7a24cc957f05a873aa050f631bfa1c801616bb39
[pandora-kernel.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36         long nr_pages;
37         struct super_block *sb;
38         enum writeback_sync_modes sync_mode;
39         unsigned int for_kupdate:1;
40         unsigned int range_cyclic:1;
41         unsigned int for_background:1;
42
43         struct list_head list;          /* pending work list */
44         struct completion *done;        /* set if the caller waits */
45 };
46
47 /*
48  * Include the creation of the trace points after defining the
49  * wb_writeback_work structure so that the definition remains local to this
50  * file.
51  */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54
55 /*
56  * We don't actually have pdflush, but this one is exported though /proc...
57  */
58 int nr_pdflush_threads;
59
60 /**
61  * writeback_in_progress - determine whether there is writeback in progress
62  * @bdi: the device's backing_dev_info structure.
63  *
64  * Determine whether there is writeback waiting to be handled against a
65  * backing device.
66  */
67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69         return test_bit(BDI_writeback_running, &bdi->state);
70 }
71
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73 {
74         struct super_block *sb = inode->i_sb;
75
76         if (strcmp(sb->s_type->name, "bdev") == 0)
77                 return inode->i_mapping->backing_dev_info;
78
79         return sb->s_bdi;
80 }
81
82 static inline struct inode *wb_inode(struct list_head *head)
83 {
84         return list_entry(head, struct inode, i_wb_list);
85 }
86
87 static void bdi_queue_work(struct backing_dev_info *bdi,
88                 struct wb_writeback_work *work)
89 {
90         trace_writeback_queue(bdi, work);
91
92         spin_lock_bh(&bdi->wb_lock);
93         list_add_tail(&work->list, &bdi->work_list);
94         if (bdi->wb.task) {
95                 wake_up_process(bdi->wb.task);
96         } else {
97                 /*
98                  * The bdi thread isn't there, wake up the forker thread which
99                  * will create and run it.
100                  */
101                 trace_writeback_nothread(bdi, work);
102                 wake_up_process(default_backing_dev_info.wb.task);
103         }
104         spin_unlock_bh(&bdi->wb_lock);
105 }
106
107 static void
108 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
109                 bool range_cyclic, bool for_background)
110 {
111         struct wb_writeback_work *work;
112
113         /*
114          * This is WB_SYNC_NONE writeback, so if allocation fails just
115          * wakeup the thread for old dirty data writeback
116          */
117         work = kzalloc(sizeof(*work), GFP_ATOMIC);
118         if (!work) {
119                 if (bdi->wb.task) {
120                         trace_writeback_nowork(bdi);
121                         wake_up_process(bdi->wb.task);
122                 }
123                 return;
124         }
125
126         work->sync_mode = WB_SYNC_NONE;
127         work->nr_pages  = nr_pages;
128         work->range_cyclic = range_cyclic;
129         work->for_background = for_background;
130
131         bdi_queue_work(bdi, work);
132 }
133
134 /**
135  * bdi_start_writeback - start writeback
136  * @bdi: the backing device to write from
137  * @nr_pages: the number of pages to write
138  *
139  * Description:
140  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
141  *   started when this function returns, we make no guarentees on
142  *   completion. Caller need not hold sb s_umount semaphore.
143  *
144  */
145 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
146 {
147         __bdi_start_writeback(bdi, nr_pages, true, false);
148 }
149
150 /**
151  * bdi_start_background_writeback - start background writeback
152  * @bdi: the backing device to write from
153  *
154  * Description:
155  *   This does WB_SYNC_NONE background writeback. The IO is only
156  *   started when this function returns, we make no guarentees on
157  *   completion. Caller need not hold sb s_umount semaphore.
158  */
159 void bdi_start_background_writeback(struct backing_dev_info *bdi)
160 {
161         __bdi_start_writeback(bdi, LONG_MAX, true, true);
162 }
163
164 /*
165  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
166  * furthest end of its superblock's dirty-inode list.
167  *
168  * Before stamping the inode's ->dirtied_when, we check to see whether it is
169  * already the most-recently-dirtied inode on the b_dirty list.  If that is
170  * the case then the inode must have been redirtied while it was being written
171  * out and we don't reset its dirtied_when.
172  */
173 static void redirty_tail(struct inode *inode)
174 {
175         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
176
177         if (!list_empty(&wb->b_dirty)) {
178                 struct inode *tail;
179
180                 tail = wb_inode(wb->b_dirty.next);
181                 if (time_before(inode->dirtied_when, tail->dirtied_when))
182                         inode->dirtied_when = jiffies;
183         }
184         list_move(&inode->i_wb_list, &wb->b_dirty);
185 }
186
187 /*
188  * requeue inode for re-scanning after bdi->b_io list is exhausted.
189  */
190 static void requeue_io(struct inode *inode)
191 {
192         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
193
194         list_move(&inode->i_wb_list, &wb->b_more_io);
195 }
196
197 static void inode_sync_complete(struct inode *inode)
198 {
199         /*
200          * Prevent speculative execution through spin_unlock(&inode_lock);
201          */
202         smp_mb();
203         wake_up_bit(&inode->i_state, __I_SYNC);
204 }
205
206 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
207 {
208         bool ret = time_after(inode->dirtied_when, t);
209 #ifndef CONFIG_64BIT
210         /*
211          * For inodes being constantly redirtied, dirtied_when can get stuck.
212          * It _appears_ to be in the future, but is actually in distant past.
213          * This test is necessary to prevent such wrapped-around relative times
214          * from permanently stopping the whole bdi writeback.
215          */
216         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
217 #endif
218         return ret;
219 }
220
221 /*
222  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
223  */
224 static void move_expired_inodes(struct list_head *delaying_queue,
225                                struct list_head *dispatch_queue,
226                                 unsigned long *older_than_this)
227 {
228         LIST_HEAD(tmp);
229         struct list_head *pos, *node;
230         struct super_block *sb = NULL;
231         struct inode *inode;
232         int do_sb_sort = 0;
233
234         while (!list_empty(delaying_queue)) {
235                 inode = wb_inode(delaying_queue->prev);
236                 if (older_than_this &&
237                     inode_dirtied_after(inode, *older_than_this))
238                         break;
239                 if (sb && sb != inode->i_sb)
240                         do_sb_sort = 1;
241                 sb = inode->i_sb;
242                 list_move(&inode->i_wb_list, &tmp);
243         }
244
245         /* just one sb in list, splice to dispatch_queue and we're done */
246         if (!do_sb_sort) {
247                 list_splice(&tmp, dispatch_queue);
248                 return;
249         }
250
251         /* Move inodes from one superblock together */
252         while (!list_empty(&tmp)) {
253                 sb = wb_inode(tmp.prev)->i_sb;
254                 list_for_each_prev_safe(pos, node, &tmp) {
255                         inode = wb_inode(pos);
256                         if (inode->i_sb == sb)
257                                 list_move(&inode->i_wb_list, dispatch_queue);
258                 }
259         }
260 }
261
262 /*
263  * Queue all expired dirty inodes for io, eldest first.
264  * Before
265  *         newly dirtied     b_dirty    b_io    b_more_io
266  *         =============>    gf         edc     BA
267  * After
268  *         newly dirtied     b_dirty    b_io    b_more_io
269  *         =============>    g          fBAedc
270  *                                           |
271  *                                           +--> dequeue for IO
272  */
273 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
274 {
275         list_splice_init(&wb->b_more_io, &wb->b_io);
276         move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
277 }
278
279 static int write_inode(struct inode *inode, struct writeback_control *wbc)
280 {
281         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
282                 return inode->i_sb->s_op->write_inode(inode, wbc);
283         return 0;
284 }
285
286 /*
287  * Wait for writeback on an inode to complete.
288  */
289 static void inode_wait_for_writeback(struct inode *inode)
290 {
291         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
292         wait_queue_head_t *wqh;
293
294         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
295          while (inode->i_state & I_SYNC) {
296                 spin_unlock(&inode_lock);
297                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
298                 spin_lock(&inode_lock);
299         }
300 }
301
302 /*
303  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
304  * caller has ref on the inode (either via __iget or via syscall against an fd)
305  * or the inode has I_WILL_FREE set (via generic_forget_inode)
306  *
307  * If `wait' is set, wait on the writeout.
308  *
309  * The whole writeout design is quite complex and fragile.  We want to avoid
310  * starvation of particular inodes when others are being redirtied, prevent
311  * livelocks, etc.
312  *
313  * Called under inode_lock.
314  */
315 static int
316 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
317 {
318         struct address_space *mapping = inode->i_mapping;
319         unsigned dirty;
320         int ret;
321
322         if (!atomic_read(&inode->i_count))
323                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
324         else
325                 WARN_ON(inode->i_state & I_WILL_FREE);
326
327         if (inode->i_state & I_SYNC) {
328                 /*
329                  * If this inode is locked for writeback and we are not doing
330                  * writeback-for-data-integrity, move it to b_more_io so that
331                  * writeback can proceed with the other inodes on s_io.
332                  *
333                  * We'll have another go at writing back this inode when we
334                  * completed a full scan of b_io.
335                  */
336                 if (wbc->sync_mode != WB_SYNC_ALL) {
337                         requeue_io(inode);
338                         return 0;
339                 }
340
341                 /*
342                  * It's a data-integrity sync.  We must wait.
343                  */
344                 inode_wait_for_writeback(inode);
345         }
346
347         BUG_ON(inode->i_state & I_SYNC);
348
349         /* Set I_SYNC, reset I_DIRTY_PAGES */
350         inode->i_state |= I_SYNC;
351         inode->i_state &= ~I_DIRTY_PAGES;
352         spin_unlock(&inode_lock);
353
354         ret = do_writepages(mapping, wbc);
355
356         /*
357          * Make sure to wait on the data before writing out the metadata.
358          * This is important for filesystems that modify metadata on data
359          * I/O completion.
360          */
361         if (wbc->sync_mode == WB_SYNC_ALL) {
362                 int err = filemap_fdatawait(mapping);
363                 if (ret == 0)
364                         ret = err;
365         }
366
367         /*
368          * Some filesystems may redirty the inode during the writeback
369          * due to delalloc, clear dirty metadata flags right before
370          * write_inode()
371          */
372         spin_lock(&inode_lock);
373         dirty = inode->i_state & I_DIRTY;
374         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
375         spin_unlock(&inode_lock);
376         /* Don't write the inode if only I_DIRTY_PAGES was set */
377         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
378                 int err = write_inode(inode, wbc);
379                 if (ret == 0)
380                         ret = err;
381         }
382
383         spin_lock(&inode_lock);
384         inode->i_state &= ~I_SYNC;
385         if (!(inode->i_state & I_FREEING)) {
386                 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
387                         /*
388                          * We didn't write back all the pages.  nfs_writepages()
389                          * sometimes bales out without doing anything.
390                          */
391                         inode->i_state |= I_DIRTY_PAGES;
392                         if (wbc->nr_to_write <= 0) {
393                                 /*
394                                  * slice used up: queue for next turn
395                                  */
396                                 requeue_io(inode);
397                         } else {
398                                 /*
399                                  * Writeback blocked by something other than
400                                  * congestion. Delay the inode for some time to
401                                  * avoid spinning on the CPU (100% iowait)
402                                  * retrying writeback of the dirty page/inode
403                                  * that cannot be performed immediately.
404                                  */
405                                 redirty_tail(inode);
406                         }
407                 } else if (inode->i_state & I_DIRTY) {
408                         /*
409                          * Filesystems can dirty the inode during writeback
410                          * operations, such as delayed allocation during
411                          * submission or metadata updates after data IO
412                          * completion.
413                          */
414                         redirty_tail(inode);
415                 } else {
416                         /*
417                          * The inode is clean.  At this point we either have
418                          * a reference to the inode or it's on it's way out.
419                          * No need to add it back to the LRU.
420                          */
421                         list_del_init(&inode->i_wb_list);
422                 }
423         }
424         inode_sync_complete(inode);
425         return ret;
426 }
427
428 /*
429  * For background writeback the caller does not have the sb pinned
430  * before calling writeback. So make sure that we do pin it, so it doesn't
431  * go away while we are writing inodes from it.
432  */
433 static bool pin_sb_for_writeback(struct super_block *sb)
434 {
435         spin_lock(&sb_lock);
436         if (list_empty(&sb->s_instances)) {
437                 spin_unlock(&sb_lock);
438                 return false;
439         }
440
441         sb->s_count++;
442         spin_unlock(&sb_lock);
443
444         if (down_read_trylock(&sb->s_umount)) {
445                 if (sb->s_root)
446                         return true;
447                 up_read(&sb->s_umount);
448         }
449
450         put_super(sb);
451         return false;
452 }
453
454 /*
455  * Write a portion of b_io inodes which belong to @sb.
456  *
457  * If @only_this_sb is true, then find and write all such
458  * inodes. Otherwise write only ones which go sequentially
459  * in reverse order.
460  *
461  * Return 1, if the caller writeback routine should be
462  * interrupted. Otherwise return 0.
463  */
464 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
465                 struct writeback_control *wbc, bool only_this_sb)
466 {
467         while (!list_empty(&wb->b_io)) {
468                 long pages_skipped;
469                 struct inode *inode = wb_inode(wb->b_io.prev);
470
471                 if (inode->i_sb != sb) {
472                         if (only_this_sb) {
473                                 /*
474                                  * We only want to write back data for this
475                                  * superblock, move all inodes not belonging
476                                  * to it back onto the dirty list.
477                                  */
478                                 redirty_tail(inode);
479                                 continue;
480                         }
481
482                         /*
483                          * The inode belongs to a different superblock.
484                          * Bounce back to the caller to unpin this and
485                          * pin the next superblock.
486                          */
487                         return 0;
488                 }
489
490                 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
491                         requeue_io(inode);
492                         continue;
493                 }
494                 /*
495                  * Was this inode dirtied after sync_sb_inodes was called?
496                  * This keeps sync from extra jobs and livelock.
497                  */
498                 if (inode_dirtied_after(inode, wbc->wb_start))
499                         return 1;
500
501                 BUG_ON(inode->i_state & I_FREEING);
502                 __iget(inode);
503                 pages_skipped = wbc->pages_skipped;
504                 writeback_single_inode(inode, wbc);
505                 if (wbc->pages_skipped != pages_skipped) {
506                         /*
507                          * writeback is not making progress due to locked
508                          * buffers.  Skip this inode for now.
509                          */
510                         redirty_tail(inode);
511                 }
512                 spin_unlock(&inode_lock);
513                 iput(inode);
514                 cond_resched();
515                 spin_lock(&inode_lock);
516                 if (wbc->nr_to_write <= 0) {
517                         wbc->more_io = 1;
518                         return 1;
519                 }
520                 if (!list_empty(&wb->b_more_io))
521                         wbc->more_io = 1;
522         }
523         /* b_io is empty */
524         return 1;
525 }
526
527 void writeback_inodes_wb(struct bdi_writeback *wb,
528                 struct writeback_control *wbc)
529 {
530         int ret = 0;
531
532         if (!wbc->wb_start)
533                 wbc->wb_start = jiffies; /* livelock avoidance */
534         spin_lock(&inode_lock);
535         if (!wbc->for_kupdate || list_empty(&wb->b_io))
536                 queue_io(wb, wbc->older_than_this);
537
538         while (!list_empty(&wb->b_io)) {
539                 struct inode *inode = wb_inode(wb->b_io.prev);
540                 struct super_block *sb = inode->i_sb;
541
542                 if (!pin_sb_for_writeback(sb)) {
543                         requeue_io(inode);
544                         continue;
545                 }
546                 ret = writeback_sb_inodes(sb, wb, wbc, false);
547                 drop_super(sb);
548
549                 if (ret)
550                         break;
551         }
552         spin_unlock(&inode_lock);
553         /* Leave any unwritten inodes on b_io */
554 }
555
556 static void __writeback_inodes_sb(struct super_block *sb,
557                 struct bdi_writeback *wb, struct writeback_control *wbc)
558 {
559         WARN_ON(!rwsem_is_locked(&sb->s_umount));
560
561         spin_lock(&inode_lock);
562         if (!wbc->for_kupdate || list_empty(&wb->b_io))
563                 queue_io(wb, wbc->older_than_this);
564         writeback_sb_inodes(sb, wb, wbc, true);
565         spin_unlock(&inode_lock);
566 }
567
568 /*
569  * The maximum number of pages to writeout in a single bdi flush/kupdate
570  * operation.  We do this so we don't hold I_SYNC against an inode for
571  * enormous amounts of time, which would block a userspace task which has
572  * been forced to throttle against that inode.  Also, the code reevaluates
573  * the dirty each time it has written this many pages.
574  */
575 #define MAX_WRITEBACK_PAGES     1024
576
577 static inline bool over_bground_thresh(void)
578 {
579         unsigned long background_thresh, dirty_thresh;
580
581         global_dirty_limits(&background_thresh, &dirty_thresh);
582
583         return (global_page_state(NR_FILE_DIRTY) +
584                 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
585 }
586
587 /*
588  * Explicit flushing or periodic writeback of "old" data.
589  *
590  * Define "old": the first time one of an inode's pages is dirtied, we mark the
591  * dirtying-time in the inode's address_space.  So this periodic writeback code
592  * just walks the superblock inode list, writing back any inodes which are
593  * older than a specific point in time.
594  *
595  * Try to run once per dirty_writeback_interval.  But if a writeback event
596  * takes longer than a dirty_writeback_interval interval, then leave a
597  * one-second gap.
598  *
599  * older_than_this takes precedence over nr_to_write.  So we'll only write back
600  * all dirty pages if they are all attached to "old" mappings.
601  */
602 static long wb_writeback(struct bdi_writeback *wb,
603                          struct wb_writeback_work *work)
604 {
605         struct writeback_control wbc = {
606                 .sync_mode              = work->sync_mode,
607                 .older_than_this        = NULL,
608                 .for_kupdate            = work->for_kupdate,
609                 .for_background         = work->for_background,
610                 .range_cyclic           = work->range_cyclic,
611         };
612         unsigned long oldest_jif;
613         long wrote = 0;
614         struct inode *inode;
615
616         if (wbc.for_kupdate) {
617                 wbc.older_than_this = &oldest_jif;
618                 oldest_jif = jiffies -
619                                 msecs_to_jiffies(dirty_expire_interval * 10);
620         }
621         if (!wbc.range_cyclic) {
622                 wbc.range_start = 0;
623                 wbc.range_end = LLONG_MAX;
624         }
625
626         wbc.wb_start = jiffies; /* livelock avoidance */
627         for (;;) {
628                 /*
629                  * Stop writeback when nr_pages has been consumed
630                  */
631                 if (work->nr_pages <= 0)
632                         break;
633
634                 /*
635                  * For background writeout, stop when we are below the
636                  * background dirty threshold
637                  */
638                 if (work->for_background && !over_bground_thresh())
639                         break;
640
641                 wbc.more_io = 0;
642                 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
643                 wbc.pages_skipped = 0;
644
645                 trace_wbc_writeback_start(&wbc, wb->bdi);
646                 if (work->sb)
647                         __writeback_inodes_sb(work->sb, wb, &wbc);
648                 else
649                         writeback_inodes_wb(wb, &wbc);
650                 trace_wbc_writeback_written(&wbc, wb->bdi);
651
652                 work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
653                 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
654
655                 /*
656                  * If we consumed everything, see if we have more
657                  */
658                 if (wbc.nr_to_write <= 0)
659                         continue;
660                 /*
661                  * Didn't write everything and we don't have more IO, bail
662                  */
663                 if (!wbc.more_io)
664                         break;
665                 /*
666                  * Did we write something? Try for more
667                  */
668                 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
669                         continue;
670                 /*
671                  * Nothing written. Wait for some inode to
672                  * become available for writeback. Otherwise
673                  * we'll just busyloop.
674                  */
675                 spin_lock(&inode_lock);
676                 if (!list_empty(&wb->b_more_io))  {
677                         inode = wb_inode(wb->b_more_io.prev);
678                         trace_wbc_writeback_wait(&wbc, wb->bdi);
679                         inode_wait_for_writeback(inode);
680                 }
681                 spin_unlock(&inode_lock);
682         }
683
684         return wrote;
685 }
686
687 /*
688  * Return the next wb_writeback_work struct that hasn't been processed yet.
689  */
690 static struct wb_writeback_work *
691 get_next_work_item(struct backing_dev_info *bdi)
692 {
693         struct wb_writeback_work *work = NULL;
694
695         spin_lock_bh(&bdi->wb_lock);
696         if (!list_empty(&bdi->work_list)) {
697                 work = list_entry(bdi->work_list.next,
698                                   struct wb_writeback_work, list);
699                 list_del_init(&work->list);
700         }
701         spin_unlock_bh(&bdi->wb_lock);
702         return work;
703 }
704
705 static long wb_check_old_data_flush(struct bdi_writeback *wb)
706 {
707         unsigned long expired;
708         long nr_pages;
709
710         /*
711          * When set to zero, disable periodic writeback
712          */
713         if (!dirty_writeback_interval)
714                 return 0;
715
716         expired = wb->last_old_flush +
717                         msecs_to_jiffies(dirty_writeback_interval * 10);
718         if (time_before(jiffies, expired))
719                 return 0;
720
721         wb->last_old_flush = jiffies;
722         nr_pages = global_page_state(NR_FILE_DIRTY) +
723                         global_page_state(NR_UNSTABLE_NFS) +
724                         get_nr_dirty_inodes();
725
726         if (nr_pages) {
727                 struct wb_writeback_work work = {
728                         .nr_pages       = nr_pages,
729                         .sync_mode      = WB_SYNC_NONE,
730                         .for_kupdate    = 1,
731                         .range_cyclic   = 1,
732                 };
733
734                 return wb_writeback(wb, &work);
735         }
736
737         return 0;
738 }
739
740 /*
741  * Retrieve work items and do the writeback they describe
742  */
743 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
744 {
745         struct backing_dev_info *bdi = wb->bdi;
746         struct wb_writeback_work *work;
747         long wrote = 0;
748
749         set_bit(BDI_writeback_running, &wb->bdi->state);
750         while ((work = get_next_work_item(bdi)) != NULL) {
751                 /*
752                  * Override sync mode, in case we must wait for completion
753                  * because this thread is exiting now.
754                  */
755                 if (force_wait)
756                         work->sync_mode = WB_SYNC_ALL;
757
758                 trace_writeback_exec(bdi, work);
759
760                 wrote += wb_writeback(wb, work);
761
762                 /*
763                  * Notify the caller of completion if this is a synchronous
764                  * work item, otherwise just free it.
765                  */
766                 if (work->done)
767                         complete(work->done);
768                 else
769                         kfree(work);
770         }
771
772         /*
773          * Check for periodic writeback, kupdated() style
774          */
775         wrote += wb_check_old_data_flush(wb);
776         clear_bit(BDI_writeback_running, &wb->bdi->state);
777
778         return wrote;
779 }
780
781 /*
782  * Handle writeback of dirty data for the device backed by this bdi. Also
783  * wakes up periodically and does kupdated style flushing.
784  */
785 int bdi_writeback_thread(void *data)
786 {
787         struct bdi_writeback *wb = data;
788         struct backing_dev_info *bdi = wb->bdi;
789         long pages_written;
790
791         current->flags |= PF_FLUSHER | PF_SWAPWRITE;
792         set_freezable();
793         wb->last_active = jiffies;
794
795         /*
796          * Our parent may run at a different priority, just set us to normal
797          */
798         set_user_nice(current, 0);
799
800         trace_writeback_thread_start(bdi);
801
802         while (!kthread_should_stop()) {
803                 /*
804                  * Remove own delayed wake-up timer, since we are already awake
805                  * and we'll take care of the preriodic write-back.
806                  */
807                 del_timer(&wb->wakeup_timer);
808
809                 pages_written = wb_do_writeback(wb, 0);
810
811                 trace_writeback_pages_written(pages_written);
812
813                 if (pages_written)
814                         wb->last_active = jiffies;
815
816                 set_current_state(TASK_INTERRUPTIBLE);
817                 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
818                         __set_current_state(TASK_RUNNING);
819                         continue;
820                 }
821
822                 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
823                         schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
824                 else {
825                         /*
826                          * We have nothing to do, so can go sleep without any
827                          * timeout and save power. When a work is queued or
828                          * something is made dirty - we will be woken up.
829                          */
830                         schedule();
831                 }
832
833                 try_to_freeze();
834         }
835
836         /* Flush any work that raced with us exiting */
837         if (!list_empty(&bdi->work_list))
838                 wb_do_writeback(wb, 1);
839
840         trace_writeback_thread_stop(bdi);
841         return 0;
842 }
843
844
845 /*
846  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
847  * the whole world.
848  */
849 void wakeup_flusher_threads(long nr_pages)
850 {
851         struct backing_dev_info *bdi;
852
853         if (!nr_pages) {
854                 nr_pages = global_page_state(NR_FILE_DIRTY) +
855                                 global_page_state(NR_UNSTABLE_NFS);
856         }
857
858         rcu_read_lock();
859         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
860                 if (!bdi_has_dirty_io(bdi))
861                         continue;
862                 __bdi_start_writeback(bdi, nr_pages, false, false);
863         }
864         rcu_read_unlock();
865 }
866
867 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
868 {
869         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
870                 struct dentry *dentry;
871                 const char *name = "?";
872
873                 dentry = d_find_alias(inode);
874                 if (dentry) {
875                         spin_lock(&dentry->d_lock);
876                         name = (const char *) dentry->d_name.name;
877                 }
878                 printk(KERN_DEBUG
879                        "%s(%d): dirtied inode %lu (%s) on %s\n",
880                        current->comm, task_pid_nr(current), inode->i_ino,
881                        name, inode->i_sb->s_id);
882                 if (dentry) {
883                         spin_unlock(&dentry->d_lock);
884                         dput(dentry);
885                 }
886         }
887 }
888
889 /**
890  *      __mark_inode_dirty -    internal function
891  *      @inode: inode to mark
892  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
893  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
894  *      mark_inode_dirty_sync.
895  *
896  * Put the inode on the super block's dirty list.
897  *
898  * CAREFUL! We mark it dirty unconditionally, but move it onto the
899  * dirty list only if it is hashed or if it refers to a blockdev.
900  * If it was not hashed, it will never be added to the dirty list
901  * even if it is later hashed, as it will have been marked dirty already.
902  *
903  * In short, make sure you hash any inodes _before_ you start marking
904  * them dirty.
905  *
906  * This function *must* be atomic for the I_DIRTY_PAGES case -
907  * set_page_dirty() is called under spinlock in several places.
908  *
909  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
910  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
911  * the kernel-internal blockdev inode represents the dirtying time of the
912  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
913  * page->mapping->host, so the page-dirtying time is recorded in the internal
914  * blockdev inode.
915  */
916 void __mark_inode_dirty(struct inode *inode, int flags)
917 {
918         struct super_block *sb = inode->i_sb;
919         struct backing_dev_info *bdi = NULL;
920         bool wakeup_bdi = false;
921
922         /*
923          * Don't do this for I_DIRTY_PAGES - that doesn't actually
924          * dirty the inode itself
925          */
926         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
927                 if (sb->s_op->dirty_inode)
928                         sb->s_op->dirty_inode(inode);
929         }
930
931         /*
932          * make sure that changes are seen by all cpus before we test i_state
933          * -- mikulas
934          */
935         smp_mb();
936
937         /* avoid the locking if we can */
938         if ((inode->i_state & flags) == flags)
939                 return;
940
941         if (unlikely(block_dump))
942                 block_dump___mark_inode_dirty(inode);
943
944         spin_lock(&inode_lock);
945         if ((inode->i_state & flags) != flags) {
946                 const int was_dirty = inode->i_state & I_DIRTY;
947
948                 inode->i_state |= flags;
949
950                 /*
951                  * If the inode is being synced, just update its dirty state.
952                  * The unlocker will place the inode on the appropriate
953                  * superblock list, based upon its state.
954                  */
955                 if (inode->i_state & I_SYNC)
956                         goto out;
957
958                 /*
959                  * Only add valid (hashed) inodes to the superblock's
960                  * dirty list.  Add blockdev inodes as well.
961                  */
962                 if (!S_ISBLK(inode->i_mode)) {
963                         if (inode_unhashed(inode))
964                                 goto out;
965                 }
966                 if (inode->i_state & I_FREEING)
967                         goto out;
968
969                 /*
970                  * If the inode was already on b_dirty/b_io/b_more_io, don't
971                  * reposition it (that would break b_dirty time-ordering).
972                  */
973                 if (!was_dirty) {
974                         bdi = inode_to_bdi(inode);
975
976                         if (bdi_cap_writeback_dirty(bdi)) {
977                                 WARN(!test_bit(BDI_registered, &bdi->state),
978                                      "bdi-%s not registered\n", bdi->name);
979
980                                 /*
981                                  * If this is the first dirty inode for this
982                                  * bdi, we have to wake-up the corresponding
983                                  * bdi thread to make sure background
984                                  * write-back happens later.
985                                  */
986                                 if (!wb_has_dirty_io(&bdi->wb))
987                                         wakeup_bdi = true;
988                         }
989
990                         inode->dirtied_when = jiffies;
991                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
992                 }
993         }
994 out:
995         spin_unlock(&inode_lock);
996
997         if (wakeup_bdi)
998                 bdi_wakeup_thread_delayed(bdi);
999 }
1000 EXPORT_SYMBOL(__mark_inode_dirty);
1001
1002 /*
1003  * Write out a superblock's list of dirty inodes.  A wait will be performed
1004  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1005  *
1006  * If older_than_this is non-NULL, then only write out inodes which
1007  * had their first dirtying at a time earlier than *older_than_this.
1008  *
1009  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1010  * This function assumes that the blockdev superblock's inodes are backed by
1011  * a variety of queues, so all inodes are searched.  For other superblocks,
1012  * assume that all inodes are backed by the same queue.
1013  *
1014  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1015  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1016  * on the writer throttling path, and we get decent balancing between many
1017  * throttled threads: we don't want them all piling up on inode_sync_wait.
1018  */
1019 static void wait_sb_inodes(struct super_block *sb)
1020 {
1021         struct inode *inode, *old_inode = NULL;
1022
1023         /*
1024          * We need to be protected against the filesystem going from
1025          * r/o to r/w or vice versa.
1026          */
1027         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1028
1029         spin_lock(&inode_lock);
1030
1031         /*
1032          * Data integrity sync. Must wait for all pages under writeback,
1033          * because there may have been pages dirtied before our sync
1034          * call, but which had writeout started before we write it out.
1035          * In which case, the inode may not be on the dirty list, but
1036          * we still have to wait for that writeout.
1037          */
1038         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1039                 struct address_space *mapping;
1040
1041                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW))
1042                         continue;
1043                 mapping = inode->i_mapping;
1044                 if (mapping->nrpages == 0)
1045                         continue;
1046                 __iget(inode);
1047                 spin_unlock(&inode_lock);
1048                 /*
1049                  * We hold a reference to 'inode' so it couldn't have
1050                  * been removed from s_inodes list while we dropped the
1051                  * inode_lock.  We cannot iput the inode now as we can
1052                  * be holding the last reference and we cannot iput it
1053                  * under inode_lock. So we keep the reference and iput
1054                  * it later.
1055                  */
1056                 iput(old_inode);
1057                 old_inode = inode;
1058
1059                 filemap_fdatawait(mapping);
1060
1061                 cond_resched();
1062
1063                 spin_lock(&inode_lock);
1064         }
1065         spin_unlock(&inode_lock);
1066         iput(old_inode);
1067 }
1068
1069 /**
1070  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1071  * @sb: the superblock
1072  *
1073  * Start writeback on some inodes on this super_block. No guarantees are made
1074  * on how many (if any) will be written, and this function does not wait
1075  * for IO completion of submitted IO. The number of pages submitted is
1076  * returned.
1077  */
1078 void writeback_inodes_sb(struct super_block *sb)
1079 {
1080         unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1081         unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1082         DECLARE_COMPLETION_ONSTACK(done);
1083         struct wb_writeback_work work = {
1084                 .sb             = sb,
1085                 .sync_mode      = WB_SYNC_NONE,
1086                 .done           = &done,
1087         };
1088
1089         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1090
1091         work.nr_pages = nr_dirty + nr_unstable + get_nr_dirty_inodes();
1092
1093         bdi_queue_work(sb->s_bdi, &work);
1094         wait_for_completion(&done);
1095 }
1096 EXPORT_SYMBOL(writeback_inodes_sb);
1097
1098 /**
1099  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1100  * @sb: the superblock
1101  *
1102  * Invoke writeback_inodes_sb if no writeback is currently underway.
1103  * Returns 1 if writeback was started, 0 if not.
1104  */
1105 int writeback_inodes_sb_if_idle(struct super_block *sb)
1106 {
1107         if (!writeback_in_progress(sb->s_bdi)) {
1108                 down_read(&sb->s_umount);
1109                 writeback_inodes_sb(sb);
1110                 up_read(&sb->s_umount);
1111                 return 1;
1112         } else
1113                 return 0;
1114 }
1115 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1116
1117 /**
1118  * sync_inodes_sb       -       sync sb inode pages
1119  * @sb: the superblock
1120  *
1121  * This function writes and waits on any dirty inode belonging to this
1122  * super_block. The number of pages synced is returned.
1123  */
1124 void sync_inodes_sb(struct super_block *sb)
1125 {
1126         DECLARE_COMPLETION_ONSTACK(done);
1127         struct wb_writeback_work work = {
1128                 .sb             = sb,
1129                 .sync_mode      = WB_SYNC_ALL,
1130                 .nr_pages       = LONG_MAX,
1131                 .range_cyclic   = 0,
1132                 .done           = &done,
1133         };
1134
1135         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1136
1137         bdi_queue_work(sb->s_bdi, &work);
1138         wait_for_completion(&done);
1139
1140         wait_sb_inodes(sb);
1141 }
1142 EXPORT_SYMBOL(sync_inodes_sb);
1143
1144 /**
1145  * write_inode_now      -       write an inode to disk
1146  * @inode: inode to write to disk
1147  * @sync: whether the write should be synchronous or not
1148  *
1149  * This function commits an inode to disk immediately if it is dirty. This is
1150  * primarily needed by knfsd.
1151  *
1152  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1153  */
1154 int write_inode_now(struct inode *inode, int sync)
1155 {
1156         int ret;
1157         struct writeback_control wbc = {
1158                 .nr_to_write = LONG_MAX,
1159                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1160                 .range_start = 0,
1161                 .range_end = LLONG_MAX,
1162         };
1163
1164         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1165                 wbc.nr_to_write = 0;
1166
1167         might_sleep();
1168         spin_lock(&inode_lock);
1169         ret = writeback_single_inode(inode, &wbc);
1170         spin_unlock(&inode_lock);
1171         if (sync)
1172                 inode_sync_wait(inode);
1173         return ret;
1174 }
1175 EXPORT_SYMBOL(write_inode_now);
1176
1177 /**
1178  * sync_inode - write an inode and its pages to disk.
1179  * @inode: the inode to sync
1180  * @wbc: controls the writeback mode
1181  *
1182  * sync_inode() will write an inode and its pages to disk.  It will also
1183  * correctly update the inode on its superblock's dirty inode lists and will
1184  * update inode->i_state.
1185  *
1186  * The caller must have a ref on the inode.
1187  */
1188 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1189 {
1190         int ret;
1191
1192         spin_lock(&inode_lock);
1193         ret = writeback_single_inode(inode, wbc);
1194         spin_unlock(&inode_lock);
1195         return ret;
1196 }
1197 EXPORT_SYMBOL(sync_inode);
1198
1199 /**
1200  * sync_inode - write an inode to disk
1201  * @inode: the inode to sync
1202  * @wait: wait for I/O to complete.
1203  *
1204  * Write an inode to disk and adjust it's dirty state after completion.
1205  *
1206  * Note: only writes the actual inode, no associated data or other metadata.
1207  */
1208 int sync_inode_metadata(struct inode *inode, int wait)
1209 {
1210         struct writeback_control wbc = {
1211                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1212                 .nr_to_write = 0, /* metadata-only */
1213         };
1214
1215         return sync_inode(inode, &wbc);
1216 }
1217 EXPORT_SYMBOL(sync_inode_metadata);