffies;
1169         rpc_call_setup(task, &msg, 0);
1170 }
1171
1172 static const struct rpc_call_ops nfs4_close_ops = {
1173         .rpc_call_prepare = nfs4_close_prepare,
1174         .rpc_call_done = nfs4_close_done,
1175         .rpc_release = nfs4_free_closedata,
1176 };
1177
1178 /* 
1179  * It is possible for data to be read/written from a mem-mapped file 
1180  * after the sys_close call (which hits the vfs layer as a flush).
1181  * This means that we can't safely call nfsv4 close on a file until 
1182  * the inode is cleared. This in turn means that we are not good
1183  * NFSv4 citizens - we do not indicate to the server to update the file's 
1184  * share state even when we are done with one of the three share 
1185  * stateid's in the inode.
1186  *
1187  * NOTE: Caller must be holding the sp->so_owner semaphore!
1188  */
1189 int nfs4_do_close(struct inode *inode, struct nfs4_state *state) 
1190 {
1191         struct nfs_server *server = NFS_SERVER(inode);
1192         struct nfs4_closedata *calldata;
1193         int status = -ENOMEM;
1194
1195         calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
1196         if (calldata == NULL)
1197                 goto out;
1198         calldata->inode = inode;
1199         calldata->state = state;
1200         calldata->arg.fh = NFS_FH(inode);
1201         calldata->arg.stateid = &state->stateid;
1202         /* Serialization for the sequence id */
1203         calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
1204         if (calldata->arg.seqid == NULL)
1205                 goto out_free_calldata;
1206         calldata->arg.bitmask = server->attr_bitmask;
1207         calldata->res.fattr = &calldata->fattr;
1208         calldata->res.server = server;
1209
1210         status = nfs4_call_async(server->client, &nfs4_close_ops, calldata);
1211         if (status == 0)
1212                 goto out;
1213
1214         nfs_free_seqid(calldata->arg.seqid);
1215 out_free_calldata:
1216         kfree(calldata);
1217 out:
1218         return status;
1219 }
1220
1221 static int nfs4_intent_set_file(struct nameidata *nd, struct dentry *dentry, struct nfs4_state *state)
1222 {
1223         struct file *filp;
1224
1225         filp = lookup_instantiate_filp(nd, dentry, NULL);
1226         if (!IS_ERR(filp)) {
1227                 struct nfs_open_context *ctx;
1228                 ctx = (struct nfs_open_context *)filp->private_data;
1229                 ctx->state = state;
1230                 return 0;
1231         }
1232         nfs4_close_state(state, nd->intent.open.flags);
1233         return PTR_ERR(filp);
1234 }
1235
1236 struct dentry *
1237 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1238 {
1239         struct iattr attr;
1240         struct rpc_cred *cred;
1241         struct nfs4_state *state;
1242         struct dentry *res;
1243
1244         if (nd->flags & LOOKUP_CREATE) {
1245                 attr.ia_mode = nd->intent.open.create_mode;
1246                 attr.ia_valid = ATTR_MODE;
1247                 if (!IS_POSIXACL(dir))
1248                         attr.ia_mode &= ~current->fs->umask;
1249         } else {
1250                 attr.ia_valid = 0;
1251                 BUG_ON(nd->intent.open.flags & O_CREAT);
1252         }
1253
1254         cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1255         if (IS_ERR(cred))
1256                 return (struct dentry *)cred;
1257         state = nfs4_do_open(dir, dentry, nd->intent.open.flags, &attr, cred);
1258         put_rpccred(cred);
1259         if (IS_ERR(state)) {
1260                 if (PTR_ERR(state) == -ENOENT)
1261                         d_add(dentry, NULL);
1262                 return (struct dentry *)state;
1263         }
1264         res = d_add_unique(dentry, igrab(state->inode));
1265         if (res != NULL)
1266                 dentry = res;
1267         nfs4_intent_set_file(nd, dentry, state);
1268         return res;
1269 }
1270
1271 int
1272 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
1273 {
1274         struct rpc_cred *cred;
1275         struct nfs4_state *state;
1276
1277         cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1278         if (IS_ERR(cred))
1279                 return PTR_ERR(cred);
1280         state = nfs4_open_delegated(dentry->d_inode, openflags, cred);
1281         if (IS_ERR(state))
1282                 state = nfs4_do_open(dir, dentry, openflags, NULL, cred);
1283         put_rpccred(cred);
1284         if (IS_ERR(state)) {
1285                 switch (PTR_ERR(state)) {
1286                         case -EPERM:
1287                         case -EACCES:
1288                         case -EDQUOT:
1289                         case -ENOSPC:
1290                         case -EROFS:
1291                                 lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
1292                                 return 1;
1293                         case -ENOENT:
1294                                 if (dentry->d_inode == NULL)
1295                                         return 1;
1296                 }
1297                 goto out_drop;
1298         }
1299         if (state->inode == dentry->d_inode) {
1300                 nfs4_intent_set_file(nd, dentry, state);
1301                 return 1;
1302         }
1303         nfs4_close_state(state, openflags);
1304 out_drop:
1305         d_drop(dentry);
1306         return 0;
1307 }
1308
1309
1310 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1311 {
1312         struct nfs4_server_caps_res res = {};
1313         struct rpc_message msg = {
1314                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
1315                 .rpc_argp = fhandle,
1316                 .rpc_resp = &res,
1317         };
1318         int status;
1319
1320         status = rpc_call_sync(server->client, &msg, 0);
1321         if (status == 0) {
1322                 memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
1323                 if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
1324                         server->caps |= NFS_CAP_ACLS;
1325                 if (res.has_links != 0)
1326                         server->caps |= NFS_CAP_HARDLINKS;
1327                 if (res.has_symlinks != 0)
1328                         server->caps |= NFS_CAP_SYMLINKS;
1329                 server->acl_bitmask = res.acl_bitmask;
1330         }
1331         return status;
1332 }
1333
1334 int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1335 {
1336         struct nfs4_exception exception = { };
1337         int err;
1338         do {
1339                 err = nfs4_handle_exception(server,
1340                                 _nfs4_server_capabilities(server, fhandle),
1341                                 &exception);
1342         } while (exception.retry);
1343         return err;
1344 }
1345
1346 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1347                 struct nfs_fsinfo *info)
1348 {
1349         struct nfs4_lookup_root_arg args = {
1350                 .bitmask = nfs4_fattr_bitmap,
1351         };
1352         struct nfs4_lookup_res res = {
1353                 .server = server,
1354                 .fattr = info->fattr,
1355                 .fh = fhandle,
1356         };
1357         struct rpc_message msg = {
1358                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
1359                 .rpc_argp = &args,
1360                 .rpc_resp = &res,
1361         };
1362         nfs_fattr_init(info->fattr);
1363         return rpc_call_sync(server->client, &msg, 0);
1364 }
1365
1366 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1367                 struct nfs_fsinfo *info)
1368 {
1369         struct nfs4_exception exception = { };
1370         int err;
1371         do {
1372                 err = nfs4_handle_exception(server,
1373                                 _nfs4_lookup_root(server, fhandle, info),
1374                                 &exception);
1375         } while (exception.retry);
1376         return err;
1377 }
1378
1379 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
1380                 struct nfs_fsinfo *info)
1381 {
1382         struct nfs_fattr *      fattr = info->fattr;
1383         unsigned char *         p;
1384         struct qstr             q;
1385         struct nfs4_lookup_arg args = {
1386                 .dir_fh = fhandle,
1387                 .name = &q,
1388                 .bitmask = nfs4_fattr_bitmap,
1389         };
1390         struct nfs4_lookup_res res = {
1391                 .server = server,
1392                 .fattr = fattr,
1393                 .fh = fhandle,
1394         };
1395         struct rpc_message msg = {
1396                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1397                 .rpc_argp = &args,
1398                 .rpc_resp = &res,
1399         };
1400         int status;
1401
1402         /*
1403          * Now we do a separate LOOKUP for each component of the mount path.
1404          * The LOOKUPs are done separately so that we can conveniently
1405          * catch an ERR_WRONGSEC if it occurs along the way...
1406          */
1407         status = nfs4_lookup_root(server, fhandle, info);
1408         if (status)
1409                 goto out;
1410
1411         p = server->mnt_path;
1412         for (;;) {
1413                 struct nfs4_exception exception = { };
1414
1415                 while (*p == '/')
1416                         p++;
1417                 if (!*p)
1418                         break;
1419                 q.name = p;
1420                 while (*p && (*p != '/'))
1421                         p++;
1422                 q.len = p - q.name;
1423
1424                 do {
1425                         nfs_fattr_init(fattr);
1426                         status = nfs4_handle_exception(server,
1427                                         rpc_call_sync(server->client, &msg, 0),
1428                                         &exception);
1429                 } while (exception.retry);
1430                 if (status == 0)
1431                         continue;
1432                 if (status == -ENOENT) {
1433                         printk(KERN_NOTICE "NFS: mount path %s does not exist!\n", server->mnt_path);
1434                         printk(KERN_NOTICE "NFS: suggestion: try mounting '/' instead.\n");
1435                 }
1436                 break;
1437         }
1438         if (status == 0)
1439                 status = nfs4_server_capabilities(server, fhandle);
1440         if (status == 0)
1441                 status = nfs4_do_fsinfo(server, fhandle, info);
1442 out:
1443         return nfs4_map_errors(status);
1444 }
1445
1446 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1447 {
1448         struct nfs4_getattr_arg args = {
1449                 .fh = fhandle,
1450                 .bitmask = server->attr_bitmask,
1451         };
1452         struct nfs4_getattr_res res = {
1453                 .fattr = fattr,
1454                 .server = server,
1455         };
1456         struct rpc_message msg = {
1457                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
1458                 .rpc_argp = &args,
1459                 .rpc_resp = &res,
1460         };
1461         
1462         nfs_fattr_init(fattr);
1463         return rpc_call_sync(server->client, &msg, 0);
1464 }
1465
1466 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1467 {
1468         struct nfs4_exception exception = { };
1469         int err;
1470         do {
1471                 err = nfs4_handle_exception(server,
1472                                 _nfs4_proc_getattr(server, fhandle, fattr),
1473                                 &exception);
1474         } while (exception.retry);
1475         return err;
1476 }
1477
1478 /* 
1479  * The file is not closed if it is opened due to the a request to change
1480  * the size of the file. The open call will not be needed once the
1481  * VFS layer lookup-intents are implemented.
1482  *
1483  * Close is called when the inode is destroyed.
1484  * If we haven't opened the file for O_WRONLY, we
1485  * need to in the size_change case to obtain a stateid.
1486  *
1487  * Got race?
1488  * Because OPEN is always done by name in nfsv4, it is
1489  * possible that we opened a different file by the same
1490  * name.  We can recognize this race condition, but we
1491  * can't do anything about it besides returning an error.
1492  *
1493  * This will be fixed with VFS changes (lookup-intent).
1494  */
1495 static int
1496 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
1497                   struct iattr *sattr)
1498 {
1499         struct rpc_cred *cred;
1500         struct inode *inode = dentry->d_inode;
1501         struct nfs_open_context *ctx;
1502         struct nfs4_state *state = NULL;
1503         int status;
1504
1505         nfs_fattr_init(fattr);
1506         
1507         cred = rpcauth_lookupcred(NFS_SERVER(inode)->client->cl_auth, 0);
1508         if (IS_ERR(cred))
1509                 return PTR_ERR(cred);
1510
1511         /* Search for an existing open(O_WRITE) file */
1512         ctx = nfs_find_open_context(inode, cred, FMODE_WRITE);
1513         if (ctx != NULL)
1514                 state = ctx->state;
1515
1516         status = nfs4_do_setattr(inode, fattr, sattr, state);
1517         if (status == 0)
1518                 nfs_setattr_update_inode(inode, sattr);
1519         if (ctx != NULL)
1520                 put_nfs_open_context(ctx);
1521         put_rpccred(cred);
1522         return status;
1523 }
1524
1525 static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name,
1526                 struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1527 {
1528         int                    status;
1529         struct nfs_server *server = NFS_SERVER(dir);
1530         struct nfs4_lookup_arg args = {
1531                 .bitmask = server->attr_bitmask,
1532                 .dir_fh = NFS_FH(dir),
1533                 .name = name,
1534         };
1535         struct nfs4_lookup_res res = {
1536                 .server = server,
1537                 .fattr = fattr,
1538                 .fh = fhandle,
1539         };
1540         struct rpc_message msg = {
1541                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1542                 .rpc_argp = &args,
1543                 .rpc_resp = &res,
1544         };
1545         
1546         nfs_fattr_init(fattr);
1547         
1548         dprintk("NFS call  lookup %s\n", name->name);
1549         status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
1550         dprintk("NFS reply lookup: %d\n", status);
1551         return status;
1552 }
1553
1554 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1555 {
1556         struct nfs4_exception exception = { };
1557         int err;
1558         do {
1559                 err = nfs4_handle_exception(NFS_SERVER(dir),
1560                                 _nfs4_proc_lookup(dir, name, fhandle, fattr),
1561                                 &exception);
1562         } while (exception.retry);
1563         return err;
1564 }
1565
1566 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1567 {
1568         struct nfs4_accessargs args = {
1569                 .fh = NFS_FH(inode),
1570         };
1571         struct nfs4_accessres res = { 0 };
1572         struct rpc_message msg = {
1573                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
1574                 .rpc_argp = &args,
1575                 .rpc_resp = &res,
1576                 .rpc_cred = entry->cred,
1577         };
1578         int mode = entry->mask;
1579         int status;
1580
1581         /*
1582          * Determine which access bits we want to ask for...
1583          */
1584         if (mode & MAY_READ)
1585                 args.access |= NFS4_ACCESS_READ;
1586         if (S_ISDIR(inode->i_mode)) {
1587                 if (mode & MAY_WRITE)
1588                         args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
1589                 if (mode & MAY_EXEC)
1590                         args.access |= NFS4_ACCESS_LOOKUP;
1591         } else {
1592                 if (mode & MAY_WRITE)
1593                         args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
1594                 if (mode & MAY_EXEC)
1595                         args.access |= NFS4_ACCESS_EXECUTE;
1596         }
1597         status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1598         if (!status) {
1599                 entry->mask = 0;
1600                 if (res.access & NFS4_ACCESS_READ)
1601                         entry->mask |= MAY_READ;
1602                 if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
1603                         entry->mask |= MAY_WRITE;
1604                 if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
1605                         entry->mask |= MAY_EXEC;
1606         }
1607         return status;
1608 }
1609
1610 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1611 {
1612         struct nfs4_exception exception = { };
1613         int err;
1614         do {
1615                 err = nfs4_handle_exception(NFS_SERVER(inode),
1616                                 _nfs4_proc_access(inode, entry),
1617                                 &exception);
1618         } while (exception.retry);
1619         return err;
1620 }
1621
1622 /*
1623  * TODO: For the time being, we don't try to get any attributes
1624  * along with any of the zero-copy operations READ, READDIR,
1625  * READLINK, WRITE.
1626  *
1627  * In the case of the first three, we want to put the GETATTR
1628  * after the read-type operation -- this is because it is hard
1629  * to predict the length of a GETATTR response in v4, and thus
1630  * align the READ data correctly.  This means that the GETATTR
1631  * may end up partially falling into the page cache, and we should
1632  * shift it into the 'tail' of the xdr_buf before processing.
1633  * To do this efficiently, we need to know the total length
1634  * of data received, which doesn't seem to be available outside
1635  * of the RPC layer.
1636  *
1637  * In the case of WRITE, we also want to put the GETATTR after
1638  * the operation -- in this case because we want to make sure
1639  * we get the post-operation mtime and size.  This means that
1640  * we can't use xdr_encode_pages() as written: we need a variant
1641  * of it which would leave room in the 'tail' iovec.
1642  *
1643  * Both of these changes to the XDR layer would in fact be quite
1644  * minor, but I decided to leave them for a subsequent patch.
1645  */
1646 static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
1647                 unsigned int pgbase, unsigned int pglen)
1648 {
1649         struct nfs4_readlink args = {
1650                 .fh       = NFS_FH(inode),
1651                 .pgbase   = pgbase,
1652                 .pglen    = pglen,
1653                 .pages    = &page,
1654         };
1655         struct rpc_message msg = {
1656                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
1657                 .rpc_argp = &args,
1658                 .rpc_resp = NULL,
1659         };
1660
1661         return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1662 }
1663
1664 static int nfs4_proc_readlink(struct inode *inode, struct page *page,
1665                 unsigned int pgbase, unsigned int pglen)
1666 {
1667         struct nfs4_exception exception = { };
1668         int err;
1669         do {
1670                 err = nfs4_handle_exception(NFS_SERVER(inode),
1671                                 _nfs4_proc_readlink(inode, page, pgbase, pglen),
1672                                 &exception);
1673         } while (exception.retry);
1674         return err;
1675 }
1676
1677 static int _nfs4_proc_read(struct nfs_read_data *rdata)
1678 {
1679         int flags = rdata->flags;
1680         struct inode *inode = rdata->inode;
1681         struct nfs_fattr *fattr = rdata->res.fattr;
1682         struct nfs_server *server = NFS_SERVER(inode);
1683         struct rpc_message msg = {
1684                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_READ],
1685                 .rpc_argp       = &rdata->args,
1686                 .rpc_resp       = &rdata->res,
1687                 .rpc_cred       = rdata->cred,
1688         };
1689         unsigned long timestamp = jiffies;
1690         int status;
1691
1692         dprintk("NFS call  read %d @ %Ld\n", rdata->args.count,
1693                         (long long) rdata->args.offset);
1694
1695         nfs_fattr_init(fattr);
1696         status = rpc_call_sync(server->client, &msg, flags);
1697         if (!status)
1698                 renew_lease(server, timestamp);
1699         dprintk("NFS reply read: %d\n", status);
1700         return status;
1701 }
1702
1703 static int nfs4_proc_read(struct nfs_read_data *rdata)
1704 {
1705         struct nfs4_exception exception = { };
1706         int err;
1707         do {
1708                 err = nfs4_handle_exception(NFS_SERVER(rdata->inode),
1709                                 _nfs4_proc_read(rdata),
1710                                 &exception);
1711         } while (exception.retry);
1712         return err;
1713 }
1714
1715 static int _nfs4_proc_write(struct nfs_write_data *wdata)
1716 {
1717         int rpcflags = wdata->flags;
1718         struct inode *inode = wdata->inode;
1719         struct nfs_fattr *fattr = wdata->res.fattr;
1720         struct nfs_server *server = NFS_SERVER(inode);
1721         struct rpc_message msg = {
1722                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
1723                 .rpc_argp       = &wdata->args,
1724                 .rpc_resp       = &wdata->res,
1725                 .rpc_cred       = wdata->cred,
1726         };
1727         int status;
1728
1729         dprintk("NFS call  write %d @ %Ld\n", wdata->args.count,
1730                         (long long) wdata->args.offset);
1731
1732         wdata->args.bitmask = server->attr_bitmask;
1733         wdata->res.server = server;
1734         wdata->timestamp = jiffies;
1735         nfs_fattr_init(fattr);
1736         status = rpc_call_sync(server->client, &msg, rpcflags);
1737         dprintk("NFS reply write: %d\n", status);
1738         if (status < 0)
1739                 return status;
1740         renew_lease(server, wdata->timestamp);
1741         nfs_post_op_update_inode(inode, fattr);
1742         return wdata->res.count;
1743 }
1744
1745 static int nfs4_proc_write(struct nfs_write_data *wdata)
1746 {
1747         struct nfs4_exception exception = { };
1748         int err;
1749         do {
1750                 err = nfs4_handle_exception(NFS_SERVER(wdata->inode),
1751                                 _nfs4_proc_write(wdata),
1752                                 &exception);
1753         } while (exception.retry);
1754         return err;
1755 }
1756
1757 static int _nfs4_proc_commit(struct nfs_write_data *cdata)
1758 {
1759         struct inode *inode = cdata->inode;
1760         struct nfs_fattr *fattr = cdata->res.fattr;
1761         struct nfs_server *server = NFS_SERVER(inode);
1762         struct rpc_message msg = {
1763                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
1764                 .rpc_argp       = &cdata->args,
1765                 .rpc_resp       = &cdata->res,
1766                 .rpc_cred       = cdata->cred,
1767         };
1768         int status;
1769
1770         dprintk("NFS call  commit %d @ %Ld\n", cdata->args.count,
1771                         (long long) cdata->args.offset);
1772
1773         cdata->args.bitmask = server->attr_bitmask;
1774         cdata->res.server = server;
1775         cdata->timestamp = jiffies;
1776         nfs_fattr_init(fattr);
1777         status = rpc_call_sync(server->client, &msg, 0);
1778         if (status >= 0)
1779                 renew_lease(server, cdata->timestamp);
1780         dprintk("NFS reply commit: %d\n", status);
1781         if (status >= 0)
1782                 nfs_post_op_update_inode(inode, fattr);
1783         return status;
1784 }
1785
1786 static int nfs4_proc_commit(struct nfs_write_data *cdata)
1787 {
1788         struct nfs4_exception exception = { };
1789         int err;
1790         do {
1791                 err = nfs4_handle_exception(NFS_SERVER(cdata->inode),
1792                                 _nfs4_proc_commit(cdata),
1793                                 &exception);
1794         } while (exception.retry);
1795         return err;
1796 }
1797
1798 /*
1799  * Got race?
1800  * We will need to arrange for the VFS layer to provide an atomic open.
1801  * Until then, this create/open method is prone to inefficiency and race
1802  * conditions due to the lookup, create, and open VFS calls from sys_open()
1803  * placed on the wire.
1804  *
1805  * Given the above sorry state of affairs, I'm simply sending an OPEN.
1806  * The file will be opened again in the subsequent VFS open call
1807  * (nfs4_proc_file_open).
1808  *
1809  * The open for read will just hang around to be used by any process that
1810  * opens the file O_RDONLY. This will all be resolved with the VFS changes.
1811  */
1812
1813 static int
1814 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
1815                  int flags, struct nameidata *nd)
1816 {
1817         struct nfs4_state *state;
1818         struct rpc_cred *cred;
1819         int status = 0;
1820
1821         cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1822         if (IS_ERR(cred)) {
1823                 status = PTR_ERR(cred);
1824                 goto out;
1825         }
1826         state = nfs4_do_open(dir, dentry, flags, sattr, cred);
1827         put_rpccred(cred);
1828         if (IS_ERR(state)) {
1829                 status = PTR_ERR(state);
1830                 goto out;
1831         }
1832         d_instantiate(dentry, igrab(state->inode));
1833         if (flags & O_EXCL) {
1834                 struct nfs_fattr fattr;
1835                 status = nfs4_do_setattr(state->inode, &fattr, sattr, state);
1836                 if (status == 0)
1837                         nfs_setattr_update_inode(state->inode, sattr);
1838         }
1839         if (status == 0 && nd != NULL && (nd->flags & LOOKUP_OPEN))
1840                 status = nfs4_intent_set_file(nd, dentry, state);
1841         else
1842                 nfs4_close_state(state, flags);
1843 out:
1844         return status;
1845 }
1846
1847 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
1848 {
1849         struct nfs_server *server = NFS_SERVER(dir);
1850         struct nfs4_remove_arg args = {
1851                 .fh = NFS_FH(dir),
1852                 .name = name,
1853                 .bitmask = server->attr_bitmask,
1854         };
1855         struct nfs_fattr dir_attr;
1856         struct nfs4_remove_res  res = {
1857                 .server = server,
1858                 .dir_attr = &dir_attr,
1859         };
1860         struct rpc_message msg = {
1861                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
1862                 .rpc_argp       = &args,
1863                 .rpc_resp       = &res,
1864         };
1865         int                     status;
1866
1867         nfs_fattr_init(res.dir_attr);
1868         status = rpc_call_sync(server->client, &msg, 0);
1869         if (status == 0) {
1870                 update_changeattr(dir, &res.cinfo);
1871                 nfs_post_op_update_inode(dir, res.dir_attr);
1872         }
1873         return status;
1874 }
1875
1876 static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
1877 {
1878         struct nfs4_exception exception = { };
1879         int err;
1880         do {
1881                 err = nfs4_handle_exception(NFS_SERVER(dir),
1882                                 _nfs4_proc_remove(dir, name),
1883                                 &exception);
1884         } while (exception.retry);
1885         return err;
1886 }
1887
1888 struct unlink_desc {
1889         struct nfs4_remove_arg  args;
1890         struct nfs4_remove_res  res;
1891         struct nfs_fattr dir_attr;
1892 };
1893
1894 static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir,
1895                 struct qstr *name)
1896 {
1897         struct nfs_server *server = NFS_SERVER(dir->d_inode);
1898         struct unlink_desc *up;
1899
1900         up = (struct unlink_desc *) kmalloc(sizeof(*up), GFP_KERNEL);
1901         if (!up)
1902                 return -ENOMEM;
1903         
1904         up->args.fh = NFS_FH(dir->d_inode);
1905         up->args.name = name;
1906         up->args.bitmask = server->attr_bitmask;
1907         up->res.server = server;
1908         up->res.dir_attr = &up->dir_attr;
1909         
1910         msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
1911         msg->rpc_argp = &up->args;
1912         msg->rpc_resp = &up->res;
1913         return 0;
1914 }
1915
1916 static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
1917 {
1918         struct rpc_message *msg = &task->tk_msg;
1919         struct unlink_desc *up;
1920         
1921         if (msg->rpc_resp != NULL) {
1922                 up = container_of(msg->rpc_resp, struct unlink_desc, res);
1923                 update_changeattr(dir->d_inode, &up->res.cinfo);
1924                 nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr);
1925                 kfree(up);
1926                 msg->rpc_resp = NULL;
1927                 msg->rpc_argp = NULL;
1928         }
1929         return 0;
1930 }
1931
1932 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1933                 struct inode *new_dir, struct qstr *new_name)
1934 {
1935         struct nfs_server *server = NFS_SERVER(old_dir);
1936         struct nfs4_rename_arg arg = {
1937                 .old_dir = NFS_FH(old_dir),
1938                 .new_dir = NFS_FH(new_dir),
1939                 .old_name = old_name,
1940                 .new_name = new_name,
1941                 .bitmask = server->attr_bitmask,
1942         };
1943         struct nfs_fattr old_fattr, new_fattr;
1944         struct nfs4_rename_res res = {
1945                 .server = server,
1946                 .old_fattr = &old_fattr,
1947                 .new_fattr = &new_fattr,
1948         };
1949         struct rpc_message msg = {
1950                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
1951                 .rpc_argp = &arg,
1952                 .rpc_resp = &res,
1953         };
1954         int                     status;
1955         
1956         nfs_fattr_init(res.old_fattr);
1957         nfs_fattr_init(res.new_fattr);
1958         status = rpc_call_sync(server->client, &msg, 0);
1959
1960         if (!status) {
1961                 update_changeattr(old_dir, &res.old_cinfo);
1962                 nfs_post_op_update_inode(old_dir, res.old_fattr);
1963                 update_changeattr(new_dir, &res.new_cinfo);
1964                 nfs_post_op_update_inode(new_dir, res.new_fattr);
1965         }
1966         return status;
1967 }
1968
1969 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1970                 struct inode *new_dir, struct qstr *new_name)
1971 {
1972         struct nfs4_exception exception = { };
1973         int err;
1974         do {
1975                 err = nfs4_handle_exception(NFS_SERVER(old_dir),
1976                                 _nfs4_proc_rename(old_dir, old_name,
1977                                         new_dir, new_name),
1978                                 &exception);
1979         } while (exception.retry);
1980         return err;
1981 }
1982
1983 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
1984 {
1985         struct nfs_server *server = NFS_SERVER(inode);
1986         struct nfs4_link_arg arg = {
1987                 .fh     = NFS_FH(inode),
1988                 .dir_fh = NFS_FH(dir),
1989                 .name   = name,
1990                 .bitmask = server->attr_bitmask,
1991         };
1992         struct nfs_fattr fattr, dir_attr;
1993         struct nfs4_link_res res = {
1994                 .server = server,
1995                 .fattr = &fattr,
1996                 .dir_attr = &dir_attr,
1997         };
1998         struct rpc_message msg = {
1999                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
2000                 .rpc_argp = &arg,
2001                 .rpc_resp = &res,
2002         };
2003         int                     status;
2004
2005         nfs_fattr_init(res.fattr);
2006         nfs_fattr_init(res.dir_attr);
2007         status = rpc_call_sync(server->client, &msg, 0);
2008         if (!status) {
2009                 update_changeattr(dir, &res.cinfo);
2010                 nfs_post_op_update_inode(dir, res.dir_attr);
2011                 nfs_post_op_update_inode(inode, res.fattr);
2012         }
2013
2014         return status;
2015 }
2016
2017 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2018 {
2019         struct nfs4_exception exception = { };
2020         int err;
2021         do {
2022                 err = nfs4_handle_exception(NFS_SERVER(inode),
2023                                 _nfs4_proc_link(inode, dir, name),
2024                                 &exception);
2025         } while (exception.retry);
2026         return err;
2027 }
2028
2029 static int _nfs4_proc_symlink(struct inode *dir, struct qstr *name,
2030                 struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle,
2031                 struct nfs_fattr *fattr)
2032 {
2033         struct nfs_server *server = NFS_SERVER(dir);
2034         struct nfs_fattr dir_fattr;
2035         struct nfs4_create_arg arg = {
2036                 .dir_fh = NFS_FH(dir),
2037                 .server = server,
2038                 .name = name,
2039                 .attrs = sattr,
2040                 .ftype = NF4LNK,
2041                 .bitmask = server->attr_bitmask,
2042         };
2043         struct nfs4_create_res res = {
2044                 .server = server,
2045                 .fh = fhandle,
2046                 .fattr = fattr,
2047                 .dir_fattr = &dir_fattr,
2048         };
2049         struct rpc_message msg = {
2050                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK],
2051                 .rpc_argp = &arg,
2052                 .rpc_resp = &res,
2053         };
2054         int                     status;
2055
2056         if (path->len > NFS4_MAXPATHLEN)
2057                 return -ENAMETOOLONG;
2058         arg.u.symlink = path;
2059         nfs_fattr_init(fattr);
2060         nfs_fattr_init(&dir_fattr);
2061         
2062         status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2063         if (!status)
2064                 update_changeattr(dir, &res.dir_cinfo);
2065         nfs_post_op_update_inode(dir, res.dir_fattr);
2066         return status;
2067 }
2068
2069 static int nfs4_proc_symlink(struct inode *dir, struct qstr *name,
2070                 struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle,
2071                 struct nfs_fattr *fattr)
2072 {
2073         struct nfs4_exception exception = { };
2074         int err;
2075         do {
2076                 err = nfs4_handle_exception(NFS_SERVER(dir),
2077                                 _nfs4_proc_symlink(dir, name, path, sattr,
2078                                         fhandle, fattr),
2079                                 &exception);
2080         } while (exception.retry);
2081         return err;
2082 }
2083
2084 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2085                 struct iattr *sattr)
2086 {
2087         struct nfs_server *server = NFS_SERVER(dir);
2088         struct nfs_fh fhandle;
2089         struct nfs_fattr fattr, dir_fattr;
2090         struct nfs4_create_arg arg = {
2091                 .dir_fh = NFS_FH(dir),
2092                 .server = server,
2093                 .name = &dentry->d_name,
2094                 .attrs = sattr,
2095                 .ftype = NF4DIR,
2096                 .bitmask = server->attr_bitmask,
2097         };
2098         struct nfs4_create_res res = {
2099                 .server = server,
2100                 .fh = &fhandle,
2101                 .fattr = &fattr,
2102                 .dir_fattr = &dir_fattr,
2103         };
2104         struct rpc_message msg = {
2105                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2106                 .rpc_argp = &arg,
2107                 .rpc_resp = &res,
2108         };
2109         int                     status;
2110
2111         nfs_fattr_init(&fattr);
2112         nfs_fattr_init(&dir_fattr);
2113         
2114         status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2115         if (!status) {
2116                 update_changeattr(dir, &res.dir_cinfo);
2117                 nfs_post_op_update_inode(dir, res.dir_fattr);
2118                 status = nfs_instantiate(dentry, &fhandle, &fattr);
2119         }
2120         return status;
2121 }
2122
2123 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2124                 struct iattr *sattr)
2125 {
2126         struct nfs4_exception exception = { };
2127         int err;
2128         do {
2129                 err = nfs4_handle_exception(NFS_SERVER(dir),
2130                                 _nfs4_proc_mkdir(dir, dentry, sattr),
2131                                 &exception);
2132         } while (exception.retry);
2133         return err;
2134 }
2135
2136 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2137                   u64 cookie, struct page *page, unsigned int count, int plus)
2138 {
2139         struct inode            *dir = dentry->d_inode;
2140         struct nfs4_readdir_arg args = {
2141                 .fh = NFS_FH(dir),
2142                 .pages = &page,
2143                 .pgbase = 0,
2144                 .count = count,
2145                 .bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
2146         };
2147         struct nfs4_readdir_res res;
2148         struct rpc_message msg = {
2149                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
2150                 .rpc_argp = &args,
2151                 .rpc_resp = &res,
2152                 .rpc_cred = cred,
2153         };
2154         int                     status;
2155
2156         dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__,
2157                         dentry->d_parent->d_name.name,
2158                         dentry->d_name.name,
2159                         (unsigned long long)cookie);
2160         lock_kernel();
2161         nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
2162         res.pgbase = args.pgbase;
2163         status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2164         if (status == 0)
2165                 memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
2166         unlock_kernel();
2167         dprintk("%s: returns %d\n", __FUNCTION__, status);
2168         return status;
2169 }
2170
2171 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2172                   u64 cookie, struct page *page, unsigned int count, int plus)
2173 {
2174         struct nfs4_exception exception = { };
2175         int err;
2176         do {
2177                 err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
2178                                 _nfs4_proc_readdir(dentry, cred, cookie,
2179                                         page, count, plus),
2180                                 &exception);
2181         } while (exception.retry);
2182         return err;
2183 }
2184
2185 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2186                 struct iattr *sattr, dev_t rdev)
2187 {
2188         struct nfs_server *server = NFS_SERVER(dir);
2189         struct nfs_fh fh;
2190         struct nfs_fattr fattr, dir_fattr;
2191         struct nfs4_create_arg arg = {
2192                 .dir_fh = NFS_FH(dir),
2193                 .server = server,
2194                 .name = &dentry->d_name,
2195                 .attrs = sattr,
2196                 .bitmask = server->attr_bitmask,
2197         };
2198         struct nfs4_create_res res = {
2199                 .server = server,
2200                 .fh = &fh,
2201                 .fattr = &fattr,
2202                 .dir_fattr = &dir_fattr,
2203         };
2204         struct rpc_message msg = {
2205                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2206                 .rpc_argp = &arg,
2207                 .rpc_resp = &res,
2208         };
2209         int                     status;
2210         int                     mode = sattr->ia_mode;
2211
2212         nfs_fattr_init(&fattr);
2213         nfs_fattr_init(&dir_fattr);
2214
2215         BUG_ON(!(sattr->ia_valid & ATTR_MODE));
2216         BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
2217         if (S_ISFIFO(mode))
2218                 arg.ftype = NF4FIFO;
2219         else if (S_ISBLK(mode)) {
2220                 arg.ftype = NF4BLK;
2221                 arg.u.device.specdata1 = MAJOR(rdev);
2222                 arg.u.device.specdata2 = MINOR(rdev);
2223         }
2224         else if (S_ISCHR(mode)) {
2225                 arg.ftype = NF4CHR;
2226                 arg.u.device.specdata1 = MAJOR(rdev);
2227                 arg.u.device.specdata2 = MINOR(rdev);
2228         }
2229         else
2230                 arg.ftype = NF4SOCK;
2231         
2232         status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2233         if (status == 0) {
2234                 update_changeattr(dir, &res.dir_cinfo);
2235                 nfs_post_op_update_inode(dir, res.dir_fattr);
2236                 status = nfs_instantiate(dentry, &fh, &fattr);
2237         }
2238         return status;
2239 }
2240
2241 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2242                 struct iattr *sattr, dev_t rdev)
2243 {
2244         struct nfs4_exception exception = { };
2245         int err;
2246         do {
2247                 err = nfs4_handle_exception(NFS_SERVER(dir),
2248                                 _nfs4_proc_mknod(dir, dentry, sattr, rdev),
2249                                 &exception);
2250         } while (exception.retry);
2251         return err;
2252 }
2253
2254 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2255                  struct nfs_fsstat *fsstat)
2256 {
2257         struct nfs4_statfs_arg args = {
2258                 .fh = fhandle,
2259                 .bitmask = server->attr_bitmask,
2260         };
2261         struct rpc_message msg = {
2262                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2263                 .rpc_argp = &args,
2264                 .rpc_resp = fsstat,
2265         };
2266
2267         nfs_fattr_init(fsstat->fattr);
2268         return rpc_call_sync(server->client, &msg, 0);
2269 }
2270
2271 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2272 {
2273         struct nfs4_exception exception = { };
2274         int err;
2275         do {
2276                 err = nfs4_handle_exception(server,
2277                                 _nfs4_proc_statfs(server, fhandle, fsstat),
2278                                 &exception);
2279         } while (exception.retry);
2280         return err;
2281 }
2282
2283 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2284                 struct nfs_fsinfo *fsinfo)
2285 {
2286         struct nfs4_fsinfo_arg args = {
2287                 .fh = fhandle,
2288                 .bitmask = server->attr_bitmask,
2289         };
2290         struct rpc_message msg = {
2291                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
2292                 .rpc_argp = &args,
2293                 .rpc_resp = fsinfo,
2294         };
2295
2296         return rpc_call_sync(server->client, &msg, 0);
2297 }
2298
2299 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2300 {
2301         struct nfs4_exception exception = { };
2302         int err;
2303
2304         do {
2305                 err = nfs4_handle_exception(server,
2306                                 _nfs4_do_fsinfo(server, fhandle, fsinfo),
2307                                 &exception);
2308         } while (exception.retry);
2309         return err;
2310 }
2311
2312 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2313 {
2314         nfs_fattr_init(fsinfo->fattr);
2315         return nfs4_do_fsinfo(server, fhandle, fsinfo);
2316 }
2317
2318 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2319                 struct nfs_pathconf *pathconf)
2320 {
2321         struct nfs4_pathconf_arg args = {
2322                 .fh = fhandle,
2323                 .bitmask = server->attr_bitmask,
2324         };
2325         struct rpc_message msg = {
2326                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
2327                 .rpc_argp = &args,
2328                 .rpc_resp = pathconf,
2329         };
2330
2331         /* None of the pathconf attributes are mandatory to implement */
2332         if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
2333                 memset(pathconf, 0, sizeof(*pathconf));
2334                 return 0;
2335         }
2336
2337         nfs_fattr_init(pathconf->fattr);
2338         return rpc_call_sync(server->client, &msg, 0);
2339 }
2340
2341 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2342                 struct nfs_pathconf *pathconf)
2343 {
2344         struct nfs4_exception exception = { };
2345         int err;
2346
2347         do {
2348                 err = nfs4_handle_exception(server,
2349                                 _nfs4_proc_pathconf(server, fhandle, pathconf),
2350                                 &exception);
2351         } while (exception.retry);
2352         return err;
2353 }
2354
2355 static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
2356 {
2357         struct nfs_server *server = NFS_SERVER(data->inode);
2358
2359         if (nfs4_async_handle_error(task, server) == -EAGAIN) {
2360                 rpc_restart_call(task);
2361                 return -EAGAIN;
2362         }
2363         if (task->tk_status > 0)
2364                 renew_lease(server, data->timestamp);
2365         return 0;
2366 }
2367
2368 static void nfs4_proc_read_setup(struct nfs_read_data *data)
2369 {
2370         struct rpc_message msg = {
2371                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
2372                 .rpc_argp = &data->args,
2373                 .rpc_resp = &data->res,
2374                 .rpc_cred = data->cred,
2375         };
2376
2377         data->timestamp   = jiffies;
2378
2379         rpc_call_setup(&data->task, &msg, 0);
2380 }
2381
2382 static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
2383 {
2384         struct inode *inode = data->inode;
2385         
2386         if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2387                 rpc_restart_call(task);
2388                 return -EAGAIN;
2389         }
2390         if (task->tk_status >= 0) {
2391                 renew_lease(NFS_SERVER(inode), data->timestamp);
2392                 nfs_post_op_update_inode(inode, data->res.fattr);
2393         }
2394         return 0;
2395 }
2396
2397 static void nfs4_proc_write_setup(struct nfs_write_data *data, int how)
2398 {
2399         struct rpc_message msg = {
2400                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
2401                 .rpc_argp = &data->args,
2402                 .rpc_resp = &data->res,
2403                 .rpc_cred = data->cred,
2404         };
2405         struct inode *inode = data->inode;
2406         struct nfs_server *server = NFS_SERVER(inode);
2407         int stable;
2408         
2409         if (how & FLUSH_STABLE) {
2410                 if (!NFS_I(inode)->ncommit)
2411                         stable = NFS_FILE_SYNC;
2412                 else
2413                         stable = NFS_DATA_SYNC;
2414         } else
2415                 stable = NFS_UNSTABLE;
2416         data->args.stable = stable;
2417         data->args.bitmask = server->attr_bitmask;
2418         data->res.server = server;
2419
2420         data->timestamp   = jiffies;
2421
2422         /* Finalize the task. */
2423         rpc_call_setup(&data->task, &msg, 0);
2424 }
2425
2426 static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
2427 {
2428         struct inode *inode = data->inode;
2429         
2430         if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2431                 rpc_restart_call(task);
2432                 return -EAGAIN;
2433         }
2434         if (task->tk_status >= 0)
2435                 nfs_post_op_update_inode(inode, data->res.fattr);
2436         return 0;
2437 }
2438
2439 static void nfs4_proc_commit_setup(struct nfs_write_data *data, int how)
2440 {
2441         struct rpc_message msg = {
2442                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
2443                 .rpc_argp = &data->args,
2444                 .rpc_resp = &data->res,
2445                 .rpc_cred = data->cred,
2446         };      
2447         struct nfs_server *server = NFS_SERVER(data->inode);
2448         
2449         data->args.bitmask = server->attr_bitmask;
2450         data->res.server = server;
2451
2452         rpc_call_setup(&data->task, &msg, 0);
2453 }
2454
2455 /*
2456  * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
2457  * standalone procedure for queueing an asynchronous RENEW.
2458  */
2459 static void nfs4_renew_done(struct rpc_task *task, void *data)
2460 {
2461         struct nfs4_client *clp = (struct nfs4_client *)task->tk_msg.rpc_argp;
2462         unsigned long timestamp = (unsigned long)data;
2463
2464         if (task->tk_status < 0) {
2465                 switch (task->tk_status) {
2466                         case -NFS4ERR_STALE_CLIENTID:
2467                         case -NFS4ERR_EXPIRED:
2468                         case -NFS4ERR_CB_PATH_DOWN:
2469                                 nfs4_schedule_state_recovery(clp);
2470                 }
2471                 return;
2472         }
2473         spin_lock(&clp->cl_lock);
2474         if (time_before(clp->cl_last_renewal,timestamp))
2475                 clp->cl_last_renewal = timestamp;
2476         spin_unlock(&clp->cl_lock);
2477 }
2478
2479 static const struct rpc_call_ops nfs4_renew_ops = {
2480         .rpc_call_done = nfs4_renew_done,
2481 };
2482
2483 int nfs4_proc_async_renew(struct nfs4_client *clp, struct rpc_cred *cred)
2484 {
2485         struct rpc_message msg = {
2486                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2487                 .rpc_argp       = clp,
2488                 .rpc_cred       = cred,
2489         };
2490
2491         return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
2492                         &nfs4_renew_ops, (void *)jiffies);
2493 }
2494
2495 int nfs4_proc_renew(struct nfs4_client *clp, struct rpc_cred *cred)
2496 {
2497         struct rpc_message msg = {
2498                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2499                 .rpc_argp       = clp,
2500                 .rpc_cred       = cred,
2501         };
2502         unsigned long now = jiffies;
2503         int status;
2504
2505         status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2506         if (status < 0)
2507                 return status;
2508         spin_lock(&clp->cl_lock);
2509         if (time_before(clp->cl_last_renewal,now))
2510                 clp->cl_last_renewal = now;
2511         spin_unlock(&clp->cl_lock);
2512         return 0;
2513 }
2514
2515 static inline int nfs4_server_supports_acls(struct nfs_server *server)
2516 {
2517         return (server->caps & NFS_CAP_ACLS)
2518                 && (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
2519                 && (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
2520 }
2521
2522 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
2523  * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
2524  * the stack.
2525  */
2526 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
2527
2528 static void buf_to_pages(const void *buf, size_t buflen,
2529                 struct page **pages, unsigned int *pgbase)
2530 {
2531         const void *p = buf;
2532
2533         *pgbase = offset_in_page(buf);
2534         p -= *pgbase;
2535         while (p < buf + buflen) {
2536                 *(pages++) = virt_to_page(p);
2537                 p += PAGE_CACHE_SIZE;
2538         }
2539 }
2540
2541 struct nfs4_cached_acl {
2542         int cached;
2543         size_t len;
2544         char data[0];
2545 };
2546
2547 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
2548 {
2549         struct nfs_inode *nfsi = NFS_I(inode);
2550
2551         spin_lock(&inode->i_lock);
2552         kfree(nfsi->nfs4_acl);
2553         nfsi->nfs4_acl = acl;
2554         spin_unlock(&inode->i_lock);
2555 }
2556
2557 static void nfs4_zap_acl_attr(struct inode *inode)
2558 {
2559         nfs4_set_cached_acl(inode, NULL);
2560 }
2561
2562 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
2563 {
2564         struct nfs_inode *nfsi = NFS_I(inode);
2565         struct nfs4_cached_acl *acl;
2566         int ret = -ENOENT;
2567
2568         spin_lock(&inode->i_lock);
2569         acl = nfsi->nfs4_acl;
2570         if (acl == NULL)
2571                 goto out;
2572         if (buf == NULL) /* user is just asking for length */
2573                 goto out_len;
2574         if (acl->cached == 0)
2575                 goto out;
2576         ret = -ERANGE; /* see getxattr(2) man page */
2577         if (acl->len > buflen)
2578                 goto out;
2579         memcpy(buf, acl->data, acl->len);
2580 out_len:
2581         ret = acl->len;
2582 out:
2583         spin_unlock(&inode->i_lock);
2584         return ret;
2585 }
2586
2587 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
2588 {
2589         struct nfs4_cached_acl *acl;
2590
2591         if (buf && acl_len <= PAGE_SIZE) {
2592                 acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
2593                 if (acl == NULL)
2594                         goto out;
2595                 acl->cached = 1;
2596                 memcpy(acl->data, buf, acl_len);
2597         } else {
2598                 acl = kmalloc(sizeof(*acl), GFP_KERNEL);
2599                 if (acl == NULL)
2600                         goto out;
2601                 acl->cached = 0;
2602         }
2603         acl->len = acl_len;
2604 out:
2605         nfs4_set_cached_acl(inode, acl);
2606 }
2607
2608 static inline ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2609 {
2610         struct page *pages[NFS4ACL_MAXPAGES];
2611         struct nfs_getaclargs args = {
2612                 .fh = NFS_FH(inode),
2613                 .acl_pages = pages,
2614                 .acl_len = buflen,
2615         };
2616         size_t resp_len = buflen;
2617         void *resp_buf;
2618         struct rpc_message msg = {
2619                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
2620                 .rpc_argp = &args,
2621                 .rpc_resp = &resp_len,
2622         };
2623         struct page *localpage = NULL;
2624         int ret;
2625
2626         if (buflen < PAGE_SIZE) {
2627                 /* As long as we're doing a round trip to the server anyway,
2628                  * let's be prepared for a page of acl data. */
2629                 localpage = alloc_page(GFP_KERNEL);
2630                 resp_buf = page_address(localpage);
2631                 if (localpage == NULL)
2632                         return -ENOMEM;
2633                 args.acl_pages[0] = localpage;
2634                 args.acl_pgbase = 0;
2635                 resp_len = args.acl_len = PAGE_SIZE;
2636         } else {
2637                 resp_buf = buf;
2638                 buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
2639         }
2640         ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2641         if (ret)
2642                 goto out_free;
2643         if (resp_len > args.acl_len)
2644                 nfs4_write_cached_acl(inode, NULL, resp_len);
2645         else
2646                 nfs4_write_cached_acl(inode, resp_buf, resp_len);
2647         if (buf) {
2648                 ret = -ERANGE;
2649                 if (resp_len > buflen)
2650                         goto out_free;
2651                 if (localpage)
2652                         memcpy(buf, resp_buf, resp_len);
2653         }
2654         ret = resp_len;
2655 out_free:
2656         if (localpage)
2657                 __free_page(localpage);
2658         return ret;
2659 }
2660
2661 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
2662 {
2663         struct nfs_server *server = NFS_SERVER(inode);
2664         int ret;
2665
2666         if (!nfs4_server_supports_acls(server))
2667                 return -EOPNOTSUPP;
2668         ret = nfs_revalidate_inode(server, inode);
2669         if (ret < 0)
2670                 return ret;
2671         ret = nfs4_read_cached_acl(inode, buf, buflen);
2672         if (ret != -ENOENT)
2673                 return ret;
2674         return nfs4_get_acl_uncached(inode, buf, buflen);
2675 }
2676
2677 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2678 {
2679         struct nfs_server *server = NFS_SERVER(inode);
2680         struct page *pages[NFS4ACL_MAXPAGES];
2681         struct nfs_setaclargs arg = {
2682                 .fh             = NFS_FH(inode),
2683                 .acl_pages      = pages,
2684                 .acl_len        = buflen,
2685         };
2686         struct rpc_message msg = {
2687                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_SETACL],
2688                 .rpc_argp       = &arg,
2689                 .rpc_resp       = NULL,
2690         };
2691         int ret;
2692
2693         if (!nfs4_server_supports_acls(server))
2694                 return -EOPNOTSUPP;
2695         nfs_inode_return_delegation(inode);
2696         buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
2697         ret = rpc_call_sync(NFS_SERVER(inode)->client, &msg, 0);
2698         if (ret == 0)
2699                 nfs4_write_cached_acl(inode, buf, buflen);
2700         return ret;
2701 }
2702
2703 static int
2704 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
2705 {
2706         struct nfs4_client *clp = server->nfs4_state;
2707
2708         if (!clp || task->tk_status >= 0)
2709                 return 0;
2710         switch(task->tk_status) {
2711                 case -NFS4ERR_STALE_CLIENTID:
2712                 case -NFS4ERR_STALE_STATEID:
2713                 case -NFS4ERR_EXPIRED:
2714                         rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL);
2715                         nfs4_schedule_state_recovery(clp);
2716                         if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0)
2717                                 rpc_wake_up_task(task);
2718                         task->tk_status = 0;
2719                         return -EAGAIN;
2720                 case -NFS4ERR_DELAY:
2721                         nfs_inc_server_stats((struct nfs_server *) server,
2722                                                 NFSIOS_DELAY);
2723                 case -NFS4ERR_GRACE:
2724                         rpc_delay(task, NFS4_POLL_RETRY_MAX);
2725                         task->tk_status = 0;
2726                         return -EAGAIN;
2727                 case -NFS4ERR_OLD_STATEID:
2728                         task->tk_status = 0;
2729                         return -EAGAIN;
2730         }
2731         task->tk_status = nfs4_map_errors(task->tk_status);
2732         return 0;
2733 }
2734
2735 static int nfs4_wait_bit_interruptible(void *word)
2736 {
2737         if (signal_pending(current))
2738                 return -ERESTARTSYS;
2739         schedule();
2740         return 0;
2741 }
2742
2743 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp)
2744 {
2745         sigset_t oldset;
2746         int res;
2747
2748         might_sleep();
2749
2750         rpc_clnt_sigmask(clnt, &oldset);
2751         res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER,
2752                         nfs4_wait_bit_interruptible,
2753                         TASK_INTERRUPTIBLE);
2754         rpc_clnt_sigunmask(clnt, &oldset);
2755         return res;
2756 }
2757
2758 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
2759 {
2760         sigset_t oldset;
2761         int res = 0;
2762
2763         might_sleep();
2764
2765         if (*timeout <= 0)
2766                 *timeout = NFS4_POLL_RETRY_MIN;
2767         if (*timeout > NFS4_POLL_RETRY_MAX)
2768                 *timeout = NFS4_POLL_RETRY_MAX;
2769         rpc_clnt_sigmask(clnt, &oldset);
2770         if (clnt->cl_intr) {
2771                 schedule_timeout_interruptible(*timeout);
2772                 if (signalled())
2773                         res = -ERESTARTSYS;
2774         } else
2775                 schedule_timeout_uninterruptible(*timeout);
2776         rpc_clnt_sigunmask(clnt, &oldset);
2777         *timeout <<= 1;
2778         return res;
2779 }
2780
2781 /* This is the error handling routine for processes that are allowed
2782  * to sleep.
2783  */
2784 int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
2785 {
2786         struct nfs4_client *clp = server->nfs4_state;
2787         int ret = errorcode;
2788
2789         exception->retry = 0;
2790         switch(errorcode) {
2791                 case 0:
2792                         return 0;
2793                 case -NFS4ERR_STALE_CLIENTID:
2794                 case -NFS4ERR_STALE_STATEID:
2795                 case -NFS4ERR_EXPIRED:
2796                         nfs4_schedule_state_recovery(clp);
2797                         ret = nfs4_wait_clnt_recover(server->client, clp);
2798                         if (ret == 0)
2799                                 exception->retry = 1;
2800                         break;
2801                 case -NFS4ERR_GRACE:
2802                 case -NFS4ERR_DELAY:
2803                         ret = nfs4_delay(server->client, &exception->timeout);
2804                         if (ret != 0)
2805                                 break;
2806                 case -NFS4ERR_OLD_STATEID:
2807                         exception->retry = 1;
2808         }
2809         /* We failed to handle the error */
2810         return nfs4_map_errors(ret);
2811 }
2812
2813 int nfs4_proc_setclientid(struct nfs4_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
2814 {
2815         nfs4_verifier sc_verifier;
2816         struct nfs4_setclientid setclientid = {
2817                 .sc_verifier = &sc_verifier,
2818                 .sc_prog = program,
2819         };
2820         struct rpc_message msg = {
2821                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
2822                 .rpc_argp = &setclientid,
2823                 .rpc_resp = clp,
2824                 .rpc_cred = cred,
2825         };
2826         u32 *p;
2827         int loop = 0;
2828         int status;
2829
2830         p = (u32*)sc_verifier.data;
2831         *p++ = htonl((u32)clp->cl_boot_time.tv_sec);
2832         *p = htonl((u32)clp->cl_boot_time.tv_nsec);
2833
2834         for(;;) {
2835                 setclientid.sc_name_len = scnprintf(setclientid.sc_name,
2836                                 sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u",
2837                                 clp->cl_ipaddr, NIPQUAD(clp->cl_addr.s_addr),
2838                                 cred->cr_ops->cr_name,
2839                                 clp->cl_id_uniquifier);
2840                 setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
2841                                 sizeof(setclientid.sc_netid), "tcp");
2842                 setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
2843                                 sizeof(setclientid.sc_uaddr), "%s.%d.%d",
2844                                 clp->cl_ipaddr, port >> 8, port & 255);
2845
2846                 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2847                 if (status != -NFS4ERR_CLID_INUSE)
2848                         break;
2849                 if (signalled())
2850                         break;
2851                 if (loop++ & 1)
2852                         ssleep(clp->cl_lease_time + 1);
2853                 else
2854                         if (++clp->cl_id_uniquifier == 0)
2855                                 break;
2856         }
2857         return status;
2858 }
2859
2860 static int _nfs4_proc_setclientid_confirm(struct nfs4_client *clp, struct rpc_cred *cred)
2861 {
2862         struct nfs_fsinfo fsinfo;
2863         struct rpc_message msg = {
2864                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
2865                 .rpc_argp = clp,
2866                 .rpc_resp = &fsinfo,
2867                 .rpc_cred = cred,
2868         };
2869         unsigned long now;
2870         int status;
2871
2872         now = jiffies;
2873         status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2874         if (status == 0) {
2875                 spin_lock(&clp->cl_lock);
2876                 clp->cl_lease_time = fsinfo.lease_time * HZ;
2877                 clp->cl_last_renewal = now;
2878                 clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state);
2879                 spin_unlock(&clp->cl_lock);
2880         }
2881         return status;
2882 }
2883
2884 int nfs4_proc_setclientid_confirm(struct nfs4_client *clp, struct rpc_cred *cred)
2885 {
2886         long timeout;
2887         int err;
2888         do {
2889                 err = _nfs4_proc_setclientid_confirm(clp, cred);
2890                 switch (err) {
2891                         case 0:
2892                                 return err;
2893                         case -NFS4ERR_RESOURCE:
2894                                 /* The IBM lawyers misread another document! */
2895                         case -NFS4ERR_DELAY:
2896                                 err = nfs4_delay(clp->cl_rpcclient, &timeout);
2897                 }
2898         } while (err == 0);
2899         return err;
2900 }
2901
2902 struct nfs4_delegreturndata {
2903         struct nfs4_delegreturnargs args;
2904         struct nfs4_delegreturnres res;
2905         struct nfs_fh fh;
2906         nfs4_stateid stateid;
2907         struct rpc_cred *cred;
2908         unsigned long timestamp;
2909         struct nfs_fattr fattr;
2910         int rpc_status;
2911 };
2912
2913 static void nfs4_delegreturn_prepare(struct rpc_task *task, void *calldata)
2914 {
2915         struct nfs4_delegreturndata *data = calldata;
2916         struct rpc_message msg = {
2917                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
2918                 .rpc_argp = &data->args,
2919                 .rpc_resp = &data->res,
2920                 .rpc_cred = data->cred,
2921         };
2922         nfs_fattr_init(data->res.fattr);
2923         rpc_call_setup(task, &msg, 0);
2924 }
2925
2926 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
2927 {
2928         struct nfs4_delegreturndata *data = calldata;
2929         data->rpc_status = task->tk_status;
2930         if (data->rpc_status == 0)
2931                 renew_lease(data->res.server, data->timestamp);
2932 }
2933
2934 static void nfs4_delegreturn_release(void *calldata)
2935 {
2936         struct nfs4_delegreturndata *data = calldata;
2937
2938         put_rpccred(data->cred);
2939         kfree(calldata);
2940 }
2941
2942 static const struct rpc_call_ops nfs4_delegreturn_ops = {
2943         .rpc_call_prepare = nfs4_delegreturn_prepare,
2944         .rpc_call_done = nfs4_delegreturn_done,
2945         .rpc_release = nfs4_delegreturn_release,
2946 };
2947
2948 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2949 {
2950         struct nfs4_delegreturndata *data;
2951         struct nfs_server *server = NFS_SERVER(inode);
2952         struct rpc_task *task;
2953         int status;
2954
2955         data = kmalloc(sizeof(*data), GFP_KERNEL);
2956         if (data == NULL)
2957                 return -ENOMEM;
2958         data->args.fhandle = &data->fh;
2959         data->args.stateid = &data->stateid;
2960         data->args.bitmask = server->attr_bitmask;
2961         nfs_copy_fh(&data->fh, NFS_FH(inode));
2962         memcpy(&data->stateid, stateid, sizeof(data->stateid));
2963         data->res.fattr = &data->fattr;
2964         data->res.server = server;
2965         data->cred = get_rpccred(cred);
2966         data->timestamp = jiffies;
2967         data->rpc_status = 0;
2968
2969         task = rpc_run_task(NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs4_delegreturn_ops, data);
2970         if (IS_ERR(task))
2971                 return PTR_ERR(task);
2972         status = nfs4_wait_for_completion_rpc_task(task);
2973         if (status == 0) {
2974                 status = data->rpc_status;
2975                 if (status == 0)
2976                         nfs_post_op_update_inode(inode, &data->fattr);
2977         }
2978         rpc_release_task(task);
2979         return status;
2980 }
2981
2982 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2983 {
2984         struct nfs_server *server = NFS_SERVER(inode);
2985         struct nfs4_exception exception = { };
2986         int err;
2987         do {
2988                 err = _nfs4_proc_delegreturn(inode, cred, stateid);
2989                 switch (err) {
2990                         case -NFS4ERR_STALE_STATEID:
2991                         case -NFS4ERR_EXPIRED:
2992                                 nfs4_schedule_state_recovery(server->nfs4_state);
2993                         case 0:
2994                                 return 0;
2995                 }
2996                 err = nfs4_handle_exception(server, err, &exception);
2997         } while (exception.retry);
2998         return err;
2999 }
3000
3001 #define NFS4_LOCK_MINTIMEOUT (1 * HZ)
3002 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
3003
3004 /* 
3005  * sleep, with exponential backoff, and retry the LOCK operation. 
3006  */
3007 static unsigned long
3008 nfs4_set_lock_task_retry(unsigned long timeout)
3009 {
3010         schedule_timeout_interruptible(timeout);
3011         timeout <<= 1;
3012         if (timeout > NFS4_LOCK_MAXTIMEOUT)
3013                 return NFS4_LOCK_MAXTIMEOUT;
3014         return timeout;
3015 }
3016
3017 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3018 {
3019         struct inode *inode = state->inode;
3020         struct nfs_server *server = NFS_SERVER(inode);
3021         struct nfs4_client *clp = server->nfs4_state;
3022         struct nfs_lockt_args arg = {
3023                 .fh = NFS_FH(inode),
3024                 .fl = request,
3025         };
3026         struct nfs_lockt_res res = {
3027                 .denied = request,
3028         };
3029         struct rpc_message msg = {
3030                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
3031                 .rpc_argp       = &arg,
3032                 .rpc_resp       = &res,
3033                 .rpc_cred       = state->owner->so_cred,
3034         };
3035         struct nfs4_lock_state *lsp;
3036         int status;
3037
3038         down_read(&clp->cl_sem);
3039         arg.lock_owner.clientid = clp->cl_clientid;
3040         status = nfs4_set_lock_state(state, request);
3041         if (status != 0)
3042                 goto out;
3043         lsp = request->fl_u.nfs4_fl.owner;
3044         arg.lock_owner.id = lsp->ls_id; 
3045         status = rpc_call_sync(server->client, &msg, 0);
3046         switch (status) {
3047                 case 0:
3048                         request->fl_type = F_UNLCK;
3049                         break;
3050                 case -NFS4ERR_DENIED:
3051                         status = 0;
3052         }
3053 out:
3054         up_read(&clp->cl_sem);
3055         return status;
3056 }
3057
3058 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3059 {
3060         struct nfs4_exception exception = { };
3061         int err;
3062
3063         do {
3064                 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3065                                 _nfs4_proc_getlk(state, cmd, request),
3066                                 &exception);
3067         } while (exception.retry);
3068         return err;
3069 }
3070
3071 static int do_vfs_lock(struct file *file, struct file_lock *fl)
3072 {
3073         int res = 0;
3074         switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
3075                 case FL_POSIX:
3076                         res = posix_lock_file_wait(file, fl);
3077                         break;
3078                 case FL_FLOCK:
3079                         res = flock_lock_file_wait(file, fl);
3080                         break;
3081                 default:
3082                         BUG();
3083         }
3084         if (res < 0)
3085                 printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n",
3086                                 __FUNCTION__);
3087         return res;
3088 }
3089
3090 struct nfs4_unlockdata {
3091         struct nfs_locku_args arg;
3092         struct nfs_locku_res res;
3093         struct nfs4_lock_state *lsp;
3094         struct nfs_open_context *ctx;
3095         struct file_lock fl;
3096         const struct nfs_server *server;
3097         unsigned long timestamp;
3098 };
3099
3100 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
3101                 struct nfs_open_context *ctx,
3102                 struct nfs4_lock_state *lsp,
3103                 struct nfs_seqid *seqid)
3104 {
3105         struct nfs4_unlockdata *p;
3106         struct inode *inode = lsp->ls_state->inode;
3107
3108         p = kmalloc(sizeof(*p), GFP_KERNEL);
3109         if (p == NULL)
3110                 return NULL;
3111         p->arg.fh = NFS_FH(inode);
3112         p->arg.fl = &p->fl;
3113         p->arg.seqid = seqid;
3114         p->arg.stateid = &lsp->ls_stateid;
3115         p->lsp = lsp;
3116         atomic_inc(&lsp->ls_count);
3117         /* Ensure we don't close file until we're done freeing locks! */
3118         p->ctx = get_nfs_open_context(ctx);
3119         memcpy(&p->fl, fl, sizeof(p->fl));
3120         p->server = NFS_SERVER(inode);
3121         return p;
3122 }
3123
3124 static void nfs4_locku_release_calldata(void *data)
3125 {
3126         struct nfs4_unlockdata *calldata = data;
3127         nfs_free_seqid(calldata->arg.seqid);
3128         nfs4_put_lock_state(calldata->lsp);
3129         put_nfs_open_context(calldata->ctx);
3130         kfree(calldata);
3131 }
3132
3133 static void nfs4_locku_done(struct rpc_task *task, void *data)
3134 {
3135         struct nfs4_unlockdata *calldata = data;
3136
3137         if (RPC_ASSASSINATED(task))
3138                 return;
3139         nfs_increment_lock_seqid(task->tk_status, calldata->arg.seqid);
3140         switch (task->tk_status) {
3141                 case 0:
3142                         memcpy(calldata->lsp->ls_stateid.data,
3143                                         calldata->res.stateid.data,
3144                                         sizeof(calldata->lsp->ls_stateid.data));
3145                         renew_lease(calldata->server, calldata->timestamp);
3146                         break;
3147                 case -NFS4ERR_STALE_STATEID:
3148                 case -NFS4ERR_EXPIRED:
3149                         nfs4_schedule_state_recovery(calldata->server->nfs4_state);
3150                         break;
3151                 default:
3152                         if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN) {
3153                                 rpc_restart_call(task);
3154                         }
3155         }
3156 }
3157
3158 static void nfs4_locku_prepare(struct rpc_task *task, void *data)
3159 {
3160         struct nfs4_unlockdata *calldata = data;
3161         struct rpc_message msg = {
3162                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
3163                 .rpc_argp       = &calldata->arg,
3164                 .rpc_resp       = &calldata->res,
3165                 .rpc_cred       = calldata->lsp->ls_state->owner->so_cred,
3166         };
3167
3168         if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
3169                 return;
3170         if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
3171                 /* Note: exit _without_ running nfs4_locku_done */
3172                 task->tk_action = NULL;
3173                 return;
3174         }
3175         calldata->timestamp = jiffies;
3176         rpc_call_setup(task, &msg, 0);
3177 }
3178
3179 static const struct rpc_call_ops nfs4_locku_ops = {
3180         .rpc_call_prepare = nfs4_locku_prepare,
3181         .rpc_call_done = nfs4_locku_done,
3182         .rpc_release = nfs4_locku_release_calldata,
3183 };
3184
3185 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
3186                 struct nfs_open_context *ctx,
3187                 struct nfs4_lock_state *lsp,
3188                 struct nfs_seqid *seqid)
3189 {
3190         struct nfs4_unlockdata *data;
3191
3192         data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
3193         if (data == NULL) {
3194                 nfs_free_seqid(seqid);
3195                 return ERR_PTR(-ENOMEM);
3196         }
3197
3198         /* Unlock _before_ we do the RPC call */
3199         do_vfs_lock(fl->fl_file, fl);
3200         return rpc_run_task(NFS_CLIENT(lsp->ls_state->inode), RPC_TASK_ASYNC, &nfs4_locku_ops, data);
3201 }
3202
3203 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
3204 {
3205         struct nfs_seqid *seqid;
3206         struct nfs4_lock_state *lsp;
3207         struct rpc_task *task;
3208         int status = 0;
3209
3210         /* Is this a delegated lock? */
3211         if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3212                 goto out_unlock;
3213         /* Is this open_owner holding any locks on the server? */
3214         if (test_bit(LK_STATE_IN_USE, &state->flags) == 0)
3215                 goto out_unlock;
3216
3217         status = nfs4_set_lock_state(state, request);
3218         if (status != 0)
3219                 goto out_unlock;
3220         lsp = request->fl_u.nfs4_fl.owner;
3221         status = -ENOMEM;
3222         seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3223         if (seqid == NULL)
3224                 goto out_unlock;
3225         task = nfs4_do_unlck(request, request->fl_file->private_data, lsp, seqid);
3226         status = PTR_ERR(task);
3227         if (IS_ERR(task))
3228                 goto out_unlock;
3229         status = nfs4_wait_for_completion_rpc_task(task);
3230         rpc_release_task(task);
3231         return status;
3232 out_unlock:
3233         do_vfs_lock(request->fl_file, request);
3234         return status;
3235 }
3236
3237 struct nfs4_lockdata {
3238         struct nfs_lock_args arg;
3239         struct nfs_lock_res res;
3240         struct nfs4_lock_state *lsp;
3241         struct nfs_open_context *ctx;
3242         struct file_lock fl;
3243         unsigned long timestamp;
3244         int rpc_status;
3245         int cancelled;
3246 };
3247
3248 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
3249                 struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
3250 {
3251         struct nfs4_lockdata *p;
3252         struct inode *inode = lsp->ls_state->inode;
3253         struct nfs_server *server = NFS_SERVER(inode);
3254
3255         p = kzalloc(sizeof(*p), GFP_KERNEL);
3256         if (p == NULL)
3257                 return NULL;
3258
3259         p->arg.fh = NFS_FH(inode);
3260         p->arg.fl = &p->fl;
3261         p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3262         if (p->arg.lock_seqid == NULL)
3263                 goto out_free;
3264         p->arg.lock_stateid = &lsp->ls_stateid;
3265         p->arg.lock_owner.clientid = server->nfs4_state->cl_clientid;
3266         p->arg.lock_owner.id = lsp->ls_id;
3267         p->lsp = lsp;
3268         atomic_inc(&lsp->ls_count);
3269         p->ctx = get_nfs_open_context(ctx);
3270         memcpy(&p->fl, fl, sizeof(p->fl));
3271         return p;
3272 out_free:
3273         kfree(p);
3274         return NULL;
3275 }
3276
3277 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
3278 {
3279         struct nfs4_lockdata *data = calldata;
3280         struct nfs4_state *state = data->lsp->ls_state;
3281         struct nfs4_state_owner *sp = state->owner;
3282         struct rpc_message msg = {
3283                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
3284                 .rpc_argp = &data->arg,
3285                 .rpc_resp = &data->res,
3286                 .rpc_cred = sp->so_cred,
3287         };
3288
3289         if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
3290                 return;
3291         dprintk("%s: begin!\n", __FUNCTION__);
3292         /* Do we need to do an open_to_lock_owner? */
3293         if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
3294                 data->arg.open_seqid = nfs_alloc_seqid(&sp->so_seqid);
3295                 if (data->arg.open_seqid == NULL) {
3296                         data->rpc_status = -ENOMEM;
3297                         task->tk_action = NULL;
3298                         goto out;
3299                 }
3300                 data->arg.open_stateid = &state->stateid;
3301                 data->arg.new_lock_owner = 1;
3302         }
3303         data->timestamp = jiffies;
3304         rpc_call_setup(task, &msg, 0);
3305 out:
3306         dprintk("%s: done!, ret = %d\n", __FUNCTION__, data->rpc_status);
3307 }
3308
3309 static void nfs4_lock_done(struct rpc_task *task, void *calldata)
3310 {
3311         struct nfs4_lockdata *data = calldata;
3312
3313         dprintk("%s: begin!\n", __FUNCTION__);
3314
3315         data->rpc_status = task->tk_status;
3316         if (RPC_ASSASSINATED(task))
3317                 goto out;
3318         if (data->arg.new_lock_owner != 0) {
3319                 nfs_increment_open_seqid(data->rpc_status, data->arg.open_seqid);
3320                 if (data->rpc_status == 0)
3321                         nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
3322                 else
3323                         goto out;
3324         }
3325         if (data->rpc_status == 0) {
3326                 memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
3327                                         sizeof(data->lsp->ls_stateid.data));
3328                 data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
3329                 renew_lease(NFS_SERVER(data->ctx->dentry->d_inode), data->timestamp);
3330         }
3331         nfs_increment_lock_seqid(data->rpc_status, data->arg.lock_seqid);
3332 out:
3333         dprintk("%s: done, ret = %d!\n", __FUNCTION__, data->rpc_status);
3334 }
3335
3336 static void nfs4_lock_release(void *calldata)
3337 {
3338         struct nfs4_lockdata *data = calldata;
3339
3340         dprintk("%s: begin!\n", __FUNCTION__);
3341         if (data->arg.open_seqid != NULL)
3342                 nfs_free_seqid(data->arg.open_seqid);
3343         if (data->cancelled != 0) {
3344                 struct rpc_task *task;
3345                 task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
3346                                 data->arg.lock_seqid);
3347                 if (!IS_ERR(task))
3348                         rpc_release_task(task);
3349                 dprintk("%s: cancelling lock!\n", __FUNCTION__);
3350         } else
3351                 nfs_free_seqid(data->arg.lock_seqid);
3352         nfs4_put_lock_state(data->lsp);
3353         put_nfs_open_context(data->ctx);
3354         kfree(data);
3355         dprintk("%s: done!\n", __FUNCTION__);
3356 }
3357
3358 static const struct rpc_call_ops nfs4_lock_ops = {
3359         .rpc_call_prepare = nfs4_lock_prepare,
3360         .rpc_call_done = nfs4_lock_done,
3361         .rpc_release = nfs4_lock_release,
3362 };
3363
3364 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
3365 {
3366         struct nfs4_lockdata *data;
3367         struct rpc_task *task;
3368         int ret;
3369
3370         dprintk("%s: begin!\n", __FUNCTION__);
3371         data = nfs4_alloc_lockdata(fl, fl->fl_file->private_data,
3372                         fl->fl_u.nfs4_fl.owner);
3373         if (data == NULL)
3374                 return -ENOMEM;
3375         if (IS_SETLKW(cmd))
3376                 data->arg.block = 1;
3377         if (reclaim != 0)
3378                 data->arg.reclaim = 1;
3379         task = rpc_run_task(NFS_CLIENT(state->inode), RPC_TASK_ASYNC,
3380                         &nfs4_lock_ops, data);
3381         if (IS_ERR(task))
3382                 return PTR_ERR(task);
3383         ret = nfs4_wait_for_completion_rpc_task(task);
3384         if (ret == 0) {
3385                 ret = data->rpc_status;
3386                 if (ret == -NFS4ERR_DENIED)
3387                         ret = -EAGAIN;
3388         } else
3389                 data->cancelled = 1;
3390         rpc_release_task(task);
3391         dprintk("%s: done, ret = %d!\n", __FUNCTION__, ret);
3392         return ret;
3393 }
3394
3395 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
3396 {
3397         struct nfs_server *server = NFS_SERVER(state->inode);
3398         struct nfs4_exception exception = { };
3399         int err;
3400
3401         /* Cache the lock if possible... */
3402         if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3403                 return 0;
3404         do {
3405                 err = _nfs4_do_setlk(state, F_SETLK, request, 1);
3406                 if (err != -NFS4ERR_DELAY)
3407                         break;
3408                 nfs4_handle_exception(server, err, &exception);
3409         } while (exception.retry);
3410         return err;
3411 }
3412
3413 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
3414 {
3415         struct nfs_server *server = NFS_SERVER(state->inode);
3416         struct nfs4_exception exception = { };
3417         int err;
3418
3419         err = nfs4_set_lock_state(state, request);
3420         if (err != 0)
3421                 return err;
3422         do {
3423                 err = _nfs4_do_setlk(state, F_SETLK, request, 0);
3424                 if (err != -NFS4ERR_DELAY)
3425                         break;
3426                 nfs4_handle_exception(server, err, &exception);
3427         } while (exception.retry);
3428         return err;
3429 }
3430
3431 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3432 {
3433         struct nfs4_client *clp = state->owner->so_client;
3434         int status;
3435
3436         /* Is this a delegated open? */
3437         if (NFS_I(state->inode)->delegation_state != 0) {
3438                 /* Yes: cache locks! */
3439                 status = do_vfs_lock(request->fl_file, request);
3440                 /* ...but avoid races with delegation recall... */
3441                 if (status < 0 || test_bit(NFS_DELEGATED_STATE, &state->flags))
3442                         return status;
3443         }
3444         down_read(&clp->cl_sem);
3445         status = nfs4_set_lock_state(state, request);
3446         if (status != 0)
3447                 goto out;
3448         status = _nfs4_do_setlk(state, cmd, request, 0);
3449         if (status != 0)
3450                 goto out;
3451         /* Note: we always want to sleep here! */
3452         request->fl_flags |= FL_SLEEP;
3453         if (do_vfs_lock(request->fl_file, request) < 0)
3454                 printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__);
3455 out:
3456         up_read(&clp->cl_sem);
3457         return status;
3458 }
3459
3460 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3461 {
3462         struct nfs4_exception exception = { };
3463         int err;
3464
3465         do {
3466                 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3467                                 _nfs4_proc_setlk(state, cmd, request),
3468                                 &exception);
3469         } while (exception.retry);
3470         return err;
3471 }
3472
3473 static int
3474 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
3475 {
3476         struct nfs_open_context *ctx;
3477         struct nfs4_state *state;
3478         unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
3479         int status;
3480
3481         /* verify open state */
3482         ctx = (struct nfs_open_context *)filp->private_data;
3483         state = ctx->state;
3484
3485         if (request->fl_start < 0 || request->fl_end < 0)
3486                 return -EINVAL;
3487
3488         if (IS_GETLK(cmd))
3489                 return nfs4_proc_getlk(state, F_GETLK, request);
3490
3491         if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
3492                 return -EINVAL;
3493
3494         if (request->fl_type == F_UNLCK)
3495                 return nfs4_proc_unlck(state, cmd, request);
3496
3497         do {
3498                 status = nfs4_proc_setlk(state, cmd, request);
3499                 if ((status != -EAGAIN) || IS_SETLK(cmd))
3500                         break;
3501                 timeout = nfs4_set_lock_task_retry(timeout);
3502                 status = -ERESTARTSYS;
3503                 if (signalled())
3504                         break;
3505         } while(status < 0);
3506         return status;
3507 }
3508
3509 int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
3510 {
3511         struct nfs_server *server = NFS_SERVER(state->inode);
3512         struct nfs4_exception exception = { };
3513         int err;
3514
3515         err = nfs4_set_lock_state(state, fl);
3516         if (err != 0)
3517                 goto out;
3518         do {
3519                 err = _nfs4_do_setlk(state, F_SETLK, fl, 0);
3520                 if (err != -NFS4ERR_DELAY)
3521                         break;
3522                 err = nfs4_handle_exception(server, err, &exception);
3523         } while (exception.retry);
3524 out:
3525         return err;
3526 }
3527
3528 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
3529
3530 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
3531                 size_t buflen, int flags)
3532 {
3533         struct inode *inode = dentry->d_inode;
3534
3535         if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3536                 return -EOPNOTSUPP;
3537
3538         if (!S_ISREG(inode->i_mode) &&
3539             (!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX))
3540                 return -EPERM;
3541
3542         return nfs4_proc_set_acl(inode, buf, buflen);
3543 }
3544
3545 /* The getxattr man page suggests returning -ENODATA for unknown attributes,
3546  * and that's what we'll do for e.g. user attributes that haven't been set.
3547  * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
3548  * attributes in kernel-managed attribute namespaces. */
3549 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
3550                 size_t buflen)
3551 {
3552         struct inode *inode = dentry->d_inode;
3553
3554         if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3555                 return -EOPNOTSUPP;
3556
3557         return nfs4_proc_get_acl(inode, buf, buflen);
3558 }
3559
3560 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
3561 {
3562         size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
3563
3564         if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode)))
3565                 return 0;
3566         if (buf && buflen < len)
3567                 return -ERANGE;
3568         if (buf)
3569                 memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
3570         return len;
3571 }
3572
3573 int nfs4_proc_fs_locations(struct inode *dir, struct dentry *dentry,
3574                 struct nfs_fs_locations *fs_locations, struct page *page)
3575 {
3576         struct nfs_server *server = NFS_SERVER(dir);
3577         u32 bitmask[2] = {
3578                 [0] = server->attr_bitmask[0] | FATTR4_WORD0_FS_LOCATIONS,
3579                 [1] = server->attr_bitmask[1],
3580         };
3581         struct nfs4_fs_locations_arg args = {
3582                 .dir_fh = NFS_FH(dir),
3583                 .name = &dentry->d_name,
3584                 .page = page,
3585                 .bitmask = bitmask,
3586         };
3587         struct rpc_message msg = {
3588                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
3589                 .rpc_argp = &args,
3590                 .rpc_resp = &fs_locations,
3591         };
3592         int status;
3593
3594         dprintk("%s: start\n", __FUNCTION__);
3595         fs_locations->fattr.valid = 0;
3596         fs_locations->server = server;
3597         status = rpc_call_sync(server->client, &msg, 0);
3598         dprintk("%s: returned status = %d\n", __FUNCTION__, status);
3599         return status;
3600 }
3601
3602 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
3603         .recover_open   = nfs4_open_reclaim,
3604         .recover_lock   = nfs4_lock_reclaim,
3605 };
3606
3607 struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = {
3608         .recover_open   = nfs4_open_expired,
3609         .recover_lock   = nfs4_lock_expired,
3610 };
3611
3612 static struct inode_operations nfs4_file_inode_operations = {
3613         .permission     = nfs_permission,
3614         .getattr        = nfs_getattr,
3615         .setattr        = nfs_setattr,
3616         .getxattr       = nfs4_getxattr,
3617         .setxattr       = nfs4_setxattr,
3618         .listxattr      = nfs4_listxattr,
3619 };
3620
3621 struct nfs_rpc_ops      nfs_v4_clientops = {
3622         .version        = 4,                    /* protocol version */
3623         .dentry_ops     = &nfs4_dentry_operations,
3624         .dir_inode_ops  = &nfs4_dir_inode_operations,
3625         .file_inode_ops = &nfs4_file_inode_operations,
3626         .getroot        = nfs4_proc_get_root,
3627         .getattr        = nfs4_proc_getattr,
3628         .setattr        = nfs4_proc_setattr,
3629         .lookup         = nfs4_proc_lookup,
3630         .access         = nfs4_proc_access,
3631         .readlink       = nfs4_proc_readlink,
3632         .read           = nfs4_proc_read,
3633         .write          = nfs4_proc_write,
3634         .commit         = nfs4_proc_commit,
3635         .create         = nfs4_proc_create,
3636         .remove         = nfs4_proc_remove,
3637         .unlink_setup   = nfs4_proc_unlink_setup,
3638         .unlink_done    = nfs4_proc_unlink_done,
3639         .rename         = nfs4_proc_rename,
3640         .link           = nfs4_proc_link,
3641         .symlink        = nfs4_proc_symlink,
3642         .mkdir          = nfs4_proc_mkdir,
3643         .rmdir          = nfs4_proc_remove,
3644         .readdir        = nfs4_proc_readdir,
3645         .mknod          = nfs4_proc_mknod,
3646         .statfs         = nfs4_proc_statfs,
3647         .fsinfo         = nfs4_proc_fsinfo,
3648         .pathconf       = nfs4_proc_pathconf,
3649         .decode_dirent  = nfs4_decode_dirent,
3650         .read_setup     = nfs4_proc_read_setup,
3651         .read_done      = nfs4_read_done,
3652         .write_setup    = nfs4_proc_write_setup,
3653         .write_done     = nfs4_write_done,
3654         .commit_setup   = nfs4_proc_commit_setup,
3655         .commit_done    = nfs4_commit_done,
3656         .file_open      = nfs_open,
3657         .file_release   = nfs_release,
3658         .lock           = nfs4_proc_lock,
3659         .clear_acl_cache = nfs4_zap_acl_attr,
3660 };
3661
3662 /*
3663  * Local variables:
3664  *  c-basic-offset: 8
3665  * End:
3666  */