eaa271484199f449bb497fc45876b1a7d192474d
[pandora-kernel.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 #include "free-space-cache.h"
54
55 struct btrfs_iget_args {
56         u64 ino;
57         struct btrfs_root *root;
58 };
59
60 static const struct inode_operations btrfs_dir_inode_operations;
61 static const struct inode_operations btrfs_symlink_inode_operations;
62 static const struct inode_operations btrfs_dir_ro_inode_operations;
63 static const struct inode_operations btrfs_special_inode_operations;
64 static const struct inode_operations btrfs_file_inode_operations;
65 static const struct address_space_operations btrfs_aops;
66 static const struct address_space_operations btrfs_symlink_aops;
67 static const struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
79         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
80         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
81         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
82         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
83         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
84         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
85 };
86
87 static int btrfs_setsize(struct inode *inode, loff_t newsize);
88 static int btrfs_truncate(struct inode *inode);
89 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
90 static noinline int cow_file_range(struct inode *inode,
91                                    struct page *locked_page,
92                                    u64 start, u64 end, int *page_started,
93                                    unsigned long *nr_written, int unlock);
94
95 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
96                                      struct inode *inode,  struct inode *dir)
97 {
98         int err;
99
100         err = btrfs_init_acl(trans, inode, dir);
101         if (!err)
102                 err = btrfs_xattr_security_init(trans, inode, dir);
103         return err;
104 }
105
106 /*
107  * this does all the hard work for inserting an inline extent into
108  * the btree.  The caller should have done a btrfs_drop_extents so that
109  * no overlapping inline items exist in the btree
110  */
111 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
112                                 struct btrfs_root *root, struct inode *inode,
113                                 u64 start, size_t size, size_t compressed_size,
114                                 struct page **compressed_pages)
115 {
116         struct btrfs_key key;
117         struct btrfs_path *path;
118         struct extent_buffer *leaf;
119         struct page *page = NULL;
120         char *kaddr;
121         unsigned long ptr;
122         struct btrfs_file_extent_item *ei;
123         int err = 0;
124         int ret;
125         size_t cur_size = size;
126         size_t datasize;
127         unsigned long offset;
128         int compress_type = BTRFS_COMPRESS_NONE;
129
130         if (compressed_size && compressed_pages) {
131                 compress_type = root->fs_info->compress_type;
132                 cur_size = compressed_size;
133         }
134
135         path = btrfs_alloc_path();
136         if (!path)
137                 return -ENOMEM;
138
139         path->leave_spinning = 1;
140         btrfs_set_trans_block_group(trans, inode);
141
142         key.objectid = inode->i_ino;
143         key.offset = start;
144         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
145         datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147         inode_add_bytes(inode, size);
148         ret = btrfs_insert_empty_item(trans, root, path, &key,
149                                       datasize);
150         BUG_ON(ret);
151         if (ret) {
152                 err = ret;
153                 goto fail;
154         }
155         leaf = path->nodes[0];
156         ei = btrfs_item_ptr(leaf, path->slots[0],
157                             struct btrfs_file_extent_item);
158         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160         btrfs_set_file_extent_encryption(leaf, ei, 0);
161         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163         ptr = btrfs_file_extent_inline_start(ei);
164
165         if (compress_type != BTRFS_COMPRESS_NONE) {
166                 struct page *cpage;
167                 int i = 0;
168                 while (compressed_size > 0) {
169                         cpage = compressed_pages[i];
170                         cur_size = min_t(unsigned long, compressed_size,
171                                        PAGE_CACHE_SIZE);
172
173                         kaddr = kmap_atomic(cpage, KM_USER0);
174                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
175                         kunmap_atomic(kaddr, KM_USER0);
176
177                         i++;
178                         ptr += cur_size;
179                         compressed_size -= cur_size;
180                 }
181                 btrfs_set_file_extent_compression(leaf, ei,
182                                                   compress_type);
183         } else {
184                 page = find_get_page(inode->i_mapping,
185                                      start >> PAGE_CACHE_SHIFT);
186                 btrfs_set_file_extent_compression(leaf, ei, 0);
187                 kaddr = kmap_atomic(page, KM_USER0);
188                 offset = start & (PAGE_CACHE_SIZE - 1);
189                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190                 kunmap_atomic(kaddr, KM_USER0);
191                 page_cache_release(page);
192         }
193         btrfs_mark_buffer_dirty(leaf);
194         btrfs_free_path(path);
195
196         /*
197          * we're an inline extent, so nobody can
198          * extend the file past i_size without locking
199          * a page we already have locked.
200          *
201          * We must do any isize and inode updates
202          * before we unlock the pages.  Otherwise we
203          * could end up racing with unlink.
204          */
205         BTRFS_I(inode)->disk_i_size = inode->i_size;
206         btrfs_update_inode(trans, root, inode);
207
208         return 0;
209 fail:
210         btrfs_free_path(path);
211         return err;
212 }
213
214
215 /*
216  * conditionally insert an inline extent into the file.  This
217  * does the checks required to make sure the data is small enough
218  * to fit as an inline extent.
219  */
220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
221                                  struct btrfs_root *root,
222                                  struct inode *inode, u64 start, u64 end,
223                                  size_t compressed_size,
224                                  struct page **compressed_pages)
225 {
226         u64 isize = i_size_read(inode);
227         u64 actual_end = min(end + 1, isize);
228         u64 inline_len = actual_end - start;
229         u64 aligned_end = (end + root->sectorsize - 1) &
230                         ~((u64)root->sectorsize - 1);
231         u64 hint_byte;
232         u64 data_len = inline_len;
233         int ret;
234
235         if (compressed_size)
236                 data_len = compressed_size;
237
238         if (start > 0 ||
239             actual_end >= PAGE_CACHE_SIZE ||
240             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241             (!compressed_size &&
242             (actual_end & (root->sectorsize - 1)) == 0) ||
243             end + 1 < isize ||
244             data_len > root->fs_info->max_inline) {
245                 return 1;
246         }
247
248         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
249                                  &hint_byte, 1);
250         BUG_ON(ret);
251
252         if (isize > actual_end)
253                 inline_len = min_t(u64, isize, actual_end);
254         ret = insert_inline_extent(trans, root, inode, start,
255                                    inline_len, compressed_size,
256                                    compressed_pages);
257         BUG_ON(ret);
258         btrfs_delalloc_release_metadata(inode, end + 1 - start);
259         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
260         return 0;
261 }
262
263 struct async_extent {
264         u64 start;
265         u64 ram_size;
266         u64 compressed_size;
267         struct page **pages;
268         unsigned long nr_pages;
269         int compress_type;
270         struct list_head list;
271 };
272
273 struct async_cow {
274         struct inode *inode;
275         struct btrfs_root *root;
276         struct page *locked_page;
277         u64 start;
278         u64 end;
279         struct list_head extents;
280         struct btrfs_work work;
281 };
282
283 static noinline int add_async_extent(struct async_cow *cow,
284                                      u64 start, u64 ram_size,
285                                      u64 compressed_size,
286                                      struct page **pages,
287                                      unsigned long nr_pages,
288                                      int compress_type)
289 {
290         struct async_extent *async_extent;
291
292         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
293         async_extent->start = start;
294         async_extent->ram_size = ram_size;
295         async_extent->compressed_size = compressed_size;
296         async_extent->pages = pages;
297         async_extent->nr_pages = nr_pages;
298         async_extent->compress_type = compress_type;
299         list_add_tail(&async_extent->list, &cow->extents);
300         return 0;
301 }
302
303 /*
304  * we create compressed extents in two phases.  The first
305  * phase compresses a range of pages that have already been
306  * locked (both pages and state bits are locked).
307  *
308  * This is done inside an ordered work queue, and the compression
309  * is spread across many cpus.  The actual IO submission is step
310  * two, and the ordered work queue takes care of making sure that
311  * happens in the same order things were put onto the queue by
312  * writepages and friends.
313  *
314  * If this code finds it can't get good compression, it puts an
315  * entry onto the work queue to write the uncompressed bytes.  This
316  * makes sure that both compressed inodes and uncompressed inodes
317  * are written in the same order that pdflush sent them down.
318  */
319 static noinline int compress_file_range(struct inode *inode,
320                                         struct page *locked_page,
321                                         u64 start, u64 end,
322                                         struct async_cow *async_cow,
323                                         int *num_added)
324 {
325         struct btrfs_root *root = BTRFS_I(inode)->root;
326         struct btrfs_trans_handle *trans;
327         u64 num_bytes;
328         u64 blocksize = root->sectorsize;
329         u64 actual_end;
330         u64 isize = i_size_read(inode);
331         int ret = 0;
332         struct page **pages = NULL;
333         unsigned long nr_pages;
334         unsigned long nr_pages_ret = 0;
335         unsigned long total_compressed = 0;
336         unsigned long total_in = 0;
337         unsigned long max_compressed = 128 * 1024;
338         unsigned long max_uncompressed = 128 * 1024;
339         int i;
340         int will_compress;
341         int compress_type = root->fs_info->compress_type;
342
343         actual_end = min_t(u64, isize, end + 1);
344 again:
345         will_compress = 0;
346         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
347         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
348
349         /*
350          * we don't want to send crud past the end of i_size through
351          * compression, that's just a waste of CPU time.  So, if the
352          * end of the file is before the start of our current
353          * requested range of bytes, we bail out to the uncompressed
354          * cleanup code that can deal with all of this.
355          *
356          * It isn't really the fastest way to fix things, but this is a
357          * very uncommon corner.
358          */
359         if (actual_end <= start)
360                 goto cleanup_and_bail_uncompressed;
361
362         total_compressed = actual_end - start;
363
364         /* we want to make sure that amount of ram required to uncompress
365          * an extent is reasonable, so we limit the total size in ram
366          * of a compressed extent to 128k.  This is a crucial number
367          * because it also controls how easily we can spread reads across
368          * cpus for decompression.
369          *
370          * We also want to make sure the amount of IO required to do
371          * a random read is reasonably small, so we limit the size of
372          * a compressed extent to 128k.
373          */
374         total_compressed = min(total_compressed, max_uncompressed);
375         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
376         num_bytes = max(blocksize,  num_bytes);
377         total_in = 0;
378         ret = 0;
379
380         /*
381          * we do compression for mount -o compress and when the
382          * inode has not been flagged as nocompress.  This flag can
383          * change at any time if we discover bad compression ratios.
384          */
385         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
386             (btrfs_test_opt(root, COMPRESS) ||
387              (BTRFS_I(inode)->force_compress))) {
388                 WARN_ON(pages);
389                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
390
391                 if (BTRFS_I(inode)->force_compress)
392                         compress_type = BTRFS_I(inode)->force_compress;
393
394                 ret = btrfs_compress_pages(compress_type,
395                                            inode->i_mapping, start,
396                                            total_compressed, pages,
397                                            nr_pages, &nr_pages_ret,
398                                            &total_in,
399                                            &total_compressed,
400                                            max_compressed);
401
402                 if (!ret) {
403                         unsigned long offset = total_compressed &
404                                 (PAGE_CACHE_SIZE - 1);
405                         struct page *page = pages[nr_pages_ret - 1];
406                         char *kaddr;
407
408                         /* zero the tail end of the last page, we might be
409                          * sending it down to disk
410                          */
411                         if (offset) {
412                                 kaddr = kmap_atomic(page, KM_USER0);
413                                 memset(kaddr + offset, 0,
414                                        PAGE_CACHE_SIZE - offset);
415                                 kunmap_atomic(kaddr, KM_USER0);
416                         }
417                         will_compress = 1;
418                 }
419         }
420         if (start == 0) {
421                 trans = btrfs_join_transaction(root, 1);
422                 BUG_ON(IS_ERR(trans));
423                 btrfs_set_trans_block_group(trans, inode);
424                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
425
426                 /* lets try to make an inline extent */
427                 if (ret || total_in < (actual_end - start)) {
428                         /* we didn't compress the entire range, try
429                          * to make an uncompressed inline extent.
430                          */
431                         ret = cow_file_range_inline(trans, root, inode,
432                                                     start, end, 0, NULL);
433                 } else {
434                         /* try making a compressed inline extent */
435                         ret = cow_file_range_inline(trans, root, inode,
436                                                     start, end,
437                                                     total_compressed, pages);
438                 }
439                 if (ret == 0) {
440                         /*
441                          * inline extent creation worked, we don't need
442                          * to create any more async work items.  Unlock
443                          * and free up our temp pages.
444                          */
445                         extent_clear_unlock_delalloc(inode,
446                              &BTRFS_I(inode)->io_tree,
447                              start, end, NULL,
448                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
449                              EXTENT_CLEAR_DELALLOC |
450                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
451
452                         btrfs_end_transaction(trans, root);
453                         goto free_pages_out;
454                 }
455                 btrfs_end_transaction(trans, root);
456         }
457
458         if (will_compress) {
459                 /*
460                  * we aren't doing an inline extent round the compressed size
461                  * up to a block size boundary so the allocator does sane
462                  * things
463                  */
464                 total_compressed = (total_compressed + blocksize - 1) &
465                         ~(blocksize - 1);
466
467                 /*
468                  * one last check to make sure the compression is really a
469                  * win, compare the page count read with the blocks on disk
470                  */
471                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
472                         ~(PAGE_CACHE_SIZE - 1);
473                 if (total_compressed >= total_in) {
474                         will_compress = 0;
475                 } else {
476                         num_bytes = total_in;
477                 }
478         }
479         if (!will_compress && pages) {
480                 /*
481                  * the compression code ran but failed to make things smaller,
482                  * free any pages it allocated and our page pointer array
483                  */
484                 for (i = 0; i < nr_pages_ret; i++) {
485                         WARN_ON(pages[i]->mapping);
486                         page_cache_release(pages[i]);
487                 }
488                 kfree(pages);
489                 pages = NULL;
490                 total_compressed = 0;
491                 nr_pages_ret = 0;
492
493                 /* flag the file so we don't compress in the future */
494                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
495                     !(BTRFS_I(inode)->force_compress)) {
496                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
497                 }
498         }
499         if (will_compress) {
500                 *num_added += 1;
501
502                 /* the async work queues will take care of doing actual
503                  * allocation on disk for these compressed pages,
504                  * and will submit them to the elevator.
505                  */
506                 add_async_extent(async_cow, start, num_bytes,
507                                  total_compressed, pages, nr_pages_ret,
508                                  compress_type);
509
510                 if (start + num_bytes < end) {
511                         start += num_bytes;
512                         pages = NULL;
513                         cond_resched();
514                         goto again;
515                 }
516         } else {
517 cleanup_and_bail_uncompressed:
518                 /*
519                  * No compression, but we still need to write the pages in
520                  * the file we've been given so far.  redirty the locked
521                  * page if it corresponds to our extent and set things up
522                  * for the async work queue to run cow_file_range to do
523                  * the normal delalloc dance
524                  */
525                 if (page_offset(locked_page) >= start &&
526                     page_offset(locked_page) <= end) {
527                         __set_page_dirty_nobuffers(locked_page);
528                         /* unlocked later on in the async handlers */
529                 }
530                 add_async_extent(async_cow, start, end - start + 1,
531                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
532                 *num_added += 1;
533         }
534
535 out:
536         return 0;
537
538 free_pages_out:
539         for (i = 0; i < nr_pages_ret; i++) {
540                 WARN_ON(pages[i]->mapping);
541                 page_cache_release(pages[i]);
542         }
543         kfree(pages);
544
545         goto out;
546 }
547
548 /*
549  * phase two of compressed writeback.  This is the ordered portion
550  * of the code, which only gets called in the order the work was
551  * queued.  We walk all the async extents created by compress_file_range
552  * and send them down to the disk.
553  */
554 static noinline int submit_compressed_extents(struct inode *inode,
555                                               struct async_cow *async_cow)
556 {
557         struct async_extent *async_extent;
558         u64 alloc_hint = 0;
559         struct btrfs_trans_handle *trans;
560         struct btrfs_key ins;
561         struct extent_map *em;
562         struct btrfs_root *root = BTRFS_I(inode)->root;
563         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
564         struct extent_io_tree *io_tree;
565         int ret = 0;
566
567         if (list_empty(&async_cow->extents))
568                 return 0;
569
570
571         while (!list_empty(&async_cow->extents)) {
572                 async_extent = list_entry(async_cow->extents.next,
573                                           struct async_extent, list);
574                 list_del(&async_extent->list);
575
576                 io_tree = &BTRFS_I(inode)->io_tree;
577
578 retry:
579                 /* did the compression code fall back to uncompressed IO? */
580                 if (!async_extent->pages) {
581                         int page_started = 0;
582                         unsigned long nr_written = 0;
583
584                         lock_extent(io_tree, async_extent->start,
585                                          async_extent->start +
586                                          async_extent->ram_size - 1, GFP_NOFS);
587
588                         /* allocate blocks */
589                         ret = cow_file_range(inode, async_cow->locked_page,
590                                              async_extent->start,
591                                              async_extent->start +
592                                              async_extent->ram_size - 1,
593                                              &page_started, &nr_written, 0);
594
595                         /*
596                          * if page_started, cow_file_range inserted an
597                          * inline extent and took care of all the unlocking
598                          * and IO for us.  Otherwise, we need to submit
599                          * all those pages down to the drive.
600                          */
601                         if (!page_started && !ret)
602                                 extent_write_locked_range(io_tree,
603                                                   inode, async_extent->start,
604                                                   async_extent->start +
605                                                   async_extent->ram_size - 1,
606                                                   btrfs_get_extent,
607                                                   WB_SYNC_ALL);
608                         kfree(async_extent);
609                         cond_resched();
610                         continue;
611                 }
612
613                 lock_extent(io_tree, async_extent->start,
614                             async_extent->start + async_extent->ram_size - 1,
615                             GFP_NOFS);
616
617                 trans = btrfs_join_transaction(root, 1);
618                 BUG_ON(IS_ERR(trans));
619                 ret = btrfs_reserve_extent(trans, root,
620                                            async_extent->compressed_size,
621                                            async_extent->compressed_size,
622                                            0, alloc_hint,
623                                            (u64)-1, &ins, 1);
624                 btrfs_end_transaction(trans, root);
625
626                 if (ret) {
627                         int i;
628                         for (i = 0; i < async_extent->nr_pages; i++) {
629                                 WARN_ON(async_extent->pages[i]->mapping);
630                                 page_cache_release(async_extent->pages[i]);
631                         }
632                         kfree(async_extent->pages);
633                         async_extent->nr_pages = 0;
634                         async_extent->pages = NULL;
635                         unlock_extent(io_tree, async_extent->start,
636                                       async_extent->start +
637                                       async_extent->ram_size - 1, GFP_NOFS);
638                         goto retry;
639                 }
640
641                 /*
642                  * here we're doing allocation and writeback of the
643                  * compressed pages
644                  */
645                 btrfs_drop_extent_cache(inode, async_extent->start,
646                                         async_extent->start +
647                                         async_extent->ram_size - 1, 0);
648
649                 em = alloc_extent_map(GFP_NOFS);
650                 BUG_ON(!em);
651                 em->start = async_extent->start;
652                 em->len = async_extent->ram_size;
653                 em->orig_start = em->start;
654
655                 em->block_start = ins.objectid;
656                 em->block_len = ins.offset;
657                 em->bdev = root->fs_info->fs_devices->latest_bdev;
658                 em->compress_type = async_extent->compress_type;
659                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
660                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
661
662                 while (1) {
663                         write_lock(&em_tree->lock);
664                         ret = add_extent_mapping(em_tree, em);
665                         write_unlock(&em_tree->lock);
666                         if (ret != -EEXIST) {
667                                 free_extent_map(em);
668                                 break;
669                         }
670                         btrfs_drop_extent_cache(inode, async_extent->start,
671                                                 async_extent->start +
672                                                 async_extent->ram_size - 1, 0);
673                 }
674
675                 ret = btrfs_add_ordered_extent_compress(inode,
676                                                 async_extent->start,
677                                                 ins.objectid,
678                                                 async_extent->ram_size,
679                                                 ins.offset,
680                                                 BTRFS_ORDERED_COMPRESSED,
681                                                 async_extent->compress_type);
682                 BUG_ON(ret);
683
684                 /*
685                  * clear dirty, set writeback and unlock the pages.
686                  */
687                 extent_clear_unlock_delalloc(inode,
688                                 &BTRFS_I(inode)->io_tree,
689                                 async_extent->start,
690                                 async_extent->start +
691                                 async_extent->ram_size - 1,
692                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
693                                 EXTENT_CLEAR_UNLOCK |
694                                 EXTENT_CLEAR_DELALLOC |
695                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
696
697                 ret = btrfs_submit_compressed_write(inode,
698                                     async_extent->start,
699                                     async_extent->ram_size,
700                                     ins.objectid,
701                                     ins.offset, async_extent->pages,
702                                     async_extent->nr_pages);
703
704                 BUG_ON(ret);
705                 alloc_hint = ins.objectid + ins.offset;
706                 kfree(async_extent);
707                 cond_resched();
708         }
709
710         return 0;
711 }
712
713 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
714                                       u64 num_bytes)
715 {
716         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
717         struct extent_map *em;
718         u64 alloc_hint = 0;
719
720         read_lock(&em_tree->lock);
721         em = search_extent_mapping(em_tree, start, num_bytes);
722         if (em) {
723                 /*
724                  * if block start isn't an actual block number then find the
725                  * first block in this inode and use that as a hint.  If that
726                  * block is also bogus then just don't worry about it.
727                  */
728                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
729                         free_extent_map(em);
730                         em = search_extent_mapping(em_tree, 0, 0);
731                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
732                                 alloc_hint = em->block_start;
733                         if (em)
734                                 free_extent_map(em);
735                 } else {
736                         alloc_hint = em->block_start;
737                         free_extent_map(em);
738                 }
739         }
740         read_unlock(&em_tree->lock);
741
742         return alloc_hint;
743 }
744
745 /*
746  * when extent_io.c finds a delayed allocation range in the file,
747  * the call backs end up in this code.  The basic idea is to
748  * allocate extents on disk for the range, and create ordered data structs
749  * in ram to track those extents.
750  *
751  * locked_page is the page that writepage had locked already.  We use
752  * it to make sure we don't do extra locks or unlocks.
753  *
754  * *page_started is set to one if we unlock locked_page and do everything
755  * required to start IO on it.  It may be clean and already done with
756  * IO when we return.
757  */
758 static noinline int cow_file_range(struct inode *inode,
759                                    struct page *locked_page,
760                                    u64 start, u64 end, int *page_started,
761                                    unsigned long *nr_written,
762                                    int unlock)
763 {
764         struct btrfs_root *root = BTRFS_I(inode)->root;
765         struct btrfs_trans_handle *trans;
766         u64 alloc_hint = 0;
767         u64 num_bytes;
768         unsigned long ram_size;
769         u64 disk_num_bytes;
770         u64 cur_alloc_size;
771         u64 blocksize = root->sectorsize;
772         struct btrfs_key ins;
773         struct extent_map *em;
774         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
775         int ret = 0;
776
777         BUG_ON(root == root->fs_info->tree_root);
778         trans = btrfs_join_transaction(root, 1);
779         BUG_ON(IS_ERR(trans));
780         btrfs_set_trans_block_group(trans, inode);
781         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
782
783         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
784         num_bytes = max(blocksize,  num_bytes);
785         disk_num_bytes = num_bytes;
786         ret = 0;
787
788         if (start == 0) {
789                 /* lets try to make an inline extent */
790                 ret = cow_file_range_inline(trans, root, inode,
791                                             start, end, 0, NULL);
792                 if (ret == 0) {
793                         extent_clear_unlock_delalloc(inode,
794                                      &BTRFS_I(inode)->io_tree,
795                                      start, end, NULL,
796                                      EXTENT_CLEAR_UNLOCK_PAGE |
797                                      EXTENT_CLEAR_UNLOCK |
798                                      EXTENT_CLEAR_DELALLOC |
799                                      EXTENT_CLEAR_DIRTY |
800                                      EXTENT_SET_WRITEBACK |
801                                      EXTENT_END_WRITEBACK);
802
803                         *nr_written = *nr_written +
804                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
805                         *page_started = 1;
806                         ret = 0;
807                         goto out;
808                 }
809         }
810
811         BUG_ON(disk_num_bytes >
812                btrfs_super_total_bytes(&root->fs_info->super_copy));
813
814         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
815         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
816
817         while (disk_num_bytes > 0) {
818                 unsigned long op;
819
820                 cur_alloc_size = disk_num_bytes;
821                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
822                                            root->sectorsize, 0, alloc_hint,
823                                            (u64)-1, &ins, 1);
824                 BUG_ON(ret);
825
826                 em = alloc_extent_map(GFP_NOFS);
827                 BUG_ON(!em);
828                 em->start = start;
829                 em->orig_start = em->start;
830                 ram_size = ins.offset;
831                 em->len = ins.offset;
832
833                 em->block_start = ins.objectid;
834                 em->block_len = ins.offset;
835                 em->bdev = root->fs_info->fs_devices->latest_bdev;
836                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
837
838                 while (1) {
839                         write_lock(&em_tree->lock);
840                         ret = add_extent_mapping(em_tree, em);
841                         write_unlock(&em_tree->lock);
842                         if (ret != -EEXIST) {
843                                 free_extent_map(em);
844                                 break;
845                         }
846                         btrfs_drop_extent_cache(inode, start,
847                                                 start + ram_size - 1, 0);
848                 }
849
850                 cur_alloc_size = ins.offset;
851                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
852                                                ram_size, cur_alloc_size, 0);
853                 BUG_ON(ret);
854
855                 if (root->root_key.objectid ==
856                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
857                         ret = btrfs_reloc_clone_csums(inode, start,
858                                                       cur_alloc_size);
859                         BUG_ON(ret);
860                 }
861
862                 if (disk_num_bytes < cur_alloc_size)
863                         break;
864
865                 /* we're not doing compressed IO, don't unlock the first
866                  * page (which the caller expects to stay locked), don't
867                  * clear any dirty bits and don't set any writeback bits
868                  *
869                  * Do set the Private2 bit so we know this page was properly
870                  * setup for writepage
871                  */
872                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
873                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
874                         EXTENT_SET_PRIVATE2;
875
876                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
877                                              start, start + ram_size - 1,
878                                              locked_page, op);
879                 disk_num_bytes -= cur_alloc_size;
880                 num_bytes -= cur_alloc_size;
881                 alloc_hint = ins.objectid + ins.offset;
882                 start += cur_alloc_size;
883         }
884 out:
885         ret = 0;
886         btrfs_end_transaction(trans, root);
887
888         return ret;
889 }
890
891 /*
892  * work queue call back to started compression on a file and pages
893  */
894 static noinline void async_cow_start(struct btrfs_work *work)
895 {
896         struct async_cow *async_cow;
897         int num_added = 0;
898         async_cow = container_of(work, struct async_cow, work);
899
900         compress_file_range(async_cow->inode, async_cow->locked_page,
901                             async_cow->start, async_cow->end, async_cow,
902                             &num_added);
903         if (num_added == 0)
904                 async_cow->inode = NULL;
905 }
906
907 /*
908  * work queue call back to submit previously compressed pages
909  */
910 static noinline void async_cow_submit(struct btrfs_work *work)
911 {
912         struct async_cow *async_cow;
913         struct btrfs_root *root;
914         unsigned long nr_pages;
915
916         async_cow = container_of(work, struct async_cow, work);
917
918         root = async_cow->root;
919         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
920                 PAGE_CACHE_SHIFT;
921
922         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
923
924         if (atomic_read(&root->fs_info->async_delalloc_pages) <
925             5 * 1042 * 1024 &&
926             waitqueue_active(&root->fs_info->async_submit_wait))
927                 wake_up(&root->fs_info->async_submit_wait);
928
929         if (async_cow->inode)
930                 submit_compressed_extents(async_cow->inode, async_cow);
931 }
932
933 static noinline void async_cow_free(struct btrfs_work *work)
934 {
935         struct async_cow *async_cow;
936         async_cow = container_of(work, struct async_cow, work);
937         kfree(async_cow);
938 }
939
940 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
941                                 u64 start, u64 end, int *page_started,
942                                 unsigned long *nr_written)
943 {
944         struct async_cow *async_cow;
945         struct btrfs_root *root = BTRFS_I(inode)->root;
946         unsigned long nr_pages;
947         u64 cur_end;
948         int limit = 10 * 1024 * 1042;
949
950         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
951                          1, 0, NULL, GFP_NOFS);
952         while (start < end) {
953                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
954                 async_cow->inode = inode;
955                 async_cow->root = root;
956                 async_cow->locked_page = locked_page;
957                 async_cow->start = start;
958
959                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
960                         cur_end = end;
961                 else
962                         cur_end = min(end, start + 512 * 1024 - 1);
963
964                 async_cow->end = cur_end;
965                 INIT_LIST_HEAD(&async_cow->extents);
966
967                 async_cow->work.func = async_cow_start;
968                 async_cow->work.ordered_func = async_cow_submit;
969                 async_cow->work.ordered_free = async_cow_free;
970                 async_cow->work.flags = 0;
971
972                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
973                         PAGE_CACHE_SHIFT;
974                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
975
976                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
977                                    &async_cow->work);
978
979                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
980                         wait_event(root->fs_info->async_submit_wait,
981                            (atomic_read(&root->fs_info->async_delalloc_pages) <
982                             limit));
983                 }
984
985                 while (atomic_read(&root->fs_info->async_submit_draining) &&
986                       atomic_read(&root->fs_info->async_delalloc_pages)) {
987                         wait_event(root->fs_info->async_submit_wait,
988                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
989                            0));
990                 }
991
992                 *nr_written += nr_pages;
993                 start = cur_end + 1;
994         }
995         *page_started = 1;
996         return 0;
997 }
998
999 static noinline int csum_exist_in_range(struct btrfs_root *root,
1000                                         u64 bytenr, u64 num_bytes)
1001 {
1002         int ret;
1003         struct btrfs_ordered_sum *sums;
1004         LIST_HEAD(list);
1005
1006         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1007                                        bytenr + num_bytes - 1, &list);
1008         if (ret == 0 && list_empty(&list))
1009                 return 0;
1010
1011         while (!list_empty(&list)) {
1012                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1013                 list_del(&sums->list);
1014                 kfree(sums);
1015         }
1016         return 1;
1017 }
1018
1019 /*
1020  * when nowcow writeback call back.  This checks for snapshots or COW copies
1021  * of the extents that exist in the file, and COWs the file as required.
1022  *
1023  * If no cow copies or snapshots exist, we write directly to the existing
1024  * blocks on disk
1025  */
1026 static noinline int run_delalloc_nocow(struct inode *inode,
1027                                        struct page *locked_page,
1028                               u64 start, u64 end, int *page_started, int force,
1029                               unsigned long *nr_written)
1030 {
1031         struct btrfs_root *root = BTRFS_I(inode)->root;
1032         struct btrfs_trans_handle *trans;
1033         struct extent_buffer *leaf;
1034         struct btrfs_path *path;
1035         struct btrfs_file_extent_item *fi;
1036         struct btrfs_key found_key;
1037         u64 cow_start;
1038         u64 cur_offset;
1039         u64 extent_end;
1040         u64 extent_offset;
1041         u64 disk_bytenr;
1042         u64 num_bytes;
1043         int extent_type;
1044         int ret;
1045         int type;
1046         int nocow;
1047         int check_prev = 1;
1048         bool nolock = false;
1049
1050         path = btrfs_alloc_path();
1051         BUG_ON(!path);
1052         if (root == root->fs_info->tree_root) {
1053                 nolock = true;
1054                 trans = btrfs_join_transaction_nolock(root, 1);
1055         } else {
1056                 trans = btrfs_join_transaction(root, 1);
1057         }
1058         BUG_ON(IS_ERR(trans));
1059
1060         cow_start = (u64)-1;
1061         cur_offset = start;
1062         while (1) {
1063                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1064                                                cur_offset, 0);
1065                 BUG_ON(ret < 0);
1066                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1067                         leaf = path->nodes[0];
1068                         btrfs_item_key_to_cpu(leaf, &found_key,
1069                                               path->slots[0] - 1);
1070                         if (found_key.objectid == inode->i_ino &&
1071                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1072                                 path->slots[0]--;
1073                 }
1074                 check_prev = 0;
1075 next_slot:
1076                 leaf = path->nodes[0];
1077                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1078                         ret = btrfs_next_leaf(root, path);
1079                         if (ret < 0)
1080                                 BUG_ON(1);
1081                         if (ret > 0)
1082                                 break;
1083                         leaf = path->nodes[0];
1084                 }
1085
1086                 nocow = 0;
1087                 disk_bytenr = 0;
1088                 num_bytes = 0;
1089                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1090
1091                 if (found_key.objectid > inode->i_ino ||
1092                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1093                     found_key.offset > end)
1094                         break;
1095
1096                 if (found_key.offset > cur_offset) {
1097                         extent_end = found_key.offset;
1098                         extent_type = 0;
1099                         goto out_check;
1100                 }
1101
1102                 fi = btrfs_item_ptr(leaf, path->slots[0],
1103                                     struct btrfs_file_extent_item);
1104                 extent_type = btrfs_file_extent_type(leaf, fi);
1105
1106                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1107                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1108                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1109                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1110                         extent_end = found_key.offset +
1111                                 btrfs_file_extent_num_bytes(leaf, fi);
1112                         if (extent_end <= start) {
1113                                 path->slots[0]++;
1114                                 goto next_slot;
1115                         }
1116                         if (disk_bytenr == 0)
1117                                 goto out_check;
1118                         if (btrfs_file_extent_compression(leaf, fi) ||
1119                             btrfs_file_extent_encryption(leaf, fi) ||
1120                             btrfs_file_extent_other_encoding(leaf, fi))
1121                                 goto out_check;
1122                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1123                                 goto out_check;
1124                         if (btrfs_extent_readonly(root, disk_bytenr))
1125                                 goto out_check;
1126                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1127                                                   found_key.offset -
1128                                                   extent_offset, disk_bytenr))
1129                                 goto out_check;
1130                         disk_bytenr += extent_offset;
1131                         disk_bytenr += cur_offset - found_key.offset;
1132                         num_bytes = min(end + 1, extent_end) - cur_offset;
1133                         /*
1134                          * force cow if csum exists in the range.
1135                          * this ensure that csum for a given extent are
1136                          * either valid or do not exist.
1137                          */
1138                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1139                                 goto out_check;
1140                         nocow = 1;
1141                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1142                         extent_end = found_key.offset +
1143                                 btrfs_file_extent_inline_len(leaf, fi);
1144                         extent_end = ALIGN(extent_end, root->sectorsize);
1145                 } else {
1146                         BUG_ON(1);
1147                 }
1148 out_check:
1149                 if (extent_end <= start) {
1150                         path->slots[0]++;
1151                         goto next_slot;
1152                 }
1153                 if (!nocow) {
1154                         if (cow_start == (u64)-1)
1155                                 cow_start = cur_offset;
1156                         cur_offset = extent_end;
1157                         if (cur_offset > end)
1158                                 break;
1159                         path->slots[0]++;
1160                         goto next_slot;
1161                 }
1162
1163                 btrfs_release_path(root, path);
1164                 if (cow_start != (u64)-1) {
1165                         ret = cow_file_range(inode, locked_page, cow_start,
1166                                         found_key.offset - 1, page_started,
1167                                         nr_written, 1);
1168                         BUG_ON(ret);
1169                         cow_start = (u64)-1;
1170                 }
1171
1172                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1173                         struct extent_map *em;
1174                         struct extent_map_tree *em_tree;
1175                         em_tree = &BTRFS_I(inode)->extent_tree;
1176                         em = alloc_extent_map(GFP_NOFS);
1177                         BUG_ON(!em);
1178                         em->start = cur_offset;
1179                         em->orig_start = em->start;
1180                         em->len = num_bytes;
1181                         em->block_len = num_bytes;
1182                         em->block_start = disk_bytenr;
1183                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1184                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1185                         while (1) {
1186                                 write_lock(&em_tree->lock);
1187                                 ret = add_extent_mapping(em_tree, em);
1188                                 write_unlock(&em_tree->lock);
1189                                 if (ret != -EEXIST) {
1190                                         free_extent_map(em);
1191                                         break;
1192                                 }
1193                                 btrfs_drop_extent_cache(inode, em->start,
1194                                                 em->start + em->len - 1, 0);
1195                         }
1196                         type = BTRFS_ORDERED_PREALLOC;
1197                 } else {
1198                         type = BTRFS_ORDERED_NOCOW;
1199                 }
1200
1201                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1202                                                num_bytes, num_bytes, type);
1203                 BUG_ON(ret);
1204
1205                 if (root->root_key.objectid ==
1206                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1207                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1208                                                       num_bytes);
1209                         BUG_ON(ret);
1210                 }
1211
1212                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1213                                 cur_offset, cur_offset + num_bytes - 1,
1214                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1215                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1216                                 EXTENT_SET_PRIVATE2);
1217                 cur_offset = extent_end;
1218                 if (cur_offset > end)
1219                         break;
1220         }
1221         btrfs_release_path(root, path);
1222
1223         if (cur_offset <= end && cow_start == (u64)-1)
1224                 cow_start = cur_offset;
1225         if (cow_start != (u64)-1) {
1226                 ret = cow_file_range(inode, locked_page, cow_start, end,
1227                                      page_started, nr_written, 1);
1228                 BUG_ON(ret);
1229         }
1230
1231         if (nolock) {
1232                 ret = btrfs_end_transaction_nolock(trans, root);
1233                 BUG_ON(ret);
1234         } else {
1235                 ret = btrfs_end_transaction(trans, root);
1236                 BUG_ON(ret);
1237         }
1238         btrfs_free_path(path);
1239         return 0;
1240 }
1241
1242 /*
1243  * extent_io.c call back to do delayed allocation processing
1244  */
1245 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1246                               u64 start, u64 end, int *page_started,
1247                               unsigned long *nr_written)
1248 {
1249         int ret;
1250         struct btrfs_root *root = BTRFS_I(inode)->root;
1251
1252         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1253                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1254                                          page_started, 1, nr_written);
1255         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1256                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1257                                          page_started, 0, nr_written);
1258         else if (!btrfs_test_opt(root, COMPRESS) &&
1259                  !(BTRFS_I(inode)->force_compress))
1260                 ret = cow_file_range(inode, locked_page, start, end,
1261                                       page_started, nr_written, 1);
1262         else
1263                 ret = cow_file_range_async(inode, locked_page, start, end,
1264                                            page_started, nr_written);
1265         return ret;
1266 }
1267
1268 static int btrfs_split_extent_hook(struct inode *inode,
1269                                    struct extent_state *orig, u64 split)
1270 {
1271         /* not delalloc, ignore it */
1272         if (!(orig->state & EXTENT_DELALLOC))
1273                 return 0;
1274
1275         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1276         return 0;
1277 }
1278
1279 /*
1280  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1281  * extents so we can keep track of new extents that are just merged onto old
1282  * extents, such as when we are doing sequential writes, so we can properly
1283  * account for the metadata space we'll need.
1284  */
1285 static int btrfs_merge_extent_hook(struct inode *inode,
1286                                    struct extent_state *new,
1287                                    struct extent_state *other)
1288 {
1289         /* not delalloc, ignore it */
1290         if (!(other->state & EXTENT_DELALLOC))
1291                 return 0;
1292
1293         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1294         return 0;
1295 }
1296
1297 /*
1298  * extent_io.c set_bit_hook, used to track delayed allocation
1299  * bytes in this file, and to maintain the list of inodes that
1300  * have pending delalloc work to be done.
1301  */
1302 static int btrfs_set_bit_hook(struct inode *inode,
1303                               struct extent_state *state, int *bits)
1304 {
1305
1306         /*
1307          * set_bit and clear bit hooks normally require _irqsave/restore
1308          * but in this case, we are only testeing for the DELALLOC
1309          * bit, which is only set or cleared with irqs on
1310          */
1311         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1312                 struct btrfs_root *root = BTRFS_I(inode)->root;
1313                 u64 len = state->end + 1 - state->start;
1314                 int do_list = (root->root_key.objectid !=
1315                                BTRFS_ROOT_TREE_OBJECTID);
1316
1317                 if (*bits & EXTENT_FIRST_DELALLOC)
1318                         *bits &= ~EXTENT_FIRST_DELALLOC;
1319                 else
1320                         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1321
1322                 spin_lock(&root->fs_info->delalloc_lock);
1323                 BTRFS_I(inode)->delalloc_bytes += len;
1324                 root->fs_info->delalloc_bytes += len;
1325                 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1326                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1327                                       &root->fs_info->delalloc_inodes);
1328                 }
1329                 spin_unlock(&root->fs_info->delalloc_lock);
1330         }
1331         return 0;
1332 }
1333
1334 /*
1335  * extent_io.c clear_bit_hook, see set_bit_hook for why
1336  */
1337 static int btrfs_clear_bit_hook(struct inode *inode,
1338                                 struct extent_state *state, int *bits)
1339 {
1340         /*
1341          * set_bit and clear bit hooks normally require _irqsave/restore
1342          * but in this case, we are only testeing for the DELALLOC
1343          * bit, which is only set or cleared with irqs on
1344          */
1345         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1346                 struct btrfs_root *root = BTRFS_I(inode)->root;
1347                 u64 len = state->end + 1 - state->start;
1348                 int do_list = (root->root_key.objectid !=
1349                                BTRFS_ROOT_TREE_OBJECTID);
1350
1351                 if (*bits & EXTENT_FIRST_DELALLOC)
1352                         *bits &= ~EXTENT_FIRST_DELALLOC;
1353                 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1354                         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1355
1356                 if (*bits & EXTENT_DO_ACCOUNTING)
1357                         btrfs_delalloc_release_metadata(inode, len);
1358
1359                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1360                     && do_list)
1361                         btrfs_free_reserved_data_space(inode, len);
1362
1363                 spin_lock(&root->fs_info->delalloc_lock);
1364                 root->fs_info->delalloc_bytes -= len;
1365                 BTRFS_I(inode)->delalloc_bytes -= len;
1366
1367                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1368                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1369                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1370                 }
1371                 spin_unlock(&root->fs_info->delalloc_lock);
1372         }
1373         return 0;
1374 }
1375
1376 /*
1377  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1378  * we don't create bios that span stripes or chunks
1379  */
1380 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1381                          size_t size, struct bio *bio,
1382                          unsigned long bio_flags)
1383 {
1384         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1385         struct btrfs_mapping_tree *map_tree;
1386         u64 logical = (u64)bio->bi_sector << 9;
1387         u64 length = 0;
1388         u64 map_length;
1389         int ret;
1390
1391         if (bio_flags & EXTENT_BIO_COMPRESSED)
1392                 return 0;
1393
1394         length = bio->bi_size;
1395         map_tree = &root->fs_info->mapping_tree;
1396         map_length = length;
1397         ret = btrfs_map_block(map_tree, READ, logical,
1398                               &map_length, NULL, 0);
1399
1400         if (map_length < length + size)
1401                 return 1;
1402         return ret;
1403 }
1404
1405 /*
1406  * in order to insert checksums into the metadata in large chunks,
1407  * we wait until bio submission time.   All the pages in the bio are
1408  * checksummed and sums are attached onto the ordered extent record.
1409  *
1410  * At IO completion time the cums attached on the ordered extent record
1411  * are inserted into the btree
1412  */
1413 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1414                                     struct bio *bio, int mirror_num,
1415                                     unsigned long bio_flags,
1416                                     u64 bio_offset)
1417 {
1418         struct btrfs_root *root = BTRFS_I(inode)->root;
1419         int ret = 0;
1420
1421         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1422         BUG_ON(ret);
1423         return 0;
1424 }
1425
1426 /*
1427  * in order to insert checksums into the metadata in large chunks,
1428  * we wait until bio submission time.   All the pages in the bio are
1429  * checksummed and sums are attached onto the ordered extent record.
1430  *
1431  * At IO completion time the cums attached on the ordered extent record
1432  * are inserted into the btree
1433  */
1434 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1435                           int mirror_num, unsigned long bio_flags,
1436                           u64 bio_offset)
1437 {
1438         struct btrfs_root *root = BTRFS_I(inode)->root;
1439         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1440 }
1441
1442 /*
1443  * extent_io.c submission hook. This does the right thing for csum calculation
1444  * on write, or reading the csums from the tree before a read
1445  */
1446 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1447                           int mirror_num, unsigned long bio_flags,
1448                           u64 bio_offset)
1449 {
1450         struct btrfs_root *root = BTRFS_I(inode)->root;
1451         int ret = 0;
1452         int skip_sum;
1453
1454         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1455
1456         if (root == root->fs_info->tree_root)
1457                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1458         else
1459                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1460         BUG_ON(ret);
1461
1462         if (!(rw & REQ_WRITE)) {
1463                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1464                         return btrfs_submit_compressed_read(inode, bio,
1465                                                     mirror_num, bio_flags);
1466                 } else if (!skip_sum)
1467                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1468                 goto mapit;
1469         } else if (!skip_sum) {
1470                 /* csum items have already been cloned */
1471                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1472                         goto mapit;
1473                 /* we're doing a write, do the async checksumming */
1474                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1475                                    inode, rw, bio, mirror_num,
1476                                    bio_flags, bio_offset,
1477                                    __btrfs_submit_bio_start,
1478                                    __btrfs_submit_bio_done);
1479         }
1480
1481 mapit:
1482         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1483 }
1484
1485 /*
1486  * given a list of ordered sums record them in the inode.  This happens
1487  * at IO completion time based on sums calculated at bio submission time.
1488  */
1489 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1490                              struct inode *inode, u64 file_offset,
1491                              struct list_head *list)
1492 {
1493         struct btrfs_ordered_sum *sum;
1494
1495         btrfs_set_trans_block_group(trans, inode);
1496
1497         list_for_each_entry(sum, list, list) {
1498                 btrfs_csum_file_blocks(trans,
1499                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1500         }
1501         return 0;
1502 }
1503
1504 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1505                               struct extent_state **cached_state)
1506 {
1507         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1508                 WARN_ON(1);
1509         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1510                                    cached_state, GFP_NOFS);
1511 }
1512
1513 /* see btrfs_writepage_start_hook for details on why this is required */
1514 struct btrfs_writepage_fixup {
1515         struct page *page;
1516         struct btrfs_work work;
1517 };
1518
1519 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1520 {
1521         struct btrfs_writepage_fixup *fixup;
1522         struct btrfs_ordered_extent *ordered;
1523         struct extent_state *cached_state = NULL;
1524         struct page *page;
1525         struct inode *inode;
1526         u64 page_start;
1527         u64 page_end;
1528
1529         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1530         page = fixup->page;
1531 again:
1532         lock_page(page);
1533         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1534                 ClearPageChecked(page);
1535                 goto out_page;
1536         }
1537
1538         inode = page->mapping->host;
1539         page_start = page_offset(page);
1540         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1541
1542         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1543                          &cached_state, GFP_NOFS);
1544
1545         /* already ordered? We're done */
1546         if (PagePrivate2(page))
1547                 goto out;
1548
1549         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1550         if (ordered) {
1551                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1552                                      page_end, &cached_state, GFP_NOFS);
1553                 unlock_page(page);
1554                 btrfs_start_ordered_extent(inode, ordered, 1);
1555                 goto again;
1556         }
1557
1558         BUG();
1559         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1560         ClearPageChecked(page);
1561 out:
1562         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1563                              &cached_state, GFP_NOFS);
1564 out_page:
1565         unlock_page(page);
1566         page_cache_release(page);
1567         kfree(fixup);
1568 }
1569
1570 /*
1571  * There are a few paths in the higher layers of the kernel that directly
1572  * set the page dirty bit without asking the filesystem if it is a
1573  * good idea.  This causes problems because we want to make sure COW
1574  * properly happens and the data=ordered rules are followed.
1575  *
1576  * In our case any range that doesn't have the ORDERED bit set
1577  * hasn't been properly setup for IO.  We kick off an async process
1578  * to fix it up.  The async helper will wait for ordered extents, set
1579  * the delalloc bit and make it safe to write the page.
1580  */
1581 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1582 {
1583         struct inode *inode = page->mapping->host;
1584         struct btrfs_writepage_fixup *fixup;
1585         struct btrfs_root *root = BTRFS_I(inode)->root;
1586
1587         /* this page is properly in the ordered list */
1588         if (TestClearPagePrivate2(page))
1589                 return 0;
1590
1591         if (PageChecked(page))
1592                 return -EAGAIN;
1593
1594         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1595         if (!fixup)
1596                 return -EAGAIN;
1597
1598         SetPageChecked(page);
1599         page_cache_get(page);
1600         fixup->work.func = btrfs_writepage_fixup_worker;
1601         fixup->page = page;
1602         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1603         return -EAGAIN;
1604 }
1605
1606 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1607                                        struct inode *inode, u64 file_pos,
1608                                        u64 disk_bytenr, u64 disk_num_bytes,
1609                                        u64 num_bytes, u64 ram_bytes,
1610                                        u8 compression, u8 encryption,
1611                                        u16 other_encoding, int extent_type)
1612 {
1613         struct btrfs_root *root = BTRFS_I(inode)->root;
1614         struct btrfs_file_extent_item *fi;
1615         struct btrfs_path *path;
1616         struct extent_buffer *leaf;
1617         struct btrfs_key ins;
1618         u64 hint;
1619         int ret;
1620
1621         path = btrfs_alloc_path();
1622         BUG_ON(!path);
1623
1624         path->leave_spinning = 1;
1625
1626         /*
1627          * we may be replacing one extent in the tree with another.
1628          * The new extent is pinned in the extent map, and we don't want
1629          * to drop it from the cache until it is completely in the btree.
1630          *
1631          * So, tell btrfs_drop_extents to leave this extent in the cache.
1632          * the caller is expected to unpin it and allow it to be merged
1633          * with the others.
1634          */
1635         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1636                                  &hint, 0);
1637         BUG_ON(ret);
1638
1639         ins.objectid = inode->i_ino;
1640         ins.offset = file_pos;
1641         ins.type = BTRFS_EXTENT_DATA_KEY;
1642         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1643         BUG_ON(ret);
1644         leaf = path->nodes[0];
1645         fi = btrfs_item_ptr(leaf, path->slots[0],
1646                             struct btrfs_file_extent_item);
1647         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1648         btrfs_set_file_extent_type(leaf, fi, extent_type);
1649         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1650         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1651         btrfs_set_file_extent_offset(leaf, fi, 0);
1652         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1653         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1654         btrfs_set_file_extent_compression(leaf, fi, compression);
1655         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1656         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1657
1658         btrfs_unlock_up_safe(path, 1);
1659         btrfs_set_lock_blocking(leaf);
1660
1661         btrfs_mark_buffer_dirty(leaf);
1662
1663         inode_add_bytes(inode, num_bytes);
1664
1665         ins.objectid = disk_bytenr;
1666         ins.offset = disk_num_bytes;
1667         ins.type = BTRFS_EXTENT_ITEM_KEY;
1668         ret = btrfs_alloc_reserved_file_extent(trans, root,
1669                                         root->root_key.objectid,
1670                                         inode->i_ino, file_pos, &ins);
1671         BUG_ON(ret);
1672         btrfs_free_path(path);
1673
1674         return 0;
1675 }
1676
1677 /*
1678  * helper function for btrfs_finish_ordered_io, this
1679  * just reads in some of the csum leaves to prime them into ram
1680  * before we start the transaction.  It limits the amount of btree
1681  * reads required while inside the transaction.
1682  */
1683 /* as ordered data IO finishes, this gets called so we can finish
1684  * an ordered extent if the range of bytes in the file it covers are
1685  * fully written.
1686  */
1687 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1688 {
1689         struct btrfs_root *root = BTRFS_I(inode)->root;
1690         struct btrfs_trans_handle *trans = NULL;
1691         struct btrfs_ordered_extent *ordered_extent = NULL;
1692         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1693         struct extent_state *cached_state = NULL;
1694         int compress_type = 0;
1695         int ret;
1696         bool nolock = false;
1697
1698         ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1699                                              end - start + 1);
1700         if (!ret)
1701                 return 0;
1702         BUG_ON(!ordered_extent);
1703
1704         nolock = (root == root->fs_info->tree_root);
1705
1706         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1707                 BUG_ON(!list_empty(&ordered_extent->list));
1708                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1709                 if (!ret) {
1710                         if (nolock)
1711                                 trans = btrfs_join_transaction_nolock(root, 1);
1712                         else
1713                                 trans = btrfs_join_transaction(root, 1);
1714                         BUG_ON(IS_ERR(trans));
1715                         btrfs_set_trans_block_group(trans, inode);
1716                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1717                         ret = btrfs_update_inode(trans, root, inode);
1718                         BUG_ON(ret);
1719                 }
1720                 goto out;
1721         }
1722
1723         lock_extent_bits(io_tree, ordered_extent->file_offset,
1724                          ordered_extent->file_offset + ordered_extent->len - 1,
1725                          0, &cached_state, GFP_NOFS);
1726
1727         if (nolock)
1728                 trans = btrfs_join_transaction_nolock(root, 1);
1729         else
1730                 trans = btrfs_join_transaction(root, 1);
1731         BUG_ON(IS_ERR(trans));
1732         btrfs_set_trans_block_group(trans, inode);
1733         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1734
1735         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1736                 compress_type = ordered_extent->compress_type;
1737         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1738                 BUG_ON(compress_type);
1739                 ret = btrfs_mark_extent_written(trans, inode,
1740                                                 ordered_extent->file_offset,
1741                                                 ordered_extent->file_offset +
1742                                                 ordered_extent->len);
1743                 BUG_ON(ret);
1744         } else {
1745                 BUG_ON(root == root->fs_info->tree_root);
1746                 ret = insert_reserved_file_extent(trans, inode,
1747                                                 ordered_extent->file_offset,
1748                                                 ordered_extent->start,
1749                                                 ordered_extent->disk_len,
1750                                                 ordered_extent->len,
1751                                                 ordered_extent->len,
1752                                                 compress_type, 0, 0,
1753                                                 BTRFS_FILE_EXTENT_REG);
1754                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1755                                    ordered_extent->file_offset,
1756                                    ordered_extent->len);
1757                 BUG_ON(ret);
1758         }
1759         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1760                              ordered_extent->file_offset +
1761                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1762
1763         add_pending_csums(trans, inode, ordered_extent->file_offset,
1764                           &ordered_extent->list);
1765
1766         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1767         ret = btrfs_update_inode(trans, root, inode);
1768         BUG_ON(ret);
1769 out:
1770         if (nolock) {
1771                 if (trans)
1772                         btrfs_end_transaction_nolock(trans, root);
1773         } else {
1774                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1775                 if (trans)
1776                         btrfs_end_transaction(trans, root);
1777         }
1778
1779         /* once for us */
1780         btrfs_put_ordered_extent(ordered_extent);
1781         /* once for the tree */
1782         btrfs_put_ordered_extent(ordered_extent);
1783
1784         return 0;
1785 }
1786
1787 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1788                                 struct extent_state *state, int uptodate)
1789 {
1790         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1791
1792         ClearPagePrivate2(page);
1793         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1794 }
1795
1796 /*
1797  * When IO fails, either with EIO or csum verification fails, we
1798  * try other mirrors that might have a good copy of the data.  This
1799  * io_failure_record is used to record state as we go through all the
1800  * mirrors.  If another mirror has good data, the page is set up to date
1801  * and things continue.  If a good mirror can't be found, the original
1802  * bio end_io callback is called to indicate things have failed.
1803  */
1804 struct io_failure_record {
1805         struct page *page;
1806         u64 start;
1807         u64 len;
1808         u64 logical;
1809         unsigned long bio_flags;
1810         int last_mirror;
1811 };
1812
1813 static int btrfs_io_failed_hook(struct bio *failed_bio,
1814                          struct page *page, u64 start, u64 end,
1815                          struct extent_state *state)
1816 {
1817         struct io_failure_record *failrec = NULL;
1818         u64 private;
1819         struct extent_map *em;
1820         struct inode *inode = page->mapping->host;
1821         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1822         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1823         struct bio *bio;
1824         int num_copies;
1825         int ret;
1826         int rw;
1827         u64 logical;
1828
1829         ret = get_state_private(failure_tree, start, &private);
1830         if (ret) {
1831                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1832                 if (!failrec)
1833                         return -ENOMEM;
1834                 failrec->start = start;
1835                 failrec->len = end - start + 1;
1836                 failrec->last_mirror = 0;
1837                 failrec->bio_flags = 0;
1838
1839                 read_lock(&em_tree->lock);
1840                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1841                 if (em->start > start || em->start + em->len < start) {
1842                         free_extent_map(em);
1843                         em = NULL;
1844                 }
1845                 read_unlock(&em_tree->lock);
1846
1847                 if (!em || IS_ERR(em)) {
1848                         kfree(failrec);
1849                         return -EIO;
1850                 }
1851                 logical = start - em->start;
1852                 logical = em->block_start + logical;
1853                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1854                         logical = em->block_start;
1855                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1856                         extent_set_compress_type(&failrec->bio_flags,
1857                                                  em->compress_type);
1858                 }
1859                 failrec->logical = logical;
1860                 free_extent_map(em);
1861                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1862                                 EXTENT_DIRTY, GFP_NOFS);
1863                 set_state_private(failure_tree, start,
1864                                  (u64)(unsigned long)failrec);
1865         } else {
1866                 failrec = (struct io_failure_record *)(unsigned long)private;
1867         }
1868         num_copies = btrfs_num_copies(
1869                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1870                               failrec->logical, failrec->len);
1871         failrec->last_mirror++;
1872         if (!state) {
1873                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1874                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1875                                                     failrec->start,
1876                                                     EXTENT_LOCKED);
1877                 if (state && state->start != failrec->start)
1878                         state = NULL;
1879                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1880         }
1881         if (!state || failrec->last_mirror > num_copies) {
1882                 set_state_private(failure_tree, failrec->start, 0);
1883                 clear_extent_bits(failure_tree, failrec->start,
1884                                   failrec->start + failrec->len - 1,
1885                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1886                 kfree(failrec);
1887                 return -EIO;
1888         }
1889         bio = bio_alloc(GFP_NOFS, 1);
1890         bio->bi_private = state;
1891         bio->bi_end_io = failed_bio->bi_end_io;
1892         bio->bi_sector = failrec->logical >> 9;
1893         bio->bi_bdev = failed_bio->bi_bdev;
1894         bio->bi_size = 0;
1895
1896         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1897         if (failed_bio->bi_rw & REQ_WRITE)
1898                 rw = WRITE;
1899         else
1900                 rw = READ;
1901
1902         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1903                                                       failrec->last_mirror,
1904                                                       failrec->bio_flags, 0);
1905         return 0;
1906 }
1907
1908 /*
1909  * each time an IO finishes, we do a fast check in the IO failure tree
1910  * to see if we need to process or clean up an io_failure_record
1911  */
1912 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1913 {
1914         u64 private;
1915         u64 private_failure;
1916         struct io_failure_record *failure;
1917         int ret;
1918
1919         private = 0;
1920         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1921                              (u64)-1, 1, EXTENT_DIRTY, 0)) {
1922                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1923                                         start, &private_failure);
1924                 if (ret == 0) {
1925                         failure = (struct io_failure_record *)(unsigned long)
1926                                    private_failure;
1927                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1928                                           failure->start, 0);
1929                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1930                                           failure->start,
1931                                           failure->start + failure->len - 1,
1932                                           EXTENT_DIRTY | EXTENT_LOCKED,
1933                                           GFP_NOFS);
1934                         kfree(failure);
1935                 }
1936         }
1937         return 0;
1938 }
1939
1940 /*
1941  * when reads are done, we need to check csums to verify the data is correct
1942  * if there's a match, we allow the bio to finish.  If not, we go through
1943  * the io_failure_record routines to find good copies
1944  */
1945 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1946                                struct extent_state *state)
1947 {
1948         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1949         struct inode *inode = page->mapping->host;
1950         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1951         char *kaddr;
1952         u64 private = ~(u32)0;
1953         int ret;
1954         struct btrfs_root *root = BTRFS_I(inode)->root;
1955         u32 csum = ~(u32)0;
1956
1957         if (PageChecked(page)) {
1958                 ClearPageChecked(page);
1959                 goto good;
1960         }
1961
1962         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1963                 return 0;
1964
1965         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1966             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1967                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1968                                   GFP_NOFS);
1969                 return 0;
1970         }
1971
1972         if (state && state->start == start) {
1973                 private = state->private;
1974                 ret = 0;
1975         } else {
1976                 ret = get_state_private(io_tree, start, &private);
1977         }
1978         kaddr = kmap_atomic(page, KM_USER0);
1979         if (ret)
1980                 goto zeroit;
1981
1982         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1983         btrfs_csum_final(csum, (char *)&csum);
1984         if (csum != private)
1985                 goto zeroit;
1986
1987         kunmap_atomic(kaddr, KM_USER0);
1988 good:
1989         /* if the io failure tree for this inode is non-empty,
1990          * check to see if we've recovered from a failed IO
1991          */
1992         btrfs_clean_io_failures(inode, start);
1993         return 0;
1994
1995 zeroit:
1996         if (printk_ratelimit()) {
1997                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1998                        "private %llu\n", page->mapping->host->i_ino,
1999                        (unsigned long long)start, csum,
2000                        (unsigned long long)private);
2001         }
2002         memset(kaddr + offset, 1, end - start + 1);
2003         flush_dcache_page(page);
2004         kunmap_atomic(kaddr, KM_USER0);
2005         if (private == 0)
2006                 return 0;
2007         return -EIO;
2008 }
2009
2010 struct delayed_iput {
2011         struct list_head list;
2012         struct inode *inode;
2013 };
2014
2015 void btrfs_add_delayed_iput(struct inode *inode)
2016 {
2017         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2018         struct delayed_iput *delayed;
2019
2020         if (atomic_add_unless(&inode->i_count, -1, 1))
2021                 return;
2022
2023         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2024         delayed->inode = inode;
2025
2026         spin_lock(&fs_info->delayed_iput_lock);
2027         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2028         spin_unlock(&fs_info->delayed_iput_lock);
2029 }
2030
2031 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2032 {
2033         LIST_HEAD(list);
2034         struct btrfs_fs_info *fs_info = root->fs_info;
2035         struct delayed_iput *delayed;
2036         int empty;
2037
2038         spin_lock(&fs_info->delayed_iput_lock);
2039         empty = list_empty(&fs_info->delayed_iputs);
2040         spin_unlock(&fs_info->delayed_iput_lock);
2041         if (empty)
2042                 return;
2043
2044         down_read(&root->fs_info->cleanup_work_sem);
2045         spin_lock(&fs_info->delayed_iput_lock);
2046         list_splice_init(&fs_info->delayed_iputs, &list);
2047         spin_unlock(&fs_info->delayed_iput_lock);
2048
2049         while (!list_empty(&list)) {
2050                 delayed = list_entry(list.next, struct delayed_iput, list);
2051                 list_del(&delayed->list);
2052                 iput(delayed->inode);
2053                 kfree(delayed);
2054         }
2055         up_read(&root->fs_info->cleanup_work_sem);
2056 }
2057
2058 /*
2059  * calculate extra metadata reservation when snapshotting a subvolume
2060  * contains orphan files.
2061  */
2062 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2063                                 struct btrfs_pending_snapshot *pending,
2064                                 u64 *bytes_to_reserve)
2065 {
2066         struct btrfs_root *root;
2067         struct btrfs_block_rsv *block_rsv;
2068         u64 num_bytes;
2069         int index;
2070
2071         root = pending->root;
2072         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2073                 return;
2074
2075         block_rsv = root->orphan_block_rsv;
2076
2077         /* orphan block reservation for the snapshot */
2078         num_bytes = block_rsv->size;
2079
2080         /*
2081          * after the snapshot is created, COWing tree blocks may use more
2082          * space than it frees. So we should make sure there is enough
2083          * reserved space.
2084          */
2085         index = trans->transid & 0x1;
2086         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2087                 num_bytes += block_rsv->size -
2088                              (block_rsv->reserved + block_rsv->freed[index]);
2089         }
2090
2091         *bytes_to_reserve += num_bytes;
2092 }
2093
2094 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2095                                 struct btrfs_pending_snapshot *pending)
2096 {
2097         struct btrfs_root *root = pending->root;
2098         struct btrfs_root *snap = pending->snap;
2099         struct btrfs_block_rsv *block_rsv;
2100         u64 num_bytes;
2101         int index;
2102         int ret;
2103
2104         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2105                 return;
2106
2107         /* refill source subvolume's orphan block reservation */
2108         block_rsv = root->orphan_block_rsv;
2109         index = trans->transid & 0x1;
2110         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2111                 num_bytes = block_rsv->size -
2112                             (block_rsv->reserved + block_rsv->freed[index]);
2113                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2114                                               root->orphan_block_rsv,
2115                                               num_bytes);
2116                 BUG_ON(ret);
2117         }
2118
2119         /* setup orphan block reservation for the snapshot */
2120         block_rsv = btrfs_alloc_block_rsv(snap);
2121         BUG_ON(!block_rsv);
2122
2123         btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2124         snap->orphan_block_rsv = block_rsv;
2125
2126         num_bytes = root->orphan_block_rsv->size;
2127         ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2128                                       block_rsv, num_bytes);
2129         BUG_ON(ret);
2130
2131 #if 0
2132         /* insert orphan item for the snapshot */
2133         WARN_ON(!root->orphan_item_inserted);
2134         ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2135                                        snap->root_key.objectid);
2136         BUG_ON(ret);
2137         snap->orphan_item_inserted = 1;
2138 #endif
2139 }
2140
2141 enum btrfs_orphan_cleanup_state {
2142         ORPHAN_CLEANUP_STARTED  = 1,
2143         ORPHAN_CLEANUP_DONE     = 2,
2144 };
2145
2146 /*
2147  * This is called in transaction commmit time. If there are no orphan
2148  * files in the subvolume, it removes orphan item and frees block_rsv
2149  * structure.
2150  */
2151 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2152                               struct btrfs_root *root)
2153 {
2154         int ret;
2155
2156         if (!list_empty(&root->orphan_list) ||
2157             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2158                 return;
2159
2160         if (root->orphan_item_inserted &&
2161             btrfs_root_refs(&root->root_item) > 0) {
2162                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2163                                             root->root_key.objectid);
2164                 BUG_ON(ret);
2165                 root->orphan_item_inserted = 0;
2166         }
2167
2168         if (root->orphan_block_rsv) {
2169                 WARN_ON(root->orphan_block_rsv->size > 0);
2170                 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2171                 root->orphan_block_rsv = NULL;
2172         }
2173 }
2174
2175 /*
2176  * This creates an orphan entry for the given inode in case something goes
2177  * wrong in the middle of an unlink/truncate.
2178  *
2179  * NOTE: caller of this function should reserve 5 units of metadata for
2180  *       this function.
2181  */
2182 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2183 {
2184         struct btrfs_root *root = BTRFS_I(inode)->root;
2185         struct btrfs_block_rsv *block_rsv = NULL;
2186         int reserve = 0;
2187         int insert = 0;
2188         int ret;
2189
2190         if (!root->orphan_block_rsv) {
2191                 block_rsv = btrfs_alloc_block_rsv(root);
2192                 BUG_ON(!block_rsv);
2193         }
2194
2195         spin_lock(&root->orphan_lock);
2196         if (!root->orphan_block_rsv) {
2197                 root->orphan_block_rsv = block_rsv;
2198         } else if (block_rsv) {
2199                 btrfs_free_block_rsv(root, block_rsv);
2200                 block_rsv = NULL;
2201         }
2202
2203         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2204                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2205 #if 0
2206                 /*
2207                  * For proper ENOSPC handling, we should do orphan
2208                  * cleanup when mounting. But this introduces backward
2209                  * compatibility issue.
2210                  */
2211                 if (!xchg(&root->orphan_item_inserted, 1))
2212                         insert = 2;
2213                 else
2214                         insert = 1;
2215 #endif
2216                 insert = 1;
2217         } else {
2218                 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2219         }
2220
2221         if (!BTRFS_I(inode)->orphan_meta_reserved) {
2222                 BTRFS_I(inode)->orphan_meta_reserved = 1;
2223                 reserve = 1;
2224         }
2225         spin_unlock(&root->orphan_lock);
2226
2227         if (block_rsv)
2228                 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2229
2230         /* grab metadata reservation from transaction handle */
2231         if (reserve) {
2232                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2233                 BUG_ON(ret);
2234         }
2235
2236         /* insert an orphan item to track this unlinked/truncated file */
2237         if (insert >= 1) {
2238                 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2239                 BUG_ON(ret);
2240         }
2241
2242         /* insert an orphan item to track subvolume contains orphan files */
2243         if (insert >= 2) {
2244                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2245                                                root->root_key.objectid);
2246                 BUG_ON(ret);
2247         }
2248         return 0;
2249 }
2250
2251 /*
2252  * We have done the truncate/delete so we can go ahead and remove the orphan
2253  * item for this particular inode.
2254  */
2255 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2256 {
2257         struct btrfs_root *root = BTRFS_I(inode)->root;
2258         int delete_item = 0;
2259         int release_rsv = 0;
2260         int ret = 0;
2261
2262         spin_lock(&root->orphan_lock);
2263         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2264                 list_del_init(&BTRFS_I(inode)->i_orphan);
2265                 delete_item = 1;
2266         }
2267
2268         if (BTRFS_I(inode)->orphan_meta_reserved) {
2269                 BTRFS_I(inode)->orphan_meta_reserved = 0;
2270                 release_rsv = 1;
2271         }
2272         spin_unlock(&root->orphan_lock);
2273
2274         if (trans && delete_item) {
2275                 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2276                 BUG_ON(ret);
2277         }
2278
2279         if (release_rsv)
2280                 btrfs_orphan_release_metadata(inode);
2281
2282         return 0;
2283 }
2284
2285 /*
2286  * this cleans up any orphans that may be left on the list from the last use
2287  * of this root.
2288  */
2289 int btrfs_orphan_cleanup(struct btrfs_root *root)
2290 {
2291         struct btrfs_path *path;
2292         struct extent_buffer *leaf;
2293         struct btrfs_key key, found_key;
2294         struct btrfs_trans_handle *trans;
2295         struct inode *inode;
2296         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2297
2298         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2299                 return 0;
2300
2301         path = btrfs_alloc_path();
2302         if (!path) {
2303                 ret = -ENOMEM;
2304                 goto out;
2305         }
2306         path->reada = -1;
2307
2308         key.objectid = BTRFS_ORPHAN_OBJECTID;
2309         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2310         key.offset = (u64)-1;
2311
2312         while (1) {
2313                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2314                 if (ret < 0)
2315                         goto out;
2316
2317                 /*
2318                  * if ret == 0 means we found what we were searching for, which
2319                  * is weird, but possible, so only screw with path if we didnt
2320                  * find the key and see if we have stuff that matches
2321                  */
2322                 if (ret > 0) {
2323                         ret = 0;
2324                         if (path->slots[0] == 0)
2325                                 break;
2326                         path->slots[0]--;
2327                 }
2328
2329                 /* pull out the item */
2330                 leaf = path->nodes[0];
2331                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2332
2333                 /* make sure the item matches what we want */
2334                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2335                         break;
2336                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2337                         break;
2338
2339                 /* release the path since we're done with it */
2340                 btrfs_release_path(root, path);
2341
2342                 /*
2343                  * this is where we are basically btrfs_lookup, without the
2344                  * crossing root thing.  we store the inode number in the
2345                  * offset of the orphan item.
2346                  */
2347                 found_key.objectid = found_key.offset;
2348                 found_key.type = BTRFS_INODE_ITEM_KEY;
2349                 found_key.offset = 0;
2350                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2351                 if (IS_ERR(inode)) {
2352                         ret = PTR_ERR(inode);
2353                         goto out;
2354                 }
2355
2356                 /*
2357                  * add this inode to the orphan list so btrfs_orphan_del does
2358                  * the proper thing when we hit it
2359                  */
2360                 spin_lock(&root->orphan_lock);
2361                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2362                 spin_unlock(&root->orphan_lock);
2363
2364                 /*
2365                  * if this is a bad inode, means we actually succeeded in
2366                  * removing the inode, but not the orphan record, which means
2367                  * we need to manually delete the orphan since iput will just
2368                  * do a destroy_inode
2369                  */
2370                 if (is_bad_inode(inode)) {
2371                         trans = btrfs_start_transaction(root, 0);
2372                         if (IS_ERR(trans)) {
2373                                 ret = PTR_ERR(trans);
2374                                 goto out;
2375                         }
2376                         btrfs_orphan_del(trans, inode);
2377                         btrfs_end_transaction(trans, root);
2378                         iput(inode);
2379                         continue;
2380                 }
2381
2382                 /* if we have links, this was a truncate, lets do that */
2383                 if (inode->i_nlink) {
2384                         if (!S_ISREG(inode->i_mode)) {
2385                                 WARN_ON(1);
2386                                 iput(inode);
2387                                 continue;
2388                         }
2389                         nr_truncate++;
2390                         ret = btrfs_truncate(inode);
2391                 } else {
2392                         nr_unlink++;
2393                 }
2394
2395                 /* this will do delete_inode and everything for us */
2396                 iput(inode);
2397                 if (ret)
2398                         goto out;
2399         }
2400         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2401
2402         if (root->orphan_block_rsv)
2403                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2404                                         (u64)-1);
2405
2406         if (root->orphan_block_rsv || root->orphan_item_inserted) {
2407                 trans = btrfs_join_transaction(root, 1);
2408                 if (!IS_ERR(trans))
2409                         btrfs_end_transaction(trans, root);
2410         }
2411
2412         if (nr_unlink)
2413                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2414         if (nr_truncate)
2415                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2416
2417 out:
2418         if (ret)
2419                 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2420         btrfs_free_path(path);
2421         return ret;
2422 }
2423
2424 /*
2425  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2426  * don't find any xattrs, we know there can't be any acls.
2427  *
2428  * slot is the slot the inode is in, objectid is the objectid of the inode
2429  */
2430 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2431                                           int slot, u64 objectid)
2432 {
2433         u32 nritems = btrfs_header_nritems(leaf);
2434         struct btrfs_key found_key;
2435         int scanned = 0;
2436
2437         slot++;
2438         while (slot < nritems) {
2439                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2440
2441                 /* we found a different objectid, there must not be acls */
2442                 if (found_key.objectid != objectid)
2443                         return 0;
2444
2445                 /* we found an xattr, assume we've got an acl */
2446                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2447                         return 1;
2448
2449                 /*
2450                  * we found a key greater than an xattr key, there can't
2451                  * be any acls later on
2452                  */
2453                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2454                         return 0;
2455
2456                 slot++;
2457                 scanned++;
2458
2459                 /*
2460                  * it goes inode, inode backrefs, xattrs, extents,
2461                  * so if there are a ton of hard links to an inode there can
2462                  * be a lot of backrefs.  Don't waste time searching too hard,
2463                  * this is just an optimization
2464                  */
2465                 if (scanned >= 8)
2466                         break;
2467         }
2468         /* we hit the end of the leaf before we found an xattr or
2469          * something larger than an xattr.  We have to assume the inode
2470          * has acls
2471          */
2472         return 1;
2473 }
2474
2475 /*
2476  * read an inode from the btree into the in-memory inode
2477  */
2478 static void btrfs_read_locked_inode(struct inode *inode)
2479 {
2480         struct btrfs_path *path;
2481         struct extent_buffer *leaf;
2482         struct btrfs_inode_item *inode_item;
2483         struct btrfs_timespec *tspec;
2484         struct btrfs_root *root = BTRFS_I(inode)->root;
2485         struct btrfs_key location;
2486         int maybe_acls;
2487         u64 alloc_group_block;
2488         u32 rdev;
2489         int ret;
2490
2491         path = btrfs_alloc_path();
2492         BUG_ON(!path);
2493         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2494
2495         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2496         if (ret)
2497                 goto make_bad;
2498
2499         leaf = path->nodes[0];
2500         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2501                                     struct btrfs_inode_item);
2502
2503         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2504         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2505         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2506         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2507         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2508
2509         tspec = btrfs_inode_atime(inode_item);
2510         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2511         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2512
2513         tspec = btrfs_inode_mtime(inode_item);
2514         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2515         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2516
2517         tspec = btrfs_inode_ctime(inode_item);
2518         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2519         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2520
2521         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2522         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2523         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2524         inode->i_generation = BTRFS_I(inode)->generation;
2525         inode->i_rdev = 0;
2526         rdev = btrfs_inode_rdev(leaf, inode_item);
2527
2528         BTRFS_I(inode)->index_cnt = (u64)-1;
2529         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2530
2531         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2532
2533         /*
2534          * try to precache a NULL acl entry for files that don't have
2535          * any xattrs or acls
2536          */
2537         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2538         if (!maybe_acls)
2539                 cache_no_acl(inode);
2540
2541         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2542                                                 alloc_group_block, 0);
2543         btrfs_free_path(path);
2544         inode_item = NULL;
2545
2546         switch (inode->i_mode & S_IFMT) {
2547         case S_IFREG:
2548                 inode->i_mapping->a_ops = &btrfs_aops;
2549                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2550                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2551                 inode->i_fop = &btrfs_file_operations;
2552                 inode->i_op = &btrfs_file_inode_operations;
2553                 break;
2554         case S_IFDIR:
2555                 inode->i_fop = &btrfs_dir_file_operations;
2556                 if (root == root->fs_info->tree_root)
2557                         inode->i_op = &btrfs_dir_ro_inode_operations;
2558                 else
2559                         inode->i_op = &btrfs_dir_inode_operations;
2560                 break;
2561         case S_IFLNK:
2562                 inode->i_op = &btrfs_symlink_inode_operations;
2563                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2564                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2565                 break;
2566         default:
2567                 inode->i_op = &btrfs_special_inode_operations;
2568                 init_special_inode(inode, inode->i_mode, rdev);
2569                 break;
2570         }
2571
2572         btrfs_update_iflags(inode);
2573         return;
2574
2575 make_bad:
2576         btrfs_free_path(path);
2577         make_bad_inode(inode);
2578 }
2579
2580 /*
2581  * given a leaf and an inode, copy the inode fields into the leaf
2582  */
2583 static void fill_inode_item(struct btrfs_trans_handle *trans,
2584                             struct extent_buffer *leaf,
2585                             struct btrfs_inode_item *item,
2586                             struct inode *inode)
2587 {
2588         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2589         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2590         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2591         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2592         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2593
2594         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2595                                inode->i_atime.tv_sec);
2596         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2597                                 inode->i_atime.tv_nsec);
2598
2599         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2600                                inode->i_mtime.tv_sec);
2601         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2602                                 inode->i_mtime.tv_nsec);
2603
2604         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2605                                inode->i_ctime.tv_sec);
2606         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2607                                 inode->i_ctime.tv_nsec);
2608
2609         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2610         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2611         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2612         btrfs_set_inode_transid(leaf, item, trans->transid);
2613         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2614         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2615         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2616 }
2617
2618 /*
2619  * copy everything in the in-memory inode into the btree.
2620  */
2621 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2622                                 struct btrfs_root *root, struct inode *inode)
2623 {
2624         struct btrfs_inode_item *inode_item;
2625         struct btrfs_path *path;
2626         struct extent_buffer *leaf;
2627         int ret;
2628
2629         path = btrfs_alloc_path();
2630         BUG_ON(!path);
2631         path->leave_spinning = 1;
2632         ret = btrfs_lookup_inode(trans, root, path,
2633                                  &BTRFS_I(inode)->location, 1);
2634         if (ret) {
2635                 if (ret > 0)
2636                         ret = -ENOENT;
2637                 goto failed;
2638         }
2639
2640         btrfs_unlock_up_safe(path, 1);
2641         leaf = path->nodes[0];
2642         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2643                                   struct btrfs_inode_item);
2644
2645         fill_inode_item(trans, leaf, inode_item, inode);
2646         btrfs_mark_buffer_dirty(leaf);
2647         btrfs_set_inode_last_trans(trans, inode);
2648         ret = 0;
2649 failed:
2650         btrfs_free_path(path);
2651         return ret;
2652 }
2653
2654
2655 /*
2656  * unlink helper that gets used here in inode.c and in the tree logging
2657  * recovery code.  It remove a link in a directory with a given name, and
2658  * also drops the back refs in the inode to the directory
2659  */
2660 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2661                        struct btrfs_root *root,
2662                        struct inode *dir, struct inode *inode,
2663                        const char *name, int name_len)
2664 {
2665         struct btrfs_path *path;
2666         int ret = 0;
2667         struct extent_buffer *leaf;
2668         struct btrfs_dir_item *di;
2669         struct btrfs_key key;
2670         u64 index;
2671
2672         path = btrfs_alloc_path();
2673         if (!path) {
2674                 ret = -ENOMEM;
2675                 goto out;
2676         }
2677
2678         path->leave_spinning = 1;
2679         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2680                                     name, name_len, -1);
2681         if (IS_ERR(di)) {
2682                 ret = PTR_ERR(di);
2683                 goto err;
2684         }
2685         if (!di) {
2686                 ret = -ENOENT;
2687                 goto err;
2688         }
2689         leaf = path->nodes[0];
2690         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2691         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2692         if (ret)
2693                 goto err;
2694         btrfs_release_path(root, path);
2695
2696         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2697                                   inode->i_ino,
2698                                   dir->i_ino, &index);
2699         if (ret) {
2700                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2701                        "inode %lu parent %lu\n", name_len, name,
2702                        inode->i_ino, dir->i_ino);
2703                 goto err;
2704         }
2705
2706         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2707                                          index, name, name_len, -1);
2708         if (IS_ERR(di)) {
2709                 ret = PTR_ERR(di);
2710                 goto err;
2711         }
2712         if (!di) {
2713                 ret = -ENOENT;
2714                 goto err;
2715         }
2716         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2717         btrfs_release_path(root, path);
2718
2719         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2720                                          inode, dir->i_ino);
2721         BUG_ON(ret != 0 && ret != -ENOENT);
2722
2723         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2724                                            dir, index);
2725         if (ret == -ENOENT)
2726                 ret = 0;
2727 err:
2728         btrfs_free_path(path);
2729         if (ret)
2730                 goto out;
2731
2732         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2733         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2734         btrfs_update_inode(trans, root, dir);
2735         btrfs_drop_nlink(inode);
2736         ret = btrfs_update_inode(trans, root, inode);
2737 out:
2738         return ret;
2739 }
2740
2741 /* helper to check if there is any shared block in the path */
2742 static int check_path_shared(struct btrfs_root *root,
2743                              struct btrfs_path *path)
2744 {
2745         struct extent_buffer *eb;
2746         int level;
2747         u64 refs = 1;
2748
2749         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2750                 int ret;
2751
2752                 if (!path->nodes[level])
2753                         break;
2754                 eb = path->nodes[level];
2755                 if (!btrfs_block_can_be_shared(root, eb))
2756                         continue;
2757                 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2758                                                &refs, NULL);
2759                 if (refs > 1)
2760                         return 1;
2761         }
2762         return 0;
2763 }
2764
2765 /*
2766  * helper to start transaction for unlink and rmdir.
2767  *
2768  * unlink and rmdir are special in btrfs, they do not always free space.
2769  * so in enospc case, we should make sure they will free space before
2770  * allowing them to use the global metadata reservation.
2771  */
2772 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2773                                                        struct dentry *dentry)
2774 {
2775         struct btrfs_trans_handle *trans;
2776         struct btrfs_root *root = BTRFS_I(dir)->root;
2777         struct btrfs_path *path;
2778         struct btrfs_inode_ref *ref;
2779         struct btrfs_dir_item *di;
2780         struct inode *inode = dentry->d_inode;
2781         u64 index;
2782         int check_link = 1;
2783         int err = -ENOSPC;
2784         int ret;
2785
2786         trans = btrfs_start_transaction(root, 10);
2787         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2788                 return trans;
2789
2790         if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2791                 return ERR_PTR(-ENOSPC);
2792
2793         /* check if there is someone else holds reference */
2794         if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2795                 return ERR_PTR(-ENOSPC);
2796
2797         if (atomic_read(&inode->i_count) > 2)
2798                 return ERR_PTR(-ENOSPC);
2799
2800         if (xchg(&root->fs_info->enospc_unlink, 1))
2801                 return ERR_PTR(-ENOSPC);
2802
2803         path = btrfs_alloc_path();
2804         if (!path) {
2805                 root->fs_info->enospc_unlink = 0;
2806                 return ERR_PTR(-ENOMEM);
2807         }
2808
2809         trans = btrfs_start_transaction(root, 0);
2810         if (IS_ERR(trans)) {
2811                 btrfs_free_path(path);
2812                 root->fs_info->enospc_unlink = 0;
2813                 return trans;
2814         }
2815
2816         path->skip_locking = 1;
2817         path->search_commit_root = 1;
2818
2819         ret = btrfs_lookup_inode(trans, root, path,
2820                                 &BTRFS_I(dir)->location, 0);
2821         if (ret < 0) {
2822                 err = ret;
2823                 goto out;
2824         }
2825         if (ret == 0) {
2826                 if (check_path_shared(root, path))
2827                         goto out;
2828         } else {
2829                 check_link = 0;
2830         }
2831         btrfs_release_path(root, path);
2832
2833         ret = btrfs_lookup_inode(trans, root, path,
2834                                 &BTRFS_I(inode)->location, 0);
2835         if (ret < 0) {
2836                 err = ret;
2837                 goto out;
2838         }
2839         if (ret == 0) {
2840                 if (check_path_shared(root, path))
2841                         goto out;
2842         } else {
2843                 check_link = 0;
2844         }
2845         btrfs_release_path(root, path);
2846
2847         if (ret == 0 && S_ISREG(inode->i_mode)) {
2848                 ret = btrfs_lookup_file_extent(trans, root, path,
2849                                                inode->i_ino, (u64)-1, 0);
2850                 if (ret < 0) {
2851                         err = ret;
2852                         goto out;
2853                 }
2854                 BUG_ON(ret == 0);
2855                 if (check_path_shared(root, path))
2856                         goto out;
2857                 btrfs_release_path(root, path);
2858         }
2859
2860         if (!check_link) {
2861                 err = 0;
2862                 goto out;
2863         }
2864
2865         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2866                                 dentry->d_name.name, dentry->d_name.len, 0);
2867         if (IS_ERR(di)) {
2868                 err = PTR_ERR(di);
2869                 goto out;
2870         }
2871         if (di) {
2872                 if (check_path_shared(root, path))
2873                         goto out;
2874         } else {
2875                 err = 0;
2876                 goto out;
2877         }
2878         btrfs_release_path(root, path);
2879
2880         ref = btrfs_lookup_inode_ref(trans, root, path,
2881                                 dentry->d_name.name, dentry->d_name.len,
2882                                 inode->i_ino, dir->i_ino, 0);
2883         if (IS_ERR(ref)) {
2884                 err = PTR_ERR(ref);
2885                 goto out;
2886         }
2887         BUG_ON(!ref);
2888         if (check_path_shared(root, path))
2889                 goto out;
2890         index = btrfs_inode_ref_index(path->nodes[0], ref);
2891         btrfs_release_path(root, path);
2892
2893         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2894                                 dentry->d_name.name, dentry->d_name.len, 0);
2895         if (IS_ERR(di)) {
2896                 err = PTR_ERR(di);
2897                 goto out;
2898         }
2899         BUG_ON(ret == -ENOENT);
2900         if (check_path_shared(root, path))
2901                 goto out;
2902
2903         err = 0;
2904 out:
2905         btrfs_free_path(path);
2906         if (err) {
2907                 btrfs_end_transaction(trans, root);
2908                 root->fs_info->enospc_unlink = 0;
2909                 return ERR_PTR(err);
2910         }
2911
2912         trans->block_rsv = &root->fs_info->global_block_rsv;
2913         return trans;
2914 }
2915
2916 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2917                                struct btrfs_root *root)
2918 {
2919         if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2920                 BUG_ON(!root->fs_info->enospc_unlink);
2921                 root->fs_info->enospc_unlink = 0;
2922         }
2923         btrfs_end_transaction_throttle(trans, root);
2924 }
2925
2926 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2927 {
2928         struct btrfs_root *root = BTRFS_I(dir)->root;
2929         struct btrfs_trans_handle *trans;
2930         struct inode *inode = dentry->d_inode;
2931         int ret;
2932         unsigned long nr = 0;
2933
2934         trans = __unlink_start_trans(dir, dentry);
2935         if (IS_ERR(trans))
2936                 return PTR_ERR(trans);
2937
2938         btrfs_set_trans_block_group(trans, dir);
2939
2940         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2941
2942         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2943                                  dentry->d_name.name, dentry->d_name.len);
2944         BUG_ON(ret);
2945
2946         if (inode->i_nlink == 0) {
2947                 ret = btrfs_orphan_add(trans, inode);
2948                 BUG_ON(ret);
2949         }
2950
2951         nr = trans->blocks_used;
2952         __unlink_end_trans(trans, root);
2953         btrfs_btree_balance_dirty(root, nr);
2954         return ret;
2955 }
2956
2957 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2958                         struct btrfs_root *root,
2959                         struct inode *dir, u64 objectid,
2960                         const char *name, int name_len)
2961 {
2962         struct btrfs_path *path;
2963         struct extent_buffer *leaf;
2964         struct btrfs_dir_item *di;
2965         struct btrfs_key key;
2966         u64 index;
2967         int ret;
2968
2969         path = btrfs_alloc_path();
2970         if (!path)
2971                 return -ENOMEM;
2972
2973         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2974                                    name, name_len, -1);
2975         BUG_ON(!di || IS_ERR(di));
2976
2977         leaf = path->nodes[0];
2978         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2979         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2980         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2981         BUG_ON(ret);
2982         btrfs_release_path(root, path);
2983
2984         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2985                                  objectid, root->root_key.objectid,
2986                                  dir->i_ino, &index, name, name_len);
2987         if (ret < 0) {
2988                 BUG_ON(ret != -ENOENT);
2989                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2990                                                  name, name_len);
2991                 BUG_ON(!di || IS_ERR(di));
2992
2993                 leaf = path->nodes[0];
2994                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2995                 btrfs_release_path(root, path);
2996                 index = key.offset;
2997         }
2998
2999         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
3000                                          index, name, name_len, -1);
3001         BUG_ON(!di || IS_ERR(di));
3002
3003         leaf = path->nodes[0];
3004         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3005         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3006         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3007         BUG_ON(ret);
3008         btrfs_release_path(root, path);
3009
3010         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3011         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3012         ret = btrfs_update_inode(trans, root, dir);
3013         BUG_ON(ret);
3014
3015         btrfs_free_path(path);
3016         return 0;
3017 }
3018
3019 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3020 {
3021         struct inode *inode = dentry->d_inode;
3022         int err = 0;
3023         struct btrfs_root *root = BTRFS_I(dir)->root;
3024         struct btrfs_trans_handle *trans;
3025         unsigned long nr = 0;
3026
3027         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3028             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3029                 return -ENOTEMPTY;
3030
3031         trans = __unlink_start_trans(dir, dentry);
3032         if (IS_ERR(trans))
3033                 return PTR_ERR(trans);
3034
3035         btrfs_set_trans_block_group(trans, dir);
3036
3037         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3038                 err = btrfs_unlink_subvol(trans, root, dir,
3039                                           BTRFS_I(inode)->location.objectid,
3040                                           dentry->d_name.name,
3041                                           dentry->d_name.len);
3042                 goto out;
3043         }
3044
3045         err = btrfs_orphan_add(trans, inode);
3046         if (err)
3047                 goto out;
3048
3049         /* now the directory is empty */
3050         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3051                                  dentry->d_name.name, dentry->d_name.len);
3052         if (!err)
3053                 btrfs_i_size_write(inode, 0);
3054 out:
3055         nr = trans->blocks_used;
3056         __unlink_end_trans(trans, root);
3057         btrfs_btree_balance_dirty(root, nr);
3058
3059         return err;
3060 }
3061
3062 #if 0
3063 /*
3064  * when truncating bytes in a file, it is possible to avoid reading
3065  * the leaves that contain only checksum items.  This can be the
3066  * majority of the IO required to delete a large file, but it must
3067  * be done carefully.
3068  *
3069  * The keys in the level just above the leaves are checked to make sure
3070  * the lowest key in a given leaf is a csum key, and starts at an offset
3071  * after the new  size.
3072  *
3073  * Then the key for the next leaf is checked to make sure it also has
3074  * a checksum item for the same file.  If it does, we know our target leaf
3075  * contains only checksum items, and it can be safely freed without reading
3076  * it.
3077  *
3078  * This is just an optimization targeted at large files.  It may do
3079  * nothing.  It will return 0 unless things went badly.
3080  */
3081 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3082                                      struct btrfs_root *root,
3083                                      struct btrfs_path *path,
3084                                      struct inode *inode, u64 new_size)
3085 {
3086         struct btrfs_key key;
3087         int ret;
3088         int nritems;
3089         struct btrfs_key found_key;
3090         struct btrfs_key other_key;
3091         struct btrfs_leaf_ref *ref;
3092         u64 leaf_gen;
3093         u64 leaf_start;
3094
3095         path->lowest_level = 1;
3096         key.objectid = inode->i_ino;
3097         key.type = BTRFS_CSUM_ITEM_KEY;
3098         key.offset = new_size;
3099 again:
3100         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3101         if (ret < 0)
3102                 goto out;
3103
3104         if (path->nodes[1] == NULL) {
3105                 ret = 0;
3106                 goto out;
3107         }
3108         ret = 0;
3109         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3110         nritems = btrfs_header_nritems(path->nodes[1]);
3111
3112         if (!nritems)
3113                 goto out;
3114
3115         if (path->slots[1] >= nritems)
3116                 goto next_node;
3117
3118         /* did we find a key greater than anything we want to delete? */
3119         if (found_key.objectid > inode->i_ino ||
3120            (found_key.objectid == inode->i_ino && found_key.type > key.type))
3121                 goto out;
3122
3123         /* we check the next key in the node to make sure the leave contains
3124          * only checksum items.  This comparison doesn't work if our
3125          * leaf is the last one in the node
3126          */
3127         if (path->slots[1] + 1 >= nritems) {
3128 next_node:
3129                 /* search forward from the last key in the node, this
3130                  * will bring us into the next node in the tree
3131                  */
3132                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3133
3134                 /* unlikely, but we inc below, so check to be safe */
3135                 if (found_key.offset == (u64)-1)
3136                         goto out;
3137
3138                 /* search_forward needs a path with locks held, do the
3139                  * search again for the original key.  It is possible
3140                  * this will race with a balance and return a path that
3141                  * we could modify, but this drop is just an optimization
3142                  * and is allowed to miss some leaves.
3143                  */
3144                 btrfs_release_path(root, path);
3145                 found_key.offset++;
3146
3147                 /* setup a max key for search_forward */
3148                 other_key.offset = (u64)-1;
3149                 other_key.type = key.type;
3150                 other_key.objectid = key.objectid;
3151
3152                 path->keep_locks = 1;
3153                 ret = btrfs_search_forward(root, &found_key, &other_key,
3154                                            path, 0, 0);
3155                 path->keep_locks = 0;
3156                 if (ret || found_key.objectid != key.objectid ||
3157                     found_key.type != key.type) {
3158                         ret = 0;
3159                         goto out;
3160                 }
3161
3162                 key.offset = found_key.offset;
3163                 btrfs_release_path(root, path);
3164                 cond_resched();
3165                 goto again;
3166         }
3167
3168         /* we know there's one more slot after us in the tree,
3169          * read that key so we can verify it is also a checksum item
3170          */
3171         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3172
3173         if (found_key.objectid < inode->i_ino)
3174                 goto next_key;
3175
3176         if (found_key.type != key.type || found_key.offset < new_size)
3177                 goto next_key;
3178
3179         /*
3180          * if the key for the next leaf isn't a csum key from this objectid,
3181          * we can't be sure there aren't good items inside this leaf.
3182          * Bail out
3183          */
3184         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3185                 goto out;
3186
3187         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3188         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3189         /*
3190          * it is safe to delete this leaf, it contains only
3191          * csum items from this inode at an offset >= new_size
3192          */
3193         ret = btrfs_del_leaf(trans, root, path, leaf_start);
3194         BUG_ON(ret);
3195
3196         if (root->ref_cows && leaf_gen < trans->transid) {
3197                 ref = btrfs_alloc_leaf_ref(root, 0);
3198                 if (ref) {
3199                         ref->root_gen = root->root_key.offset;
3200                         ref->bytenr = leaf_start;
3201                         ref->owner = 0;
3202                         ref->generation = leaf_gen;
3203                         ref->nritems = 0;
3204
3205                         btrfs_sort_leaf_ref(ref);
3206
3207                         ret = btrfs_add_leaf_ref(root, ref, 0);
3208                         WARN_ON(ret);
3209                         btrfs_free_leaf_ref(root, ref);
3210                 } else {
3211                         WARN_ON(1);
3212                 }
3213         }
3214 next_key:
3215         btrfs_release_path(root, path);
3216
3217         if (other_key.objectid == inode->i_ino &&
3218             other_key.type == key.type && other_key.offset > key.offset) {
3219                 key.offset = other_key.offset;
3220                 cond_resched();
3221                 goto again;
3222         }
3223         ret = 0;
3224 out:
3225         /* fixup any changes we've made to the path */
3226         path->lowest_level = 0;
3227         path->keep_locks = 0;
3228         btrfs_release_path(root, path);
3229         return ret;
3230 }
3231
3232 #endif
3233
3234 /*
3235  * this can truncate away extent items, csum items and directory items.
3236  * It starts at a high offset and removes keys until it can't find
3237  * any higher than new_size
3238  *
3239  * csum items that cross the new i_size are truncated to the new size
3240  * as well.
3241  *
3242  * min_type is the minimum key type to truncate down to.  If set to 0, this
3243  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3244  */
3245 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3246                                struct btrfs_root *root,
3247                                struct inode *inode,
3248                                u64 new_size, u32 min_type)
3249 {
3250         struct btrfs_path *path;
3251         struct extent_buffer *leaf;
3252         struct btrfs_file_extent_item *fi;
3253         struct btrfs_key key;
3254         struct btrfs_key found_key;
3255         u64 extent_start = 0;
3256         u64 extent_num_bytes = 0;
3257         u64 extent_offset = 0;
3258         u64 item_end = 0;
3259         u64 mask = root->sectorsize - 1;
3260         u32 found_type = (u8)-1;
3261         int found_extent;
3262         int del_item;
3263         int pending_del_nr = 0;
3264         int pending_del_slot = 0;
3265         int extent_type = -1;
3266         int encoding;
3267         int ret;
3268         int err = 0;
3269
3270         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3271
3272         if (root->ref_cows || root == root->fs_info->tree_root)
3273                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3274
3275         path = btrfs_alloc_path();
3276         BUG_ON(!path);
3277         path->reada = -1;
3278
3279         key.objectid = inode->i_ino;
3280         key.offset = (u64)-1;
3281         key.type = (u8)-1;
3282
3283 search_again:
3284         path->leave_spinning = 1;
3285         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3286         if (ret < 0) {
3287                 err = ret;
3288                 goto out;
3289         }
3290
3291         if (ret > 0) {
3292                 /* there are no items in the tree for us to truncate, we're
3293                  * done
3294                  */
3295                 if (path->slots[0] == 0)
3296                         goto out;
3297                 path->slots[0]--;
3298         }
3299
3300         while (1) {
3301                 fi = NULL;
3302                 leaf = path->nodes[0];
3303                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3304                 found_type = btrfs_key_type(&found_key);
3305                 encoding = 0;
3306
3307                 if (found_key.objectid != inode->i_ino)
3308                         break;
3309
3310                 if (found_type < min_type)
3311                         break;
3312
3313                 item_end = found_key.offset;
3314                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3315                         fi = btrfs_item_ptr(leaf, path->slots[0],
3316                                             struct btrfs_file_extent_item);
3317                         extent_type = btrfs_file_extent_type(leaf, fi);
3318                         encoding = btrfs_file_extent_compression(leaf, fi);
3319                         encoding |= btrfs_file_extent_encryption(leaf, fi);
3320                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3321
3322                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3323                                 item_end +=
3324                                     btrfs_file_extent_num_bytes(leaf, fi);
3325                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3326                                 item_end += btrfs_file_extent_inline_len(leaf,
3327                                                                          fi);
3328                         }
3329                         item_end--;
3330                 }
3331                 if (found_type > min_type) {
3332                         del_item = 1;
3333                 } else {
3334                         if (item_end < new_size)
3335                                 break;
3336                         if (found_key.offset >= new_size)
3337                                 del_item = 1;
3338                         else
3339                                 del_item = 0;
3340                 }
3341                 found_extent = 0;
3342                 /* FIXME, shrink the extent if the ref count is only 1 */
3343                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3344                         goto delete;
3345
3346                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3347                         u64 num_dec;
3348                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3349                         if (!del_item && !encoding) {
3350                                 u64 orig_num_bytes =
3351                                         btrfs_file_extent_num_bytes(leaf, fi);
3352                                 extent_num_bytes = new_size -
3353                                         found_key.offset + root->sectorsize - 1;
3354                                 extent_num_bytes = extent_num_bytes &
3355                                         ~((u64)root->sectorsize - 1);
3356                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3357                                                          extent_num_bytes);
3358                                 num_dec = (orig_num_bytes -
3359                                            extent_num_bytes);
3360                                 if (root->ref_cows && extent_start != 0)
3361                                         inode_sub_bytes(inode, num_dec);
3362                                 btrfs_mark_buffer_dirty(leaf);
3363                         } else {
3364                                 extent_num_bytes =
3365                                         btrfs_file_extent_disk_num_bytes(leaf,
3366                                                                          fi);
3367                                 extent_offset = found_key.offset -
3368                                         btrfs_file_extent_offset(leaf, fi);
3369
3370                                 /* FIXME blocksize != 4096 */
3371                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3372                                 if (extent_start != 0) {
3373                                         found_extent = 1;
3374                                         if (root->ref_cows)
3375                                                 inode_sub_bytes(inode, num_dec);
3376                                 }
3377                         }
3378                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3379                         /*
3380                          * we can't truncate inline items that have had
3381                          * special encodings
3382                          */
3383                         if (!del_item &&
3384                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3385                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3386                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3387                                 u32 size = new_size - found_key.offset;
3388
3389                                 if (root->ref_cows) {
3390                                         inode_sub_bytes(inode, item_end + 1 -
3391                                                         new_size);
3392                                 }
3393                                 size =
3394                                     btrfs_file_extent_calc_inline_size(size);
3395                                 ret = btrfs_truncate_item(trans, root, path,
3396                                                           size, 1);
3397                                 BUG_ON(ret);
3398                         } else if (root->ref_cows) {
3399                                 inode_sub_bytes(inode, item_end + 1 -
3400                                                 found_key.offset);
3401                         }
3402                 }
3403 delete:
3404                 if (del_item) {
3405                         if (!pending_del_nr) {
3406                                 /* no pending yet, add ourselves */
3407                                 pending_del_slot = path->slots[0];
3408                                 pending_del_nr = 1;
3409                         } else if (pending_del_nr &&
3410                                    path->slots[0] + 1 == pending_del_slot) {
3411                                 /* hop on the pending chunk */
3412                                 pending_del_nr++;
3413                                 pending_del_slot = path->slots[0];
3414                         } else {
3415                                 BUG();
3416                         }
3417                 } else {
3418                         break;
3419                 }
3420                 if (found_extent && (root->ref_cows ||
3421                                      root == root->fs_info->tree_root)) {
3422                         btrfs_set_path_blocking(path);
3423                         ret = btrfs_free_extent(trans, root, extent_start,
3424                                                 extent_num_bytes, 0,
3425                                                 btrfs_header_owner(leaf),
3426                                                 inode->i_ino, extent_offset);
3427                         BUG_ON(ret);
3428                 }
3429
3430                 if (found_type == BTRFS_INODE_ITEM_KEY)
3431                         break;
3432
3433                 if (path->slots[0] == 0 ||
3434                     path->slots[0] != pending_del_slot) {
3435                         if (root->ref_cows) {
3436                                 err = -EAGAIN;
3437                                 goto out;
3438                         }
3439                         if (pending_del_nr) {
3440                                 ret = btrfs_del_items(trans, root, path,
3441                                                 pending_del_slot,
3442                                                 pending_del_nr);
3443                                 BUG_ON(ret);
3444                                 pending_del_nr = 0;
3445                         }
3446                         btrfs_release_path(root, path);
3447                         goto search_again;
3448                 } else {
3449                         path->slots[0]--;
3450                 }
3451         }
3452 out:
3453         if (pending_del_nr) {
3454                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3455                                       pending_del_nr);
3456                 BUG_ON(ret);
3457         }
3458         btrfs_free_path(path);
3459         return err;
3460 }
3461
3462 /*
3463  * taken from block_truncate_page, but does cow as it zeros out
3464  * any bytes left in the last page in the file.
3465  */
3466 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3467 {
3468         struct inode *inode = mapping->host;
3469         struct btrfs_root *root = BTRFS_I(inode)->root;
3470         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3471         struct btrfs_ordered_extent *ordered;
3472         struct extent_state *cached_state = NULL;
3473         char *kaddr;
3474         u32 blocksize = root->sectorsize;
3475         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3476         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3477         struct page *page;
3478         int ret = 0;
3479         u64 page_start;
3480         u64 page_end;
3481
3482         if ((offset & (blocksize - 1)) == 0)
3483                 goto out;
3484         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3485         if (ret)
3486                 goto out;
3487
3488         ret = -ENOMEM;
3489 again:
3490         page = grab_cache_page(mapping, index);
3491         if (!page) {
3492                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3493                 goto out;
3494         }
3495
3496         page_start = page_offset(page);
3497         page_end = page_start + PAGE_CACHE_SIZE - 1;
3498
3499         if (!PageUptodate(page)) {
3500                 ret = btrfs_readpage(NULL, page);
3501                 lock_page(page);
3502                 if (page->mapping != mapping) {
3503                         unlock_page(page);
3504                         page_cache_release(page);
3505                         goto again;
3506                 }
3507                 if (!PageUptodate(page)) {
3508                         ret = -EIO;
3509                         goto out_unlock;
3510                 }
3511         }
3512         wait_on_page_writeback(page);
3513
3514         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3515                          GFP_NOFS);
3516         set_page_extent_mapped(page);
3517
3518         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3519         if (ordered) {
3520                 unlock_extent_cached(io_tree, page_start, page_end,
3521                                      &cached_state, GFP_NOFS);
3522                 unlock_page(page);
3523                 page_cache_release(page);
3524                 btrfs_start_ordered_extent(inode, ordered, 1);
3525                 btrfs_put_ordered_extent(ordered);
3526                 goto again;
3527         }
3528
3529         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3530                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3531                           0, 0, &cached_state, GFP_NOFS);
3532
3533         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3534                                         &cached_state);
3535         if (ret) {
3536                 unlock_extent_cached(io_tree, page_start, page_end,
3537                                      &cached_state, GFP_NOFS);
3538                 goto out_unlock;
3539         }
3540
3541         ret = 0;
3542         if (offset != PAGE_CACHE_SIZE) {
3543                 kaddr = kmap(page);
3544                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3545                 flush_dcache_page(page);
3546                 kunmap(page);
3547         }
3548         ClearPageChecked(page);
3549         set_page_dirty(page);
3550         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3551                              GFP_NOFS);
3552
3553 out_unlock:
3554         if (ret)
3555                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3556         unlock_page(page);
3557         page_cache_release(page);
3558 out:
3559         return ret;
3560 }
3561
3562 /*
3563  * This function puts in dummy file extents for the area we're creating a hole
3564  * for.  So if we are truncating this file to a larger size we need to insert
3565  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3566  * the range between oldsize and size
3567  */
3568 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3569 {
3570         struct btrfs_trans_handle *trans;
3571         struct btrfs_root *root = BTRFS_I(inode)->root;
3572         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3573         struct extent_map *em = NULL;
3574         struct extent_state *cached_state = NULL;
3575         u64 mask = root->sectorsize - 1;
3576         u64 hole_start = (oldsize + mask) & ~mask;
3577         u64 block_end = (size + mask) & ~mask;
3578         u64 last_byte;
3579         u64 cur_offset;
3580         u64 hole_size;
3581         int err = 0;
3582
3583         if (size <= hole_start)
3584                 return 0;
3585
3586         while (1) {
3587                 struct btrfs_ordered_extent *ordered;
3588                 btrfs_wait_ordered_range(inode, hole_start,
3589                                          block_end - hole_start);
3590                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3591                                  &cached_state, GFP_NOFS);
3592                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3593                 if (!ordered)
3594                         break;
3595                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3596                                      &cached_state, GFP_NOFS);
3597                 btrfs_put_ordered_extent(ordered);
3598         }
3599
3600         cur_offset = hole_start;
3601         while (1) {
3602                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3603                                 block_end - cur_offset, 0);
3604                 BUG_ON(IS_ERR(em) || !em);
3605                 last_byte = min(extent_map_end(em), block_end);
3606                 last_byte = (last_byte + mask) & ~mask;
3607                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3608                         u64 hint_byte = 0;
3609                         hole_size = last_byte - cur_offset;
3610
3611                         trans = btrfs_start_transaction(root, 2);
3612                         if (IS_ERR(trans)) {
3613                                 err = PTR_ERR(trans);
3614                                 break;
3615                         }
3616                         btrfs_set_trans_block_group(trans, inode);
3617
3618                         err = btrfs_drop_extents(trans, inode, cur_offset,
3619                                                  cur_offset + hole_size,
3620                                                  &hint_byte, 1);
3621                         if (err)
3622                                 break;
3623
3624                         err = btrfs_insert_file_extent(trans, root,
3625                                         inode->i_ino, cur_offset, 0,
3626                                         0, hole_size, 0, hole_size,
3627                                         0, 0, 0);
3628                         if (err)
3629                                 break;
3630
3631                         btrfs_drop_extent_cache(inode, hole_start,
3632                                         last_byte - 1, 0);
3633
3634                         btrfs_end_transaction(trans, root);
3635                 }
3636                 free_extent_map(em);
3637                 em = NULL;
3638                 cur_offset = last_byte;
3639                 if (cur_offset >= block_end)
3640                         break;
3641         }
3642
3643         free_extent_map(em);
3644         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3645                              GFP_NOFS);
3646         return err;
3647 }
3648
3649 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3650 {
3651         loff_t oldsize = i_size_read(inode);
3652         int ret;
3653
3654         if (newsize == oldsize)
3655                 return 0;
3656
3657         if (newsize > oldsize) {
3658                 i_size_write(inode, newsize);
3659                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3660                 truncate_pagecache(inode, oldsize, newsize);
3661                 ret = btrfs_cont_expand(inode, oldsize, newsize);
3662                 if (ret) {
3663                         btrfs_setsize(inode, oldsize);
3664                         return ret;
3665                 }
3666
3667                 mark_inode_dirty(inode);
3668         } else {
3669
3670                 /*
3671                  * We're truncating a file that used to have good data down to
3672                  * zero. Make sure it gets into the ordered flush list so that
3673                  * any new writes get down to disk quickly.
3674                  */
3675                 if (newsize == 0)
3676                         BTRFS_I(inode)->ordered_data_close = 1;
3677
3678                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3679                 truncate_setsize(inode, newsize);
3680                 ret = btrfs_truncate(inode);
3681         }
3682
3683         return ret;
3684 }
3685
3686 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3687 {
3688         struct inode *inode = dentry->d_inode;
3689         struct btrfs_root *root = BTRFS_I(inode)->root;
3690         int err;
3691
3692         if (btrfs_root_readonly(root))
3693                 return -EROFS;
3694
3695         err = inode_change_ok(inode, attr);
3696         if (err)
3697                 return err;
3698
3699         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3700                 err = btrfs_setsize(inode, attr->ia_size);
3701                 if (err)
3702                         return err;
3703         }
3704
3705         if (attr->ia_valid) {
3706                 setattr_copy(inode, attr);
3707                 mark_inode_dirty(inode);
3708
3709                 if (attr->ia_valid & ATTR_MODE)
3710                         err = btrfs_acl_chmod(inode);
3711         }
3712
3713         return err;
3714 }
3715
3716 void btrfs_evict_inode(struct inode *inode)
3717 {
3718         struct btrfs_trans_handle *trans;
3719         struct btrfs_root *root = BTRFS_I(inode)->root;
3720         unsigned long nr;
3721         int ret;
3722
3723         trace_btrfs_inode_evict(inode);
3724
3725         truncate_inode_pages(&inode->i_data, 0);
3726         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3727                                root == root->fs_info->tree_root))
3728                 goto no_delete;
3729
3730         if (is_bad_inode(inode)) {
3731                 btrfs_orphan_del(NULL, inode);
3732                 goto no_delete;
3733         }
3734         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3735         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3736
3737         if (root->fs_info->log_root_recovering) {
3738                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3739                 goto no_delete;
3740         }
3741
3742         if (inode->i_nlink > 0) {
3743                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3744                 goto no_delete;
3745         }
3746
3747         btrfs_i_size_write(inode, 0);
3748
3749         while (1) {
3750                 trans = btrfs_start_transaction(root, 0);
3751                 BUG_ON(IS_ERR(trans));
3752                 btrfs_set_trans_block_group(trans, inode);
3753                 trans->block_rsv = root->orphan_block_rsv;
3754
3755                 ret = btrfs_block_rsv_check(trans, root,
3756                                             root->orphan_block_rsv, 0, 5);
3757                 if (ret) {
3758                         BUG_ON(ret != -EAGAIN);
3759                         ret = btrfs_commit_transaction(trans, root);
3760                         BUG_ON(ret);
3761                         continue;
3762                 }
3763
3764                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3765                 if (ret != -EAGAIN)
3766                         break;
3767
3768                 nr = trans->blocks_used;
3769                 btrfs_end_transaction(trans, root);
3770                 trans = NULL;
3771                 btrfs_btree_balance_dirty(root, nr);
3772
3773         }
3774
3775         if (ret == 0) {
3776                 ret = btrfs_orphan_del(trans, inode);
3777                 BUG_ON(ret);
3778         }
3779
3780         nr = trans->blocks_used;
3781         btrfs_end_transaction(trans, root);
3782         btrfs_btree_balance_dirty(root, nr);
3783 no_delete:
3784         end_writeback(inode);
3785         return;
3786 }
3787
3788 /*
3789  * this returns the key found in the dir entry in the location pointer.
3790  * If no dir entries were found, location->objectid is 0.
3791  */
3792 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3793                                struct btrfs_key *location)
3794 {
3795         const char *name = dentry->d_name.name;
3796         int namelen = dentry->d_name.len;
3797         struct btrfs_dir_item *di;
3798         struct btrfs_path *path;
3799         struct btrfs_root *root = BTRFS_I(dir)->root;
3800         int ret = 0;
3801
3802         path = btrfs_alloc_path();
3803         BUG_ON(!path);
3804
3805         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3806                                     namelen, 0);
3807         if (IS_ERR(di))
3808                 ret = PTR_ERR(di);
3809
3810         if (!di || IS_ERR(di))
3811                 goto out_err;
3812
3813         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3814 out:
3815         btrfs_free_path(path);
3816         return ret;
3817 out_err:
3818         location->objectid = 0;
3819         goto out;
3820 }
3821
3822 /*
3823  * when we hit a tree root in a directory, the btrfs part of the inode
3824  * needs to be changed to reflect the root directory of the tree root.  This
3825  * is kind of like crossing a mount point.
3826  */
3827 static int fixup_tree_root_location(struct btrfs_root *root,
3828                                     struct inode *dir,
3829                                     struct dentry *dentry,
3830                                     struct btrfs_key *location,
3831                                     struct btrfs_root **sub_root)
3832 {
3833         struct btrfs_path *path;
3834         struct btrfs_root *new_root;
3835         struct btrfs_root_ref *ref;
3836         struct extent_buffer *leaf;
3837         int ret;
3838         int err = 0;
3839
3840         path = btrfs_alloc_path();
3841         if (!path) {
3842                 err = -ENOMEM;
3843                 goto out;
3844         }
3845
3846         err = -ENOENT;
3847         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3848                                   BTRFS_I(dir)->root->root_key.objectid,
3849                                   location->objectid);
3850         if (ret) {
3851                 if (ret < 0)
3852                         err = ret;
3853                 goto out;
3854         }
3855
3856         leaf = path->nodes[0];
3857         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3858         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3859             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3860                 goto out;
3861
3862         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3863                                    (unsigned long)(ref + 1),
3864                                    dentry->d_name.len);
3865         if (ret)
3866                 goto out;
3867
3868         btrfs_release_path(root->fs_info->tree_root, path);
3869
3870         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3871         if (IS_ERR(new_root)) {
3872                 err = PTR_ERR(new_root);
3873                 goto out;
3874         }
3875
3876         if (btrfs_root_refs(&new_root->root_item) == 0) {
3877                 err = -ENOENT;
3878                 goto out;
3879         }
3880
3881         *sub_root = new_root;
3882         location->objectid = btrfs_root_dirid(&new_root->root_item);
3883         location->type = BTRFS_INODE_ITEM_KEY;
3884         location->offset = 0;
3885         err = 0;
3886 out:
3887         btrfs_free_path(path);
3888         return err;
3889 }
3890
3891 static void inode_tree_add(struct inode *inode)
3892 {
3893         struct btrfs_root *root = BTRFS_I(inode)->root;
3894         struct btrfs_inode *entry;
3895         struct rb_node **p;
3896         struct rb_node *parent;
3897 again:
3898         p = &root->inode_tree.rb_node;
3899         parent = NULL;
3900
3901         if (inode_unhashed(inode))
3902                 return;
3903
3904         spin_lock(&root->inode_lock);
3905         while (*p) {
3906                 parent = *p;
3907                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3908
3909                 if (inode->i_ino < entry->vfs_inode.i_ino)
3910                         p = &parent->rb_left;
3911                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3912                         p = &parent->rb_right;
3913                 else {
3914                         WARN_ON(!(entry->vfs_inode.i_state &
3915                                   (I_WILL_FREE | I_FREEING)));
3916                         rb_erase(parent, &root->inode_tree);
3917                         RB_CLEAR_NODE(parent);
3918                         spin_unlock(&root->inode_lock);
3919                         goto again;
3920                 }
3921         }
3922         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3923         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3924         spin_unlock(&root->inode_lock);
3925 }
3926
3927 static void inode_tree_del(struct inode *inode)
3928 {
3929         struct btrfs_root *root = BTRFS_I(inode)->root;
3930         int empty = 0;
3931
3932         spin_lock(&root->inode_lock);
3933         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3934                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3935                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3936                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3937         }
3938         spin_unlock(&root->inode_lock);
3939
3940         /*
3941          * Free space cache has inodes in the tree root, but the tree root has a
3942          * root_refs of 0, so this could end up dropping the tree root as a
3943          * snapshot, so we need the extra !root->fs_info->tree_root check to
3944          * make sure we don't drop it.
3945          */
3946         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3947             root != root->fs_info->tree_root) {
3948                 synchronize_srcu(&root->fs_info->subvol_srcu);
3949                 spin_lock(&root->inode_lock);
3950                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3951                 spin_unlock(&root->inode_lock);
3952                 if (empty)
3953                         btrfs_add_dead_root(root);
3954         }
3955 }
3956
3957 int btrfs_invalidate_inodes(struct btrfs_root *root)
3958 {
3959         struct rb_node *node;
3960         struct rb_node *prev;
3961         struct btrfs_inode *entry;
3962         struct inode *inode;
3963         u64 objectid = 0;
3964
3965         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3966
3967         spin_lock(&root->inode_lock);
3968 again:
3969         node = root->inode_tree.rb_node;
3970         prev = NULL;
3971         while (node) {
3972                 prev = node;
3973                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3974
3975                 if (objectid < entry->vfs_inode.i_ino)
3976                         node = node->rb_left;
3977                 else if (objectid > entry->vfs_inode.i_ino)
3978                         node = node->rb_right;
3979                 else
3980                         break;
3981         }
3982         if (!node) {
3983                 while (prev) {
3984                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3985                         if (objectid <= entry->vfs_inode.i_ino) {
3986                                 node = prev;
3987                                 break;
3988                         }
3989                         prev = rb_next(prev);
3990                 }
3991         }
3992         while (node) {
3993                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3994                 objectid = entry->vfs_inode.i_ino + 1;
3995                 inode = igrab(&entry->vfs_inode);
3996                 if (inode) {
3997                         spin_unlock(&root->inode_lock);
3998                         if (atomic_read(&inode->i_count) > 1)
3999                                 d_prune_aliases(inode);
4000                         /*
4001                          * btrfs_drop_inode will have it removed from
4002                          * the inode cache when its usage count
4003                          * hits zero.
4004                          */
4005                         iput(inode);
4006                         cond_resched();
4007                         spin_lock(&root->inode_lock);
4008                         goto again;
4009                 }
4010
4011                 if (cond_resched_lock(&root->inode_lock))
4012                         goto again;
4013
4014                 node = rb_next(node);
4015         }
4016         spin_unlock(&root->inode_lock);
4017         return 0;
4018 }
4019
4020 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4021 {
4022         struct btrfs_iget_args *args = p;
4023         inode->i_ino = args->ino;
4024         BTRFS_I(inode)->root = args->root;
4025         btrfs_set_inode_space_info(args->root, inode);
4026         return 0;
4027 }
4028
4029 static int btrfs_find_actor(struct inode *inode, void *opaque)
4030 {
4031         struct btrfs_iget_args *args = opaque;
4032         return args->ino == inode->i_ino &&
4033                 args->root == BTRFS_I(inode)->root;
4034 }
4035
4036 static struct inode *btrfs_iget_locked(struct super_block *s,
4037                                        u64 objectid,
4038                                        struct btrfs_root *root)
4039 {
4040         struct inode *inode;
4041         struct btrfs_iget_args args;
4042         args.ino = objectid;
4043         args.root = root;
4044
4045         inode = iget5_locked(s, objectid, btrfs_find_actor,
4046                              btrfs_init_locked_inode,
4047                              (void *)&args);
4048         return inode;
4049 }
4050
4051 /* Get an inode object given its location and corresponding root.
4052  * Returns in *is_new if the inode was read from disk
4053  */
4054 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4055                          struct btrfs_root *root, int *new)
4056 {
4057         struct inode *inode;
4058
4059         inode = btrfs_iget_locked(s, location->objectid, root);
4060         if (!inode)
4061                 return ERR_PTR(-ENOMEM);
4062
4063         if (inode->i_state & I_NEW) {
4064                 BTRFS_I(inode)->root = root;
4065                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4066                 btrfs_read_locked_inode(inode);
4067
4068                 inode_tree_add(inode);
4069                 unlock_new_inode(inode);
4070                 if (new)
4071                         *new = 1;
4072         }
4073
4074         return inode;
4075 }
4076
4077 static struct inode *new_simple_dir(struct super_block *s,
4078                                     struct btrfs_key *key,
4079                                     struct btrfs_root *root)
4080 {
4081         struct inode *inode = new_inode(s);
4082
4083         if (!inode)
4084                 return ERR_PTR(-ENOMEM);
4085
4086         BTRFS_I(inode)->root = root;
4087         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4088         BTRFS_I(inode)->dummy_inode = 1;
4089
4090         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4091         inode->i_op = &simple_dir_inode_operations;
4092         inode->i_fop = &simple_dir_operations;
4093         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4094         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4095
4096         return inode;
4097 }
4098
4099 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4100 {
4101         struct inode *inode;
4102         struct btrfs_root *root = BTRFS_I(dir)->root;
4103         struct btrfs_root *sub_root = root;
4104         struct btrfs_key location;
4105         int index;
4106         int ret;
4107
4108         if (dentry->d_name.len > BTRFS_NAME_LEN)
4109                 return ERR_PTR(-ENAMETOOLONG);
4110
4111         ret = btrfs_inode_by_name(dir, dentry, &location);
4112
4113         if (ret < 0)
4114                 return ERR_PTR(ret);
4115
4116         if (location.objectid == 0)
4117                 return NULL;
4118
4119         if (location.type == BTRFS_INODE_ITEM_KEY) {
4120                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4121                 return inode;
4122         }
4123
4124         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4125
4126         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4127         ret = fixup_tree_root_location(root, dir, dentry,
4128                                        &location, &sub_root);
4129         if (ret < 0) {
4130                 if (ret != -ENOENT)
4131                         inode = ERR_PTR(ret);
4132                 else
4133                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4134         } else {
4135                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4136         }
4137         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4138
4139         if (!IS_ERR(inode) && root != sub_root) {
4140                 down_read(&root->fs_info->cleanup_work_sem);
4141                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4142                         ret = btrfs_orphan_cleanup(sub_root);
4143                 up_read(&root->fs_info->cleanup_work_sem);
4144                 if (ret)
4145                         inode = ERR_PTR(ret);
4146         }
4147
4148         return inode;
4149 }
4150
4151 static int btrfs_dentry_delete(const struct dentry *dentry)
4152 {
4153         struct btrfs_root *root;
4154
4155         if (!dentry->d_inode && !IS_ROOT(dentry))
4156                 dentry = dentry->d_parent;
4157
4158         if (dentry->d_inode) {
4159                 root = BTRFS_I(dentry->d_inode)->root;
4160                 if (btrfs_root_refs(&root->root_item) == 0)
4161                         return 1;
4162         }
4163         return 0;
4164 }
4165
4166 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4167                                    struct nameidata *nd)
4168 {
4169         struct inode *inode;
4170
4171         inode = btrfs_lookup_dentry(dir, dentry);
4172         if (IS_ERR(inode))
4173                 return ERR_CAST(inode);
4174
4175         return d_splice_alias(inode, dentry);
4176 }
4177
4178 static unsigned char btrfs_filetype_table[] = {
4179         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4180 };
4181
4182 static int btrfs_real_readdir(struct file *filp, void *dirent,
4183                               filldir_t filldir)
4184 {
4185         struct inode *inode = filp->f_dentry->d_inode;
4186         struct btrfs_root *root = BTRFS_I(inode)->root;
4187         struct btrfs_item *item;
4188         struct btrfs_dir_item *di;
4189         struct btrfs_key key;
4190         struct btrfs_key found_key;
4191         struct btrfs_path *path;
4192         int ret;
4193         u32 nritems;
4194         struct extent_buffer *leaf;
4195         int slot;
4196         int advance;
4197         unsigned char d_type;
4198         int over = 0;
4199         u32 di_cur;
4200         u32 di_total;
4201         u32 di_len;
4202         int key_type = BTRFS_DIR_INDEX_KEY;
4203         char tmp_name[32];
4204         char *name_ptr;
4205         int name_len;
4206
4207         /* FIXME, use a real flag for deciding about the key type */
4208         if (root->fs_info->tree_root == root)
4209                 key_type = BTRFS_DIR_ITEM_KEY;
4210
4211         /* special case for "." */
4212         if (filp->f_pos == 0) {
4213                 over = filldir(dirent, ".", 1,
4214                                1, inode->i_ino,
4215                                DT_DIR);
4216                 if (over)
4217                         return 0;
4218                 filp->f_pos = 1;
4219         }
4220         /* special case for .., just use the back ref */
4221         if (filp->f_pos == 1) {
4222                 u64 pino = parent_ino(filp->f_path.dentry);
4223                 over = filldir(dirent, "..", 2,
4224                                2, pino, DT_DIR);
4225                 if (over)
4226                         return 0;
4227                 filp->f_pos = 2;
4228         }
4229         path = btrfs_alloc_path();
4230         path->reada = 2;
4231
4232         btrfs_set_key_type(&key, key_type);
4233         key.offset = filp->f_pos;
4234         key.objectid = inode->i_ino;
4235
4236         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4237         if (ret < 0)
4238                 goto err;
4239         advance = 0;
4240
4241         while (1) {
4242                 leaf = path->nodes[0];
4243                 nritems = btrfs_header_nritems(leaf);
4244                 slot = path->slots[0];
4245                 if (advance || slot >= nritems) {
4246                         if (slot >= nritems - 1) {
4247                                 ret = btrfs_next_leaf(root, path);
4248                                 if (ret)
4249                                         break;
4250                                 leaf = path->nodes[0];
4251                                 nritems = btrfs_header_nritems(leaf);
4252                                 slot = path->slots[0];
4253                         } else {
4254                                 slot++;
4255                                 path->slots[0]++;
4256                         }
4257                 }
4258
4259                 advance = 1;
4260                 item = btrfs_item_nr(leaf, slot);
4261                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4262
4263                 if (found_key.objectid != key.objectid)
4264                         break;
4265                 if (btrfs_key_type(&found_key) != key_type)
4266                         break;
4267                 if (found_key.offset < filp->f_pos)
4268                         continue;
4269
4270                 filp->f_pos = found_key.offset;
4271
4272                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4273                 di_cur = 0;
4274                 di_total = btrfs_item_size(leaf, item);
4275
4276                 while (di_cur < di_total) {
4277                         struct btrfs_key location;
4278
4279                         if (verify_dir_item(root, leaf, di))
4280                                 break;
4281
4282                         name_len = btrfs_dir_name_len(leaf, di);
4283                         if (name_len <= sizeof(tmp_name)) {
4284                                 name_ptr = tmp_name;
4285                         } else {
4286                                 name_ptr = kmalloc(name_len, GFP_NOFS);
4287                                 if (!name_ptr) {
4288                                         ret = -ENOMEM;
4289                                         goto err;
4290                                 }
4291                         }
4292                         read_extent_buffer(leaf, name_ptr,
4293                                            (unsigned long)(di + 1), name_len);
4294
4295                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4296                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
4297
4298                         /* is this a reference to our own snapshot? If so
4299                          * skip it
4300                          */
4301                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
4302                             location.objectid == root->root_key.objectid) {
4303                                 over = 0;
4304                                 goto skip;
4305                         }
4306                         over = filldir(dirent, name_ptr, name_len,
4307                                        found_key.offset, location.objectid,
4308                                        d_type);
4309
4310 skip:
4311                         if (name_ptr != tmp_name)
4312                                 kfree(name_ptr);
4313
4314                         if (over)
4315                                 goto nopos;
4316                         di_len = btrfs_dir_name_len(leaf, di) +
4317                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
4318                         di_cur += di_len;
4319                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4320                 }
4321         }
4322
4323         /* Reached end of directory/root. Bump pos past the last item. */
4324         if (key_type == BTRFS_DIR_INDEX_KEY)
4325                 /*
4326                  * 32-bit glibc will use getdents64, but then strtol -
4327                  * so the last number we can serve is this.
4328                  */
4329                 filp->f_pos = 0x7fffffff;
4330         else
4331                 filp->f_pos++;
4332 nopos:
4333         ret = 0;
4334 err:
4335         btrfs_free_path(path);
4336         return ret;
4337 }
4338
4339 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4340 {
4341         struct btrfs_root *root = BTRFS_I(inode)->root;
4342         struct btrfs_trans_handle *trans;
4343         int ret = 0;
4344         bool nolock = false;
4345
4346         if (BTRFS_I(inode)->dummy_inode)
4347                 return 0;
4348
4349         smp_mb();
4350         nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4351
4352         if (wbc->sync_mode == WB_SYNC_ALL) {
4353                 if (nolock)
4354                         trans = btrfs_join_transaction_nolock(root, 1);
4355                 else
4356                         trans = btrfs_join_transaction(root, 1);
4357                 if (IS_ERR(trans))
4358                         return PTR_ERR(trans);
4359                 btrfs_set_trans_block_group(trans, inode);
4360                 if (nolock)
4361                         ret = btrfs_end_transaction_nolock(trans, root);
4362                 else
4363                         ret = btrfs_commit_transaction(trans, root);
4364         }
4365         return ret;
4366 }
4367
4368 /*
4369  * This is somewhat expensive, updating the tree every time the
4370  * inode changes.  But, it is most likely to find the inode in cache.
4371  * FIXME, needs more benchmarking...there are no reasons other than performance
4372  * to keep or drop this code.
4373  */
4374 void btrfs_dirty_inode(struct inode *inode)
4375 {
4376         struct btrfs_root *root = BTRFS_I(inode)->root;
4377         struct btrfs_trans_handle *trans;
4378         int ret;
4379
4380         if (BTRFS_I(inode)->dummy_inode)
4381                 return;
4382
4383         trans = btrfs_join_transaction(root, 1);
4384         BUG_ON(IS_ERR(trans));
4385         btrfs_set_trans_block_group(trans, inode);
4386
4387         ret = btrfs_update_inode(trans, root, inode);
4388         if (ret && ret == -ENOSPC) {
4389                 /* whoops, lets try again with the full transaction */
4390                 btrfs_end_transaction(trans, root);
4391                 trans = btrfs_start_transaction(root, 1);
4392                 if (IS_ERR(trans)) {
4393                         if (printk_ratelimit()) {
4394                                 printk(KERN_ERR "btrfs: fail to "
4395                                        "dirty  inode %lu error %ld\n",
4396                                        inode->i_ino, PTR_ERR(trans));
4397                         }
4398                         return;
4399                 }
4400                 btrfs_set_trans_block_group(trans, inode);
4401
4402                 ret = btrfs_update_inode(trans, root, inode);
4403                 if (ret) {
4404                         if (printk_ratelimit()) {
4405                                 printk(KERN_ERR "btrfs: fail to "
4406                                        "dirty  inode %lu error %d\n",
4407                                        inode->i_ino, ret);
4408                         }
4409                 }
4410         }
4411         btrfs_end_transaction(trans, root);
4412 }
4413
4414 /*
4415  * find the highest existing sequence number in a directory
4416  * and then set the in-memory index_cnt variable to reflect
4417  * free sequence numbers
4418  */
4419 static int btrfs_set_inode_index_count(struct inode *inode)
4420 {
4421         struct btrfs_root *root = BTRFS_I(inode)->root;
4422         struct btrfs_key key, found_key;
4423         struct btrfs_path *path;
4424         struct extent_buffer *leaf;
4425         int ret;
4426
4427         key.objectid = inode->i_ino;
4428         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4429         key.offset = (u64)-1;
4430
4431         path = btrfs_alloc_path();
4432         if (!path)
4433                 return -ENOMEM;
4434
4435         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4436         if (ret < 0)
4437                 goto out;
4438         /* FIXME: we should be able to handle this */
4439         if (ret == 0)
4440                 goto out;
4441         ret = 0;
4442
4443         /*
4444          * MAGIC NUMBER EXPLANATION:
4445          * since we search a directory based on f_pos we have to start at 2
4446          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4447          * else has to start at 2
4448          */
4449         if (path->slots[0] == 0) {
4450                 BTRFS_I(inode)->index_cnt = 2;
4451                 goto out;
4452         }
4453
4454         path->slots[0]--;
4455
4456         leaf = path->nodes[0];
4457         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4458
4459         if (found_key.objectid != inode->i_ino ||
4460             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4461                 BTRFS_I(inode)->index_cnt = 2;
4462                 goto out;
4463         }
4464
4465         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4466 out:
4467         btrfs_free_path(path);
4468         return ret;
4469 }
4470
4471 /*
4472  * helper to find a free sequence number in a given directory.  This current
4473  * code is very simple, later versions will do smarter things in the btree
4474  */
4475 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4476 {
4477         int ret = 0;
4478
4479         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4480                 ret = btrfs_set_inode_index_count(dir);
4481                 if (ret)
4482                         return ret;
4483         }
4484
4485         *index = BTRFS_I(dir)->index_cnt;
4486         BTRFS_I(dir)->index_cnt++;
4487
4488         return ret;
4489 }
4490
4491 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4492                                      struct btrfs_root *root,
4493                                      struct inode *dir,
4494                                      const char *name, int name_len,
4495                                      u64 ref_objectid, u64 objectid,
4496                                      u64 alloc_hint, int mode, u64 *index)
4497 {
4498         struct inode *inode;
4499         struct btrfs_inode_item *inode_item;
4500         struct btrfs_key *location;
4501         struct btrfs_path *path;
4502         struct btrfs_inode_ref *ref;
4503         struct btrfs_key key[2];
4504         u32 sizes[2];
4505         unsigned long ptr;
4506         int ret;
4507         int owner;
4508
4509         path = btrfs_alloc_path();
4510         BUG_ON(!path);
4511
4512         inode = new_inode(root->fs_info->sb);
4513         if (!inode)
4514                 return ERR_PTR(-ENOMEM);
4515
4516         if (dir) {
4517                 trace_btrfs_inode_request(dir);
4518
4519                 ret = btrfs_set_inode_index(dir, index);
4520                 if (ret) {
4521                         iput(inode);
4522                         return ERR_PTR(ret);
4523                 }
4524         }
4525         /*
4526          * index_cnt is ignored for everything but a dir,
4527          * btrfs_get_inode_index_count has an explanation for the magic
4528          * number
4529          */
4530         BTRFS_I(inode)->index_cnt = 2;
4531         BTRFS_I(inode)->root = root;
4532         BTRFS_I(inode)->generation = trans->transid;
4533         inode->i_generation = BTRFS_I(inode)->generation;
4534         btrfs_set_inode_space_info(root, inode);
4535
4536         if (mode & S_IFDIR)
4537                 owner = 0;
4538         else
4539                 owner = 1;
4540         BTRFS_I(inode)->block_group =
4541                         btrfs_find_block_group(root, 0, alloc_hint, owner);
4542
4543         key[0].objectid = objectid;
4544         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4545         key[0].offset = 0;
4546
4547         key[1].objectid = objectid;
4548         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4549         key[1].offset = ref_objectid;
4550
4551         sizes[0] = sizeof(struct btrfs_inode_item);
4552         sizes[1] = name_len + sizeof(*ref);
4553
4554         path->leave_spinning = 1;
4555         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4556         if (ret != 0)
4557                 goto fail;
4558
4559         inode_init_owner(inode, dir, mode);
4560         inode->i_ino = objectid;
4561         inode_set_bytes(inode, 0);
4562         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4563         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4564                                   struct btrfs_inode_item);
4565         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4566
4567         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4568                              struct btrfs_inode_ref);
4569         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4570         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4571         ptr = (unsigned long)(ref + 1);
4572         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4573
4574         btrfs_mark_buffer_dirty(path->nodes[0]);
4575         btrfs_free_path(path);
4576
4577         location = &BTRFS_I(inode)->location;
4578         location->objectid = objectid;
4579         location->offset = 0;
4580         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4581
4582         btrfs_inherit_iflags(inode, dir);
4583
4584         if ((mode & S_IFREG)) {
4585                 if (btrfs_test_opt(root, NODATASUM))
4586                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4587                 if (btrfs_test_opt(root, NODATACOW))
4588                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4589         }
4590
4591         insert_inode_hash(inode);
4592         inode_tree_add(inode);
4593
4594         trace_btrfs_inode_new(inode);
4595
4596         return inode;
4597 fail:
4598         if (dir)
4599                 BTRFS_I(dir)->index_cnt--;
4600         btrfs_free_path(path);
4601         iput(inode);
4602         return ERR_PTR(ret);
4603 }
4604
4605 static inline u8 btrfs_inode_type(struct inode *inode)
4606 {
4607         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4608 }
4609
4610 /*
4611  * utility function to add 'inode' into 'parent_inode' with
4612  * a give name and a given sequence number.
4613  * if 'add_backref' is true, also insert a backref from the
4614  * inode to the parent directory.
4615  */
4616 int btrfs_add_link(struct btrfs_trans_handle *trans,
4617                    struct inode *parent_inode, struct inode *inode,
4618                    const char *name, int name_len, int add_backref, u64 index)
4619 {
4620         int ret = 0;
4621         struct btrfs_key key;
4622         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4623
4624         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4625                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4626         } else {
4627                 key.objectid = inode->i_ino;
4628                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4629                 key.offset = 0;
4630         }
4631
4632         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4633                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4634                                          key.objectid, root->root_key.objectid,
4635                                          parent_inode->i_ino,
4636                                          index, name, name_len);
4637         } else if (add_backref) {
4638                 ret = btrfs_insert_inode_ref(trans, root,
4639                                              name, name_len, inode->i_ino,
4640                                              parent_inode->i_ino, index);
4641         }
4642
4643         if (ret == 0) {
4644                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4645                                             parent_inode->i_ino, &key,
4646                                             btrfs_inode_type(inode), index);
4647                 BUG_ON(ret);
4648
4649                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4650                                    name_len * 2);
4651                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4652                 ret = btrfs_update_inode(trans, root, parent_inode);
4653         }
4654         return ret;
4655 }
4656
4657 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4658                             struct inode *dir, struct dentry *dentry,
4659                             struct inode *inode, int backref, u64 index)
4660 {
4661         int err = btrfs_add_link(trans, dir, inode,
4662                                  dentry->d_name.name, dentry->d_name.len,
4663                                  backref, index);
4664         if (!err) {
4665                 d_instantiate(dentry, inode);
4666                 return 0;
4667         }
4668         if (err > 0)
4669                 err = -EEXIST;
4670         return err;
4671 }
4672
4673 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4674                         int mode, dev_t rdev)
4675 {
4676         struct btrfs_trans_handle *trans;
4677         struct btrfs_root *root = BTRFS_I(dir)->root;
4678         struct inode *inode = NULL;
4679         int err;
4680         int drop_inode = 0;
4681         u64 objectid;
4682         unsigned long nr = 0;
4683         u64 index = 0;
4684
4685         if (!new_valid_dev(rdev))
4686                 return -EINVAL;
4687
4688         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4689         if (err)
4690                 return err;
4691
4692         /*
4693          * 2 for inode item and ref
4694          * 2 for dir items
4695          * 1 for xattr if selinux is on
4696          */
4697         trans = btrfs_start_transaction(root, 5);
4698         if (IS_ERR(trans))
4699                 return PTR_ERR(trans);
4700
4701         btrfs_set_trans_block_group(trans, dir);
4702
4703         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4704                                 dentry->d_name.len, dir->i_ino, objectid,
4705                                 BTRFS_I(dir)->block_group, mode, &index);
4706         err = PTR_ERR(inode);
4707         if (IS_ERR(inode))
4708                 goto out_unlock;
4709
4710         err = btrfs_init_inode_security(trans, inode, dir);
4711         if (err) {
4712                 drop_inode = 1;
4713                 goto out_unlock;
4714         }
4715
4716         btrfs_set_trans_block_group(trans, inode);
4717         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4718         if (err)
4719                 drop_inode = 1;
4720         else {
4721                 inode->i_op = &btrfs_special_inode_operations;
4722                 init_special_inode(inode, inode->i_mode, rdev);
4723                 btrfs_update_inode(trans, root, inode);
4724         }
4725         btrfs_update_inode_block_group(trans, inode);
4726         btrfs_update_inode_block_group(trans, dir);
4727 out_unlock:
4728         nr = trans->blocks_used;
4729         btrfs_end_transaction_throttle(trans, root);
4730         btrfs_btree_balance_dirty(root, nr);
4731         if (drop_inode) {
4732                 inode_dec_link_count(inode);
4733                 iput(inode);
4734         }
4735         return err;
4736 }
4737
4738 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4739                         int mode, struct nameidata *nd)
4740 {
4741         struct btrfs_trans_handle *trans;
4742         struct btrfs_root *root = BTRFS_I(dir)->root;
4743         struct inode *inode = NULL;
4744         int drop_inode = 0;
4745         int err;
4746         unsigned long nr = 0;
4747         u64 objectid;
4748         u64 index = 0;
4749
4750         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4751         if (err)
4752                 return err;
4753         /*
4754          * 2 for inode item and ref
4755          * 2 for dir items
4756          * 1 for xattr if selinux is on
4757          */
4758         trans = btrfs_start_transaction(root, 5);
4759         if (IS_ERR(trans))
4760                 return PTR_ERR(trans);
4761
4762         btrfs_set_trans_block_group(trans, dir);
4763
4764         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4765                                 dentry->d_name.len, dir->i_ino, objectid,
4766                                 BTRFS_I(dir)->block_group, mode, &index);
4767         err = PTR_ERR(inode);
4768         if (IS_ERR(inode))
4769                 goto out_unlock;
4770
4771         err = btrfs_init_inode_security(trans, inode, dir);
4772         if (err) {
4773                 drop_inode = 1;
4774                 goto out_unlock;
4775         }
4776
4777         btrfs_set_trans_block_group(trans, inode);
4778         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4779         if (err)
4780                 drop_inode = 1;
4781         else {
4782                 inode->i_mapping->a_ops = &btrfs_aops;
4783                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4784                 inode->i_fop = &btrfs_file_operations;
4785                 inode->i_op = &btrfs_file_inode_operations;
4786                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4787         }
4788         btrfs_update_inode_block_group(trans, inode);
4789         btrfs_update_inode_block_group(trans, dir);
4790 out_unlock:
4791         nr = trans->blocks_used;
4792         btrfs_end_transaction_throttle(trans, root);
4793         if (drop_inode) {
4794                 inode_dec_link_count(inode);
4795                 iput(inode);
4796         }
4797         btrfs_btree_balance_dirty(root, nr);
4798         return err;
4799 }
4800
4801 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4802                       struct dentry *dentry)
4803 {
4804         struct btrfs_trans_handle *trans;
4805         struct btrfs_root *root = BTRFS_I(dir)->root;
4806         struct inode *inode = old_dentry->d_inode;
4807         u64 index;
4808         unsigned long nr = 0;
4809         int err;
4810         int drop_inode = 0;
4811
4812         if (inode->i_nlink == 0)
4813                 return -ENOENT;
4814
4815         /* do not allow sys_link's with other subvols of the same device */
4816         if (root->objectid != BTRFS_I(inode)->root->objectid)
4817                 return -EPERM;
4818
4819         btrfs_inc_nlink(inode);
4820         inode->i_ctime = CURRENT_TIME;
4821
4822         err = btrfs_set_inode_index(dir, &index);
4823         if (err)
4824                 goto fail;
4825
4826         /*
4827          * 2 items for inode and inode ref
4828          * 2 items for dir items
4829          * 1 item for parent inode
4830          */
4831         trans = btrfs_start_transaction(root, 5);
4832         if (IS_ERR(trans)) {
4833                 err = PTR_ERR(trans);
4834                 goto fail;
4835         }
4836
4837         btrfs_set_trans_block_group(trans, dir);
4838         ihold(inode);
4839
4840         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4841
4842         if (err) {
4843                 drop_inode = 1;
4844         } else {
4845                 struct dentry *parent = dget_parent(dentry);
4846                 btrfs_update_inode_block_group(trans, dir);
4847                 err = btrfs_update_inode(trans, root, inode);
4848                 BUG_ON(err);
4849                 btrfs_log_new_name(trans, inode, NULL, parent);
4850                 dput(parent);
4851         }
4852
4853         nr = trans->blocks_used;
4854         btrfs_end_transaction_throttle(trans, root);
4855 fail:
4856         if (drop_inode) {
4857                 inode_dec_link_count(inode);
4858                 iput(inode);
4859         }
4860         btrfs_btree_balance_dirty(root, nr);
4861         return err;
4862 }
4863
4864 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4865 {
4866         struct inode *inode = NULL;
4867         struct btrfs_trans_handle *trans;
4868         struct btrfs_root *root = BTRFS_I(dir)->root;
4869         int err = 0;
4870         int drop_on_err = 0;
4871         u64 objectid = 0;
4872         u64 index = 0;
4873         unsigned long nr = 1;
4874
4875         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4876         if (err)
4877                 return err;
4878
4879         /*
4880          * 2 items for inode and ref
4881          * 2 items for dir items
4882          * 1 for xattr if selinux is on
4883          */
4884         trans = btrfs_start_transaction(root, 5);
4885         if (IS_ERR(trans))
4886                 return PTR_ERR(trans);
4887         btrfs_set_trans_block_group(trans, dir);
4888
4889         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4890                                 dentry->d_name.len, dir->i_ino, objectid,
4891                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4892                                 &index);
4893         if (IS_ERR(inode)) {
4894                 err = PTR_ERR(inode);
4895                 goto out_fail;
4896         }
4897
4898         drop_on_err = 1;
4899
4900         err = btrfs_init_inode_security(trans, inode, dir);
4901         if (err)
4902                 goto out_fail;
4903
4904         inode->i_op = &btrfs_dir_inode_operations;
4905         inode->i_fop = &btrfs_dir_file_operations;
4906         btrfs_set_trans_block_group(trans, inode);
4907
4908         btrfs_i_size_write(inode, 0);
4909         err = btrfs_update_inode(trans, root, inode);
4910         if (err)
4911                 goto out_fail;
4912
4913         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4914                              dentry->d_name.len, 0, index);
4915         if (err)
4916                 goto out_fail;
4917
4918         d_instantiate(dentry, inode);
4919         drop_on_err = 0;
4920         btrfs_update_inode_block_group(trans, inode);
4921         btrfs_update_inode_block_group(trans, dir);
4922
4923 out_fail:
4924         nr = trans->blocks_used;
4925         btrfs_end_transaction_throttle(trans, root);
4926         if (drop_on_err)
4927                 iput(inode);
4928         btrfs_btree_balance_dirty(root, nr);
4929         return err;
4930 }
4931
4932 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4933  * and an extent that you want to insert, deal with overlap and insert
4934  * the new extent into the tree.
4935  */
4936 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4937                                 struct extent_map *existing,
4938                                 struct extent_map *em,
4939                                 u64 map_start, u64 map_len)
4940 {
4941         u64 start_diff;
4942
4943         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4944         start_diff = map_start - em->start;
4945         em->start = map_start;
4946         em->len = map_len;
4947         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4948             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4949                 em->block_start += start_diff;
4950                 em->block_len -= start_diff;
4951         }
4952         return add_extent_mapping(em_tree, em);
4953 }
4954
4955 static noinline int uncompress_inline(struct btrfs_path *path,
4956                                       struct inode *inode, struct page *page,
4957                                       size_t pg_offset, u64 extent_offset,
4958                                       struct btrfs_file_extent_item *item)
4959 {
4960         int ret;
4961         struct extent_buffer *leaf = path->nodes[0];
4962         char *tmp;
4963         size_t max_size;
4964         unsigned long inline_size;
4965         unsigned long ptr;
4966         int compress_type;
4967
4968         WARN_ON(pg_offset != 0);
4969         compress_type = btrfs_file_extent_compression(leaf, item);
4970         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4971         inline_size = btrfs_file_extent_inline_item_len(leaf,
4972                                         btrfs_item_nr(leaf, path->slots[0]));
4973         tmp = kmalloc(inline_size, GFP_NOFS);
4974         ptr = btrfs_file_extent_inline_start(item);
4975
4976         read_extent_buffer(leaf, tmp, ptr, inline_size);
4977
4978         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4979         ret = btrfs_decompress(compress_type, tmp, page,
4980                                extent_offset, inline_size, max_size);
4981         if (ret) {
4982                 char *kaddr = kmap_atomic(page, KM_USER0);
4983                 unsigned long copy_size = min_t(u64,
4984                                   PAGE_CACHE_SIZE - pg_offset,
4985                                   max_size - extent_offset);
4986                 memset(kaddr + pg_offset, 0, copy_size);
4987                 kunmap_atomic(kaddr, KM_USER0);
4988         }
4989         kfree(tmp);
4990         return 0;
4991 }
4992
4993 /*
4994  * a bit scary, this does extent mapping from logical file offset to the disk.
4995  * the ugly parts come from merging extents from the disk with the in-ram
4996  * representation.  This gets more complex because of the data=ordered code,
4997  * where the in-ram extents might be locked pending data=ordered completion.
4998  *
4999  * This also copies inline extents directly into the page.
5000  */
5001
5002 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5003                                     size_t pg_offset, u64 start, u64 len,
5004                                     int create)
5005 {
5006         int ret;
5007         int err = 0;
5008         u64 bytenr;
5009         u64 extent_start = 0;
5010         u64 extent_end = 0;
5011         u64 objectid = inode->i_ino;
5012         u32 found_type;
5013         struct btrfs_path *path = NULL;
5014         struct btrfs_root *root = BTRFS_I(inode)->root;
5015         struct btrfs_file_extent_item *item;
5016         struct extent_buffer *leaf;
5017         struct btrfs_key found_key;
5018         struct extent_map *em = NULL;
5019         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5020         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5021         struct btrfs_trans_handle *trans = NULL;
5022         int compress_type;
5023
5024 again:
5025         read_lock(&em_tree->lock);
5026         em = lookup_extent_mapping(em_tree, start, len);
5027         if (em)
5028                 em->bdev = root->fs_info->fs_devices->latest_bdev;
5029         read_unlock(&em_tree->lock);
5030
5031         if (em) {
5032                 if (em->start > start || em->start + em->len <= start)
5033                         free_extent_map(em);
5034                 else if (em->block_start == EXTENT_MAP_INLINE && page)
5035                         free_extent_map(em);
5036                 else
5037                         goto out;
5038         }
5039         em = alloc_extent_map(GFP_NOFS);
5040         if (!em) {
5041                 err = -ENOMEM;
5042                 goto out;
5043         }
5044         em->bdev = root->fs_info->fs_devices->latest_bdev;
5045         em->start = EXTENT_MAP_HOLE;
5046         em->orig_start = EXTENT_MAP_HOLE;
5047         em->len = (u64)-1;
5048         em->block_len = (u64)-1;
5049
5050         if (!path) {
5051                 path = btrfs_alloc_path();
5052                 BUG_ON(!path);
5053         }
5054
5055         ret = btrfs_lookup_file_extent(trans, root, path,
5056                                        objectid, start, trans != NULL);
5057         if (ret < 0) {
5058                 err = ret;
5059                 goto out;
5060         }
5061
5062         if (ret != 0) {
5063                 if (path->slots[0] == 0)
5064                         goto not_found;
5065                 path->slots[0]--;
5066         }
5067
5068         leaf = path->nodes[0];
5069         item = btrfs_item_ptr(leaf, path->slots[0],
5070                               struct btrfs_file_extent_item);
5071         /* are we inside the extent that was found? */
5072         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5073         found_type = btrfs_key_type(&found_key);
5074         if (found_key.objectid != objectid ||
5075             found_type != BTRFS_EXTENT_DATA_KEY) {
5076                 goto not_found;
5077         }
5078
5079         found_type = btrfs_file_extent_type(leaf, item);
5080         extent_start = found_key.offset;
5081         compress_type = btrfs_file_extent_compression(leaf, item);
5082         if (found_type == BTRFS_FILE_EXTENT_REG ||
5083             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5084                 extent_end = extent_start +
5085                        btrfs_file_extent_num_bytes(leaf, item);
5086         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5087                 size_t size;
5088                 size = btrfs_file_extent_inline_len(leaf, item);
5089                 extent_end = (extent_start + size + root->sectorsize - 1) &
5090                         ~((u64)root->sectorsize - 1);
5091         }
5092
5093         if (start >= extent_end) {
5094                 path->slots[0]++;
5095                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5096                         ret = btrfs_next_leaf(root, path);
5097                         if (ret < 0) {
5098                                 err = ret;
5099                                 goto out;
5100                         }
5101                         if (ret > 0)
5102                                 goto not_found;
5103                         leaf = path->nodes[0];
5104                 }
5105                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5106                 if (found_key.objectid != objectid ||
5107                     found_key.type != BTRFS_EXTENT_DATA_KEY)
5108                         goto not_found;
5109                 if (start + len <= found_key.offset)
5110                         goto not_found;
5111                 em->start = start;
5112                 em->len = found_key.offset - start;
5113                 goto not_found_em;
5114         }
5115
5116         if (found_type == BTRFS_FILE_EXTENT_REG ||
5117             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5118                 em->start = extent_start;
5119                 em->len = extent_end - extent_start;
5120                 em->orig_start = extent_start -
5121                                  btrfs_file_extent_offset(leaf, item);
5122                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5123                 if (bytenr == 0) {
5124                         em->block_start = EXTENT_MAP_HOLE;
5125                         goto insert;
5126                 }
5127                 if (compress_type != BTRFS_COMPRESS_NONE) {
5128                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5129                         em->compress_type = compress_type;
5130                         em->block_start = bytenr;
5131                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5132                                                                          item);
5133                 } else {
5134                         bytenr += btrfs_file_extent_offset(leaf, item);
5135                         em->block_start = bytenr;
5136                         em->block_len = em->len;
5137                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5138                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5139                 }
5140                 goto insert;
5141         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5142                 unsigned long ptr;
5143                 char *map;
5144                 size_t size;
5145                 size_t extent_offset;
5146                 size_t copy_size;
5147
5148                 em->block_start = EXTENT_MAP_INLINE;
5149                 if (!page || create) {
5150                         em->start = extent_start;
5151                         em->len = extent_end - extent_start;
5152                         goto out;
5153                 }
5154
5155                 size = btrfs_file_extent_inline_len(leaf, item);
5156                 extent_offset = page_offset(page) + pg_offset - extent_start;
5157                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5158                                 size - extent_offset);
5159                 em->start = extent_start + extent_offset;
5160                 em->len = (copy_size + root->sectorsize - 1) &
5161                         ~((u64)root->sectorsize - 1);
5162                 em->orig_start = EXTENT_MAP_INLINE;
5163                 if (compress_type) {
5164                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5165                         em->compress_type = compress_type;
5166                 }
5167                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5168                 if (create == 0 && !PageUptodate(page)) {
5169                         if (btrfs_file_extent_compression(leaf, item) !=
5170                             BTRFS_COMPRESS_NONE) {
5171                                 ret = uncompress_inline(path, inode, page,
5172                                                         pg_offset,
5173                                                         extent_offset, item);
5174                                 BUG_ON(ret);
5175                         } else {
5176                                 map = kmap(page);
5177                                 read_extent_buffer(leaf, map + pg_offset, ptr,
5178                                                    copy_size);
5179                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5180                                         memset(map + pg_offset + copy_size, 0,
5181                                                PAGE_CACHE_SIZE - pg_offset -
5182                                                copy_size);
5183                                 }
5184                                 kunmap(page);
5185                         }
5186                         flush_dcache_page(page);
5187                 } else if (create && PageUptodate(page)) {
5188                         WARN_ON(1);
5189                         if (!trans) {
5190                                 kunmap(page);
5191                                 free_extent_map(em);
5192                                 em = NULL;
5193                                 btrfs_release_path(root, path);
5194                                 trans = btrfs_join_transaction(root, 1);
5195                                 if (IS_ERR(trans))
5196                                         return ERR_CAST(trans);
5197                                 goto again;
5198                         }
5199                         map = kmap(page);
5200                         write_extent_buffer(leaf, map + pg_offset, ptr,
5201                                             copy_size);
5202                         kunmap(page);
5203                         btrfs_mark_buffer_dirty(leaf);
5204                 }
5205                 set_extent_uptodate(io_tree, em->start,
5206                                     extent_map_end(em) - 1, GFP_NOFS);
5207                 goto insert;
5208         } else {
5209                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5210                 WARN_ON(1);
5211         }
5212 not_found:
5213         em->start = start;
5214         em->len = len;
5215 not_found_em:
5216         em->block_start = EXTENT_MAP_HOLE;
5217         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5218 insert:
5219         btrfs_release_path(root, path);
5220         if (em->start > start || extent_map_end(em) <= start) {
5221                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5222                        "[%llu %llu]\n", (unsigned long long)em->start,
5223                        (unsigned long long)em->len,
5224                        (unsigned long long)start,
5225                        (unsigned long long)len);
5226                 err = -EIO;
5227                 goto out;
5228         }
5229
5230         err = 0;
5231         write_lock(&em_tree->lock);
5232         ret = add_extent_mapping(em_tree, em);
5233         /* it is possible that someone inserted the extent into the tree
5234          * while we had the lock dropped.  It is also possible that
5235          * an overlapping map exists in the tree
5236          */
5237         if (ret == -EEXIST) {
5238                 struct extent_map *existing;
5239
5240                 ret = 0;
5241
5242                 existing = lookup_extent_mapping(em_tree, start, len);
5243                 if (existing && (existing->start > start ||
5244                     existing->start + existing->len <= start)) {
5245                         free_extent_map(existing);
5246                         existing = NULL;
5247                 }
5248                 if (!existing) {
5249                         existing = lookup_extent_mapping(em_tree, em->start,
5250                                                          em->len);
5251                         if (existing) {
5252                                 err = merge_extent_mapping(em_tree, existing,
5253                                                            em, start,
5254                                                            root->sectorsize);
5255                                 free_extent_map(existing);
5256                                 if (err) {
5257                                         free_extent_map(em);
5258                                         em = NULL;
5259                                 }
5260                         } else {
5261                                 err = -EIO;
5262                                 free_extent_map(em);
5263                                 em = NULL;
5264                         }
5265                 } else {
5266                         free_extent_map(em);
5267                         em = existing;
5268                         err = 0;
5269                 }
5270         }
5271         write_unlock(&em_tree->lock);
5272 out:
5273
5274         trace_btrfs_get_extent(root, em);
5275
5276         if (path)
5277                 btrfs_free_path(path);
5278         if (trans) {
5279                 ret = btrfs_end_transaction(trans, root);
5280                 if (!err)
5281                         err = ret;
5282         }
5283         if (err) {
5284                 free_extent_map(em);
5285                 return ERR_PTR(err);
5286         }
5287         return em;
5288 }
5289
5290 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5291                                            size_t pg_offset, u64 start, u64 len,
5292                                            int create)
5293 {
5294         struct extent_map *em;
5295         struct extent_map *hole_em = NULL;
5296         u64 range_start = start;
5297         u64 end;
5298         u64 found;
5299         u64 found_end;
5300         int err = 0;
5301
5302         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5303         if (IS_ERR(em))
5304                 return em;
5305         if (em) {
5306                 /*
5307                  * if our em maps to a hole, there might
5308                  * actually be delalloc bytes behind it
5309                  */
5310                 if (em->block_start != EXTENT_MAP_HOLE)
5311                         return em;
5312                 else
5313                         hole_em = em;
5314         }
5315
5316         /* check to see if we've wrapped (len == -1 or similar) */
5317         end = start + len;
5318         if (end < start)
5319                 end = (u64)-1;
5320         else
5321                 end -= 1;
5322
5323         em = NULL;
5324
5325         /* ok, we didn't find anything, lets look for delalloc */
5326         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5327                                  end, len, EXTENT_DELALLOC, 1);
5328         found_end = range_start + found;
5329         if (found_end < range_start)
5330                 found_end = (u64)-1;
5331
5332         /*
5333          * we didn't find anything useful, return
5334          * the original results from get_extent()
5335          */
5336         if (range_start > end || found_end <= start) {
5337                 em = hole_em;
5338                 hole_em = NULL;
5339                 goto out;
5340         }
5341
5342         /* adjust the range_start to make sure it doesn't
5343          * go backwards from the start they passed in
5344          */
5345         range_start = max(start,range_start);
5346         found = found_end - range_start;
5347
5348         if (found > 0) {
5349                 u64 hole_start = start;
5350                 u64 hole_len = len;
5351
5352                 em = alloc_extent_map(GFP_NOFS);
5353                 if (!em) {
5354                         err = -ENOMEM;
5355                         goto out;
5356                 }
5357                 /*
5358                  * when btrfs_get_extent can't find anything it
5359                  * returns one huge hole
5360                  *
5361                  * make sure what it found really fits our range, and
5362                  * adjust to make sure it is based on the start from
5363                  * the caller
5364                  */
5365                 if (hole_em) {
5366                         u64 calc_end = extent_map_end(hole_em);
5367
5368                         if (calc_end <= start || (hole_em->start > end)) {
5369                                 free_extent_map(hole_em);
5370                                 hole_em = NULL;
5371                         } else {
5372                                 hole_start = max(hole_em->start, start);
5373                                 hole_len = calc_end - hole_start;
5374                         }
5375                 }
5376                 em->bdev = NULL;
5377                 if (hole_em && range_start > hole_start) {
5378                         /* our hole starts before our delalloc, so we
5379                          * have to return just the parts of the hole
5380                          * that go until  the delalloc starts
5381                          */
5382                         em->len = min(hole_len,
5383                                       range_start - hole_start);
5384                         em->start = hole_start;
5385                         em->orig_start = hole_start;
5386                         /*
5387                          * don't adjust block start at all,
5388                          * it is fixed at EXTENT_MAP_HOLE
5389                          */
5390                         em->block_start = hole_em->block_start;
5391                         em->block_len = hole_len;
5392                 } else {
5393                         em->start = range_start;
5394                         em->len = found;
5395                         em->orig_start = range_start;
5396                         em->block_start = EXTENT_MAP_DELALLOC;
5397                         em->block_len = found;
5398                 }
5399         } else if (hole_em) {
5400                 return hole_em;
5401         }
5402 out:
5403
5404         free_extent_map(hole_em);
5405         if (err) {
5406                 free_extent_map(em);
5407                 return ERR_PTR(err);
5408         }
5409         return em;
5410 }
5411
5412 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5413                                                   u64 start, u64 len)
5414 {
5415         struct btrfs_root *root = BTRFS_I(inode)->root;
5416         struct btrfs_trans_handle *trans;
5417         struct extent_map *em;
5418         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5419         struct btrfs_key ins;
5420         u64 alloc_hint;
5421         int ret;
5422
5423         btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5424
5425         trans = btrfs_join_transaction(root, 0);
5426         if (IS_ERR(trans))
5427                 return ERR_CAST(trans);
5428
5429         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5430
5431         alloc_hint = get_extent_allocation_hint(inode, start, len);
5432         ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5433                                    alloc_hint, (u64)-1, &ins, 1);
5434         if (ret) {
5435                 em = ERR_PTR(ret);
5436                 goto out;
5437         }
5438
5439         em = alloc_extent_map(GFP_NOFS);
5440         if (!em) {
5441                 em = ERR_PTR(-ENOMEM);
5442                 goto out;
5443         }
5444
5445         em->start = start;
5446         em->orig_start = em->start;
5447         em->len = ins.offset;
5448
5449         em->block_start = ins.objectid;
5450         em->block_len = ins.offset;
5451         em->bdev = root->fs_info->fs_devices->latest_bdev;
5452         set_bit(EXTENT_FLAG_PINNED, &em->flags);
5453
5454         while (1) {
5455                 write_lock(&em_tree->lock);
5456                 ret = add_extent_mapping(em_tree, em);
5457                 write_unlock(&em_tree->lock);
5458                 if (ret != -EEXIST)
5459                         break;
5460                 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5461         }
5462
5463         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5464                                            ins.offset, ins.offset, 0);
5465         if (ret) {
5466                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5467                 em = ERR_PTR(ret);
5468         }
5469 out:
5470         btrfs_end_transaction(trans, root);
5471         return em;
5472 }
5473
5474 /*
5475  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5476  * block must be cow'd
5477  */
5478 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5479                                       struct inode *inode, u64 offset, u64 len)
5480 {
5481         struct btrfs_path *path;
5482         int ret;
5483         struct extent_buffer *leaf;
5484         struct btrfs_root *root = BTRFS_I(inode)->root;
5485         struct btrfs_file_extent_item *fi;
5486         struct btrfs_key key;
5487         u64 disk_bytenr;
5488         u64 backref_offset;
5489         u64 extent_end;
5490         u64 num_bytes;
5491         int slot;
5492         int found_type;
5493
5494         path = btrfs_alloc_path();
5495         if (!path)
5496                 return -ENOMEM;
5497
5498         ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5499                                        offset, 0);
5500         if (ret < 0)
5501                 goto out;
5502
5503         slot = path->slots[0];
5504         if (ret == 1) {
5505                 if (slot == 0) {
5506                         /* can't find the item, must cow */
5507                         ret = 0;
5508                         goto out;
5509                 }
5510                 slot--;
5511         }
5512         ret = 0;
5513         leaf = path->nodes[0];
5514         btrfs_item_key_to_cpu(leaf, &key, slot);
5515         if (key.objectid != inode->i_ino ||
5516             key.type != BTRFS_EXTENT_DATA_KEY) {
5517                 /* not our file or wrong item type, must cow */
5518                 goto out;
5519         }
5520
5521         if (key.offset > offset) {
5522                 /* Wrong offset, must cow */
5523                 goto out;
5524         }
5525
5526         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5527         found_type = btrfs_file_extent_type(leaf, fi);
5528         if (found_type != BTRFS_FILE_EXTENT_REG &&
5529             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5530                 /* not a regular extent, must cow */
5531                 goto out;
5532         }
5533         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5534         backref_offset = btrfs_file_extent_offset(leaf, fi);
5535
5536         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5537         if (extent_end < offset + len) {
5538                 /* extent doesn't include our full range, must cow */
5539                 goto out;
5540         }
5541
5542         if (btrfs_extent_readonly(root, disk_bytenr))
5543                 goto out;
5544
5545         /*
5546          * look for other files referencing this extent, if we
5547          * find any we must cow
5548          */
5549         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5550                                   key.offset - backref_offset, disk_bytenr))
5551                 goto out;
5552
5553         /*
5554          * adjust disk_bytenr and num_bytes to cover just the bytes
5555          * in this extent we are about to write.  If there
5556          * are any csums in that range we have to cow in order
5557          * to keep the csums correct
5558          */
5559         disk_bytenr += backref_offset;
5560         disk_bytenr += offset - key.offset;
5561         num_bytes = min(offset + len, extent_end) - offset;
5562         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5563                                 goto out;
5564         /*
5565          * all of the above have passed, it is safe to overwrite this extent
5566          * without cow
5567          */
5568         ret = 1;
5569 out:
5570         btrfs_free_path(path);
5571         return ret;
5572 }
5573
5574 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5575                                    struct buffer_head *bh_result, int create)
5576 {
5577         struct extent_map *em;
5578         struct btrfs_root *root = BTRFS_I(inode)->root;
5579         u64 start = iblock << inode->i_blkbits;
5580         u64 len = bh_result->b_size;
5581         struct btrfs_trans_handle *trans;
5582
5583         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5584         if (IS_ERR(em))
5585                 return PTR_ERR(em);
5586
5587         /*
5588          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5589          * io.  INLINE is special, and we could probably kludge it in here, but
5590          * it's still buffered so for safety lets just fall back to the generic
5591          * buffered path.
5592          *
5593          * For COMPRESSED we _have_ to read the entire extent in so we can
5594          * decompress it, so there will be buffering required no matter what we
5595          * do, so go ahead and fallback to buffered.
5596          *
5597          * We return -ENOTBLK because thats what makes DIO go ahead and go back
5598          * to buffered IO.  Don't blame me, this is the price we pay for using
5599          * the generic code.
5600          */
5601         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5602             em->block_start == EXTENT_MAP_INLINE) {
5603                 free_extent_map(em);
5604                 return -ENOTBLK;
5605         }
5606
5607         /* Just a good old fashioned hole, return */
5608         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5609                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5610                 free_extent_map(em);
5611                 /* DIO will do one hole at a time, so just unlock a sector */
5612                 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5613                               start + root->sectorsize - 1, GFP_NOFS);
5614                 return 0;
5615         }
5616
5617         /*
5618          * We don't allocate a new extent in the following cases
5619          *
5620          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5621          * existing extent.
5622          * 2) The extent is marked as PREALLOC.  We're good to go here and can
5623          * just use the extent.
5624          *
5625          */
5626         if (!create) {
5627                 len = em->len - (start - em->start);
5628                 goto map;
5629         }
5630
5631         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5632             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5633              em->block_start != EXTENT_MAP_HOLE)) {
5634                 int type;
5635                 int ret;
5636                 u64 block_start;
5637
5638                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5639                         type = BTRFS_ORDERED_PREALLOC;
5640                 else
5641                         type = BTRFS_ORDERED_NOCOW;
5642                 len = min(len, em->len - (start - em->start));
5643                 block_start = em->block_start + (start - em->start);
5644
5645                 /*
5646                  * we're not going to log anything, but we do need
5647                  * to make sure the current transaction stays open
5648                  * while we look for nocow cross refs
5649                  */
5650                 trans = btrfs_join_transaction(root, 0);
5651                 if (IS_ERR(trans))
5652                         goto must_cow;
5653
5654                 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5655                         ret = btrfs_add_ordered_extent_dio(inode, start,
5656                                            block_start, len, len, type);
5657                         btrfs_end_transaction(trans, root);
5658                         if (ret) {
5659                                 free_extent_map(em);
5660                                 return ret;
5661                         }
5662                         goto unlock;
5663                 }
5664                 btrfs_end_transaction(trans, root);
5665         }
5666 must_cow:
5667         /*
5668          * this will cow the extent, reset the len in case we changed
5669          * it above
5670          */
5671         len = bh_result->b_size;
5672         free_extent_map(em);
5673         em = btrfs_new_extent_direct(inode, start, len);
5674         if (IS_ERR(em))
5675                 return PTR_ERR(em);
5676         len = min(len, em->len - (start - em->start));
5677 unlock:
5678         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5679                           EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5680                           0, NULL, GFP_NOFS);
5681 map:
5682         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5683                 inode->i_blkbits;
5684         bh_result->b_size = len;
5685         bh_result->b_bdev = em->bdev;
5686         set_buffer_mapped(bh_result);
5687         if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5688                 set_buffer_new(bh_result);
5689
5690         free_extent_map(em);
5691
5692         return 0;
5693 }
5694
5695 struct btrfs_dio_private {
5696         struct inode *inode;
5697         u64 logical_offset;
5698         u64 disk_bytenr;
5699         u64 bytes;
5700         u32 *csums;
5701         void *private;
5702
5703         /* number of bios pending for this dio */
5704         atomic_t pending_bios;
5705
5706         /* IO errors */
5707         int errors;
5708
5709         struct bio *orig_bio;
5710 };
5711
5712 static void btrfs_endio_direct_read(struct bio *bio, int err)
5713 {
5714         struct btrfs_dio_private *dip = bio->bi_private;
5715         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5716         struct bio_vec *bvec = bio->bi_io_vec;
5717         struct inode *inode = dip->inode;
5718         struct btrfs_root *root = BTRFS_I(inode)->root;
5719         u64 start;
5720         u32 *private = dip->csums;
5721
5722         start = dip->logical_offset;
5723         do {
5724                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5725                         struct page *page = bvec->bv_page;
5726                         char *kaddr;
5727                         u32 csum = ~(u32)0;
5728                         unsigned long flags;
5729
5730                         local_irq_save(flags);
5731                         kaddr = kmap_atomic(page, KM_IRQ0);
5732                         csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5733                                                csum, bvec->bv_len);
5734                         btrfs_csum_final(csum, (char *)&csum);
5735                         kunmap_atomic(kaddr, KM_IRQ0);
5736                         local_irq_restore(flags);
5737
5738                         flush_dcache_page(bvec->bv_page);
5739                         if (csum != *private) {
5740                                 printk(KERN_ERR "btrfs csum failed ino %lu off"
5741                                       " %llu csum %u private %u\n",
5742                                       inode->i_ino, (unsigned long long)start,
5743                                       csum, *private);
5744                                 err = -EIO;
5745                         }
5746                 }
5747
5748                 start += bvec->bv_len;
5749                 private++;
5750                 bvec++;
5751         } while (bvec <= bvec_end);
5752
5753         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5754                       dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5755         bio->bi_private = dip->private;
5756
5757         kfree(dip->csums);
5758         kfree(dip);
5759
5760         /* If we had a csum failure make sure to clear the uptodate flag */
5761         if (err)
5762                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5763         dio_end_io(bio, err);
5764 }
5765
5766 static void btrfs_endio_direct_write(struct bio *bio, int err)
5767 {
5768         struct btrfs_dio_private *dip = bio->bi_private;
5769         struct inode *inode = dip->inode;
5770         struct btrfs_root *root = BTRFS_I(inode)->root;
5771         struct btrfs_trans_handle *trans;
5772         struct btrfs_ordered_extent *ordered = NULL;
5773         struct extent_state *cached_state = NULL;
5774         u64 ordered_offset = dip->logical_offset;
5775         u64 ordered_bytes = dip->bytes;
5776         int ret;
5777
5778         if (err)
5779                 goto out_done;
5780 again:
5781         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5782                                                    &ordered_offset,
5783                                                    ordered_bytes);
5784         if (!ret)
5785                 goto out_test;
5786
5787         BUG_ON(!ordered);
5788
5789         trans = btrfs_join_transaction(root, 1);
5790         if (IS_ERR(trans)) {
5791                 err = -ENOMEM;
5792                 goto out;
5793         }
5794         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5795
5796         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5797                 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5798                 if (!ret)
5799                         ret = btrfs_update_inode(trans, root, inode);
5800                 err = ret;
5801                 goto out;
5802         }
5803
5804         lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5805                          ordered->file_offset + ordered->len - 1, 0,
5806                          &cached_state, GFP_NOFS);
5807
5808         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5809                 ret = btrfs_mark_extent_written(trans, inode,
5810                                                 ordered->file_offset,
5811                                                 ordered->file_offset +
5812                                                 ordered->len);
5813                 if (ret) {
5814                         err = ret;
5815                         goto out_unlock;
5816                 }
5817         } else {
5818                 ret = insert_reserved_file_extent(trans, inode,
5819                                                   ordered->file_offset,
5820                                                   ordered->start,
5821                                                   ordered->disk_len,
5822                                                   ordered->len,
5823                                                   ordered->len,
5824                                                   0, 0, 0,
5825                                                   BTRFS_FILE_EXTENT_REG);
5826                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5827                                    ordered->file_offset, ordered->len);
5828                 if (ret) {
5829                         err = ret;
5830                         WARN_ON(1);
5831                         goto out_unlock;
5832                 }
5833         }
5834
5835         add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5836         btrfs_ordered_update_i_size(inode, 0, ordered);
5837         btrfs_update_inode(trans, root, inode);
5838 out_unlock:
5839         unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5840                              ordered->file_offset + ordered->len - 1,
5841                              &cached_state, GFP_NOFS);
5842 out:
5843         btrfs_delalloc_release_metadata(inode, ordered->len);
5844         btrfs_end_transaction(trans, root);
5845         ordered_offset = ordered->file_offset + ordered->len;
5846         btrfs_put_ordered_extent(ordered);
5847         btrfs_put_ordered_extent(ordered);
5848
5849 out_test:
5850         /*
5851          * our bio might span multiple ordered extents.  If we haven't
5852          * completed the accounting for the whole dio, go back and try again
5853          */
5854         if (ordered_offset < dip->logical_offset + dip->bytes) {
5855                 ordered_bytes = dip->logical_offset + dip->bytes -
5856                         ordered_offset;
5857                 goto again;
5858         }
5859 out_done:
5860         bio->bi_private = dip->private;
5861
5862         kfree(dip->csums);
5863         kfree(dip);
5864
5865         /* If we had an error make sure to clear the uptodate flag */
5866         if (err)
5867                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5868         dio_end_io(bio, err);
5869 }
5870
5871 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5872                                     struct bio *bio, int mirror_num,
5873                                     unsigned long bio_flags, u64 offset)
5874 {
5875         int ret;
5876         struct btrfs_root *root = BTRFS_I(inode)->root;
5877         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5878         BUG_ON(ret);
5879         return 0;
5880 }
5881
5882 static void btrfs_end_dio_bio(struct bio *bio, int err)
5883 {
5884         struct btrfs_dio_private *dip = bio->bi_private;
5885
5886         if (err) {
5887                 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5888                       "sector %#Lx len %u err no %d\n",
5889                       dip->inode->i_ino, bio->bi_rw,
5890                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
5891                 dip->errors = 1;
5892
5893                 /*
5894                  * before atomic variable goto zero, we must make sure
5895                  * dip->errors is perceived to be set.
5896                  */
5897                 smp_mb__before_atomic_dec();
5898         }
5899
5900         /* if there are more bios still pending for this dio, just exit */
5901         if (!atomic_dec_and_test(&dip->pending_bios))
5902                 goto out;
5903
5904         if (dip->errors)
5905                 bio_io_error(dip->orig_bio);
5906         else {
5907                 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5908                 bio_endio(dip->orig_bio, 0);
5909         }
5910 out:
5911         bio_put(bio);
5912 }
5913
5914 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5915                                        u64 first_sector, gfp_t gfp_flags)
5916 {
5917         int nr_vecs = bio_get_nr_vecs(bdev);
5918         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5919 }
5920
5921 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5922                                          int rw, u64 file_offset, int skip_sum,
5923                                          u32 *csums)
5924 {
5925         int write = rw & REQ_WRITE;
5926         struct btrfs_root *root = BTRFS_I(inode)->root;
5927         int ret;
5928
5929         bio_get(bio);
5930         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5931         if (ret)
5932                 goto err;
5933
5934         if (write && !skip_sum) {
5935                 ret = btrfs_wq_submit_bio(root->fs_info,
5936                                    inode, rw, bio, 0, 0,
5937                                    file_offset,
5938                                    __btrfs_submit_bio_start_direct_io,
5939                                    __btrfs_submit_bio_done);
5940                 goto err;
5941         } else if (!skip_sum)
5942                 btrfs_lookup_bio_sums_dio(root, inode, bio,
5943                                           file_offset, csums);
5944
5945         ret = btrfs_map_bio(root, rw, bio, 0, 1);
5946 err:
5947         bio_put(bio);
5948         return ret;
5949 }
5950
5951 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5952                                     int skip_sum)
5953 {
5954         struct inode *inode = dip->inode;
5955         struct btrfs_root *root = BTRFS_I(inode)->root;
5956         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5957         struct bio *bio;
5958         struct bio *orig_bio = dip->orig_bio;
5959         struct bio_vec *bvec = orig_bio->bi_io_vec;
5960         u64 start_sector = orig_bio->bi_sector;
5961         u64 file_offset = dip->logical_offset;
5962         u64 submit_len = 0;
5963         u64 map_length;
5964         int nr_pages = 0;
5965         u32 *csums = dip->csums;
5966         int ret = 0;
5967         int write = rw & REQ_WRITE;
5968
5969         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5970         if (!bio)
5971                 return -ENOMEM;
5972         bio->bi_private = dip;
5973         bio->bi_end_io = btrfs_end_dio_bio;
5974         atomic_inc(&dip->pending_bios);
5975
5976         map_length = orig_bio->bi_size;
5977         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5978                               &map_length, NULL, 0);
5979         if (ret) {
5980                 bio_put(bio);
5981                 return -EIO;
5982         }
5983
5984         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5985                 if (unlikely(map_length < submit_len + bvec->bv_len ||
5986                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5987                                  bvec->bv_offset) < bvec->bv_len)) {
5988                         /*
5989                          * inc the count before we submit the bio so
5990                          * we know the end IO handler won't happen before
5991                          * we inc the count. Otherwise, the dip might get freed
5992                          * before we're done setting it up
5993                          */
5994                         atomic_inc(&dip->pending_bios);
5995                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
5996                                                      file_offset, skip_sum,
5997                                                      csums);
5998                         if (ret) {
5999                                 bio_put(bio);
6000                                 atomic_dec(&dip->pending_bios);
6001                                 goto out_err;
6002                         }
6003
6004                         /* Write's use the ordered csums */
6005                         if (!write && !skip_sum)
6006                                 csums = csums + nr_pages;
6007                         start_sector += submit_len >> 9;
6008                         file_offset += submit_len;
6009
6010                         submit_len = 0;
6011                         nr_pages = 0;
6012
6013                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6014                                                   start_sector, GFP_NOFS);
6015                         if (!bio)
6016                                 goto out_err;
6017                         bio->bi_private = dip;
6018                         bio->bi_end_io = btrfs_end_dio_bio;
6019
6020                         map_length = orig_bio->bi_size;
6021                         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6022                                               &map_length, NULL, 0);
6023                         if (ret) {
6024                                 bio_put(bio);
6025                                 goto out_err;
6026                         }
6027                 } else {
6028                         submit_len += bvec->bv_len;
6029                         nr_pages ++;
6030                         bvec++;
6031                 }
6032         }
6033
6034         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6035                                      csums);
6036         if (!ret)
6037                 return 0;
6038
6039         bio_put(bio);
6040 out_err:
6041         dip->errors = 1;
6042         /*
6043          * before atomic variable goto zero, we must
6044          * make sure dip->errors is perceived to be set.
6045          */
6046         smp_mb__before_atomic_dec();
6047         if (atomic_dec_and_test(&dip->pending_bios))
6048                 bio_io_error(dip->orig_bio);
6049
6050         /* bio_end_io() will handle error, so we needn't return it */
6051         return 0;
6052 }
6053
6054 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6055                                 loff_t file_offset)
6056 {
6057         struct btrfs_root *root = BTRFS_I(inode)->root;
6058         struct btrfs_dio_private *dip;
6059         struct bio_vec *bvec = bio->bi_io_vec;
6060         int skip_sum;
6061         int write = rw & REQ_WRITE;
6062         int ret = 0;
6063
6064         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6065
6066         dip = kmalloc(sizeof(*dip), GFP_NOFS);
6067         if (!dip) {
6068                 ret = -ENOMEM;
6069                 goto free_ordered;
6070         }
6071         dip->csums = NULL;
6072
6073         /* Write's use the ordered csum stuff, so we don't need dip->csums */
6074         if (!write && !skip_sum) {
6075                 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6076                 if (!dip->csums) {
6077                         kfree(dip);
6078                         ret = -ENOMEM;
6079                         goto free_ordered;
6080                 }
6081         }
6082
6083         dip->private = bio->bi_private;
6084         dip->inode = inode;
6085         dip->logical_offset = file_offset;
6086
6087         dip->bytes = 0;
6088         do {
6089                 dip->bytes += bvec->bv_len;
6090                 bvec++;
6091         } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6092
6093         dip->disk_bytenr = (u64)bio->bi_sector << 9;
6094         bio->bi_private = dip;
6095         dip->errors = 0;
6096         dip->orig_bio = bio;
6097         atomic_set(&dip->pending_bios, 0);
6098
6099         if (write)
6100                 bio->bi_end_io = btrfs_endio_direct_write;
6101         else
6102                 bio->bi_end_io = btrfs_endio_direct_read;
6103
6104         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6105         if (!ret)
6106                 return;
6107 free_ordered:
6108         /*
6109          * If this is a write, we need to clean up the reserved space and kill
6110          * the ordered extent.
6111          */
6112         if (write) {
6113                 struct btrfs_ordered_extent *ordered;
6114                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6115                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6116                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6117                         btrfs_free_reserved_extent(root, ordered->start,
6118                                                    ordered->disk_len);
6119                 btrfs_put_ordered_extent(ordered);
6120                 btrfs_put_ordered_extent(ordered);
6121         }
6122         bio_endio(bio, ret);
6123 }
6124
6125 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6126                         const struct iovec *iov, loff_t offset,
6127                         unsigned long nr_segs)
6128 {
6129         int seg;
6130         size_t size;
6131         unsigned long addr;
6132         unsigned blocksize_mask = root->sectorsize - 1;
6133         ssize_t retval = -EINVAL;
6134         loff_t end = offset;
6135
6136         if (offset & blocksize_mask)
6137                 goto out;
6138
6139         /* Check the memory alignment.  Blocks cannot straddle pages */
6140         for (seg = 0; seg < nr_segs; seg++) {
6141                 addr = (unsigned long)iov[seg].iov_base;
6142                 size = iov[seg].iov_len;
6143                 end += size;
6144                 if ((addr & blocksize_mask) || (size & blocksize_mask)) 
6145                         goto out;
6146         }
6147         retval = 0;
6148 out:
6149         return retval;
6150 }
6151 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6152                         const struct iovec *iov, loff_t offset,
6153                         unsigned long nr_segs)
6154 {
6155         struct file *file = iocb->ki_filp;
6156         struct inode *inode = file->f_mapping->host;
6157         struct btrfs_ordered_extent *ordered;
6158         struct extent_state *cached_state = NULL;
6159         u64 lockstart, lockend;
6160         ssize_t ret;
6161         int writing = rw & WRITE;
6162         int write_bits = 0;
6163         size_t count = iov_length(iov, nr_segs);
6164
6165         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6166                             offset, nr_segs)) {
6167                 return 0;
6168         }
6169
6170         lockstart = offset;
6171         lockend = offset + count - 1;
6172
6173         if (writing) {
6174                 ret = btrfs_delalloc_reserve_space(inode, count);
6175                 if (ret)
6176                         goto out;
6177         }
6178
6179         while (1) {
6180                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6181                                  0, &cached_state, GFP_NOFS);
6182                 /*
6183                  * We're concerned with the entire range that we're going to be
6184                  * doing DIO to, so we need to make sure theres no ordered
6185                  * extents in this range.
6186                  */
6187                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6188                                                      lockend - lockstart + 1);
6189                 if (!ordered)
6190                         break;
6191                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6192                                      &cached_state, GFP_NOFS);
6193                 btrfs_start_ordered_extent(inode, ordered, 1);
6194                 btrfs_put_ordered_extent(ordered);
6195                 cond_resched();
6196         }
6197
6198         /*
6199          * we don't use btrfs_set_extent_delalloc because we don't want
6200          * the dirty or uptodate bits
6201          */
6202         if (writing) {
6203                 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6204                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6205                                      EXTENT_DELALLOC, 0, NULL, &cached_state,
6206                                      GFP_NOFS);
6207                 if (ret) {
6208                         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6209                                          lockend, EXTENT_LOCKED | write_bits,
6210                                          1, 0, &cached_state, GFP_NOFS);
6211                         goto out;
6212                 }
6213         }
6214
6215         free_extent_state(cached_state);
6216         cached_state = NULL;
6217
6218         ret = __blockdev_direct_IO(rw, iocb, inode,
6219                    BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6220                    iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6221                    btrfs_submit_direct, 0);
6222
6223         if (ret < 0 && ret != -EIOCBQUEUED) {
6224                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6225                               offset + iov_length(iov, nr_segs) - 1,
6226                               EXTENT_LOCKED | write_bits, 1, 0,
6227                               &cached_state, GFP_NOFS);
6228         } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6229                 /*
6230                  * We're falling back to buffered, unlock the section we didn't
6231                  * do IO on.
6232                  */
6233                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6234                               offset + iov_length(iov, nr_segs) - 1,
6235                               EXTENT_LOCKED | write_bits, 1, 0,
6236                               &cached_state, GFP_NOFS);
6237         }
6238 out:
6239         free_extent_state(cached_state);
6240         return ret;
6241 }
6242
6243 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6244                 __u64 start, __u64 len)
6245 {
6246         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6247 }
6248
6249 int btrfs_readpage(struct file *file, struct page *page)
6250 {
6251         struct extent_io_tree *tree;
6252         tree = &BTRFS_I(page->mapping->host)->io_tree;
6253         return extent_read_full_page(tree, page, btrfs_get_extent);
6254 }
6255
6256 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6257 {
6258         struct extent_io_tree *tree;
6259
6260
6261         if (current->flags & PF_MEMALLOC) {
6262                 redirty_page_for_writepage(wbc, page);
6263                 unlock_page(page);
6264                 return 0;
6265         }
6266         tree = &BTRFS_I(page->mapping->host)->io_tree;
6267         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6268 }
6269
6270 int btrfs_writepages(struct address_space *mapping,
6271                      struct writeback_control *wbc)
6272 {
6273         struct extent_io_tree *tree;
6274
6275         tree = &BTRFS_I(mapping->host)->io_tree;
6276         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6277 }
6278
6279 static int
6280 btrfs_readpages(struct file *file, struct address_space *mapping,
6281                 struct list_head *pages, unsigned nr_pages)
6282 {
6283         struct extent_io_tree *tree;
6284         tree = &BTRFS_I(mapping->host)->io_tree;
6285         return extent_readpages(tree, mapping, pages, nr_pages,
6286                                 btrfs_get_extent);
6287 }
6288 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6289 {
6290         struct extent_io_tree *tree;
6291         struct extent_map_tree *map;
6292         int ret;
6293
6294         tree = &BTRFS_I(page->mapping->host)->io_tree;
6295         map = &BTRFS_I(page->mapping->host)->extent_tree;
6296         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6297         if (ret == 1) {
6298                 ClearPagePrivate(page);
6299                 set_page_private(page, 0);
6300                 page_cache_release(page);
6301         }
6302         return ret;
6303 }
6304
6305 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6306 {
6307         if (PageWriteback(page) || PageDirty(page))
6308                 return 0;
6309         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6310 }
6311
6312 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6313 {
6314         struct extent_io_tree *tree;
6315         struct btrfs_ordered_extent *ordered;
6316         struct extent_state *cached_state = NULL;
6317         u64 page_start = page_offset(page);
6318         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6319
6320
6321         /*
6322          * we have the page locked, so new writeback can't start,
6323          * and the dirty bit won't be cleared while we are here.
6324          *
6325          * Wait for IO on this page so that we can safely clear
6326          * the PagePrivate2 bit and do ordered accounting
6327          */
6328         wait_on_page_writeback(page);
6329
6330         tree = &BTRFS_I(page->mapping->host)->io_tree;
6331         if (offset) {
6332                 btrfs_releasepage(page, GFP_NOFS);
6333                 return;
6334         }
6335         lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6336                          GFP_NOFS);
6337         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6338                                            page_offset(page));
6339         if (ordered) {
6340                 /*
6341                  * IO on this page will never be started, so we need
6342                  * to account for any ordered extents now
6343                  */
6344                 clear_extent_bit(tree, page_start, page_end,
6345                                  EXTENT_DIRTY | EXTENT_DELALLOC |
6346                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6347                                  &cached_state, GFP_NOFS);
6348                 /*
6349                  * whoever cleared the private bit is responsible
6350                  * for the finish_ordered_io
6351                  */
6352                 if (TestClearPagePrivate2(page)) {
6353                         btrfs_finish_ordered_io(page->mapping->host,
6354                                                 page_start, page_end);
6355                 }
6356                 btrfs_put_ordered_extent(ordered);
6357                 cached_state = NULL;
6358                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6359                                  GFP_NOFS);
6360         }
6361         clear_extent_bit(tree, page_start, page_end,
6362                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6363                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6364         __btrfs_releasepage(page, GFP_NOFS);
6365
6366         ClearPageChecked(page);
6367         if (PagePrivate(page)) {
6368                 ClearPagePrivate(page);
6369                 set_page_private(page, 0);
6370                 page_cache_release(page);
6371         }
6372 }
6373
6374 /*
6375  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6376  * called from a page fault handler when a page is first dirtied. Hence we must
6377  * be careful to check for EOF conditions here. We set the page up correctly
6378  * for a written page which means we get ENOSPC checking when writing into
6379  * holes and correct delalloc and unwritten extent mapping on filesystems that
6380  * support these features.
6381  *
6382  * We are not allowed to take the i_mutex here so we have to play games to
6383  * protect against truncate races as the page could now be beyond EOF.  Because
6384  * vmtruncate() writes the inode size before removing pages, once we have the
6385  * page lock we can determine safely if the page is beyond EOF. If it is not
6386  * beyond EOF, then the page is guaranteed safe against truncation until we
6387  * unlock the page.
6388  */
6389 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6390 {
6391         struct page *page = vmf->page;
6392         struct inode *inode = fdentry(vma->vm_file)->d_inode;
6393         struct btrfs_root *root = BTRFS_I(inode)->root;
6394         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6395         struct btrfs_ordered_extent *ordered;
6396         struct extent_state *cached_state = NULL;
6397         char *kaddr;
6398         unsigned long zero_start;
6399         loff_t size;
6400         int ret;
6401         u64 page_start;
6402         u64 page_end;
6403
6404         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6405         if (ret) {
6406                 if (ret == -ENOMEM)
6407                         ret = VM_FAULT_OOM;
6408                 else /* -ENOSPC, -EIO, etc */
6409                         ret = VM_FAULT_SIGBUS;
6410                 goto out;
6411         }
6412
6413         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6414 again:
6415         lock_page(page);
6416         size = i_size_read(inode);
6417         page_start = page_offset(page);
6418         page_end = page_start + PAGE_CACHE_SIZE - 1;
6419
6420         if ((page->mapping != inode->i_mapping) ||
6421             (page_start >= size)) {
6422                 /* page got truncated out from underneath us */
6423                 goto out_unlock;
6424         }
6425         wait_on_page_writeback(page);
6426
6427         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6428                          GFP_NOFS);
6429         set_page_extent_mapped(page);
6430
6431         /*
6432          * we can't set the delalloc bits if there are pending ordered
6433          * extents.  Drop our locks and wait for them to finish
6434          */
6435         ordered = btrfs_lookup_ordered_extent(inode, page_start);
6436         if (ordered) {
6437                 unlock_extent_cached(io_tree, page_start, page_end,
6438                                      &cached_state, GFP_NOFS);
6439                 unlock_page(page);
6440                 btrfs_start_ordered_extent(inode, ordered, 1);
6441                 btrfs_put_ordered_extent(ordered);
6442                 goto again;
6443         }
6444
6445         /*
6446          * XXX - page_mkwrite gets called every time the page is dirtied, even
6447          * if it was already dirty, so for space accounting reasons we need to
6448          * clear any delalloc bits for the range we are fixing to save.  There
6449          * is probably a better way to do this, but for now keep consistent with
6450          * prepare_pages in the normal write path.
6451          */
6452         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6453                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6454                           0, 0, &cached_state, GFP_NOFS);
6455
6456         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6457                                         &cached_state);
6458         if (ret) {
6459                 unlock_extent_cached(io_tree, page_start, page_end,
6460                                      &cached_state, GFP_NOFS);
6461                 ret = VM_FAULT_SIGBUS;
6462                 goto out_unlock;
6463         }
6464         ret = 0;
6465
6466         /* page is wholly or partially inside EOF */
6467         if (page_start + PAGE_CACHE_SIZE > size)
6468                 zero_start = size & ~PAGE_CACHE_MASK;
6469         else
6470                 zero_start = PAGE_CACHE_SIZE;
6471
6472         if (zero_start != PAGE_CACHE_SIZE) {
6473                 kaddr = kmap(page);
6474                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6475                 flush_dcache_page(page);
6476                 kunmap(page);
6477         }
6478         ClearPageChecked(page);
6479         set_page_dirty(page);
6480         SetPageUptodate(page);
6481
6482         BTRFS_I(inode)->last_trans = root->fs_info->generation;
6483         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6484
6485         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6486
6487 out_unlock:
6488         if (!ret)
6489                 return VM_FAULT_LOCKED;
6490         unlock_page(page);
6491         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6492 out:
6493         return ret;
6494 }
6495
6496 static int btrfs_truncate(struct inode *inode)
6497 {
6498         struct btrfs_root *root = BTRFS_I(inode)->root;
6499         int ret;
6500         int err = 0;
6501         struct btrfs_trans_handle *trans;
6502         unsigned long nr;
6503         u64 mask = root->sectorsize - 1;
6504
6505         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6506         if (ret)
6507                 return ret;
6508
6509         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6510         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6511
6512         trans = btrfs_start_transaction(root, 5);
6513         if (IS_ERR(trans))
6514                 return PTR_ERR(trans);
6515
6516         btrfs_set_trans_block_group(trans, inode);
6517
6518         ret = btrfs_orphan_add(trans, inode);
6519         if (ret) {
6520                 btrfs_end_transaction(trans, root);
6521                 return ret;
6522         }
6523
6524         nr = trans->blocks_used;
6525         btrfs_end_transaction(trans, root);
6526         btrfs_btree_balance_dirty(root, nr);
6527
6528         /* Now start a transaction for the truncate */
6529         trans = btrfs_start_transaction(root, 0);
6530         if (IS_ERR(trans))
6531                 return PTR_ERR(trans);
6532         btrfs_set_trans_block_group(trans, inode);
6533         trans->block_rsv = root->orphan_block_rsv;
6534
6535         /*
6536          * setattr is responsible for setting the ordered_data_close flag,
6537          * but that is only tested during the last file release.  That
6538          * could happen well after the next commit, leaving a great big
6539          * window where new writes may get lost if someone chooses to write
6540          * to this file after truncating to zero
6541          *
6542          * The inode doesn't have any dirty data here, and so if we commit
6543          * this is a noop.  If someone immediately starts writing to the inode
6544          * it is very likely we'll catch some of their writes in this
6545          * transaction, and the commit will find this file on the ordered
6546          * data list with good things to send down.
6547          *
6548          * This is a best effort solution, there is still a window where
6549          * using truncate to replace the contents of the file will
6550          * end up with a zero length file after a crash.
6551          */
6552         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6553                 btrfs_add_ordered_operation(trans, root, inode);
6554
6555         while (1) {
6556                 if (!trans) {
6557                         trans = btrfs_start_transaction(root, 0);
6558                         if (IS_ERR(trans))
6559                                 return PTR_ERR(trans);
6560                         btrfs_set_trans_block_group(trans, inode);
6561                         trans->block_rsv = root->orphan_block_rsv;
6562                 }
6563
6564                 ret = btrfs_block_rsv_check(trans, root,
6565                                             root->orphan_block_rsv, 0, 5);
6566                 if (ret == -EAGAIN) {
6567                         ret = btrfs_commit_transaction(trans, root);
6568                         if (ret)
6569                                 return ret;
6570                         trans = NULL;
6571                         continue;
6572                 } else if (ret) {
6573                         err = ret;
6574                         break;
6575                 }
6576
6577                 ret = btrfs_truncate_inode_items(trans, root, inode,
6578                                                  inode->i_size,
6579                                                  BTRFS_EXTENT_DATA_KEY);
6580                 if (ret != -EAGAIN) {
6581                         err = ret;
6582                         break;
6583                 }
6584
6585                 ret = btrfs_update_inode(trans, root, inode);
6586                 if (ret) {
6587                         err = ret;
6588                         break;
6589                 }
6590
6591                 nr = trans->blocks_used;
6592                 btrfs_end_transaction(trans, root);
6593                 trans = NULL;
6594                 btrfs_btree_balance_dirty(root, nr);
6595         }
6596
6597         if (ret == 0 && inode->i_nlink > 0) {
6598                 ret = btrfs_orphan_del(trans, inode);
6599                 if (ret)
6600                         err = ret;
6601         } else if (ret && inode->i_nlink > 0) {
6602                 /*
6603                  * Failed to do the truncate, remove us from the in memory
6604                  * orphan list.
6605                  */
6606                 ret = btrfs_orphan_del(NULL, inode);
6607         }
6608
6609         ret = btrfs_update_inode(trans, root, inode);
6610         if (ret && !err)
6611                 err = ret;
6612
6613         nr = trans->blocks_used;
6614         ret = btrfs_end_transaction_throttle(trans, root);
6615         if (ret && !err)
6616                 err = ret;
6617         btrfs_btree_balance_dirty(root, nr);
6618
6619         return err;
6620 }
6621
6622 /*
6623  * create a new subvolume directory/inode (helper for the ioctl).
6624  */
6625 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6626                              struct btrfs_root *new_root,
6627                              u64 new_dirid, u64 alloc_hint)
6628 {
6629         struct inode *inode;
6630         int err;
6631         u64 index = 0;
6632
6633         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6634                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6635         if (IS_ERR(inode))
6636                 return PTR_ERR(inode);
6637         inode->i_op = &btrfs_dir_inode_operations;
6638         inode->i_fop = &btrfs_dir_file_operations;
6639
6640         inode->i_nlink = 1;
6641         btrfs_i_size_write(inode, 0);
6642
6643         err = btrfs_update_inode(trans, new_root, inode);
6644         BUG_ON(err);
6645
6646         iput(inode);
6647         return 0;
6648 }
6649
6650 /* helper function for file defrag and space balancing.  This
6651  * forces readahead on a given range of bytes in an inode
6652  */
6653 unsigned long btrfs_force_ra(struct address_space *mapping,
6654                               struct file_ra_state *ra, struct file *file,
6655                               pgoff_t offset, pgoff_t last_index)
6656 {
6657         pgoff_t req_size = last_index - offset + 1;
6658
6659         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6660         return offset + req_size;
6661 }
6662
6663 struct inode *btrfs_alloc_inode(struct super_block *sb)
6664 {
6665         struct btrfs_inode *ei;
6666         struct inode *inode;
6667
6668         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6669         if (!ei)
6670                 return NULL;
6671
6672         ei->root = NULL;
6673         ei->space_info = NULL;
6674         ei->generation = 0;
6675         ei->sequence = 0;
6676         ei->last_trans = 0;
6677         ei->last_sub_trans = 0;
6678         ei->logged_trans = 0;
6679         ei->delalloc_bytes = 0;
6680         ei->reserved_bytes = 0;
6681         ei->disk_i_size = 0;
6682         ei->flags = 0;
6683         ei->index_cnt = (u64)-1;
6684         ei->last_unlink_trans = 0;
6685
6686         atomic_set(&ei->outstanding_extents, 0);
6687         atomic_set(&ei->reserved_extents, 0);
6688
6689         ei->ordered_data_close = 0;
6690         ei->orphan_meta_reserved = 0;
6691         ei->dummy_inode = 0;
6692         ei->force_compress = BTRFS_COMPRESS_NONE;
6693
6694         inode = &ei->vfs_inode;
6695         extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6696         extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6697         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6698         mutex_init(&ei->log_mutex);
6699         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6700         INIT_LIST_HEAD(&ei->i_orphan);
6701         INIT_LIST_HEAD(&ei->delalloc_inodes);
6702         INIT_LIST_HEAD(&ei->ordered_operations);
6703         RB_CLEAR_NODE(&ei->rb_node);
6704
6705         return inode;
6706 }
6707
6708 static void btrfs_i_callback(struct rcu_head *head)
6709 {
6710         struct inode *inode = container_of(head, struct inode, i_rcu);
6711         INIT_LIST_HEAD(&inode->i_dentry);
6712         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6713 }
6714
6715 void btrfs_destroy_inode(struct inode *inode)
6716 {
6717         struct btrfs_ordered_extent *ordered;
6718         struct btrfs_root *root = BTRFS_I(inode)->root;
6719
6720         WARN_ON(!list_empty(&inode->i_dentry));
6721         WARN_ON(inode->i_data.nrpages);
6722         WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6723         WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6724
6725         /*
6726          * This can happen where we create an inode, but somebody else also
6727          * created the same inode and we need to destroy the one we already
6728          * created.
6729          */
6730         if (!root)
6731                 goto free;
6732
6733         /*
6734          * Make sure we're properly removed from the ordered operation
6735          * lists.
6736          */
6737         smp_mb();
6738         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6739                 spin_lock(&root->fs_info->ordered_extent_lock);
6740                 list_del_init(&BTRFS_I(inode)->ordered_operations);
6741                 spin_unlock(&root->fs_info->ordered_extent_lock);
6742         }
6743
6744         if (root == root->fs_info->tree_root) {
6745                 struct btrfs_block_group_cache *block_group;
6746
6747                 block_group = btrfs_lookup_block_group(root->fs_info,
6748                                                 BTRFS_I(inode)->block_group);
6749                 if (block_group && block_group->inode == inode) {
6750                         spin_lock(&block_group->lock);
6751                         block_group->inode = NULL;
6752                         spin_unlock(&block_group->lock);
6753                         btrfs_put_block_group(block_group);
6754                 } else if (block_group) {
6755                         btrfs_put_block_group(block_group);
6756                 }
6757         }
6758
6759         spin_lock(&root->orphan_lock);
6760         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6761                 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6762                        inode->i_ino);
6763                 list_del_init(&BTRFS_I(inode)->i_orphan);
6764         }
6765         spin_unlock(&root->orphan_lock);
6766
6767         while (1) {
6768                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6769                 if (!ordered)
6770                         break;
6771                 else {
6772                         printk(KERN_ERR "btrfs found ordered "
6773                                "extent %llu %llu on inode cleanup\n",
6774                                (unsigned long long)ordered->file_offset,
6775                                (unsigned long long)ordered->len);
6776                         btrfs_remove_ordered_extent(inode, ordered);
6777                         btrfs_put_ordered_extent(ordered);
6778                         btrfs_put_ordered_extent(ordered);
6779                 }
6780         }
6781         inode_tree_del(inode);
6782         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6783 free:
6784         call_rcu(&inode->i_rcu, btrfs_i_callback);
6785 }
6786
6787 int btrfs_drop_inode(struct inode *inode)
6788 {
6789         struct btrfs_root *root = BTRFS_I(inode)->root;
6790
6791         if (btrfs_root_refs(&root->root_item) == 0 &&
6792             root != root->fs_info->tree_root)
6793                 return 1;
6794         else
6795                 return generic_drop_inode(inode);
6796 }
6797
6798 static void init_once(void *foo)
6799 {
6800         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6801
6802         inode_init_once(&ei->vfs_inode);
6803 }
6804
6805 void btrfs_destroy_cachep(void)
6806 {
6807         if (btrfs_inode_cachep)
6808                 kmem_cache_destroy(btrfs_inode_cachep);
6809         if (btrfs_trans_handle_cachep)
6810                 kmem_cache_destroy(btrfs_trans_handle_cachep);
6811         if (btrfs_transaction_cachep)
6812                 kmem_cache_destroy(btrfs_transaction_cachep);
6813         if (btrfs_path_cachep)
6814                 kmem_cache_destroy(btrfs_path_cachep);
6815         if (btrfs_free_space_cachep)
6816                 kmem_cache_destroy(btrfs_free_space_cachep);
6817 }
6818
6819 int btrfs_init_cachep(void)
6820 {
6821         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6822                         sizeof(struct btrfs_inode), 0,
6823                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6824         if (!btrfs_inode_cachep)
6825                 goto fail;
6826
6827         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6828                         sizeof(struct btrfs_trans_handle), 0,
6829                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6830         if (!btrfs_trans_handle_cachep)
6831                 goto fail;
6832
6833         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6834                         sizeof(struct btrfs_transaction), 0,
6835                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6836         if (!btrfs_transaction_cachep)
6837                 goto fail;
6838
6839         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6840                         sizeof(struct btrfs_path), 0,
6841                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6842         if (!btrfs_path_cachep)
6843                 goto fail;
6844
6845         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6846                         sizeof(struct btrfs_free_space), 0,
6847                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6848         if (!btrfs_free_space_cachep)
6849                 goto fail;
6850
6851         return 0;
6852 fail:
6853         btrfs_destroy_cachep();
6854         return -ENOMEM;
6855 }
6856
6857 static int btrfs_getattr(struct vfsmount *mnt,
6858                          struct dentry *dentry, struct kstat *stat)
6859 {
6860         struct inode *inode = dentry->d_inode;
6861         generic_fillattr(inode, stat);
6862         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6863         stat->blksize = PAGE_CACHE_SIZE;
6864         stat->blocks = (inode_get_bytes(inode) +
6865                         BTRFS_I(inode)->delalloc_bytes) >> 9;
6866         return 0;
6867 }
6868
6869 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6870                            struct inode *new_dir, struct dentry *new_dentry)
6871 {
6872         struct btrfs_trans_handle *trans;
6873         struct btrfs_root *root = BTRFS_I(old_dir)->root;
6874         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6875         struct inode *new_inode = new_dentry->d_inode;
6876         struct inode *old_inode = old_dentry->d_inode;
6877         struct timespec ctime = CURRENT_TIME;
6878         u64 index = 0;
6879         u64 root_objectid;
6880         int ret;
6881
6882         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6883                 return -EPERM;
6884
6885         /* we only allow rename subvolume link between subvolumes */
6886         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6887                 return -EXDEV;
6888
6889         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6890             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6891                 return -ENOTEMPTY;
6892
6893         if (S_ISDIR(old_inode->i_mode) && new_inode &&
6894             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6895                 return -ENOTEMPTY;
6896         /*
6897          * we're using rename to replace one file with another.
6898          * and the replacement file is large.  Start IO on it now so
6899          * we don't add too much work to the end of the transaction
6900          */
6901         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6902             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6903                 filemap_flush(old_inode->i_mapping);
6904
6905         /* close the racy window with snapshot create/destroy ioctl */
6906         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6907                 down_read(&root->fs_info->subvol_sem);
6908         /*
6909          * We want to reserve the absolute worst case amount of items.  So if
6910          * both inodes are subvols and we need to unlink them then that would
6911          * require 4 item modifications, but if they are both normal inodes it
6912          * would require 5 item modifications, so we'll assume their normal
6913          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6914          * should cover the worst case number of items we'll modify.
6915          */
6916         trans = btrfs_start_transaction(root, 20);
6917         if (IS_ERR(trans))
6918                 return PTR_ERR(trans);
6919
6920         btrfs_set_trans_block_group(trans, new_dir);
6921
6922         if (dest != root)
6923                 btrfs_record_root_in_trans(trans, dest);
6924
6925         ret = btrfs_set_inode_index(new_dir, &index);
6926         if (ret)
6927                 goto out_fail;
6928
6929         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6930                 /* force full log commit if subvolume involved. */
6931                 root->fs_info->last_trans_log_full_commit = trans->transid;
6932         } else {
6933                 ret = btrfs_insert_inode_ref(trans, dest,
6934                                              new_dentry->d_name.name,
6935                                              new_dentry->d_name.len,
6936                                              old_inode->i_ino,
6937                                              new_dir->i_ino, index);
6938                 if (ret)
6939                         goto out_fail;
6940                 /*
6941                  * this is an ugly little race, but the rename is required
6942                  * to make sure that if we crash, the inode is either at the
6943                  * old name or the new one.  pinning the log transaction lets
6944                  * us make sure we don't allow a log commit to come in after
6945                  * we unlink the name but before we add the new name back in.
6946                  */
6947                 btrfs_pin_log_trans(root);
6948         }
6949         /*
6950          * make sure the inode gets flushed if it is replacing
6951          * something.
6952          */
6953         if (new_inode && new_inode->i_size &&
6954             old_inode && S_ISREG(old_inode->i_mode)) {
6955                 btrfs_add_ordered_operation(trans, root, old_inode);
6956         }
6957
6958         old_dir->i_ctime = old_dir->i_mtime = ctime;
6959         new_dir->i_ctime = new_dir->i_mtime = ctime;
6960         old_inode->i_ctime = ctime;
6961
6962         if (old_dentry->d_parent != new_dentry->d_parent)
6963                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6964
6965         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6966                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6967                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6968                                         old_dentry->d_name.name,
6969                                         old_dentry->d_name.len);
6970         } else {
6971                 btrfs_inc_nlink(old_dentry->d_inode);
6972                 ret = btrfs_unlink_inode(trans, root, old_dir,
6973                                          old_dentry->d_inode,
6974                                          old_dentry->d_name.name,
6975                                          old_dentry->d_name.len);
6976         }
6977         BUG_ON(ret);
6978
6979         if (new_inode) {
6980                 new_inode->i_ctime = CURRENT_TIME;
6981                 if (unlikely(new_inode->i_ino ==
6982                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6983                         root_objectid = BTRFS_I(new_inode)->location.objectid;
6984                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
6985                                                 root_objectid,
6986                                                 new_dentry->d_name.name,
6987                                                 new_dentry->d_name.len);
6988                         BUG_ON(new_inode->i_nlink == 0);
6989                 } else {
6990                         ret = btrfs_unlink_inode(trans, dest, new_dir,
6991                                                  new_dentry->d_inode,
6992                                                  new_dentry->d_name.name,
6993                                                  new_dentry->d_name.len);
6994                 }
6995                 BUG_ON(ret);
6996                 if (new_inode->i_nlink == 0) {
6997                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6998                         BUG_ON(ret);
6999                 }
7000         }
7001
7002         ret = btrfs_add_link(trans, new_dir, old_inode,
7003                              new_dentry->d_name.name,
7004                              new_dentry->d_name.len, 0, index);
7005         BUG_ON(ret);
7006
7007         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
7008                 struct dentry *parent = dget_parent(new_dentry);
7009                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7010                 dput(parent);
7011                 btrfs_end_log_trans(root);
7012         }
7013 out_fail:
7014         btrfs_end_transaction_throttle(trans, root);
7015
7016         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7017                 up_read(&root->fs_info->subvol_sem);
7018
7019         return ret;
7020 }
7021
7022 /*
7023  * some fairly slow code that needs optimization. This walks the list
7024  * of all the inodes with pending delalloc and forces them to disk.
7025  */
7026 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7027 {
7028         struct list_head *head = &root->fs_info->delalloc_inodes;
7029         struct btrfs_inode *binode;
7030         struct inode *inode;
7031
7032         if (root->fs_info->sb->s_flags & MS_RDONLY)
7033                 return -EROFS;
7034
7035         spin_lock(&root->fs_info->delalloc_lock);
7036         while (!list_empty(head)) {
7037                 binode = list_entry(head->next, struct btrfs_inode,
7038                                     delalloc_inodes);
7039                 inode = igrab(&binode->vfs_inode);
7040                 if (!inode)
7041                         list_del_init(&binode->delalloc_inodes);
7042                 spin_unlock(&root->fs_info->delalloc_lock);
7043                 if (inode) {
7044                         filemap_flush(inode->i_mapping);
7045                         if (delay_iput)
7046                                 btrfs_add_delayed_iput(inode);
7047                         else
7048                                 iput(inode);
7049                 }
7050                 cond_resched();
7051                 spin_lock(&root->fs_info->delalloc_lock);
7052         }
7053         spin_unlock(&root->fs_info->delalloc_lock);
7054
7055         /* the filemap_flush will queue IO into the worker threads, but
7056          * we have to make sure the IO is actually started and that
7057          * ordered extents get created before we return
7058          */
7059         atomic_inc(&root->fs_info->async_submit_draining);
7060         while (atomic_read(&root->fs_info->nr_async_submits) ||
7061               atomic_read(&root->fs_info->async_delalloc_pages)) {
7062                 wait_event(root->fs_info->async_submit_wait,
7063                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7064                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7065         }
7066         atomic_dec(&root->fs_info->async_submit_draining);
7067         return 0;
7068 }
7069
7070 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7071                                    int sync)
7072 {
7073         struct btrfs_inode *binode;
7074         struct inode *inode = NULL;
7075
7076         spin_lock(&root->fs_info->delalloc_lock);
7077         while (!list_empty(&root->fs_info->delalloc_inodes)) {
7078                 binode = list_entry(root->fs_info->delalloc_inodes.next,
7079                                     struct btrfs_inode, delalloc_inodes);
7080                 inode = igrab(&binode->vfs_inode);
7081                 if (inode) {
7082                         list_move_tail(&binode->delalloc_inodes,
7083                                        &root->fs_info->delalloc_inodes);
7084                         break;
7085                 }
7086
7087                 list_del_init(&binode->delalloc_inodes);
7088                 cond_resched_lock(&root->fs_info->delalloc_lock);
7089         }
7090         spin_unlock(&root->fs_info->delalloc_lock);
7091
7092         if (inode) {
7093                 if (sync) {
7094                         filemap_write_and_wait(inode->i_mapping);
7095                         /*
7096                          * We have to do this because compression doesn't
7097                          * actually set PG_writeback until it submits the pages
7098                          * for IO, which happens in an async thread, so we could
7099                          * race and not actually wait for any writeback pages
7100                          * because they've not been submitted yet.  Technically
7101                          * this could still be the case for the ordered stuff
7102                          * since the async thread may not have started to do its
7103                          * work yet.  If this becomes the case then we need to
7104                          * figure out a way to make sure that in writepage we
7105                          * wait for any async pages to be submitted before
7106                          * returning so that fdatawait does what its supposed to
7107                          * do.
7108                          */
7109                         btrfs_wait_ordered_range(inode, 0, (u64)-1);
7110                 } else {
7111                         filemap_flush(inode->i_mapping);
7112                 }
7113                 if (delay_iput)
7114                         btrfs_add_delayed_iput(inode);
7115                 else
7116                         iput(inode);
7117                 return 1;
7118         }
7119         return 0;
7120 }
7121
7122 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7123                          const char *symname)
7124 {
7125         struct btrfs_trans_handle *trans;
7126         struct btrfs_root *root = BTRFS_I(dir)->root;
7127         struct btrfs_path *path;
7128         struct btrfs_key key;
7129         struct inode *inode = NULL;
7130         int err;
7131         int drop_inode = 0;
7132         u64 objectid;
7133         u64 index = 0 ;
7134         int name_len;
7135         int datasize;
7136         unsigned long ptr;
7137         struct btrfs_file_extent_item *ei;
7138         struct extent_buffer *leaf;
7139         unsigned long nr = 0;
7140
7141         name_len = strlen(symname) + 1;
7142         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7143                 return -ENAMETOOLONG;
7144
7145         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7146         if (err)
7147                 return err;
7148         /*
7149          * 2 items for inode item and ref
7150          * 2 items for dir items
7151          * 1 item for xattr if selinux is on
7152          */
7153         trans = btrfs_start_transaction(root, 5);
7154         if (IS_ERR(trans))
7155                 return PTR_ERR(trans);
7156
7157         btrfs_set_trans_block_group(trans, dir);
7158
7159         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7160                                 dentry->d_name.len, dir->i_ino, objectid,
7161                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7162                                 &index);
7163         err = PTR_ERR(inode);
7164         if (IS_ERR(inode))
7165                 goto out_unlock;
7166
7167         err = btrfs_init_inode_security(trans, inode, dir);
7168         if (err) {
7169                 drop_inode = 1;
7170                 goto out_unlock;
7171         }
7172
7173         btrfs_set_trans_block_group(trans, inode);
7174         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7175         if (err)
7176                 drop_inode = 1;
7177         else {
7178                 inode->i_mapping->a_ops = &btrfs_aops;
7179                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7180                 inode->i_fop = &btrfs_file_operations;
7181                 inode->i_op = &btrfs_file_inode_operations;
7182                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7183         }
7184         btrfs_update_inode_block_group(trans, inode);
7185         btrfs_update_inode_block_group(trans, dir);
7186         if (drop_inode)
7187                 goto out_unlock;
7188
7189         path = btrfs_alloc_path();
7190         BUG_ON(!path);
7191         key.objectid = inode->i_ino;
7192         key.offset = 0;
7193         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7194         datasize = btrfs_file_extent_calc_inline_size(name_len);
7195         err = btrfs_insert_empty_item(trans, root, path, &key,
7196                                       datasize);
7197         if (err) {
7198                 drop_inode = 1;
7199                 goto out_unlock;
7200         }
7201         leaf = path->nodes[0];
7202         ei = btrfs_item_ptr(leaf, path->slots[0],
7203                             struct btrfs_file_extent_item);
7204         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7205         btrfs_set_file_extent_type(leaf, ei,
7206                                    BTRFS_FILE_EXTENT_INLINE);
7207         btrfs_set_file_extent_encryption(leaf, ei, 0);
7208         btrfs_set_file_extent_compression(leaf, ei, 0);
7209         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7210         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7211
7212         ptr = btrfs_file_extent_inline_start(ei);
7213         write_extent_buffer(leaf, symname, ptr, name_len);
7214         btrfs_mark_buffer_dirty(leaf);
7215         btrfs_free_path(path);
7216
7217         inode->i_op = &btrfs_symlink_inode_operations;
7218         inode->i_mapping->a_ops = &btrfs_symlink_aops;
7219         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7220         inode_set_bytes(inode, name_len);
7221         btrfs_i_size_write(inode, name_len - 1);
7222         err = btrfs_update_inode(trans, root, inode);
7223         if (err)
7224                 drop_inode = 1;
7225
7226 out_unlock:
7227         nr = trans->blocks_used;
7228         btrfs_end_transaction_throttle(trans, root);
7229         if (drop_inode) {
7230                 inode_dec_link_count(inode);
7231                 iput(inode);
7232         }
7233         btrfs_btree_balance_dirty(root, nr);
7234         return err;
7235 }
7236
7237 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7238                                        u64 start, u64 num_bytes, u64 min_size,
7239                                        loff_t actual_len, u64 *alloc_hint,
7240                                        struct btrfs_trans_handle *trans)
7241 {
7242         struct btrfs_root *root = BTRFS_I(inode)->root;
7243         struct btrfs_key ins;
7244         u64 cur_offset = start;
7245         u64 i_size;
7246         int ret = 0;
7247         bool own_trans = true;
7248
7249         if (trans)
7250                 own_trans = false;
7251         while (num_bytes > 0) {
7252                 if (own_trans) {
7253                         trans = btrfs_start_transaction(root, 3);
7254                         if (IS_ERR(trans)) {
7255                                 ret = PTR_ERR(trans);
7256                                 break;
7257                         }
7258                 }
7259
7260                 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7261                                            0, *alloc_hint, (u64)-1, &ins, 1);
7262                 if (ret) {
7263                         if (own_trans)
7264                                 btrfs_end_transaction(trans, root);
7265                         break;
7266                 }
7267
7268                 ret = insert_reserved_file_extent(trans, inode,
7269                                                   cur_offset, ins.objectid,
7270                                                   ins.offset, ins.offset,
7271                                                   ins.offset, 0, 0, 0,
7272                                                   BTRFS_FILE_EXTENT_PREALLOC);
7273                 BUG_ON(ret);
7274                 btrfs_drop_extent_cache(inode, cur_offset,
7275                                         cur_offset + ins.offset -1, 0);
7276
7277                 num_bytes -= ins.offset;
7278                 cur_offset += ins.offset;
7279                 *alloc_hint = ins.objectid + ins.offset;
7280
7281                 inode->i_ctime = CURRENT_TIME;
7282                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7283                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7284                     (actual_len > inode->i_size) &&
7285                     (cur_offset > inode->i_size)) {
7286                         if (cur_offset > actual_len)
7287                                 i_size = actual_len;
7288                         else
7289                                 i_size = cur_offset;
7290                         i_size_write(inode, i_size);
7291                         btrfs_ordered_update_i_size(inode, i_size, NULL);
7292                 }
7293
7294                 ret = btrfs_update_inode(trans, root, inode);
7295                 BUG_ON(ret);
7296
7297                 if (own_trans)
7298                         btrfs_end_transaction(trans, root);
7299         }
7300         return ret;
7301 }
7302
7303 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7304                               u64 start, u64 num_bytes, u64 min_size,
7305                               loff_t actual_len, u64 *alloc_hint)
7306 {
7307         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7308                                            min_size, actual_len, alloc_hint,
7309                                            NULL);
7310 }
7311
7312 int btrfs_prealloc_file_range_trans(struct inode *inode,
7313                                     struct btrfs_trans_handle *trans, int mode,
7314                                     u64 start, u64 num_bytes, u64 min_size,
7315                                     loff_t actual_len, u64 *alloc_hint)
7316 {
7317         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7318                                            min_size, actual_len, alloc_hint, trans);
7319 }
7320
7321 static int btrfs_set_page_dirty(struct page *page)
7322 {
7323         return __set_page_dirty_nobuffers(page);
7324 }
7325
7326 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7327 {
7328         struct btrfs_root *root = BTRFS_I(inode)->root;
7329
7330         if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7331                 return -EROFS;
7332         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7333                 return -EACCES;
7334         return generic_permission(inode, mask, flags, btrfs_check_acl);
7335 }
7336
7337 static const struct inode_operations btrfs_dir_inode_operations = {
7338         .getattr        = btrfs_getattr,
7339         .lookup         = btrfs_lookup,
7340         .create         = btrfs_create,
7341         .unlink         = btrfs_unlink,
7342         .link           = btrfs_link,
7343         .mkdir          = btrfs_mkdir,
7344         .rmdir          = btrfs_rmdir,
7345         .rename         = btrfs_rename,
7346         .symlink        = btrfs_symlink,
7347         .setattr        = btrfs_setattr,
7348         .mknod          = btrfs_mknod,
7349         .setxattr       = btrfs_setxattr,
7350         .getxattr       = btrfs_getxattr,
7351         .listxattr      = btrfs_listxattr,
7352         .removexattr    = btrfs_removexattr,
7353         .permission     = btrfs_permission,
7354 };
7355 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7356         .lookup         = btrfs_lookup,
7357         .permission     = btrfs_permission,
7358 };
7359
7360 static const struct file_operations btrfs_dir_file_operations = {
7361         .llseek         = generic_file_llseek,
7362         .read           = generic_read_dir,
7363         .readdir        = btrfs_real_readdir,
7364         .unlocked_ioctl = btrfs_ioctl,
7365 #ifdef CONFIG_COMPAT
7366         .compat_ioctl   = btrfs_ioctl,
7367 #endif
7368         .release        = btrfs_release_file,
7369         .fsync          = btrfs_sync_file,
7370 };
7371
7372 static struct extent_io_ops btrfs_extent_io_ops = {
7373         .fill_delalloc = run_delalloc_range,
7374         .submit_bio_hook = btrfs_submit_bio_hook,
7375         .merge_bio_hook = btrfs_merge_bio_hook,
7376         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7377         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7378         .writepage_start_hook = btrfs_writepage_start_hook,
7379         .readpage_io_failed_hook = btrfs_io_failed_hook,
7380         .set_bit_hook = btrfs_set_bit_hook,
7381         .clear_bit_hook = btrfs_clear_bit_hook,
7382         .merge_extent_hook = btrfs_merge_extent_hook,
7383         .split_extent_hook = btrfs_split_extent_hook,
7384 };
7385
7386 /*
7387  * btrfs doesn't support the bmap operation because swapfiles
7388  * use bmap to make a mapping of extents in the file.  They assume
7389  * these extents won't change over the life of the file and they
7390  * use the bmap result to do IO directly to the drive.
7391  *
7392  * the btrfs bmap call would return logical addresses that aren't
7393  * suitable for IO and they also will change frequently as COW
7394  * operations happen.  So, swapfile + btrfs == corruption.
7395  *
7396  * For now we're avoiding this by dropping bmap.
7397  */
7398 static const struct address_space_operations btrfs_aops = {
7399         .readpage       = btrfs_readpage,
7400         .writepage      = btrfs_writepage,
7401         .writepages     = btrfs_writepages,
7402         .readpages      = btrfs_readpages,
7403         .sync_page      = block_sync_page,
7404         .direct_IO      = btrfs_direct_IO,
7405         .invalidatepage = btrfs_invalidatepage,
7406         .releasepage    = btrfs_releasepage,
7407         .set_page_dirty = btrfs_set_page_dirty,
7408         .error_remove_page = generic_error_remove_page,
7409 };
7410
7411 static const struct address_space_operations btrfs_symlink_aops = {
7412         .readpage       = btrfs_readpage,
7413         .writepage      = btrfs_writepage,
7414         .invalidatepage = btrfs_invalidatepage,
7415         .releasepage    = btrfs_releasepage,
7416 };
7417
7418 static const struct inode_operations btrfs_file_inode_operations = {
7419         .getattr        = btrfs_getattr,
7420         .setattr        = btrfs_setattr,
7421         .setxattr       = btrfs_setxattr,
7422         .getxattr       = btrfs_getxattr,
7423         .listxattr      = btrfs_listxattr,
7424         .removexattr    = btrfs_removexattr,
7425         .permission     = btrfs_permission,
7426         .fiemap         = btrfs_fiemap,
7427 };
7428 static const struct inode_operations btrfs_special_inode_operations = {
7429         .getattr        = btrfs_getattr,
7430         .setattr        = btrfs_setattr,
7431         .permission     = btrfs_permission,
7432         .setxattr       = btrfs_setxattr,
7433         .getxattr       = btrfs_getxattr,
7434         .listxattr      = btrfs_listxattr,
7435         .removexattr    = btrfs_removexattr,
7436 };
7437 static const struct inode_operations btrfs_symlink_inode_operations = {
7438         .readlink       = generic_readlink,
7439         .follow_link    = page_follow_link_light,
7440         .put_link       = page_put_link,
7441         .getattr        = btrfs_getattr,
7442         .permission     = btrfs_permission,
7443         .setxattr       = btrfs_setxattr,
7444         .getxattr       = btrfs_getxattr,
7445         .listxattr      = btrfs_listxattr,
7446         .removexattr    = btrfs_removexattr,
7447 };
7448
7449 const struct dentry_operations btrfs_dentry_operations = {
7450         .d_delete       = btrfs_dentry_delete,
7451 };