7187b14faa6cd0c1c846fcfb155f431102ce8bad
[pandora-kernel.git] / fs / btrfs / ordered-data.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 #include "disk-io.h"
28
29 static struct kmem_cache *btrfs_ordered_extent_cache;
30
31 static u64 entry_end(struct btrfs_ordered_extent *entry)
32 {
33         if (entry->file_offset + entry->len < entry->file_offset)
34                 return (u64)-1;
35         return entry->file_offset + entry->len;
36 }
37
38 /* returns NULL if the insertion worked, or it returns the node it did find
39  * in the tree
40  */
41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42                                    struct rb_node *node)
43 {
44         struct rb_node **p = &root->rb_node;
45         struct rb_node *parent = NULL;
46         struct btrfs_ordered_extent *entry;
47
48         while (*p) {
49                 parent = *p;
50                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
51
52                 if (file_offset < entry->file_offset)
53                         p = &(*p)->rb_left;
54                 else if (file_offset >= entry_end(entry))
55                         p = &(*p)->rb_right;
56                 else
57                         return parent;
58         }
59
60         rb_link_node(node, parent, p);
61         rb_insert_color(node, root);
62         return NULL;
63 }
64
65 static void ordered_data_tree_panic(struct inode *inode, int errno,
66                                                u64 offset)
67 {
68         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69         btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
70                     "%llu", offset);
71 }
72
73 /*
74  * look for a given offset in the tree, and if it can't be found return the
75  * first lesser offset
76  */
77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78                                      struct rb_node **prev_ret)
79 {
80         struct rb_node *n = root->rb_node;
81         struct rb_node *prev = NULL;
82         struct rb_node *test;
83         struct btrfs_ordered_extent *entry;
84         struct btrfs_ordered_extent *prev_entry = NULL;
85
86         while (n) {
87                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
88                 prev = n;
89                 prev_entry = entry;
90
91                 if (file_offset < entry->file_offset)
92                         n = n->rb_left;
93                 else if (file_offset >= entry_end(entry))
94                         n = n->rb_right;
95                 else
96                         return n;
97         }
98         if (!prev_ret)
99                 return NULL;
100
101         while (prev && file_offset >= entry_end(prev_entry)) {
102                 test = rb_next(prev);
103                 if (!test)
104                         break;
105                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106                                       rb_node);
107                 if (file_offset < entry_end(prev_entry))
108                         break;
109
110                 prev = test;
111         }
112         if (prev)
113                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114                                       rb_node);
115         while (prev && file_offset < entry_end(prev_entry)) {
116                 test = rb_prev(prev);
117                 if (!test)
118                         break;
119                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120                                       rb_node);
121                 prev = test;
122         }
123         *prev_ret = prev;
124         return NULL;
125 }
126
127 /*
128  * helper to check if a given offset is inside a given entry
129  */
130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131 {
132         if (file_offset < entry->file_offset ||
133             entry->file_offset + entry->len <= file_offset)
134                 return 0;
135         return 1;
136 }
137
138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139                           u64 len)
140 {
141         if (file_offset + len <= entry->file_offset ||
142             entry->file_offset + entry->len <= file_offset)
143                 return 0;
144         return 1;
145 }
146
147 /*
148  * look find the first ordered struct that has this offset, otherwise
149  * the first one less than this offset
150  */
151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152                                           u64 file_offset)
153 {
154         struct rb_root *root = &tree->tree;
155         struct rb_node *prev = NULL;
156         struct rb_node *ret;
157         struct btrfs_ordered_extent *entry;
158
159         if (tree->last) {
160                 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161                                  rb_node);
162                 if (offset_in_entry(entry, file_offset))
163                         return tree->last;
164         }
165         ret = __tree_search(root, file_offset, &prev);
166         if (!ret)
167                 ret = prev;
168         if (ret)
169                 tree->last = ret;
170         return ret;
171 }
172
173 /* allocate and add a new ordered_extent into the per-inode tree.
174  * file_offset is the logical offset in the file
175  *
176  * start is the disk block number of an extent already reserved in the
177  * extent allocation tree
178  *
179  * len is the length of the extent
180  *
181  * The tree is given a single reference on the ordered extent that was
182  * inserted.
183  */
184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185                                       u64 start, u64 len, u64 disk_len,
186                                       int type, int dio, int compress_type)
187 {
188         struct btrfs_root *root = BTRFS_I(inode)->root;
189         struct btrfs_ordered_inode_tree *tree;
190         struct rb_node *node;
191         struct btrfs_ordered_extent *entry;
192
193         tree = &BTRFS_I(inode)->ordered_tree;
194         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
195         if (!entry)
196                 return -ENOMEM;
197
198         entry->file_offset = file_offset;
199         entry->start = start;
200         entry->len = len;
201         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
202             !(type == BTRFS_ORDERED_NOCOW))
203                 entry->csum_bytes_left = disk_len;
204         entry->disk_len = disk_len;
205         entry->bytes_left = len;
206         entry->inode = igrab(inode);
207         entry->compress_type = compress_type;
208         entry->truncated_len = (u64)-1;
209         if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
210                 set_bit(type, &entry->flags);
211
212         if (dio)
213                 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
214
215         /* one ref for the tree */
216         atomic_set(&entry->refs, 1);
217         init_waitqueue_head(&entry->wait);
218         INIT_LIST_HEAD(&entry->list);
219         INIT_LIST_HEAD(&entry->root_extent_list);
220         INIT_LIST_HEAD(&entry->work_list);
221         init_completion(&entry->completion);
222         INIT_LIST_HEAD(&entry->log_list);
223
224         trace_btrfs_ordered_extent_add(inode, entry);
225
226         spin_lock_irq(&tree->lock);
227         node = tree_insert(&tree->tree, file_offset,
228                            &entry->rb_node);
229         if (node)
230                 ordered_data_tree_panic(inode, -EEXIST, file_offset);
231         spin_unlock_irq(&tree->lock);
232
233         spin_lock(&root->ordered_extent_lock);
234         list_add_tail(&entry->root_extent_list,
235                       &root->ordered_extents);
236         root->nr_ordered_extents++;
237         if (root->nr_ordered_extents == 1) {
238                 spin_lock(&root->fs_info->ordered_root_lock);
239                 BUG_ON(!list_empty(&root->ordered_root));
240                 list_add_tail(&root->ordered_root,
241                               &root->fs_info->ordered_roots);
242                 spin_unlock(&root->fs_info->ordered_root_lock);
243         }
244         spin_unlock(&root->ordered_extent_lock);
245
246         return 0;
247 }
248
249 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
250                              u64 start, u64 len, u64 disk_len, int type)
251 {
252         return __btrfs_add_ordered_extent(inode, file_offset, start, len,
253                                           disk_len, type, 0,
254                                           BTRFS_COMPRESS_NONE);
255 }
256
257 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
258                                  u64 start, u64 len, u64 disk_len, int type)
259 {
260         return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261                                           disk_len, type, 1,
262                                           BTRFS_COMPRESS_NONE);
263 }
264
265 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
266                                       u64 start, u64 len, u64 disk_len,
267                                       int type, int compress_type)
268 {
269         return __btrfs_add_ordered_extent(inode, file_offset, start, len,
270                                           disk_len, type, 0,
271                                           compress_type);
272 }
273
274 /*
275  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
276  * when an ordered extent is finished.  If the list covers more than one
277  * ordered extent, it is split across multiples.
278  */
279 void btrfs_add_ordered_sum(struct inode *inode,
280                            struct btrfs_ordered_extent *entry,
281                            struct btrfs_ordered_sum *sum)
282 {
283         struct btrfs_ordered_inode_tree *tree;
284
285         tree = &BTRFS_I(inode)->ordered_tree;
286         spin_lock_irq(&tree->lock);
287         list_add_tail(&sum->list, &entry->list);
288         WARN_ON(entry->csum_bytes_left < sum->len);
289         entry->csum_bytes_left -= sum->len;
290         if (entry->csum_bytes_left == 0)
291                 wake_up(&entry->wait);
292         spin_unlock_irq(&tree->lock);
293 }
294
295 /*
296  * this is used to account for finished IO across a given range
297  * of the file.  The IO may span ordered extents.  If
298  * a given ordered_extent is completely done, 1 is returned, otherwise
299  * 0.
300  *
301  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
302  * to make sure this function only returns 1 once for a given ordered extent.
303  *
304  * file_offset is updated to one byte past the range that is recorded as
305  * complete.  This allows you to walk forward in the file.
306  */
307 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
308                                    struct btrfs_ordered_extent **cached,
309                                    u64 *file_offset, u64 io_size, int uptodate)
310 {
311         struct btrfs_ordered_inode_tree *tree;
312         struct rb_node *node;
313         struct btrfs_ordered_extent *entry = NULL;
314         int ret;
315         unsigned long flags;
316         u64 dec_end;
317         u64 dec_start;
318         u64 to_dec;
319
320         tree = &BTRFS_I(inode)->ordered_tree;
321         spin_lock_irqsave(&tree->lock, flags);
322         node = tree_search(tree, *file_offset);
323         if (!node) {
324                 ret = 1;
325                 goto out;
326         }
327
328         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
329         if (!offset_in_entry(entry, *file_offset)) {
330                 ret = 1;
331                 goto out;
332         }
333
334         dec_start = max(*file_offset, entry->file_offset);
335         dec_end = min(*file_offset + io_size, entry->file_offset +
336                       entry->len);
337         *file_offset = dec_end;
338         if (dec_start > dec_end) {
339                 btrfs_crit(BTRFS_I(inode)->root->fs_info,
340                         "bad ordering dec_start %llu end %llu", dec_start, dec_end);
341         }
342         to_dec = dec_end - dec_start;
343         if (to_dec > entry->bytes_left) {
344                 btrfs_crit(BTRFS_I(inode)->root->fs_info,
345                         "bad ordered accounting left %llu size %llu",
346                         entry->bytes_left, to_dec);
347         }
348         entry->bytes_left -= to_dec;
349         if (!uptodate)
350                 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
351
352         if (entry->bytes_left == 0) {
353                 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
354                 if (waitqueue_active(&entry->wait))
355                         wake_up(&entry->wait);
356         } else {
357                 ret = 1;
358         }
359 out:
360         if (!ret && cached && entry) {
361                 *cached = entry;
362                 atomic_inc(&entry->refs);
363         }
364         spin_unlock_irqrestore(&tree->lock, flags);
365         return ret == 0;
366 }
367
368 /*
369  * this is used to account for finished IO across a given range
370  * of the file.  The IO should not span ordered extents.  If
371  * a given ordered_extent is completely done, 1 is returned, otherwise
372  * 0.
373  *
374  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
375  * to make sure this function only returns 1 once for a given ordered extent.
376  */
377 int btrfs_dec_test_ordered_pending(struct inode *inode,
378                                    struct btrfs_ordered_extent **cached,
379                                    u64 file_offset, u64 io_size, int uptodate)
380 {
381         struct btrfs_ordered_inode_tree *tree;
382         struct rb_node *node;
383         struct btrfs_ordered_extent *entry = NULL;
384         unsigned long flags;
385         int ret;
386
387         tree = &BTRFS_I(inode)->ordered_tree;
388         spin_lock_irqsave(&tree->lock, flags);
389         if (cached && *cached) {
390                 entry = *cached;
391                 goto have_entry;
392         }
393
394         node = tree_search(tree, file_offset);
395         if (!node) {
396                 ret = 1;
397                 goto out;
398         }
399
400         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
401 have_entry:
402         if (!offset_in_entry(entry, file_offset)) {
403                 ret = 1;
404                 goto out;
405         }
406
407         if (io_size > entry->bytes_left) {
408                 btrfs_crit(BTRFS_I(inode)->root->fs_info,
409                            "bad ordered accounting left %llu size %llu",
410                        entry->bytes_left, io_size);
411         }
412         entry->bytes_left -= io_size;
413         if (!uptodate)
414                 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
415
416         if (entry->bytes_left == 0) {
417                 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
418                 if (waitqueue_active(&entry->wait))
419                         wake_up(&entry->wait);
420         } else {
421                 ret = 1;
422         }
423 out:
424         if (!ret && cached && entry) {
425                 *cached = entry;
426                 atomic_inc(&entry->refs);
427         }
428         spin_unlock_irqrestore(&tree->lock, flags);
429         return ret == 0;
430 }
431
432 /* Needs to either be called under a log transaction or the log_mutex */
433 void btrfs_get_logged_extents(struct inode *inode,
434                               struct list_head *logged_list)
435 {
436         struct btrfs_ordered_inode_tree *tree;
437         struct btrfs_ordered_extent *ordered;
438         struct rb_node *n;
439
440         tree = &BTRFS_I(inode)->ordered_tree;
441         spin_lock_irq(&tree->lock);
442         for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
443                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
444                 if (!list_empty(&ordered->log_list))
445                         continue;
446                 list_add_tail(&ordered->log_list, logged_list);
447                 atomic_inc(&ordered->refs);
448         }
449         spin_unlock_irq(&tree->lock);
450 }
451
452 void btrfs_put_logged_extents(struct list_head *logged_list)
453 {
454         struct btrfs_ordered_extent *ordered;
455
456         while (!list_empty(logged_list)) {
457                 ordered = list_first_entry(logged_list,
458                                            struct btrfs_ordered_extent,
459                                            log_list);
460                 list_del_init(&ordered->log_list);
461                 btrfs_put_ordered_extent(ordered);
462         }
463 }
464
465 void btrfs_submit_logged_extents(struct list_head *logged_list,
466                                  struct btrfs_root *log)
467 {
468         int index = log->log_transid % 2;
469
470         spin_lock_irq(&log->log_extents_lock[index]);
471         list_splice_tail(logged_list, &log->logged_list[index]);
472         spin_unlock_irq(&log->log_extents_lock[index]);
473 }
474
475 void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
476 {
477         struct btrfs_ordered_extent *ordered;
478         int index = transid % 2;
479
480         spin_lock_irq(&log->log_extents_lock[index]);
481         while (!list_empty(&log->logged_list[index])) {
482                 ordered = list_first_entry(&log->logged_list[index],
483                                            struct btrfs_ordered_extent,
484                                            log_list);
485                 list_del_init(&ordered->log_list);
486                 spin_unlock_irq(&log->log_extents_lock[index]);
487
488                 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
489                     !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
490                         struct inode *inode = ordered->inode;
491                         u64 start = ordered->file_offset;
492                         u64 end = ordered->file_offset + ordered->len - 1;
493
494                         WARN_ON(!inode);
495                         filemap_fdatawrite_range(inode->i_mapping, start, end);
496                 }
497                 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
498                                                    &ordered->flags));
499
500                 btrfs_put_ordered_extent(ordered);
501                 spin_lock_irq(&log->log_extents_lock[index]);
502         }
503         spin_unlock_irq(&log->log_extents_lock[index]);
504 }
505
506 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
507 {
508         struct btrfs_ordered_extent *ordered;
509         int index = transid % 2;
510
511         spin_lock_irq(&log->log_extents_lock[index]);
512         while (!list_empty(&log->logged_list[index])) {
513                 ordered = list_first_entry(&log->logged_list[index],
514                                            struct btrfs_ordered_extent,
515                                            log_list);
516                 list_del_init(&ordered->log_list);
517                 spin_unlock_irq(&log->log_extents_lock[index]);
518                 btrfs_put_ordered_extent(ordered);
519                 spin_lock_irq(&log->log_extents_lock[index]);
520         }
521         spin_unlock_irq(&log->log_extents_lock[index]);
522 }
523
524 /*
525  * used to drop a reference on an ordered extent.  This will free
526  * the extent if the last reference is dropped
527  */
528 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
529 {
530         struct list_head *cur;
531         struct btrfs_ordered_sum *sum;
532
533         trace_btrfs_ordered_extent_put(entry->inode, entry);
534
535         if (atomic_dec_and_test(&entry->refs)) {
536                 if (entry->inode)
537                         btrfs_add_delayed_iput(entry->inode);
538                 while (!list_empty(&entry->list)) {
539                         cur = entry->list.next;
540                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
541                         list_del(&sum->list);
542                         kfree(sum);
543                 }
544                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
545         }
546 }
547
548 /*
549  * remove an ordered extent from the tree.  No references are dropped
550  * and waiters are woken up.
551  */
552 void btrfs_remove_ordered_extent(struct inode *inode,
553                                  struct btrfs_ordered_extent *entry)
554 {
555         struct btrfs_ordered_inode_tree *tree;
556         struct btrfs_root *root = BTRFS_I(inode)->root;
557         struct rb_node *node;
558
559         tree = &BTRFS_I(inode)->ordered_tree;
560         spin_lock_irq(&tree->lock);
561         node = &entry->rb_node;
562         rb_erase(node, &tree->tree);
563         if (tree->last == node)
564                 tree->last = NULL;
565         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
566         spin_unlock_irq(&tree->lock);
567
568         spin_lock(&root->ordered_extent_lock);
569         list_del_init(&entry->root_extent_list);
570         root->nr_ordered_extents--;
571
572         trace_btrfs_ordered_extent_remove(inode, entry);
573
574         /*
575          * we have no more ordered extents for this inode and
576          * no dirty pages.  We can safely remove it from the
577          * list of ordered extents
578          */
579         if (RB_EMPTY_ROOT(&tree->tree) &&
580             !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
581                 spin_lock(&root->fs_info->ordered_root_lock);
582                 list_del_init(&BTRFS_I(inode)->ordered_operations);
583                 spin_unlock(&root->fs_info->ordered_root_lock);
584         }
585
586         if (!root->nr_ordered_extents) {
587                 spin_lock(&root->fs_info->ordered_root_lock);
588                 BUG_ON(list_empty(&root->ordered_root));
589                 list_del_init(&root->ordered_root);
590                 spin_unlock(&root->fs_info->ordered_root_lock);
591         }
592         spin_unlock(&root->ordered_extent_lock);
593         wake_up(&entry->wait);
594 }
595
596 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
597 {
598         struct btrfs_ordered_extent *ordered;
599
600         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
601         btrfs_start_ordered_extent(ordered->inode, ordered, 1);
602         complete(&ordered->completion);
603 }
604
605 /*
606  * wait for all the ordered extents in a root.  This is done when balancing
607  * space between drives.
608  */
609 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
610 {
611         struct list_head splice, works;
612         struct btrfs_ordered_extent *ordered, *next;
613         int count = 0;
614
615         INIT_LIST_HEAD(&splice);
616         INIT_LIST_HEAD(&works);
617
618         mutex_lock(&root->ordered_extent_mutex);
619         spin_lock(&root->ordered_extent_lock);
620         list_splice_init(&root->ordered_extents, &splice);
621         while (!list_empty(&splice) && nr) {
622                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
623                                            root_extent_list);
624                 list_move_tail(&ordered->root_extent_list,
625                                &root->ordered_extents);
626                 atomic_inc(&ordered->refs);
627                 spin_unlock(&root->ordered_extent_lock);
628
629                 btrfs_init_work(&ordered->flush_work,
630                                 btrfs_run_ordered_extent_work, NULL, NULL);
631                 list_add_tail(&ordered->work_list, &works);
632                 btrfs_queue_work(root->fs_info->flush_workers,
633                                  &ordered->flush_work);
634
635                 cond_resched();
636                 spin_lock(&root->ordered_extent_lock);
637                 if (nr != -1)
638                         nr--;
639                 count++;
640         }
641         list_splice_tail(&splice, &root->ordered_extents);
642         spin_unlock(&root->ordered_extent_lock);
643
644         list_for_each_entry_safe(ordered, next, &works, work_list) {
645                 list_del_init(&ordered->work_list);
646                 wait_for_completion(&ordered->completion);
647                 btrfs_put_ordered_extent(ordered);
648                 cond_resched();
649         }
650         mutex_unlock(&root->ordered_extent_mutex);
651
652         return count;
653 }
654
655 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
656 {
657         struct btrfs_root *root;
658         struct list_head splice;
659         int done;
660
661         INIT_LIST_HEAD(&splice);
662
663         mutex_lock(&fs_info->ordered_operations_mutex);
664         spin_lock(&fs_info->ordered_root_lock);
665         list_splice_init(&fs_info->ordered_roots, &splice);
666         while (!list_empty(&splice) && nr) {
667                 root = list_first_entry(&splice, struct btrfs_root,
668                                         ordered_root);
669                 root = btrfs_grab_fs_root(root);
670                 BUG_ON(!root);
671                 list_move_tail(&root->ordered_root,
672                                &fs_info->ordered_roots);
673                 spin_unlock(&fs_info->ordered_root_lock);
674
675                 done = btrfs_wait_ordered_extents(root, nr);
676                 btrfs_put_fs_root(root);
677
678                 spin_lock(&fs_info->ordered_root_lock);
679                 if (nr != -1) {
680                         nr -= done;
681                         WARN_ON(nr < 0);
682                 }
683         }
684         list_splice_tail(&splice, &fs_info->ordered_roots);
685         spin_unlock(&fs_info->ordered_root_lock);
686         mutex_unlock(&fs_info->ordered_operations_mutex);
687 }
688
689 /*
690  * this is used during transaction commit to write all the inodes
691  * added to the ordered operation list.  These files must be fully on
692  * disk before the transaction commits.
693  *
694  * we have two modes here, one is to just start the IO via filemap_flush
695  * and the other is to wait for all the io.  When we wait, we have an
696  * extra check to make sure the ordered operation list really is empty
697  * before we return
698  */
699 int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
700                                  struct btrfs_root *root, int wait)
701 {
702         struct btrfs_inode *btrfs_inode;
703         struct inode *inode;
704         struct btrfs_transaction *cur_trans = trans->transaction;
705         struct list_head splice;
706         struct list_head works;
707         struct btrfs_delalloc_work *work, *next;
708         int ret = 0;
709
710         INIT_LIST_HEAD(&splice);
711         INIT_LIST_HEAD(&works);
712
713         mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
714         spin_lock(&root->fs_info->ordered_root_lock);
715         list_splice_init(&cur_trans->ordered_operations, &splice);
716         while (!list_empty(&splice)) {
717                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
718                                    ordered_operations);
719                 inode = &btrfs_inode->vfs_inode;
720
721                 list_del_init(&btrfs_inode->ordered_operations);
722
723                 /*
724                  * the inode may be getting freed (in sys_unlink path).
725                  */
726                 inode = igrab(inode);
727                 if (!inode)
728                         continue;
729
730                 if (!wait)
731                         list_add_tail(&BTRFS_I(inode)->ordered_operations,
732                                       &cur_trans->ordered_operations);
733                 spin_unlock(&root->fs_info->ordered_root_lock);
734
735                 work = btrfs_alloc_delalloc_work(inode, wait, 1);
736                 if (!work) {
737                         spin_lock(&root->fs_info->ordered_root_lock);
738                         if (list_empty(&BTRFS_I(inode)->ordered_operations))
739                                 list_add_tail(&btrfs_inode->ordered_operations,
740                                               &splice);
741                         list_splice_tail(&splice,
742                                          &cur_trans->ordered_operations);
743                         spin_unlock(&root->fs_info->ordered_root_lock);
744                         ret = -ENOMEM;
745                         goto out;
746                 }
747                 list_add_tail(&work->list, &works);
748                 btrfs_queue_work(root->fs_info->flush_workers,
749                                  &work->work);
750
751                 cond_resched();
752                 spin_lock(&root->fs_info->ordered_root_lock);
753         }
754         spin_unlock(&root->fs_info->ordered_root_lock);
755 out:
756         list_for_each_entry_safe(work, next, &works, list) {
757                 list_del_init(&work->list);
758                 btrfs_wait_and_free_delalloc_work(work);
759         }
760         mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
761         return ret;
762 }
763
764 /*
765  * Used to start IO or wait for a given ordered extent to finish.
766  *
767  * If wait is one, this effectively waits on page writeback for all the pages
768  * in the extent, and it waits on the io completion code to insert
769  * metadata into the btree corresponding to the extent
770  */
771 void btrfs_start_ordered_extent(struct inode *inode,
772                                        struct btrfs_ordered_extent *entry,
773                                        int wait)
774 {
775         u64 start = entry->file_offset;
776         u64 end = start + entry->len - 1;
777
778         trace_btrfs_ordered_extent_start(inode, entry);
779
780         /*
781          * pages in the range can be dirty, clean or writeback.  We
782          * start IO on any dirty ones so the wait doesn't stall waiting
783          * for the flusher thread to find them
784          */
785         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
786                 filemap_fdatawrite_range(inode->i_mapping, start, end);
787         if (wait) {
788                 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
789                                                  &entry->flags));
790         }
791 }
792
793 /*
794  * Used to wait on ordered extents across a large range of bytes.
795  */
796 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
797 {
798         int ret = 0;
799         u64 end;
800         u64 orig_end;
801         struct btrfs_ordered_extent *ordered;
802
803         if (start + len < start) {
804                 orig_end = INT_LIMIT(loff_t);
805         } else {
806                 orig_end = start + len - 1;
807                 if (orig_end > INT_LIMIT(loff_t))
808                         orig_end = INT_LIMIT(loff_t);
809         }
810
811         /* start IO across the range first to instantiate any delalloc
812          * extents
813          */
814         ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
815         if (ret)
816                 return ret;
817         /*
818          * So with compression we will find and lock a dirty page and clear the
819          * first one as dirty, setup an async extent, and immediately return
820          * with the entire range locked but with nobody actually marked with
821          * writeback.  So we can't just filemap_write_and_wait_range() and
822          * expect it to work since it will just kick off a thread to do the
823          * actual work.  So we need to call filemap_fdatawrite_range _again_
824          * since it will wait on the page lock, which won't be unlocked until
825          * after the pages have been marked as writeback and so we're good to go
826          * from there.  We have to do this otherwise we'll miss the ordered
827          * extents and that results in badness.  Please Josef, do not think you
828          * know better and pull this out at some point in the future, it is
829          * right and you are wrong.
830          */
831         if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
832                      &BTRFS_I(inode)->runtime_flags)) {
833                 ret = filemap_fdatawrite_range(inode->i_mapping, start,
834                                                orig_end);
835                 if (ret)
836                         return ret;
837         }
838         ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
839         if (ret)
840                 return ret;
841
842         end = orig_end;
843         while (1) {
844                 ordered = btrfs_lookup_first_ordered_extent(inode, end);
845                 if (!ordered)
846                         break;
847                 if (ordered->file_offset > orig_end) {
848                         btrfs_put_ordered_extent(ordered);
849                         break;
850                 }
851                 if (ordered->file_offset + ordered->len <= start) {
852                         btrfs_put_ordered_extent(ordered);
853                         break;
854                 }
855                 btrfs_start_ordered_extent(inode, ordered, 1);
856                 end = ordered->file_offset;
857                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
858                         ret = -EIO;
859                 btrfs_put_ordered_extent(ordered);
860                 if (ret || end == 0 || end == start)
861                         break;
862                 end--;
863         }
864         return ret;
865 }
866
867 /*
868  * find an ordered extent corresponding to file_offset.  return NULL if
869  * nothing is found, otherwise take a reference on the extent and return it
870  */
871 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
872                                                          u64 file_offset)
873 {
874         struct btrfs_ordered_inode_tree *tree;
875         struct rb_node *node;
876         struct btrfs_ordered_extent *entry = NULL;
877
878         tree = &BTRFS_I(inode)->ordered_tree;
879         spin_lock_irq(&tree->lock);
880         node = tree_search(tree, file_offset);
881         if (!node)
882                 goto out;
883
884         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
885         if (!offset_in_entry(entry, file_offset))
886                 entry = NULL;
887         if (entry)
888                 atomic_inc(&entry->refs);
889 out:
890         spin_unlock_irq(&tree->lock);
891         return entry;
892 }
893
894 /* Since the DIO code tries to lock a wide area we need to look for any ordered
895  * extents that exist in the range, rather than just the start of the range.
896  */
897 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
898                                                         u64 file_offset,
899                                                         u64 len)
900 {
901         struct btrfs_ordered_inode_tree *tree;
902         struct rb_node *node;
903         struct btrfs_ordered_extent *entry = NULL;
904
905         tree = &BTRFS_I(inode)->ordered_tree;
906         spin_lock_irq(&tree->lock);
907         node = tree_search(tree, file_offset);
908         if (!node) {
909                 node = tree_search(tree, file_offset + len);
910                 if (!node)
911                         goto out;
912         }
913
914         while (1) {
915                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
916                 if (range_overlaps(entry, file_offset, len))
917                         break;
918
919                 if (entry->file_offset >= file_offset + len) {
920                         entry = NULL;
921                         break;
922                 }
923                 entry = NULL;
924                 node = rb_next(node);
925                 if (!node)
926                         break;
927         }
928 out:
929         if (entry)
930                 atomic_inc(&entry->refs);
931         spin_unlock_irq(&tree->lock);
932         return entry;
933 }
934
935 /*
936  * lookup and return any extent before 'file_offset'.  NULL is returned
937  * if none is found
938  */
939 struct btrfs_ordered_extent *
940 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
941 {
942         struct btrfs_ordered_inode_tree *tree;
943         struct rb_node *node;
944         struct btrfs_ordered_extent *entry = NULL;
945
946         tree = &BTRFS_I(inode)->ordered_tree;
947         spin_lock_irq(&tree->lock);
948         node = tree_search(tree, file_offset);
949         if (!node)
950                 goto out;
951
952         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
953         atomic_inc(&entry->refs);
954 out:
955         spin_unlock_irq(&tree->lock);
956         return entry;
957 }
958
959 /*
960  * After an extent is done, call this to conditionally update the on disk
961  * i_size.  i_size is updated to cover any fully written part of the file.
962  */
963 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
964                                 struct btrfs_ordered_extent *ordered)
965 {
966         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
967         u64 disk_i_size;
968         u64 new_i_size;
969         u64 i_size = i_size_read(inode);
970         struct rb_node *node;
971         struct rb_node *prev = NULL;
972         struct btrfs_ordered_extent *test;
973         int ret = 1;
974
975         spin_lock_irq(&tree->lock);
976         if (ordered) {
977                 offset = entry_end(ordered);
978                 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
979                         offset = min(offset,
980                                      ordered->file_offset +
981                                      ordered->truncated_len);
982         } else {
983                 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
984         }
985         disk_i_size = BTRFS_I(inode)->disk_i_size;
986
987         /* truncate file */
988         if (disk_i_size > i_size) {
989                 BTRFS_I(inode)->disk_i_size = i_size;
990                 ret = 0;
991                 goto out;
992         }
993
994         /*
995          * if the disk i_size is already at the inode->i_size, or
996          * this ordered extent is inside the disk i_size, we're done
997          */
998         if (disk_i_size == i_size)
999                 goto out;
1000
1001         /*
1002          * We still need to update disk_i_size if outstanding_isize is greater
1003          * than disk_i_size.
1004          */
1005         if (offset <= disk_i_size &&
1006             (!ordered || ordered->outstanding_isize <= disk_i_size))
1007                 goto out;
1008
1009         /*
1010          * walk backward from this ordered extent to disk_i_size.
1011          * if we find an ordered extent then we can't update disk i_size
1012          * yet
1013          */
1014         if (ordered) {
1015                 node = rb_prev(&ordered->rb_node);
1016         } else {
1017                 prev = tree_search(tree, offset);
1018                 /*
1019                  * we insert file extents without involving ordered struct,
1020                  * so there should be no ordered struct cover this offset
1021                  */
1022                 if (prev) {
1023                         test = rb_entry(prev, struct btrfs_ordered_extent,
1024                                         rb_node);
1025                         BUG_ON(offset_in_entry(test, offset));
1026                 }
1027                 node = prev;
1028         }
1029         for (; node; node = rb_prev(node)) {
1030                 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1031
1032                 /* We treat this entry as if it doesnt exist */
1033                 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1034                         continue;
1035                 if (test->file_offset + test->len <= disk_i_size)
1036                         break;
1037                 if (test->file_offset >= i_size)
1038                         break;
1039                 if (entry_end(test) > disk_i_size) {
1040                         /*
1041                          * we don't update disk_i_size now, so record this
1042                          * undealt i_size. Or we will not know the real
1043                          * i_size.
1044                          */
1045                         if (test->outstanding_isize < offset)
1046                                 test->outstanding_isize = offset;
1047                         if (ordered &&
1048                             ordered->outstanding_isize >
1049                             test->outstanding_isize)
1050                                 test->outstanding_isize =
1051                                                 ordered->outstanding_isize;
1052                         goto out;
1053                 }
1054         }
1055         new_i_size = min_t(u64, offset, i_size);
1056
1057         /*
1058          * Some ordered extents may completed before the current one, and
1059          * we hold the real i_size in ->outstanding_isize.
1060          */
1061         if (ordered && ordered->outstanding_isize > new_i_size)
1062                 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1063         BTRFS_I(inode)->disk_i_size = new_i_size;
1064         ret = 0;
1065 out:
1066         /*
1067          * We need to do this because we can't remove ordered extents until
1068          * after the i_disk_size has been updated and then the inode has been
1069          * updated to reflect the change, so we need to tell anybody who finds
1070          * this ordered extent that we've already done all the real work, we
1071          * just haven't completed all the other work.
1072          */
1073         if (ordered)
1074                 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1075         spin_unlock_irq(&tree->lock);
1076         return ret;
1077 }
1078
1079 /*
1080  * search the ordered extents for one corresponding to 'offset' and
1081  * try to find a checksum.  This is used because we allow pages to
1082  * be reclaimed before their checksum is actually put into the btree
1083  */
1084 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1085                            u32 *sum, int len)
1086 {
1087         struct btrfs_ordered_sum *ordered_sum;
1088         struct btrfs_ordered_extent *ordered;
1089         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1090         unsigned long num_sectors;
1091         unsigned long i;
1092         u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1093         int index = 0;
1094
1095         ordered = btrfs_lookup_ordered_extent(inode, offset);
1096         if (!ordered)
1097                 return 0;
1098
1099         spin_lock_irq(&tree->lock);
1100         list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1101                 if (disk_bytenr >= ordered_sum->bytenr &&
1102                     disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1103                         i = (disk_bytenr - ordered_sum->bytenr) >>
1104                             inode->i_sb->s_blocksize_bits;
1105                         num_sectors = ordered_sum->len >>
1106                                       inode->i_sb->s_blocksize_bits;
1107                         num_sectors = min_t(int, len - index, num_sectors - i);
1108                         memcpy(sum + index, ordered_sum->sums + i,
1109                                num_sectors);
1110
1111                         index += (int)num_sectors;
1112                         if (index == len)
1113                                 goto out;
1114                         disk_bytenr += num_sectors * sectorsize;
1115                 }
1116         }
1117 out:
1118         spin_unlock_irq(&tree->lock);
1119         btrfs_put_ordered_extent(ordered);
1120         return index;
1121 }
1122
1123
1124 /*
1125  * add a given inode to the list of inodes that must be fully on
1126  * disk before a transaction commit finishes.
1127  *
1128  * This basically gives us the ext3 style data=ordered mode, and it is mostly
1129  * used to make sure renamed files are fully on disk.
1130  *
1131  * It is a noop if the inode is already fully on disk.
1132  *
1133  * If trans is not null, we'll do a friendly check for a transaction that
1134  * is already flushing things and force the IO down ourselves.
1135  */
1136 void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1137                                  struct btrfs_root *root, struct inode *inode)
1138 {
1139         struct btrfs_transaction *cur_trans = trans->transaction;
1140         u64 last_mod;
1141
1142         last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
1143
1144         /*
1145          * if this file hasn't been changed since the last transaction
1146          * commit, we can safely return without doing anything
1147          */
1148         if (last_mod <= root->fs_info->last_trans_committed)
1149                 return;
1150
1151         spin_lock(&root->fs_info->ordered_root_lock);
1152         if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1153                 list_add_tail(&BTRFS_I(inode)->ordered_operations,
1154                               &cur_trans->ordered_operations);
1155         }
1156         spin_unlock(&root->fs_info->ordered_root_lock);
1157 }
1158
1159 int __init ordered_data_init(void)
1160 {
1161         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1162                                      sizeof(struct btrfs_ordered_extent), 0,
1163                                      SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1164                                      NULL);
1165         if (!btrfs_ordered_extent_cache)
1166                 return -ENOMEM;
1167
1168         return 0;
1169 }
1170
1171 void ordered_data_exit(void)
1172 {
1173         if (btrfs_ordered_extent_cache)
1174                 kmem_cache_destroy(btrfs_ordered_extent_cache);
1175 }