06107662ac53b566278a2780a19f20763c0799d3
[pandora-kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static inline int ext4_begin_ordered_truncate(struct inode *inode,
53                                               loff_t new_size)
54 {
55         trace_ext4_begin_ordered_truncate(inode, new_size);
56         /*
57          * If jinode is zero, then we never opened the file for
58          * writing, so there's no need to call
59          * jbd2_journal_begin_ordered_truncate() since there's no
60          * outstanding writes we need to flush.
61          */
62         if (!EXT4_I(inode)->jinode)
63                 return 0;
64         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
65                                                    EXT4_I(inode)->jinode,
66                                                    new_size);
67 }
68
69 static void ext4_invalidatepage(struct page *page, unsigned long offset);
70 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
71                                    struct buffer_head *bh_result, int create);
72 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
73 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
74 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
75 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
76
77 /*
78  * Test whether an inode is a fast symlink.
79  */
80 static int ext4_inode_is_fast_symlink(struct inode *inode)
81 {
82         int ea_blocks = EXT4_I(inode)->i_file_acl ?
83                 (inode->i_sb->s_blocksize >> 9) : 0;
84
85         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
86 }
87
88 /*
89  * Restart the transaction associated with *handle.  This does a commit,
90  * so before we call here everything must be consistently dirtied against
91  * this transaction.
92  */
93 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
94                                  int nblocks)
95 {
96         int ret;
97
98         /*
99          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
100          * moment, get_block can be called only for blocks inside i_size since
101          * page cache has been already dropped and writes are blocked by
102          * i_mutex. So we can safely drop the i_data_sem here.
103          */
104         BUG_ON(EXT4_JOURNAL(inode) == NULL);
105         jbd_debug(2, "restarting handle %p\n", handle);
106         up_write(&EXT4_I(inode)->i_data_sem);
107         ret = ext4_journal_restart(handle, nblocks);
108         down_write(&EXT4_I(inode)->i_data_sem);
109         ext4_discard_preallocations(inode);
110
111         return ret;
112 }
113
114 /*
115  * Called at the last iput() if i_nlink is zero.
116  */
117 void ext4_evict_inode(struct inode *inode)
118 {
119         handle_t *handle;
120         int err;
121
122         trace_ext4_evict_inode(inode);
123
124         ext4_ioend_wait(inode);
125
126         if (inode->i_nlink) {
127                 /*
128                  * When journalling data dirty buffers are tracked only in the
129                  * journal. So although mm thinks everything is clean and
130                  * ready for reaping the inode might still have some pages to
131                  * write in the running transaction or waiting to be
132                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
133                  * (via truncate_inode_pages()) to discard these buffers can
134                  * cause data loss. Also even if we did not discard these
135                  * buffers, we would have no way to find them after the inode
136                  * is reaped and thus user could see stale data if he tries to
137                  * read them before the transaction is checkpointed. So be
138                  * careful and force everything to disk here... We use
139                  * ei->i_datasync_tid to store the newest transaction
140                  * containing inode's data.
141                  *
142                  * Note that directories do not have this problem because they
143                  * don't use page cache.
144                  */
145                 if (ext4_should_journal_data(inode) &&
146                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
147                     inode->i_ino != EXT4_JOURNAL_INO) {
148                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
149                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
150
151                         jbd2_complete_transaction(journal, commit_tid);
152                         filemap_write_and_wait(&inode->i_data);
153                 }
154                 truncate_inode_pages(&inode->i_data, 0);
155                 goto no_delete;
156         }
157
158         if (is_bad_inode(inode))
159                 goto no_delete;
160         dquot_initialize(inode);
161
162         if (ext4_should_order_data(inode))
163                 ext4_begin_ordered_truncate(inode, 0);
164         truncate_inode_pages(&inode->i_data, 0);
165
166
167         handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
168         if (IS_ERR(handle)) {
169                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
170                 /*
171                  * If we're going to skip the normal cleanup, we still need to
172                  * make sure that the in-core orphan linked list is properly
173                  * cleaned up.
174                  */
175                 ext4_orphan_del(NULL, inode);
176                 goto no_delete;
177         }
178
179         if (IS_SYNC(inode))
180                 ext4_handle_sync(handle);
181         inode->i_size = 0;
182         err = ext4_mark_inode_dirty(handle, inode);
183         if (err) {
184                 ext4_warning(inode->i_sb,
185                              "couldn't mark inode dirty (err %d)", err);
186                 goto stop_handle;
187         }
188         if (inode->i_blocks)
189                 ext4_truncate(inode);
190
191         /*
192          * ext4_ext_truncate() doesn't reserve any slop when it
193          * restarts journal transactions; therefore there may not be
194          * enough credits left in the handle to remove the inode from
195          * the orphan list and set the dtime field.
196          */
197         if (!ext4_handle_has_enough_credits(handle, 3)) {
198                 err = ext4_journal_extend(handle, 3);
199                 if (err > 0)
200                         err = ext4_journal_restart(handle, 3);
201                 if (err != 0) {
202                         ext4_warning(inode->i_sb,
203                                      "couldn't extend journal (err %d)", err);
204                 stop_handle:
205                         ext4_journal_stop(handle);
206                         ext4_orphan_del(NULL, inode);
207                         goto no_delete;
208                 }
209         }
210
211         /*
212          * Kill off the orphan record which ext4_truncate created.
213          * AKPM: I think this can be inside the above `if'.
214          * Note that ext4_orphan_del() has to be able to cope with the
215          * deletion of a non-existent orphan - this is because we don't
216          * know if ext4_truncate() actually created an orphan record.
217          * (Well, we could do this if we need to, but heck - it works)
218          */
219         ext4_orphan_del(handle, inode);
220         EXT4_I(inode)->i_dtime  = get_seconds();
221
222         /*
223          * One subtle ordering requirement: if anything has gone wrong
224          * (transaction abort, IO errors, whatever), then we can still
225          * do these next steps (the fs will already have been marked as
226          * having errors), but we can't free the inode if the mark_dirty
227          * fails.
228          */
229         if (ext4_mark_inode_dirty(handle, inode))
230                 /* If that failed, just do the required in-core inode clear. */
231                 ext4_clear_inode(inode);
232         else
233                 ext4_free_inode(handle, inode);
234         ext4_journal_stop(handle);
235         return;
236 no_delete:
237         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
238 }
239
240 #ifdef CONFIG_QUOTA
241 qsize_t *ext4_get_reserved_space(struct inode *inode)
242 {
243         return &EXT4_I(inode)->i_reserved_quota;
244 }
245 #endif
246
247 /*
248  * Calculate the number of metadata blocks need to reserve
249  * to allocate a block located at @lblock
250  */
251 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
252 {
253         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
254                 return ext4_ext_calc_metadata_amount(inode, lblock);
255
256         return ext4_ind_calc_metadata_amount(inode, lblock);
257 }
258
259 /*
260  * Called with i_data_sem down, which is important since we can call
261  * ext4_discard_preallocations() from here.
262  */
263 void ext4_da_update_reserve_space(struct inode *inode,
264                                         int used, int quota_claim)
265 {
266         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
267         struct ext4_inode_info *ei = EXT4_I(inode);
268
269         spin_lock(&ei->i_block_reservation_lock);
270         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
271         if (unlikely(used > ei->i_reserved_data_blocks)) {
272                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
273                          "with only %d reserved data blocks\n",
274                          __func__, inode->i_ino, used,
275                          ei->i_reserved_data_blocks);
276                 WARN_ON(1);
277                 used = ei->i_reserved_data_blocks;
278         }
279
280         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
281                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
282                          "with only %d reserved metadata blocks\n", __func__,
283                          inode->i_ino, ei->i_allocated_meta_blocks,
284                          ei->i_reserved_meta_blocks);
285                 WARN_ON(1);
286                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
287         }
288
289         /* Update per-inode reservations */
290         ei->i_reserved_data_blocks -= used;
291         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
292         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
293                            used + ei->i_allocated_meta_blocks);
294         ei->i_allocated_meta_blocks = 0;
295
296         if (ei->i_reserved_data_blocks == 0) {
297                 /*
298                  * We can release all of the reserved metadata blocks
299                  * only when we have written all of the delayed
300                  * allocation blocks.
301                  */
302                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
303                                    ei->i_reserved_meta_blocks);
304                 ei->i_reserved_meta_blocks = 0;
305                 ei->i_da_metadata_calc_len = 0;
306         }
307         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
308
309         /* Update quota subsystem for data blocks */
310         if (quota_claim)
311                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
312         else {
313                 /*
314                  * We did fallocate with an offset that is already delayed
315                  * allocated. So on delayed allocated writeback we should
316                  * not re-claim the quota for fallocated blocks.
317                  */
318                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
319         }
320
321         /*
322          * If we have done all the pending block allocations and if
323          * there aren't any writers on the inode, we can discard the
324          * inode's preallocations.
325          */
326         if ((ei->i_reserved_data_blocks == 0) &&
327             (atomic_read(&inode->i_writecount) == 0))
328                 ext4_discard_preallocations(inode);
329 }
330
331 static int __check_block_validity(struct inode *inode, const char *func,
332                                 unsigned int line,
333                                 struct ext4_map_blocks *map)
334 {
335         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
336                                    map->m_len)) {
337                 ext4_error_inode(inode, func, line, map->m_pblk,
338                                  "lblock %lu mapped to illegal pblock "
339                                  "(length %d)", (unsigned long) map->m_lblk,
340                                  map->m_len);
341                 return -EIO;
342         }
343         return 0;
344 }
345
346 #define check_block_validity(inode, map)        \
347         __check_block_validity((inode), __func__, __LINE__, (map))
348
349 /*
350  * Return the number of contiguous dirty pages in a given inode
351  * starting at page frame idx.
352  */
353 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
354                                     unsigned int max_pages)
355 {
356         struct address_space *mapping = inode->i_mapping;
357         pgoff_t index;
358         struct pagevec pvec;
359         pgoff_t num = 0;
360         int i, nr_pages, done = 0;
361
362         if (max_pages == 0)
363                 return 0;
364         pagevec_init(&pvec, 0);
365         while (!done) {
366                 index = idx;
367                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
368                                               PAGECACHE_TAG_DIRTY,
369                                               (pgoff_t)PAGEVEC_SIZE);
370                 if (nr_pages == 0)
371                         break;
372                 for (i = 0; i < nr_pages; i++) {
373                         struct page *page = pvec.pages[i];
374                         struct buffer_head *bh, *head;
375
376                         lock_page(page);
377                         if (unlikely(page->mapping != mapping) ||
378                             !PageDirty(page) ||
379                             PageWriteback(page) ||
380                             page->index != idx) {
381                                 done = 1;
382                                 unlock_page(page);
383                                 break;
384                         }
385                         if (page_has_buffers(page)) {
386                                 bh = head = page_buffers(page);
387                                 do {
388                                         if (!buffer_delay(bh) &&
389                                             !buffer_unwritten(bh))
390                                                 done = 1;
391                                         bh = bh->b_this_page;
392                                 } while (!done && (bh != head));
393                         }
394                         unlock_page(page);
395                         if (done)
396                                 break;
397                         idx++;
398                         num++;
399                         if (num >= max_pages) {
400                                 done = 1;
401                                 break;
402                         }
403                 }
404                 pagevec_release(&pvec);
405         }
406         return num;
407 }
408
409 /*
410  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
411  */
412 static void set_buffers_da_mapped(struct inode *inode,
413                                    struct ext4_map_blocks *map)
414 {
415         struct address_space *mapping = inode->i_mapping;
416         struct pagevec pvec;
417         int i, nr_pages;
418         pgoff_t index, end;
419
420         index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
421         end = (map->m_lblk + map->m_len - 1) >>
422                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
423
424         pagevec_init(&pvec, 0);
425         while (index <= end) {
426                 nr_pages = pagevec_lookup(&pvec, mapping, index,
427                                           min(end - index + 1,
428                                               (pgoff_t)PAGEVEC_SIZE));
429                 if (nr_pages == 0)
430                         break;
431                 for (i = 0; i < nr_pages; i++) {
432                         struct page *page = pvec.pages[i];
433                         struct buffer_head *bh, *head;
434
435                         if (unlikely(page->mapping != mapping) ||
436                             !PageDirty(page))
437                                 break;
438
439                         if (page_has_buffers(page)) {
440                                 bh = head = page_buffers(page);
441                                 do {
442                                         set_buffer_da_mapped(bh);
443                                         bh = bh->b_this_page;
444                                 } while (bh != head);
445                         }
446                         index++;
447                 }
448                 pagevec_release(&pvec);
449         }
450 }
451
452 /*
453  * The ext4_map_blocks() function tries to look up the requested blocks,
454  * and returns if the blocks are already mapped.
455  *
456  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
457  * and store the allocated blocks in the result buffer head and mark it
458  * mapped.
459  *
460  * If file type is extents based, it will call ext4_ext_map_blocks(),
461  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
462  * based files
463  *
464  * On success, it returns the number of blocks being mapped or allocate.
465  * if create==0 and the blocks are pre-allocated and uninitialized block,
466  * the result buffer head is unmapped. If the create ==1, it will make sure
467  * the buffer head is mapped.
468  *
469  * It returns 0 if plain look up failed (blocks have not been allocated), in
470  * that case, buffer head is unmapped
471  *
472  * It returns the error in case of allocation failure.
473  */
474 int ext4_map_blocks(handle_t *handle, struct inode *inode,
475                     struct ext4_map_blocks *map, int flags)
476 {
477         int retval;
478
479         map->m_flags = 0;
480         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
481                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
482                   (unsigned long) map->m_lblk);
483
484         /* We can handle the block number less than EXT_MAX_BLOCKS */
485         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
486                 return -EIO;
487
488         /*
489          * Try to see if we can get the block without requesting a new
490          * file system block.
491          */
492         down_read((&EXT4_I(inode)->i_data_sem));
493         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
494                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
495                                              EXT4_GET_BLOCKS_KEEP_SIZE);
496         } else {
497                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
498                                              EXT4_GET_BLOCKS_KEEP_SIZE);
499         }
500         up_read((&EXT4_I(inode)->i_data_sem));
501
502         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
503                 int ret = check_block_validity(inode, map);
504                 if (ret != 0)
505                         return ret;
506         }
507
508         /* If it is only a block(s) look up */
509         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
510                 return retval;
511
512         /*
513          * Returns if the blocks have already allocated
514          *
515          * Note that if blocks have been preallocated
516          * ext4_ext_get_block() returns the create = 0
517          * with buffer head unmapped.
518          */
519         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
520                 return retval;
521
522         /*
523          * When we call get_blocks without the create flag, the
524          * BH_Unwritten flag could have gotten set if the blocks
525          * requested were part of a uninitialized extent.  We need to
526          * clear this flag now that we are committed to convert all or
527          * part of the uninitialized extent to be an initialized
528          * extent.  This is because we need to avoid the combination
529          * of BH_Unwritten and BH_Mapped flags being simultaneously
530          * set on the buffer_head.
531          */
532         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
533
534         /*
535          * New blocks allocate and/or writing to uninitialized extent
536          * will possibly result in updating i_data, so we take
537          * the write lock of i_data_sem, and call get_blocks()
538          * with create == 1 flag.
539          */
540         down_write((&EXT4_I(inode)->i_data_sem));
541
542         /*
543          * if the caller is from delayed allocation writeout path
544          * we have already reserved fs blocks for allocation
545          * let the underlying get_block() function know to
546          * avoid double accounting
547          */
548         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
549                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
550         /*
551          * We need to check for EXT4 here because migrate
552          * could have changed the inode type in between
553          */
554         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
555                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
556         } else {
557                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
558
559                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
560                         /*
561                          * We allocated new blocks which will result in
562                          * i_data's format changing.  Force the migrate
563                          * to fail by clearing migrate flags
564                          */
565                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
566                 }
567
568                 /*
569                  * Update reserved blocks/metadata blocks after successful
570                  * block allocation which had been deferred till now. We don't
571                  * support fallocate for non extent files. So we can update
572                  * reserve space here.
573                  */
574                 if ((retval > 0) &&
575                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
576                         ext4_da_update_reserve_space(inode, retval, 1);
577         }
578         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
579                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
580
581                 /* If we have successfully mapped the delayed allocated blocks,
582                  * set the BH_Da_Mapped bit on them. Its important to do this
583                  * under the protection of i_data_sem.
584                  */
585                 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
586                         set_buffers_da_mapped(inode, map);
587         }
588
589         up_write((&EXT4_I(inode)->i_data_sem));
590         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
591                 int ret = check_block_validity(inode, map);
592                 if (ret != 0)
593                         return ret;
594         }
595         return retval;
596 }
597
598 /* Maximum number of blocks we map for direct IO at once. */
599 #define DIO_MAX_BLOCKS 4096
600
601 static int _ext4_get_block(struct inode *inode, sector_t iblock,
602                            struct buffer_head *bh, int flags)
603 {
604         handle_t *handle = ext4_journal_current_handle();
605         struct ext4_map_blocks map;
606         int ret = 0, started = 0;
607         int dio_credits;
608
609         map.m_lblk = iblock;
610         map.m_len = bh->b_size >> inode->i_blkbits;
611
612         if (flags && !handle) {
613                 /* Direct IO write... */
614                 if (map.m_len > DIO_MAX_BLOCKS)
615                         map.m_len = DIO_MAX_BLOCKS;
616                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
617                 handle = ext4_journal_start(inode, dio_credits);
618                 if (IS_ERR(handle)) {
619                         ret = PTR_ERR(handle);
620                         return ret;
621                 }
622                 started = 1;
623         }
624
625         ret = ext4_map_blocks(handle, inode, &map, flags);
626         if (ret > 0) {
627                 map_bh(bh, inode->i_sb, map.m_pblk);
628                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
629                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
630                 ret = 0;
631         }
632         if (started)
633                 ext4_journal_stop(handle);
634         return ret;
635 }
636
637 int ext4_get_block(struct inode *inode, sector_t iblock,
638                    struct buffer_head *bh, int create)
639 {
640         return _ext4_get_block(inode, iblock, bh,
641                                create ? EXT4_GET_BLOCKS_CREATE : 0);
642 }
643
644 /*
645  * `handle' can be NULL if create is zero
646  */
647 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
648                                 ext4_lblk_t block, int create, int *errp)
649 {
650         struct ext4_map_blocks map;
651         struct buffer_head *bh;
652         int fatal = 0, err;
653
654         J_ASSERT(handle != NULL || create == 0);
655
656         map.m_lblk = block;
657         map.m_len = 1;
658         err = ext4_map_blocks(handle, inode, &map,
659                               create ? EXT4_GET_BLOCKS_CREATE : 0);
660
661         if (err < 0)
662                 *errp = err;
663         if (err <= 0)
664                 return NULL;
665         *errp = 0;
666
667         bh = sb_getblk(inode->i_sb, map.m_pblk);
668         if (!bh) {
669                 *errp = -ENOMEM;
670                 return NULL;
671         }
672         if (map.m_flags & EXT4_MAP_NEW) {
673                 J_ASSERT(create != 0);
674                 J_ASSERT(handle != NULL);
675
676                 /*
677                  * Now that we do not always journal data, we should
678                  * keep in mind whether this should always journal the
679                  * new buffer as metadata.  For now, regular file
680                  * writes use ext4_get_block instead, so it's not a
681                  * problem.
682                  */
683                 lock_buffer(bh);
684                 BUFFER_TRACE(bh, "call get_create_access");
685                 fatal = ext4_journal_get_create_access(handle, bh);
686                 if (!fatal && !buffer_uptodate(bh)) {
687                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
688                         set_buffer_uptodate(bh);
689                 }
690                 unlock_buffer(bh);
691                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
692                 err = ext4_handle_dirty_metadata(handle, inode, bh);
693                 if (!fatal)
694                         fatal = err;
695         } else {
696                 BUFFER_TRACE(bh, "not a new buffer");
697         }
698         if (fatal) {
699                 *errp = fatal;
700                 brelse(bh);
701                 bh = NULL;
702         }
703         return bh;
704 }
705
706 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
707                                ext4_lblk_t block, int create, int *err)
708 {
709         struct buffer_head *bh;
710
711         bh = ext4_getblk(handle, inode, block, create, err);
712         if (!bh)
713                 return bh;
714         if (buffer_uptodate(bh))
715                 return bh;
716         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
717         wait_on_buffer(bh);
718         if (buffer_uptodate(bh))
719                 return bh;
720         put_bh(bh);
721         *err = -EIO;
722         return NULL;
723 }
724
725 static int walk_page_buffers(handle_t *handle,
726                              struct buffer_head *head,
727                              unsigned from,
728                              unsigned to,
729                              int *partial,
730                              int (*fn)(handle_t *handle,
731                                        struct buffer_head *bh))
732 {
733         struct buffer_head *bh;
734         unsigned block_start, block_end;
735         unsigned blocksize = head->b_size;
736         int err, ret = 0;
737         struct buffer_head *next;
738
739         for (bh = head, block_start = 0;
740              ret == 0 && (bh != head || !block_start);
741              block_start = block_end, bh = next) {
742                 next = bh->b_this_page;
743                 block_end = block_start + blocksize;
744                 if (block_end <= from || block_start >= to) {
745                         if (partial && !buffer_uptodate(bh))
746                                 *partial = 1;
747                         continue;
748                 }
749                 err = (*fn)(handle, bh);
750                 if (!ret)
751                         ret = err;
752         }
753         return ret;
754 }
755
756 /*
757  * To preserve ordering, it is essential that the hole instantiation and
758  * the data write be encapsulated in a single transaction.  We cannot
759  * close off a transaction and start a new one between the ext4_get_block()
760  * and the commit_write().  So doing the jbd2_journal_start at the start of
761  * prepare_write() is the right place.
762  *
763  * Also, this function can nest inside ext4_writepage() ->
764  * block_write_full_page(). In that case, we *know* that ext4_writepage()
765  * has generated enough buffer credits to do the whole page.  So we won't
766  * block on the journal in that case, which is good, because the caller may
767  * be PF_MEMALLOC.
768  *
769  * By accident, ext4 can be reentered when a transaction is open via
770  * quota file writes.  If we were to commit the transaction while thus
771  * reentered, there can be a deadlock - we would be holding a quota
772  * lock, and the commit would never complete if another thread had a
773  * transaction open and was blocking on the quota lock - a ranking
774  * violation.
775  *
776  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
777  * will _not_ run commit under these circumstances because handle->h_ref
778  * is elevated.  We'll still have enough credits for the tiny quotafile
779  * write.
780  */
781 static int do_journal_get_write_access(handle_t *handle,
782                                        struct buffer_head *bh)
783 {
784         int dirty = buffer_dirty(bh);
785         int ret;
786
787         if (!buffer_mapped(bh) || buffer_freed(bh))
788                 return 0;
789         /*
790          * __block_write_begin() could have dirtied some buffers. Clean
791          * the dirty bit as jbd2_journal_get_write_access() could complain
792          * otherwise about fs integrity issues. Setting of the dirty bit
793          * by __block_write_begin() isn't a real problem here as we clear
794          * the bit before releasing a page lock and thus writeback cannot
795          * ever write the buffer.
796          */
797         if (dirty)
798                 clear_buffer_dirty(bh);
799         ret = ext4_journal_get_write_access(handle, bh);
800         if (!ret && dirty)
801                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
802         return ret;
803 }
804
805 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
806                    struct buffer_head *bh_result, int create);
807 static int ext4_write_begin(struct file *file, struct address_space *mapping,
808                             loff_t pos, unsigned len, unsigned flags,
809                             struct page **pagep, void **fsdata)
810 {
811         struct inode *inode = mapping->host;
812         int ret, needed_blocks;
813         handle_t *handle;
814         int retries = 0;
815         struct page *page;
816         pgoff_t index;
817         unsigned from, to;
818
819         trace_ext4_write_begin(inode, pos, len, flags);
820         /*
821          * Reserve one block more for addition to orphan list in case
822          * we allocate blocks but write fails for some reason
823          */
824         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
825         index = pos >> PAGE_CACHE_SHIFT;
826         from = pos & (PAGE_CACHE_SIZE - 1);
827         to = from + len;
828
829 retry:
830         handle = ext4_journal_start(inode, needed_blocks);
831         if (IS_ERR(handle)) {
832                 ret = PTR_ERR(handle);
833                 goto out;
834         }
835
836         /* We cannot recurse into the filesystem as the transaction is already
837          * started */
838         flags |= AOP_FLAG_NOFS;
839
840         page = grab_cache_page_write_begin(mapping, index, flags);
841         if (!page) {
842                 ext4_journal_stop(handle);
843                 ret = -ENOMEM;
844                 goto out;
845         }
846         *pagep = page;
847
848         if (ext4_should_dioread_nolock(inode))
849                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
850         else
851                 ret = __block_write_begin(page, pos, len, ext4_get_block);
852
853         if (!ret && ext4_should_journal_data(inode)) {
854                 ret = walk_page_buffers(handle, page_buffers(page),
855                                 from, to, NULL, do_journal_get_write_access);
856         }
857
858         if (ret) {
859                 unlock_page(page);
860                 page_cache_release(page);
861                 /*
862                  * __block_write_begin may have instantiated a few blocks
863                  * outside i_size.  Trim these off again. Don't need
864                  * i_size_read because we hold i_mutex.
865                  *
866                  * Add inode to orphan list in case we crash before
867                  * truncate finishes
868                  */
869                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
870                         ext4_orphan_add(handle, inode);
871
872                 ext4_journal_stop(handle);
873                 if (pos + len > inode->i_size) {
874                         ext4_truncate_failed_write(inode);
875                         /*
876                          * If truncate failed early the inode might
877                          * still be on the orphan list; we need to
878                          * make sure the inode is removed from the
879                          * orphan list in that case.
880                          */
881                         if (inode->i_nlink)
882                                 ext4_orphan_del(NULL, inode);
883                 }
884         }
885
886         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
887                 goto retry;
888 out:
889         return ret;
890 }
891
892 /* For write_end() in data=journal mode */
893 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
894 {
895         if (!buffer_mapped(bh) || buffer_freed(bh))
896                 return 0;
897         set_buffer_uptodate(bh);
898         return ext4_handle_dirty_metadata(handle, NULL, bh);
899 }
900
901 static int ext4_generic_write_end(struct file *file,
902                                   struct address_space *mapping,
903                                   loff_t pos, unsigned len, unsigned copied,
904                                   struct page *page, void *fsdata)
905 {
906         int i_size_changed = 0;
907         struct inode *inode = mapping->host;
908         handle_t *handle = ext4_journal_current_handle();
909
910         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
911
912         /*
913          * No need to use i_size_read() here, the i_size
914          * cannot change under us because we hold i_mutex.
915          *
916          * But it's important to update i_size while still holding page lock:
917          * page writeout could otherwise come in and zero beyond i_size.
918          */
919         if (pos + copied > inode->i_size) {
920                 i_size_write(inode, pos + copied);
921                 i_size_changed = 1;
922         }
923
924         if (pos + copied >  EXT4_I(inode)->i_disksize) {
925                 /* We need to mark inode dirty even if
926                  * new_i_size is less that inode->i_size
927                  * bu greater than i_disksize.(hint delalloc)
928                  */
929                 ext4_update_i_disksize(inode, (pos + copied));
930                 i_size_changed = 1;
931         }
932         unlock_page(page);
933         page_cache_release(page);
934
935         /*
936          * Don't mark the inode dirty under page lock. First, it unnecessarily
937          * makes the holding time of page lock longer. Second, it forces lock
938          * ordering of page lock and transaction start for journaling
939          * filesystems.
940          */
941         if (i_size_changed)
942                 ext4_mark_inode_dirty(handle, inode);
943
944         return copied;
945 }
946
947 /*
948  * We need to pick up the new inode size which generic_commit_write gave us
949  * `file' can be NULL - eg, when called from page_symlink().
950  *
951  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
952  * buffers are managed internally.
953  */
954 static int ext4_ordered_write_end(struct file *file,
955                                   struct address_space *mapping,
956                                   loff_t pos, unsigned len, unsigned copied,
957                                   struct page *page, void *fsdata)
958 {
959         handle_t *handle = ext4_journal_current_handle();
960         struct inode *inode = mapping->host;
961         int ret = 0, ret2;
962
963         trace_ext4_ordered_write_end(inode, pos, len, copied);
964         ret = ext4_jbd2_file_inode(handle, inode);
965
966         if (ret == 0) {
967                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
968                                                         page, fsdata);
969                 copied = ret2;
970                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
971                         /* if we have allocated more blocks and copied
972                          * less. We will have blocks allocated outside
973                          * inode->i_size. So truncate them
974                          */
975                         ext4_orphan_add(handle, inode);
976                 if (ret2 < 0)
977                         ret = ret2;
978         } else {
979                 unlock_page(page);
980                 page_cache_release(page);
981         }
982
983         ret2 = ext4_journal_stop(handle);
984         if (!ret)
985                 ret = ret2;
986
987         if (pos + len > inode->i_size) {
988                 ext4_truncate_failed_write(inode);
989                 /*
990                  * If truncate failed early the inode might still be
991                  * on the orphan list; we need to make sure the inode
992                  * is removed from the orphan list in that case.
993                  */
994                 if (inode->i_nlink)
995                         ext4_orphan_del(NULL, inode);
996         }
997
998
999         return ret ? ret : copied;
1000 }
1001
1002 static int ext4_writeback_write_end(struct file *file,
1003                                     struct address_space *mapping,
1004                                     loff_t pos, unsigned len, unsigned copied,
1005                                     struct page *page, void *fsdata)
1006 {
1007         handle_t *handle = ext4_journal_current_handle();
1008         struct inode *inode = mapping->host;
1009         int ret = 0, ret2;
1010
1011         trace_ext4_writeback_write_end(inode, pos, len, copied);
1012         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1013                                                         page, fsdata);
1014         copied = ret2;
1015         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1016                 /* if we have allocated more blocks and copied
1017                  * less. We will have blocks allocated outside
1018                  * inode->i_size. So truncate them
1019                  */
1020                 ext4_orphan_add(handle, inode);
1021
1022         if (ret2 < 0)
1023                 ret = ret2;
1024
1025         ret2 = ext4_journal_stop(handle);
1026         if (!ret)
1027                 ret = ret2;
1028
1029         if (pos + len > inode->i_size) {
1030                 ext4_truncate_failed_write(inode);
1031                 /*
1032                  * If truncate failed early the inode might still be
1033                  * on the orphan list; we need to make sure the inode
1034                  * is removed from the orphan list in that case.
1035                  */
1036                 if (inode->i_nlink)
1037                         ext4_orphan_del(NULL, inode);
1038         }
1039
1040         return ret ? ret : copied;
1041 }
1042
1043 static int ext4_journalled_write_end(struct file *file,
1044                                      struct address_space *mapping,
1045                                      loff_t pos, unsigned len, unsigned copied,
1046                                      struct page *page, void *fsdata)
1047 {
1048         handle_t *handle = ext4_journal_current_handle();
1049         struct inode *inode = mapping->host;
1050         int ret = 0, ret2;
1051         int partial = 0;
1052         unsigned from, to;
1053         loff_t new_i_size;
1054
1055         trace_ext4_journalled_write_end(inode, pos, len, copied);
1056         from = pos & (PAGE_CACHE_SIZE - 1);
1057         to = from + len;
1058
1059         BUG_ON(!ext4_handle_valid(handle));
1060
1061         if (copied < len) {
1062                 if (!PageUptodate(page))
1063                         copied = 0;
1064                 page_zero_new_buffers(page, from+copied, to);
1065         }
1066
1067         ret = walk_page_buffers(handle, page_buffers(page), from,
1068                                 to, &partial, write_end_fn);
1069         if (!partial)
1070                 SetPageUptodate(page);
1071         new_i_size = pos + copied;
1072         if (new_i_size > inode->i_size)
1073                 i_size_write(inode, pos+copied);
1074         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1075         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1076         if (new_i_size > EXT4_I(inode)->i_disksize) {
1077                 ext4_update_i_disksize(inode, new_i_size);
1078                 ret2 = ext4_mark_inode_dirty(handle, inode);
1079                 if (!ret)
1080                         ret = ret2;
1081         }
1082
1083         unlock_page(page);
1084         page_cache_release(page);
1085         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1086                 /* if we have allocated more blocks and copied
1087                  * less. We will have blocks allocated outside
1088                  * inode->i_size. So truncate them
1089                  */
1090                 ext4_orphan_add(handle, inode);
1091
1092         ret2 = ext4_journal_stop(handle);
1093         if (!ret)
1094                 ret = ret2;
1095         if (pos + len > inode->i_size) {
1096                 ext4_truncate_failed_write(inode);
1097                 /*
1098                  * If truncate failed early the inode might still be
1099                  * on the orphan list; we need to make sure the inode
1100                  * is removed from the orphan list in that case.
1101                  */
1102                 if (inode->i_nlink)
1103                         ext4_orphan_del(NULL, inode);
1104         }
1105
1106         return ret ? ret : copied;
1107 }
1108
1109 /*
1110  * Reserve a single cluster located at lblock
1111  */
1112 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1113 {
1114         int retries = 0;
1115         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1116         struct ext4_inode_info *ei = EXT4_I(inode);
1117         unsigned int md_needed;
1118         int ret;
1119         ext4_lblk_t save_last_lblock;
1120         int save_len;
1121
1122         /*
1123          * We will charge metadata quota at writeout time; this saves
1124          * us from metadata over-estimation, though we may go over by
1125          * a small amount in the end.  Here we just reserve for data.
1126          */
1127         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1128         if (ret)
1129                 return ret;
1130
1131         /*
1132          * recalculate the amount of metadata blocks to reserve
1133          * in order to allocate nrblocks
1134          * worse case is one extent per block
1135          */
1136 repeat:
1137         spin_lock(&ei->i_block_reservation_lock);
1138         /*
1139          * ext4_calc_metadata_amount() has side effects, which we have
1140          * to be prepared undo if we fail to claim space.
1141          */
1142         save_len = ei->i_da_metadata_calc_len;
1143         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1144         md_needed = EXT4_NUM_B2C(sbi,
1145                                  ext4_calc_metadata_amount(inode, lblock));
1146         trace_ext4_da_reserve_space(inode, md_needed);
1147
1148         /*
1149          * We do still charge estimated metadata to the sb though;
1150          * we cannot afford to run out of free blocks.
1151          */
1152         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1153                 ei->i_da_metadata_calc_len = save_len;
1154                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1155                 spin_unlock(&ei->i_block_reservation_lock);
1156                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1157                         yield();
1158                         goto repeat;
1159                 }
1160                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1161                 return -ENOSPC;
1162         }
1163         ei->i_reserved_data_blocks++;
1164         ei->i_reserved_meta_blocks += md_needed;
1165         spin_unlock(&ei->i_block_reservation_lock);
1166
1167         return 0;       /* success */
1168 }
1169
1170 static void ext4_da_release_space(struct inode *inode, int to_free)
1171 {
1172         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1173         struct ext4_inode_info *ei = EXT4_I(inode);
1174
1175         if (!to_free)
1176                 return;         /* Nothing to release, exit */
1177
1178         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1179
1180         trace_ext4_da_release_space(inode, to_free);
1181         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1182                 /*
1183                  * if there aren't enough reserved blocks, then the
1184                  * counter is messed up somewhere.  Since this
1185                  * function is called from invalidate page, it's
1186                  * harmless to return without any action.
1187                  */
1188                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1189                          "ino %lu, to_free %d with only %d reserved "
1190                          "data blocks\n", inode->i_ino, to_free,
1191                          ei->i_reserved_data_blocks);
1192                 WARN_ON(1);
1193                 to_free = ei->i_reserved_data_blocks;
1194         }
1195         ei->i_reserved_data_blocks -= to_free;
1196
1197         if (ei->i_reserved_data_blocks == 0) {
1198                 /*
1199                  * We can release all of the reserved metadata blocks
1200                  * only when we have written all of the delayed
1201                  * allocation blocks.
1202                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1203                  * i_reserved_data_blocks, etc. refer to number of clusters.
1204                  */
1205                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1206                                    ei->i_reserved_meta_blocks);
1207                 ei->i_reserved_meta_blocks = 0;
1208                 ei->i_da_metadata_calc_len = 0;
1209         }
1210
1211         /* update fs dirty data blocks counter */
1212         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1213
1214         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1215
1216         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1217 }
1218
1219 static void ext4_da_page_release_reservation(struct page *page,
1220                                              unsigned long offset)
1221 {
1222         int to_release = 0;
1223         struct buffer_head *head, *bh;
1224         unsigned int curr_off = 0;
1225         struct inode *inode = page->mapping->host;
1226         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1227         int num_clusters;
1228
1229         head = page_buffers(page);
1230         bh = head;
1231         do {
1232                 unsigned int next_off = curr_off + bh->b_size;
1233
1234                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1235                         to_release++;
1236                         clear_buffer_delay(bh);
1237                         clear_buffer_da_mapped(bh);
1238                 }
1239                 curr_off = next_off;
1240         } while ((bh = bh->b_this_page) != head);
1241
1242         /* If we have released all the blocks belonging to a cluster, then we
1243          * need to release the reserved space for that cluster. */
1244         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1245         while (num_clusters > 0) {
1246                 ext4_fsblk_t lblk;
1247                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1248                         ((num_clusters - 1) << sbi->s_cluster_bits);
1249                 if (sbi->s_cluster_ratio == 1 ||
1250                     !ext4_find_delalloc_cluster(inode, lblk, 1))
1251                         ext4_da_release_space(inode, 1);
1252
1253                 num_clusters--;
1254         }
1255 }
1256
1257 /*
1258  * Delayed allocation stuff
1259  */
1260
1261 /*
1262  * mpage_da_submit_io - walks through extent of pages and try to write
1263  * them with writepage() call back
1264  *
1265  * @mpd->inode: inode
1266  * @mpd->first_page: first page of the extent
1267  * @mpd->next_page: page after the last page of the extent
1268  *
1269  * By the time mpage_da_submit_io() is called we expect all blocks
1270  * to be allocated. this may be wrong if allocation failed.
1271  *
1272  * As pages are already locked by write_cache_pages(), we can't use it
1273  */
1274 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1275                               struct ext4_map_blocks *map)
1276 {
1277         struct pagevec pvec;
1278         unsigned long index, end;
1279         int ret = 0, err, nr_pages, i;
1280         struct inode *inode = mpd->inode;
1281         struct address_space *mapping = inode->i_mapping;
1282         loff_t size = i_size_read(inode);
1283         unsigned int len, block_start;
1284         struct buffer_head *bh, *page_bufs = NULL;
1285         int journal_data = ext4_should_journal_data(inode);
1286         sector_t pblock = 0, cur_logical = 0;
1287         struct ext4_io_submit io_submit;
1288
1289         BUG_ON(mpd->next_page <= mpd->first_page);
1290         memset(&io_submit, 0, sizeof(io_submit));
1291         /*
1292          * We need to start from the first_page to the next_page - 1
1293          * to make sure we also write the mapped dirty buffer_heads.
1294          * If we look at mpd->b_blocknr we would only be looking
1295          * at the currently mapped buffer_heads.
1296          */
1297         index = mpd->first_page;
1298         end = mpd->next_page - 1;
1299
1300         pagevec_init(&pvec, 0);
1301         while (index <= end) {
1302                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1303                 if (nr_pages == 0)
1304                         break;
1305                 for (i = 0; i < nr_pages; i++) {
1306                         int commit_write = 0, skip_page = 0;
1307                         struct page *page = pvec.pages[i];
1308
1309                         index = page->index;
1310                         if (index > end)
1311                                 break;
1312
1313                         if (index == size >> PAGE_CACHE_SHIFT)
1314                                 len = size & ~PAGE_CACHE_MASK;
1315                         else
1316                                 len = PAGE_CACHE_SIZE;
1317                         if (map) {
1318                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1319                                                         inode->i_blkbits);
1320                                 pblock = map->m_pblk + (cur_logical -
1321                                                         map->m_lblk);
1322                         }
1323                         index++;
1324
1325                         BUG_ON(!PageLocked(page));
1326                         BUG_ON(PageWriteback(page));
1327
1328                         /*
1329                          * If the page does not have buffers (for
1330                          * whatever reason), try to create them using
1331                          * __block_write_begin.  If this fails,
1332                          * skip the page and move on.
1333                          */
1334                         if (!page_has_buffers(page)) {
1335                                 if (__block_write_begin(page, 0, len,
1336                                                 noalloc_get_block_write)) {
1337                                 skip_page:
1338                                         unlock_page(page);
1339                                         continue;
1340                                 }
1341                                 commit_write = 1;
1342                         }
1343
1344                         bh = page_bufs = page_buffers(page);
1345                         block_start = 0;
1346                         do {
1347                                 if (!bh)
1348                                         goto skip_page;
1349                                 if (map && (cur_logical >= map->m_lblk) &&
1350                                     (cur_logical <= (map->m_lblk +
1351                                                      (map->m_len - 1)))) {
1352                                         if (buffer_delay(bh)) {
1353                                                 clear_buffer_delay(bh);
1354                                                 bh->b_blocknr = pblock;
1355                                         }
1356                                         if (buffer_da_mapped(bh))
1357                                                 clear_buffer_da_mapped(bh);
1358                                         if (buffer_unwritten(bh) ||
1359                                             buffer_mapped(bh))
1360                                                 BUG_ON(bh->b_blocknr != pblock);
1361                                         if (map->m_flags & EXT4_MAP_UNINIT)
1362                                                 set_buffer_uninit(bh);
1363                                         clear_buffer_unwritten(bh);
1364                                 }
1365
1366                                 /*
1367                                  * skip page if block allocation undone and
1368                                  * block is dirty
1369                                  */
1370                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1371                                         skip_page = 1;
1372                                 bh = bh->b_this_page;
1373                                 block_start += bh->b_size;
1374                                 cur_logical++;
1375                                 pblock++;
1376                         } while (bh != page_bufs);
1377
1378                         if (skip_page)
1379                                 goto skip_page;
1380
1381                         if (commit_write)
1382                                 /* mark the buffer_heads as dirty & uptodate */
1383                                 block_commit_write(page, 0, len);
1384
1385                         clear_page_dirty_for_io(page);
1386                         /*
1387                          * Delalloc doesn't support data journalling,
1388                          * but eventually maybe we'll lift this
1389                          * restriction.
1390                          */
1391                         if (unlikely(journal_data && PageChecked(page)))
1392                                 err = __ext4_journalled_writepage(page, len);
1393                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1394                                 err = ext4_bio_write_page(&io_submit, page,
1395                                                           len, mpd->wbc);
1396                         else if (buffer_uninit(page_bufs)) {
1397                                 ext4_set_bh_endio(page_bufs, inode);
1398                                 err = block_write_full_page_endio(page,
1399                                         noalloc_get_block_write,
1400                                         mpd->wbc, ext4_end_io_buffer_write);
1401                         } else
1402                                 err = block_write_full_page(page,
1403                                         noalloc_get_block_write, mpd->wbc);
1404
1405                         if (!err)
1406                                 mpd->pages_written++;
1407                         /*
1408                          * In error case, we have to continue because
1409                          * remaining pages are still locked
1410                          */
1411                         if (ret == 0)
1412                                 ret = err;
1413                 }
1414                 pagevec_release(&pvec);
1415         }
1416         ext4_io_submit(&io_submit);
1417         return ret;
1418 }
1419
1420 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1421 {
1422         int nr_pages, i;
1423         pgoff_t index, end;
1424         struct pagevec pvec;
1425         struct inode *inode = mpd->inode;
1426         struct address_space *mapping = inode->i_mapping;
1427
1428         index = mpd->first_page;
1429         end   = mpd->next_page - 1;
1430         pagevec_init(&pvec, 0);
1431         while (index <= end) {
1432                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1433                 if (nr_pages == 0)
1434                         break;
1435                 for (i = 0; i < nr_pages; i++) {
1436                         struct page *page = pvec.pages[i];
1437                         if (page->index > end)
1438                                 break;
1439                         BUG_ON(!PageLocked(page));
1440                         BUG_ON(PageWriteback(page));
1441                         block_invalidatepage(page, 0);
1442                         ClearPageUptodate(page);
1443                         unlock_page(page);
1444                 }
1445                 index = pvec.pages[nr_pages - 1]->index + 1;
1446                 pagevec_release(&pvec);
1447         }
1448         return;
1449 }
1450
1451 static void ext4_print_free_blocks(struct inode *inode)
1452 {
1453         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1454         printk(KERN_CRIT "Total free blocks count %lld\n",
1455                EXT4_C2B(EXT4_SB(inode->i_sb),
1456                         ext4_count_free_clusters(inode->i_sb)));
1457         printk(KERN_CRIT "Free/Dirty block details\n");
1458         printk(KERN_CRIT "free_blocks=%lld\n",
1459                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1460                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1461         printk(KERN_CRIT "dirty_blocks=%lld\n",
1462                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1463                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1464         printk(KERN_CRIT "Block reservation details\n");
1465         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1466                EXT4_I(inode)->i_reserved_data_blocks);
1467         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1468                EXT4_I(inode)->i_reserved_meta_blocks);
1469         return;
1470 }
1471
1472 /*
1473  * mpage_da_map_and_submit - go through given space, map them
1474  *       if necessary, and then submit them for I/O
1475  *
1476  * @mpd - bh describing space
1477  *
1478  * The function skips space we know is already mapped to disk blocks.
1479  *
1480  */
1481 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1482 {
1483         int err, blks, get_blocks_flags;
1484         struct ext4_map_blocks map, *mapp = NULL;
1485         sector_t next = mpd->b_blocknr;
1486         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1487         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1488         handle_t *handle = NULL;
1489
1490         /*
1491          * If the blocks are mapped already, or we couldn't accumulate
1492          * any blocks, then proceed immediately to the submission stage.
1493          */
1494         if ((mpd->b_size == 0) ||
1495             ((mpd->b_state  & (1 << BH_Mapped)) &&
1496              !(mpd->b_state & (1 << BH_Delay)) &&
1497              !(mpd->b_state & (1 << BH_Unwritten))))
1498                 goto submit_io;
1499
1500         handle = ext4_journal_current_handle();
1501         BUG_ON(!handle);
1502
1503         /*
1504          * Call ext4_map_blocks() to allocate any delayed allocation
1505          * blocks, or to convert an uninitialized extent to be
1506          * initialized (in the case where we have written into
1507          * one or more preallocated blocks).
1508          *
1509          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1510          * indicate that we are on the delayed allocation path.  This
1511          * affects functions in many different parts of the allocation
1512          * call path.  This flag exists primarily because we don't
1513          * want to change *many* call functions, so ext4_map_blocks()
1514          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1515          * inode's allocation semaphore is taken.
1516          *
1517          * If the blocks in questions were delalloc blocks, set
1518          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1519          * variables are updated after the blocks have been allocated.
1520          */
1521         map.m_lblk = next;
1522         map.m_len = max_blocks;
1523         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1524         if (ext4_should_dioread_nolock(mpd->inode))
1525                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1526         if (mpd->b_state & (1 << BH_Delay))
1527                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1528
1529         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1530         if (blks < 0) {
1531                 struct super_block *sb = mpd->inode->i_sb;
1532
1533                 err = blks;
1534                 /*
1535                  * If get block returns EAGAIN or ENOSPC and there
1536                  * appears to be free blocks we will just let
1537                  * mpage_da_submit_io() unlock all of the pages.
1538                  */
1539                 if (err == -EAGAIN)
1540                         goto submit_io;
1541
1542                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1543                         mpd->retval = err;
1544                         goto submit_io;
1545                 }
1546
1547                 /*
1548                  * get block failure will cause us to loop in
1549                  * writepages, because a_ops->writepage won't be able
1550                  * to make progress. The page will be redirtied by
1551                  * writepage and writepages will again try to write
1552                  * the same.
1553                  */
1554                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1555                         ext4_msg(sb, KERN_CRIT,
1556                                  "delayed block allocation failed for inode %lu "
1557                                  "at logical offset %llu with max blocks %zd "
1558                                  "with error %d", mpd->inode->i_ino,
1559                                  (unsigned long long) next,
1560                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1561                         ext4_msg(sb, KERN_CRIT,
1562                                 "This should not happen!! Data will be lost\n");
1563                         if (err == -ENOSPC)
1564                                 ext4_print_free_blocks(mpd->inode);
1565                 }
1566                 /* invalidate all the pages */
1567                 ext4_da_block_invalidatepages(mpd);
1568
1569                 /* Mark this page range as having been completed */
1570                 mpd->io_done = 1;
1571                 return;
1572         }
1573         BUG_ON(blks == 0);
1574
1575         mapp = &map;
1576         if (map.m_flags & EXT4_MAP_NEW) {
1577                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1578                 int i;
1579
1580                 for (i = 0; i < map.m_len; i++)
1581                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1582
1583                 if (ext4_should_order_data(mpd->inode)) {
1584                         err = ext4_jbd2_file_inode(handle, mpd->inode);
1585                         if (err) {
1586                                 /* Only if the journal is aborted */
1587                                 mpd->retval = err;
1588                                 goto submit_io;
1589                         }
1590                 }
1591         }
1592
1593         /*
1594          * Update on-disk size along with block allocation.
1595          */
1596         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1597         if (disksize > i_size_read(mpd->inode))
1598                 disksize = i_size_read(mpd->inode);
1599         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1600                 ext4_update_i_disksize(mpd->inode, disksize);
1601                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1602                 if (err)
1603                         ext4_error(mpd->inode->i_sb,
1604                                    "Failed to mark inode %lu dirty",
1605                                    mpd->inode->i_ino);
1606         }
1607
1608 submit_io:
1609         mpage_da_submit_io(mpd, mapp);
1610         mpd->io_done = 1;
1611 }
1612
1613 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1614                 (1 << BH_Delay) | (1 << BH_Unwritten))
1615
1616 /*
1617  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1618  *
1619  * @mpd->lbh - extent of blocks
1620  * @logical - logical number of the block in the file
1621  * @bh - bh of the block (used to access block's state)
1622  *
1623  * the function is used to collect contig. blocks in same state
1624  */
1625 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1626                                    sector_t logical, size_t b_size,
1627                                    unsigned long b_state)
1628 {
1629         sector_t next;
1630         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1631
1632         /*
1633          * XXX Don't go larger than mballoc is willing to allocate
1634          * This is a stopgap solution.  We eventually need to fold
1635          * mpage_da_submit_io() into this function and then call
1636          * ext4_map_blocks() multiple times in a loop
1637          */
1638         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1639                 goto flush_it;
1640
1641         /* check if thereserved journal credits might overflow */
1642         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1643                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1644                         /*
1645                          * With non-extent format we are limited by the journal
1646                          * credit available.  Total credit needed to insert
1647                          * nrblocks contiguous blocks is dependent on the
1648                          * nrblocks.  So limit nrblocks.
1649                          */
1650                         goto flush_it;
1651                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1652                                 EXT4_MAX_TRANS_DATA) {
1653                         /*
1654                          * Adding the new buffer_head would make it cross the
1655                          * allowed limit for which we have journal credit
1656                          * reserved. So limit the new bh->b_size
1657                          */
1658                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1659                                                 mpd->inode->i_blkbits;
1660                         /* we will do mpage_da_submit_io in the next loop */
1661                 }
1662         }
1663         /*
1664          * First block in the extent
1665          */
1666         if (mpd->b_size == 0) {
1667                 mpd->b_blocknr = logical;
1668                 mpd->b_size = b_size;
1669                 mpd->b_state = b_state & BH_FLAGS;
1670                 return;
1671         }
1672
1673         next = mpd->b_blocknr + nrblocks;
1674         /*
1675          * Can we merge the block to our big extent?
1676          */
1677         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1678                 mpd->b_size += b_size;
1679                 return;
1680         }
1681
1682 flush_it:
1683         /*
1684          * We couldn't merge the block to our extent, so we
1685          * need to flush current  extent and start new one
1686          */
1687         mpage_da_map_and_submit(mpd);
1688         return;
1689 }
1690
1691 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1692 {
1693         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1694 }
1695
1696 /*
1697  * This function is grabs code from the very beginning of
1698  * ext4_map_blocks, but assumes that the caller is from delayed write
1699  * time. This function looks up the requested blocks and sets the
1700  * buffer delay bit under the protection of i_data_sem.
1701  */
1702 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1703                               struct ext4_map_blocks *map,
1704                               struct buffer_head *bh)
1705 {
1706         int retval;
1707         sector_t invalid_block = ~((sector_t) 0xffff);
1708
1709         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1710                 invalid_block = ~0;
1711
1712         map->m_flags = 0;
1713         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1714                   "logical block %lu\n", inode->i_ino, map->m_len,
1715                   (unsigned long) map->m_lblk);
1716         /*
1717          * Try to see if we can get the block without requesting a new
1718          * file system block.
1719          */
1720         down_read((&EXT4_I(inode)->i_data_sem));
1721         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1722                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1723         else
1724                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1725
1726         if (retval == 0) {
1727                 /*
1728                  * XXX: __block_prepare_write() unmaps passed block,
1729                  * is it OK?
1730                  */
1731                 /* If the block was allocated from previously allocated cluster,
1732                  * then we dont need to reserve it again. */
1733                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1734                         retval = ext4_da_reserve_space(inode, iblock);
1735                         if (retval)
1736                                 /* not enough space to reserve */
1737                                 goto out_unlock;
1738                 }
1739
1740                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1741                  * and it should not appear on the bh->b_state.
1742                  */
1743                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1744
1745                 map_bh(bh, inode->i_sb, invalid_block);
1746                 set_buffer_new(bh);
1747                 set_buffer_delay(bh);
1748         }
1749
1750 out_unlock:
1751         up_read((&EXT4_I(inode)->i_data_sem));
1752
1753         return retval;
1754 }
1755
1756 /*
1757  * This is a special get_blocks_t callback which is used by
1758  * ext4_da_write_begin().  It will either return mapped block or
1759  * reserve space for a single block.
1760  *
1761  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1762  * We also have b_blocknr = -1 and b_bdev initialized properly
1763  *
1764  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1765  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1766  * initialized properly.
1767  */
1768 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1769                                   struct buffer_head *bh, int create)
1770 {
1771         struct ext4_map_blocks map;
1772         int ret = 0;
1773
1774         BUG_ON(create == 0);
1775         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1776
1777         map.m_lblk = iblock;
1778         map.m_len = 1;
1779
1780         /*
1781          * first, we need to know whether the block is allocated already
1782          * preallocated blocks are unmapped but should treated
1783          * the same as allocated blocks.
1784          */
1785         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1786         if (ret <= 0)
1787                 return ret;
1788
1789         map_bh(bh, inode->i_sb, map.m_pblk);
1790         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1791
1792         if (buffer_unwritten(bh)) {
1793                 /* A delayed write to unwritten bh should be marked
1794                  * new and mapped.  Mapped ensures that we don't do
1795                  * get_block multiple times when we write to the same
1796                  * offset and new ensures that we do proper zero out
1797                  * for partial write.
1798                  */
1799                 set_buffer_new(bh);
1800                 set_buffer_mapped(bh);
1801         }
1802         return 0;
1803 }
1804
1805 /*
1806  * This function is used as a standard get_block_t calback function
1807  * when there is no desire to allocate any blocks.  It is used as a
1808  * callback function for block_write_begin() and block_write_full_page().
1809  * These functions should only try to map a single block at a time.
1810  *
1811  * Since this function doesn't do block allocations even if the caller
1812  * requests it by passing in create=1, it is critically important that
1813  * any caller checks to make sure that any buffer heads are returned
1814  * by this function are either all already mapped or marked for
1815  * delayed allocation before calling  block_write_full_page().  Otherwise,
1816  * b_blocknr could be left unitialized, and the page write functions will
1817  * be taken by surprise.
1818  */
1819 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1820                                    struct buffer_head *bh_result, int create)
1821 {
1822         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1823         return _ext4_get_block(inode, iblock, bh_result, 0);
1824 }
1825
1826 static int bget_one(handle_t *handle, struct buffer_head *bh)
1827 {
1828         get_bh(bh);
1829         return 0;
1830 }
1831
1832 static int bput_one(handle_t *handle, struct buffer_head *bh)
1833 {
1834         put_bh(bh);
1835         return 0;
1836 }
1837
1838 static int __ext4_journalled_writepage(struct page *page,
1839                                        unsigned int len)
1840 {
1841         struct address_space *mapping = page->mapping;
1842         struct inode *inode = mapping->host;
1843         struct buffer_head *page_bufs;
1844         handle_t *handle = NULL;
1845         int ret = 0;
1846         int err;
1847
1848         ClearPageChecked(page);
1849         page_bufs = page_buffers(page);
1850         BUG_ON(!page_bufs);
1851         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1852         /*
1853          * We need to release the page lock before we start the
1854          * journal, so grab a reference so the page won't disappear
1855          * out from under us.
1856          */
1857         get_page(page);
1858         unlock_page(page);
1859
1860         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1861         if (IS_ERR(handle)) {
1862                 ret = PTR_ERR(handle);
1863                 put_page(page);
1864                 goto out_no_pagelock;
1865         }
1866         BUG_ON(!ext4_handle_valid(handle));
1867
1868         lock_page(page);
1869         put_page(page);
1870         if (page->mapping != mapping) {
1871                 /* The page got truncated from under us */
1872                 ext4_journal_stop(handle);
1873                 ret = 0;
1874                 goto out;
1875         }
1876
1877         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1878                                 do_journal_get_write_access);
1879
1880         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1881                                 write_end_fn);
1882         if (ret == 0)
1883                 ret = err;
1884         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1885         err = ext4_journal_stop(handle);
1886         if (!ret)
1887                 ret = err;
1888
1889         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1890         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1891 out:
1892         unlock_page(page);
1893 out_no_pagelock:
1894         return ret;
1895 }
1896
1897 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1898 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1899
1900 /*
1901  * Note that we don't need to start a transaction unless we're journaling data
1902  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1903  * need to file the inode to the transaction's list in ordered mode because if
1904  * we are writing back data added by write(), the inode is already there and if
1905  * we are writing back data modified via mmap(), no one guarantees in which
1906  * transaction the data will hit the disk. In case we are journaling data, we
1907  * cannot start transaction directly because transaction start ranks above page
1908  * lock so we have to do some magic.
1909  *
1910  * This function can get called via...
1911  *   - ext4_da_writepages after taking page lock (have journal handle)
1912  *   - journal_submit_inode_data_buffers (no journal handle)
1913  *   - shrink_page_list via pdflush (no journal handle)
1914  *   - grab_page_cache when doing write_begin (have journal handle)
1915  *
1916  * We don't do any block allocation in this function. If we have page with
1917  * multiple blocks we need to write those buffer_heads that are mapped. This
1918  * is important for mmaped based write. So if we do with blocksize 1K
1919  * truncate(f, 1024);
1920  * a = mmap(f, 0, 4096);
1921  * a[0] = 'a';
1922  * truncate(f, 4096);
1923  * we have in the page first buffer_head mapped via page_mkwrite call back
1924  * but other bufer_heads would be unmapped but dirty(dirty done via the
1925  * do_wp_page). So writepage should write the first block. If we modify
1926  * the mmap area beyond 1024 we will again get a page_fault and the
1927  * page_mkwrite callback will do the block allocation and mark the
1928  * buffer_heads mapped.
1929  *
1930  * We redirty the page if we have any buffer_heads that is either delay or
1931  * unwritten in the page.
1932  *
1933  * We can get recursively called as show below.
1934  *
1935  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1936  *              ext4_writepage()
1937  *
1938  * But since we don't do any block allocation we should not deadlock.
1939  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1940  */
1941 static int ext4_writepage(struct page *page,
1942                           struct writeback_control *wbc)
1943 {
1944         int ret = 0, commit_write = 0;
1945         loff_t size;
1946         unsigned int len;
1947         struct buffer_head *page_bufs = NULL;
1948         struct inode *inode = page->mapping->host;
1949
1950         trace_ext4_writepage(page);
1951         size = i_size_read(inode);
1952         if (page->index == size >> PAGE_CACHE_SHIFT)
1953                 len = size & ~PAGE_CACHE_MASK;
1954         else
1955                 len = PAGE_CACHE_SIZE;
1956
1957         /*
1958          * If the page does not have buffers (for whatever reason),
1959          * try to create them using __block_write_begin.  If this
1960          * fails, redirty the page and move on.
1961          */
1962         if (!page_has_buffers(page)) {
1963                 if (__block_write_begin(page, 0, len,
1964                                         noalloc_get_block_write)) {
1965                 redirty_page:
1966                         redirty_page_for_writepage(wbc, page);
1967                         unlock_page(page);
1968                         return 0;
1969                 }
1970                 commit_write = 1;
1971         }
1972         page_bufs = page_buffers(page);
1973         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1974                               ext4_bh_delay_or_unwritten)) {
1975                 /*
1976                  * We don't want to do block allocation, so redirty
1977                  * the page and return.  We may reach here when we do
1978                  * a journal commit via journal_submit_inode_data_buffers.
1979                  * We can also reach here via shrink_page_list but it
1980                  * should never be for direct reclaim so warn if that
1981                  * happens
1982                  */
1983                 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1984                                                                 PF_MEMALLOC);
1985                 goto redirty_page;
1986         }
1987         if (commit_write)
1988                 /* now mark the buffer_heads as dirty and uptodate */
1989                 block_commit_write(page, 0, len);
1990
1991         if (PageChecked(page) && ext4_should_journal_data(inode))
1992                 /*
1993                  * It's mmapped pagecache.  Add buffers and journal it.  There
1994                  * doesn't seem much point in redirtying the page here.
1995                  */
1996                 return __ext4_journalled_writepage(page, len);
1997
1998         if (buffer_uninit(page_bufs)) {
1999                 ext4_set_bh_endio(page_bufs, inode);
2000                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2001                                             wbc, ext4_end_io_buffer_write);
2002         } else
2003                 ret = block_write_full_page(page, noalloc_get_block_write,
2004                                             wbc);
2005
2006         return ret;
2007 }
2008
2009 /*
2010  * This is called via ext4_da_writepages() to
2011  * calculate the total number of credits to reserve to fit
2012  * a single extent allocation into a single transaction,
2013  * ext4_da_writpeages() will loop calling this before
2014  * the block allocation.
2015  */
2016
2017 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2018 {
2019         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2020
2021         /*
2022          * With non-extent format the journal credit needed to
2023          * insert nrblocks contiguous block is dependent on
2024          * number of contiguous block. So we will limit
2025          * number of contiguous block to a sane value
2026          */
2027         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2028             (max_blocks > EXT4_MAX_TRANS_DATA))
2029                 max_blocks = EXT4_MAX_TRANS_DATA;
2030
2031         return ext4_chunk_trans_blocks(inode, max_blocks);
2032 }
2033
2034 /*
2035  * write_cache_pages_da - walk the list of dirty pages of the given
2036  * address space and accumulate pages that need writing, and call
2037  * mpage_da_map_and_submit to map a single contiguous memory region
2038  * and then write them.
2039  */
2040 static int write_cache_pages_da(struct address_space *mapping,
2041                                 struct writeback_control *wbc,
2042                                 struct mpage_da_data *mpd,
2043                                 pgoff_t *done_index)
2044 {
2045         struct buffer_head      *bh, *head;
2046         struct inode            *inode = mapping->host;
2047         struct pagevec          pvec;
2048         unsigned int            nr_pages;
2049         sector_t                logical;
2050         pgoff_t                 index, end;
2051         long                    nr_to_write = wbc->nr_to_write;
2052         int                     i, tag, ret = 0;
2053
2054         memset(mpd, 0, sizeof(struct mpage_da_data));
2055         mpd->wbc = wbc;
2056         mpd->inode = inode;
2057         pagevec_init(&pvec, 0);
2058         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2059         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2060
2061         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2062                 tag = PAGECACHE_TAG_TOWRITE;
2063         else
2064                 tag = PAGECACHE_TAG_DIRTY;
2065
2066         *done_index = index;
2067         while (index <= end) {
2068                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2069                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2070                 if (nr_pages == 0)
2071                         return 0;
2072
2073                 for (i = 0; i < nr_pages; i++) {
2074                         struct page *page = pvec.pages[i];
2075
2076                         /*
2077                          * At this point, the page may be truncated or
2078                          * invalidated (changing page->mapping to NULL), or
2079                          * even swizzled back from swapper_space to tmpfs file
2080                          * mapping. However, page->index will not change
2081                          * because we have a reference on the page.
2082                          */
2083                         if (page->index > end)
2084                                 goto out;
2085
2086                         *done_index = page->index + 1;
2087
2088                         /*
2089                          * If we can't merge this page, and we have
2090                          * accumulated an contiguous region, write it
2091                          */
2092                         if ((mpd->next_page != page->index) &&
2093                             (mpd->next_page != mpd->first_page)) {
2094                                 mpage_da_map_and_submit(mpd);
2095                                 goto ret_extent_tail;
2096                         }
2097
2098                         lock_page(page);
2099
2100                         /*
2101                          * If the page is no longer dirty, or its
2102                          * mapping no longer corresponds to inode we
2103                          * are writing (which means it has been
2104                          * truncated or invalidated), or the page is
2105                          * already under writeback and we are not
2106                          * doing a data integrity writeback, skip the page
2107                          */
2108                         if (!PageDirty(page) ||
2109                             (PageWriteback(page) &&
2110                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2111                             unlikely(page->mapping != mapping)) {
2112                                 unlock_page(page);
2113                                 continue;
2114                         }
2115
2116                         wait_on_page_writeback(page);
2117                         BUG_ON(PageWriteback(page));
2118
2119                         if (mpd->next_page != page->index)
2120                                 mpd->first_page = page->index;
2121                         mpd->next_page = page->index + 1;
2122                         logical = (sector_t) page->index <<
2123                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2124
2125                         if (!page_has_buffers(page)) {
2126                                 mpage_add_bh_to_extent(mpd, logical,
2127                                                        PAGE_CACHE_SIZE,
2128                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2129                                 if (mpd->io_done)
2130                                         goto ret_extent_tail;
2131                         } else {
2132                                 /*
2133                                  * Page with regular buffer heads,
2134                                  * just add all dirty ones
2135                                  */
2136                                 head = page_buffers(page);
2137                                 bh = head;
2138                                 do {
2139                                         BUG_ON(buffer_locked(bh));
2140                                         /*
2141                                          * We need to try to allocate
2142                                          * unmapped blocks in the same page.
2143                                          * Otherwise we won't make progress
2144                                          * with the page in ext4_writepage
2145                                          */
2146                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2147                                                 mpage_add_bh_to_extent(mpd, logical,
2148                                                                        bh->b_size,
2149                                                                        bh->b_state);
2150                                                 if (mpd->io_done)
2151                                                         goto ret_extent_tail;
2152                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2153                                                 /*
2154                                                  * mapped dirty buffer. We need
2155                                                  * to update the b_state
2156                                                  * because we look at b_state
2157                                                  * in mpage_da_map_blocks.  We
2158                                                  * don't update b_size because
2159                                                  * if we find an unmapped
2160                                                  * buffer_head later we need to
2161                                                  * use the b_state flag of that
2162                                                  * buffer_head.
2163                                                  */
2164                                                 if (mpd->b_size == 0)
2165                                                         mpd->b_state = bh->b_state & BH_FLAGS;
2166                                         }
2167                                         logical++;
2168                                 } while ((bh = bh->b_this_page) != head);
2169                         }
2170
2171                         if (nr_to_write > 0) {
2172                                 nr_to_write--;
2173                                 if (nr_to_write == 0 &&
2174                                     wbc->sync_mode == WB_SYNC_NONE)
2175                                         /*
2176                                          * We stop writing back only if we are
2177                                          * not doing integrity sync. In case of
2178                                          * integrity sync we have to keep going
2179                                          * because someone may be concurrently
2180                                          * dirtying pages, and we might have
2181                                          * synced a lot of newly appeared dirty
2182                                          * pages, but have not synced all of the
2183                                          * old dirty pages.
2184                                          */
2185                                         goto out;
2186                         }
2187                 }
2188                 pagevec_release(&pvec);
2189                 cond_resched();
2190         }
2191         return 0;
2192 ret_extent_tail:
2193         ret = MPAGE_DA_EXTENT_TAIL;
2194 out:
2195         pagevec_release(&pvec);
2196         cond_resched();
2197         return ret;
2198 }
2199
2200
2201 static int ext4_da_writepages(struct address_space *mapping,
2202                               struct writeback_control *wbc)
2203 {
2204         pgoff_t index;
2205         int range_whole = 0;
2206         handle_t *handle = NULL;
2207         struct mpage_da_data mpd;
2208         struct inode *inode = mapping->host;
2209         int pages_written = 0;
2210         unsigned int max_pages;
2211         int range_cyclic, cycled = 1, io_done = 0;
2212         int needed_blocks, ret = 0;
2213         long desired_nr_to_write, nr_to_writebump = 0;
2214         loff_t range_start = wbc->range_start;
2215         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2216         pgoff_t done_index = 0;
2217         pgoff_t end;
2218         struct blk_plug plug;
2219
2220         trace_ext4_da_writepages(inode, wbc);
2221
2222         /*
2223          * No pages to write? This is mainly a kludge to avoid starting
2224          * a transaction for special inodes like journal inode on last iput()
2225          * because that could violate lock ordering on umount
2226          */
2227         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2228                 return 0;
2229
2230         /*
2231          * If the filesystem has aborted, it is read-only, so return
2232          * right away instead of dumping stack traces later on that
2233          * will obscure the real source of the problem.  We test
2234          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2235          * the latter could be true if the filesystem is mounted
2236          * read-only, and in that case, ext4_da_writepages should
2237          * *never* be called, so if that ever happens, we would want
2238          * the stack trace.
2239          */
2240         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2241                 return -EROFS;
2242
2243         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2244                 range_whole = 1;
2245
2246         range_cyclic = wbc->range_cyclic;
2247         if (wbc->range_cyclic) {
2248                 index = mapping->writeback_index;
2249                 if (index)
2250                         cycled = 0;
2251                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2252                 wbc->range_end  = LLONG_MAX;
2253                 wbc->range_cyclic = 0;
2254                 end = -1;
2255         } else {
2256                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2257                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2258         }
2259
2260         /*
2261          * This works around two forms of stupidity.  The first is in
2262          * the writeback code, which caps the maximum number of pages
2263          * written to be 1024 pages.  This is wrong on multiple
2264          * levels; different architectues have a different page size,
2265          * which changes the maximum amount of data which gets
2266          * written.  Secondly, 4 megabytes is way too small.  XFS
2267          * forces this value to be 16 megabytes by multiplying
2268          * nr_to_write parameter by four, and then relies on its
2269          * allocator to allocate larger extents to make them
2270          * contiguous.  Unfortunately this brings us to the second
2271          * stupidity, which is that ext4's mballoc code only allocates
2272          * at most 2048 blocks.  So we force contiguous writes up to
2273          * the number of dirty blocks in the inode, or
2274          * sbi->max_writeback_mb_bump whichever is smaller.
2275          */
2276         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2277         if (!range_cyclic && range_whole) {
2278                 if (wbc->nr_to_write == LONG_MAX)
2279                         desired_nr_to_write = wbc->nr_to_write;
2280                 else
2281                         desired_nr_to_write = wbc->nr_to_write * 8;
2282         } else
2283                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2284                                                            max_pages);
2285         if (desired_nr_to_write > max_pages)
2286                 desired_nr_to_write = max_pages;
2287
2288         if (wbc->nr_to_write < desired_nr_to_write) {
2289                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2290                 wbc->nr_to_write = desired_nr_to_write;
2291         }
2292
2293 retry:
2294         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2295                 tag_pages_for_writeback(mapping, index, end);
2296
2297         blk_start_plug(&plug);
2298         while (!ret && wbc->nr_to_write > 0) {
2299
2300                 /*
2301                  * we  insert one extent at a time. So we need
2302                  * credit needed for single extent allocation.
2303                  * journalled mode is currently not supported
2304                  * by delalloc
2305                  */
2306                 BUG_ON(ext4_should_journal_data(inode));
2307                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2308
2309                 /* start a new transaction*/
2310                 handle = ext4_journal_start(inode, needed_blocks);
2311                 if (IS_ERR(handle)) {
2312                         ret = PTR_ERR(handle);
2313                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2314                                "%ld pages, ino %lu; err %d", __func__,
2315                                 wbc->nr_to_write, inode->i_ino, ret);
2316                         blk_finish_plug(&plug);
2317                         goto out_writepages;
2318                 }
2319
2320                 /*
2321                  * Now call write_cache_pages_da() to find the next
2322                  * contiguous region of logical blocks that need
2323                  * blocks to be allocated by ext4 and submit them.
2324                  */
2325                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2326                 /*
2327                  * If we have a contiguous extent of pages and we
2328                  * haven't done the I/O yet, map the blocks and submit
2329                  * them for I/O.
2330                  */
2331                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2332                         mpage_da_map_and_submit(&mpd);
2333                         ret = MPAGE_DA_EXTENT_TAIL;
2334                 }
2335                 trace_ext4_da_write_pages(inode, &mpd);
2336                 wbc->nr_to_write -= mpd.pages_written;
2337
2338                 ext4_journal_stop(handle);
2339
2340                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2341                         /* commit the transaction which would
2342                          * free blocks released in the transaction
2343                          * and try again
2344                          */
2345                         jbd2_journal_force_commit_nested(sbi->s_journal);
2346                         ret = 0;
2347                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2348                         /*
2349                          * Got one extent now try with rest of the pages.
2350                          * If mpd.retval is set -EIO, journal is aborted.
2351                          * So we don't need to write any more.
2352                          */
2353                         pages_written += mpd.pages_written;
2354                         ret = mpd.retval;
2355                         io_done = 1;
2356                 } else if (wbc->nr_to_write)
2357                         /*
2358                          * There is no more writeout needed
2359                          * or we requested for a noblocking writeout
2360                          * and we found the device congested
2361                          */
2362                         break;
2363         }
2364         blk_finish_plug(&plug);
2365         if (!io_done && !cycled) {
2366                 cycled = 1;
2367                 index = 0;
2368                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2369                 wbc->range_end  = mapping->writeback_index - 1;
2370                 goto retry;
2371         }
2372
2373         /* Update index */
2374         wbc->range_cyclic = range_cyclic;
2375         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2376                 /*
2377                  * set the writeback_index so that range_cyclic
2378                  * mode will write it back later
2379                  */
2380                 mapping->writeback_index = done_index;
2381
2382 out_writepages:
2383         wbc->nr_to_write -= nr_to_writebump;
2384         wbc->range_start = range_start;
2385         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2386         return ret;
2387 }
2388
2389 #define FALL_BACK_TO_NONDELALLOC 1
2390 static int ext4_nonda_switch(struct super_block *sb)
2391 {
2392         s64 free_blocks, dirty_blocks;
2393         struct ext4_sb_info *sbi = EXT4_SB(sb);
2394
2395         /*
2396          * switch to non delalloc mode if we are running low
2397          * on free block. The free block accounting via percpu
2398          * counters can get slightly wrong with percpu_counter_batch getting
2399          * accumulated on each CPU without updating global counters
2400          * Delalloc need an accurate free block accounting. So switch
2401          * to non delalloc when we are near to error range.
2402          */
2403         free_blocks  = EXT4_C2B(sbi,
2404                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2405         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2406         /*
2407          * Start pushing delalloc when 1/2 of free blocks are dirty.
2408          */
2409         if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2410             !writeback_in_progress(sb->s_bdi) &&
2411             down_read_trylock(&sb->s_umount)) {
2412                 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2413                 up_read(&sb->s_umount);
2414         }
2415
2416         if (2 * free_blocks < 3 * dirty_blocks ||
2417                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2418                 /*
2419                  * free block count is less than 150% of dirty blocks
2420                  * or free blocks is less than watermark
2421                  */
2422                 return 1;
2423         }
2424         return 0;
2425 }
2426
2427 /* We always reserve for an inode update; the superblock could be there too */
2428 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2429 {
2430         if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2431                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2432                 return 1;
2433
2434         if (pos + len <= 0x7fffffffULL)
2435                 return 1;
2436
2437         /* We might need to update the superblock to set LARGE_FILE */
2438         return 2;
2439 }
2440
2441 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2442                                loff_t pos, unsigned len, unsigned flags,
2443                                struct page **pagep, void **fsdata)
2444 {
2445         int ret, retries = 0;
2446         struct page *page;
2447         pgoff_t index;
2448         struct inode *inode = mapping->host;
2449         handle_t *handle;
2450
2451         index = pos >> PAGE_CACHE_SHIFT;
2452
2453         if (ext4_nonda_switch(inode->i_sb)) {
2454                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2455                 return ext4_write_begin(file, mapping, pos,
2456                                         len, flags, pagep, fsdata);
2457         }
2458         *fsdata = (void *)0;
2459         trace_ext4_da_write_begin(inode, pos, len, flags);
2460 retry:
2461         /*
2462          * With delayed allocation, we don't log the i_disksize update
2463          * if there is delayed block allocation. But we still need
2464          * to journalling the i_disksize update if writes to the end
2465          * of file which has an already mapped buffer.
2466          */
2467         handle = ext4_journal_start(inode,
2468                                 ext4_da_write_credits(inode, pos, len));
2469         if (IS_ERR(handle)) {
2470                 ret = PTR_ERR(handle);
2471                 goto out;
2472         }
2473         /* We cannot recurse into the filesystem as the transaction is already
2474          * started */
2475         flags |= AOP_FLAG_NOFS;
2476
2477         page = grab_cache_page_write_begin(mapping, index, flags);
2478         if (!page) {
2479                 ext4_journal_stop(handle);
2480                 ret = -ENOMEM;
2481                 goto out;
2482         }
2483         *pagep = page;
2484
2485         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2486         if (ret < 0) {
2487                 unlock_page(page);
2488                 ext4_journal_stop(handle);
2489                 page_cache_release(page);
2490                 /*
2491                  * block_write_begin may have instantiated a few blocks
2492                  * outside i_size.  Trim these off again. Don't need
2493                  * i_size_read because we hold i_mutex.
2494                  */
2495                 if (pos + len > inode->i_size)
2496                         ext4_truncate_failed_write(inode);
2497         }
2498
2499         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2500                 goto retry;
2501 out:
2502         return ret;
2503 }
2504
2505 /*
2506  * Check if we should update i_disksize
2507  * when write to the end of file but not require block allocation
2508  */
2509 static int ext4_da_should_update_i_disksize(struct page *page,
2510                                             unsigned long offset)
2511 {
2512         struct buffer_head *bh;
2513         struct inode *inode = page->mapping->host;
2514         unsigned int idx;
2515         int i;
2516
2517         bh = page_buffers(page);
2518         idx = offset >> inode->i_blkbits;
2519
2520         for (i = 0; i < idx; i++)
2521                 bh = bh->b_this_page;
2522
2523         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2524                 return 0;
2525         return 1;
2526 }
2527
2528 static int ext4_da_write_end(struct file *file,
2529                              struct address_space *mapping,
2530                              loff_t pos, unsigned len, unsigned copied,
2531                              struct page *page, void *fsdata)
2532 {
2533         struct inode *inode = mapping->host;
2534         int ret = 0, ret2;
2535         handle_t *handle = ext4_journal_current_handle();
2536         loff_t new_i_size;
2537         unsigned long start, end;
2538         int write_mode = (int)(unsigned long)fsdata;
2539
2540         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2541                 switch (ext4_inode_journal_mode(inode)) {
2542                 case EXT4_INODE_ORDERED_DATA_MODE:
2543                         return ext4_ordered_write_end(file, mapping, pos,
2544                                         len, copied, page, fsdata);
2545                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2546                         return ext4_writeback_write_end(file, mapping, pos,
2547                                         len, copied, page, fsdata);
2548                 default:
2549                         BUG();
2550                 }
2551         }
2552
2553         trace_ext4_da_write_end(inode, pos, len, copied);
2554         start = pos & (PAGE_CACHE_SIZE - 1);
2555         end = start + copied - 1;
2556
2557         /*
2558          * generic_write_end() will run mark_inode_dirty() if i_size
2559          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2560          * into that.
2561          */
2562
2563         new_i_size = pos + copied;
2564         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2565                 if (ext4_da_should_update_i_disksize(page, end)) {
2566                         down_write(&EXT4_I(inode)->i_data_sem);
2567                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2568                                 /*
2569                                  * Updating i_disksize when extending file
2570                                  * without needing block allocation
2571                                  */
2572                                 if (ext4_should_order_data(inode))
2573                                         ret = ext4_jbd2_file_inode(handle,
2574                                                                    inode);
2575
2576                                 EXT4_I(inode)->i_disksize = new_i_size;
2577                         }
2578                         up_write(&EXT4_I(inode)->i_data_sem);
2579                         /* We need to mark inode dirty even if
2580                          * new_i_size is less that inode->i_size
2581                          * bu greater than i_disksize.(hint delalloc)
2582                          */
2583                         ext4_mark_inode_dirty(handle, inode);
2584                 }
2585         }
2586         ret2 = generic_write_end(file, mapping, pos, len, copied,
2587                                                         page, fsdata);
2588         copied = ret2;
2589         if (ret2 < 0)
2590                 ret = ret2;
2591         ret2 = ext4_journal_stop(handle);
2592         if (!ret)
2593                 ret = ret2;
2594
2595         return ret ? ret : copied;
2596 }
2597
2598 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2599 {
2600         /*
2601          * Drop reserved blocks
2602          */
2603         BUG_ON(!PageLocked(page));
2604         if (!page_has_buffers(page))
2605                 goto out;
2606
2607         ext4_da_page_release_reservation(page, offset);
2608
2609 out:
2610         ext4_invalidatepage(page, offset);
2611
2612         return;
2613 }
2614
2615 /*
2616  * Force all delayed allocation blocks to be allocated for a given inode.
2617  */
2618 int ext4_alloc_da_blocks(struct inode *inode)
2619 {
2620         trace_ext4_alloc_da_blocks(inode);
2621
2622         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2623             !EXT4_I(inode)->i_reserved_meta_blocks)
2624                 return 0;
2625
2626         /*
2627          * We do something simple for now.  The filemap_flush() will
2628          * also start triggering a write of the data blocks, which is
2629          * not strictly speaking necessary (and for users of
2630          * laptop_mode, not even desirable).  However, to do otherwise
2631          * would require replicating code paths in:
2632          *
2633          * ext4_da_writepages() ->
2634          *    write_cache_pages() ---> (via passed in callback function)
2635          *        __mpage_da_writepage() -->
2636          *           mpage_add_bh_to_extent()
2637          *           mpage_da_map_blocks()
2638          *
2639          * The problem is that write_cache_pages(), located in
2640          * mm/page-writeback.c, marks pages clean in preparation for
2641          * doing I/O, which is not desirable if we're not planning on
2642          * doing I/O at all.
2643          *
2644          * We could call write_cache_pages(), and then redirty all of
2645          * the pages by calling redirty_page_for_writepage() but that
2646          * would be ugly in the extreme.  So instead we would need to
2647          * replicate parts of the code in the above functions,
2648          * simplifying them because we wouldn't actually intend to
2649          * write out the pages, but rather only collect contiguous
2650          * logical block extents, call the multi-block allocator, and
2651          * then update the buffer heads with the block allocations.
2652          *
2653          * For now, though, we'll cheat by calling filemap_flush(),
2654          * which will map the blocks, and start the I/O, but not
2655          * actually wait for the I/O to complete.
2656          */
2657         return filemap_flush(inode->i_mapping);
2658 }
2659
2660 /*
2661  * bmap() is special.  It gets used by applications such as lilo and by
2662  * the swapper to find the on-disk block of a specific piece of data.
2663  *
2664  * Naturally, this is dangerous if the block concerned is still in the
2665  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2666  * filesystem and enables swap, then they may get a nasty shock when the
2667  * data getting swapped to that swapfile suddenly gets overwritten by
2668  * the original zero's written out previously to the journal and
2669  * awaiting writeback in the kernel's buffer cache.
2670  *
2671  * So, if we see any bmap calls here on a modified, data-journaled file,
2672  * take extra steps to flush any blocks which might be in the cache.
2673  */
2674 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2675 {
2676         struct inode *inode = mapping->host;
2677         journal_t *journal;
2678         int err;
2679
2680         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2681                         test_opt(inode->i_sb, DELALLOC)) {
2682                 /*
2683                  * With delalloc we want to sync the file
2684                  * so that we can make sure we allocate
2685                  * blocks for file
2686                  */
2687                 filemap_write_and_wait(mapping);
2688         }
2689
2690         if (EXT4_JOURNAL(inode) &&
2691             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2692                 /*
2693                  * This is a REALLY heavyweight approach, but the use of
2694                  * bmap on dirty files is expected to be extremely rare:
2695                  * only if we run lilo or swapon on a freshly made file
2696                  * do we expect this to happen.
2697                  *
2698                  * (bmap requires CAP_SYS_RAWIO so this does not
2699                  * represent an unprivileged user DOS attack --- we'd be
2700                  * in trouble if mortal users could trigger this path at
2701                  * will.)
2702                  *
2703                  * NB. EXT4_STATE_JDATA is not set on files other than
2704                  * regular files.  If somebody wants to bmap a directory
2705                  * or symlink and gets confused because the buffer
2706                  * hasn't yet been flushed to disk, they deserve
2707                  * everything they get.
2708                  */
2709
2710                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2711                 journal = EXT4_JOURNAL(inode);
2712                 jbd2_journal_lock_updates(journal);
2713                 err = jbd2_journal_flush(journal);
2714                 jbd2_journal_unlock_updates(journal);
2715
2716                 if (err)
2717                         return 0;
2718         }
2719
2720         return generic_block_bmap(mapping, block, ext4_get_block);
2721 }
2722
2723 static int ext4_readpage(struct file *file, struct page *page)
2724 {
2725         trace_ext4_readpage(page);
2726         return mpage_readpage(page, ext4_get_block);
2727 }
2728
2729 static int
2730 ext4_readpages(struct file *file, struct address_space *mapping,
2731                 struct list_head *pages, unsigned nr_pages)
2732 {
2733         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2734 }
2735
2736 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2737 {
2738         struct buffer_head *head, *bh;
2739         unsigned int curr_off = 0;
2740
2741         if (!page_has_buffers(page))
2742                 return;
2743         head = bh = page_buffers(page);
2744         do {
2745                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2746                                         && bh->b_private) {
2747                         ext4_free_io_end(bh->b_private);
2748                         bh->b_private = NULL;
2749                         bh->b_end_io = NULL;
2750                 }
2751                 curr_off = curr_off + bh->b_size;
2752                 bh = bh->b_this_page;
2753         } while (bh != head);
2754 }
2755
2756 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2757 {
2758         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2759
2760         trace_ext4_invalidatepage(page, offset);
2761
2762         /*
2763          * free any io_end structure allocated for buffers to be discarded
2764          */
2765         if (ext4_should_dioread_nolock(page->mapping->host))
2766                 ext4_invalidatepage_free_endio(page, offset);
2767         /*
2768          * If it's a full truncate we just forget about the pending dirtying
2769          */
2770         if (offset == 0)
2771                 ClearPageChecked(page);
2772
2773         if (journal)
2774                 jbd2_journal_invalidatepage(journal, page, offset);
2775         else
2776                 block_invalidatepage(page, offset);
2777 }
2778
2779 static int ext4_releasepage(struct page *page, gfp_t wait)
2780 {
2781         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2782
2783         trace_ext4_releasepage(page);
2784
2785         WARN_ON(PageChecked(page));
2786         if (!page_has_buffers(page))
2787                 return 0;
2788         if (journal)
2789                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2790         else
2791                 return try_to_free_buffers(page);
2792 }
2793
2794 /*
2795  * ext4_get_block used when preparing for a DIO write or buffer write.
2796  * We allocate an uinitialized extent if blocks haven't been allocated.
2797  * The extent will be converted to initialized after the IO is complete.
2798  */
2799 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2800                    struct buffer_head *bh_result, int create)
2801 {
2802         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2803                    inode->i_ino, create);
2804         return _ext4_get_block(inode, iblock, bh_result,
2805                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2806 }
2807
2808 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2809                             ssize_t size, void *private, int ret,
2810                             bool is_async)
2811 {
2812         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2813         ext4_io_end_t *io_end = iocb->private;
2814         struct workqueue_struct *wq;
2815         unsigned long flags;
2816         struct ext4_inode_info *ei;
2817
2818         /* if not async direct IO or dio with 0 bytes write, just return */
2819         if (!io_end || !size)
2820                 goto out;
2821
2822         ext_debug("ext4_end_io_dio(): io_end 0x%p"
2823                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2824                   iocb->private, io_end->inode->i_ino, iocb, offset,
2825                   size);
2826
2827         iocb->private = NULL;
2828
2829         /* if not aio dio with unwritten extents, just free io and return */
2830         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2831                 ext4_free_io_end(io_end);
2832 out:
2833                 inode_dio_done(inode);
2834                 if (is_async)
2835                         aio_complete(iocb, ret, 0);
2836                 return;
2837         }
2838
2839         io_end->offset = offset;
2840         io_end->size = size;
2841         if (is_async) {
2842                 io_end->iocb = iocb;
2843                 io_end->result = ret;
2844         }
2845         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2846
2847         /* Add the io_end to per-inode completed aio dio list*/
2848         ei = EXT4_I(io_end->inode);
2849         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2850         list_add_tail(&io_end->list, &ei->i_completed_io_list);
2851         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2852
2853         /* queue the work to convert unwritten extents to written */
2854         queue_work(wq, &io_end->work);
2855 }
2856
2857 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2858 {
2859         ext4_io_end_t *io_end = bh->b_private;
2860         struct workqueue_struct *wq;
2861         struct inode *inode;
2862         unsigned long flags;
2863
2864         if (!test_clear_buffer_uninit(bh) || !io_end)
2865                 goto out;
2866
2867         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2868                 printk("sb umounted, discard end_io request for inode %lu\n",
2869                         io_end->inode->i_ino);
2870                 ext4_free_io_end(io_end);
2871                 goto out;
2872         }
2873
2874         /*
2875          * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2876          * but being more careful is always safe for the future change.
2877          */
2878         inode = io_end->inode;
2879         ext4_set_io_unwritten_flag(inode, io_end);
2880
2881         /* Add the io_end to per-inode completed io list*/
2882         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2883         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2884         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2885
2886         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2887         /* queue the work to convert unwritten extents to written */
2888         queue_work(wq, &io_end->work);
2889 out:
2890         bh->b_private = NULL;
2891         bh->b_end_io = NULL;
2892         clear_buffer_uninit(bh);
2893         end_buffer_async_write(bh, uptodate);
2894 }
2895
2896 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2897 {
2898         ext4_io_end_t *io_end;
2899         struct page *page = bh->b_page;
2900         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2901         size_t size = bh->b_size;
2902
2903 retry:
2904         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2905         if (!io_end) {
2906                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2907                 schedule();
2908                 goto retry;
2909         }
2910         io_end->offset = offset;
2911         io_end->size = size;
2912         /*
2913          * We need to hold a reference to the page to make sure it
2914          * doesn't get evicted before ext4_end_io_work() has a chance
2915          * to convert the extent from written to unwritten.
2916          */
2917         io_end->page = page;
2918         get_page(io_end->page);
2919
2920         bh->b_private = io_end;
2921         bh->b_end_io = ext4_end_io_buffer_write;
2922         return 0;
2923 }
2924
2925 /*
2926  * For ext4 extent files, ext4 will do direct-io write to holes,
2927  * preallocated extents, and those write extend the file, no need to
2928  * fall back to buffered IO.
2929  *
2930  * For holes, we fallocate those blocks, mark them as uninitialized
2931  * If those blocks were preallocated, we mark sure they are splited, but
2932  * still keep the range to write as uninitialized.
2933  *
2934  * The unwrritten extents will be converted to written when DIO is completed.
2935  * For async direct IO, since the IO may still pending when return, we
2936  * set up an end_io call back function, which will do the conversion
2937  * when async direct IO completed.
2938  *
2939  * If the O_DIRECT write will extend the file then add this inode to the
2940  * orphan list.  So recovery will truncate it back to the original size
2941  * if the machine crashes during the write.
2942  *
2943  */
2944 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2945                               const struct iovec *iov, loff_t offset,
2946                               unsigned long nr_segs)
2947 {
2948         struct file *file = iocb->ki_filp;
2949         struct inode *inode = file->f_mapping->host;
2950         ssize_t ret;
2951         size_t count = iov_length(iov, nr_segs);
2952
2953         loff_t final_size = offset + count;
2954         if (rw == WRITE && final_size <= inode->i_size) {
2955                 /*
2956                  * We could direct write to holes and fallocate.
2957                  *
2958                  * Allocated blocks to fill the hole are marked as uninitialized
2959                  * to prevent parallel buffered read to expose the stale data
2960                  * before DIO complete the data IO.
2961                  *
2962                  * As to previously fallocated extents, ext4 get_block
2963                  * will just simply mark the buffer mapped but still
2964                  * keep the extents uninitialized.
2965                  *
2966                  * for non AIO case, we will convert those unwritten extents
2967                  * to written after return back from blockdev_direct_IO.
2968                  *
2969                  * for async DIO, the conversion needs to be defered when
2970                  * the IO is completed. The ext4 end_io callback function
2971                  * will be called to take care of the conversion work.
2972                  * Here for async case, we allocate an io_end structure to
2973                  * hook to the iocb.
2974                  */
2975                 iocb->private = NULL;
2976                 EXT4_I(inode)->cur_aio_dio = NULL;
2977                 if (!is_sync_kiocb(iocb)) {
2978                         ext4_io_end_t *io_end =
2979                                 ext4_init_io_end(inode, GFP_NOFS);
2980                         if (!io_end)
2981                                 return -ENOMEM;
2982                         io_end->flag |= EXT4_IO_END_DIRECT;
2983                         iocb->private = io_end;
2984                         /*
2985                          * we save the io structure for current async
2986                          * direct IO, so that later ext4_map_blocks()
2987                          * could flag the io structure whether there
2988                          * is a unwritten extents needs to be converted
2989                          * when IO is completed.
2990                          */
2991                         EXT4_I(inode)->cur_aio_dio = iocb->private;
2992                 }
2993
2994                 ret = __blockdev_direct_IO(rw, iocb, inode,
2995                                          inode->i_sb->s_bdev, iov,
2996                                          offset, nr_segs,
2997                                          ext4_get_block_write,
2998                                          ext4_end_io_dio,
2999                                          NULL,
3000                                          DIO_LOCKING | DIO_SKIP_HOLES);
3001                 if (iocb->private)
3002                         EXT4_I(inode)->cur_aio_dio = NULL;
3003                 /*
3004                  * The io_end structure takes a reference to the inode,
3005                  * that structure needs to be destroyed and the
3006                  * reference to the inode need to be dropped, when IO is
3007                  * complete, even with 0 byte write, or failed.
3008                  *
3009                  * In the successful AIO DIO case, the io_end structure will be
3010                  * desctroyed and the reference to the inode will be dropped
3011                  * after the end_io call back function is called.
3012                  *
3013                  * In the case there is 0 byte write, or error case, since
3014                  * VFS direct IO won't invoke the end_io call back function,
3015                  * we need to free the end_io structure here.
3016                  */
3017                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3018                         ext4_free_io_end(iocb->private);
3019                         iocb->private = NULL;
3020                 } else if (ret > 0 && ext4_test_inode_state(inode,
3021                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3022                         int err;
3023                         /*
3024                          * for non AIO case, since the IO is already
3025                          * completed, we could do the conversion right here
3026                          */
3027                         err = ext4_convert_unwritten_extents(inode,
3028                                                              offset, ret);
3029                         if (err < 0)
3030                                 ret = err;
3031                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3032                 }
3033                 return ret;
3034         }
3035
3036         /* for write the the end of file case, we fall back to old way */
3037         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3038 }
3039
3040 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3041                               const struct iovec *iov, loff_t offset,
3042                               unsigned long nr_segs)
3043 {
3044         struct file *file = iocb->ki_filp;
3045         struct inode *inode = file->f_mapping->host;
3046         ssize_t ret;
3047
3048         /*
3049          * If we are doing data journalling we don't support O_DIRECT
3050          */
3051         if (ext4_should_journal_data(inode))
3052                 return 0;
3053
3054         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3055         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3056                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3057         else
3058                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3059         trace_ext4_direct_IO_exit(inode, offset,
3060                                 iov_length(iov, nr_segs), rw, ret);
3061         return ret;
3062 }
3063
3064 /*
3065  * Pages can be marked dirty completely asynchronously from ext4's journalling
3066  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3067  * much here because ->set_page_dirty is called under VFS locks.  The page is
3068  * not necessarily locked.
3069  *
3070  * We cannot just dirty the page and leave attached buffers clean, because the
3071  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3072  * or jbddirty because all the journalling code will explode.
3073  *
3074  * So what we do is to mark the page "pending dirty" and next time writepage
3075  * is called, propagate that into the buffers appropriately.
3076  */
3077 static int ext4_journalled_set_page_dirty(struct page *page)
3078 {
3079         SetPageChecked(page);
3080         return __set_page_dirty_nobuffers(page);
3081 }
3082
3083 static const struct address_space_operations ext4_ordered_aops = {
3084         .readpage               = ext4_readpage,
3085         .readpages              = ext4_readpages,
3086         .writepage              = ext4_writepage,
3087         .write_begin            = ext4_write_begin,
3088         .write_end              = ext4_ordered_write_end,
3089         .bmap                   = ext4_bmap,
3090         .invalidatepage         = ext4_invalidatepage,
3091         .releasepage            = ext4_releasepage,
3092         .direct_IO              = ext4_direct_IO,
3093         .migratepage            = buffer_migrate_page,
3094         .is_partially_uptodate  = block_is_partially_uptodate,
3095         .error_remove_page      = generic_error_remove_page,
3096 };
3097
3098 static const struct address_space_operations ext4_writeback_aops = {
3099         .readpage               = ext4_readpage,
3100         .readpages              = ext4_readpages,
3101         .writepage              = ext4_writepage,
3102         .write_begin            = ext4_write_begin,
3103         .write_end              = ext4_writeback_write_end,
3104         .bmap                   = ext4_bmap,
3105         .invalidatepage         = ext4_invalidatepage,
3106         .releasepage            = ext4_releasepage,
3107         .direct_IO              = ext4_direct_IO,
3108         .migratepage            = buffer_migrate_page,
3109         .is_partially_uptodate  = block_is_partially_uptodate,
3110         .error_remove_page      = generic_error_remove_page,
3111 };
3112
3113 static const struct address_space_operations ext4_journalled_aops = {
3114         .readpage               = ext4_readpage,
3115         .readpages              = ext4_readpages,
3116         .writepage              = ext4_writepage,
3117         .write_begin            = ext4_write_begin,
3118         .write_end              = ext4_journalled_write_end,
3119         .set_page_dirty         = ext4_journalled_set_page_dirty,
3120         .bmap                   = ext4_bmap,
3121         .invalidatepage         = ext4_invalidatepage,
3122         .releasepage            = ext4_releasepage,
3123         .direct_IO              = ext4_direct_IO,
3124         .is_partially_uptodate  = block_is_partially_uptodate,
3125         .error_remove_page      = generic_error_remove_page,
3126 };
3127
3128 static const struct address_space_operations ext4_da_aops = {
3129         .readpage               = ext4_readpage,
3130         .readpages              = ext4_readpages,
3131         .writepage              = ext4_writepage,
3132         .writepages             = ext4_da_writepages,
3133         .write_begin            = ext4_da_write_begin,
3134         .write_end              = ext4_da_write_end,
3135         .bmap                   = ext4_bmap,
3136         .invalidatepage         = ext4_da_invalidatepage,
3137         .releasepage            = ext4_releasepage,
3138         .direct_IO              = ext4_direct_IO,
3139         .migratepage            = buffer_migrate_page,
3140         .is_partially_uptodate  = block_is_partially_uptodate,
3141         .error_remove_page      = generic_error_remove_page,
3142 };
3143
3144 void ext4_set_aops(struct inode *inode)
3145 {
3146         switch (ext4_inode_journal_mode(inode)) {
3147         case EXT4_INODE_ORDERED_DATA_MODE:
3148                 if (test_opt(inode->i_sb, DELALLOC))
3149                         inode->i_mapping->a_ops = &ext4_da_aops;
3150                 else
3151                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3152                 break;
3153         case EXT4_INODE_WRITEBACK_DATA_MODE:
3154                 if (test_opt(inode->i_sb, DELALLOC))
3155                         inode->i_mapping->a_ops = &ext4_da_aops;
3156                 else
3157                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3158                 break;
3159         case EXT4_INODE_JOURNAL_DATA_MODE:
3160                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3161                 break;
3162         default:
3163                 BUG();
3164         }
3165 }
3166
3167
3168 /*
3169  * ext4_discard_partial_page_buffers()
3170  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3171  * This function finds and locks the page containing the offset
3172  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3173  * Calling functions that already have the page locked should call
3174  * ext4_discard_partial_page_buffers_no_lock directly.
3175  */
3176 int ext4_discard_partial_page_buffers(handle_t *handle,
3177                 struct address_space *mapping, loff_t from,
3178                 loff_t length, int flags)
3179 {
3180         struct inode *inode = mapping->host;
3181         struct page *page;
3182         int err = 0;
3183
3184         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3185                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3186         if (!page)
3187                 return -ENOMEM;
3188
3189         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3190                 from, length, flags);
3191
3192         unlock_page(page);
3193         page_cache_release(page);
3194         return err;
3195 }
3196
3197 /*
3198  * ext4_discard_partial_page_buffers_no_lock()
3199  * Zeros a page range of length 'length' starting from offset 'from'.
3200  * Buffer heads that correspond to the block aligned regions of the
3201  * zeroed range will be unmapped.  Unblock aligned regions
3202  * will have the corresponding buffer head mapped if needed so that
3203  * that region of the page can be updated with the partial zero out.
3204  *
3205  * This function assumes that the page has already been  locked.  The
3206  * The range to be discarded must be contained with in the given page.
3207  * If the specified range exceeds the end of the page it will be shortened
3208  * to the end of the page that corresponds to 'from'.  This function is
3209  * appropriate for updating a page and it buffer heads to be unmapped and
3210  * zeroed for blocks that have been either released, or are going to be
3211  * released.
3212  *
3213  * handle: The journal handle
3214  * inode:  The files inode
3215  * page:   A locked page that contains the offset "from"
3216  * from:   The starting byte offset (from the begining of the file)
3217  *         to begin discarding
3218  * len:    The length of bytes to discard
3219  * flags:  Optional flags that may be used:
3220  *
3221  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3222  *         Only zero the regions of the page whose buffer heads
3223  *         have already been unmapped.  This flag is appropriate
3224  *         for updateing the contents of a page whose blocks may
3225  *         have already been released, and we only want to zero
3226  *         out the regions that correspond to those released blocks.
3227  *
3228  * Returns zero on sucess or negative on failure.
3229  */
3230 int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3231                 struct inode *inode, struct page *page, loff_t from,
3232                 loff_t length, int flags)
3233 {
3234         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3235         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3236         unsigned int blocksize, max, pos;
3237         ext4_lblk_t iblock;
3238         struct buffer_head *bh;
3239         int err = 0;
3240
3241         blocksize = inode->i_sb->s_blocksize;
3242         max = PAGE_CACHE_SIZE - offset;
3243
3244         if (index != page->index)
3245                 return -EINVAL;
3246
3247         /*
3248          * correct length if it does not fall between
3249          * 'from' and the end of the page
3250          */
3251         if (length > max || length < 0)
3252                 length = max;
3253
3254         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3255
3256         if (!page_has_buffers(page))
3257                 create_empty_buffers(page, blocksize, 0);
3258
3259         /* Find the buffer that contains "offset" */
3260         bh = page_buffers(page);
3261         pos = blocksize;
3262         while (offset >= pos) {
3263                 bh = bh->b_this_page;
3264                 iblock++;
3265                 pos += blocksize;
3266         }
3267
3268         pos = offset;
3269         while (pos < offset + length) {
3270                 unsigned int end_of_block, range_to_discard;
3271
3272                 err = 0;
3273
3274                 /* The length of space left to zero and unmap */
3275                 range_to_discard = offset + length - pos;
3276
3277                 /* The length of space until the end of the block */
3278                 end_of_block = blocksize - (pos & (blocksize-1));
3279
3280                 /*
3281                  * Do not unmap or zero past end of block
3282                  * for this buffer head
3283                  */
3284                 if (range_to_discard > end_of_block)
3285                         range_to_discard = end_of_block;
3286
3287
3288                 /*
3289                  * Skip this buffer head if we are only zeroing unampped
3290                  * regions of the page
3291                  */
3292                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3293                         buffer_mapped(bh))
3294                                 goto next;
3295
3296                 /* If the range is block aligned, unmap */
3297                 if (range_to_discard == blocksize) {
3298                         clear_buffer_dirty(bh);
3299                         bh->b_bdev = NULL;
3300                         clear_buffer_mapped(bh);
3301                         clear_buffer_req(bh);
3302                         clear_buffer_new(bh);
3303                         clear_buffer_delay(bh);
3304                         clear_buffer_unwritten(bh);
3305                         clear_buffer_uptodate(bh);
3306                         zero_user(page, pos, range_to_discard);
3307                         BUFFER_TRACE(bh, "Buffer discarded");
3308                         goto next;
3309                 }
3310
3311                 /*
3312                  * If this block is not completely contained in the range
3313                  * to be discarded, then it is not going to be released. Because
3314                  * we need to keep this block, we need to make sure this part
3315                  * of the page is uptodate before we modify it by writeing
3316                  * partial zeros on it.
3317                  */
3318                 if (!buffer_mapped(bh)) {
3319                         /*
3320                          * Buffer head must be mapped before we can read
3321                          * from the block
3322                          */
3323                         BUFFER_TRACE(bh, "unmapped");
3324                         ext4_get_block(inode, iblock, bh, 0);
3325                         /* unmapped? It's a hole - nothing to do */
3326                         if (!buffer_mapped(bh)) {
3327                                 BUFFER_TRACE(bh, "still unmapped");
3328                                 goto next;
3329                         }
3330                 }
3331
3332                 /* Ok, it's mapped. Make sure it's up-to-date */
3333                 if (PageUptodate(page))
3334                         set_buffer_uptodate(bh);
3335
3336                 if (!buffer_uptodate(bh)) {
3337                         err = -EIO;
3338                         ll_rw_block(READ, 1, &bh);
3339                         wait_on_buffer(bh);
3340                         /* Uhhuh. Read error. Complain and punt.*/
3341                         if (!buffer_uptodate(bh))
3342                                 goto next;
3343                 }
3344
3345                 if (ext4_should_journal_data(inode)) {
3346                         BUFFER_TRACE(bh, "get write access");
3347                         err = ext4_journal_get_write_access(handle, bh);
3348                         if (err)
3349                                 goto next;
3350                 }
3351
3352                 zero_user(page, pos, range_to_discard);
3353
3354                 err = 0;
3355                 if (ext4_should_journal_data(inode)) {
3356                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3357                 } else
3358                         mark_buffer_dirty(bh);
3359
3360                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3361 next:
3362                 bh = bh->b_this_page;
3363                 iblock++;
3364                 pos += range_to_discard;
3365         }
3366
3367         return err;
3368 }
3369
3370 /*
3371  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3372  * up to the end of the block which corresponds to `from'.
3373  * This required during truncate. We need to physically zero the tail end
3374  * of that block so it doesn't yield old data if the file is later grown.
3375  */
3376 int ext4_block_truncate_page(handle_t *handle,
3377                 struct address_space *mapping, loff_t from)
3378 {
3379         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3380         unsigned length;
3381         unsigned blocksize;
3382         struct inode *inode = mapping->host;
3383
3384         blocksize = inode->i_sb->s_blocksize;
3385         length = blocksize - (offset & (blocksize - 1));
3386
3387         return ext4_block_zero_page_range(handle, mapping, from, length);
3388 }
3389
3390 /*
3391  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3392  * starting from file offset 'from'.  The range to be zero'd must
3393  * be contained with in one block.  If the specified range exceeds
3394  * the end of the block it will be shortened to end of the block
3395  * that cooresponds to 'from'
3396  */
3397 int ext4_block_zero_page_range(handle_t *handle,
3398                 struct address_space *mapping, loff_t from, loff_t length)
3399 {
3400         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3401         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3402         unsigned blocksize, max, pos;
3403         ext4_lblk_t iblock;
3404         struct inode *inode = mapping->host;
3405         struct buffer_head *bh;
3406         struct page *page;
3407         int err = 0;
3408
3409         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3410                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3411         if (!page)
3412                 return -ENOMEM;
3413
3414         blocksize = inode->i_sb->s_blocksize;
3415         max = blocksize - (offset & (blocksize - 1));
3416
3417         /*
3418          * correct length if it does not fall between
3419          * 'from' and the end of the block
3420          */
3421         if (length > max || length < 0)
3422                 length = max;
3423
3424         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3425
3426         if (!page_has_buffers(page))
3427                 create_empty_buffers(page, blocksize, 0);
3428
3429         /* Find the buffer that contains "offset" */
3430         bh = page_buffers(page);
3431         pos = blocksize;
3432         while (offset >= pos) {
3433                 bh = bh->b_this_page;
3434                 iblock++;
3435                 pos += blocksize;
3436         }
3437
3438         err = 0;
3439         if (buffer_freed(bh)) {
3440                 BUFFER_TRACE(bh, "freed: skip");
3441                 goto unlock;
3442         }
3443
3444         if (!buffer_mapped(bh)) {
3445                 BUFFER_TRACE(bh, "unmapped");
3446                 ext4_get_block(inode, iblock, bh, 0);
3447                 /* unmapped? It's a hole - nothing to do */
3448                 if (!buffer_mapped(bh)) {
3449                         BUFFER_TRACE(bh, "still unmapped");
3450                         goto unlock;
3451                 }
3452         }
3453
3454         /* Ok, it's mapped. Make sure it's up-to-date */
3455         if (PageUptodate(page))
3456                 set_buffer_uptodate(bh);
3457
3458         if (!buffer_uptodate(bh)) {
3459                 err = -EIO;
3460                 ll_rw_block(READ, 1, &bh);
3461                 wait_on_buffer(bh);
3462                 /* Uhhuh. Read error. Complain and punt. */
3463                 if (!buffer_uptodate(bh))
3464                         goto unlock;
3465         }
3466
3467         if (ext4_should_journal_data(inode)) {
3468                 BUFFER_TRACE(bh, "get write access");
3469                 err = ext4_journal_get_write_access(handle, bh);
3470                 if (err)
3471                         goto unlock;
3472         }
3473
3474         zero_user(page, offset, length);
3475
3476         BUFFER_TRACE(bh, "zeroed end of block");
3477
3478         err = 0;
3479         if (ext4_should_journal_data(inode)) {
3480                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3481         } else
3482                 mark_buffer_dirty(bh);
3483
3484 unlock:
3485         unlock_page(page);
3486         page_cache_release(page);
3487         return err;
3488 }
3489
3490 int ext4_can_truncate(struct inode *inode)
3491 {
3492         if (S_ISREG(inode->i_mode))
3493                 return 1;
3494         if (S_ISDIR(inode->i_mode))
3495                 return 1;
3496         if (S_ISLNK(inode->i_mode))
3497                 return !ext4_inode_is_fast_symlink(inode);
3498         return 0;
3499 }
3500
3501 /*
3502  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3503  * associated with the given offset and length
3504  *
3505  * @inode:  File inode
3506  * @offset: The offset where the hole will begin
3507  * @len:    The length of the hole
3508  *
3509  * Returns: 0 on sucess or negative on failure
3510  */
3511
3512 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3513 {
3514         struct inode *inode = file->f_path.dentry->d_inode;
3515         if (!S_ISREG(inode->i_mode))
3516                 return -ENOTSUPP;
3517
3518         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3519                 /* TODO: Add support for non extent hole punching */
3520                 return -ENOTSUPP;
3521         }
3522
3523         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3524                 /* TODO: Add support for bigalloc file systems */
3525                 return -ENOTSUPP;
3526         }
3527
3528         return ext4_ext_punch_hole(file, offset, length);
3529 }
3530
3531 /*
3532  * ext4_truncate()
3533  *
3534  * We block out ext4_get_block() block instantiations across the entire
3535  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3536  * simultaneously on behalf of the same inode.
3537  *
3538  * As we work through the truncate and commmit bits of it to the journal there
3539  * is one core, guiding principle: the file's tree must always be consistent on
3540  * disk.  We must be able to restart the truncate after a crash.
3541  *
3542  * The file's tree may be transiently inconsistent in memory (although it
3543  * probably isn't), but whenever we close off and commit a journal transaction,
3544  * the contents of (the filesystem + the journal) must be consistent and
3545  * restartable.  It's pretty simple, really: bottom up, right to left (although
3546  * left-to-right works OK too).
3547  *
3548  * Note that at recovery time, journal replay occurs *before* the restart of
3549  * truncate against the orphan inode list.
3550  *
3551  * The committed inode has the new, desired i_size (which is the same as
3552  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3553  * that this inode's truncate did not complete and it will again call
3554  * ext4_truncate() to have another go.  So there will be instantiated blocks
3555  * to the right of the truncation point in a crashed ext4 filesystem.  But
3556  * that's fine - as long as they are linked from the inode, the post-crash
3557  * ext4_truncate() run will find them and release them.
3558  */
3559 void ext4_truncate(struct inode *inode)
3560 {
3561         trace_ext4_truncate_enter(inode);
3562
3563         if (!ext4_can_truncate(inode))
3564                 return;
3565
3566         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3567
3568         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3569                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3570
3571         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3572                 ext4_ext_truncate(inode);
3573         else
3574                 ext4_ind_truncate(inode);
3575
3576         trace_ext4_truncate_exit(inode);
3577 }
3578
3579 /*
3580  * ext4_get_inode_loc returns with an extra refcount against the inode's
3581  * underlying buffer_head on success. If 'in_mem' is true, we have all
3582  * data in memory that is needed to recreate the on-disk version of this
3583  * inode.
3584  */
3585 static int __ext4_get_inode_loc(struct inode *inode,
3586                                 struct ext4_iloc *iloc, int in_mem)
3587 {
3588         struct ext4_group_desc  *gdp;
3589         struct buffer_head      *bh;
3590         struct super_block      *sb = inode->i_sb;
3591         ext4_fsblk_t            block;
3592         int                     inodes_per_block, inode_offset;
3593
3594         iloc->bh = NULL;
3595         if (!ext4_valid_inum(sb, inode->i_ino))
3596                 return -EIO;
3597
3598         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3599         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3600         if (!gdp)
3601                 return -EIO;
3602
3603         /*
3604          * Figure out the offset within the block group inode table
3605          */
3606         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3607         inode_offset = ((inode->i_ino - 1) %
3608                         EXT4_INODES_PER_GROUP(sb));
3609         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3610         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3611
3612         bh = sb_getblk(sb, block);
3613         if (!bh)
3614                 return -ENOMEM;
3615         if (!buffer_uptodate(bh)) {
3616                 lock_buffer(bh);
3617
3618                 /*
3619                  * If the buffer has the write error flag, we have failed
3620                  * to write out another inode in the same block.  In this
3621                  * case, we don't have to read the block because we may
3622                  * read the old inode data successfully.
3623                  */
3624                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3625                         set_buffer_uptodate(bh);
3626
3627                 if (buffer_uptodate(bh)) {
3628                         /* someone brought it uptodate while we waited */
3629                         unlock_buffer(bh);
3630                         goto has_buffer;
3631                 }
3632
3633                 /*
3634                  * If we have all information of the inode in memory and this
3635                  * is the only valid inode in the block, we need not read the
3636                  * block.
3637                  */
3638                 if (in_mem) {
3639                         struct buffer_head *bitmap_bh;
3640                         int i, start;
3641
3642                         start = inode_offset & ~(inodes_per_block - 1);
3643
3644                         /* Is the inode bitmap in cache? */
3645                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3646                         if (!bitmap_bh)
3647                                 goto make_io;
3648
3649                         /*
3650                          * If the inode bitmap isn't in cache then the
3651                          * optimisation may end up performing two reads instead
3652                          * of one, so skip it.
3653                          */
3654                         if (!buffer_uptodate(bitmap_bh)) {
3655                                 brelse(bitmap_bh);
3656                                 goto make_io;
3657                         }
3658                         for (i = start; i < start + inodes_per_block; i++) {
3659                                 if (i == inode_offset)
3660                                         continue;
3661                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3662                                         break;
3663                         }
3664                         brelse(bitmap_bh);
3665                         if (i == start + inodes_per_block) {
3666                                 /* all other inodes are free, so skip I/O */
3667                                 memset(bh->b_data, 0, bh->b_size);
3668                                 set_buffer_uptodate(bh);
3669                                 unlock_buffer(bh);
3670                                 goto has_buffer;
3671                         }
3672                 }
3673
3674 make_io:
3675                 /*
3676                  * If we need to do any I/O, try to pre-readahead extra
3677                  * blocks from the inode table.
3678                  */
3679                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3680                         ext4_fsblk_t b, end, table;
3681                         unsigned num;
3682
3683                         table = ext4_inode_table(sb, gdp);
3684                         /* s_inode_readahead_blks is always a power of 2 */
3685                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3686                         if (table > b)
3687                                 b = table;
3688                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3689                         num = EXT4_INODES_PER_GROUP(sb);
3690                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3691                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3692                                 num -= ext4_itable_unused_count(sb, gdp);
3693                         table += num / inodes_per_block;
3694                         if (end > table)
3695                                 end = table;
3696                         while (b <= end)
3697                                 sb_breadahead(sb, b++);
3698                 }
3699
3700                 /*
3701                  * There are other valid inodes in the buffer, this inode
3702                  * has in-inode xattrs, or we don't have this inode in memory.
3703                  * Read the block from disk.
3704                  */
3705                 trace_ext4_load_inode(inode);
3706                 get_bh(bh);
3707                 bh->b_end_io = end_buffer_read_sync;
3708                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3709                 wait_on_buffer(bh);
3710                 if (!buffer_uptodate(bh)) {
3711                         EXT4_ERROR_INODE_BLOCK(inode, block,
3712                                                "unable to read itable block");
3713                         brelse(bh);
3714                         return -EIO;
3715                 }
3716         }
3717 has_buffer:
3718         iloc->bh = bh;
3719         return 0;
3720 }
3721
3722 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3723 {
3724         /* We have all inode data except xattrs in memory here. */
3725         return __ext4_get_inode_loc(inode, iloc,
3726                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3727 }
3728
3729 void ext4_set_inode_flags(struct inode *inode)
3730 {
3731         unsigned int flags = EXT4_I(inode)->i_flags;
3732         unsigned int new_fl = 0;
3733
3734         if (flags & EXT4_SYNC_FL)
3735                 new_fl |= S_SYNC;
3736         if (flags & EXT4_APPEND_FL)
3737                 new_fl |= S_APPEND;
3738         if (flags & EXT4_IMMUTABLE_FL)
3739                 new_fl |= S_IMMUTABLE;
3740         if (flags & EXT4_NOATIME_FL)
3741                 new_fl |= S_NOATIME;
3742         if (flags & EXT4_DIRSYNC_FL)
3743                 new_fl |= S_DIRSYNC;
3744         set_mask_bits(&inode->i_flags,
3745                       S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl);
3746 }
3747
3748 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3749 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3750 {
3751         unsigned int vfs_fl;
3752         unsigned long old_fl, new_fl;
3753
3754         do {
3755                 vfs_fl = ei->vfs_inode.i_flags;
3756                 old_fl = ei->i_flags;
3757                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3758                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3759                                 EXT4_DIRSYNC_FL);
3760                 if (vfs_fl & S_SYNC)
3761                         new_fl |= EXT4_SYNC_FL;
3762                 if (vfs_fl & S_APPEND)
3763                         new_fl |= EXT4_APPEND_FL;
3764                 if (vfs_fl & S_IMMUTABLE)
3765                         new_fl |= EXT4_IMMUTABLE_FL;
3766                 if (vfs_fl & S_NOATIME)
3767                         new_fl |= EXT4_NOATIME_FL;
3768                 if (vfs_fl & S_DIRSYNC)
3769                         new_fl |= EXT4_DIRSYNC_FL;
3770         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3771 }
3772
3773 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3774                                   struct ext4_inode_info *ei)
3775 {
3776         blkcnt_t i_blocks ;
3777         struct inode *inode = &(ei->vfs_inode);
3778         struct super_block *sb = inode->i_sb;
3779
3780         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3781                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3782                 /* we are using combined 48 bit field */
3783                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3784                                         le32_to_cpu(raw_inode->i_blocks_lo);
3785                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3786                         /* i_blocks represent file system block size */
3787                         return i_blocks  << (inode->i_blkbits - 9);
3788                 } else {
3789                         return i_blocks;
3790                 }
3791         } else {
3792                 return le32_to_cpu(raw_inode->i_blocks_lo);
3793         }
3794 }
3795
3796 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3797 {
3798         struct ext4_iloc iloc;
3799         struct ext4_inode *raw_inode;
3800         struct ext4_inode_info *ei;
3801         struct inode *inode;
3802         journal_t *journal = EXT4_SB(sb)->s_journal;
3803         long ret;
3804         int block;
3805
3806         inode = iget_locked(sb, ino);
3807         if (!inode)
3808                 return ERR_PTR(-ENOMEM);
3809         if (!(inode->i_state & I_NEW))
3810                 return inode;
3811
3812         ei = EXT4_I(inode);
3813         iloc.bh = NULL;
3814
3815         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3816         if (ret < 0)
3817                 goto bad_inode;
3818         raw_inode = ext4_raw_inode(&iloc);
3819         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3820         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3821         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3822         if (!(test_opt(inode->i_sb, NO_UID32))) {
3823                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3824                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3825         }
3826         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3827
3828         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3829         ei->i_dir_start_lookup = 0;
3830         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3831         /* We now have enough fields to check if the inode was active or not.
3832          * This is needed because nfsd might try to access dead inodes
3833          * the test is that same one that e2fsck uses
3834          * NeilBrown 1999oct15
3835          */
3836         if (inode->i_nlink == 0) {
3837                 if (inode->i_mode == 0 ||
3838                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3839                         /* this inode is deleted */
3840                         ret = -ESTALE;
3841                         goto bad_inode;
3842                 }
3843                 /* The only unlinked inodes we let through here have
3844                  * valid i_mode and are being read by the orphan
3845                  * recovery code: that's fine, we're about to complete
3846                  * the process of deleting those. */
3847         }
3848         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3849         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3850         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3851         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3852                 ei->i_file_acl |=
3853                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3854         inode->i_size = ext4_isize(raw_inode);
3855         ei->i_disksize = inode->i_size;
3856 #ifdef CONFIG_QUOTA
3857         ei->i_reserved_quota = 0;
3858 #endif
3859         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3860         ei->i_block_group = iloc.block_group;
3861         ei->i_last_alloc_group = ~0;
3862         /*
3863          * NOTE! The in-memory inode i_data array is in little-endian order
3864          * even on big-endian machines: we do NOT byteswap the block numbers!
3865          */
3866         for (block = 0; block < EXT4_N_BLOCKS; block++)
3867                 ei->i_data[block] = raw_inode->i_block[block];
3868         INIT_LIST_HEAD(&ei->i_orphan);
3869
3870         /*
3871          * Set transaction id's of transactions that have to be committed
3872          * to finish f[data]sync. We set them to currently running transaction
3873          * as we cannot be sure that the inode or some of its metadata isn't
3874          * part of the transaction - the inode could have been reclaimed and
3875          * now it is reread from disk.
3876          */
3877         if (journal) {
3878                 transaction_t *transaction;
3879                 tid_t tid;
3880
3881                 read_lock(&journal->j_state_lock);
3882                 if (journal->j_running_transaction)
3883                         transaction = journal->j_running_transaction;
3884                 else
3885                         transaction = journal->j_committing_transaction;
3886                 if (transaction)
3887                         tid = transaction->t_tid;
3888                 else
3889                         tid = journal->j_commit_sequence;
3890                 read_unlock(&journal->j_state_lock);
3891                 ei->i_sync_tid = tid;
3892                 ei->i_datasync_tid = tid;
3893         }
3894
3895         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3896                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3897                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3898                     EXT4_INODE_SIZE(inode->i_sb)) {
3899                         ret = -EIO;
3900                         goto bad_inode;
3901                 }
3902                 if (ei->i_extra_isize == 0) {
3903                         /* The extra space is currently unused. Use it. */
3904                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3905                                             EXT4_GOOD_OLD_INODE_SIZE;
3906                 } else {
3907                         __le32 *magic = (void *)raw_inode +
3908                                         EXT4_GOOD_OLD_INODE_SIZE +
3909                                         ei->i_extra_isize;
3910                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3911                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3912                 }
3913         } else
3914                 ei->i_extra_isize = 0;
3915
3916         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3917         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3918         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3919         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3920
3921         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3922         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3923                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3924                         inode->i_version |=
3925                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3926         }
3927
3928         ret = 0;
3929         if (ei->i_file_acl &&
3930             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3931                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3932                                  ei->i_file_acl);
3933                 ret = -EIO;
3934                 goto bad_inode;
3935         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3936                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3937                     (S_ISLNK(inode->i_mode) &&
3938                      !ext4_inode_is_fast_symlink(inode)))
3939                         /* Validate extent which is part of inode */
3940                         ret = ext4_ext_check_inode(inode);
3941         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3942                    (S_ISLNK(inode->i_mode) &&
3943                     !ext4_inode_is_fast_symlink(inode))) {
3944                 /* Validate block references which are part of inode */
3945                 ret = ext4_ind_check_inode(inode);
3946         }
3947         if (ret)
3948                 goto bad_inode;
3949
3950         if (S_ISREG(inode->i_mode)) {
3951                 inode->i_op = &ext4_file_inode_operations;
3952                 inode->i_fop = &ext4_file_operations;
3953                 ext4_set_aops(inode);
3954         } else if (S_ISDIR(inode->i_mode)) {
3955                 inode->i_op = &ext4_dir_inode_operations;
3956                 inode->i_fop = &ext4_dir_operations;
3957         } else if (S_ISLNK(inode->i_mode)) {
3958                 if (ext4_inode_is_fast_symlink(inode)) {
3959                         inode->i_op = &ext4_fast_symlink_inode_operations;
3960                         nd_terminate_link(ei->i_data, inode->i_size,
3961                                 sizeof(ei->i_data) - 1);
3962                 } else {
3963                         inode->i_op = &ext4_symlink_inode_operations;
3964                         ext4_set_aops(inode);
3965                 }
3966         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3967               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3968                 inode->i_op = &ext4_special_inode_operations;
3969                 if (raw_inode->i_block[0])
3970                         init_special_inode(inode, inode->i_mode,
3971                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3972                 else
3973                         init_special_inode(inode, inode->i_mode,
3974                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3975         } else {
3976                 ret = -EIO;
3977                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3978                 goto bad_inode;
3979         }
3980         brelse(iloc.bh);
3981         ext4_set_inode_flags(inode);
3982         unlock_new_inode(inode);
3983         return inode;
3984
3985 bad_inode:
3986         brelse(iloc.bh);
3987         iget_failed(inode);
3988         return ERR_PTR(ret);
3989 }
3990
3991 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
3992 {
3993         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
3994                 return ERR_PTR(-EIO);
3995         return ext4_iget(sb, ino);
3996 }
3997
3998 static int ext4_inode_blocks_set(handle_t *handle,
3999                                 struct ext4_inode *raw_inode,
4000                                 struct ext4_inode_info *ei)
4001 {
4002         struct inode *inode = &(ei->vfs_inode);
4003         u64 i_blocks = inode->i_blocks;
4004         struct super_block *sb = inode->i_sb;
4005
4006         if (i_blocks <= ~0U) {
4007                 /*
4008                  * i_blocks can be represnted in a 32 bit variable
4009                  * as multiple of 512 bytes
4010                  */
4011                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4012                 raw_inode->i_blocks_high = 0;
4013                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4014                 return 0;
4015         }
4016         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4017                 return -EFBIG;
4018
4019         if (i_blocks <= 0xffffffffffffULL) {
4020                 /*
4021                  * i_blocks can be represented in a 48 bit variable
4022                  * as multiple of 512 bytes
4023                  */
4024                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4025                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4026                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4027         } else {
4028                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4029                 /* i_block is stored in file system block size */
4030                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4031                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4032                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4033         }
4034         return 0;
4035 }
4036
4037 /*
4038  * Post the struct inode info into an on-disk inode location in the
4039  * buffer-cache.  This gobbles the caller's reference to the
4040  * buffer_head in the inode location struct.
4041  *
4042  * The caller must have write access to iloc->bh.
4043  */
4044 static int ext4_do_update_inode(handle_t *handle,
4045                                 struct inode *inode,
4046                                 struct ext4_iloc *iloc)
4047 {
4048         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4049         struct ext4_inode_info *ei = EXT4_I(inode);
4050         struct buffer_head *bh = iloc->bh;
4051         int err = 0, rc, block;
4052         int need_datasync = 0;
4053
4054         /* For fields not not tracking in the in-memory inode,
4055          * initialise them to zero for new inodes. */
4056         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4057                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4058
4059         ext4_get_inode_flags(ei);
4060         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4061         if (!(test_opt(inode->i_sb, NO_UID32))) {
4062                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4063                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4064 /*
4065  * Fix up interoperability with old kernels. Otherwise, old inodes get
4066  * re-used with the upper 16 bits of the uid/gid intact
4067  */
4068                 if (!ei->i_dtime) {
4069                         raw_inode->i_uid_high =
4070                                 cpu_to_le16(high_16_bits(inode->i_uid));
4071                         raw_inode->i_gid_high =
4072                                 cpu_to_le16(high_16_bits(inode->i_gid));
4073                 } else {
4074                         raw_inode->i_uid_high = 0;
4075                         raw_inode->i_gid_high = 0;
4076                 }
4077         } else {
4078                 raw_inode->i_uid_low =
4079                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4080                 raw_inode->i_gid_low =
4081                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4082                 raw_inode->i_uid_high = 0;
4083                 raw_inode->i_gid_high = 0;
4084         }
4085         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4086
4087         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4088         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4089         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4090         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4091
4092         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4093                 goto out_brelse;
4094         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4095         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4096         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4097             cpu_to_le32(EXT4_OS_HURD))
4098                 raw_inode->i_file_acl_high =
4099                         cpu_to_le16(ei->i_file_acl >> 32);
4100         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4101         if (ei->i_disksize != ext4_isize(raw_inode)) {
4102                 ext4_isize_set(raw_inode, ei->i_disksize);
4103                 need_datasync = 1;
4104         }
4105         if (ei->i_disksize > 0x7fffffffULL) {
4106                 struct super_block *sb = inode->i_sb;
4107                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4108                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4109                                 EXT4_SB(sb)->s_es->s_rev_level ==
4110                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4111                         /* If this is the first large file
4112                          * created, add a flag to the superblock.
4113                          */
4114                         err = ext4_journal_get_write_access(handle,
4115                                         EXT4_SB(sb)->s_sbh);
4116                         if (err)
4117                                 goto out_brelse;
4118                         ext4_update_dynamic_rev(sb);
4119                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4120                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4121                         sb->s_dirt = 1;
4122                         ext4_handle_sync(handle);
4123                         err = ext4_handle_dirty_metadata(handle, NULL,
4124                                         EXT4_SB(sb)->s_sbh);
4125                 }
4126         }
4127         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4128         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4129                 if (old_valid_dev(inode->i_rdev)) {
4130                         raw_inode->i_block[0] =
4131                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4132                         raw_inode->i_block[1] = 0;
4133                 } else {
4134                         raw_inode->i_block[0] = 0;
4135                         raw_inode->i_block[1] =
4136                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4137                         raw_inode->i_block[2] = 0;
4138                 }
4139         } else
4140                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4141                         raw_inode->i_block[block] = ei->i_data[block];
4142
4143         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4144         if (ei->i_extra_isize) {
4145                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4146                         raw_inode->i_version_hi =
4147                         cpu_to_le32(inode->i_version >> 32);
4148                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4149         }
4150
4151         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4152         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4153         if (!err)
4154                 err = rc;
4155         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4156
4157         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4158 out_brelse:
4159         brelse(bh);
4160         ext4_std_error(inode->i_sb, err);
4161         return err;
4162 }
4163
4164 /*
4165  * ext4_write_inode()
4166  *
4167  * We are called from a few places:
4168  *
4169  * - Within generic_file_write() for O_SYNC files.
4170  *   Here, there will be no transaction running. We wait for any running
4171  *   trasnaction to commit.
4172  *
4173  * - Within sys_sync(), kupdate and such.
4174  *   We wait on commit, if tol to.
4175  *
4176  * - Within prune_icache() (PF_MEMALLOC == true)
4177  *   Here we simply return.  We can't afford to block kswapd on the
4178  *   journal commit.
4179  *
4180  * In all cases it is actually safe for us to return without doing anything,
4181  * because the inode has been copied into a raw inode buffer in
4182  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4183  * knfsd.
4184  *
4185  * Note that we are absolutely dependent upon all inode dirtiers doing the
4186  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4187  * which we are interested.
4188  *
4189  * It would be a bug for them to not do this.  The code:
4190  *
4191  *      mark_inode_dirty(inode)
4192  *      stuff();
4193  *      inode->i_size = expr;
4194  *
4195  * is in error because a kswapd-driven write_inode() could occur while
4196  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4197  * will no longer be on the superblock's dirty inode list.
4198  */
4199 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4200 {
4201         int err;
4202
4203         if (current->flags & PF_MEMALLOC)
4204                 return 0;
4205
4206         if (EXT4_SB(inode->i_sb)->s_journal) {
4207                 if (ext4_journal_current_handle()) {
4208                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4209                         dump_stack();
4210                         return -EIO;
4211                 }
4212
4213                 if (wbc->sync_mode != WB_SYNC_ALL)
4214                         return 0;
4215
4216                 err = ext4_force_commit(inode->i_sb);
4217         } else {
4218                 struct ext4_iloc iloc;
4219
4220                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4221                 if (err)
4222                         return err;
4223                 if (wbc->sync_mode == WB_SYNC_ALL)
4224                         sync_dirty_buffer(iloc.bh);
4225                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4226                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4227                                          "IO error syncing inode");
4228                         err = -EIO;
4229                 }
4230                 brelse(iloc.bh);
4231         }
4232         return err;
4233 }
4234
4235 /*
4236  * ext4_setattr()
4237  *
4238  * Called from notify_change.
4239  *
4240  * We want to trap VFS attempts to truncate the file as soon as
4241  * possible.  In particular, we want to make sure that when the VFS
4242  * shrinks i_size, we put the inode on the orphan list and modify
4243  * i_disksize immediately, so that during the subsequent flushing of
4244  * dirty pages and freeing of disk blocks, we can guarantee that any
4245  * commit will leave the blocks being flushed in an unused state on
4246  * disk.  (On recovery, the inode will get truncated and the blocks will
4247  * be freed, so we have a strong guarantee that no future commit will
4248  * leave these blocks visible to the user.)
4249  *
4250  * Another thing we have to assure is that if we are in ordered mode
4251  * and inode is still attached to the committing transaction, we must
4252  * we start writeout of all the dirty pages which are being truncated.
4253  * This way we are sure that all the data written in the previous
4254  * transaction are already on disk (truncate waits for pages under
4255  * writeback).
4256  *
4257  * Called with inode->i_mutex down.
4258  */
4259 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4260 {
4261         struct inode *inode = dentry->d_inode;
4262         int error, rc = 0;
4263         int orphan = 0;
4264         const unsigned int ia_valid = attr->ia_valid;
4265
4266         error = inode_change_ok(inode, attr);
4267         if (error)
4268                 return error;
4269
4270         if (is_quota_modification(inode, attr))
4271                 dquot_initialize(inode);
4272         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4273                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4274                 handle_t *handle;
4275
4276                 /* (user+group)*(old+new) structure, inode write (sb,
4277                  * inode block, ? - but truncate inode update has it) */
4278                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4279                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4280                 if (IS_ERR(handle)) {
4281                         error = PTR_ERR(handle);
4282                         goto err_out;
4283                 }
4284                 error = dquot_transfer(inode, attr);
4285                 if (error) {
4286                         ext4_journal_stop(handle);
4287                         return error;
4288                 }
4289                 /* Update corresponding info in inode so that everything is in
4290                  * one transaction */
4291                 if (attr->ia_valid & ATTR_UID)
4292                         inode->i_uid = attr->ia_uid;
4293                 if (attr->ia_valid & ATTR_GID)
4294                         inode->i_gid = attr->ia_gid;
4295                 error = ext4_mark_inode_dirty(handle, inode);
4296                 ext4_journal_stop(handle);
4297         }
4298
4299         if (attr->ia_valid & ATTR_SIZE) {
4300                 inode_dio_wait(inode);
4301
4302                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4303                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4304
4305                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4306                                 return -EFBIG;
4307                 }
4308         }
4309
4310         if (S_ISREG(inode->i_mode) &&
4311             attr->ia_valid & ATTR_SIZE &&
4312             (attr->ia_size < inode->i_size)) {
4313                 handle_t *handle;
4314
4315                 handle = ext4_journal_start(inode, 3);
4316                 if (IS_ERR(handle)) {
4317                         error = PTR_ERR(handle);
4318                         goto err_out;
4319                 }
4320                 if (ext4_handle_valid(handle)) {
4321                         error = ext4_orphan_add(handle, inode);
4322                         orphan = 1;
4323                 }
4324                 EXT4_I(inode)->i_disksize = attr->ia_size;
4325                 rc = ext4_mark_inode_dirty(handle, inode);
4326                 if (!error)
4327                         error = rc;
4328                 ext4_journal_stop(handle);
4329
4330                 if (ext4_should_order_data(inode)) {
4331                         error = ext4_begin_ordered_truncate(inode,
4332                                                             attr->ia_size);
4333                         if (error) {
4334                                 /* Do as much error cleanup as possible */
4335                                 handle = ext4_journal_start(inode, 3);
4336                                 if (IS_ERR(handle)) {
4337                                         ext4_orphan_del(NULL, inode);
4338                                         goto err_out;
4339                                 }
4340                                 ext4_orphan_del(handle, inode);
4341                                 orphan = 0;
4342                                 ext4_journal_stop(handle);
4343                                 goto err_out;
4344                         }
4345                 }
4346         }
4347
4348         if (attr->ia_valid & ATTR_SIZE) {
4349                 if (attr->ia_size != i_size_read(inode)) {
4350                         truncate_setsize(inode, attr->ia_size);
4351                         ext4_truncate(inode);
4352                 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4353                         ext4_truncate(inode);
4354         }
4355
4356         if (!rc) {
4357                 setattr_copy(inode, attr);
4358                 mark_inode_dirty(inode);
4359         }
4360
4361         /*
4362          * If the call to ext4_truncate failed to get a transaction handle at
4363          * all, we need to clean up the in-core orphan list manually.
4364          */
4365         if (orphan && inode->i_nlink)
4366                 ext4_orphan_del(NULL, inode);
4367
4368         if (!rc && (ia_valid & ATTR_MODE))
4369                 rc = ext4_acl_chmod(inode);
4370
4371 err_out:
4372         ext4_std_error(inode->i_sb, error);
4373         if (!error)
4374                 error = rc;
4375         return error;
4376 }
4377
4378 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4379                  struct kstat *stat)
4380 {
4381         struct inode *inode;
4382         unsigned long long delalloc_blocks;
4383
4384         inode = dentry->d_inode;
4385         generic_fillattr(inode, stat);
4386
4387         /*
4388          * We can't update i_blocks if the block allocation is delayed
4389          * otherwise in the case of system crash before the real block
4390          * allocation is done, we will have i_blocks inconsistent with
4391          * on-disk file blocks.
4392          * We always keep i_blocks updated together with real
4393          * allocation. But to not confuse with user, stat
4394          * will return the blocks that include the delayed allocation
4395          * blocks for this file.
4396          */
4397         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4398
4399         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4400         return 0;
4401 }
4402
4403 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4404 {
4405         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4406                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4407         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4408 }
4409
4410 /*
4411  * Account for index blocks, block groups bitmaps and block group
4412  * descriptor blocks if modify datablocks and index blocks
4413  * worse case, the indexs blocks spread over different block groups
4414  *
4415  * If datablocks are discontiguous, they are possible to spread over
4416  * different block groups too. If they are contiuguous, with flexbg,
4417  * they could still across block group boundary.
4418  *
4419  * Also account for superblock, inode, quota and xattr blocks
4420  */
4421 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4422 {
4423         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4424         int gdpblocks;
4425         int idxblocks;
4426         int ret = 0;
4427
4428         /*
4429          * How many index blocks need to touch to modify nrblocks?
4430          * The "Chunk" flag indicating whether the nrblocks is
4431          * physically contiguous on disk
4432          *
4433          * For Direct IO and fallocate, they calls get_block to allocate
4434          * one single extent at a time, so they could set the "Chunk" flag
4435          */
4436         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4437
4438         ret = idxblocks;
4439
4440         /*
4441          * Now let's see how many group bitmaps and group descriptors need
4442          * to account
4443          */
4444         groups = idxblocks;
4445         if (chunk)
4446                 groups += 1;
4447         else
4448                 groups += nrblocks;
4449
4450         gdpblocks = groups;
4451         if (groups > ngroups)
4452                 groups = ngroups;
4453         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4454                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4455
4456         /* bitmaps and block group descriptor blocks */
4457         ret += groups + gdpblocks;
4458
4459         /* Blocks for super block, inode, quota and xattr blocks */
4460         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4461
4462         return ret;
4463 }
4464
4465 /*
4466  * Calculate the total number of credits to reserve to fit
4467  * the modification of a single pages into a single transaction,
4468  * which may include multiple chunks of block allocations.
4469  *
4470  * This could be called via ext4_write_begin()
4471  *
4472  * We need to consider the worse case, when
4473  * one new block per extent.
4474  */
4475 int ext4_writepage_trans_blocks(struct inode *inode)
4476 {
4477         int bpp = ext4_journal_blocks_per_page(inode);
4478         int ret;
4479
4480         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4481
4482         /* Account for data blocks for journalled mode */
4483         if (ext4_should_journal_data(inode))
4484                 ret += bpp;
4485         return ret;
4486 }
4487
4488 /*
4489  * Calculate the journal credits for a chunk of data modification.
4490  *
4491  * This is called from DIO, fallocate or whoever calling
4492  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4493  *
4494  * journal buffers for data blocks are not included here, as DIO
4495  * and fallocate do no need to journal data buffers.
4496  */
4497 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4498 {
4499         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4500 }
4501
4502 /*
4503  * The caller must have previously called ext4_reserve_inode_write().
4504  * Give this, we know that the caller already has write access to iloc->bh.
4505  */
4506 int ext4_mark_iloc_dirty(handle_t *handle,
4507                          struct inode *inode, struct ext4_iloc *iloc)
4508 {
4509         int err = 0;
4510
4511         if (test_opt(inode->i_sb, I_VERSION))
4512                 inode_inc_iversion(inode);
4513
4514         /* the do_update_inode consumes one bh->b_count */
4515         get_bh(iloc->bh);
4516
4517         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4518         err = ext4_do_update_inode(handle, inode, iloc);
4519         put_bh(iloc->bh);
4520         return err;
4521 }
4522
4523 /*
4524  * On success, We end up with an outstanding reference count against
4525  * iloc->bh.  This _must_ be cleaned up later.
4526  */
4527
4528 int
4529 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4530                          struct ext4_iloc *iloc)
4531 {
4532         int err;
4533
4534         err = ext4_get_inode_loc(inode, iloc);
4535         if (!err) {
4536                 BUFFER_TRACE(iloc->bh, "get_write_access");
4537                 err = ext4_journal_get_write_access(handle, iloc->bh);
4538                 if (err) {
4539                         brelse(iloc->bh);
4540                         iloc->bh = NULL;
4541                 }
4542         }
4543         ext4_std_error(inode->i_sb, err);
4544         return err;
4545 }
4546
4547 /*
4548  * Expand an inode by new_extra_isize bytes.
4549  * Returns 0 on success or negative error number on failure.
4550  */
4551 static int ext4_expand_extra_isize(struct inode *inode,
4552                                    unsigned int new_extra_isize,
4553                                    struct ext4_iloc iloc,
4554                                    handle_t *handle)
4555 {
4556         struct ext4_inode *raw_inode;
4557         struct ext4_xattr_ibody_header *header;
4558
4559         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4560                 return 0;
4561
4562         raw_inode = ext4_raw_inode(&iloc);
4563
4564         header = IHDR(inode, raw_inode);
4565
4566         /* No extended attributes present */
4567         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4568             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4569                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4570                         new_extra_isize);
4571                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4572                 return 0;
4573         }
4574
4575         /* try to expand with EAs present */
4576         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4577                                           raw_inode, handle);
4578 }
4579
4580 /*
4581  * What we do here is to mark the in-core inode as clean with respect to inode
4582  * dirtiness (it may still be data-dirty).
4583  * This means that the in-core inode may be reaped by prune_icache
4584  * without having to perform any I/O.  This is a very good thing,
4585  * because *any* task may call prune_icache - even ones which
4586  * have a transaction open against a different journal.
4587  *
4588  * Is this cheating?  Not really.  Sure, we haven't written the
4589  * inode out, but prune_icache isn't a user-visible syncing function.
4590  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4591  * we start and wait on commits.
4592  *
4593  * Is this efficient/effective?  Well, we're being nice to the system
4594  * by cleaning up our inodes proactively so they can be reaped
4595  * without I/O.  But we are potentially leaving up to five seconds'
4596  * worth of inodes floating about which prune_icache wants us to
4597  * write out.  One way to fix that would be to get prune_icache()
4598  * to do a write_super() to free up some memory.  It has the desired
4599  * effect.
4600  */
4601 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4602 {
4603         struct ext4_iloc iloc;
4604         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4605         static unsigned int mnt_count;
4606         int err, ret;
4607
4608         might_sleep();
4609         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4610         err = ext4_reserve_inode_write(handle, inode, &iloc);
4611         if (ext4_handle_valid(handle) &&
4612             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4613             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4614                 /*
4615                  * We need extra buffer credits since we may write into EA block
4616                  * with this same handle. If journal_extend fails, then it will
4617                  * only result in a minor loss of functionality for that inode.
4618                  * If this is felt to be critical, then e2fsck should be run to
4619                  * force a large enough s_min_extra_isize.
4620                  */
4621                 if ((jbd2_journal_extend(handle,
4622                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4623                         ret = ext4_expand_extra_isize(inode,
4624                                                       sbi->s_want_extra_isize,
4625                                                       iloc, handle);
4626                         if (ret) {
4627                                 ext4_set_inode_state(inode,
4628                                                      EXT4_STATE_NO_EXPAND);
4629                                 if (mnt_count !=
4630                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4631                                         ext4_warning(inode->i_sb,
4632                                         "Unable to expand inode %lu. Delete"
4633                                         " some EAs or run e2fsck.",
4634                                         inode->i_ino);
4635                                         mnt_count =
4636                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4637                                 }
4638                         }
4639                 }
4640         }
4641         if (!err)
4642                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4643         return err;
4644 }
4645
4646 /*
4647  * ext4_dirty_inode() is called from __mark_inode_dirty()
4648  *
4649  * We're really interested in the case where a file is being extended.
4650  * i_size has been changed by generic_commit_write() and we thus need
4651  * to include the updated inode in the current transaction.
4652  *
4653  * Also, dquot_alloc_block() will always dirty the inode when blocks
4654  * are allocated to the file.
4655  *
4656  * If the inode is marked synchronous, we don't honour that here - doing
4657  * so would cause a commit on atime updates, which we don't bother doing.
4658  * We handle synchronous inodes at the highest possible level.
4659  */
4660 void ext4_dirty_inode(struct inode *inode, int flags)
4661 {
4662         handle_t *handle;
4663
4664         handle = ext4_journal_start(inode, 2);
4665         if (IS_ERR(handle))
4666                 goto out;
4667
4668         ext4_mark_inode_dirty(handle, inode);
4669
4670         ext4_journal_stop(handle);
4671 out:
4672         return;
4673 }
4674
4675 #if 0
4676 /*
4677  * Bind an inode's backing buffer_head into this transaction, to prevent
4678  * it from being flushed to disk early.  Unlike
4679  * ext4_reserve_inode_write, this leaves behind no bh reference and
4680  * returns no iloc structure, so the caller needs to repeat the iloc
4681  * lookup to mark the inode dirty later.
4682  */
4683 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4684 {
4685         struct ext4_iloc iloc;
4686
4687         int err = 0;
4688         if (handle) {
4689                 err = ext4_get_inode_loc(inode, &iloc);
4690                 if (!err) {
4691                         BUFFER_TRACE(iloc.bh, "get_write_access");
4692                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4693                         if (!err)
4694                                 err = ext4_handle_dirty_metadata(handle,
4695                                                                  NULL,
4696                                                                  iloc.bh);
4697                         brelse(iloc.bh);
4698                 }
4699         }
4700         ext4_std_error(inode->i_sb, err);
4701         return err;
4702 }
4703 #endif
4704
4705 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4706 {
4707         journal_t *journal;
4708         handle_t *handle;
4709         int err;
4710
4711         /*
4712          * We have to be very careful here: changing a data block's
4713          * journaling status dynamically is dangerous.  If we write a
4714          * data block to the journal, change the status and then delete
4715          * that block, we risk forgetting to revoke the old log record
4716          * from the journal and so a subsequent replay can corrupt data.
4717          * So, first we make sure that the journal is empty and that
4718          * nobody is changing anything.
4719          */
4720
4721         journal = EXT4_JOURNAL(inode);
4722         if (!journal)
4723                 return 0;
4724         if (is_journal_aborted(journal))
4725                 return -EROFS;
4726
4727         jbd2_journal_lock_updates(journal);
4728         jbd2_journal_flush(journal);
4729
4730         /*
4731          * OK, there are no updates running now, and all cached data is
4732          * synced to disk.  We are now in a completely consistent state
4733          * which doesn't have anything in the journal, and we know that
4734          * no filesystem updates are running, so it is safe to modify
4735          * the inode's in-core data-journaling state flag now.
4736          */
4737
4738         if (val)
4739                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4740         else
4741                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4742         ext4_set_aops(inode);
4743
4744         jbd2_journal_unlock_updates(journal);
4745
4746         /* Finally we can mark the inode as dirty. */
4747
4748         handle = ext4_journal_start(inode, 1);
4749         if (IS_ERR(handle))
4750                 return PTR_ERR(handle);
4751
4752         err = ext4_mark_inode_dirty(handle, inode);
4753         ext4_handle_sync(handle);
4754         ext4_journal_stop(handle);
4755         ext4_std_error(inode->i_sb, err);
4756
4757         return err;
4758 }
4759
4760 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4761 {
4762         return !buffer_mapped(bh);
4763 }
4764
4765 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4766 {
4767         struct page *page = vmf->page;
4768         loff_t size;
4769         unsigned long len;
4770         int ret;
4771         struct file *file = vma->vm_file;
4772         struct inode *inode = file->f_path.dentry->d_inode;
4773         struct address_space *mapping = inode->i_mapping;
4774         handle_t *handle;
4775         get_block_t *get_block;
4776         int retries = 0;
4777
4778         /*
4779          * This check is racy but catches the common case. We rely on
4780          * __block_page_mkwrite() to do a reliable check.
4781          */
4782         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4783         /* Delalloc case is easy... */
4784         if (test_opt(inode->i_sb, DELALLOC) &&
4785             !ext4_should_journal_data(inode) &&
4786             !ext4_nonda_switch(inode->i_sb)) {
4787                 do {
4788                         ret = __block_page_mkwrite(vma, vmf,
4789                                                    ext4_da_get_block_prep);
4790                 } while (ret == -ENOSPC &&
4791                        ext4_should_retry_alloc(inode->i_sb, &retries));
4792                 goto out_ret;
4793         }
4794
4795         lock_page(page);
4796         size = i_size_read(inode);
4797         /* Page got truncated from under us? */
4798         if (page->mapping != mapping || page_offset(page) > size) {
4799                 unlock_page(page);
4800                 ret = VM_FAULT_NOPAGE;
4801                 goto out;
4802         }
4803
4804         if (page->index == size >> PAGE_CACHE_SHIFT)
4805                 len = size & ~PAGE_CACHE_MASK;
4806         else
4807                 len = PAGE_CACHE_SIZE;
4808         /*
4809          * Return if we have all the buffers mapped. This avoids the need to do
4810          * journal_start/journal_stop which can block and take a long time
4811          */
4812         if (page_has_buffers(page)) {
4813                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4814                                         ext4_bh_unmapped)) {
4815                         /* Wait so that we don't change page under IO */
4816                         wait_on_page_writeback(page);
4817                         ret = VM_FAULT_LOCKED;
4818                         goto out;
4819                 }
4820         }
4821         unlock_page(page);
4822         /* OK, we need to fill the hole... */
4823         if (ext4_should_dioread_nolock(inode))
4824                 get_block = ext4_get_block_write;
4825         else
4826                 get_block = ext4_get_block;
4827 retry_alloc:
4828         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4829         if (IS_ERR(handle)) {
4830                 ret = VM_FAULT_SIGBUS;
4831                 goto out;
4832         }
4833         ret = __block_page_mkwrite(vma, vmf, get_block);
4834         if (!ret && ext4_should_journal_data(inode)) {
4835                 if (walk_page_buffers(handle, page_buffers(page), 0,
4836                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4837                         unlock_page(page);
4838                         ret = VM_FAULT_SIGBUS;
4839                         ext4_journal_stop(handle);
4840                         goto out;
4841                 }
4842                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4843         }
4844         ext4_journal_stop(handle);
4845         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4846                 goto retry_alloc;
4847 out_ret:
4848         ret = block_page_mkwrite_return(ret);
4849 out:
4850         return ret;
4851 }