2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
44 #include "transaction.h"
45 #include "btrfs_inode.h"
47 #include "print-tree.h"
49 #include "ordered-data.h"
52 #include "compression.h"
54 #include "free-space-cache.h"
55 #include "inode-map.h"
57 struct btrfs_iget_args {
59 struct btrfs_root *root;
62 static const struct inode_operations btrfs_dir_inode_operations;
63 static const struct inode_operations btrfs_symlink_inode_operations;
64 static const struct inode_operations btrfs_dir_ro_inode_operations;
65 static const struct inode_operations btrfs_special_inode_operations;
66 static const struct inode_operations btrfs_file_inode_operations;
67 static const struct address_space_operations btrfs_aops;
68 static const struct address_space_operations btrfs_symlink_aops;
69 static const struct file_operations btrfs_dir_file_operations;
70 static struct extent_io_ops btrfs_extent_io_ops;
72 static struct kmem_cache *btrfs_inode_cachep;
73 struct kmem_cache *btrfs_trans_handle_cachep;
74 struct kmem_cache *btrfs_transaction_cachep;
75 struct kmem_cache *btrfs_path_cachep;
76 struct kmem_cache *btrfs_free_space_cachep;
79 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
81 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
82 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
83 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
84 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
85 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
86 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
89 static int btrfs_setsize(struct inode *inode, loff_t newsize);
90 static int btrfs_truncate(struct inode *inode);
91 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
92 static noinline int cow_file_range(struct inode *inode,
93 struct page *locked_page,
94 u64 start, u64 end, int *page_started,
95 unsigned long *nr_written, int unlock);
97 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
98 struct inode *inode, struct inode *dir,
99 const struct qstr *qstr)
103 err = btrfs_init_acl(trans, inode, dir);
105 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
110 * this does all the hard work for inserting an inline extent into
111 * the btree. The caller should have done a btrfs_drop_extents so that
112 * no overlapping inline items exist in the btree
114 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
115 struct btrfs_root *root, struct inode *inode,
116 u64 start, size_t size, size_t compressed_size,
118 struct page **compressed_pages)
120 struct btrfs_key key;
121 struct btrfs_path *path;
122 struct extent_buffer *leaf;
123 struct page *page = NULL;
126 struct btrfs_file_extent_item *ei;
129 size_t cur_size = size;
131 unsigned long offset;
133 if (compressed_size && compressed_pages)
134 cur_size = compressed_size;
136 path = btrfs_alloc_path();
140 path->leave_spinning = 1;
142 key.objectid = btrfs_ino(inode);
144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
145 datasize = btrfs_file_extent_calc_inline_size(cur_size);
147 inode_add_bytes(inode, size);
148 ret = btrfs_insert_empty_item(trans, root, path, &key,
155 leaf = path->nodes[0];
156 ei = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_file_extent_item);
158 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 btrfs_set_file_extent_encryption(leaf, ei, 0);
161 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 ptr = btrfs_file_extent_inline_start(ei);
165 if (compress_type != BTRFS_COMPRESS_NONE) {
168 while (compressed_size > 0) {
169 cpage = compressed_pages[i];
170 cur_size = min_t(unsigned long, compressed_size,
173 kaddr = kmap_atomic(cpage, KM_USER0);
174 write_extent_buffer(leaf, kaddr, ptr, cur_size);
175 kunmap_atomic(kaddr, KM_USER0);
179 compressed_size -= cur_size;
181 btrfs_set_file_extent_compression(leaf, ei,
184 page = find_get_page(inode->i_mapping,
185 start >> PAGE_CACHE_SHIFT);
186 btrfs_set_file_extent_compression(leaf, ei, 0);
187 kaddr = kmap_atomic(page, KM_USER0);
188 offset = start & (PAGE_CACHE_SIZE - 1);
189 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 kunmap_atomic(kaddr, KM_USER0);
191 page_cache_release(page);
193 btrfs_mark_buffer_dirty(leaf);
194 btrfs_free_path(path);
197 * we're an inline extent, so nobody can
198 * extend the file past i_size without locking
199 * a page we already have locked.
201 * We must do any isize and inode updates
202 * before we unlock the pages. Otherwise we
203 * could end up racing with unlink.
205 BTRFS_I(inode)->disk_i_size = inode->i_size;
206 btrfs_update_inode(trans, root, inode);
210 btrfs_free_path(path);
216 * conditionally insert an inline extent into the file. This
217 * does the checks required to make sure the data is small enough
218 * to fit as an inline extent.
220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
221 struct btrfs_root *root,
222 struct inode *inode, u64 start, u64 end,
223 size_t compressed_size, int compress_type,
224 struct page **compressed_pages)
226 u64 isize = i_size_read(inode);
227 u64 actual_end = min(end + 1, isize);
228 u64 inline_len = actual_end - start;
229 u64 aligned_end = (end + root->sectorsize - 1) &
230 ~((u64)root->sectorsize - 1);
232 u64 data_len = inline_len;
236 data_len = compressed_size;
239 actual_end >= PAGE_CACHE_SIZE ||
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
242 (actual_end & (root->sectorsize - 1)) == 0) ||
244 data_len > root->fs_info->max_inline) {
248 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
256 compress_type, compressed_pages);
258 btrfs_delalloc_release_metadata(inode, end + 1 - start);
259 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
263 struct async_extent {
268 unsigned long nr_pages;
270 struct list_head list;
275 struct btrfs_root *root;
276 struct page *locked_page;
279 struct list_head extents;
280 struct btrfs_work work;
283 static noinline int add_async_extent(struct async_cow *cow,
284 u64 start, u64 ram_size,
287 unsigned long nr_pages,
290 struct async_extent *async_extent;
292 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
293 BUG_ON(!async_extent);
294 async_extent->start = start;
295 async_extent->ram_size = ram_size;
296 async_extent->compressed_size = compressed_size;
297 async_extent->pages = pages;
298 async_extent->nr_pages = nr_pages;
299 async_extent->compress_type = compress_type;
300 list_add_tail(&async_extent->list, &cow->extents);
305 * we create compressed extents in two phases. The first
306 * phase compresses a range of pages that have already been
307 * locked (both pages and state bits are locked).
309 * This is done inside an ordered work queue, and the compression
310 * is spread across many cpus. The actual IO submission is step
311 * two, and the ordered work queue takes care of making sure that
312 * happens in the same order things were put onto the queue by
313 * writepages and friends.
315 * If this code finds it can't get good compression, it puts an
316 * entry onto the work queue to write the uncompressed bytes. This
317 * makes sure that both compressed inodes and uncompressed inodes
318 * are written in the same order that pdflush sent them down.
320 static noinline int compress_file_range(struct inode *inode,
321 struct page *locked_page,
323 struct async_cow *async_cow,
326 struct btrfs_root *root = BTRFS_I(inode)->root;
327 struct btrfs_trans_handle *trans;
329 u64 blocksize = root->sectorsize;
331 u64 isize = i_size_read(inode);
333 struct page **pages = NULL;
334 unsigned long nr_pages;
335 unsigned long nr_pages_ret = 0;
336 unsigned long total_compressed = 0;
337 unsigned long total_in = 0;
338 unsigned long max_compressed = 128 * 1024;
339 unsigned long max_uncompressed = 128 * 1024;
342 int compress_type = root->fs_info->compress_type;
344 /* if this is a small write inside eof, kick off a defragbot */
345 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
346 btrfs_add_inode_defrag(NULL, inode);
348 actual_end = min_t(u64, isize, end + 1);
351 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
352 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
355 * we don't want to send crud past the end of i_size through
356 * compression, that's just a waste of CPU time. So, if the
357 * end of the file is before the start of our current
358 * requested range of bytes, we bail out to the uncompressed
359 * cleanup code that can deal with all of this.
361 * It isn't really the fastest way to fix things, but this is a
362 * very uncommon corner.
364 if (actual_end <= start)
365 goto cleanup_and_bail_uncompressed;
367 total_compressed = actual_end - start;
369 /* we want to make sure that amount of ram required to uncompress
370 * an extent is reasonable, so we limit the total size in ram
371 * of a compressed extent to 128k. This is a crucial number
372 * because it also controls how easily we can spread reads across
373 * cpus for decompression.
375 * We also want to make sure the amount of IO required to do
376 * a random read is reasonably small, so we limit the size of
377 * a compressed extent to 128k.
379 total_compressed = min(total_compressed, max_uncompressed);
380 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
381 num_bytes = max(blocksize, num_bytes);
386 * we do compression for mount -o compress and when the
387 * inode has not been flagged as nocompress. This flag can
388 * change at any time if we discover bad compression ratios.
390 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
391 (btrfs_test_opt(root, COMPRESS) ||
392 (BTRFS_I(inode)->force_compress) ||
393 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
395 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
398 if (BTRFS_I(inode)->force_compress)
399 compress_type = BTRFS_I(inode)->force_compress;
401 ret = btrfs_compress_pages(compress_type,
402 inode->i_mapping, start,
403 total_compressed, pages,
404 nr_pages, &nr_pages_ret,
410 unsigned long offset = total_compressed &
411 (PAGE_CACHE_SIZE - 1);
412 struct page *page = pages[nr_pages_ret - 1];
415 /* zero the tail end of the last page, we might be
416 * sending it down to disk
419 kaddr = kmap_atomic(page, KM_USER0);
420 memset(kaddr + offset, 0,
421 PAGE_CACHE_SIZE - offset);
422 kunmap_atomic(kaddr, KM_USER0);
428 trans = btrfs_join_transaction(root);
429 BUG_ON(IS_ERR(trans));
430 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
432 /* lets try to make an inline extent */
433 if (ret || total_in < (actual_end - start)) {
434 /* we didn't compress the entire range, try
435 * to make an uncompressed inline extent.
437 ret = cow_file_range_inline(trans, root, inode,
438 start, end, 0, 0, NULL);
440 /* try making a compressed inline extent */
441 ret = cow_file_range_inline(trans, root, inode,
444 compress_type, pages);
448 * inline extent creation worked, we don't need
449 * to create any more async work items. Unlock
450 * and free up our temp pages.
452 extent_clear_unlock_delalloc(inode,
453 &BTRFS_I(inode)->io_tree,
455 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
456 EXTENT_CLEAR_DELALLOC |
457 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
459 btrfs_end_transaction(trans, root);
462 btrfs_end_transaction(trans, root);
467 * we aren't doing an inline extent round the compressed size
468 * up to a block size boundary so the allocator does sane
471 total_compressed = (total_compressed + blocksize - 1) &
475 * one last check to make sure the compression is really a
476 * win, compare the page count read with the blocks on disk
478 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
479 ~(PAGE_CACHE_SIZE - 1);
480 if (total_compressed >= total_in) {
483 num_bytes = total_in;
486 if (!will_compress && pages) {
488 * the compression code ran but failed to make things smaller,
489 * free any pages it allocated and our page pointer array
491 for (i = 0; i < nr_pages_ret; i++) {
492 WARN_ON(pages[i]->mapping);
493 page_cache_release(pages[i]);
497 total_compressed = 0;
500 /* flag the file so we don't compress in the future */
501 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
502 !(BTRFS_I(inode)->force_compress)) {
503 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
509 /* the async work queues will take care of doing actual
510 * allocation on disk for these compressed pages,
511 * and will submit them to the elevator.
513 add_async_extent(async_cow, start, num_bytes,
514 total_compressed, pages, nr_pages_ret,
517 if (start + num_bytes < end) {
524 cleanup_and_bail_uncompressed:
526 * No compression, but we still need to write the pages in
527 * the file we've been given so far. redirty the locked
528 * page if it corresponds to our extent and set things up
529 * for the async work queue to run cow_file_range to do
530 * the normal delalloc dance
532 if (page_offset(locked_page) >= start &&
533 page_offset(locked_page) <= end) {
534 __set_page_dirty_nobuffers(locked_page);
535 /* unlocked later on in the async handlers */
537 add_async_extent(async_cow, start, end - start + 1,
538 0, NULL, 0, BTRFS_COMPRESS_NONE);
546 for (i = 0; i < nr_pages_ret; i++) {
547 WARN_ON(pages[i]->mapping);
548 page_cache_release(pages[i]);
556 * phase two of compressed writeback. This is the ordered portion
557 * of the code, which only gets called in the order the work was
558 * queued. We walk all the async extents created by compress_file_range
559 * and send them down to the disk.
561 static noinline int submit_compressed_extents(struct inode *inode,
562 struct async_cow *async_cow)
564 struct async_extent *async_extent;
566 struct btrfs_trans_handle *trans;
567 struct btrfs_key ins;
568 struct extent_map *em;
569 struct btrfs_root *root = BTRFS_I(inode)->root;
570 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
571 struct extent_io_tree *io_tree;
574 if (list_empty(&async_cow->extents))
578 while (!list_empty(&async_cow->extents)) {
579 async_extent = list_entry(async_cow->extents.next,
580 struct async_extent, list);
581 list_del(&async_extent->list);
583 io_tree = &BTRFS_I(inode)->io_tree;
586 /* did the compression code fall back to uncompressed IO? */
587 if (!async_extent->pages) {
588 int page_started = 0;
589 unsigned long nr_written = 0;
591 lock_extent(io_tree, async_extent->start,
592 async_extent->start +
593 async_extent->ram_size - 1, GFP_NOFS);
595 /* allocate blocks */
596 ret = cow_file_range(inode, async_cow->locked_page,
598 async_extent->start +
599 async_extent->ram_size - 1,
600 &page_started, &nr_written, 0);
603 * if page_started, cow_file_range inserted an
604 * inline extent and took care of all the unlocking
605 * and IO for us. Otherwise, we need to submit
606 * all those pages down to the drive.
608 if (!page_started && !ret)
609 extent_write_locked_range(io_tree,
610 inode, async_extent->start,
611 async_extent->start +
612 async_extent->ram_size - 1,
620 lock_extent(io_tree, async_extent->start,
621 async_extent->start + async_extent->ram_size - 1,
624 trans = btrfs_join_transaction(root);
625 BUG_ON(IS_ERR(trans));
626 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
627 ret = btrfs_reserve_extent(trans, root,
628 async_extent->compressed_size,
629 async_extent->compressed_size,
632 btrfs_end_transaction(trans, root);
636 for (i = 0; i < async_extent->nr_pages; i++) {
637 WARN_ON(async_extent->pages[i]->mapping);
638 page_cache_release(async_extent->pages[i]);
640 kfree(async_extent->pages);
641 async_extent->nr_pages = 0;
642 async_extent->pages = NULL;
643 unlock_extent(io_tree, async_extent->start,
644 async_extent->start +
645 async_extent->ram_size - 1, GFP_NOFS);
650 * here we're doing allocation and writeback of the
653 btrfs_drop_extent_cache(inode, async_extent->start,
654 async_extent->start +
655 async_extent->ram_size - 1, 0);
657 em = alloc_extent_map();
659 em->start = async_extent->start;
660 em->len = async_extent->ram_size;
661 em->orig_start = em->start;
663 em->block_start = ins.objectid;
664 em->block_len = ins.offset;
665 em->bdev = root->fs_info->fs_devices->latest_bdev;
666 em->compress_type = async_extent->compress_type;
667 set_bit(EXTENT_FLAG_PINNED, &em->flags);
668 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
671 write_lock(&em_tree->lock);
672 ret = add_extent_mapping(em_tree, em);
673 write_unlock(&em_tree->lock);
674 if (ret != -EEXIST) {
678 btrfs_drop_extent_cache(inode, async_extent->start,
679 async_extent->start +
680 async_extent->ram_size - 1, 0);
683 ret = btrfs_add_ordered_extent_compress(inode,
686 async_extent->ram_size,
688 BTRFS_ORDERED_COMPRESSED,
689 async_extent->compress_type);
693 * clear dirty, set writeback and unlock the pages.
695 extent_clear_unlock_delalloc(inode,
696 &BTRFS_I(inode)->io_tree,
698 async_extent->start +
699 async_extent->ram_size - 1,
700 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
701 EXTENT_CLEAR_UNLOCK |
702 EXTENT_CLEAR_DELALLOC |
703 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
705 ret = btrfs_submit_compressed_write(inode,
707 async_extent->ram_size,
709 ins.offset, async_extent->pages,
710 async_extent->nr_pages);
713 alloc_hint = ins.objectid + ins.offset;
721 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
724 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
725 struct extent_map *em;
728 read_lock(&em_tree->lock);
729 em = search_extent_mapping(em_tree, start, num_bytes);
732 * if block start isn't an actual block number then find the
733 * first block in this inode and use that as a hint. If that
734 * block is also bogus then just don't worry about it.
736 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
738 em = search_extent_mapping(em_tree, 0, 0);
739 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
740 alloc_hint = em->block_start;
744 alloc_hint = em->block_start;
748 read_unlock(&em_tree->lock);
753 static inline bool is_free_space_inode(struct btrfs_root *root,
756 if (root == root->fs_info->tree_root ||
757 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID)
763 * when extent_io.c finds a delayed allocation range in the file,
764 * the call backs end up in this code. The basic idea is to
765 * allocate extents on disk for the range, and create ordered data structs
766 * in ram to track those extents.
768 * locked_page is the page that writepage had locked already. We use
769 * it to make sure we don't do extra locks or unlocks.
771 * *page_started is set to one if we unlock locked_page and do everything
772 * required to start IO on it. It may be clean and already done with
775 static noinline int cow_file_range(struct inode *inode,
776 struct page *locked_page,
777 u64 start, u64 end, int *page_started,
778 unsigned long *nr_written,
781 struct btrfs_root *root = BTRFS_I(inode)->root;
782 struct btrfs_trans_handle *trans;
785 unsigned long ram_size;
788 u64 blocksize = root->sectorsize;
789 struct btrfs_key ins;
790 struct extent_map *em;
791 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
794 BUG_ON(is_free_space_inode(root, inode));
795 trans = btrfs_join_transaction(root);
796 BUG_ON(IS_ERR(trans));
797 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
799 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
800 num_bytes = max(blocksize, num_bytes);
801 disk_num_bytes = num_bytes;
804 /* if this is a small write inside eof, kick off defrag */
805 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
806 btrfs_add_inode_defrag(trans, inode);
809 /* lets try to make an inline extent */
810 ret = cow_file_range_inline(trans, root, inode,
811 start, end, 0, 0, NULL);
813 extent_clear_unlock_delalloc(inode,
814 &BTRFS_I(inode)->io_tree,
816 EXTENT_CLEAR_UNLOCK_PAGE |
817 EXTENT_CLEAR_UNLOCK |
818 EXTENT_CLEAR_DELALLOC |
820 EXTENT_SET_WRITEBACK |
821 EXTENT_END_WRITEBACK);
823 *nr_written = *nr_written +
824 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
831 BUG_ON(disk_num_bytes >
832 btrfs_super_total_bytes(&root->fs_info->super_copy));
834 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
835 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
837 while (disk_num_bytes > 0) {
840 cur_alloc_size = disk_num_bytes;
841 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
842 root->sectorsize, 0, alloc_hint,
846 em = alloc_extent_map();
849 em->orig_start = em->start;
850 ram_size = ins.offset;
851 em->len = ins.offset;
853 em->block_start = ins.objectid;
854 em->block_len = ins.offset;
855 em->bdev = root->fs_info->fs_devices->latest_bdev;
856 set_bit(EXTENT_FLAG_PINNED, &em->flags);
859 write_lock(&em_tree->lock);
860 ret = add_extent_mapping(em_tree, em);
861 write_unlock(&em_tree->lock);
862 if (ret != -EEXIST) {
866 btrfs_drop_extent_cache(inode, start,
867 start + ram_size - 1, 0);
870 cur_alloc_size = ins.offset;
871 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
872 ram_size, cur_alloc_size, 0);
875 if (root->root_key.objectid ==
876 BTRFS_DATA_RELOC_TREE_OBJECTID) {
877 ret = btrfs_reloc_clone_csums(inode, start,
882 if (disk_num_bytes < cur_alloc_size)
885 /* we're not doing compressed IO, don't unlock the first
886 * page (which the caller expects to stay locked), don't
887 * clear any dirty bits and don't set any writeback bits
889 * Do set the Private2 bit so we know this page was properly
890 * setup for writepage
892 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
893 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
896 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
897 start, start + ram_size - 1,
899 disk_num_bytes -= cur_alloc_size;
900 num_bytes -= cur_alloc_size;
901 alloc_hint = ins.objectid + ins.offset;
902 start += cur_alloc_size;
906 btrfs_end_transaction(trans, root);
912 * work queue call back to started compression on a file and pages
914 static noinline void async_cow_start(struct btrfs_work *work)
916 struct async_cow *async_cow;
918 async_cow = container_of(work, struct async_cow, work);
920 compress_file_range(async_cow->inode, async_cow->locked_page,
921 async_cow->start, async_cow->end, async_cow,
924 async_cow->inode = NULL;
928 * work queue call back to submit previously compressed pages
930 static noinline void async_cow_submit(struct btrfs_work *work)
932 struct async_cow *async_cow;
933 struct btrfs_root *root;
934 unsigned long nr_pages;
936 async_cow = container_of(work, struct async_cow, work);
938 root = async_cow->root;
939 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
942 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
944 if (atomic_read(&root->fs_info->async_delalloc_pages) <
946 waitqueue_active(&root->fs_info->async_submit_wait))
947 wake_up(&root->fs_info->async_submit_wait);
949 if (async_cow->inode)
950 submit_compressed_extents(async_cow->inode, async_cow);
953 static noinline void async_cow_free(struct btrfs_work *work)
955 struct async_cow *async_cow;
956 async_cow = container_of(work, struct async_cow, work);
960 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
961 u64 start, u64 end, int *page_started,
962 unsigned long *nr_written)
964 struct async_cow *async_cow;
965 struct btrfs_root *root = BTRFS_I(inode)->root;
966 unsigned long nr_pages;
968 int limit = 10 * 1024 * 1042;
970 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
971 1, 0, NULL, GFP_NOFS);
972 while (start < end) {
973 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
975 async_cow->inode = inode;
976 async_cow->root = root;
977 async_cow->locked_page = locked_page;
978 async_cow->start = start;
980 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
983 cur_end = min(end, start + 512 * 1024 - 1);
985 async_cow->end = cur_end;
986 INIT_LIST_HEAD(&async_cow->extents);
988 async_cow->work.func = async_cow_start;
989 async_cow->work.ordered_func = async_cow_submit;
990 async_cow->work.ordered_free = async_cow_free;
991 async_cow->work.flags = 0;
993 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
995 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
997 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1000 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1001 wait_event(root->fs_info->async_submit_wait,
1002 (atomic_read(&root->fs_info->async_delalloc_pages) <
1006 while (atomic_read(&root->fs_info->async_submit_draining) &&
1007 atomic_read(&root->fs_info->async_delalloc_pages)) {
1008 wait_event(root->fs_info->async_submit_wait,
1009 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1013 *nr_written += nr_pages;
1014 start = cur_end + 1;
1020 static noinline int csum_exist_in_range(struct btrfs_root *root,
1021 u64 bytenr, u64 num_bytes)
1024 struct btrfs_ordered_sum *sums;
1027 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1028 bytenr + num_bytes - 1, &list, 0);
1029 if (ret == 0 && list_empty(&list))
1032 while (!list_empty(&list)) {
1033 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1034 list_del(&sums->list);
1041 * when nowcow writeback call back. This checks for snapshots or COW copies
1042 * of the extents that exist in the file, and COWs the file as required.
1044 * If no cow copies or snapshots exist, we write directly to the existing
1047 static noinline int run_delalloc_nocow(struct inode *inode,
1048 struct page *locked_page,
1049 u64 start, u64 end, int *page_started, int force,
1050 unsigned long *nr_written)
1052 struct btrfs_root *root = BTRFS_I(inode)->root;
1053 struct btrfs_trans_handle *trans;
1054 struct extent_buffer *leaf;
1055 struct btrfs_path *path;
1056 struct btrfs_file_extent_item *fi;
1057 struct btrfs_key found_key;
1070 u64 ino = btrfs_ino(inode);
1072 path = btrfs_alloc_path();
1075 nolock = is_free_space_inode(root, inode);
1078 trans = btrfs_join_transaction_nolock(root);
1080 trans = btrfs_join_transaction(root);
1082 BUG_ON(IS_ERR(trans));
1083 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1085 cow_start = (u64)-1;
1088 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1091 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1092 leaf = path->nodes[0];
1093 btrfs_item_key_to_cpu(leaf, &found_key,
1094 path->slots[0] - 1);
1095 if (found_key.objectid == ino &&
1096 found_key.type == BTRFS_EXTENT_DATA_KEY)
1101 leaf = path->nodes[0];
1102 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1103 ret = btrfs_next_leaf(root, path);
1108 leaf = path->nodes[0];
1114 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1116 if (found_key.objectid > ino ||
1117 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1118 found_key.offset > end)
1121 if (found_key.offset > cur_offset) {
1122 extent_end = found_key.offset;
1127 fi = btrfs_item_ptr(leaf, path->slots[0],
1128 struct btrfs_file_extent_item);
1129 extent_type = btrfs_file_extent_type(leaf, fi);
1131 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1132 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1133 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1134 extent_offset = btrfs_file_extent_offset(leaf, fi);
1135 extent_end = found_key.offset +
1136 btrfs_file_extent_num_bytes(leaf, fi);
1137 if (extent_end <= start) {
1141 if (disk_bytenr == 0)
1143 if (btrfs_file_extent_compression(leaf, fi) ||
1144 btrfs_file_extent_encryption(leaf, fi) ||
1145 btrfs_file_extent_other_encoding(leaf, fi))
1147 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1149 if (btrfs_extent_readonly(root, disk_bytenr))
1151 if (btrfs_cross_ref_exist(trans, root, ino,
1153 extent_offset, disk_bytenr))
1155 disk_bytenr += extent_offset;
1156 disk_bytenr += cur_offset - found_key.offset;
1157 num_bytes = min(end + 1, extent_end) - cur_offset;
1159 * force cow if csum exists in the range.
1160 * this ensure that csum for a given extent are
1161 * either valid or do not exist.
1163 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1166 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1167 extent_end = found_key.offset +
1168 btrfs_file_extent_inline_len(leaf, fi);
1169 extent_end = ALIGN(extent_end, root->sectorsize);
1174 if (extent_end <= start) {
1179 if (cow_start == (u64)-1)
1180 cow_start = cur_offset;
1181 cur_offset = extent_end;
1182 if (cur_offset > end)
1188 btrfs_release_path(path);
1189 if (cow_start != (u64)-1) {
1190 ret = cow_file_range(inode, locked_page, cow_start,
1191 found_key.offset - 1, page_started,
1194 cow_start = (u64)-1;
1197 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1198 struct extent_map *em;
1199 struct extent_map_tree *em_tree;
1200 em_tree = &BTRFS_I(inode)->extent_tree;
1201 em = alloc_extent_map();
1203 em->start = cur_offset;
1204 em->orig_start = em->start;
1205 em->len = num_bytes;
1206 em->block_len = num_bytes;
1207 em->block_start = disk_bytenr;
1208 em->bdev = root->fs_info->fs_devices->latest_bdev;
1209 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1211 write_lock(&em_tree->lock);
1212 ret = add_extent_mapping(em_tree, em);
1213 write_unlock(&em_tree->lock);
1214 if (ret != -EEXIST) {
1215 free_extent_map(em);
1218 btrfs_drop_extent_cache(inode, em->start,
1219 em->start + em->len - 1, 0);
1221 type = BTRFS_ORDERED_PREALLOC;
1223 type = BTRFS_ORDERED_NOCOW;
1226 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1227 num_bytes, num_bytes, type);
1230 if (root->root_key.objectid ==
1231 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1232 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1237 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1238 cur_offset, cur_offset + num_bytes - 1,
1239 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1240 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1241 EXTENT_SET_PRIVATE2);
1242 cur_offset = extent_end;
1243 if (cur_offset > end)
1246 btrfs_release_path(path);
1248 if (cur_offset <= end && cow_start == (u64)-1)
1249 cow_start = cur_offset;
1250 if (cow_start != (u64)-1) {
1251 ret = cow_file_range(inode, locked_page, cow_start, end,
1252 page_started, nr_written, 1);
1257 ret = btrfs_end_transaction_nolock(trans, root);
1260 ret = btrfs_end_transaction(trans, root);
1263 btrfs_free_path(path);
1268 * extent_io.c call back to do delayed allocation processing
1270 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1271 u64 start, u64 end, int *page_started,
1272 unsigned long *nr_written)
1275 struct btrfs_root *root = BTRFS_I(inode)->root;
1277 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1278 ret = run_delalloc_nocow(inode, locked_page, start, end,
1279 page_started, 1, nr_written);
1280 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1281 ret = run_delalloc_nocow(inode, locked_page, start, end,
1282 page_started, 0, nr_written);
1283 else if (!btrfs_test_opt(root, COMPRESS) &&
1284 !(BTRFS_I(inode)->force_compress) &&
1285 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1286 ret = cow_file_range(inode, locked_page, start, end,
1287 page_started, nr_written, 1);
1289 ret = cow_file_range_async(inode, locked_page, start, end,
1290 page_started, nr_written);
1294 static int btrfs_split_extent_hook(struct inode *inode,
1295 struct extent_state *orig, u64 split)
1297 /* not delalloc, ignore it */
1298 if (!(orig->state & EXTENT_DELALLOC))
1301 spin_lock(&BTRFS_I(inode)->lock);
1302 BTRFS_I(inode)->outstanding_extents++;
1303 spin_unlock(&BTRFS_I(inode)->lock);
1308 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1309 * extents so we can keep track of new extents that are just merged onto old
1310 * extents, such as when we are doing sequential writes, so we can properly
1311 * account for the metadata space we'll need.
1313 static int btrfs_merge_extent_hook(struct inode *inode,
1314 struct extent_state *new,
1315 struct extent_state *other)
1317 /* not delalloc, ignore it */
1318 if (!(other->state & EXTENT_DELALLOC))
1321 spin_lock(&BTRFS_I(inode)->lock);
1322 BTRFS_I(inode)->outstanding_extents--;
1323 spin_unlock(&BTRFS_I(inode)->lock);
1328 * extent_io.c set_bit_hook, used to track delayed allocation
1329 * bytes in this file, and to maintain the list of inodes that
1330 * have pending delalloc work to be done.
1332 static int btrfs_set_bit_hook(struct inode *inode,
1333 struct extent_state *state, int *bits)
1337 * set_bit and clear bit hooks normally require _irqsave/restore
1338 * but in this case, we are only testing for the DELALLOC
1339 * bit, which is only set or cleared with irqs on
1341 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1342 struct btrfs_root *root = BTRFS_I(inode)->root;
1343 u64 len = state->end + 1 - state->start;
1344 bool do_list = !is_free_space_inode(root, inode);
1346 if (*bits & EXTENT_FIRST_DELALLOC) {
1347 *bits &= ~EXTENT_FIRST_DELALLOC;
1349 spin_lock(&BTRFS_I(inode)->lock);
1350 BTRFS_I(inode)->outstanding_extents++;
1351 spin_unlock(&BTRFS_I(inode)->lock);
1354 spin_lock(&root->fs_info->delalloc_lock);
1355 BTRFS_I(inode)->delalloc_bytes += len;
1356 root->fs_info->delalloc_bytes += len;
1357 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1358 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1359 &root->fs_info->delalloc_inodes);
1361 spin_unlock(&root->fs_info->delalloc_lock);
1367 * extent_io.c clear_bit_hook, see set_bit_hook for why
1369 static int btrfs_clear_bit_hook(struct inode *inode,
1370 struct extent_state *state, int *bits)
1373 * set_bit and clear bit hooks normally require _irqsave/restore
1374 * but in this case, we are only testing for the DELALLOC
1375 * bit, which is only set or cleared with irqs on
1377 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1378 struct btrfs_root *root = BTRFS_I(inode)->root;
1379 u64 len = state->end + 1 - state->start;
1380 bool do_list = !is_free_space_inode(root, inode);
1382 if (*bits & EXTENT_FIRST_DELALLOC) {
1383 *bits &= ~EXTENT_FIRST_DELALLOC;
1384 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1385 spin_lock(&BTRFS_I(inode)->lock);
1386 BTRFS_I(inode)->outstanding_extents--;
1387 spin_unlock(&BTRFS_I(inode)->lock);
1390 if (*bits & EXTENT_DO_ACCOUNTING)
1391 btrfs_delalloc_release_metadata(inode, len);
1393 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1395 btrfs_free_reserved_data_space(inode, len);
1397 spin_lock(&root->fs_info->delalloc_lock);
1398 root->fs_info->delalloc_bytes -= len;
1399 BTRFS_I(inode)->delalloc_bytes -= len;
1401 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1402 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1403 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1405 spin_unlock(&root->fs_info->delalloc_lock);
1411 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1412 * we don't create bios that span stripes or chunks
1414 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1415 size_t size, struct bio *bio,
1416 unsigned long bio_flags)
1418 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1419 struct btrfs_mapping_tree *map_tree;
1420 u64 logical = (u64)bio->bi_sector << 9;
1425 if (bio_flags & EXTENT_BIO_COMPRESSED)
1428 length = bio->bi_size;
1429 map_tree = &root->fs_info->mapping_tree;
1430 map_length = length;
1431 ret = btrfs_map_block(map_tree, READ, logical,
1432 &map_length, NULL, 0);
1434 if (map_length < length + size)
1440 * in order to insert checksums into the metadata in large chunks,
1441 * we wait until bio submission time. All the pages in the bio are
1442 * checksummed and sums are attached onto the ordered extent record.
1444 * At IO completion time the cums attached on the ordered extent record
1445 * are inserted into the btree
1447 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1448 struct bio *bio, int mirror_num,
1449 unsigned long bio_flags,
1452 struct btrfs_root *root = BTRFS_I(inode)->root;
1455 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1461 * in order to insert checksums into the metadata in large chunks,
1462 * we wait until bio submission time. All the pages in the bio are
1463 * checksummed and sums are attached onto the ordered extent record.
1465 * At IO completion time the cums attached on the ordered extent record
1466 * are inserted into the btree
1468 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1469 int mirror_num, unsigned long bio_flags,
1472 struct btrfs_root *root = BTRFS_I(inode)->root;
1473 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1477 * extent_io.c submission hook. This does the right thing for csum calculation
1478 * on write, or reading the csums from the tree before a read
1480 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1481 int mirror_num, unsigned long bio_flags,
1484 struct btrfs_root *root = BTRFS_I(inode)->root;
1488 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1490 if (is_free_space_inode(root, inode))
1491 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1493 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1496 if (!(rw & REQ_WRITE)) {
1497 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1498 return btrfs_submit_compressed_read(inode, bio,
1499 mirror_num, bio_flags);
1500 } else if (!skip_sum) {
1501 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1506 } else if (!skip_sum) {
1507 /* csum items have already been cloned */
1508 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1510 /* we're doing a write, do the async checksumming */
1511 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1512 inode, rw, bio, mirror_num,
1513 bio_flags, bio_offset,
1514 __btrfs_submit_bio_start,
1515 __btrfs_submit_bio_done);
1519 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1523 * given a list of ordered sums record them in the inode. This happens
1524 * at IO completion time based on sums calculated at bio submission time.
1526 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1527 struct inode *inode, u64 file_offset,
1528 struct list_head *list)
1530 struct btrfs_ordered_sum *sum;
1532 list_for_each_entry(sum, list, list) {
1533 btrfs_csum_file_blocks(trans,
1534 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1539 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1540 struct extent_state **cached_state)
1542 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1544 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1545 cached_state, GFP_NOFS);
1548 /* see btrfs_writepage_start_hook for details on why this is required */
1549 struct btrfs_writepage_fixup {
1551 struct btrfs_work work;
1554 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1556 struct btrfs_writepage_fixup *fixup;
1557 struct btrfs_ordered_extent *ordered;
1558 struct extent_state *cached_state = NULL;
1560 struct inode *inode;
1564 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1568 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1569 ClearPageChecked(page);
1573 inode = page->mapping->host;
1574 page_start = page_offset(page);
1575 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1577 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1578 &cached_state, GFP_NOFS);
1580 /* already ordered? We're done */
1581 if (PagePrivate2(page))
1584 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1586 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1587 page_end, &cached_state, GFP_NOFS);
1589 btrfs_start_ordered_extent(inode, ordered, 1);
1594 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1595 ClearPageChecked(page);
1597 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1598 &cached_state, GFP_NOFS);
1601 page_cache_release(page);
1606 * There are a few paths in the higher layers of the kernel that directly
1607 * set the page dirty bit without asking the filesystem if it is a
1608 * good idea. This causes problems because we want to make sure COW
1609 * properly happens and the data=ordered rules are followed.
1611 * In our case any range that doesn't have the ORDERED bit set
1612 * hasn't been properly setup for IO. We kick off an async process
1613 * to fix it up. The async helper will wait for ordered extents, set
1614 * the delalloc bit and make it safe to write the page.
1616 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1618 struct inode *inode = page->mapping->host;
1619 struct btrfs_writepage_fixup *fixup;
1620 struct btrfs_root *root = BTRFS_I(inode)->root;
1622 /* this page is properly in the ordered list */
1623 if (TestClearPagePrivate2(page))
1626 if (PageChecked(page))
1629 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1633 SetPageChecked(page);
1634 page_cache_get(page);
1635 fixup->work.func = btrfs_writepage_fixup_worker;
1637 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1641 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1642 struct inode *inode, u64 file_pos,
1643 u64 disk_bytenr, u64 disk_num_bytes,
1644 u64 num_bytes, u64 ram_bytes,
1645 u8 compression, u8 encryption,
1646 u16 other_encoding, int extent_type)
1648 struct btrfs_root *root = BTRFS_I(inode)->root;
1649 struct btrfs_file_extent_item *fi;
1650 struct btrfs_path *path;
1651 struct extent_buffer *leaf;
1652 struct btrfs_key ins;
1656 path = btrfs_alloc_path();
1659 path->leave_spinning = 1;
1662 * we may be replacing one extent in the tree with another.
1663 * The new extent is pinned in the extent map, and we don't want
1664 * to drop it from the cache until it is completely in the btree.
1666 * So, tell btrfs_drop_extents to leave this extent in the cache.
1667 * the caller is expected to unpin it and allow it to be merged
1670 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1674 ins.objectid = btrfs_ino(inode);
1675 ins.offset = file_pos;
1676 ins.type = BTRFS_EXTENT_DATA_KEY;
1677 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1679 leaf = path->nodes[0];
1680 fi = btrfs_item_ptr(leaf, path->slots[0],
1681 struct btrfs_file_extent_item);
1682 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1683 btrfs_set_file_extent_type(leaf, fi, extent_type);
1684 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1685 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1686 btrfs_set_file_extent_offset(leaf, fi, 0);
1687 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1688 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1689 btrfs_set_file_extent_compression(leaf, fi, compression);
1690 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1691 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1693 btrfs_unlock_up_safe(path, 1);
1694 btrfs_set_lock_blocking(leaf);
1696 btrfs_mark_buffer_dirty(leaf);
1698 inode_add_bytes(inode, num_bytes);
1700 ins.objectid = disk_bytenr;
1701 ins.offset = disk_num_bytes;
1702 ins.type = BTRFS_EXTENT_ITEM_KEY;
1703 ret = btrfs_alloc_reserved_file_extent(trans, root,
1704 root->root_key.objectid,
1705 btrfs_ino(inode), file_pos, &ins);
1707 btrfs_free_path(path);
1713 * helper function for btrfs_finish_ordered_io, this
1714 * just reads in some of the csum leaves to prime them into ram
1715 * before we start the transaction. It limits the amount of btree
1716 * reads required while inside the transaction.
1718 /* as ordered data IO finishes, this gets called so we can finish
1719 * an ordered extent if the range of bytes in the file it covers are
1722 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1724 struct btrfs_root *root = BTRFS_I(inode)->root;
1725 struct btrfs_trans_handle *trans = NULL;
1726 struct btrfs_ordered_extent *ordered_extent = NULL;
1727 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1728 struct extent_state *cached_state = NULL;
1729 int compress_type = 0;
1733 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1737 BUG_ON(!ordered_extent);
1739 nolock = is_free_space_inode(root, inode);
1741 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1742 BUG_ON(!list_empty(&ordered_extent->list));
1743 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1746 trans = btrfs_join_transaction_nolock(root);
1748 trans = btrfs_join_transaction(root);
1749 BUG_ON(IS_ERR(trans));
1750 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1751 ret = btrfs_update_inode(trans, root, inode);
1757 lock_extent_bits(io_tree, ordered_extent->file_offset,
1758 ordered_extent->file_offset + ordered_extent->len - 1,
1759 0, &cached_state, GFP_NOFS);
1762 trans = btrfs_join_transaction_nolock(root);
1764 trans = btrfs_join_transaction(root);
1765 BUG_ON(IS_ERR(trans));
1766 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1768 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1769 compress_type = ordered_extent->compress_type;
1770 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1771 BUG_ON(compress_type);
1772 ret = btrfs_mark_extent_written(trans, inode,
1773 ordered_extent->file_offset,
1774 ordered_extent->file_offset +
1775 ordered_extent->len);
1778 BUG_ON(root == root->fs_info->tree_root);
1779 ret = insert_reserved_file_extent(trans, inode,
1780 ordered_extent->file_offset,
1781 ordered_extent->start,
1782 ordered_extent->disk_len,
1783 ordered_extent->len,
1784 ordered_extent->len,
1785 compress_type, 0, 0,
1786 BTRFS_FILE_EXTENT_REG);
1787 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1788 ordered_extent->file_offset,
1789 ordered_extent->len);
1792 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1793 ordered_extent->file_offset +
1794 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1796 add_pending_csums(trans, inode, ordered_extent->file_offset,
1797 &ordered_extent->list);
1799 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1801 ret = btrfs_update_inode(trans, root, inode);
1808 btrfs_end_transaction_nolock(trans, root);
1810 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1812 btrfs_end_transaction(trans, root);
1816 btrfs_put_ordered_extent(ordered_extent);
1817 /* once for the tree */
1818 btrfs_put_ordered_extent(ordered_extent);
1823 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1824 struct extent_state *state, int uptodate)
1826 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1828 ClearPagePrivate2(page);
1829 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1833 * When IO fails, either with EIO or csum verification fails, we
1834 * try other mirrors that might have a good copy of the data. This
1835 * io_failure_record is used to record state as we go through all the
1836 * mirrors. If another mirror has good data, the page is set up to date
1837 * and things continue. If a good mirror can't be found, the original
1838 * bio end_io callback is called to indicate things have failed.
1840 struct io_failure_record {
1845 unsigned long bio_flags;
1849 static int btrfs_io_failed_hook(struct bio *failed_bio,
1850 struct page *page, u64 start, u64 end,
1851 struct extent_state *state)
1853 struct io_failure_record *failrec = NULL;
1855 struct extent_map *em;
1856 struct inode *inode = page->mapping->host;
1857 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1858 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1865 ret = get_state_private(failure_tree, start, &private);
1867 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1870 failrec->start = start;
1871 failrec->len = end - start + 1;
1872 failrec->last_mirror = 0;
1873 failrec->bio_flags = 0;
1875 read_lock(&em_tree->lock);
1876 em = lookup_extent_mapping(em_tree, start, failrec->len);
1877 if (em->start > start || em->start + em->len < start) {
1878 free_extent_map(em);
1881 read_unlock(&em_tree->lock);
1883 if (IS_ERR_OR_NULL(em)) {
1887 logical = start - em->start;
1888 logical = em->block_start + logical;
1889 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1890 logical = em->block_start;
1891 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1892 extent_set_compress_type(&failrec->bio_flags,
1895 failrec->logical = logical;
1896 free_extent_map(em);
1897 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1898 EXTENT_DIRTY, GFP_NOFS);
1899 set_state_private(failure_tree, start,
1900 (u64)(unsigned long)failrec);
1902 failrec = (struct io_failure_record *)(unsigned long)private;
1904 num_copies = btrfs_num_copies(
1905 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1906 failrec->logical, failrec->len);
1907 failrec->last_mirror++;
1909 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1910 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1913 if (state && state->start != failrec->start)
1915 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1917 if (!state || failrec->last_mirror > num_copies) {
1918 set_state_private(failure_tree, failrec->start, 0);
1919 clear_extent_bits(failure_tree, failrec->start,
1920 failrec->start + failrec->len - 1,
1921 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1925 bio = bio_alloc(GFP_NOFS, 1);
1926 bio->bi_private = state;
1927 bio->bi_end_io = failed_bio->bi_end_io;
1928 bio->bi_sector = failrec->logical >> 9;
1929 bio->bi_bdev = failed_bio->bi_bdev;
1932 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1933 if (failed_bio->bi_rw & REQ_WRITE)
1938 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1939 failrec->last_mirror,
1940 failrec->bio_flags, 0);
1945 * each time an IO finishes, we do a fast check in the IO failure tree
1946 * to see if we need to process or clean up an io_failure_record
1948 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1951 u64 private_failure;
1952 struct io_failure_record *failure;
1956 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1957 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1958 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1959 start, &private_failure);
1961 failure = (struct io_failure_record *)(unsigned long)
1963 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1965 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1967 failure->start + failure->len - 1,
1968 EXTENT_DIRTY | EXTENT_LOCKED,
1977 * when reads are done, we need to check csums to verify the data is correct
1978 * if there's a match, we allow the bio to finish. If not, we go through
1979 * the io_failure_record routines to find good copies
1981 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1982 struct extent_state *state)
1984 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1985 struct inode *inode = page->mapping->host;
1986 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1988 u64 private = ~(u32)0;
1990 struct btrfs_root *root = BTRFS_I(inode)->root;
1993 if (PageChecked(page)) {
1994 ClearPageChecked(page);
1998 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2001 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2002 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2003 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2008 if (state && state->start == start) {
2009 private = state->private;
2012 ret = get_state_private(io_tree, start, &private);
2014 kaddr = kmap_atomic(page, KM_USER0);
2018 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2019 btrfs_csum_final(csum, (char *)&csum);
2020 if (csum != private)
2023 kunmap_atomic(kaddr, KM_USER0);
2025 /* if the io failure tree for this inode is non-empty,
2026 * check to see if we've recovered from a failed IO
2028 btrfs_clean_io_failures(inode, start);
2032 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2034 (unsigned long long)btrfs_ino(page->mapping->host),
2035 (unsigned long long)start, csum,
2036 (unsigned long long)private);
2037 memset(kaddr + offset, 1, end - start + 1);
2038 flush_dcache_page(page);
2039 kunmap_atomic(kaddr, KM_USER0);
2045 struct delayed_iput {
2046 struct list_head list;
2047 struct inode *inode;
2050 void btrfs_add_delayed_iput(struct inode *inode)
2052 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2053 struct delayed_iput *delayed;
2055 if (atomic_add_unless(&inode->i_count, -1, 1))
2058 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2059 delayed->inode = inode;
2061 spin_lock(&fs_info->delayed_iput_lock);
2062 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2063 spin_unlock(&fs_info->delayed_iput_lock);
2066 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2069 struct btrfs_fs_info *fs_info = root->fs_info;
2070 struct delayed_iput *delayed;
2073 spin_lock(&fs_info->delayed_iput_lock);
2074 empty = list_empty(&fs_info->delayed_iputs);
2075 spin_unlock(&fs_info->delayed_iput_lock);
2079 down_read(&root->fs_info->cleanup_work_sem);
2080 spin_lock(&fs_info->delayed_iput_lock);
2081 list_splice_init(&fs_info->delayed_iputs, &list);
2082 spin_unlock(&fs_info->delayed_iput_lock);
2084 while (!list_empty(&list)) {
2085 delayed = list_entry(list.next, struct delayed_iput, list);
2086 list_del(&delayed->list);
2087 iput(delayed->inode);
2090 up_read(&root->fs_info->cleanup_work_sem);
2094 * calculate extra metadata reservation when snapshotting a subvolume
2095 * contains orphan files.
2097 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2098 struct btrfs_pending_snapshot *pending,
2099 u64 *bytes_to_reserve)
2101 struct btrfs_root *root;
2102 struct btrfs_block_rsv *block_rsv;
2106 root = pending->root;
2107 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2110 block_rsv = root->orphan_block_rsv;
2112 /* orphan block reservation for the snapshot */
2113 num_bytes = block_rsv->size;
2116 * after the snapshot is created, COWing tree blocks may use more
2117 * space than it frees. So we should make sure there is enough
2120 index = trans->transid & 0x1;
2121 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2122 num_bytes += block_rsv->size -
2123 (block_rsv->reserved + block_rsv->freed[index]);
2126 *bytes_to_reserve += num_bytes;
2129 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2130 struct btrfs_pending_snapshot *pending)
2132 struct btrfs_root *root = pending->root;
2133 struct btrfs_root *snap = pending->snap;
2134 struct btrfs_block_rsv *block_rsv;
2139 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2142 /* refill source subvolume's orphan block reservation */
2143 block_rsv = root->orphan_block_rsv;
2144 index = trans->transid & 0x1;
2145 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2146 num_bytes = block_rsv->size -
2147 (block_rsv->reserved + block_rsv->freed[index]);
2148 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2149 root->orphan_block_rsv,
2154 /* setup orphan block reservation for the snapshot */
2155 block_rsv = btrfs_alloc_block_rsv(snap);
2158 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2159 snap->orphan_block_rsv = block_rsv;
2161 num_bytes = root->orphan_block_rsv->size;
2162 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2163 block_rsv, num_bytes);
2167 /* insert orphan item for the snapshot */
2168 WARN_ON(!root->orphan_item_inserted);
2169 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2170 snap->root_key.objectid);
2172 snap->orphan_item_inserted = 1;
2176 enum btrfs_orphan_cleanup_state {
2177 ORPHAN_CLEANUP_STARTED = 1,
2178 ORPHAN_CLEANUP_DONE = 2,
2182 * This is called in transaction commmit time. If there are no orphan
2183 * files in the subvolume, it removes orphan item and frees block_rsv
2186 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2187 struct btrfs_root *root)
2191 if (!list_empty(&root->orphan_list) ||
2192 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2195 if (root->orphan_item_inserted &&
2196 btrfs_root_refs(&root->root_item) > 0) {
2197 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2198 root->root_key.objectid);
2200 root->orphan_item_inserted = 0;
2203 if (root->orphan_block_rsv) {
2204 WARN_ON(root->orphan_block_rsv->size > 0);
2205 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2206 root->orphan_block_rsv = NULL;
2211 * This creates an orphan entry for the given inode in case something goes
2212 * wrong in the middle of an unlink/truncate.
2214 * NOTE: caller of this function should reserve 5 units of metadata for
2217 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2219 struct btrfs_root *root = BTRFS_I(inode)->root;
2220 struct btrfs_block_rsv *block_rsv = NULL;
2225 if (!root->orphan_block_rsv) {
2226 block_rsv = btrfs_alloc_block_rsv(root);
2230 spin_lock(&root->orphan_lock);
2231 if (!root->orphan_block_rsv) {
2232 root->orphan_block_rsv = block_rsv;
2233 } else if (block_rsv) {
2234 btrfs_free_block_rsv(root, block_rsv);
2238 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2239 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2242 * For proper ENOSPC handling, we should do orphan
2243 * cleanup when mounting. But this introduces backward
2244 * compatibility issue.
2246 if (!xchg(&root->orphan_item_inserted, 1))
2254 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2255 BTRFS_I(inode)->orphan_meta_reserved = 1;
2258 spin_unlock(&root->orphan_lock);
2261 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2263 /* grab metadata reservation from transaction handle */
2265 ret = btrfs_orphan_reserve_metadata(trans, inode);
2269 /* insert an orphan item to track this unlinked/truncated file */
2271 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2275 /* insert an orphan item to track subvolume contains orphan files */
2277 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2278 root->root_key.objectid);
2285 * We have done the truncate/delete so we can go ahead and remove the orphan
2286 * item for this particular inode.
2288 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2290 struct btrfs_root *root = BTRFS_I(inode)->root;
2291 int delete_item = 0;
2292 int release_rsv = 0;
2295 spin_lock(&root->orphan_lock);
2296 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2297 list_del_init(&BTRFS_I(inode)->i_orphan);
2301 if (BTRFS_I(inode)->orphan_meta_reserved) {
2302 BTRFS_I(inode)->orphan_meta_reserved = 0;
2305 spin_unlock(&root->orphan_lock);
2307 if (trans && delete_item) {
2308 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2313 btrfs_orphan_release_metadata(inode);
2319 * this cleans up any orphans that may be left on the list from the last use
2322 int btrfs_orphan_cleanup(struct btrfs_root *root)
2324 struct btrfs_path *path;
2325 struct extent_buffer *leaf;
2326 struct btrfs_key key, found_key;
2327 struct btrfs_trans_handle *trans;
2328 struct inode *inode;
2329 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2331 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2334 path = btrfs_alloc_path();
2341 key.objectid = BTRFS_ORPHAN_OBJECTID;
2342 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2343 key.offset = (u64)-1;
2346 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2351 * if ret == 0 means we found what we were searching for, which
2352 * is weird, but possible, so only screw with path if we didn't
2353 * find the key and see if we have stuff that matches
2357 if (path->slots[0] == 0)
2362 /* pull out the item */
2363 leaf = path->nodes[0];
2364 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2366 /* make sure the item matches what we want */
2367 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2369 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2372 /* release the path since we're done with it */
2373 btrfs_release_path(path);
2376 * this is where we are basically btrfs_lookup, without the
2377 * crossing root thing. we store the inode number in the
2378 * offset of the orphan item.
2380 found_key.objectid = found_key.offset;
2381 found_key.type = BTRFS_INODE_ITEM_KEY;
2382 found_key.offset = 0;
2383 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2384 if (IS_ERR(inode)) {
2385 ret = PTR_ERR(inode);
2390 * add this inode to the orphan list so btrfs_orphan_del does
2391 * the proper thing when we hit it
2393 spin_lock(&root->orphan_lock);
2394 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2395 spin_unlock(&root->orphan_lock);
2398 * if this is a bad inode, means we actually succeeded in
2399 * removing the inode, but not the orphan record, which means
2400 * we need to manually delete the orphan since iput will just
2401 * do a destroy_inode
2403 if (is_bad_inode(inode)) {
2404 trans = btrfs_start_transaction(root, 0);
2405 if (IS_ERR(trans)) {
2406 ret = PTR_ERR(trans);
2409 btrfs_orphan_del(trans, inode);
2410 btrfs_end_transaction(trans, root);
2415 /* if we have links, this was a truncate, lets do that */
2416 if (inode->i_nlink) {
2417 if (!S_ISREG(inode->i_mode)) {
2423 ret = btrfs_truncate(inode);
2428 /* this will do delete_inode and everything for us */
2433 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2435 if (root->orphan_block_rsv)
2436 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2439 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2440 trans = btrfs_join_transaction(root);
2442 btrfs_end_transaction(trans, root);
2446 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2448 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2452 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2453 btrfs_free_path(path);
2458 * very simple check to peek ahead in the leaf looking for xattrs. If we
2459 * don't find any xattrs, we know there can't be any acls.
2461 * slot is the slot the inode is in, objectid is the objectid of the inode
2463 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2464 int slot, u64 objectid)
2466 u32 nritems = btrfs_header_nritems(leaf);
2467 struct btrfs_key found_key;
2471 while (slot < nritems) {
2472 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2474 /* we found a different objectid, there must not be acls */
2475 if (found_key.objectid != objectid)
2478 /* we found an xattr, assume we've got an acl */
2479 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2483 * we found a key greater than an xattr key, there can't
2484 * be any acls later on
2486 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2493 * it goes inode, inode backrefs, xattrs, extents,
2494 * so if there are a ton of hard links to an inode there can
2495 * be a lot of backrefs. Don't waste time searching too hard,
2496 * this is just an optimization
2501 /* we hit the end of the leaf before we found an xattr or
2502 * something larger than an xattr. We have to assume the inode
2509 * read an inode from the btree into the in-memory inode
2511 static void btrfs_read_locked_inode(struct inode *inode)
2513 struct btrfs_path *path;
2514 struct extent_buffer *leaf;
2515 struct btrfs_inode_item *inode_item;
2516 struct btrfs_timespec *tspec;
2517 struct btrfs_root *root = BTRFS_I(inode)->root;
2518 struct btrfs_key location;
2522 bool filled = false;
2524 ret = btrfs_fill_inode(inode, &rdev);
2528 path = btrfs_alloc_path();
2530 path->leave_spinning = 1;
2531 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2533 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2537 leaf = path->nodes[0];
2542 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2543 struct btrfs_inode_item);
2544 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2545 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2546 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2547 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2548 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2550 tspec = btrfs_inode_atime(inode_item);
2551 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2552 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2554 tspec = btrfs_inode_mtime(inode_item);
2555 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2556 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2558 tspec = btrfs_inode_ctime(inode_item);
2559 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2560 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2562 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2563 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2564 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2565 inode->i_generation = BTRFS_I(inode)->generation;
2567 rdev = btrfs_inode_rdev(leaf, inode_item);
2569 BTRFS_I(inode)->index_cnt = (u64)-1;
2570 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2573 * try to precache a NULL acl entry for files that don't have
2574 * any xattrs or acls
2576 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2579 cache_no_acl(inode);
2581 btrfs_free_path(path);
2583 switch (inode->i_mode & S_IFMT) {
2585 inode->i_mapping->a_ops = &btrfs_aops;
2586 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2587 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2588 inode->i_fop = &btrfs_file_operations;
2589 inode->i_op = &btrfs_file_inode_operations;
2592 inode->i_fop = &btrfs_dir_file_operations;
2593 if (root == root->fs_info->tree_root)
2594 inode->i_op = &btrfs_dir_ro_inode_operations;
2596 inode->i_op = &btrfs_dir_inode_operations;
2599 inode->i_op = &btrfs_symlink_inode_operations;
2600 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2601 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2604 inode->i_op = &btrfs_special_inode_operations;
2605 init_special_inode(inode, inode->i_mode, rdev);
2609 btrfs_update_iflags(inode);
2613 btrfs_free_path(path);
2614 make_bad_inode(inode);
2618 * given a leaf and an inode, copy the inode fields into the leaf
2620 static void fill_inode_item(struct btrfs_trans_handle *trans,
2621 struct extent_buffer *leaf,
2622 struct btrfs_inode_item *item,
2623 struct inode *inode)
2625 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2626 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2627 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2628 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2629 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2631 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2632 inode->i_atime.tv_sec);
2633 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2634 inode->i_atime.tv_nsec);
2636 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2637 inode->i_mtime.tv_sec);
2638 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2639 inode->i_mtime.tv_nsec);
2641 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2642 inode->i_ctime.tv_sec);
2643 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2644 inode->i_ctime.tv_nsec);
2646 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2647 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2648 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2649 btrfs_set_inode_transid(leaf, item, trans->transid);
2650 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2651 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2652 btrfs_set_inode_block_group(leaf, item, 0);
2656 * copy everything in the in-memory inode into the btree.
2658 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2659 struct btrfs_root *root, struct inode *inode)
2661 struct btrfs_inode_item *inode_item;
2662 struct btrfs_path *path;
2663 struct extent_buffer *leaf;
2667 * If the inode is a free space inode, we can deadlock during commit
2668 * if we put it into the delayed code.
2670 * The data relocation inode should also be directly updated
2673 if (!is_free_space_inode(root, inode)
2674 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2675 ret = btrfs_delayed_update_inode(trans, root, inode);
2677 btrfs_set_inode_last_trans(trans, inode);
2681 path = btrfs_alloc_path();
2685 path->leave_spinning = 1;
2686 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2694 btrfs_unlock_up_safe(path, 1);
2695 leaf = path->nodes[0];
2696 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2697 struct btrfs_inode_item);
2699 fill_inode_item(trans, leaf, inode_item, inode);
2700 btrfs_mark_buffer_dirty(leaf);
2701 btrfs_set_inode_last_trans(trans, inode);
2704 btrfs_free_path(path);
2709 * unlink helper that gets used here in inode.c and in the tree logging
2710 * recovery code. It remove a link in a directory with a given name, and
2711 * also drops the back refs in the inode to the directory
2713 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2714 struct btrfs_root *root,
2715 struct inode *dir, struct inode *inode,
2716 const char *name, int name_len)
2718 struct btrfs_path *path;
2720 struct extent_buffer *leaf;
2721 struct btrfs_dir_item *di;
2722 struct btrfs_key key;
2724 u64 ino = btrfs_ino(inode);
2725 u64 dir_ino = btrfs_ino(dir);
2727 path = btrfs_alloc_path();
2733 path->leave_spinning = 1;
2734 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2735 name, name_len, -1);
2744 leaf = path->nodes[0];
2745 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2746 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2749 btrfs_release_path(path);
2751 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2754 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2755 "inode %llu parent %llu\n", name_len, name,
2756 (unsigned long long)ino, (unsigned long long)dir_ino);
2760 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2764 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2766 BUG_ON(ret != 0 && ret != -ENOENT);
2768 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2773 btrfs_free_path(path);
2777 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2778 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2779 btrfs_update_inode(trans, root, dir);
2784 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2785 struct btrfs_root *root,
2786 struct inode *dir, struct inode *inode,
2787 const char *name, int name_len)
2790 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2792 btrfs_drop_nlink(inode);
2793 ret = btrfs_update_inode(trans, root, inode);
2799 /* helper to check if there is any shared block in the path */
2800 static int check_path_shared(struct btrfs_root *root,
2801 struct btrfs_path *path)
2803 struct extent_buffer *eb;
2807 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2810 if (!path->nodes[level])
2812 eb = path->nodes[level];
2813 if (!btrfs_block_can_be_shared(root, eb))
2815 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2824 * helper to start transaction for unlink and rmdir.
2826 * unlink and rmdir are special in btrfs, they do not always free space.
2827 * so in enospc case, we should make sure they will free space before
2828 * allowing them to use the global metadata reservation.
2830 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2831 struct dentry *dentry)
2833 struct btrfs_trans_handle *trans;
2834 struct btrfs_root *root = BTRFS_I(dir)->root;
2835 struct btrfs_path *path;
2836 struct btrfs_inode_ref *ref;
2837 struct btrfs_dir_item *di;
2838 struct inode *inode = dentry->d_inode;
2843 u64 ino = btrfs_ino(inode);
2844 u64 dir_ino = btrfs_ino(dir);
2846 trans = btrfs_start_transaction(root, 10);
2847 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2850 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2851 return ERR_PTR(-ENOSPC);
2853 /* check if there is someone else holds reference */
2854 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2855 return ERR_PTR(-ENOSPC);
2857 if (atomic_read(&inode->i_count) > 2)
2858 return ERR_PTR(-ENOSPC);
2860 if (xchg(&root->fs_info->enospc_unlink, 1))
2861 return ERR_PTR(-ENOSPC);
2863 path = btrfs_alloc_path();
2865 root->fs_info->enospc_unlink = 0;
2866 return ERR_PTR(-ENOMEM);
2869 trans = btrfs_start_transaction(root, 0);
2870 if (IS_ERR(trans)) {
2871 btrfs_free_path(path);
2872 root->fs_info->enospc_unlink = 0;
2876 path->skip_locking = 1;
2877 path->search_commit_root = 1;
2879 ret = btrfs_lookup_inode(trans, root, path,
2880 &BTRFS_I(dir)->location, 0);
2886 if (check_path_shared(root, path))
2891 btrfs_release_path(path);
2893 ret = btrfs_lookup_inode(trans, root, path,
2894 &BTRFS_I(inode)->location, 0);
2900 if (check_path_shared(root, path))
2905 btrfs_release_path(path);
2907 if (ret == 0 && S_ISREG(inode->i_mode)) {
2908 ret = btrfs_lookup_file_extent(trans, root, path,
2915 if (check_path_shared(root, path))
2917 btrfs_release_path(path);
2925 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2926 dentry->d_name.name, dentry->d_name.len, 0);
2932 if (check_path_shared(root, path))
2938 btrfs_release_path(path);
2940 ref = btrfs_lookup_inode_ref(trans, root, path,
2941 dentry->d_name.name, dentry->d_name.len,
2948 if (check_path_shared(root, path))
2950 index = btrfs_inode_ref_index(path->nodes[0], ref);
2951 btrfs_release_path(path);
2954 * This is a commit root search, if we can lookup inode item and other
2955 * relative items in the commit root, it means the transaction of
2956 * dir/file creation has been committed, and the dir index item that we
2957 * delay to insert has also been inserted into the commit root. So
2958 * we needn't worry about the delayed insertion of the dir index item
2961 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2962 dentry->d_name.name, dentry->d_name.len, 0);
2967 BUG_ON(ret == -ENOENT);
2968 if (check_path_shared(root, path))
2973 btrfs_free_path(path);
2975 btrfs_end_transaction(trans, root);
2976 root->fs_info->enospc_unlink = 0;
2977 return ERR_PTR(err);
2980 trans->block_rsv = &root->fs_info->global_block_rsv;
2984 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2985 struct btrfs_root *root)
2987 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2988 BUG_ON(!root->fs_info->enospc_unlink);
2989 root->fs_info->enospc_unlink = 0;
2991 btrfs_end_transaction_throttle(trans, root);
2994 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2996 struct btrfs_root *root = BTRFS_I(dir)->root;
2997 struct btrfs_trans_handle *trans;
2998 struct inode *inode = dentry->d_inode;
3000 unsigned long nr = 0;
3002 trans = __unlink_start_trans(dir, dentry);
3004 return PTR_ERR(trans);
3006 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3008 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3009 dentry->d_name.name, dentry->d_name.len);
3012 if (inode->i_nlink == 0) {
3013 ret = btrfs_orphan_add(trans, inode);
3017 nr = trans->blocks_used;
3018 __unlink_end_trans(trans, root);
3019 btrfs_btree_balance_dirty(root, nr);
3023 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3024 struct btrfs_root *root,
3025 struct inode *dir, u64 objectid,
3026 const char *name, int name_len)
3028 struct btrfs_path *path;
3029 struct extent_buffer *leaf;
3030 struct btrfs_dir_item *di;
3031 struct btrfs_key key;
3034 u64 dir_ino = btrfs_ino(dir);
3036 path = btrfs_alloc_path();
3040 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3041 name, name_len, -1);
3042 BUG_ON(IS_ERR_OR_NULL(di));
3044 leaf = path->nodes[0];
3045 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3046 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3047 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3049 btrfs_release_path(path);
3051 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3052 objectid, root->root_key.objectid,
3053 dir_ino, &index, name, name_len);
3055 BUG_ON(ret != -ENOENT);
3056 di = btrfs_search_dir_index_item(root, path, dir_ino,
3058 BUG_ON(IS_ERR_OR_NULL(di));
3060 leaf = path->nodes[0];
3061 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3062 btrfs_release_path(path);
3065 btrfs_release_path(path);
3067 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3070 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3071 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3072 ret = btrfs_update_inode(trans, root, dir);
3075 btrfs_free_path(path);
3079 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3081 struct inode *inode = dentry->d_inode;
3083 struct btrfs_root *root = BTRFS_I(dir)->root;
3084 struct btrfs_trans_handle *trans;
3085 unsigned long nr = 0;
3087 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3088 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3091 trans = __unlink_start_trans(dir, dentry);
3093 return PTR_ERR(trans);