bda690cd3640e53fc5b91fe17a81f2b82b2bb9c7
[pandora-kernel.git] / fs / dlm / lowcomms.c
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <net/sctp/user.h>
55 #include <net/ipv6.h>
56
57 #include "dlm_internal.h"
58 #include "lowcomms.h"
59 #include "midcomms.h"
60 #include "config.h"
61
62 #define NEEDED_RMEM (4*1024*1024)
63 #define CONN_HASH_SIZE 32
64
65 struct cbuf {
66         unsigned int base;
67         unsigned int len;
68         unsigned int mask;
69 };
70
71 static void cbuf_add(struct cbuf *cb, int n)
72 {
73         cb->len += n;
74 }
75
76 static int cbuf_data(struct cbuf *cb)
77 {
78         return ((cb->base + cb->len) & cb->mask);
79 }
80
81 static void cbuf_init(struct cbuf *cb, int size)
82 {
83         cb->base = cb->len = 0;
84         cb->mask = size-1;
85 }
86
87 static void cbuf_eat(struct cbuf *cb, int n)
88 {
89         cb->len  -= n;
90         cb->base += n;
91         cb->base &= cb->mask;
92 }
93
94 static bool cbuf_empty(struct cbuf *cb)
95 {
96         return cb->len == 0;
97 }
98
99 struct connection {
100         struct socket *sock;    /* NULL if not connected */
101         uint32_t nodeid;        /* So we know who we are in the list */
102         struct mutex sock_mutex;
103         unsigned long flags;
104 #define CF_READ_PENDING 1
105 #define CF_WRITE_PENDING 2
106 #define CF_CONNECT_PENDING 3
107 #define CF_INIT_PENDING 4
108 #define CF_IS_OTHERCON 5
109 #define CF_CLOSE 6
110         struct list_head writequeue;  /* List of outgoing writequeue_entries */
111         spinlock_t writequeue_lock;
112         int (*rx_action) (struct connection *); /* What to do when active */
113         void (*connect_action) (struct connection *);   /* What to do to connect */
114         struct page *rx_page;
115         struct cbuf cb;
116         int retries;
117 #define MAX_CONNECT_RETRIES 3
118         int sctp_assoc;
119         struct hlist_node list;
120         struct connection *othercon;
121         struct work_struct rwork; /* Receive workqueue */
122         struct work_struct swork; /* Send workqueue */
123 };
124 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
125
126 /* An entry waiting to be sent */
127 struct writequeue_entry {
128         struct list_head list;
129         struct page *page;
130         int offset;
131         int len;
132         int end;
133         int users;
134         struct connection *con;
135 };
136
137 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
138 static int dlm_local_count;
139
140 /* Work queues */
141 static struct workqueue_struct *recv_workqueue;
142 static struct workqueue_struct *send_workqueue;
143
144 static struct hlist_head connection_hash[CONN_HASH_SIZE];
145 static DEFINE_MUTEX(connections_lock);
146 static struct kmem_cache *con_cache;
147
148 static void process_recv_sockets(struct work_struct *work);
149 static void process_send_sockets(struct work_struct *work);
150
151
152 /* This is deliberately very simple because most clusters have simple
153    sequential nodeids, so we should be able to go straight to a connection
154    struct in the array */
155 static inline int nodeid_hash(int nodeid)
156 {
157         return nodeid & (CONN_HASH_SIZE-1);
158 }
159
160 static struct connection *__find_con(int nodeid)
161 {
162         int r;
163         struct hlist_node *h;
164         struct connection *con;
165
166         r = nodeid_hash(nodeid);
167
168         hlist_for_each_entry(con, h, &connection_hash[r], list) {
169                 if (con->nodeid == nodeid)
170                         return con;
171         }
172         return NULL;
173 }
174
175 /*
176  * If 'allocation' is zero then we don't attempt to create a new
177  * connection structure for this node.
178  */
179 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
180 {
181         struct connection *con = NULL;
182         int r;
183
184         con = __find_con(nodeid);
185         if (con || !alloc)
186                 return con;
187
188         con = kmem_cache_zalloc(con_cache, alloc);
189         if (!con)
190                 return NULL;
191
192         r = nodeid_hash(nodeid);
193         hlist_add_head(&con->list, &connection_hash[r]);
194
195         con->nodeid = nodeid;
196         mutex_init(&con->sock_mutex);
197         INIT_LIST_HEAD(&con->writequeue);
198         spin_lock_init(&con->writequeue_lock);
199         INIT_WORK(&con->swork, process_send_sockets);
200         INIT_WORK(&con->rwork, process_recv_sockets);
201
202         /* Setup action pointers for child sockets */
203         if (con->nodeid) {
204                 struct connection *zerocon = __find_con(0);
205
206                 con->connect_action = zerocon->connect_action;
207                 if (!con->rx_action)
208                         con->rx_action = zerocon->rx_action;
209         }
210
211         return con;
212 }
213
214 /* Loop round all connections */
215 static void foreach_conn(void (*conn_func)(struct connection *c))
216 {
217         int i;
218         struct hlist_node *h, *n;
219         struct connection *con;
220
221         for (i = 0; i < CONN_HASH_SIZE; i++) {
222                 hlist_for_each_entry_safe(con, h, n, &connection_hash[i], list){
223                         conn_func(con);
224                 }
225         }
226 }
227
228 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
229 {
230         struct connection *con;
231
232         mutex_lock(&connections_lock);
233         con = __nodeid2con(nodeid, allocation);
234         mutex_unlock(&connections_lock);
235
236         return con;
237 }
238
239 /* This is a bit drastic, but only called when things go wrong */
240 static struct connection *assoc2con(int assoc_id)
241 {
242         int i;
243         struct hlist_node *h;
244         struct connection *con;
245
246         mutex_lock(&connections_lock);
247
248         for (i = 0 ; i < CONN_HASH_SIZE; i++) {
249                 hlist_for_each_entry(con, h, &connection_hash[i], list) {
250                         if (con && con->sctp_assoc == assoc_id) {
251                                 mutex_unlock(&connections_lock);
252                                 return con;
253                         }
254                 }
255         }
256         mutex_unlock(&connections_lock);
257         return NULL;
258 }
259
260 static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
261 {
262         struct sockaddr_storage addr;
263         int error;
264
265         if (!dlm_local_count)
266                 return -1;
267
268         error = dlm_nodeid_to_addr(nodeid, &addr);
269         if (error)
270                 return error;
271
272         if (dlm_local_addr[0]->ss_family == AF_INET) {
273                 struct sockaddr_in *in4  = (struct sockaddr_in *) &addr;
274                 struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
275                 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
276         } else {
277                 struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &addr;
278                 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
279                 ipv6_addr_copy(&ret6->sin6_addr, &in6->sin6_addr);
280         }
281
282         return 0;
283 }
284
285 /* Data available on socket or listen socket received a connect */
286 static void lowcomms_data_ready(struct sock *sk, int count_unused)
287 {
288         struct connection *con = sock2con(sk);
289         if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
290                 queue_work(recv_workqueue, &con->rwork);
291 }
292
293 static void lowcomms_write_space(struct sock *sk)
294 {
295         struct connection *con = sock2con(sk);
296
297         if (con && !test_and_set_bit(CF_WRITE_PENDING, &con->flags))
298                 queue_work(send_workqueue, &con->swork);
299 }
300
301 static inline void lowcomms_connect_sock(struct connection *con)
302 {
303         if (test_bit(CF_CLOSE, &con->flags))
304                 return;
305         if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
306                 queue_work(send_workqueue, &con->swork);
307 }
308
309 static void lowcomms_state_change(struct sock *sk)
310 {
311         if (sk->sk_state == TCP_ESTABLISHED)
312                 lowcomms_write_space(sk);
313 }
314
315 int dlm_lowcomms_connect_node(int nodeid)
316 {
317         struct connection *con;
318
319         if (nodeid == dlm_our_nodeid())
320                 return 0;
321
322         con = nodeid2con(nodeid, GFP_NOFS);
323         if (!con)
324                 return -ENOMEM;
325         lowcomms_connect_sock(con);
326         return 0;
327 }
328
329 /* Make a socket active */
330 static int add_sock(struct socket *sock, struct connection *con)
331 {
332         con->sock = sock;
333
334         /* Install a data_ready callback */
335         con->sock->sk->sk_data_ready = lowcomms_data_ready;
336         con->sock->sk->sk_write_space = lowcomms_write_space;
337         con->sock->sk->sk_state_change = lowcomms_state_change;
338         con->sock->sk->sk_user_data = con;
339         con->sock->sk->sk_allocation = GFP_NOFS;
340         return 0;
341 }
342
343 /* Add the port number to an IPv6 or 4 sockaddr and return the address
344    length */
345 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
346                           int *addr_len)
347 {
348         saddr->ss_family =  dlm_local_addr[0]->ss_family;
349         if (saddr->ss_family == AF_INET) {
350                 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
351                 in4_addr->sin_port = cpu_to_be16(port);
352                 *addr_len = sizeof(struct sockaddr_in);
353                 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
354         } else {
355                 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
356                 in6_addr->sin6_port = cpu_to_be16(port);
357                 *addr_len = sizeof(struct sockaddr_in6);
358         }
359         memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
360 }
361
362 /* Close a remote connection and tidy up */
363 static void close_connection(struct connection *con, bool and_other)
364 {
365         mutex_lock(&con->sock_mutex);
366
367         if (con->sock) {
368                 sock_release(con->sock);
369                 con->sock = NULL;
370         }
371         if (con->othercon && and_other) {
372                 /* Will only re-enter once. */
373                 close_connection(con->othercon, false);
374         }
375         if (con->rx_page) {
376                 __free_page(con->rx_page);
377                 con->rx_page = NULL;
378         }
379
380         con->retries = 0;
381         mutex_unlock(&con->sock_mutex);
382 }
383
384 /* We only send shutdown messages to nodes that are not part of the cluster */
385 static void sctp_send_shutdown(sctp_assoc_t associd)
386 {
387         static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
388         struct msghdr outmessage;
389         struct cmsghdr *cmsg;
390         struct sctp_sndrcvinfo *sinfo;
391         int ret;
392         struct connection *con;
393
394         con = nodeid2con(0,0);
395         BUG_ON(con == NULL);
396
397         outmessage.msg_name = NULL;
398         outmessage.msg_namelen = 0;
399         outmessage.msg_control = outcmsg;
400         outmessage.msg_controllen = sizeof(outcmsg);
401         outmessage.msg_flags = MSG_EOR;
402
403         cmsg = CMSG_FIRSTHDR(&outmessage);
404         cmsg->cmsg_level = IPPROTO_SCTP;
405         cmsg->cmsg_type = SCTP_SNDRCV;
406         cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
407         outmessage.msg_controllen = cmsg->cmsg_len;
408         sinfo = CMSG_DATA(cmsg);
409         memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
410
411         sinfo->sinfo_flags |= MSG_EOF;
412         sinfo->sinfo_assoc_id = associd;
413
414         ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
415
416         if (ret != 0)
417                 log_print("send EOF to node failed: %d", ret);
418 }
419
420 static void sctp_init_failed_foreach(struct connection *con)
421 {
422         con->sctp_assoc = 0;
423         if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
424                 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
425                         queue_work(send_workqueue, &con->swork);
426         }
427 }
428
429 /* INIT failed but we don't know which node...
430    restart INIT on all pending nodes */
431 static void sctp_init_failed(void)
432 {
433         mutex_lock(&connections_lock);
434
435         foreach_conn(sctp_init_failed_foreach);
436
437         mutex_unlock(&connections_lock);
438 }
439
440 /* Something happened to an association */
441 static void process_sctp_notification(struct connection *con,
442                                       struct msghdr *msg, char *buf)
443 {
444         union sctp_notification *sn = (union sctp_notification *)buf;
445
446         if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
447                 switch (sn->sn_assoc_change.sac_state) {
448
449                 case SCTP_COMM_UP:
450                 case SCTP_RESTART:
451                 {
452                         /* Check that the new node is in the lockspace */
453                         struct sctp_prim prim;
454                         int nodeid;
455                         int prim_len, ret;
456                         int addr_len;
457                         struct connection *new_con;
458                         struct file *file;
459                         sctp_peeloff_arg_t parg;
460                         int parglen = sizeof(parg);
461
462                         /*
463                          * We get this before any data for an association.
464                          * We verify that the node is in the cluster and
465                          * then peel off a socket for it.
466                          */
467                         if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
468                                 log_print("COMM_UP for invalid assoc ID %d",
469                                          (int)sn->sn_assoc_change.sac_assoc_id);
470                                 sctp_init_failed();
471                                 return;
472                         }
473                         memset(&prim, 0, sizeof(struct sctp_prim));
474                         prim_len = sizeof(struct sctp_prim);
475                         prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
476
477                         ret = kernel_getsockopt(con->sock,
478                                                 IPPROTO_SCTP,
479                                                 SCTP_PRIMARY_ADDR,
480                                                 (char*)&prim,
481                                                 &prim_len);
482                         if (ret < 0) {
483                                 log_print("getsockopt/sctp_primary_addr on "
484                                           "new assoc %d failed : %d",
485                                           (int)sn->sn_assoc_change.sac_assoc_id,
486                                           ret);
487
488                                 /* Retry INIT later */
489                                 new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
490                                 if (new_con)
491                                         clear_bit(CF_CONNECT_PENDING, &con->flags);
492                                 return;
493                         }
494                         make_sockaddr(&prim.ssp_addr, 0, &addr_len);
495                         if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
496                                 int i;
497                                 unsigned char *b=(unsigned char *)&prim.ssp_addr;
498                                 log_print("reject connect from unknown addr");
499                                 for (i=0; i<sizeof(struct sockaddr_storage);i++)
500                                         printk("%02x ", b[i]);
501                                 printk("\n");
502                                 sctp_send_shutdown(prim.ssp_assoc_id);
503                                 return;
504                         }
505
506                         new_con = nodeid2con(nodeid, GFP_NOFS);
507                         if (!new_con)
508                                 return;
509
510                         /* Peel off a new sock */
511                         parg.associd = sn->sn_assoc_change.sac_assoc_id;
512                         ret = kernel_getsockopt(con->sock, IPPROTO_SCTP,
513                                                 SCTP_SOCKOPT_PEELOFF,
514                                                 (void *)&parg, &parglen);
515                         if (ret) {
516                                 log_print("Can't peel off a socket for "
517                                           "connection %d to node %d: err=%d\n",
518                                           parg.associd, nodeid, ret);
519                         }
520                         file = fget(parg.sd);
521                         new_con->sock = SOCKET_I(file->f_dentry->d_inode);
522                         add_sock(new_con->sock, new_con);
523                         fput(file);
524                         put_unused_fd(parg.sd);
525
526                         log_print("got new/restarted association %d nodeid %d",
527                                  (int)sn->sn_assoc_change.sac_assoc_id, nodeid);
528
529                         /* Send any pending writes */
530                         clear_bit(CF_CONNECT_PENDING, &new_con->flags);
531                         clear_bit(CF_INIT_PENDING, &con->flags);
532                         if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
533                                 queue_work(send_workqueue, &new_con->swork);
534                         }
535                         if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
536                                 queue_work(recv_workqueue, &new_con->rwork);
537                 }
538                 break;
539
540                 case SCTP_COMM_LOST:
541                 case SCTP_SHUTDOWN_COMP:
542                 {
543                         con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
544                         if (con) {
545                                 con->sctp_assoc = 0;
546                         }
547                 }
548                 break;
549
550                 /* We don't know which INIT failed, so clear the PENDING flags
551                  * on them all.  if assoc_id is zero then it will then try
552                  * again */
553
554                 case SCTP_CANT_STR_ASSOC:
555                 {
556                         log_print("Can't start SCTP association - retrying");
557                         sctp_init_failed();
558                 }
559                 break;
560
561                 default:
562                         log_print("unexpected SCTP assoc change id=%d state=%d",
563                                   (int)sn->sn_assoc_change.sac_assoc_id,
564                                   sn->sn_assoc_change.sac_state);
565                 }
566         }
567 }
568
569 /* Data received from remote end */
570 static int receive_from_sock(struct connection *con)
571 {
572         int ret = 0;
573         struct msghdr msg = {};
574         struct kvec iov[2];
575         unsigned len;
576         int r;
577         int call_again_soon = 0;
578         int nvec;
579         char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
580
581         mutex_lock(&con->sock_mutex);
582
583         if (con->sock == NULL) {
584                 ret = -EAGAIN;
585                 goto out_close;
586         }
587
588         if (con->rx_page == NULL) {
589                 /*
590                  * This doesn't need to be atomic, but I think it should
591                  * improve performance if it is.
592                  */
593                 con->rx_page = alloc_page(GFP_ATOMIC);
594                 if (con->rx_page == NULL)
595                         goto out_resched;
596                 cbuf_init(&con->cb, PAGE_CACHE_SIZE);
597         }
598
599         /* Only SCTP needs these really */
600         memset(&incmsg, 0, sizeof(incmsg));
601         msg.msg_control = incmsg;
602         msg.msg_controllen = sizeof(incmsg);
603
604         /*
605          * iov[0] is the bit of the circular buffer between the current end
606          * point (cb.base + cb.len) and the end of the buffer.
607          */
608         iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
609         iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
610         iov[1].iov_len = 0;
611         nvec = 1;
612
613         /*
614          * iov[1] is the bit of the circular buffer between the start of the
615          * buffer and the start of the currently used section (cb.base)
616          */
617         if (cbuf_data(&con->cb) >= con->cb.base) {
618                 iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
619                 iov[1].iov_len = con->cb.base;
620                 iov[1].iov_base = page_address(con->rx_page);
621                 nvec = 2;
622         }
623         len = iov[0].iov_len + iov[1].iov_len;
624
625         r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
626                                MSG_DONTWAIT | MSG_NOSIGNAL);
627         if (ret <= 0)
628                 goto out_close;
629
630         /* Process SCTP notifications */
631         if (msg.msg_flags & MSG_NOTIFICATION) {
632                 msg.msg_control = incmsg;
633                 msg.msg_controllen = sizeof(incmsg);
634
635                 process_sctp_notification(con, &msg,
636                                 page_address(con->rx_page) + con->cb.base);
637                 mutex_unlock(&con->sock_mutex);
638                 return 0;
639         }
640         BUG_ON(con->nodeid == 0);
641
642         if (ret == len)
643                 call_again_soon = 1;
644         cbuf_add(&con->cb, ret);
645         ret = dlm_process_incoming_buffer(con->nodeid,
646                                           page_address(con->rx_page),
647                                           con->cb.base, con->cb.len,
648                                           PAGE_CACHE_SIZE);
649         if (ret == -EBADMSG) {
650                 log_print("lowcomms: addr=%p, base=%u, len=%u, "
651                           "iov_len=%u, iov_base[0]=%p, read=%d",
652                           page_address(con->rx_page), con->cb.base, con->cb.len,
653                           len, iov[0].iov_base, r);
654         }
655         if (ret < 0)
656                 goto out_close;
657         cbuf_eat(&con->cb, ret);
658
659         if (cbuf_empty(&con->cb) && !call_again_soon) {
660                 __free_page(con->rx_page);
661                 con->rx_page = NULL;
662         }
663
664         if (call_again_soon)
665                 goto out_resched;
666         mutex_unlock(&con->sock_mutex);
667         return 0;
668
669 out_resched:
670         if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
671                 queue_work(recv_workqueue, &con->rwork);
672         mutex_unlock(&con->sock_mutex);
673         return -EAGAIN;
674
675 out_close:
676         mutex_unlock(&con->sock_mutex);
677         if (ret != -EAGAIN) {
678                 close_connection(con, false);
679                 /* Reconnect when there is something to send */
680         }
681         /* Don't return success if we really got EOF */
682         if (ret == 0)
683                 ret = -EAGAIN;
684
685         return ret;
686 }
687
688 /* Listening socket is busy, accept a connection */
689 static int tcp_accept_from_sock(struct connection *con)
690 {
691         int result;
692         struct sockaddr_storage peeraddr;
693         struct socket *newsock;
694         int len;
695         int nodeid;
696         struct connection *newcon;
697         struct connection *addcon;
698
699         memset(&peeraddr, 0, sizeof(peeraddr));
700         result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
701                                   IPPROTO_TCP, &newsock);
702         if (result < 0)
703                 return -ENOMEM;
704
705         mutex_lock_nested(&con->sock_mutex, 0);
706
707         result = -ENOTCONN;
708         if (con->sock == NULL)
709                 goto accept_err;
710
711         newsock->type = con->sock->type;
712         newsock->ops = con->sock->ops;
713
714         result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
715         if (result < 0)
716                 goto accept_err;
717
718         /* Get the connected socket's peer */
719         memset(&peeraddr, 0, sizeof(peeraddr));
720         if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
721                                   &len, 2)) {
722                 result = -ECONNABORTED;
723                 goto accept_err;
724         }
725
726         /* Get the new node's NODEID */
727         make_sockaddr(&peeraddr, 0, &len);
728         if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
729                 log_print("connect from non cluster node");
730                 sock_release(newsock);
731                 mutex_unlock(&con->sock_mutex);
732                 return -1;
733         }
734
735         log_print("got connection from %d", nodeid);
736
737         /*  Check to see if we already have a connection to this node. This
738          *  could happen if the two nodes initiate a connection at roughly
739          *  the same time and the connections cross on the wire.
740          *  In this case we store the incoming one in "othercon"
741          */
742         newcon = nodeid2con(nodeid, GFP_NOFS);
743         if (!newcon) {
744                 result = -ENOMEM;
745                 goto accept_err;
746         }
747         mutex_lock_nested(&newcon->sock_mutex, 1);
748         if (newcon->sock) {
749                 struct connection *othercon = newcon->othercon;
750
751                 if (!othercon) {
752                         othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
753                         if (!othercon) {
754                                 log_print("failed to allocate incoming socket");
755                                 mutex_unlock(&newcon->sock_mutex);
756                                 result = -ENOMEM;
757                                 goto accept_err;
758                         }
759                         othercon->nodeid = nodeid;
760                         othercon->rx_action = receive_from_sock;
761                         mutex_init(&othercon->sock_mutex);
762                         INIT_WORK(&othercon->swork, process_send_sockets);
763                         INIT_WORK(&othercon->rwork, process_recv_sockets);
764                         set_bit(CF_IS_OTHERCON, &othercon->flags);
765                 }
766                 if (!othercon->sock) {
767                         newcon->othercon = othercon;
768                         othercon->sock = newsock;
769                         newsock->sk->sk_user_data = othercon;
770                         add_sock(newsock, othercon);
771                         addcon = othercon;
772                 }
773                 else {
774                         printk("Extra connection from node %d attempted\n", nodeid);
775                         result = -EAGAIN;
776                         mutex_unlock(&newcon->sock_mutex);
777                         goto accept_err;
778                 }
779         }
780         else {
781                 newsock->sk->sk_user_data = newcon;
782                 newcon->rx_action = receive_from_sock;
783                 add_sock(newsock, newcon);
784                 addcon = newcon;
785         }
786
787         mutex_unlock(&newcon->sock_mutex);
788
789         /*
790          * Add it to the active queue in case we got data
791          * beween processing the accept adding the socket
792          * to the read_sockets list
793          */
794         if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
795                 queue_work(recv_workqueue, &addcon->rwork);
796         mutex_unlock(&con->sock_mutex);
797
798         return 0;
799
800 accept_err:
801         mutex_unlock(&con->sock_mutex);
802         sock_release(newsock);
803
804         if (result != -EAGAIN)
805                 log_print("error accepting connection from node: %d", result);
806         return result;
807 }
808
809 static void free_entry(struct writequeue_entry *e)
810 {
811         __free_page(e->page);
812         kfree(e);
813 }
814
815 /* Initiate an SCTP association.
816    This is a special case of send_to_sock() in that we don't yet have a
817    peeled-off socket for this association, so we use the listening socket
818    and add the primary IP address of the remote node.
819  */
820 static void sctp_init_assoc(struct connection *con)
821 {
822         struct sockaddr_storage rem_addr;
823         char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
824         struct msghdr outmessage;
825         struct cmsghdr *cmsg;
826         struct sctp_sndrcvinfo *sinfo;
827         struct connection *base_con;
828         struct writequeue_entry *e;
829         int len, offset;
830         int ret;
831         int addrlen;
832         struct kvec iov[1];
833
834         if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
835                 return;
836
837         if (con->retries++ > MAX_CONNECT_RETRIES)
838                 return;
839
840         log_print("Initiating association with node %d", con->nodeid);
841
842         if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
843                 log_print("no address for nodeid %d", con->nodeid);
844                 return;
845         }
846         base_con = nodeid2con(0, 0);
847         BUG_ON(base_con == NULL);
848
849         make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
850
851         outmessage.msg_name = &rem_addr;
852         outmessage.msg_namelen = addrlen;
853         outmessage.msg_control = outcmsg;
854         outmessage.msg_controllen = sizeof(outcmsg);
855         outmessage.msg_flags = MSG_EOR;
856
857         spin_lock(&con->writequeue_lock);
858         e = list_entry(con->writequeue.next, struct writequeue_entry,
859                        list);
860
861         BUG_ON((struct list_head *) e == &con->writequeue);
862
863         len = e->len;
864         offset = e->offset;
865         spin_unlock(&con->writequeue_lock);
866
867         /* Send the first block off the write queue */
868         iov[0].iov_base = page_address(e->page)+offset;
869         iov[0].iov_len = len;
870
871         cmsg = CMSG_FIRSTHDR(&outmessage);
872         cmsg->cmsg_level = IPPROTO_SCTP;
873         cmsg->cmsg_type = SCTP_SNDRCV;
874         cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
875         sinfo = CMSG_DATA(cmsg);
876         memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
877         sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
878         outmessage.msg_controllen = cmsg->cmsg_len;
879
880         ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
881         if (ret < 0) {
882                 log_print("Send first packet to node %d failed: %d",
883                           con->nodeid, ret);
884
885                 /* Try again later */
886                 clear_bit(CF_CONNECT_PENDING, &con->flags);
887                 clear_bit(CF_INIT_PENDING, &con->flags);
888         }
889         else {
890                 spin_lock(&con->writequeue_lock);
891                 e->offset += ret;
892                 e->len -= ret;
893
894                 if (e->len == 0 && e->users == 0) {
895                         list_del(&e->list);
896                         free_entry(e);
897                 }
898                 spin_unlock(&con->writequeue_lock);
899         }
900 }
901
902 /* Connect a new socket to its peer */
903 static void tcp_connect_to_sock(struct connection *con)
904 {
905         int result = -EHOSTUNREACH;
906         struct sockaddr_storage saddr, src_addr;
907         int addr_len;
908         struct socket *sock = NULL;
909
910         if (con->nodeid == 0) {
911                 log_print("attempt to connect sock 0 foiled");
912                 return;
913         }
914
915         mutex_lock(&con->sock_mutex);
916         if (con->retries++ > MAX_CONNECT_RETRIES)
917                 goto out;
918
919         /* Some odd races can cause double-connects, ignore them */
920         if (con->sock) {
921                 result = 0;
922                 goto out;
923         }
924
925         /* Create a socket to communicate with */
926         result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
927                                   IPPROTO_TCP, &sock);
928         if (result < 0)
929                 goto out_err;
930
931         memset(&saddr, 0, sizeof(saddr));
932         if (dlm_nodeid_to_addr(con->nodeid, &saddr))
933                 goto out_err;
934
935         sock->sk->sk_user_data = con;
936         con->rx_action = receive_from_sock;
937         con->connect_action = tcp_connect_to_sock;
938         add_sock(sock, con);
939
940         /* Bind to our cluster-known address connecting to avoid
941            routing problems */
942         memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
943         make_sockaddr(&src_addr, 0, &addr_len);
944         result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
945                                  addr_len);
946         if (result < 0) {
947                 log_print("could not bind for connect: %d", result);
948                 /* This *may* not indicate a critical error */
949         }
950
951         make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
952
953         log_print("connecting to %d", con->nodeid);
954         result =
955                 sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
956                                    O_NONBLOCK);
957         if (result == -EINPROGRESS)
958                 result = 0;
959         if (result == 0)
960                 goto out;
961
962 out_err:
963         if (con->sock) {
964                 sock_release(con->sock);
965                 con->sock = NULL;
966         } else if (sock) {
967                 sock_release(sock);
968         }
969         /*
970          * Some errors are fatal and this list might need adjusting. For other
971          * errors we try again until the max number of retries is reached.
972          */
973         if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
974             result != -ENETDOWN && result != -EINVAL
975             && result != -EPROTONOSUPPORT) {
976                 lowcomms_connect_sock(con);
977                 result = 0;
978         }
979 out:
980         mutex_unlock(&con->sock_mutex);
981         return;
982 }
983
984 static struct socket *tcp_create_listen_sock(struct connection *con,
985                                              struct sockaddr_storage *saddr)
986 {
987         struct socket *sock = NULL;
988         int result = 0;
989         int one = 1;
990         int addr_len;
991
992         if (dlm_local_addr[0]->ss_family == AF_INET)
993                 addr_len = sizeof(struct sockaddr_in);
994         else
995                 addr_len = sizeof(struct sockaddr_in6);
996
997         /* Create a socket to communicate with */
998         result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
999                                   IPPROTO_TCP, &sock);
1000         if (result < 0) {
1001                 log_print("Can't create listening comms socket");
1002                 goto create_out;
1003         }
1004
1005         result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1006                                    (char *)&one, sizeof(one));
1007
1008         if (result < 0) {
1009                 log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1010         }
1011         sock->sk->sk_user_data = con;
1012         con->rx_action = tcp_accept_from_sock;
1013         con->connect_action = tcp_connect_to_sock;
1014         con->sock = sock;
1015
1016         /* Bind to our port */
1017         make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1018         result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1019         if (result < 0) {
1020                 log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1021                 sock_release(sock);
1022                 sock = NULL;
1023                 con->sock = NULL;
1024                 goto create_out;
1025         }
1026         result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1027                                  (char *)&one, sizeof(one));
1028         if (result < 0) {
1029                 log_print("Set keepalive failed: %d", result);
1030         }
1031
1032         result = sock->ops->listen(sock, 5);
1033         if (result < 0) {
1034                 log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1035                 sock_release(sock);
1036                 sock = NULL;
1037                 goto create_out;
1038         }
1039
1040 create_out:
1041         return sock;
1042 }
1043
1044 /* Get local addresses */
1045 static void init_local(void)
1046 {
1047         struct sockaddr_storage sas, *addr;
1048         int i;
1049
1050         dlm_local_count = 0;
1051         for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) {
1052                 if (dlm_our_addr(&sas, i))
1053                         break;
1054
1055                 addr = kmalloc(sizeof(*addr), GFP_KERNEL);
1056                 if (!addr)
1057                         break;
1058                 memcpy(addr, &sas, sizeof(*addr));
1059                 dlm_local_addr[dlm_local_count++] = addr;
1060         }
1061 }
1062
1063 /* Bind to an IP address. SCTP allows multiple address so it can do
1064    multi-homing */
1065 static int add_sctp_bind_addr(struct connection *sctp_con,
1066                               struct sockaddr_storage *addr,
1067                               int addr_len, int num)
1068 {
1069         int result = 0;
1070
1071         if (num == 1)
1072                 result = kernel_bind(sctp_con->sock,
1073                                      (struct sockaddr *) addr,
1074                                      addr_len);
1075         else
1076                 result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1077                                            SCTP_SOCKOPT_BINDX_ADD,
1078                                            (char *)addr, addr_len);
1079
1080         if (result < 0)
1081                 log_print("Can't bind to port %d addr number %d",
1082                           dlm_config.ci_tcp_port, num);
1083
1084         return result;
1085 }
1086
1087 /* Initialise SCTP socket and bind to all interfaces */
1088 static int sctp_listen_for_all(void)
1089 {
1090         struct socket *sock = NULL;
1091         struct sockaddr_storage localaddr;
1092         struct sctp_event_subscribe subscribe;
1093         int result = -EINVAL, num = 1, i, addr_len;
1094         struct connection *con = nodeid2con(0, GFP_KERNEL);
1095         int bufsize = NEEDED_RMEM;
1096
1097         if (!con)
1098                 return -ENOMEM;
1099
1100         log_print("Using SCTP for communications");
1101
1102         result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1103                                   IPPROTO_SCTP, &sock);
1104         if (result < 0) {
1105                 log_print("Can't create comms socket, check SCTP is loaded");
1106                 goto out;
1107         }
1108
1109         /* Listen for events */
1110         memset(&subscribe, 0, sizeof(subscribe));
1111         subscribe.sctp_data_io_event = 1;
1112         subscribe.sctp_association_event = 1;
1113         subscribe.sctp_send_failure_event = 1;
1114         subscribe.sctp_shutdown_event = 1;
1115         subscribe.sctp_partial_delivery_event = 1;
1116
1117         result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1118                                  (char *)&bufsize, sizeof(bufsize));
1119         if (result)
1120                 log_print("Error increasing buffer space on socket %d", result);
1121
1122         result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1123                                    (char *)&subscribe, sizeof(subscribe));
1124         if (result < 0) {
1125                 log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1126                           result);
1127                 goto create_delsock;
1128         }
1129
1130         /* Init con struct */
1131         sock->sk->sk_user_data = con;
1132         con->sock = sock;
1133         con->sock->sk->sk_data_ready = lowcomms_data_ready;
1134         con->rx_action = receive_from_sock;
1135         con->connect_action = sctp_init_assoc;
1136
1137         /* Bind to all interfaces. */
1138         for (i = 0; i < dlm_local_count; i++) {
1139                 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1140                 make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1141
1142                 result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1143                 if (result)
1144                         goto create_delsock;
1145                 ++num;
1146         }
1147
1148         result = sock->ops->listen(sock, 5);
1149         if (result < 0) {
1150                 log_print("Can't set socket listening");
1151                 goto create_delsock;
1152         }
1153
1154         return 0;
1155
1156 create_delsock:
1157         sock_release(sock);
1158         con->sock = NULL;
1159 out:
1160         return result;
1161 }
1162
1163 static int tcp_listen_for_all(void)
1164 {
1165         struct socket *sock = NULL;
1166         struct connection *con = nodeid2con(0, GFP_KERNEL);
1167         int result = -EINVAL;
1168
1169         if (!con)
1170                 return -ENOMEM;
1171
1172         /* We don't support multi-homed hosts */
1173         if (dlm_local_addr[1] != NULL) {
1174                 log_print("TCP protocol can't handle multi-homed hosts, "
1175                           "try SCTP");
1176                 return -EINVAL;
1177         }
1178
1179         log_print("Using TCP for communications");
1180
1181         sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1182         if (sock) {
1183                 add_sock(sock, con);
1184                 result = 0;
1185         }
1186         else {
1187                 result = -EADDRINUSE;
1188         }
1189
1190         return result;
1191 }
1192
1193
1194
1195 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1196                                                      gfp_t allocation)
1197 {
1198         struct writequeue_entry *entry;
1199
1200         entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1201         if (!entry)
1202                 return NULL;
1203
1204         entry->page = alloc_page(allocation);
1205         if (!entry->page) {
1206                 kfree(entry);
1207                 return NULL;
1208         }
1209
1210         entry->offset = 0;
1211         entry->len = 0;
1212         entry->end = 0;
1213         entry->users = 0;
1214         entry->con = con;
1215
1216         return entry;
1217 }
1218
1219 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1220 {
1221         struct connection *con;
1222         struct writequeue_entry *e;
1223         int offset = 0;
1224         int users = 0;
1225
1226         con = nodeid2con(nodeid, allocation);
1227         if (!con)
1228                 return NULL;
1229
1230         spin_lock(&con->writequeue_lock);
1231         e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1232         if ((&e->list == &con->writequeue) ||
1233             (PAGE_CACHE_SIZE - e->end < len)) {
1234                 e = NULL;
1235         } else {
1236                 offset = e->end;
1237                 e->end += len;
1238                 users = e->users++;
1239         }
1240         spin_unlock(&con->writequeue_lock);
1241
1242         if (e) {
1243         got_one:
1244                 *ppc = page_address(e->page) + offset;
1245                 return e;
1246         }
1247
1248         e = new_writequeue_entry(con, allocation);
1249         if (e) {
1250                 spin_lock(&con->writequeue_lock);
1251                 offset = e->end;
1252                 e->end += len;
1253                 users = e->users++;
1254                 list_add_tail(&e->list, &con->writequeue);
1255                 spin_unlock(&con->writequeue_lock);
1256                 goto got_one;
1257         }
1258         return NULL;
1259 }
1260
1261 void dlm_lowcomms_commit_buffer(void *mh)
1262 {
1263         struct writequeue_entry *e = (struct writequeue_entry *)mh;
1264         struct connection *con = e->con;
1265         int users;
1266
1267         spin_lock(&con->writequeue_lock);
1268         users = --e->users;
1269         if (users)
1270                 goto out;
1271         e->len = e->end - e->offset;
1272         spin_unlock(&con->writequeue_lock);
1273
1274         if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1275                 queue_work(send_workqueue, &con->swork);
1276         }
1277         return;
1278
1279 out:
1280         spin_unlock(&con->writequeue_lock);
1281         return;
1282 }
1283
1284 /* Send a message */
1285 static void send_to_sock(struct connection *con)
1286 {
1287         int ret = 0;
1288         ssize_t(*sendpage) (struct socket *, struct page *, int, size_t, int);
1289         const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1290         struct writequeue_entry *e;
1291         int len, offset;
1292
1293         mutex_lock(&con->sock_mutex);
1294         if (con->sock == NULL)
1295                 goto out_connect;
1296
1297         sendpage = con->sock->ops->sendpage;
1298
1299         spin_lock(&con->writequeue_lock);
1300         for (;;) {
1301                 e = list_entry(con->writequeue.next, struct writequeue_entry,
1302                                list);
1303                 if ((struct list_head *) e == &con->writequeue)
1304                         break;
1305
1306                 len = e->len;
1307                 offset = e->offset;
1308                 BUG_ON(len == 0 && e->users == 0);
1309                 spin_unlock(&con->writequeue_lock);
1310
1311                 ret = 0;
1312                 if (len) {
1313                         ret = sendpage(con->sock, e->page, offset, len,
1314                                        msg_flags);
1315                         if (ret == -EAGAIN || ret == 0) {
1316                                 cond_resched();
1317                                 goto out;
1318                         }
1319                         if (ret <= 0)
1320                                 goto send_error;
1321                 }
1322                         /* Don't starve people filling buffers */
1323                         cond_resched();
1324
1325                 spin_lock(&con->writequeue_lock);
1326                 e->offset += ret;
1327                 e->len -= ret;
1328
1329                 if (e->len == 0 && e->users == 0) {
1330                         list_del(&e->list);
1331                         free_entry(e);
1332                         continue;
1333                 }
1334         }
1335         spin_unlock(&con->writequeue_lock);
1336 out:
1337         mutex_unlock(&con->sock_mutex);
1338         return;
1339
1340 send_error:
1341         mutex_unlock(&con->sock_mutex);
1342         close_connection(con, false);
1343         lowcomms_connect_sock(con);
1344         return;
1345
1346 out_connect:
1347         mutex_unlock(&con->sock_mutex);
1348         if (!test_bit(CF_INIT_PENDING, &con->flags))
1349                 lowcomms_connect_sock(con);
1350         return;
1351 }
1352
1353 static void clean_one_writequeue(struct connection *con)
1354 {
1355         struct writequeue_entry *e, *safe;
1356
1357         spin_lock(&con->writequeue_lock);
1358         list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1359                 list_del(&e->list);
1360                 free_entry(e);
1361         }
1362         spin_unlock(&con->writequeue_lock);
1363 }
1364
1365 /* Called from recovery when it knows that a node has
1366    left the cluster */
1367 int dlm_lowcomms_close(int nodeid)
1368 {
1369         struct connection *con;
1370
1371         log_print("closing connection to node %d", nodeid);
1372         con = nodeid2con(nodeid, 0);
1373         if (con) {
1374                 clear_bit(CF_CONNECT_PENDING, &con->flags);
1375                 clear_bit(CF_WRITE_PENDING, &con->flags);
1376                 set_bit(CF_CLOSE, &con->flags);
1377                 if (cancel_work_sync(&con->swork))
1378                         log_print("canceled swork for node %d", nodeid);
1379                 if (cancel_work_sync(&con->rwork))
1380                         log_print("canceled rwork for node %d", nodeid);
1381                 clean_one_writequeue(con);
1382                 close_connection(con, true);
1383         }
1384         return 0;
1385 }
1386
1387 /* Receive workqueue function */
1388 static void process_recv_sockets(struct work_struct *work)
1389 {
1390         struct connection *con = container_of(work, struct connection, rwork);
1391         int err;
1392
1393         clear_bit(CF_READ_PENDING, &con->flags);
1394         do {
1395                 err = con->rx_action(con);
1396         } while (!err);
1397 }
1398
1399 /* Send workqueue function */
1400 static void process_send_sockets(struct work_struct *work)
1401 {
1402         struct connection *con = container_of(work, struct connection, swork);
1403
1404         if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1405                 con->connect_action(con);
1406                 set_bit(CF_WRITE_PENDING, &con->flags);
1407         }
1408         if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1409                 send_to_sock(con);
1410 }
1411
1412
1413 /* Discard all entries on the write queues */
1414 static void clean_writequeues(void)
1415 {
1416         foreach_conn(clean_one_writequeue);
1417 }
1418
1419 static void work_stop(void)
1420 {
1421         destroy_workqueue(recv_workqueue);
1422         destroy_workqueue(send_workqueue);
1423 }
1424
1425 static int work_start(void)
1426 {
1427         int error;
1428         recv_workqueue = create_workqueue("dlm_recv");
1429         error = IS_ERR(recv_workqueue);
1430         if (error) {
1431                 log_print("can't start dlm_recv %d", error);
1432                 return error;
1433         }
1434
1435         send_workqueue = create_singlethread_workqueue("dlm_send");
1436         error = IS_ERR(send_workqueue);
1437         if (error) {
1438                 log_print("can't start dlm_send %d", error);
1439                 destroy_workqueue(recv_workqueue);
1440                 return error;
1441         }
1442
1443         return 0;
1444 }
1445
1446 static void stop_conn(struct connection *con)
1447 {
1448         con->flags |= 0x0F;
1449         if (con->sock && con->sock->sk)
1450                 con->sock->sk->sk_user_data = NULL;
1451 }
1452
1453 static void free_conn(struct connection *con)
1454 {
1455         close_connection(con, true);
1456         if (con->othercon)
1457                 kmem_cache_free(con_cache, con->othercon);
1458         hlist_del(&con->list);
1459         kmem_cache_free(con_cache, con);
1460 }
1461
1462 void dlm_lowcomms_stop(void)
1463 {
1464         /* Set all the flags to prevent any
1465            socket activity.
1466         */
1467         mutex_lock(&connections_lock);
1468         foreach_conn(stop_conn);
1469         mutex_unlock(&connections_lock);
1470
1471         work_stop();
1472
1473         mutex_lock(&connections_lock);
1474         clean_writequeues();
1475
1476         foreach_conn(free_conn);
1477
1478         mutex_unlock(&connections_lock);
1479         kmem_cache_destroy(con_cache);
1480 }
1481
1482 int dlm_lowcomms_start(void)
1483 {
1484         int error = -EINVAL;
1485         struct connection *con;
1486         int i;
1487
1488         for (i = 0; i < CONN_HASH_SIZE; i++)
1489                 INIT_HLIST_HEAD(&connection_hash[i]);
1490
1491         init_local();
1492         if (!dlm_local_count) {
1493                 error = -ENOTCONN;
1494                 log_print("no local IP address has been set");
1495                 goto out;
1496         }
1497
1498         error = -ENOMEM;
1499         con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1500                                       __alignof__(struct connection), 0,
1501                                       NULL);
1502         if (!con_cache)
1503                 goto out;
1504
1505         /* Start listening */
1506         if (dlm_config.ci_protocol == 0)
1507                 error = tcp_listen_for_all();
1508         else
1509                 error = sctp_listen_for_all();
1510         if (error)
1511                 goto fail_unlisten;
1512
1513         error = work_start();
1514         if (error)
1515                 goto fail_unlisten;
1516
1517         return 0;
1518
1519 fail_unlisten:
1520         con = nodeid2con(0,0);
1521         if (con) {
1522                 close_connection(con, false);
1523                 kmem_cache_free(con_cache, con);
1524         }
1525         kmem_cache_destroy(con_cache);
1526
1527 out:
1528         return error;
1529 }