3662ffec17d9850100f37b59966c4a0cf8917422
[pandora-kernel.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 #include "free-space-cache.h"
54
55 struct btrfs_iget_args {
56         u64 ino;
57         struct btrfs_root *root;
58 };
59
60 static const struct inode_operations btrfs_dir_inode_operations;
61 static const struct inode_operations btrfs_symlink_inode_operations;
62 static const struct inode_operations btrfs_dir_ro_inode_operations;
63 static const struct inode_operations btrfs_special_inode_operations;
64 static const struct inode_operations btrfs_file_inode_operations;
65 static const struct address_space_operations btrfs_aops;
66 static const struct address_space_operations btrfs_symlink_aops;
67 static const struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
79         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
80         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
81         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
82         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
83         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
84         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
85 };
86
87 static int btrfs_setsize(struct inode *inode, loff_t newsize);
88 static int btrfs_truncate(struct inode *inode);
89 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
90 static noinline int cow_file_range(struct inode *inode,
91                                    struct page *locked_page,
92                                    u64 start, u64 end, int *page_started,
93                                    unsigned long *nr_written, int unlock);
94
95 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
96                                      struct inode *inode,  struct inode *dir)
97 {
98         int err;
99
100         err = btrfs_init_acl(trans, inode, dir);
101         if (!err)
102                 err = btrfs_xattr_security_init(trans, inode, dir);
103         return err;
104 }
105
106 /*
107  * this does all the hard work for inserting an inline extent into
108  * the btree.  The caller should have done a btrfs_drop_extents so that
109  * no overlapping inline items exist in the btree
110  */
111 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
112                                 struct btrfs_root *root, struct inode *inode,
113                                 u64 start, size_t size, size_t compressed_size,
114                                 struct page **compressed_pages)
115 {
116         struct btrfs_key key;
117         struct btrfs_path *path;
118         struct extent_buffer *leaf;
119         struct page *page = NULL;
120         char *kaddr;
121         unsigned long ptr;
122         struct btrfs_file_extent_item *ei;
123         int err = 0;
124         int ret;
125         size_t cur_size = size;
126         size_t datasize;
127         unsigned long offset;
128         int compress_type = BTRFS_COMPRESS_NONE;
129
130         if (compressed_size && compressed_pages) {
131                 compress_type = root->fs_info->compress_type;
132                 cur_size = compressed_size;
133         }
134
135         path = btrfs_alloc_path();
136         if (!path)
137                 return -ENOMEM;
138
139         path->leave_spinning = 1;
140         btrfs_set_trans_block_group(trans, inode);
141
142         key.objectid = inode->i_ino;
143         key.offset = start;
144         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
145         datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147         inode_add_bytes(inode, size);
148         ret = btrfs_insert_empty_item(trans, root, path, &key,
149                                       datasize);
150         BUG_ON(ret);
151         if (ret) {
152                 err = ret;
153                 goto fail;
154         }
155         leaf = path->nodes[0];
156         ei = btrfs_item_ptr(leaf, path->slots[0],
157                             struct btrfs_file_extent_item);
158         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160         btrfs_set_file_extent_encryption(leaf, ei, 0);
161         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163         ptr = btrfs_file_extent_inline_start(ei);
164
165         if (compress_type != BTRFS_COMPRESS_NONE) {
166                 struct page *cpage;
167                 int i = 0;
168                 while (compressed_size > 0) {
169                         cpage = compressed_pages[i];
170                         cur_size = min_t(unsigned long, compressed_size,
171                                        PAGE_CACHE_SIZE);
172
173                         kaddr = kmap_atomic(cpage, KM_USER0);
174                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
175                         kunmap_atomic(kaddr, KM_USER0);
176
177                         i++;
178                         ptr += cur_size;
179                         compressed_size -= cur_size;
180                 }
181                 btrfs_set_file_extent_compression(leaf, ei,
182                                                   compress_type);
183         } else {
184                 page = find_get_page(inode->i_mapping,
185                                      start >> PAGE_CACHE_SHIFT);
186                 btrfs_set_file_extent_compression(leaf, ei, 0);
187                 kaddr = kmap_atomic(page, KM_USER0);
188                 offset = start & (PAGE_CACHE_SIZE - 1);
189                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190                 kunmap_atomic(kaddr, KM_USER0);
191                 page_cache_release(page);
192         }
193         btrfs_mark_buffer_dirty(leaf);
194         btrfs_free_path(path);
195
196         /*
197          * we're an inline extent, so nobody can
198          * extend the file past i_size without locking
199          * a page we already have locked.
200          *
201          * We must do any isize and inode updates
202          * before we unlock the pages.  Otherwise we
203          * could end up racing with unlink.
204          */
205         BTRFS_I(inode)->disk_i_size = inode->i_size;
206         btrfs_update_inode(trans, root, inode);
207
208         return 0;
209 fail:
210         btrfs_free_path(path);
211         return err;
212 }
213
214
215 /*
216  * conditionally insert an inline extent into the file.  This
217  * does the checks required to make sure the data is small enough
218  * to fit as an inline extent.
219  */
220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
221                                  struct btrfs_root *root,
222                                  struct inode *inode, u64 start, u64 end,
223                                  size_t compressed_size,
224                                  struct page **compressed_pages)
225 {
226         u64 isize = i_size_read(inode);
227         u64 actual_end = min(end + 1, isize);
228         u64 inline_len = actual_end - start;
229         u64 aligned_end = (end + root->sectorsize - 1) &
230                         ~((u64)root->sectorsize - 1);
231         u64 hint_byte;
232         u64 data_len = inline_len;
233         int ret;
234
235         if (compressed_size)
236                 data_len = compressed_size;
237
238         if (start > 0 ||
239             actual_end >= PAGE_CACHE_SIZE ||
240             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241             (!compressed_size &&
242             (actual_end & (root->sectorsize - 1)) == 0) ||
243             end + 1 < isize ||
244             data_len > root->fs_info->max_inline) {
245                 return 1;
246         }
247
248         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
249                                  &hint_byte, 1);
250         BUG_ON(ret);
251
252         if (isize > actual_end)
253                 inline_len = min_t(u64, isize, actual_end);
254         ret = insert_inline_extent(trans, root, inode, start,
255                                    inline_len, compressed_size,
256                                    compressed_pages);
257         BUG_ON(ret);
258         btrfs_delalloc_release_metadata(inode, end + 1 - start);
259         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
260         return 0;
261 }
262
263 struct async_extent {
264         u64 start;
265         u64 ram_size;
266         u64 compressed_size;
267         struct page **pages;
268         unsigned long nr_pages;
269         int compress_type;
270         struct list_head list;
271 };
272
273 struct async_cow {
274         struct inode *inode;
275         struct btrfs_root *root;
276         struct page *locked_page;
277         u64 start;
278         u64 end;
279         struct list_head extents;
280         struct btrfs_work work;
281 };
282
283 static noinline int add_async_extent(struct async_cow *cow,
284                                      u64 start, u64 ram_size,
285                                      u64 compressed_size,
286                                      struct page **pages,
287                                      unsigned long nr_pages,
288                                      int compress_type)
289 {
290         struct async_extent *async_extent;
291
292         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
293         async_extent->start = start;
294         async_extent->ram_size = ram_size;
295         async_extent->compressed_size = compressed_size;
296         async_extent->pages = pages;
297         async_extent->nr_pages = nr_pages;
298         async_extent->compress_type = compress_type;
299         list_add_tail(&async_extent->list, &cow->extents);
300         return 0;
301 }
302
303 /*
304  * we create compressed extents in two phases.  The first
305  * phase compresses a range of pages that have already been
306  * locked (both pages and state bits are locked).
307  *
308  * This is done inside an ordered work queue, and the compression
309  * is spread across many cpus.  The actual IO submission is step
310  * two, and the ordered work queue takes care of making sure that
311  * happens in the same order things were put onto the queue by
312  * writepages and friends.
313  *
314  * If this code finds it can't get good compression, it puts an
315  * entry onto the work queue to write the uncompressed bytes.  This
316  * makes sure that both compressed inodes and uncompressed inodes
317  * are written in the same order that pdflush sent them down.
318  */
319 static noinline int compress_file_range(struct inode *inode,
320                                         struct page *locked_page,
321                                         u64 start, u64 end,
322                                         struct async_cow *async_cow,
323                                         int *num_added)
324 {
325         struct btrfs_root *root = BTRFS_I(inode)->root;
326         struct btrfs_trans_handle *trans;
327         u64 num_bytes;
328         u64 blocksize = root->sectorsize;
329         u64 actual_end;
330         u64 isize = i_size_read(inode);
331         int ret = 0;
332         struct page **pages = NULL;
333         unsigned long nr_pages;
334         unsigned long nr_pages_ret = 0;
335         unsigned long total_compressed = 0;
336         unsigned long total_in = 0;
337         unsigned long max_compressed = 128 * 1024;
338         unsigned long max_uncompressed = 128 * 1024;
339         int i;
340         int will_compress;
341         int compress_type = root->fs_info->compress_type;
342
343         actual_end = min_t(u64, isize, end + 1);
344 again:
345         will_compress = 0;
346         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
347         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
348
349         /*
350          * we don't want to send crud past the end of i_size through
351          * compression, that's just a waste of CPU time.  So, if the
352          * end of the file is before the start of our current
353          * requested range of bytes, we bail out to the uncompressed
354          * cleanup code that can deal with all of this.
355          *
356          * It isn't really the fastest way to fix things, but this is a
357          * very uncommon corner.
358          */
359         if (actual_end <= start)
360                 goto cleanup_and_bail_uncompressed;
361
362         total_compressed = actual_end - start;
363
364         /* we want to make sure that amount of ram required to uncompress
365          * an extent is reasonable, so we limit the total size in ram
366          * of a compressed extent to 128k.  This is a crucial number
367          * because it also controls how easily we can spread reads across
368          * cpus for decompression.
369          *
370          * We also want to make sure the amount of IO required to do
371          * a random read is reasonably small, so we limit the size of
372          * a compressed extent to 128k.
373          */
374         total_compressed = min(total_compressed, max_uncompressed);
375         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
376         num_bytes = max(blocksize,  num_bytes);
377         total_in = 0;
378         ret = 0;
379
380         /*
381          * we do compression for mount -o compress and when the
382          * inode has not been flagged as nocompress.  This flag can
383          * change at any time if we discover bad compression ratios.
384          */
385         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
386             (btrfs_test_opt(root, COMPRESS) ||
387              (BTRFS_I(inode)->force_compress))) {
388                 WARN_ON(pages);
389                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
390
391                 if (BTRFS_I(inode)->force_compress)
392                         compress_type = BTRFS_I(inode)->force_compress;
393
394                 ret = btrfs_compress_pages(compress_type,
395                                            inode->i_mapping, start,
396                                            total_compressed, pages,
397                                            nr_pages, &nr_pages_ret,
398                                            &total_in,
399                                            &total_compressed,
400                                            max_compressed);
401
402                 if (!ret) {
403                         unsigned long offset = total_compressed &
404                                 (PAGE_CACHE_SIZE - 1);
405                         struct page *page = pages[nr_pages_ret - 1];
406                         char *kaddr;
407
408                         /* zero the tail end of the last page, we might be
409                          * sending it down to disk
410                          */
411                         if (offset) {
412                                 kaddr = kmap_atomic(page, KM_USER0);
413                                 memset(kaddr + offset, 0,
414                                        PAGE_CACHE_SIZE - offset);
415                                 kunmap_atomic(kaddr, KM_USER0);
416                         }
417                         will_compress = 1;
418                 }
419         }
420         if (start == 0) {
421                 trans = btrfs_join_transaction(root, 1);
422                 BUG_ON(IS_ERR(trans));
423                 btrfs_set_trans_block_group(trans, inode);
424                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
425
426                 /* lets try to make an inline extent */
427                 if (ret || total_in < (actual_end - start)) {
428                         /* we didn't compress the entire range, try
429                          * to make an uncompressed inline extent.
430                          */
431                         ret = cow_file_range_inline(trans, root, inode,
432                                                     start, end, 0, NULL);
433                 } else {
434                         /* try making a compressed inline extent */
435                         ret = cow_file_range_inline(trans, root, inode,
436                                                     start, end,
437                                                     total_compressed, pages);
438                 }
439                 if (ret == 0) {
440                         /*
441                          * inline extent creation worked, we don't need
442                          * to create any more async work items.  Unlock
443                          * and free up our temp pages.
444                          */
445                         extent_clear_unlock_delalloc(inode,
446                              &BTRFS_I(inode)->io_tree,
447                              start, end, NULL,
448                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
449                              EXTENT_CLEAR_DELALLOC |
450                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
451
452                         btrfs_end_transaction(trans, root);
453                         goto free_pages_out;
454                 }
455                 btrfs_end_transaction(trans, root);
456         }
457
458         if (will_compress) {
459                 /*
460                  * we aren't doing an inline extent round the compressed size
461                  * up to a block size boundary so the allocator does sane
462                  * things
463                  */
464                 total_compressed = (total_compressed + blocksize - 1) &
465                         ~(blocksize - 1);
466
467                 /*
468                  * one last check to make sure the compression is really a
469                  * win, compare the page count read with the blocks on disk
470                  */
471                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
472                         ~(PAGE_CACHE_SIZE - 1);
473                 if (total_compressed >= total_in) {
474                         will_compress = 0;
475                 } else {
476                         num_bytes = total_in;
477                 }
478         }
479         if (!will_compress && pages) {
480                 /*
481                  * the compression code ran but failed to make things smaller,
482                  * free any pages it allocated and our page pointer array
483                  */
484                 for (i = 0; i < nr_pages_ret; i++) {
485                         WARN_ON(pages[i]->mapping);
486                         page_cache_release(pages[i]);
487                 }
488                 kfree(pages);
489                 pages = NULL;
490                 total_compressed = 0;
491                 nr_pages_ret = 0;
492
493                 /* flag the file so we don't compress in the future */
494                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
495                     !(BTRFS_I(inode)->force_compress)) {
496                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
497                 }
498         }
499         if (will_compress) {
500                 *num_added += 1;
501
502                 /* the async work queues will take care of doing actual
503                  * allocation on disk for these compressed pages,
504                  * and will submit them to the elevator.
505                  */
506                 add_async_extent(async_cow, start, num_bytes,
507                                  total_compressed, pages, nr_pages_ret,
508                                  compress_type);
509
510                 if (start + num_bytes < end) {
511                         start += num_bytes;
512                         pages = NULL;
513                         cond_resched();
514                         goto again;
515                 }
516         } else {
517 cleanup_and_bail_uncompressed:
518                 /*
519                  * No compression, but we still need to write the pages in
520                  * the file we've been given so far.  redirty the locked
521                  * page if it corresponds to our extent and set things up
522                  * for the async work queue to run cow_file_range to do
523                  * the normal delalloc dance
524                  */
525                 if (page_offset(locked_page) >= start &&
526                     page_offset(locked_page) <= end) {
527                         __set_page_dirty_nobuffers(locked_page);
528                         /* unlocked later on in the async handlers */
529                 }
530                 add_async_extent(async_cow, start, end - start + 1,
531                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
532                 *num_added += 1;
533         }
534
535 out:
536         return 0;
537
538 free_pages_out:
539         for (i = 0; i < nr_pages_ret; i++) {
540                 WARN_ON(pages[i]->mapping);
541                 page_cache_release(pages[i]);
542         }
543         kfree(pages);
544
545         goto out;
546 }
547
548 /*
549  * phase two of compressed writeback.  This is the ordered portion
550  * of the code, which only gets called in the order the work was
551  * queued.  We walk all the async extents created by compress_file_range
552  * and send them down to the disk.
553  */
554 static noinline int submit_compressed_extents(struct inode *inode,
555                                               struct async_cow *async_cow)
556 {
557         struct async_extent *async_extent;
558         u64 alloc_hint = 0;
559         struct btrfs_trans_handle *trans;
560         struct btrfs_key ins;
561         struct extent_map *em;
562         struct btrfs_root *root = BTRFS_I(inode)->root;
563         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
564         struct extent_io_tree *io_tree;
565         int ret = 0;
566
567         if (list_empty(&async_cow->extents))
568                 return 0;
569
570
571         while (!list_empty(&async_cow->extents)) {
572                 async_extent = list_entry(async_cow->extents.next,
573                                           struct async_extent, list);
574                 list_del(&async_extent->list);
575
576                 io_tree = &BTRFS_I(inode)->io_tree;
577
578 retry:
579                 /* did the compression code fall back to uncompressed IO? */
580                 if (!async_extent->pages) {
581                         int page_started = 0;
582                         unsigned long nr_written = 0;
583
584                         lock_extent(io_tree, async_extent->start,
585                                          async_extent->start +
586                                          async_extent->ram_size - 1, GFP_NOFS);
587
588                         /* allocate blocks */
589                         ret = cow_file_range(inode, async_cow->locked_page,
590                                              async_extent->start,
591                                              async_extent->start +
592                                              async_extent->ram_size - 1,
593                                              &page_started, &nr_written, 0);
594
595                         /*
596                          * if page_started, cow_file_range inserted an
597                          * inline extent and took care of all the unlocking
598                          * and IO for us.  Otherwise, we need to submit
599                          * all those pages down to the drive.
600                          */
601                         if (!page_started && !ret)
602                                 extent_write_locked_range(io_tree,
603                                                   inode, async_extent->start,
604                                                   async_extent->start +
605                                                   async_extent->ram_size - 1,
606                                                   btrfs_get_extent,
607                                                   WB_SYNC_ALL);
608                         kfree(async_extent);
609                         cond_resched();
610                         continue;
611                 }
612
613                 lock_extent(io_tree, async_extent->start,
614                             async_extent->start + async_extent->ram_size - 1,
615                             GFP_NOFS);
616
617                 trans = btrfs_join_transaction(root, 1);
618                 BUG_ON(IS_ERR(trans));
619                 ret = btrfs_reserve_extent(trans, root,
620                                            async_extent->compressed_size,
621                                            async_extent->compressed_size,
622                                            0, alloc_hint,
623                                            (u64)-1, &ins, 1);
624                 btrfs_end_transaction(trans, root);
625
626                 if (ret) {
627                         int i;
628                         for (i = 0; i < async_extent->nr_pages; i++) {
629                                 WARN_ON(async_extent->pages[i]->mapping);
630                                 page_cache_release(async_extent->pages[i]);
631                         }
632                         kfree(async_extent->pages);
633                         async_extent->nr_pages = 0;
634                         async_extent->pages = NULL;
635                         unlock_extent(io_tree, async_extent->start,
636                                       async_extent->start +
637                                       async_extent->ram_size - 1, GFP_NOFS);
638                         goto retry;
639                 }
640
641                 /*
642                  * here we're doing allocation and writeback of the
643                  * compressed pages
644                  */
645                 btrfs_drop_extent_cache(inode, async_extent->start,
646                                         async_extent->start +
647                                         async_extent->ram_size - 1, 0);
648
649                 em = alloc_extent_map(GFP_NOFS);
650                 BUG_ON(!em);
651                 em->start = async_extent->start;
652                 em->len = async_extent->ram_size;
653                 em->orig_start = em->start;
654
655                 em->block_start = ins.objectid;
656                 em->block_len = ins.offset;
657                 em->bdev = root->fs_info->fs_devices->latest_bdev;
658                 em->compress_type = async_extent->compress_type;
659                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
660                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
661
662                 while (1) {
663                         write_lock(&em_tree->lock);
664                         ret = add_extent_mapping(em_tree, em);
665                         write_unlock(&em_tree->lock);
666                         if (ret != -EEXIST) {
667                                 free_extent_map(em);
668                                 break;
669                         }
670                         btrfs_drop_extent_cache(inode, async_extent->start,
671                                                 async_extent->start +
672                                                 async_extent->ram_size - 1, 0);
673                 }
674
675                 ret = btrfs_add_ordered_extent_compress(inode,
676                                                 async_extent->start,
677                                                 ins.objectid,
678                                                 async_extent->ram_size,
679                                                 ins.offset,
680                                                 BTRFS_ORDERED_COMPRESSED,
681                                                 async_extent->compress_type);
682                 BUG_ON(ret);
683
684                 /*
685                  * clear dirty, set writeback and unlock the pages.
686                  */
687                 extent_clear_unlock_delalloc(inode,
688                                 &BTRFS_I(inode)->io_tree,
689                                 async_extent->start,
690                                 async_extent->start +
691                                 async_extent->ram_size - 1,
692                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
693                                 EXTENT_CLEAR_UNLOCK |
694                                 EXTENT_CLEAR_DELALLOC |
695                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
696
697                 ret = btrfs_submit_compressed_write(inode,
698                                     async_extent->start,
699                                     async_extent->ram_size,
700                                     ins.objectid,
701                                     ins.offset, async_extent->pages,
702                                     async_extent->nr_pages);
703
704                 BUG_ON(ret);
705                 alloc_hint = ins.objectid + ins.offset;
706                 kfree(async_extent);
707                 cond_resched();
708         }
709
710         return 0;
711 }
712
713 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
714                                       u64 num_bytes)
715 {
716         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
717         struct extent_map *em;
718         u64 alloc_hint = 0;
719
720         read_lock(&em_tree->lock);
721         em = search_extent_mapping(em_tree, start, num_bytes);
722         if (em) {
723                 /*
724                  * if block start isn't an actual block number then find the
725                  * first block in this inode and use that as a hint.  If that
726                  * block is also bogus then just don't worry about it.
727                  */
728                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
729                         free_extent_map(em);
730                         em = search_extent_mapping(em_tree, 0, 0);
731                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
732                                 alloc_hint = em->block_start;
733                         if (em)
734                                 free_extent_map(em);
735                 } else {
736                         alloc_hint = em->block_start;
737                         free_extent_map(em);
738                 }
739         }
740         read_unlock(&em_tree->lock);
741
742         return alloc_hint;
743 }
744
745 /*
746  * when extent_io.c finds a delayed allocation range in the file,
747  * the call backs end up in this code.  The basic idea is to
748  * allocate extents on disk for the range, and create ordered data structs
749  * in ram to track those extents.
750  *
751  * locked_page is the page that writepage had locked already.  We use
752  * it to make sure we don't do extra locks or unlocks.
753  *
754  * *page_started is set to one if we unlock locked_page and do everything
755  * required to start IO on it.  It may be clean and already done with
756  * IO when we return.
757  */
758 static noinline int cow_file_range(struct inode *inode,
759                                    struct page *locked_page,
760                                    u64 start, u64 end, int *page_started,
761                                    unsigned long *nr_written,
762                                    int unlock)
763 {
764         struct btrfs_root *root = BTRFS_I(inode)->root;
765         struct btrfs_trans_handle *trans;
766         u64 alloc_hint = 0;
767         u64 num_bytes;
768         unsigned long ram_size;
769         u64 disk_num_bytes;
770         u64 cur_alloc_size;
771         u64 blocksize = root->sectorsize;
772         struct btrfs_key ins;
773         struct extent_map *em;
774         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
775         int ret = 0;
776
777         BUG_ON(root == root->fs_info->tree_root);
778         trans = btrfs_join_transaction(root, 1);
779         BUG_ON(IS_ERR(trans));
780         btrfs_set_trans_block_group(trans, inode);
781         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
782
783         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
784         num_bytes = max(blocksize,  num_bytes);
785         disk_num_bytes = num_bytes;
786         ret = 0;
787
788         if (start == 0) {
789                 /* lets try to make an inline extent */
790                 ret = cow_file_range_inline(trans, root, inode,
791                                             start, end, 0, NULL);
792                 if (ret == 0) {
793                         extent_clear_unlock_delalloc(inode,
794                                      &BTRFS_I(inode)->io_tree,
795                                      start, end, NULL,
796                                      EXTENT_CLEAR_UNLOCK_PAGE |
797                                      EXTENT_CLEAR_UNLOCK |
798                                      EXTENT_CLEAR_DELALLOC |
799                                      EXTENT_CLEAR_DIRTY |
800                                      EXTENT_SET_WRITEBACK |
801                                      EXTENT_END_WRITEBACK);
802
803                         *nr_written = *nr_written +
804                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
805                         *page_started = 1;
806                         ret = 0;
807                         goto out;
808                 }
809         }
810
811         BUG_ON(disk_num_bytes >
812                btrfs_super_total_bytes(&root->fs_info->super_copy));
813
814         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
815         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
816
817         while (disk_num_bytes > 0) {
818                 unsigned long op;
819
820                 cur_alloc_size = disk_num_bytes;
821                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
822                                            root->sectorsize, 0, alloc_hint,
823                                            (u64)-1, &ins, 1);
824                 BUG_ON(ret);
825
826                 em = alloc_extent_map(GFP_NOFS);
827                 BUG_ON(!em);
828                 em->start = start;
829                 em->orig_start = em->start;
830                 ram_size = ins.offset;
831                 em->len = ins.offset;
832
833                 em->block_start = ins.objectid;
834                 em->block_len = ins.offset;
835                 em->bdev = root->fs_info->fs_devices->latest_bdev;
836                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
837
838                 while (1) {
839                         write_lock(&em_tree->lock);
840                         ret = add_extent_mapping(em_tree, em);
841                         write_unlock(&em_tree->lock);
842                         if (ret != -EEXIST) {
843                                 free_extent_map(em);
844                                 break;
845                         }
846                         btrfs_drop_extent_cache(inode, start,
847                                                 start + ram_size - 1, 0);
848                 }
849
850                 cur_alloc_size = ins.offset;
851                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
852                                                ram_size, cur_alloc_size, 0);
853                 BUG_ON(ret);
854
855                 if (root->root_key.objectid ==
856                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
857                         ret = btrfs_reloc_clone_csums(inode, start,
858                                                       cur_alloc_size);
859                         BUG_ON(ret);
860                 }
861
862                 if (disk_num_bytes < cur_alloc_size)
863                         break;
864
865                 /* we're not doing compressed IO, don't unlock the first
866                  * page (which the caller expects to stay locked), don't
867                  * clear any dirty bits and don't set any writeback bits
868                  *
869                  * Do set the Private2 bit so we know this page was properly
870                  * setup for writepage
871                  */
872                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
873                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
874                         EXTENT_SET_PRIVATE2;
875
876                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
877                                              start, start + ram_size - 1,
878                                              locked_page, op);
879                 disk_num_bytes -= cur_alloc_size;
880                 num_bytes -= cur_alloc_size;
881                 alloc_hint = ins.objectid + ins.offset;
882                 start += cur_alloc_size;
883         }
884 out:
885         ret = 0;
886         btrfs_end_transaction(trans, root);
887
888         return ret;
889 }
890
891 /*
892  * work queue call back to started compression on a file and pages
893  */
894 static noinline void async_cow_start(struct btrfs_work *work)
895 {
896         struct async_cow *async_cow;
897         int num_added = 0;
898         async_cow = container_of(work, struct async_cow, work);
899
900         compress_file_range(async_cow->inode, async_cow->locked_page,
901                             async_cow->start, async_cow->end, async_cow,
902                             &num_added);
903         if (num_added == 0)
904                 async_cow->inode = NULL;
905 }
906
907 /*
908  * work queue call back to submit previously compressed pages
909  */
910 static noinline void async_cow_submit(struct btrfs_work *work)
911 {
912         struct async_cow *async_cow;
913         struct btrfs_root *root;
914         unsigned long nr_pages;
915
916         async_cow = container_of(work, struct async_cow, work);
917
918         root = async_cow->root;
919         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
920                 PAGE_CACHE_SHIFT;
921
922         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
923
924         if (atomic_read(&root->fs_info->async_delalloc_pages) <
925             5 * 1042 * 1024 &&
926             waitqueue_active(&root->fs_info->async_submit_wait))
927                 wake_up(&root->fs_info->async_submit_wait);
928
929         if (async_cow->inode)
930                 submit_compressed_extents(async_cow->inode, async_cow);
931 }
932
933 static noinline void async_cow_free(struct btrfs_work *work)
934 {
935         struct async_cow *async_cow;
936         async_cow = container_of(work, struct async_cow, work);
937         kfree(async_cow);
938 }
939
940 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
941                                 u64 start, u64 end, int *page_started,
942                                 unsigned long *nr_written)
943 {
944         struct async_cow *async_cow;
945         struct btrfs_root *root = BTRFS_I(inode)->root;
946         unsigned long nr_pages;
947         u64 cur_end;
948         int limit = 10 * 1024 * 1042;
949
950         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
951                          1, 0, NULL, GFP_NOFS);
952         while (start < end) {
953                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
954                 async_cow->inode = inode;
955                 async_cow->root = root;
956                 async_cow->locked_page = locked_page;
957                 async_cow->start = start;
958
959                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
960                         cur_end = end;
961                 else
962                         cur_end = min(end, start + 512 * 1024 - 1);
963
964                 async_cow->end = cur_end;
965                 INIT_LIST_HEAD(&async_cow->extents);
966
967                 async_cow->work.func = async_cow_start;
968                 async_cow->work.ordered_func = async_cow_submit;
969                 async_cow->work.ordered_free = async_cow_free;
970                 async_cow->work.flags = 0;
971
972                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
973                         PAGE_CACHE_SHIFT;
974                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
975
976                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
977                                    &async_cow->work);
978
979                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
980                         wait_event(root->fs_info->async_submit_wait,
981                            (atomic_read(&root->fs_info->async_delalloc_pages) <
982                             limit));
983                 }
984
985                 while (atomic_read(&root->fs_info->async_submit_draining) &&
986                       atomic_read(&root->fs_info->async_delalloc_pages)) {
987                         wait_event(root->fs_info->async_submit_wait,
988                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
989                            0));
990                 }
991
992                 *nr_written += nr_pages;
993                 start = cur_end + 1;
994         }
995         *page_started = 1;
996         return 0;
997 }
998
999 static noinline int csum_exist_in_range(struct btrfs_root *root,
1000                                         u64 bytenr, u64 num_bytes)
1001 {
1002         int ret;
1003         struct btrfs_ordered_sum *sums;
1004         LIST_HEAD(list);
1005
1006         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1007                                        bytenr + num_bytes - 1, &list);
1008         if (ret == 0 && list_empty(&list))
1009                 return 0;
1010
1011         while (!list_empty(&list)) {
1012                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1013                 list_del(&sums->list);
1014                 kfree(sums);
1015         }
1016         return 1;
1017 }
1018
1019 /*
1020  * when nowcow writeback call back.  This checks for snapshots or COW copies
1021  * of the extents that exist in the file, and COWs the file as required.
1022  *
1023  * If no cow copies or snapshots exist, we write directly to the existing
1024  * blocks on disk
1025  */
1026 static noinline int run_delalloc_nocow(struct inode *inode,
1027                                        struct page *locked_page,
1028                               u64 start, u64 end, int *page_started, int force,
1029                               unsigned long *nr_written)
1030 {
1031         struct btrfs_root *root = BTRFS_I(inode)->root;
1032         struct btrfs_trans_handle *trans;
1033         struct extent_buffer *leaf;
1034         struct btrfs_path *path;
1035         struct btrfs_file_extent_item *fi;
1036         struct btrfs_key found_key;
1037         u64 cow_start;
1038         u64 cur_offset;
1039         u64 extent_end;
1040         u64 extent_offset;
1041         u64 disk_bytenr;
1042         u64 num_bytes;
1043         int extent_type;
1044         int ret;
1045         int type;
1046         int nocow;
1047         int check_prev = 1;
1048         bool nolock = false;
1049
1050         path = btrfs_alloc_path();
1051         BUG_ON(!path);
1052         if (root == root->fs_info->tree_root) {
1053                 nolock = true;
1054                 trans = btrfs_join_transaction_nolock(root, 1);
1055         } else {
1056                 trans = btrfs_join_transaction(root, 1);
1057         }
1058         BUG_ON(IS_ERR(trans));
1059
1060         cow_start = (u64)-1;
1061         cur_offset = start;
1062         while (1) {
1063                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1064                                                cur_offset, 0);
1065                 BUG_ON(ret < 0);
1066                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1067                         leaf = path->nodes[0];
1068                         btrfs_item_key_to_cpu(leaf, &found_key,
1069                                               path->slots[0] - 1);
1070                         if (found_key.objectid == inode->i_ino &&
1071                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1072                                 path->slots[0]--;
1073                 }
1074                 check_prev = 0;
1075 next_slot:
1076                 leaf = path->nodes[0];
1077                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1078                         ret = btrfs_next_leaf(root, path);
1079                         if (ret < 0)
1080                                 BUG_ON(1);
1081                         if (ret > 0)
1082                                 break;
1083                         leaf = path->nodes[0];
1084                 }
1085
1086                 nocow = 0;
1087                 disk_bytenr = 0;
1088                 num_bytes = 0;
1089                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1090
1091                 if (found_key.objectid > inode->i_ino ||
1092                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1093                     found_key.offset > end)
1094                         break;
1095
1096                 if (found_key.offset > cur_offset) {
1097                         extent_end = found_key.offset;
1098                         extent_type = 0;
1099                         goto out_check;
1100                 }
1101
1102                 fi = btrfs_item_ptr(leaf, path->slots[0],
1103                                     struct btrfs_file_extent_item);
1104                 extent_type = btrfs_file_extent_type(leaf, fi);
1105
1106                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1107                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1108                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1109                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1110                         extent_end = found_key.offset +
1111                                 btrfs_file_extent_num_bytes(leaf, fi);
1112                         if (extent_end <= start) {
1113                                 path->slots[0]++;
1114                                 goto next_slot;
1115                         }
1116                         if (disk_bytenr == 0)
1117                                 goto out_check;
1118                         if (btrfs_file_extent_compression(leaf, fi) ||
1119                             btrfs_file_extent_encryption(leaf, fi) ||
1120                             btrfs_file_extent_other_encoding(leaf, fi))
1121                                 goto out_check;
1122                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1123                                 goto out_check;
1124                         if (btrfs_extent_readonly(root, disk_bytenr))
1125                                 goto out_check;
1126                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1127                                                   found_key.offset -
1128                                                   extent_offset, disk_bytenr))
1129                                 goto out_check;
1130                         disk_bytenr += extent_offset;
1131                         disk_bytenr += cur_offset - found_key.offset;
1132                         num_bytes = min(end + 1, extent_end) - cur_offset;
1133                         /*
1134                          * force cow if csum exists in the range.
1135                          * this ensure that csum for a given extent are
1136                          * either valid or do not exist.
1137                          */
1138                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1139                                 goto out_check;
1140                         nocow = 1;
1141                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1142                         extent_end = found_key.offset +
1143                                 btrfs_file_extent_inline_len(leaf, fi);
1144                         extent_end = ALIGN(extent_end, root->sectorsize);
1145                 } else {
1146                         BUG_ON(1);
1147                 }
1148 out_check:
1149                 if (extent_end <= start) {
1150                         path->slots[0]++;
1151                         goto next_slot;
1152                 }
1153                 if (!nocow) {
1154                         if (cow_start == (u64)-1)
1155                                 cow_start = cur_offset;
1156                         cur_offset = extent_end;
1157                         if (cur_offset > end)
1158                                 break;
1159                         path->slots[0]++;
1160                         goto next_slot;
1161                 }
1162
1163                 btrfs_release_path(root, path);
1164                 if (cow_start != (u64)-1) {
1165                         ret = cow_file_range(inode, locked_page, cow_start,
1166                                         found_key.offset - 1, page_started,
1167                                         nr_written, 1);
1168                         BUG_ON(ret);
1169                         cow_start = (u64)-1;
1170                 }
1171
1172                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1173                         struct extent_map *em;
1174                         struct extent_map_tree *em_tree;
1175                         em_tree = &BTRFS_I(inode)->extent_tree;
1176                         em = alloc_extent_map(GFP_NOFS);
1177                         BUG_ON(!em);
1178                         em->start = cur_offset;
1179                         em->orig_start = em->start;
1180                         em->len = num_bytes;
1181                         em->block_len = num_bytes;
1182                         em->block_start = disk_bytenr;
1183                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1184                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1185                         while (1) {
1186                                 write_lock(&em_tree->lock);
1187                                 ret = add_extent_mapping(em_tree, em);
1188                                 write_unlock(&em_tree->lock);
1189                                 if (ret != -EEXIST) {
1190                                         free_extent_map(em);
1191                                         break;
1192                                 }
1193                                 btrfs_drop_extent_cache(inode, em->start,
1194                                                 em->start + em->len - 1, 0);
1195                         }
1196                         type = BTRFS_ORDERED_PREALLOC;
1197                 } else {
1198                         type = BTRFS_ORDERED_NOCOW;
1199                 }
1200
1201                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1202                                                num_bytes, num_bytes, type);
1203                 BUG_ON(ret);
1204
1205                 if (root->root_key.objectid ==
1206                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1207                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1208                                                       num_bytes);
1209                         BUG_ON(ret);
1210                 }
1211
1212                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1213                                 cur_offset, cur_offset + num_bytes - 1,
1214                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1215                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1216                                 EXTENT_SET_PRIVATE2);
1217                 cur_offset = extent_end;
1218                 if (cur_offset > end)
1219                         break;
1220         }
1221         btrfs_release_path(root, path);
1222
1223         if (cur_offset <= end && cow_start == (u64)-1)
1224                 cow_start = cur_offset;
1225         if (cow_start != (u64)-1) {
1226                 ret = cow_file_range(inode, locked_page, cow_start, end,
1227                                      page_started, nr_written, 1);
1228                 BUG_ON(ret);
1229         }
1230
1231         if (nolock) {
1232                 ret = btrfs_end_transaction_nolock(trans, root);
1233                 BUG_ON(ret);
1234         } else {
1235                 ret = btrfs_end_transaction(trans, root);
1236                 BUG_ON(ret);
1237         }
1238         btrfs_free_path(path);
1239         return 0;
1240 }
1241
1242 /*
1243  * extent_io.c call back to do delayed allocation processing
1244  */
1245 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1246                               u64 start, u64 end, int *page_started,
1247                               unsigned long *nr_written)
1248 {
1249         int ret;
1250         struct btrfs_root *root = BTRFS_I(inode)->root;
1251
1252         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1253                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1254                                          page_started, 1, nr_written);
1255         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1256                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1257                                          page_started, 0, nr_written);
1258         else if (!btrfs_test_opt(root, COMPRESS) &&
1259                  !(BTRFS_I(inode)->force_compress))
1260                 ret = cow_file_range(inode, locked_page, start, end,
1261                                       page_started, nr_written, 1);
1262         else
1263                 ret = cow_file_range_async(inode, locked_page, start, end,
1264                                            page_started, nr_written);
1265         return ret;
1266 }
1267
1268 static int btrfs_split_extent_hook(struct inode *inode,
1269                                    struct extent_state *orig, u64 split)
1270 {
1271         /* not delalloc, ignore it */
1272         if (!(orig->state & EXTENT_DELALLOC))
1273                 return 0;
1274
1275         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1276         return 0;
1277 }
1278
1279 /*
1280  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1281  * extents so we can keep track of new extents that are just merged onto old
1282  * extents, such as when we are doing sequential writes, so we can properly
1283  * account for the metadata space we'll need.
1284  */
1285 static int btrfs_merge_extent_hook(struct inode *inode,
1286                                    struct extent_state *new,
1287                                    struct extent_state *other)
1288 {
1289         /* not delalloc, ignore it */
1290         if (!(other->state & EXTENT_DELALLOC))
1291                 return 0;
1292
1293         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1294         return 0;
1295 }
1296
1297 /*
1298  * extent_io.c set_bit_hook, used to track delayed allocation
1299  * bytes in this file, and to maintain the list of inodes that
1300  * have pending delalloc work to be done.
1301  */
1302 static int btrfs_set_bit_hook(struct inode *inode,
1303                               struct extent_state *state, int *bits)
1304 {
1305
1306         /*
1307          * set_bit and clear bit hooks normally require _irqsave/restore
1308          * but in this case, we are only testeing for the DELALLOC
1309          * bit, which is only set or cleared with irqs on
1310          */
1311         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1312                 struct btrfs_root *root = BTRFS_I(inode)->root;
1313                 u64 len = state->end + 1 - state->start;
1314                 int do_list = (root->root_key.objectid !=
1315                                BTRFS_ROOT_TREE_OBJECTID);
1316
1317                 if (*bits & EXTENT_FIRST_DELALLOC)
1318                         *bits &= ~EXTENT_FIRST_DELALLOC;
1319                 else
1320                         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1321
1322                 spin_lock(&root->fs_info->delalloc_lock);
1323                 BTRFS_I(inode)->delalloc_bytes += len;
1324                 root->fs_info->delalloc_bytes += len;
1325                 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1326                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1327                                       &root->fs_info->delalloc_inodes);
1328                 }
1329                 spin_unlock(&root->fs_info->delalloc_lock);
1330         }
1331         return 0;
1332 }
1333
1334 /*
1335  * extent_io.c clear_bit_hook, see set_bit_hook for why
1336  */
1337 static int btrfs_clear_bit_hook(struct inode *inode,
1338                                 struct extent_state *state, int *bits)
1339 {
1340         /*
1341          * set_bit and clear bit hooks normally require _irqsave/restore
1342          * but in this case, we are only testeing for the DELALLOC
1343          * bit, which is only set or cleared with irqs on
1344          */
1345         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1346                 struct btrfs_root *root = BTRFS_I(inode)->root;
1347                 u64 len = state->end + 1 - state->start;
1348                 int do_list = (root->root_key.objectid !=
1349                                BTRFS_ROOT_TREE_OBJECTID);
1350
1351                 if (*bits & EXTENT_FIRST_DELALLOC)
1352                         *bits &= ~EXTENT_FIRST_DELALLOC;
1353                 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1354                         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1355
1356                 if (*bits & EXTENT_DO_ACCOUNTING)
1357                         btrfs_delalloc_release_metadata(inode, len);
1358
1359                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1360                     && do_list)
1361                         btrfs_free_reserved_data_space(inode, len);
1362
1363                 spin_lock(&root->fs_info->delalloc_lock);
1364                 root->fs_info->delalloc_bytes -= len;
1365                 BTRFS_I(inode)->delalloc_bytes -= len;
1366
1367                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1368                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1369                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1370                 }
1371                 spin_unlock(&root->fs_info->delalloc_lock);
1372         }
1373         return 0;
1374 }
1375
1376 /*
1377  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1378  * we don't create bios that span stripes or chunks
1379  */
1380 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1381                          size_t size, struct bio *bio,
1382                          unsigned long bio_flags)
1383 {
1384         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1385         struct btrfs_mapping_tree *map_tree;
1386         u64 logical = (u64)bio->bi_sector << 9;
1387         u64 length = 0;
1388         u64 map_length;
1389         int ret;
1390
1391         if (bio_flags & EXTENT_BIO_COMPRESSED)
1392                 return 0;
1393
1394         length = bio->bi_size;
1395         map_tree = &root->fs_info->mapping_tree;
1396         map_length = length;
1397         ret = btrfs_map_block(map_tree, READ, logical,
1398                               &map_length, NULL, 0);
1399
1400         if (map_length < length + size)
1401                 return 1;
1402         return ret;
1403 }
1404
1405 /*
1406  * in order to insert checksums into the metadata in large chunks,
1407  * we wait until bio submission time.   All the pages in the bio are
1408  * checksummed and sums are attached onto the ordered extent record.
1409  *
1410  * At IO completion time the cums attached on the ordered extent record
1411  * are inserted into the btree
1412  */
1413 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1414                                     struct bio *bio, int mirror_num,
1415                                     unsigned long bio_flags,
1416                                     u64 bio_offset)
1417 {
1418         struct btrfs_root *root = BTRFS_I(inode)->root;
1419         int ret = 0;
1420
1421         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1422         BUG_ON(ret);
1423         return 0;
1424 }
1425
1426 /*
1427  * in order to insert checksums into the metadata in large chunks,
1428  * we wait until bio submission time.   All the pages in the bio are
1429  * checksummed and sums are attached onto the ordered extent record.
1430  *
1431  * At IO completion time the cums attached on the ordered extent record
1432  * are inserted into the btree
1433  */
1434 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1435                           int mirror_num, unsigned long bio_flags,
1436                           u64 bio_offset)
1437 {
1438         struct btrfs_root *root = BTRFS_I(inode)->root;
1439         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1440 }
1441
1442 /*
1443  * extent_io.c submission hook. This does the right thing for csum calculation
1444  * on write, or reading the csums from the tree before a read
1445  */
1446 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1447                           int mirror_num, unsigned long bio_flags,
1448                           u64 bio_offset)
1449 {
1450         struct btrfs_root *root = BTRFS_I(inode)->root;
1451         int ret = 0;
1452         int skip_sum;
1453
1454         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1455
1456         if (root == root->fs_info->tree_root)
1457                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1458         else
1459                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1460         BUG_ON(ret);
1461
1462         if (!(rw & REQ_WRITE)) {
1463                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1464                         return btrfs_submit_compressed_read(inode, bio,
1465                                                     mirror_num, bio_flags);
1466                 } else if (!skip_sum)
1467                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1468                 goto mapit;
1469         } else if (!skip_sum) {
1470                 /* csum items have already been cloned */
1471                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1472                         goto mapit;
1473                 /* we're doing a write, do the async checksumming */
1474                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1475                                    inode, rw, bio, mirror_num,
1476                                    bio_flags, bio_offset,
1477                                    __btrfs_submit_bio_start,
1478                                    __btrfs_submit_bio_done);
1479         }
1480
1481 mapit:
1482         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1483 }
1484
1485 /*
1486  * given a list of ordered sums record them in the inode.  This happens
1487  * at IO completion time based on sums calculated at bio submission time.
1488  */
1489 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1490                              struct inode *inode, u64 file_offset,
1491                              struct list_head *list)
1492 {
1493         struct btrfs_ordered_sum *sum;
1494
1495         btrfs_set_trans_block_group(trans, inode);
1496
1497         list_for_each_entry(sum, list, list) {
1498                 btrfs_csum_file_blocks(trans,
1499                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1500         }
1501         return 0;
1502 }
1503
1504 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1505                               struct extent_state **cached_state)
1506 {
1507         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1508                 WARN_ON(1);
1509         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1510                                    cached_state, GFP_NOFS);
1511 }
1512
1513 /* see btrfs_writepage_start_hook for details on why this is required */
1514 struct btrfs_writepage_fixup {
1515         struct page *page;
1516         struct btrfs_work work;
1517 };
1518
1519 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1520 {
1521         struct btrfs_writepage_fixup *fixup;
1522         struct btrfs_ordered_extent *ordered;
1523         struct extent_state *cached_state = NULL;
1524         struct page *page;
1525         struct inode *inode;
1526         u64 page_start;
1527         u64 page_end;
1528
1529         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1530         page = fixup->page;
1531 again:
1532         lock_page(page);
1533         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1534                 ClearPageChecked(page);
1535                 goto out_page;
1536         }
1537
1538         inode = page->mapping->host;
1539         page_start = page_offset(page);
1540         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1541
1542         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1543                          &cached_state, GFP_NOFS);
1544
1545         /* already ordered? We're done */
1546         if (PagePrivate2(page))
1547                 goto out;
1548
1549         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1550         if (ordered) {
1551                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1552                                      page_end, &cached_state, GFP_NOFS);
1553                 unlock_page(page);
1554                 btrfs_start_ordered_extent(inode, ordered, 1);
1555                 goto again;
1556         }
1557
1558         BUG();
1559         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1560         ClearPageChecked(page);
1561 out:
1562         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1563                              &cached_state, GFP_NOFS);
1564 out_page:
1565         unlock_page(page);
1566         page_cache_release(page);
1567         kfree(fixup);
1568 }
1569
1570 /*
1571  * There are a few paths in the higher layers of the kernel that directly
1572  * set the page dirty bit without asking the filesystem if it is a
1573  * good idea.  This causes problems because we want to make sure COW
1574  * properly happens and the data=ordered rules are followed.
1575  *
1576  * In our case any range that doesn't have the ORDERED bit set
1577  * hasn't been properly setup for IO.  We kick off an async process
1578  * to fix it up.  The async helper will wait for ordered extents, set
1579  * the delalloc bit and make it safe to write the page.
1580  */
1581 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1582 {
1583         struct inode *inode = page->mapping->host;
1584         struct btrfs_writepage_fixup *fixup;
1585         struct btrfs_root *root = BTRFS_I(inode)->root;
1586
1587         /* this page is properly in the ordered list */
1588         if (TestClearPagePrivate2(page))
1589                 return 0;
1590
1591         if (PageChecked(page))
1592                 return -EAGAIN;
1593
1594         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1595         if (!fixup)
1596                 return -EAGAIN;
1597
1598         SetPageChecked(page);
1599         page_cache_get(page);
1600         fixup->work.func = btrfs_writepage_fixup_worker;
1601         fixup->page = page;
1602         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1603         return -EAGAIN;
1604 }
1605
1606 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1607                                        struct inode *inode, u64 file_pos,
1608                                        u64 disk_bytenr, u64 disk_num_bytes,
1609                                        u64 num_bytes, u64 ram_bytes,
1610                                        u8 compression, u8 encryption,
1611                                        u16 other_encoding, int extent_type)
1612 {
1613         struct btrfs_root *root = BTRFS_I(inode)->root;
1614         struct btrfs_file_extent_item *fi;
1615         struct btrfs_path *path;
1616         struct extent_buffer *leaf;
1617         struct btrfs_key ins;
1618         u64 hint;
1619         int ret;
1620
1621         path = btrfs_alloc_path();
1622         BUG_ON(!path);
1623
1624         path->leave_spinning = 1;
1625
1626         /*
1627          * we may be replacing one extent in the tree with another.
1628          * The new extent is pinned in the extent map, and we don't want
1629          * to drop it from the cache until it is completely in the btree.
1630          *
1631          * So, tell btrfs_drop_extents to leave this extent in the cache.
1632          * the caller is expected to unpin it and allow it to be merged
1633          * with the others.
1634          */
1635         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1636                                  &hint, 0);
1637         BUG_ON(ret);
1638
1639         ins.objectid = inode->i_ino;
1640         ins.offset = file_pos;
1641         ins.type = BTRFS_EXTENT_DATA_KEY;
1642         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1643         BUG_ON(ret);
1644         leaf = path->nodes[0];
1645         fi = btrfs_item_ptr(leaf, path->slots[0],
1646                             struct btrfs_file_extent_item);
1647         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1648         btrfs_set_file_extent_type(leaf, fi, extent_type);
1649         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1650         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1651         btrfs_set_file_extent_offset(leaf, fi, 0);
1652         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1653         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1654         btrfs_set_file_extent_compression(leaf, fi, compression);
1655         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1656         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1657
1658         btrfs_unlock_up_safe(path, 1);
1659         btrfs_set_lock_blocking(leaf);
1660
1661         btrfs_mark_buffer_dirty(leaf);
1662
1663         inode_add_bytes(inode, num_bytes);
1664
1665         ins.objectid = disk_bytenr;
1666         ins.offset = disk_num_bytes;
1667         ins.type = BTRFS_EXTENT_ITEM_KEY;
1668         ret = btrfs_alloc_reserved_file_extent(trans, root,
1669                                         root->root_key.objectid,
1670                                         inode->i_ino, file_pos, &ins);
1671         BUG_ON(ret);
1672         btrfs_free_path(path);
1673
1674         return 0;
1675 }
1676
1677 /*
1678  * helper function for btrfs_finish_ordered_io, this
1679  * just reads in some of the csum leaves to prime them into ram
1680  * before we start the transaction.  It limits the amount of btree
1681  * reads required while inside the transaction.
1682  */
1683 /* as ordered data IO finishes, this gets called so we can finish
1684  * an ordered extent if the range of bytes in the file it covers are
1685  * fully written.
1686  */
1687 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1688 {
1689         struct btrfs_root *root = BTRFS_I(inode)->root;
1690         struct btrfs_trans_handle *trans = NULL;
1691         struct btrfs_ordered_extent *ordered_extent = NULL;
1692         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1693         struct extent_state *cached_state = NULL;
1694         int compress_type = 0;
1695         int ret;
1696         bool nolock = false;
1697
1698         ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1699                                              end - start + 1);
1700         if (!ret)
1701                 return 0;
1702         BUG_ON(!ordered_extent);
1703
1704         nolock = (root == root->fs_info->tree_root);
1705
1706         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1707                 BUG_ON(!list_empty(&ordered_extent->list));
1708                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1709                 if (!ret) {
1710                         if (nolock)
1711                                 trans = btrfs_join_transaction_nolock(root, 1);
1712                         else
1713                                 trans = btrfs_join_transaction(root, 1);
1714                         BUG_ON(IS_ERR(trans));
1715                         btrfs_set_trans_block_group(trans, inode);
1716                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1717                         ret = btrfs_update_inode(trans, root, inode);
1718                         BUG_ON(ret);
1719                 }
1720                 goto out;
1721         }
1722
1723         lock_extent_bits(io_tree, ordered_extent->file_offset,
1724                          ordered_extent->file_offset + ordered_extent->len - 1,
1725                          0, &cached_state, GFP_NOFS);
1726
1727         if (nolock)
1728                 trans = btrfs_join_transaction_nolock(root, 1);
1729         else
1730                 trans = btrfs_join_transaction(root, 1);
1731         BUG_ON(IS_ERR(trans));
1732         btrfs_set_trans_block_group(trans, inode);
1733         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1734
1735         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1736                 compress_type = ordered_extent->compress_type;
1737         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1738                 BUG_ON(compress_type);
1739                 ret = btrfs_mark_extent_written(trans, inode,
1740                                                 ordered_extent->file_offset,
1741                                                 ordered_extent->file_offset +
1742                                                 ordered_extent->len);
1743                 BUG_ON(ret);
1744         } else {
1745                 BUG_ON(root == root->fs_info->tree_root);
1746                 ret = insert_reserved_file_extent(trans, inode,
1747                                                 ordered_extent->file_offset,
1748                                                 ordered_extent->start,
1749                                                 ordered_extent->disk_len,
1750                                                 ordered_extent->len,
1751                                                 ordered_extent->len,
1752                                                 compress_type, 0, 0,
1753                                                 BTRFS_FILE_EXTENT_REG);
1754                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1755                                    ordered_extent->file_offset,
1756                                    ordered_extent->len);
1757                 BUG_ON(ret);
1758         }
1759         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1760                              ordered_extent->file_offset +
1761                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1762
1763         add_pending_csums(trans, inode, ordered_extent->file_offset,
1764                           &ordered_extent->list);
1765
1766         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1767         ret = btrfs_update_inode(trans, root, inode);
1768         BUG_ON(ret);
1769 out:
1770         if (nolock) {
1771                 if (trans)
1772                         btrfs_end_transaction_nolock(trans, root);
1773         } else {
1774                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1775                 if (trans)
1776                         btrfs_end_transaction(trans, root);
1777         }
1778
1779         /* once for us */
1780         btrfs_put_ordered_extent(ordered_extent);
1781         /* once for the tree */
1782         btrfs_put_ordered_extent(ordered_extent);
1783
1784         return 0;
1785 }
1786
1787 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1788                                 struct extent_state *state, int uptodate)
1789 {
1790         ClearPagePrivate2(page);
1791         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1792 }
1793
1794 /*
1795  * When IO fails, either with EIO or csum verification fails, we
1796  * try other mirrors that might have a good copy of the data.  This
1797  * io_failure_record is used to record state as we go through all the
1798  * mirrors.  If another mirror has good data, the page is set up to date
1799  * and things continue.  If a good mirror can't be found, the original
1800  * bio end_io callback is called to indicate things have failed.
1801  */
1802 struct io_failure_record {
1803         struct page *page;
1804         u64 start;
1805         u64 len;
1806         u64 logical;
1807         unsigned long bio_flags;
1808         int last_mirror;
1809 };
1810
1811 static int btrfs_io_failed_hook(struct bio *failed_bio,
1812                          struct page *page, u64 start, u64 end,
1813                          struct extent_state *state)
1814 {
1815         struct io_failure_record *failrec = NULL;
1816         u64 private;
1817         struct extent_map *em;
1818         struct inode *inode = page->mapping->host;
1819         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1820         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1821         struct bio *bio;
1822         int num_copies;
1823         int ret;
1824         int rw;
1825         u64 logical;
1826
1827         ret = get_state_private(failure_tree, start, &private);
1828         if (ret) {
1829                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1830                 if (!failrec)
1831                         return -ENOMEM;
1832                 failrec->start = start;
1833                 failrec->len = end - start + 1;
1834                 failrec->last_mirror = 0;
1835                 failrec->bio_flags = 0;
1836
1837                 read_lock(&em_tree->lock);
1838                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1839                 if (em->start > start || em->start + em->len < start) {
1840                         free_extent_map(em);
1841                         em = NULL;
1842                 }
1843                 read_unlock(&em_tree->lock);
1844
1845                 if (!em || IS_ERR(em)) {
1846                         kfree(failrec);
1847                         return -EIO;
1848                 }
1849                 logical = start - em->start;
1850                 logical = em->block_start + logical;
1851                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1852                         logical = em->block_start;
1853                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1854                         extent_set_compress_type(&failrec->bio_flags,
1855                                                  em->compress_type);
1856                 }
1857                 failrec->logical = logical;
1858                 free_extent_map(em);
1859                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1860                                 EXTENT_DIRTY, GFP_NOFS);
1861                 set_state_private(failure_tree, start,
1862                                  (u64)(unsigned long)failrec);
1863         } else {
1864                 failrec = (struct io_failure_record *)(unsigned long)private;
1865         }
1866         num_copies = btrfs_num_copies(
1867                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1868                               failrec->logical, failrec->len);
1869         failrec->last_mirror++;
1870         if (!state) {
1871                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1872                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1873                                                     failrec->start,
1874                                                     EXTENT_LOCKED);
1875                 if (state && state->start != failrec->start)
1876                         state = NULL;
1877                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1878         }
1879         if (!state || failrec->last_mirror > num_copies) {
1880                 set_state_private(failure_tree, failrec->start, 0);
1881                 clear_extent_bits(failure_tree, failrec->start,
1882                                   failrec->start + failrec->len - 1,
1883                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1884                 kfree(failrec);
1885                 return -EIO;
1886         }
1887         bio = bio_alloc(GFP_NOFS, 1);
1888         bio->bi_private = state;
1889         bio->bi_end_io = failed_bio->bi_end_io;
1890         bio->bi_sector = failrec->logical >> 9;
1891         bio->bi_bdev = failed_bio->bi_bdev;
1892         bio->bi_size = 0;
1893
1894         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1895         if (failed_bio->bi_rw & REQ_WRITE)
1896                 rw = WRITE;
1897         else
1898                 rw = READ;
1899
1900         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1901                                                       failrec->last_mirror,
1902                                                       failrec->bio_flags, 0);
1903         return 0;
1904 }
1905
1906 /*
1907  * each time an IO finishes, we do a fast check in the IO failure tree
1908  * to see if we need to process or clean up an io_failure_record
1909  */
1910 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1911 {
1912         u64 private;
1913         u64 private_failure;
1914         struct io_failure_record *failure;
1915         int ret;
1916
1917         private = 0;
1918         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1919                              (u64)-1, 1, EXTENT_DIRTY, 0)) {
1920                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1921                                         start, &private_failure);
1922                 if (ret == 0) {
1923                         failure = (struct io_failure_record *)(unsigned long)
1924                                    private_failure;
1925                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1926                                           failure->start, 0);
1927                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1928                                           failure->start,
1929                                           failure->start + failure->len - 1,
1930                                           EXTENT_DIRTY | EXTENT_LOCKED,
1931                                           GFP_NOFS);
1932                         kfree(failure);
1933                 }
1934         }
1935         return 0;
1936 }
1937
1938 /*
1939  * when reads are done, we need to check csums to verify the data is correct
1940  * if there's a match, we allow the bio to finish.  If not, we go through
1941  * the io_failure_record routines to find good copies
1942  */
1943 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1944                                struct extent_state *state)
1945 {
1946         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1947         struct inode *inode = page->mapping->host;
1948         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1949         char *kaddr;
1950         u64 private = ~(u32)0;
1951         int ret;
1952         struct btrfs_root *root = BTRFS_I(inode)->root;
1953         u32 csum = ~(u32)0;
1954
1955         if (PageChecked(page)) {
1956                 ClearPageChecked(page);
1957                 goto good;
1958         }
1959
1960         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1961                 return 0;
1962
1963         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1964             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1965                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1966                                   GFP_NOFS);
1967                 return 0;
1968         }
1969
1970         if (state && state->start == start) {
1971                 private = state->private;
1972                 ret = 0;
1973         } else {
1974                 ret = get_state_private(io_tree, start, &private);
1975         }
1976         kaddr = kmap_atomic(page, KM_USER0);
1977         if (ret)
1978                 goto zeroit;
1979
1980         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1981         btrfs_csum_final(csum, (char *)&csum);
1982         if (csum != private)
1983                 goto zeroit;
1984
1985         kunmap_atomic(kaddr, KM_USER0);
1986 good:
1987         /* if the io failure tree for this inode is non-empty,
1988          * check to see if we've recovered from a failed IO
1989          */
1990         btrfs_clean_io_failures(inode, start);
1991         return 0;
1992
1993 zeroit:
1994         if (printk_ratelimit()) {
1995                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1996                        "private %llu\n", page->mapping->host->i_ino,
1997                        (unsigned long long)start, csum,
1998                        (unsigned long long)private);
1999         }
2000         memset(kaddr + offset, 1, end - start + 1);
2001         flush_dcache_page(page);
2002         kunmap_atomic(kaddr, KM_USER0);
2003         if (private == 0)
2004                 return 0;
2005         return -EIO;
2006 }
2007
2008 struct delayed_iput {
2009         struct list_head list;
2010         struct inode *inode;
2011 };
2012
2013 void btrfs_add_delayed_iput(struct inode *inode)
2014 {
2015         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2016         struct delayed_iput *delayed;
2017
2018         if (atomic_add_unless(&inode->i_count, -1, 1))
2019                 return;
2020
2021         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2022         delayed->inode = inode;
2023
2024         spin_lock(&fs_info->delayed_iput_lock);
2025         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2026         spin_unlock(&fs_info->delayed_iput_lock);
2027 }
2028
2029 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2030 {
2031         LIST_HEAD(list);
2032         struct btrfs_fs_info *fs_info = root->fs_info;
2033         struct delayed_iput *delayed;
2034         int empty;
2035
2036         spin_lock(&fs_info->delayed_iput_lock);
2037         empty = list_empty(&fs_info->delayed_iputs);
2038         spin_unlock(&fs_info->delayed_iput_lock);
2039         if (empty)
2040                 return;
2041
2042         down_read(&root->fs_info->cleanup_work_sem);
2043         spin_lock(&fs_info->delayed_iput_lock);
2044         list_splice_init(&fs_info->delayed_iputs, &list);
2045         spin_unlock(&fs_info->delayed_iput_lock);
2046
2047         while (!list_empty(&list)) {
2048                 delayed = list_entry(list.next, struct delayed_iput, list);
2049                 list_del(&delayed->list);
2050                 iput(delayed->inode);
2051                 kfree(delayed);
2052         }
2053         up_read(&root->fs_info->cleanup_work_sem);
2054 }
2055
2056 /*
2057  * calculate extra metadata reservation when snapshotting a subvolume
2058  * contains orphan files.
2059  */
2060 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2061                                 struct btrfs_pending_snapshot *pending,
2062                                 u64 *bytes_to_reserve)
2063 {
2064         struct btrfs_root *root;
2065         struct btrfs_block_rsv *block_rsv;
2066         u64 num_bytes;
2067         int index;
2068
2069         root = pending->root;
2070         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2071                 return;
2072
2073         block_rsv = root->orphan_block_rsv;
2074
2075         /* orphan block reservation for the snapshot */
2076         num_bytes = block_rsv->size;
2077
2078         /*
2079          * after the snapshot is created, COWing tree blocks may use more
2080          * space than it frees. So we should make sure there is enough
2081          * reserved space.
2082          */
2083         index = trans->transid & 0x1;
2084         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2085                 num_bytes += block_rsv->size -
2086                              (block_rsv->reserved + block_rsv->freed[index]);
2087         }
2088
2089         *bytes_to_reserve += num_bytes;
2090 }
2091
2092 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2093                                 struct btrfs_pending_snapshot *pending)
2094 {
2095         struct btrfs_root *root = pending->root;
2096         struct btrfs_root *snap = pending->snap;
2097         struct btrfs_block_rsv *block_rsv;
2098         u64 num_bytes;
2099         int index;
2100         int ret;
2101
2102         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2103                 return;
2104
2105         /* refill source subvolume's orphan block reservation */
2106         block_rsv = root->orphan_block_rsv;
2107         index = trans->transid & 0x1;
2108         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2109                 num_bytes = block_rsv->size -
2110                             (block_rsv->reserved + block_rsv->freed[index]);
2111                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2112                                               root->orphan_block_rsv,
2113                                               num_bytes);
2114                 BUG_ON(ret);
2115         }
2116
2117         /* setup orphan block reservation for the snapshot */
2118         block_rsv = btrfs_alloc_block_rsv(snap);
2119         BUG_ON(!block_rsv);
2120
2121         btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2122         snap->orphan_block_rsv = block_rsv;
2123
2124         num_bytes = root->orphan_block_rsv->size;
2125         ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2126                                       block_rsv, num_bytes);
2127         BUG_ON(ret);
2128
2129 #if 0
2130         /* insert orphan item for the snapshot */
2131         WARN_ON(!root->orphan_item_inserted);
2132         ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2133                                        snap->root_key.objectid);
2134         BUG_ON(ret);
2135         snap->orphan_item_inserted = 1;
2136 #endif
2137 }
2138
2139 enum btrfs_orphan_cleanup_state {
2140         ORPHAN_CLEANUP_STARTED  = 1,
2141         ORPHAN_CLEANUP_DONE     = 2,
2142 };
2143
2144 /*
2145  * This is called in transaction commmit time. If there are no orphan
2146  * files in the subvolume, it removes orphan item and frees block_rsv
2147  * structure.
2148  */
2149 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2150                               struct btrfs_root *root)
2151 {
2152         int ret;
2153
2154         if (!list_empty(&root->orphan_list) ||
2155             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2156                 return;
2157
2158         if (root->orphan_item_inserted &&
2159             btrfs_root_refs(&root->root_item) > 0) {
2160                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2161                                             root->root_key.objectid);
2162                 BUG_ON(ret);
2163                 root->orphan_item_inserted = 0;
2164         }
2165
2166         if (root->orphan_block_rsv) {
2167                 WARN_ON(root->orphan_block_rsv->size > 0);
2168                 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2169                 root->orphan_block_rsv = NULL;
2170         }
2171 }
2172
2173 /*
2174  * This creates an orphan entry for the given inode in case something goes
2175  * wrong in the middle of an unlink/truncate.
2176  *
2177  * NOTE: caller of this function should reserve 5 units of metadata for
2178  *       this function.
2179  */
2180 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2181 {
2182         struct btrfs_root *root = BTRFS_I(inode)->root;
2183         struct btrfs_block_rsv *block_rsv = NULL;
2184         int reserve = 0;
2185         int insert = 0;
2186         int ret;
2187
2188         if (!root->orphan_block_rsv) {
2189                 block_rsv = btrfs_alloc_block_rsv(root);
2190                 BUG_ON(!block_rsv);
2191         }
2192
2193         spin_lock(&root->orphan_lock);
2194         if (!root->orphan_block_rsv) {
2195                 root->orphan_block_rsv = block_rsv;
2196         } else if (block_rsv) {
2197                 btrfs_free_block_rsv(root, block_rsv);
2198                 block_rsv = NULL;
2199         }
2200
2201         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2202                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2203 #if 0
2204                 /*
2205                  * For proper ENOSPC handling, we should do orphan
2206                  * cleanup when mounting. But this introduces backward
2207                  * compatibility issue.
2208                  */
2209                 if (!xchg(&root->orphan_item_inserted, 1))
2210                         insert = 2;
2211                 else
2212                         insert = 1;
2213 #endif
2214                 insert = 1;
2215         } else {
2216                 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2217         }
2218
2219         if (!BTRFS_I(inode)->orphan_meta_reserved) {
2220                 BTRFS_I(inode)->orphan_meta_reserved = 1;
2221                 reserve = 1;
2222         }
2223         spin_unlock(&root->orphan_lock);
2224
2225         if (block_rsv)
2226                 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2227
2228         /* grab metadata reservation from transaction handle */
2229         if (reserve) {
2230                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2231                 BUG_ON(ret);
2232         }
2233
2234         /* insert an orphan item to track this unlinked/truncated file */
2235         if (insert >= 1) {
2236                 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2237                 BUG_ON(ret);
2238         }
2239
2240         /* insert an orphan item to track subvolume contains orphan files */
2241         if (insert >= 2) {
2242                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2243                                                root->root_key.objectid);
2244                 BUG_ON(ret);
2245         }
2246         return 0;
2247 }
2248
2249 /*
2250  * We have done the truncate/delete so we can go ahead and remove the orphan
2251  * item for this particular inode.
2252  */
2253 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2254 {
2255         struct btrfs_root *root = BTRFS_I(inode)->root;
2256         int delete_item = 0;
2257         int release_rsv = 0;
2258         int ret = 0;
2259
2260         spin_lock(&root->orphan_lock);
2261         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2262                 list_del_init(&BTRFS_I(inode)->i_orphan);
2263                 delete_item = 1;
2264         }
2265
2266         if (BTRFS_I(inode)->orphan_meta_reserved) {
2267                 BTRFS_I(inode)->orphan_meta_reserved = 0;
2268                 release_rsv = 1;
2269         }
2270         spin_unlock(&root->orphan_lock);
2271
2272         if (trans && delete_item) {
2273                 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2274                 BUG_ON(ret);
2275         }
2276
2277         if (release_rsv)
2278                 btrfs_orphan_release_metadata(inode);
2279
2280         return 0;
2281 }
2282
2283 /*
2284  * this cleans up any orphans that may be left on the list from the last use
2285  * of this root.
2286  */
2287 void btrfs_orphan_cleanup(struct btrfs_root *root)
2288 {
2289         struct btrfs_path *path;
2290         struct extent_buffer *leaf;
2291         struct btrfs_key key, found_key;
2292         struct btrfs_trans_handle *trans;
2293         struct inode *inode;
2294         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2295
2296         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2297                 return;
2298
2299         path = btrfs_alloc_path();
2300         BUG_ON(!path);
2301         path->reada = -1;
2302
2303         key.objectid = BTRFS_ORPHAN_OBJECTID;
2304         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2305         key.offset = (u64)-1;
2306
2307         while (1) {
2308                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2309                 if (ret < 0) {
2310                         printk(KERN_ERR "Error searching slot for orphan: %d"
2311                                "\n", ret);
2312                         break;
2313                 }
2314
2315                 /*
2316                  * if ret == 0 means we found what we were searching for, which
2317                  * is weird, but possible, so only screw with path if we didnt
2318                  * find the key and see if we have stuff that matches
2319                  */
2320                 if (ret > 0) {
2321                         if (path->slots[0] == 0)
2322                                 break;
2323                         path->slots[0]--;
2324                 }
2325
2326                 /* pull out the item */
2327                 leaf = path->nodes[0];
2328                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2329
2330                 /* make sure the item matches what we want */
2331                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2332                         break;
2333                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2334                         break;
2335
2336                 /* release the path since we're done with it */
2337                 btrfs_release_path(root, path);
2338
2339                 /*
2340                  * this is where we are basically btrfs_lookup, without the
2341                  * crossing root thing.  we store the inode number in the
2342                  * offset of the orphan item.
2343                  */
2344                 found_key.objectid = found_key.offset;
2345                 found_key.type = BTRFS_INODE_ITEM_KEY;
2346                 found_key.offset = 0;
2347                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2348                 BUG_ON(IS_ERR(inode));
2349
2350                 /*
2351                  * add this inode to the orphan list so btrfs_orphan_del does
2352                  * the proper thing when we hit it
2353                  */
2354                 spin_lock(&root->orphan_lock);
2355                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2356                 spin_unlock(&root->orphan_lock);
2357
2358                 /*
2359                  * if this is a bad inode, means we actually succeeded in
2360                  * removing the inode, but not the orphan record, which means
2361                  * we need to manually delete the orphan since iput will just
2362                  * do a destroy_inode
2363                  */
2364                 if (is_bad_inode(inode)) {
2365                         trans = btrfs_start_transaction(root, 0);
2366                         BUG_ON(IS_ERR(trans));
2367                         btrfs_orphan_del(trans, inode);
2368                         btrfs_end_transaction(trans, root);
2369                         iput(inode);
2370                         continue;
2371                 }
2372
2373                 /* if we have links, this was a truncate, lets do that */
2374                 if (inode->i_nlink) {
2375                         if (!S_ISREG(inode->i_mode)) {
2376                                 WARN_ON(1);
2377                                 iput(inode);
2378                                 continue;
2379                         }
2380                         nr_truncate++;
2381                         btrfs_truncate(inode);
2382                 } else {
2383                         nr_unlink++;
2384                 }
2385
2386                 /* this will do delete_inode and everything for us */
2387                 iput(inode);
2388         }
2389         btrfs_free_path(path);
2390
2391         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2392
2393         if (root->orphan_block_rsv)
2394                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2395                                         (u64)-1);
2396
2397         if (root->orphan_block_rsv || root->orphan_item_inserted) {
2398                 trans = btrfs_join_transaction(root, 1);
2399                 BUG_ON(IS_ERR(trans));
2400                 btrfs_end_transaction(trans, root);
2401         }
2402
2403         if (nr_unlink)
2404                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2405         if (nr_truncate)
2406                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2407 }
2408
2409 /*
2410  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2411  * don't find any xattrs, we know there can't be any acls.
2412  *
2413  * slot is the slot the inode is in, objectid is the objectid of the inode
2414  */
2415 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2416                                           int slot, u64 objectid)
2417 {
2418         u32 nritems = btrfs_header_nritems(leaf);
2419         struct btrfs_key found_key;
2420         int scanned = 0;
2421
2422         slot++;
2423         while (slot < nritems) {
2424                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2425
2426                 /* we found a different objectid, there must not be acls */
2427                 if (found_key.objectid != objectid)
2428                         return 0;
2429
2430                 /* we found an xattr, assume we've got an acl */
2431                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2432                         return 1;
2433
2434                 /*
2435                  * we found a key greater than an xattr key, there can't
2436                  * be any acls later on
2437                  */
2438                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2439                         return 0;
2440
2441                 slot++;
2442                 scanned++;
2443
2444                 /*
2445                  * it goes inode, inode backrefs, xattrs, extents,
2446                  * so if there are a ton of hard links to an inode there can
2447                  * be a lot of backrefs.  Don't waste time searching too hard,
2448                  * this is just an optimization
2449                  */
2450                 if (scanned >= 8)
2451                         break;
2452         }
2453         /* we hit the end of the leaf before we found an xattr or
2454          * something larger than an xattr.  We have to assume the inode
2455          * has acls
2456          */
2457         return 1;
2458 }
2459
2460 /*
2461  * read an inode from the btree into the in-memory inode
2462  */
2463 static void btrfs_read_locked_inode(struct inode *inode)
2464 {
2465         struct btrfs_path *path;
2466         struct extent_buffer *leaf;
2467         struct btrfs_inode_item *inode_item;
2468         struct btrfs_timespec *tspec;
2469         struct btrfs_root *root = BTRFS_I(inode)->root;
2470         struct btrfs_key location;
2471         int maybe_acls;
2472         u64 alloc_group_block;
2473         u32 rdev;
2474         int ret;
2475
2476         path = btrfs_alloc_path();
2477         BUG_ON(!path);
2478         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2479
2480         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2481         if (ret)
2482                 goto make_bad;
2483
2484         leaf = path->nodes[0];
2485         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2486                                     struct btrfs_inode_item);
2487
2488         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2489         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2490         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2491         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2492         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2493
2494         tspec = btrfs_inode_atime(inode_item);
2495         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2496         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2497
2498         tspec = btrfs_inode_mtime(inode_item);
2499         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2500         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2501
2502         tspec = btrfs_inode_ctime(inode_item);
2503         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2504         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2505
2506         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2507         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2508         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2509         inode->i_generation = BTRFS_I(inode)->generation;
2510         inode->i_rdev = 0;
2511         rdev = btrfs_inode_rdev(leaf, inode_item);
2512
2513         BTRFS_I(inode)->index_cnt = (u64)-1;
2514         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2515
2516         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2517
2518         /*
2519          * try to precache a NULL acl entry for files that don't have
2520          * any xattrs or acls
2521          */
2522         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2523         if (!maybe_acls)
2524                 cache_no_acl(inode);
2525
2526         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2527                                                 alloc_group_block, 0);
2528         btrfs_free_path(path);
2529         inode_item = NULL;
2530
2531         switch (inode->i_mode & S_IFMT) {
2532         case S_IFREG:
2533                 inode->i_mapping->a_ops = &btrfs_aops;
2534                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2535                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2536                 inode->i_fop = &btrfs_file_operations;
2537                 inode->i_op = &btrfs_file_inode_operations;
2538                 break;
2539         case S_IFDIR:
2540                 inode->i_fop = &btrfs_dir_file_operations;
2541                 if (root == root->fs_info->tree_root)
2542                         inode->i_op = &btrfs_dir_ro_inode_operations;
2543                 else
2544                         inode->i_op = &btrfs_dir_inode_operations;
2545                 break;
2546         case S_IFLNK:
2547                 inode->i_op = &btrfs_symlink_inode_operations;
2548                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2549                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2550                 break;
2551         default:
2552                 inode->i_op = &btrfs_special_inode_operations;
2553                 init_special_inode(inode, inode->i_mode, rdev);
2554                 break;
2555         }
2556
2557         btrfs_update_iflags(inode);
2558         return;
2559
2560 make_bad:
2561         btrfs_free_path(path);
2562         make_bad_inode(inode);
2563 }
2564
2565 /*
2566  * given a leaf and an inode, copy the inode fields into the leaf
2567  */
2568 static void fill_inode_item(struct btrfs_trans_handle *trans,
2569                             struct extent_buffer *leaf,
2570                             struct btrfs_inode_item *item,
2571                             struct inode *inode)
2572 {
2573         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2574         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2575         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2576         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2577         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2578
2579         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2580                                inode->i_atime.tv_sec);
2581         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2582                                 inode->i_atime.tv_nsec);
2583
2584         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2585                                inode->i_mtime.tv_sec);
2586         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2587                                 inode->i_mtime.tv_nsec);
2588
2589         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2590                                inode->i_ctime.tv_sec);
2591         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2592                                 inode->i_ctime.tv_nsec);
2593
2594         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2595         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2596         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2597         btrfs_set_inode_transid(leaf, item, trans->transid);
2598         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2599         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2600         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2601 }
2602
2603 /*
2604  * copy everything in the in-memory inode into the btree.
2605  */
2606 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2607                                 struct btrfs_root *root, struct inode *inode)
2608 {
2609         struct btrfs_inode_item *inode_item;
2610         struct btrfs_path *path;
2611         struct extent_buffer *leaf;
2612         int ret;
2613
2614         path = btrfs_alloc_path();
2615         BUG_ON(!path);
2616         path->leave_spinning = 1;
2617         ret = btrfs_lookup_inode(trans, root, path,
2618                                  &BTRFS_I(inode)->location, 1);
2619         if (ret) {
2620                 if (ret > 0)
2621                         ret = -ENOENT;
2622                 goto failed;
2623         }
2624
2625         btrfs_unlock_up_safe(path, 1);
2626         leaf = path->nodes[0];
2627         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2628                                   struct btrfs_inode_item);
2629
2630         fill_inode_item(trans, leaf, inode_item, inode);
2631         btrfs_mark_buffer_dirty(leaf);
2632         btrfs_set_inode_last_trans(trans, inode);
2633         ret = 0;
2634 failed:
2635         btrfs_free_path(path);
2636         return ret;
2637 }
2638
2639
2640 /*
2641  * unlink helper that gets used here in inode.c and in the tree logging
2642  * recovery code.  It remove a link in a directory with a given name, and
2643  * also drops the back refs in the inode to the directory
2644  */
2645 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2646                        struct btrfs_root *root,
2647                        struct inode *dir, struct inode *inode,
2648                        const char *name, int name_len)
2649 {
2650         struct btrfs_path *path;
2651         int ret = 0;
2652         struct extent_buffer *leaf;
2653         struct btrfs_dir_item *di;
2654         struct btrfs_key key;
2655         u64 index;
2656
2657         path = btrfs_alloc_path();
2658         if (!path) {
2659                 ret = -ENOMEM;
2660                 goto out;
2661         }
2662
2663         path->leave_spinning = 1;
2664         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2665                                     name, name_len, -1);
2666         if (IS_ERR(di)) {
2667                 ret = PTR_ERR(di);
2668                 goto err;
2669         }
2670         if (!di) {
2671                 ret = -ENOENT;
2672                 goto err;
2673         }
2674         leaf = path->nodes[0];
2675         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2676         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2677         if (ret)
2678                 goto err;
2679         btrfs_release_path(root, path);
2680
2681         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2682                                   inode->i_ino,
2683                                   dir->i_ino, &index);
2684         if (ret) {
2685                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2686                        "inode %lu parent %lu\n", name_len, name,
2687                        inode->i_ino, dir->i_ino);
2688                 goto err;
2689         }
2690
2691         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2692                                          index, name, name_len, -1);
2693         if (IS_ERR(di)) {
2694                 ret = PTR_ERR(di);
2695                 goto err;
2696         }
2697         if (!di) {
2698                 ret = -ENOENT;
2699                 goto err;
2700         }
2701         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2702         btrfs_release_path(root, path);
2703
2704         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2705                                          inode, dir->i_ino);
2706         BUG_ON(ret != 0 && ret != -ENOENT);
2707
2708         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2709                                            dir, index);
2710         if (ret == -ENOENT)
2711                 ret = 0;
2712 err:
2713         btrfs_free_path(path);
2714         if (ret)
2715                 goto out;
2716
2717         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2718         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2719         btrfs_update_inode(trans, root, dir);
2720         btrfs_drop_nlink(inode);
2721         ret = btrfs_update_inode(trans, root, inode);
2722 out:
2723         return ret;
2724 }
2725
2726 /* helper to check if there is any shared block in the path */
2727 static int check_path_shared(struct btrfs_root *root,
2728                              struct btrfs_path *path)
2729 {
2730         struct extent_buffer *eb;
2731         int level;
2732         u64 refs = 1;
2733
2734         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2735                 int ret;
2736
2737                 if (!path->nodes[level])
2738                         break;
2739                 eb = path->nodes[level];
2740                 if (!btrfs_block_can_be_shared(root, eb))
2741                         continue;
2742                 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2743                                                &refs, NULL);
2744                 if (refs > 1)
2745                         return 1;
2746         }
2747         return 0;
2748 }
2749
2750 /*
2751  * helper to start transaction for unlink and rmdir.
2752  *
2753  * unlink and rmdir are special in btrfs, they do not always free space.
2754  * so in enospc case, we should make sure they will free space before
2755  * allowing them to use the global metadata reservation.
2756  */
2757 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2758                                                        struct dentry *dentry)
2759 {
2760         struct btrfs_trans_handle *trans;
2761         struct btrfs_root *root = BTRFS_I(dir)->root;
2762         struct btrfs_path *path;
2763         struct btrfs_inode_ref *ref;
2764         struct btrfs_dir_item *di;
2765         struct inode *inode = dentry->d_inode;
2766         u64 index;
2767         int check_link = 1;
2768         int err = -ENOSPC;
2769         int ret;
2770
2771         trans = btrfs_start_transaction(root, 10);
2772         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2773                 return trans;
2774
2775         if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2776                 return ERR_PTR(-ENOSPC);
2777
2778         /* check if there is someone else holds reference */
2779         if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2780                 return ERR_PTR(-ENOSPC);
2781
2782         if (atomic_read(&inode->i_count) > 2)
2783                 return ERR_PTR(-ENOSPC);
2784
2785         if (xchg(&root->fs_info->enospc_unlink, 1))
2786                 return ERR_PTR(-ENOSPC);
2787
2788         path = btrfs_alloc_path();
2789         if (!path) {
2790                 root->fs_info->enospc_unlink = 0;
2791                 return ERR_PTR(-ENOMEM);
2792         }
2793
2794         trans = btrfs_start_transaction(root, 0);
2795         if (IS_ERR(trans)) {
2796                 btrfs_free_path(path);
2797                 root->fs_info->enospc_unlink = 0;
2798                 return trans;
2799         }
2800
2801         path->skip_locking = 1;
2802         path->search_commit_root = 1;
2803
2804         ret = btrfs_lookup_inode(trans, root, path,
2805                                 &BTRFS_I(dir)->location, 0);
2806         if (ret < 0) {
2807                 err = ret;
2808                 goto out;
2809         }
2810         if (ret == 0) {
2811                 if (check_path_shared(root, path))
2812                         goto out;
2813         } else {
2814                 check_link = 0;
2815         }
2816         btrfs_release_path(root, path);
2817
2818         ret = btrfs_lookup_inode(trans, root, path,
2819                                 &BTRFS_I(inode)->location, 0);
2820         if (ret < 0) {
2821                 err = ret;
2822                 goto out;
2823         }
2824         if (ret == 0) {
2825                 if (check_path_shared(root, path))
2826                         goto out;
2827         } else {
2828                 check_link = 0;
2829         }
2830         btrfs_release_path(root, path);
2831
2832         if (ret == 0 && S_ISREG(inode->i_mode)) {
2833                 ret = btrfs_lookup_file_extent(trans, root, path,
2834                                                inode->i_ino, (u64)-1, 0);
2835                 if (ret < 0) {
2836                         err = ret;
2837                         goto out;
2838                 }
2839                 BUG_ON(ret == 0);
2840                 if (check_path_shared(root, path))
2841                         goto out;
2842                 btrfs_release_path(root, path);
2843         }
2844
2845         if (!check_link) {
2846                 err = 0;
2847                 goto out;
2848         }
2849
2850         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2851                                 dentry->d_name.name, dentry->d_name.len, 0);
2852         if (IS_ERR(di)) {
2853                 err = PTR_ERR(di);
2854                 goto out;
2855         }
2856         if (di) {
2857                 if (check_path_shared(root, path))
2858                         goto out;
2859         } else {
2860                 err = 0;
2861                 goto out;
2862         }
2863         btrfs_release_path(root, path);
2864
2865         ref = btrfs_lookup_inode_ref(trans, root, path,
2866                                 dentry->d_name.name, dentry->d_name.len,
2867                                 inode->i_ino, dir->i_ino, 0);
2868         if (IS_ERR(ref)) {
2869                 err = PTR_ERR(ref);
2870                 goto out;
2871         }
2872         BUG_ON(!ref);
2873         if (check_path_shared(root, path))
2874                 goto out;
2875         index = btrfs_inode_ref_index(path->nodes[0], ref);
2876         btrfs_release_path(root, path);
2877
2878         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2879                                 dentry->d_name.name, dentry->d_name.len, 0);
2880         if (IS_ERR(di)) {
2881                 err = PTR_ERR(di);
2882                 goto out;
2883         }
2884         BUG_ON(ret == -ENOENT);
2885         if (check_path_shared(root, path))
2886                 goto out;
2887
2888         err = 0;
2889 out:
2890         btrfs_free_path(path);
2891         if (err) {
2892                 btrfs_end_transaction(trans, root);
2893                 root->fs_info->enospc_unlink = 0;
2894                 return ERR_PTR(err);
2895         }
2896
2897         trans->block_rsv = &root->fs_info->global_block_rsv;
2898         return trans;
2899 }
2900
2901 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2902                                struct btrfs_root *root)
2903 {
2904         if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2905                 BUG_ON(!root->fs_info->enospc_unlink);
2906                 root->fs_info->enospc_unlink = 0;
2907         }
2908         btrfs_end_transaction_throttle(trans, root);
2909 }
2910
2911 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2912 {
2913         struct btrfs_root *root = BTRFS_I(dir)->root;
2914         struct btrfs_trans_handle *trans;
2915         struct inode *inode = dentry->d_inode;
2916         int ret;
2917         unsigned long nr = 0;
2918
2919         trans = __unlink_start_trans(dir, dentry);
2920         if (IS_ERR(trans))
2921                 return PTR_ERR(trans);
2922
2923         btrfs_set_trans_block_group(trans, dir);
2924
2925         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2926
2927         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2928                                  dentry->d_name.name, dentry->d_name.len);
2929         BUG_ON(ret);
2930
2931         if (inode->i_nlink == 0) {
2932                 ret = btrfs_orphan_add(trans, inode);
2933                 BUG_ON(ret);
2934         }
2935
2936         nr = trans->blocks_used;
2937         __unlink_end_trans(trans, root);
2938         btrfs_btree_balance_dirty(root, nr);
2939         return ret;
2940 }
2941
2942 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2943                         struct btrfs_root *root,
2944                         struct inode *dir, u64 objectid,
2945                         const char *name, int name_len)
2946 {
2947         struct btrfs_path *path;
2948         struct extent_buffer *leaf;
2949         struct btrfs_dir_item *di;
2950         struct btrfs_key key;
2951         u64 index;
2952         int ret;
2953
2954         path = btrfs_alloc_path();
2955         if (!path)
2956                 return -ENOMEM;
2957
2958         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2959                                    name, name_len, -1);
2960         BUG_ON(!di || IS_ERR(di));
2961
2962         leaf = path->nodes[0];
2963         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2964         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2965         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2966         BUG_ON(ret);
2967         btrfs_release_path(root, path);
2968
2969         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2970                                  objectid, root->root_key.objectid,
2971                                  dir->i_ino, &index, name, name_len);
2972         if (ret < 0) {
2973                 BUG_ON(ret != -ENOENT);
2974                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2975                                                  name, name_len);
2976                 BUG_ON(!di || IS_ERR(di));
2977
2978                 leaf = path->nodes[0];
2979                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2980                 btrfs_release_path(root, path);
2981                 index = key.offset;
2982         }
2983
2984         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2985                                          index, name, name_len, -1);
2986         BUG_ON(!di || IS_ERR(di));
2987
2988         leaf = path->nodes[0];
2989         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2990         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2991         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2992         BUG_ON(ret);
2993         btrfs_release_path(root, path);
2994
2995         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2996         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2997         ret = btrfs_update_inode(trans, root, dir);
2998         BUG_ON(ret);
2999
3000         btrfs_free_path(path);
3001         return 0;
3002 }
3003
3004 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3005 {
3006         struct inode *inode = dentry->d_inode;
3007         int err = 0;
3008         struct btrfs_root *root = BTRFS_I(dir)->root;
3009         struct btrfs_trans_handle *trans;
3010         unsigned long nr = 0;
3011
3012         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3013             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3014                 return -ENOTEMPTY;
3015
3016         trans = __unlink_start_trans(dir, dentry);
3017         if (IS_ERR(trans))
3018                 return PTR_ERR(trans);
3019
3020         btrfs_set_trans_block_group(trans, dir);
3021
3022         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3023                 err = btrfs_unlink_subvol(trans, root, dir,
3024                                           BTRFS_I(inode)->location.objectid,
3025                                           dentry->d_name.name,
3026                                           dentry->d_name.len);
3027                 goto out;
3028         }
3029
3030         err = btrfs_orphan_add(trans, inode);
3031         if (err)
3032                 goto out;
3033
3034         /* now the directory is empty */
3035         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3036                                  dentry->d_name.name, dentry->d_name.len);
3037         if (!err)
3038                 btrfs_i_size_write(inode, 0);
3039 out:
3040         nr = trans->blocks_used;
3041         __unlink_end_trans(trans, root);
3042         btrfs_btree_balance_dirty(root, nr);
3043
3044         return err;
3045 }
3046
3047 #if 0
3048 /*
3049  * when truncating bytes in a file, it is possible to avoid reading
3050  * the leaves that contain only checksum items.  This can be the
3051  * majority of the IO required to delete a large file, but it must
3052  * be done carefully.
3053  *
3054  * The keys in the level just above the leaves are checked to make sure
3055  * the lowest key in a given leaf is a csum key, and starts at an offset
3056  * after the new  size.
3057  *
3058  * Then the key for the next leaf is checked to make sure it also has
3059  * a checksum item for the same file.  If it does, we know our target leaf
3060  * contains only checksum items, and it can be safely freed without reading
3061  * it.
3062  *
3063  * This is just an optimization targeted at large files.  It may do
3064  * nothing.  It will return 0 unless things went badly.
3065  */
3066 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3067                                      struct btrfs_root *root,
3068                                      struct btrfs_path *path,
3069                                      struct inode *inode, u64 new_size)
3070 {
3071         struct btrfs_key key;
3072         int ret;
3073         int nritems;
3074         struct btrfs_key found_key;
3075         struct btrfs_key other_key;
3076         struct btrfs_leaf_ref *ref;
3077         u64 leaf_gen;
3078         u64 leaf_start;
3079
3080         path->lowest_level = 1;
3081         key.objectid = inode->i_ino;
3082         key.type = BTRFS_CSUM_ITEM_KEY;
3083         key.offset = new_size;
3084 again:
3085         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3086         if (ret < 0)
3087                 goto out;
3088
3089         if (path->nodes[1] == NULL) {
3090                 ret = 0;
3091                 goto out;
3092         }
3093         ret = 0;
3094         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3095         nritems = btrfs_header_nritems(path->nodes[1]);
3096
3097         if (!nritems)
3098                 goto out;
3099
3100         if (path->slots[1] >= nritems)
3101                 goto next_node;
3102
3103         /* did we find a key greater than anything we want to delete? */
3104         if (found_key.objectid > inode->i_ino ||
3105            (found_key.objectid == inode->i_ino && found_key.type > key.type))
3106                 goto out;
3107
3108         /* we check the next key in the node to make sure the leave contains
3109          * only checksum items.  This comparison doesn't work if our
3110          * leaf is the last one in the node
3111          */
3112         if (path->slots[1] + 1 >= nritems) {
3113 next_node:
3114                 /* search forward from the last key in the node, this
3115                  * will bring us into the next node in the tree
3116                  */
3117                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3118
3119                 /* unlikely, but we inc below, so check to be safe */
3120                 if (found_key.offset == (u64)-1)
3121                         goto out;
3122
3123                 /* search_forward needs a path with locks held, do the
3124                  * search again for the original key.  It is possible
3125                  * this will race with a balance and return a path that
3126                  * we could modify, but this drop is just an optimization
3127                  * and is allowed to miss some leaves.
3128                  */
3129                 btrfs_release_path(root, path);
3130                 found_key.offset++;
3131
3132                 /* setup a max key for search_forward */
3133                 other_key.offset = (u64)-1;
3134                 other_key.type = key.type;
3135                 other_key.objectid = key.objectid;
3136
3137                 path->keep_locks = 1;
3138                 ret = btrfs_search_forward(root, &found_key, &other_key,
3139                                            path, 0, 0);
3140                 path->keep_locks = 0;
3141                 if (ret || found_key.objectid != key.objectid ||
3142                     found_key.type != key.type) {
3143                         ret = 0;
3144                         goto out;
3145                 }
3146
3147                 key.offset = found_key.offset;
3148                 btrfs_release_path(root, path);
3149                 cond_resched();
3150                 goto again;
3151         }
3152
3153         /* we know there's one more slot after us in the tree,
3154          * read that key so we can verify it is also a checksum item
3155          */
3156         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3157
3158         if (found_key.objectid < inode->i_ino)
3159                 goto next_key;
3160
3161         if (found_key.type != key.type || found_key.offset < new_size)
3162                 goto next_key;
3163
3164         /*
3165          * if the key for the next leaf isn't a csum key from this objectid,
3166          * we can't be sure there aren't good items inside this leaf.
3167          * Bail out
3168          */
3169         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3170                 goto out;
3171
3172         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3173         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3174         /*
3175          * it is safe to delete this leaf, it contains only
3176          * csum items from this inode at an offset >= new_size
3177          */
3178         ret = btrfs_del_leaf(trans, root, path, leaf_start);
3179         BUG_ON(ret);
3180
3181         if (root->ref_cows && leaf_gen < trans->transid) {
3182                 ref = btrfs_alloc_leaf_ref(root, 0);
3183                 if (ref) {
3184                         ref->root_gen = root->root_key.offset;
3185                         ref->bytenr = leaf_start;
3186                         ref->owner = 0;
3187                         ref->generation = leaf_gen;
3188                         ref->nritems = 0;
3189
3190                         btrfs_sort_leaf_ref(ref);
3191
3192                         ret = btrfs_add_leaf_ref(root, ref, 0);
3193                         WARN_ON(ret);
3194                         btrfs_free_leaf_ref(root, ref);
3195                 } else {
3196                         WARN_ON(1);
3197                 }
3198         }
3199 next_key:
3200         btrfs_release_path(root, path);
3201
3202         if (other_key.objectid == inode->i_ino &&
3203             other_key.type == key.type && other_key.offset > key.offset) {
3204                 key.offset = other_key.offset;
3205                 cond_resched();
3206                 goto again;
3207         }
3208         ret = 0;
3209 out:
3210         /* fixup any changes we've made to the path */
3211         path->lowest_level = 0;
3212         path->keep_locks = 0;
3213         btrfs_release_path(root, path);
3214         return ret;
3215 }
3216
3217 #endif
3218
3219 /*
3220  * this can truncate away extent items, csum items and directory items.
3221  * It starts at a high offset and removes keys until it can't find
3222  * any higher than new_size
3223  *
3224  * csum items that cross the new i_size are truncated to the new size
3225  * as well.
3226  *
3227  * min_type is the minimum key type to truncate down to.  If set to 0, this
3228  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3229  */
3230 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3231                                struct btrfs_root *root,
3232                                struct inode *inode,
3233                                u64 new_size, u32 min_type)
3234 {
3235         struct btrfs_path *path;
3236         struct extent_buffer *leaf;
3237         struct btrfs_file_extent_item *fi;
3238         struct btrfs_key key;
3239         struct btrfs_key found_key;
3240         u64 extent_start = 0;
3241         u64 extent_num_bytes = 0;
3242         u64 extent_offset = 0;
3243         u64 item_end = 0;
3244         u64 mask = root->sectorsize - 1;
3245         u32 found_type = (u8)-1;
3246         int found_extent;
3247         int del_item;
3248         int pending_del_nr = 0;
3249         int pending_del_slot = 0;
3250         int extent_type = -1;
3251         int encoding;
3252         int ret;
3253         int err = 0;
3254
3255         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3256
3257         if (root->ref_cows || root == root->fs_info->tree_root)
3258                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3259
3260         path = btrfs_alloc_path();
3261         BUG_ON(!path);
3262         path->reada = -1;
3263
3264         key.objectid = inode->i_ino;
3265         key.offset = (u64)-1;
3266         key.type = (u8)-1;
3267
3268 search_again:
3269         path->leave_spinning = 1;
3270         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3271         if (ret < 0) {
3272                 err = ret;
3273                 goto out;
3274         }
3275
3276         if (ret > 0) {
3277                 /* there are no items in the tree for us to truncate, we're
3278                  * done
3279                  */
3280                 if (path->slots[0] == 0)
3281                         goto out;
3282                 path->slots[0]--;
3283         }
3284
3285         while (1) {
3286                 fi = NULL;
3287                 leaf = path->nodes[0];
3288                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3289                 found_type = btrfs_key_type(&found_key);
3290                 encoding = 0;
3291
3292                 if (found_key.objectid != inode->i_ino)
3293                         break;
3294
3295                 if (found_type < min_type)
3296                         break;
3297
3298                 item_end = found_key.offset;
3299                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3300                         fi = btrfs_item_ptr(leaf, path->slots[0],
3301                                             struct btrfs_file_extent_item);
3302                         extent_type = btrfs_file_extent_type(leaf, fi);
3303                         encoding = btrfs_file_extent_compression(leaf, fi);
3304                         encoding |= btrfs_file_extent_encryption(leaf, fi);
3305                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3306
3307                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3308                                 item_end +=
3309                                     btrfs_file_extent_num_bytes(leaf, fi);
3310                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3311                                 item_end += btrfs_file_extent_inline_len(leaf,
3312                                                                          fi);
3313                         }
3314                         item_end--;
3315                 }
3316                 if (found_type > min_type) {
3317                         del_item = 1;
3318                 } else {
3319                         if (item_end < new_size)
3320                                 break;
3321                         if (found_key.offset >= new_size)
3322                                 del_item = 1;
3323                         else
3324                                 del_item = 0;
3325                 }
3326                 found_extent = 0;
3327                 /* FIXME, shrink the extent if the ref count is only 1 */
3328                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3329                         goto delete;
3330
3331                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3332                         u64 num_dec;
3333                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3334                         if (!del_item && !encoding) {
3335                                 u64 orig_num_bytes =
3336                                         btrfs_file_extent_num_bytes(leaf, fi);
3337                                 extent_num_bytes = new_size -
3338                                         found_key.offset + root->sectorsize - 1;
3339                                 extent_num_bytes = extent_num_bytes &
3340                                         ~((u64)root->sectorsize - 1);
3341                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3342                                                          extent_num_bytes);
3343                                 num_dec = (orig_num_bytes -
3344                                            extent_num_bytes);
3345                                 if (root->ref_cows && extent_start != 0)
3346                                         inode_sub_bytes(inode, num_dec);
3347                                 btrfs_mark_buffer_dirty(leaf);
3348                         } else {
3349                                 extent_num_bytes =
3350                                         btrfs_file_extent_disk_num_bytes(leaf,
3351                                                                          fi);
3352                                 extent_offset = found_key.offset -
3353                                         btrfs_file_extent_offset(leaf, fi);
3354
3355                                 /* FIXME blocksize != 4096 */
3356                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3357                                 if (extent_start != 0) {
3358                                         found_extent = 1;
3359                                         if (root->ref_cows)
3360                                                 inode_sub_bytes(inode, num_dec);
3361                                 }
3362                         }
3363                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3364                         /*
3365                          * we can't truncate inline items that have had
3366                          * special encodings
3367                          */
3368                         if (!del_item &&
3369                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3370                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3371                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3372                                 u32 size = new_size - found_key.offset;
3373
3374                                 if (root->ref_cows) {
3375                                         inode_sub_bytes(inode, item_end + 1 -
3376                                                         new_size);
3377                                 }
3378                                 size =
3379                                     btrfs_file_extent_calc_inline_size(size);
3380                                 ret = btrfs_truncate_item(trans, root, path,
3381                                                           size, 1);
3382                                 BUG_ON(ret);
3383                         } else if (root->ref_cows) {
3384                                 inode_sub_bytes(inode, item_end + 1 -
3385                                                 found_key.offset);
3386                         }
3387                 }
3388 delete:
3389                 if (del_item) {
3390                         if (!pending_del_nr) {
3391                                 /* no pending yet, add ourselves */
3392                                 pending_del_slot = path->slots[0];
3393                                 pending_del_nr = 1;
3394                         } else if (pending_del_nr &&
3395                                    path->slots[0] + 1 == pending_del_slot) {
3396                                 /* hop on the pending chunk */
3397                                 pending_del_nr++;
3398                                 pending_del_slot = path->slots[0];
3399                         } else {
3400                                 BUG();
3401                         }
3402                 } else {
3403                         break;
3404                 }
3405                 if (found_extent && (root->ref_cows ||
3406                                      root == root->fs_info->tree_root)) {
3407                         btrfs_set_path_blocking(path);
3408                         ret = btrfs_free_extent(trans, root, extent_start,
3409                                                 extent_num_bytes, 0,
3410                                                 btrfs_header_owner(leaf),
3411                                                 inode->i_ino, extent_offset);
3412                         BUG_ON(ret);
3413                 }
3414
3415                 if (found_type == BTRFS_INODE_ITEM_KEY)
3416                         break;
3417
3418                 if (path->slots[0] == 0 ||
3419                     path->slots[0] != pending_del_slot) {
3420                         if (root->ref_cows) {
3421                                 err = -EAGAIN;
3422                                 goto out;
3423                         }
3424                         if (pending_del_nr) {
3425                                 ret = btrfs_del_items(trans, root, path,
3426                                                 pending_del_slot,
3427                                                 pending_del_nr);
3428                                 BUG_ON(ret);
3429                                 pending_del_nr = 0;
3430                         }
3431                         btrfs_release_path(root, path);
3432                         goto search_again;
3433                 } else {
3434                         path->slots[0]--;
3435                 }
3436         }
3437 out:
3438         if (pending_del_nr) {
3439                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3440                                       pending_del_nr);
3441                 BUG_ON(ret);
3442         }
3443         btrfs_free_path(path);
3444         return err;
3445 }
3446
3447 /*
3448  * taken from block_truncate_page, but does cow as it zeros out
3449  * any bytes left in the last page in the file.
3450  */
3451 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3452 {
3453         struct inode *inode = mapping->host;
3454         struct btrfs_root *root = BTRFS_I(inode)->root;
3455         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3456         struct btrfs_ordered_extent *ordered;
3457         struct extent_state *cached_state = NULL;
3458         char *kaddr;
3459         u32 blocksize = root->sectorsize;
3460         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3461         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3462         struct page *page;
3463         int ret = 0;
3464         u64 page_start;
3465         u64 page_end;
3466
3467         if ((offset & (blocksize - 1)) == 0)
3468                 goto out;
3469         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3470         if (ret)
3471                 goto out;
3472
3473         ret = -ENOMEM;
3474 again:
3475         page = grab_cache_page(mapping, index);
3476         if (!page) {
3477                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3478                 goto out;
3479         }
3480
3481         page_start = page_offset(page);
3482         page_end = page_start + PAGE_CACHE_SIZE - 1;
3483
3484         if (!PageUptodate(page)) {
3485                 ret = btrfs_readpage(NULL, page);
3486                 lock_page(page);
3487                 if (page->mapping != mapping) {
3488                         unlock_page(page);
3489                         page_cache_release(page);
3490                         goto again;
3491                 }
3492                 if (!PageUptodate(page)) {
3493                         ret = -EIO;
3494                         goto out_unlock;
3495                 }
3496         }
3497         wait_on_page_writeback(page);
3498
3499         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3500                          GFP_NOFS);
3501         set_page_extent_mapped(page);
3502
3503         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3504         if (ordered) {
3505                 unlock_extent_cached(io_tree, page_start, page_end,
3506                                      &cached_state, GFP_NOFS);
3507                 unlock_page(page);
3508                 page_cache_release(page);
3509                 btrfs_start_ordered_extent(inode, ordered, 1);
3510                 btrfs_put_ordered_extent(ordered);
3511                 goto again;
3512         }
3513
3514         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3515                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3516                           0, 0, &cached_state, GFP_NOFS);
3517
3518         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3519                                         &cached_state);
3520         if (ret) {
3521                 unlock_extent_cached(io_tree, page_start, page_end,
3522                                      &cached_state, GFP_NOFS);
3523                 goto out_unlock;
3524         }
3525
3526         ret = 0;
3527         if (offset != PAGE_CACHE_SIZE) {
3528                 kaddr = kmap(page);
3529                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3530                 flush_dcache_page(page);
3531                 kunmap(page);
3532         }
3533         ClearPageChecked(page);
3534         set_page_dirty(page);
3535         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3536                              GFP_NOFS);
3537
3538 out_unlock:
3539         if (ret)
3540                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3541         unlock_page(page);
3542         page_cache_release(page);
3543 out:
3544         return ret;
3545 }
3546
3547 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3548 {
3549         struct btrfs_trans_handle *trans;
3550         struct btrfs_root *root = BTRFS_I(inode)->root;
3551         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3552         struct extent_map *em = NULL;
3553         struct extent_state *cached_state = NULL;
3554         u64 mask = root->sectorsize - 1;
3555         u64 hole_start = (oldsize + mask) & ~mask;
3556         u64 block_end = (size + mask) & ~mask;
3557         u64 last_byte;
3558         u64 cur_offset;
3559         u64 hole_size;
3560         int err = 0;
3561
3562         if (size <= hole_start)
3563                 return 0;
3564
3565         while (1) {
3566                 struct btrfs_ordered_extent *ordered;
3567                 btrfs_wait_ordered_range(inode, hole_start,
3568                                          block_end - hole_start);
3569                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3570                                  &cached_state, GFP_NOFS);
3571                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3572                 if (!ordered)
3573                         break;
3574                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3575                                      &cached_state, GFP_NOFS);
3576                 btrfs_put_ordered_extent(ordered);
3577         }
3578
3579         cur_offset = hole_start;
3580         while (1) {
3581                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3582                                 block_end - cur_offset, 0);
3583                 BUG_ON(IS_ERR(em) || !em);
3584                 last_byte = min(extent_map_end(em), block_end);
3585                 last_byte = (last_byte + mask) & ~mask;
3586                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3587                         u64 hint_byte = 0;
3588                         hole_size = last_byte - cur_offset;
3589
3590                         trans = btrfs_start_transaction(root, 2);
3591                         if (IS_ERR(trans)) {
3592                                 err = PTR_ERR(trans);
3593                                 break;
3594                         }
3595                         btrfs_set_trans_block_group(trans, inode);
3596
3597                         err = btrfs_drop_extents(trans, inode, cur_offset,
3598                                                  cur_offset + hole_size,
3599                                                  &hint_byte, 1);
3600                         BUG_ON(err);
3601
3602                         err = btrfs_insert_file_extent(trans, root,
3603                                         inode->i_ino, cur_offset, 0,
3604                                         0, hole_size, 0, hole_size,
3605                                         0, 0, 0);
3606                         BUG_ON(err);
3607
3608                         btrfs_drop_extent_cache(inode, hole_start,
3609                                         last_byte - 1, 0);
3610
3611                         btrfs_end_transaction(trans, root);
3612                 }
3613                 free_extent_map(em);
3614                 em = NULL;
3615                 cur_offset = last_byte;
3616                 if (cur_offset >= block_end)
3617                         break;
3618         }
3619
3620         free_extent_map(em);
3621         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3622                              GFP_NOFS);
3623         return err;
3624 }
3625
3626 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3627 {
3628         struct btrfs_root *root = BTRFS_I(inode)->root;
3629         struct btrfs_trans_handle *trans;
3630         loff_t oldsize = i_size_read(inode);
3631         unsigned long nr;
3632         int ret;
3633
3634         if (newsize == oldsize)
3635                 return 0;
3636
3637         trans = btrfs_start_transaction(root, 5);
3638         if (IS_ERR(trans))
3639                 return PTR_ERR(trans);
3640
3641         btrfs_set_trans_block_group(trans, inode);
3642
3643         ret = btrfs_orphan_add(trans, inode);
3644         BUG_ON(ret);
3645
3646         nr = trans->blocks_used;
3647         btrfs_end_transaction(trans, root);
3648         btrfs_btree_balance_dirty(root, nr);
3649
3650         if (newsize > oldsize) {
3651                 i_size_write(inode, newsize);
3652                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3653                 truncate_pagecache(inode, oldsize, newsize);
3654                 ret = btrfs_cont_expand(inode, oldsize, newsize);
3655                 if (ret) {
3656                         btrfs_setsize(inode, oldsize);
3657                         return ret;
3658                 }
3659
3660                 trans = btrfs_start_transaction(root, 0);
3661                 BUG_ON(IS_ERR(trans));
3662                 btrfs_set_trans_block_group(trans, inode);
3663                 trans->block_rsv = root->orphan_block_rsv;
3664                 BUG_ON(!trans->block_rsv);
3665
3666                 ret = btrfs_update_inode(trans, root, inode);
3667                 BUG_ON(ret);
3668                 if (inode->i_nlink > 0) {
3669                         ret = btrfs_orphan_del(trans, inode);
3670                         BUG_ON(ret);
3671                 }
3672                 nr = trans->blocks_used;
3673                 btrfs_end_transaction(trans, root);
3674                 btrfs_btree_balance_dirty(root, nr);
3675         } else {
3676
3677                 /*
3678                  * We're truncating a file that used to have good data down to
3679                  * zero. Make sure it gets into the ordered flush list so that
3680                  * any new writes get down to disk quickly.
3681                  */
3682                 if (newsize == 0)
3683                         BTRFS_I(inode)->ordered_data_close = 1;
3684
3685                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3686                 truncate_setsize(inode, newsize);
3687                 ret = btrfs_truncate(inode);
3688         }
3689
3690         return ret;
3691 }
3692
3693 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3694 {
3695         struct inode *inode = dentry->d_inode;
3696         struct btrfs_root *root = BTRFS_I(inode)->root;
3697         int err;
3698
3699         if (btrfs_root_readonly(root))
3700                 return -EROFS;
3701
3702         err = inode_change_ok(inode, attr);
3703         if (err)
3704                 return err;
3705
3706         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3707                 err = btrfs_setsize(inode, attr->ia_size);
3708                 if (err)
3709                         return err;
3710         }
3711
3712         if (attr->ia_valid) {
3713                 setattr_copy(inode, attr);
3714                 mark_inode_dirty(inode);
3715
3716                 if (attr->ia_valid & ATTR_MODE)
3717                         err = btrfs_acl_chmod(inode);
3718         }
3719
3720         return err;
3721 }
3722
3723 void btrfs_evict_inode(struct inode *inode)
3724 {
3725         struct btrfs_trans_handle *trans;
3726         struct btrfs_root *root = BTRFS_I(inode)->root;
3727         unsigned long nr;
3728         int ret;
3729
3730         truncate_inode_pages(&inode->i_data, 0);
3731         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3732                                root == root->fs_info->tree_root))
3733                 goto no_delete;
3734
3735         if (is_bad_inode(inode)) {
3736                 btrfs_orphan_del(NULL, inode);
3737                 goto no_delete;
3738         }
3739         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3740         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3741
3742         if (root->fs_info->log_root_recovering) {
3743                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3744                 goto no_delete;
3745         }
3746
3747         if (inode->i_nlink > 0) {
3748                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3749                 goto no_delete;
3750         }
3751
3752         btrfs_i_size_write(inode, 0);
3753
3754         while (1) {
3755                 trans = btrfs_start_transaction(root, 0);
3756                 BUG_ON(IS_ERR(trans));
3757                 btrfs_set_trans_block_group(trans, inode);
3758                 trans->block_rsv = root->orphan_block_rsv;
3759
3760                 ret = btrfs_block_rsv_check(trans, root,
3761                                             root->orphan_block_rsv, 0, 5);
3762                 if (ret) {
3763                         BUG_ON(ret != -EAGAIN);
3764                         ret = btrfs_commit_transaction(trans, root);
3765                         BUG_ON(ret);
3766                         continue;
3767                 }
3768
3769                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3770                 if (ret != -EAGAIN)
3771                         break;
3772
3773                 nr = trans->blocks_used;
3774                 btrfs_end_transaction(trans, root);
3775                 trans = NULL;
3776                 btrfs_btree_balance_dirty(root, nr);
3777
3778         }
3779
3780         if (ret == 0) {
3781                 ret = btrfs_orphan_del(trans, inode);
3782                 BUG_ON(ret);
3783         }
3784
3785         nr = trans->blocks_used;
3786         btrfs_end_transaction(trans, root);
3787         btrfs_btree_balance_dirty(root, nr);
3788 no_delete:
3789         end_writeback(inode);
3790         return;
3791 }
3792
3793 /*
3794  * this returns the key found in the dir entry in the location pointer.
3795  * If no dir entries were found, location->objectid is 0.
3796  */
3797 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3798                                struct btrfs_key *location)
3799 {
3800         const char *name = dentry->d_name.name;
3801         int namelen = dentry->d_name.len;
3802         struct btrfs_dir_item *di;
3803         struct btrfs_path *path;
3804         struct btrfs_root *root = BTRFS_I(dir)->root;
3805         int ret = 0;
3806
3807         path = btrfs_alloc_path();
3808         BUG_ON(!path);
3809
3810         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3811                                     namelen, 0);
3812         if (IS_ERR(di))
3813                 ret = PTR_ERR(di);
3814
3815         if (!di || IS_ERR(di))
3816                 goto out_err;
3817
3818         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3819 out:
3820         btrfs_free_path(path);
3821         return ret;
3822 out_err:
3823         location->objectid = 0;
3824         goto out;
3825 }
3826
3827 /*
3828  * when we hit a tree root in a directory, the btrfs part of the inode
3829  * needs to be changed to reflect the root directory of the tree root.  This
3830  * is kind of like crossing a mount point.
3831  */
3832 static int fixup_tree_root_location(struct btrfs_root *root,
3833                                     struct inode *dir,
3834                                     struct dentry *dentry,
3835                                     struct btrfs_key *location,
3836                                     struct btrfs_root **sub_root)
3837 {
3838         struct btrfs_path *path;
3839         struct btrfs_root *new_root;
3840         struct btrfs_root_ref *ref;
3841         struct extent_buffer *leaf;
3842         int ret;
3843         int err = 0;
3844
3845         path = btrfs_alloc_path();
3846         if (!path) {
3847                 err = -ENOMEM;
3848                 goto out;
3849         }
3850
3851         err = -ENOENT;
3852         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3853                                   BTRFS_I(dir)->root->root_key.objectid,
3854                                   location->objectid);
3855         if (ret) {
3856                 if (ret < 0)
3857                         err = ret;
3858                 goto out;
3859         }
3860
3861         leaf = path->nodes[0];
3862         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3863         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3864             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3865                 goto out;
3866
3867         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3868                                    (unsigned long)(ref + 1),
3869                                    dentry->d_name.len);
3870         if (ret)
3871                 goto out;
3872
3873         btrfs_release_path(root->fs_info->tree_root, path);
3874
3875         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3876         if (IS_ERR(new_root)) {
3877                 err = PTR_ERR(new_root);
3878                 goto out;
3879         }
3880
3881         if (btrfs_root_refs(&new_root->root_item) == 0) {
3882                 err = -ENOENT;
3883                 goto out;
3884         }
3885
3886         *sub_root = new_root;
3887         location->objectid = btrfs_root_dirid(&new_root->root_item);
3888         location->type = BTRFS_INODE_ITEM_KEY;
3889         location->offset = 0;
3890         err = 0;
3891 out:
3892         btrfs_free_path(path);
3893         return err;
3894 }
3895
3896 static void inode_tree_add(struct inode *inode)
3897 {
3898         struct btrfs_root *root = BTRFS_I(inode)->root;
3899         struct btrfs_inode *entry;
3900         struct rb_node **p;
3901         struct rb_node *parent;
3902 again:
3903         p = &root->inode_tree.rb_node;
3904         parent = NULL;
3905
3906         if (inode_unhashed(inode))
3907                 return;
3908
3909         spin_lock(&root->inode_lock);
3910         while (*p) {
3911                 parent = *p;
3912                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3913
3914                 if (inode->i_ino < entry->vfs_inode.i_ino)
3915                         p = &parent->rb_left;
3916                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3917                         p = &parent->rb_right;
3918                 else {
3919                         WARN_ON(!(entry->vfs_inode.i_state &
3920                                   (I_WILL_FREE | I_FREEING)));
3921                         rb_erase(parent, &root->inode_tree);
3922                         RB_CLEAR_NODE(parent);
3923                         spin_unlock(&root->inode_lock);
3924                         goto again;
3925                 }
3926         }
3927         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3928         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3929         spin_unlock(&root->inode_lock);
3930 }
3931
3932 static void inode_tree_del(struct inode *inode)
3933 {
3934         struct btrfs_root *root = BTRFS_I(inode)->root;
3935         int empty = 0;
3936
3937         spin_lock(&root->inode_lock);
3938         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3939                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3940                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3941                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3942         }
3943         spin_unlock(&root->inode_lock);
3944
3945         /*
3946          * Free space cache has inodes in the tree root, but the tree root has a
3947          * root_refs of 0, so this could end up dropping the tree root as a
3948          * snapshot, so we need the extra !root->fs_info->tree_root check to
3949          * make sure we don't drop it.
3950          */
3951         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3952             root != root->fs_info->tree_root) {
3953                 synchronize_srcu(&root->fs_info->subvol_srcu);
3954                 spin_lock(&root->inode_lock);
3955                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3956                 spin_unlock(&root->inode_lock);
3957                 if (empty)
3958                         btrfs_add_dead_root(root);
3959         }
3960 }
3961
3962 int btrfs_invalidate_inodes(struct btrfs_root *root)
3963 {
3964         struct rb_node *node;
3965         struct rb_node *prev;
3966         struct btrfs_inode *entry;
3967         struct inode *inode;
3968         u64 objectid = 0;
3969
3970         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3971
3972         spin_lock(&root->inode_lock);
3973 again:
3974         node = root->inode_tree.rb_node;
3975         prev = NULL;
3976         while (node) {
3977                 prev = node;
3978                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3979
3980                 if (objectid < entry->vfs_inode.i_ino)
3981                         node = node->rb_left;
3982                 else if (objectid > entry->vfs_inode.i_ino)
3983                         node = node->rb_right;
3984                 else
3985                         break;
3986         }
3987         if (!node) {
3988                 while (prev) {
3989                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3990                         if (objectid <= entry->vfs_inode.i_ino) {
3991                                 node = prev;
3992                                 break;
3993                         }
3994                         prev = rb_next(prev);
3995                 }
3996         }
3997         while (node) {
3998                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3999                 objectid = entry->vfs_inode.i_ino + 1;
4000                 inode = igrab(&entry->vfs_inode);
4001                 if (inode) {
4002                         spin_unlock(&root->inode_lock);
4003                         if (atomic_read(&inode->i_count) > 1)
4004                                 d_prune_aliases(inode);
4005                         /*
4006                          * btrfs_drop_inode will have it removed from
4007                          * the inode cache when its usage count
4008                          * hits zero.
4009                          */
4010                         iput(inode);
4011                         cond_resched();
4012                         spin_lock(&root->inode_lock);
4013                         goto again;
4014                 }
4015
4016                 if (cond_resched_lock(&root->inode_lock))
4017                         goto again;
4018
4019                 node = rb_next(node);
4020         }
4021         spin_unlock(&root->inode_lock);
4022         return 0;
4023 }
4024
4025 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4026 {
4027         struct btrfs_iget_args *args = p;
4028         inode->i_ino = args->ino;
4029         BTRFS_I(inode)->root = args->root;
4030         btrfs_set_inode_space_info(args->root, inode);
4031         return 0;
4032 }
4033
4034 static int btrfs_find_actor(struct inode *inode, void *opaque)
4035 {
4036         struct btrfs_iget_args *args = opaque;
4037         return args->ino == inode->i_ino &&
4038                 args->root == BTRFS_I(inode)->root;
4039 }
4040
4041 static struct inode *btrfs_iget_locked(struct super_block *s,
4042                                        u64 objectid,
4043                                        struct btrfs_root *root)
4044 {
4045         struct inode *inode;
4046         struct btrfs_iget_args args;
4047         args.ino = objectid;
4048         args.root = root;
4049
4050         inode = iget5_locked(s, objectid, btrfs_find_actor,
4051                              btrfs_init_locked_inode,
4052                              (void *)&args);
4053         return inode;
4054 }
4055
4056 /* Get an inode object given its location and corresponding root.
4057  * Returns in *is_new if the inode was read from disk
4058  */
4059 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4060                          struct btrfs_root *root, int *new)
4061 {
4062         struct inode *inode;
4063
4064         inode = btrfs_iget_locked(s, location->objectid, root);
4065         if (!inode)
4066                 return ERR_PTR(-ENOMEM);
4067
4068         if (inode->i_state & I_NEW) {
4069                 BTRFS_I(inode)->root = root;
4070                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4071                 btrfs_read_locked_inode(inode);
4072
4073                 inode_tree_add(inode);
4074                 unlock_new_inode(inode);
4075                 if (new)
4076                         *new = 1;
4077         }
4078
4079         return inode;
4080 }
4081
4082 static struct inode *new_simple_dir(struct super_block *s,
4083                                     struct btrfs_key *key,
4084                                     struct btrfs_root *root)
4085 {
4086         struct inode *inode = new_inode(s);
4087
4088         if (!inode)
4089                 return ERR_PTR(-ENOMEM);
4090
4091         BTRFS_I(inode)->root = root;
4092         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4093         BTRFS_I(inode)->dummy_inode = 1;
4094
4095         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4096         inode->i_op = &simple_dir_inode_operations;
4097         inode->i_fop = &simple_dir_operations;
4098         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4099         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4100
4101         return inode;
4102 }
4103
4104 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4105 {
4106         struct inode *inode;
4107         struct btrfs_root *root = BTRFS_I(dir)->root;
4108         struct btrfs_root *sub_root = root;
4109         struct btrfs_key location;
4110         int index;
4111         int ret;
4112
4113         if (dentry->d_name.len > BTRFS_NAME_LEN)
4114                 return ERR_PTR(-ENAMETOOLONG);
4115
4116         ret = btrfs_inode_by_name(dir, dentry, &location);
4117
4118         if (ret < 0)
4119                 return ERR_PTR(ret);
4120
4121         if (location.objectid == 0)
4122                 return NULL;
4123
4124         if (location.type == BTRFS_INODE_ITEM_KEY) {
4125                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4126                 return inode;
4127         }
4128
4129         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4130
4131         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4132         ret = fixup_tree_root_location(root, dir, dentry,
4133                                        &location, &sub_root);
4134         if (ret < 0) {
4135                 if (ret != -ENOENT)
4136                         inode = ERR_PTR(ret);
4137                 else
4138                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4139         } else {
4140                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4141         }
4142         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4143
4144         if (!IS_ERR(inode) && root != sub_root) {
4145                 down_read(&root->fs_info->cleanup_work_sem);
4146                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4147                         btrfs_orphan_cleanup(sub_root);
4148                 up_read(&root->fs_info->cleanup_work_sem);
4149         }
4150
4151         return inode;
4152 }
4153
4154 static int btrfs_dentry_delete(const struct dentry *dentry)
4155 {
4156         struct btrfs_root *root;
4157
4158         if (!dentry->d_inode && !IS_ROOT(dentry))
4159                 dentry = dentry->d_parent;
4160
4161         if (dentry->d_inode) {
4162                 root = BTRFS_I(dentry->d_inode)->root;
4163                 if (btrfs_root_refs(&root->root_item) == 0)
4164                         return 1;
4165         }
4166         return 0;
4167 }
4168
4169 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4170                                    struct nameidata *nd)
4171 {
4172         struct inode *inode;
4173
4174         inode = btrfs_lookup_dentry(dir, dentry);
4175         if (IS_ERR(inode))
4176                 return ERR_CAST(inode);
4177
4178         return d_splice_alias(inode, dentry);
4179 }
4180
4181 static unsigned char btrfs_filetype_table[] = {
4182         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4183 };
4184
4185 static int btrfs_real_readdir(struct file *filp, void *dirent,
4186                               filldir_t filldir)
4187 {
4188         struct inode *inode = filp->f_dentry->d_inode;
4189         struct btrfs_root *root = BTRFS_I(inode)->root;
4190         struct btrfs_item *item;
4191         struct btrfs_dir_item *di;
4192         struct btrfs_key key;
4193         struct btrfs_key found_key;
4194         struct btrfs_path *path;
4195         int ret;
4196         u32 nritems;
4197         struct extent_buffer *leaf;
4198         int slot;
4199         int advance;
4200         unsigned char d_type;
4201         int over = 0;
4202         u32 di_cur;
4203         u32 di_total;
4204         u32 di_len;
4205         int key_type = BTRFS_DIR_INDEX_KEY;
4206         char tmp_name[32];
4207         char *name_ptr;
4208         int name_len;
4209
4210         /* FIXME, use a real flag for deciding about the key type */
4211         if (root->fs_info->tree_root == root)
4212                 key_type = BTRFS_DIR_ITEM_KEY;
4213
4214         /* special case for "." */
4215         if (filp->f_pos == 0) {
4216                 over = filldir(dirent, ".", 1,
4217                                1, inode->i_ino,
4218                                DT_DIR);
4219                 if (over)
4220                         return 0;
4221                 filp->f_pos = 1;
4222         }
4223         /* special case for .., just use the back ref */
4224         if (filp->f_pos == 1) {
4225                 u64 pino = parent_ino(filp->f_path.dentry);
4226                 over = filldir(dirent, "..", 2,
4227                                2, pino, DT_DIR);
4228                 if (over)
4229                         return 0;
4230                 filp->f_pos = 2;
4231         }
4232         path = btrfs_alloc_path();
4233         path->reada = 2;
4234
4235         btrfs_set_key_type(&key, key_type);
4236         key.offset = filp->f_pos;
4237         key.objectid = inode->i_ino;
4238
4239         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4240         if (ret < 0)
4241                 goto err;
4242         advance = 0;
4243
4244         while (1) {
4245                 leaf = path->nodes[0];
4246                 nritems = btrfs_header_nritems(leaf);
4247                 slot = path->slots[0];
4248                 if (advance || slot >= nritems) {
4249                         if (slot >= nritems - 1) {
4250                                 ret = btrfs_next_leaf(root, path);
4251                                 if (ret)
4252                                         break;
4253                                 leaf = path->nodes[0];
4254                                 nritems = btrfs_header_nritems(leaf);
4255                                 slot = path->slots[0];
4256                         } else {
4257                                 slot++;
4258                                 path->slots[0]++;
4259                         }
4260                 }
4261
4262                 advance = 1;
4263                 item = btrfs_item_nr(leaf, slot);
4264                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4265
4266                 if (found_key.objectid != key.objectid)
4267                         break;
4268                 if (btrfs_key_type(&found_key) != key_type)
4269                         break;
4270                 if (found_key.offset < filp->f_pos)
4271                         continue;
4272
4273                 filp->f_pos = found_key.offset;
4274
4275                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4276                 di_cur = 0;
4277                 di_total = btrfs_item_size(leaf, item);
4278
4279                 while (di_cur < di_total) {
4280                         struct btrfs_key location;
4281
4282                         name_len = btrfs_dir_name_len(leaf, di);
4283                         if (name_len <= sizeof(tmp_name)) {
4284                                 name_ptr = tmp_name;
4285                         } else {
4286                                 name_ptr = kmalloc(name_len, GFP_NOFS);
4287                                 if (!name_ptr) {
4288                                         ret = -ENOMEM;
4289                                         goto err;
4290                                 }
4291                         }
4292                         read_extent_buffer(leaf, name_ptr,
4293                                            (unsigned long)(di + 1), name_len);
4294
4295                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4296                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
4297
4298                         /* is this a reference to our own snapshot? If so
4299                          * skip it
4300                          */
4301                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
4302                             location.objectid == root->root_key.objectid) {
4303                                 over = 0;
4304                                 goto skip;
4305                         }
4306                         over = filldir(dirent, name_ptr, name_len,
4307                                        found_key.offset, location.objectid,
4308                                        d_type);
4309
4310 skip:
4311                         if (name_ptr != tmp_name)
4312                                 kfree(name_ptr);
4313
4314                         if (over)
4315                                 goto nopos;
4316                         di_len = btrfs_dir_name_len(leaf, di) +
4317                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
4318                         di_cur += di_len;
4319                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4320                 }
4321         }
4322
4323         /* Reached end of directory/root. Bump pos past the last item. */
4324         if (key_type == BTRFS_DIR_INDEX_KEY)
4325                 /*
4326                  * 32-bit glibc will use getdents64, but then strtol -
4327                  * so the last number we can serve is this.
4328                  */
4329                 filp->f_pos = 0x7fffffff;
4330         else
4331                 filp->f_pos++;
4332 nopos:
4333         ret = 0;
4334 err:
4335         btrfs_free_path(path);
4336         return ret;
4337 }
4338
4339 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4340 {
4341         struct btrfs_root *root = BTRFS_I(inode)->root;
4342         struct btrfs_trans_handle *trans;
4343         int ret = 0;
4344         bool nolock = false;
4345
4346         if (BTRFS_I(inode)->dummy_inode)
4347                 return 0;
4348
4349         smp_mb();
4350         nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4351
4352         if (wbc->sync_mode == WB_SYNC_ALL) {
4353                 if (nolock)
4354                         trans = btrfs_join_transaction_nolock(root, 1);
4355                 else
4356                         trans = btrfs_join_transaction(root, 1);
4357                 if (IS_ERR(trans))
4358                         return PTR_ERR(trans);
4359                 btrfs_set_trans_block_group(trans, inode);
4360                 if (nolock)
4361                         ret = btrfs_end_transaction_nolock(trans, root);
4362                 else
4363                         ret = btrfs_commit_transaction(trans, root);
4364         }
4365         return ret;
4366 }
4367
4368 /*
4369  * This is somewhat expensive, updating the tree every time the
4370  * inode changes.  But, it is most likely to find the inode in cache.
4371  * FIXME, needs more benchmarking...there are no reasons other than performance
4372  * to keep or drop this code.
4373  */
4374 void btrfs_dirty_inode(struct inode *inode)
4375 {
4376         struct btrfs_root *root = BTRFS_I(inode)->root;
4377         struct btrfs_trans_handle *trans;
4378         int ret;
4379
4380         if (BTRFS_I(inode)->dummy_inode)
4381                 return;
4382
4383         trans = btrfs_join_transaction(root, 1);
4384         BUG_ON(IS_ERR(trans));
4385         btrfs_set_trans_block_group(trans, inode);
4386
4387         ret = btrfs_update_inode(trans, root, inode);
4388         if (ret && ret == -ENOSPC) {
4389                 /* whoops, lets try again with the full transaction */
4390                 btrfs_end_transaction(trans, root);
4391                 trans = btrfs_start_transaction(root, 1);
4392                 if (IS_ERR(trans)) {
4393                         if (printk_ratelimit()) {
4394                                 printk(KERN_ERR "btrfs: fail to "
4395                                        "dirty  inode %lu error %ld\n",
4396                                        inode->i_ino, PTR_ERR(trans));
4397                         }
4398                         return;
4399                 }
4400                 btrfs_set_trans_block_group(trans, inode);
4401
4402                 ret = btrfs_update_inode(trans, root, inode);
4403                 if (ret) {
4404                         if (printk_ratelimit()) {
4405                                 printk(KERN_ERR "btrfs: fail to "
4406                                        "dirty  inode %lu error %d\n",
4407                                        inode->i_ino, ret);
4408                         }
4409                 }
4410         }
4411         btrfs_end_transaction(trans, root);
4412 }
4413
4414 /*
4415  * find the highest existing sequence number in a directory
4416  * and then set the in-memory index_cnt variable to reflect
4417  * free sequence numbers
4418  */
4419 static int btrfs_set_inode_index_count(struct inode *inode)
4420 {
4421         struct btrfs_root *root = BTRFS_I(inode)->root;
4422         struct btrfs_key key, found_key;
4423         struct btrfs_path *path;
4424         struct extent_buffer *leaf;
4425         int ret;
4426
4427         key.objectid = inode->i_ino;
4428         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4429         key.offset = (u64)-1;
4430
4431         path = btrfs_alloc_path();
4432         if (!path)
4433                 return -ENOMEM;
4434
4435         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4436         if (ret < 0)
4437                 goto out;
4438         /* FIXME: we should be able to handle this */
4439         if (ret == 0)
4440                 goto out;
4441         ret = 0;
4442
4443         /*
4444          * MAGIC NUMBER EXPLANATION:
4445          * since we search a directory based on f_pos we have to start at 2
4446          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4447          * else has to start at 2
4448          */
4449         if (path->slots[0] == 0) {
4450                 BTRFS_I(inode)->index_cnt = 2;
4451                 goto out;
4452         }
4453
4454         path->slots[0]--;
4455
4456         leaf = path->nodes[0];
4457         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4458
4459         if (found_key.objectid != inode->i_ino ||
4460             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4461                 BTRFS_I(inode)->index_cnt = 2;
4462                 goto out;
4463         }
4464
4465         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4466 out:
4467         btrfs_free_path(path);
4468         return ret;
4469 }
4470
4471 /*
4472  * helper to find a free sequence number in a given directory.  This current
4473  * code is very simple, later versions will do smarter things in the btree
4474  */
4475 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4476 {
4477         int ret = 0;
4478
4479         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4480                 ret = btrfs_set_inode_index_count(dir);
4481                 if (ret)
4482                         return ret;
4483         }
4484
4485         *index = BTRFS_I(dir)->index_cnt;
4486         BTRFS_I(dir)->index_cnt++;
4487
4488         return ret;
4489 }
4490
4491 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4492                                      struct btrfs_root *root,
4493                                      struct inode *dir,
4494                                      const char *name, int name_len,
4495                                      u64 ref_objectid, u64 objectid,
4496                                      u64 alloc_hint, int mode, u64 *index)
4497 {
4498         struct inode *inode;
4499         struct btrfs_inode_item *inode_item;
4500         struct btrfs_key *location;
4501         struct btrfs_path *path;
4502         struct btrfs_inode_ref *ref;
4503         struct btrfs_key key[2];
4504         u32 sizes[2];
4505         unsigned long ptr;
4506         int ret;
4507         int owner;
4508
4509         path = btrfs_alloc_path();
4510         BUG_ON(!path);
4511
4512         inode = new_inode(root->fs_info->sb);
4513         if (!inode)
4514                 return ERR_PTR(-ENOMEM);
4515
4516         if (dir) {
4517                 ret = btrfs_set_inode_index(dir, index);
4518                 if (ret) {
4519                         iput(inode);
4520                         return ERR_PTR(ret);
4521                 }
4522         }
4523         /*
4524          * index_cnt is ignored for everything but a dir,
4525          * btrfs_get_inode_index_count has an explanation for the magic
4526          * number
4527          */
4528         BTRFS_I(inode)->index_cnt = 2;
4529         BTRFS_I(inode)->root = root;
4530         BTRFS_I(inode)->generation = trans->transid;
4531         inode->i_generation = BTRFS_I(inode)->generation;
4532         btrfs_set_inode_space_info(root, inode);
4533
4534         if (mode & S_IFDIR)
4535                 owner = 0;
4536         else
4537                 owner = 1;
4538         BTRFS_I(inode)->block_group =
4539                         btrfs_find_block_group(root, 0, alloc_hint, owner);
4540
4541         key[0].objectid = objectid;
4542         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4543         key[0].offset = 0;
4544
4545         key[1].objectid = objectid;
4546         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4547         key[1].offset = ref_objectid;
4548
4549         sizes[0] = sizeof(struct btrfs_inode_item);
4550         sizes[1] = name_len + sizeof(*ref);
4551
4552         path->leave_spinning = 1;
4553         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4554         if (ret != 0)
4555                 goto fail;
4556
4557         inode_init_owner(inode, dir, mode);
4558         inode->i_ino = objectid;
4559         inode_set_bytes(inode, 0);
4560         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4561         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4562                                   struct btrfs_inode_item);
4563         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4564
4565         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4566                              struct btrfs_inode_ref);
4567         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4568         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4569         ptr = (unsigned long)(ref + 1);
4570         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4571
4572         btrfs_mark_buffer_dirty(path->nodes[0]);
4573         btrfs_free_path(path);
4574
4575         location = &BTRFS_I(inode)->location;
4576         location->objectid = objectid;
4577         location->offset = 0;
4578         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4579
4580         btrfs_inherit_iflags(inode, dir);
4581
4582         if ((mode & S_IFREG)) {
4583                 if (btrfs_test_opt(root, NODATASUM))
4584                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4585                 if (btrfs_test_opt(root, NODATACOW))
4586                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4587         }
4588
4589         insert_inode_hash(inode);
4590         inode_tree_add(inode);
4591         return inode;
4592 fail:
4593         if (dir)
4594                 BTRFS_I(dir)->index_cnt--;
4595         btrfs_free_path(path);
4596         iput(inode);
4597         return ERR_PTR(ret);
4598 }
4599
4600 static inline u8 btrfs_inode_type(struct inode *inode)
4601 {
4602         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4603 }
4604
4605 /*
4606  * utility function to add 'inode' into 'parent_inode' with
4607  * a give name and a given sequence number.
4608  * if 'add_backref' is true, also insert a backref from the
4609  * inode to the parent directory.
4610  */
4611 int btrfs_add_link(struct btrfs_trans_handle *trans,
4612                    struct inode *parent_inode, struct inode *inode,
4613                    const char *name, int name_len, int add_backref, u64 index)
4614 {
4615         int ret = 0;
4616         struct btrfs_key key;
4617         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4618
4619         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4620                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4621         } else {
4622                 key.objectid = inode->i_ino;
4623                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4624                 key.offset = 0;
4625         }
4626
4627         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4628                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4629                                          key.objectid, root->root_key.objectid,
4630                                          parent_inode->i_ino,
4631                                          index, name, name_len);
4632         } else if (add_backref) {
4633                 ret = btrfs_insert_inode_ref(trans, root,
4634                                              name, name_len, inode->i_ino,
4635                                              parent_inode->i_ino, index);
4636         }
4637
4638         if (ret == 0) {
4639                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4640                                             parent_inode->i_ino, &key,
4641                                             btrfs_inode_type(inode), index);
4642                 BUG_ON(ret);
4643
4644                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4645                                    name_len * 2);
4646                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4647                 ret = btrfs_update_inode(trans, root, parent_inode);
4648         }
4649         return ret;
4650 }
4651
4652 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4653                             struct inode *dir, struct dentry *dentry,
4654                             struct inode *inode, int backref, u64 index)
4655 {
4656         int err = btrfs_add_link(trans, dir, inode,
4657                                  dentry->d_name.name, dentry->d_name.len,
4658                                  backref, index);
4659         if (!err) {
4660                 d_instantiate(dentry, inode);
4661                 return 0;
4662         }
4663         if (err > 0)
4664                 err = -EEXIST;
4665         return err;
4666 }
4667
4668 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4669                         int mode, dev_t rdev)
4670 {
4671         struct btrfs_trans_handle *trans;
4672         struct btrfs_root *root = BTRFS_I(dir)->root;
4673         struct inode *inode = NULL;
4674         int err;
4675         int drop_inode = 0;
4676         u64 objectid;
4677         unsigned long nr = 0;
4678         u64 index = 0;
4679
4680         if (!new_valid_dev(rdev))
4681                 return -EINVAL;
4682
4683         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4684         if (err)
4685                 return err;
4686
4687         /*
4688          * 2 for inode item and ref
4689          * 2 for dir items
4690          * 1 for xattr if selinux is on
4691          */
4692         trans = btrfs_start_transaction(root, 5);
4693         if (IS_ERR(trans))
4694                 return PTR_ERR(trans);
4695
4696         btrfs_set_trans_block_group(trans, dir);
4697
4698         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4699                                 dentry->d_name.len, dir->i_ino, objectid,
4700                                 BTRFS_I(dir)->block_group, mode, &index);
4701         err = PTR_ERR(inode);
4702         if (IS_ERR(inode))
4703                 goto out_unlock;
4704
4705         err = btrfs_init_inode_security(trans, inode, dir);
4706         if (err) {
4707                 drop_inode = 1;
4708                 goto out_unlock;
4709         }
4710
4711         btrfs_set_trans_block_group(trans, inode);
4712         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4713         if (err)
4714                 drop_inode = 1;
4715         else {
4716                 inode->i_op = &btrfs_special_inode_operations;
4717                 init_special_inode(inode, inode->i_mode, rdev);
4718                 btrfs_update_inode(trans, root, inode);
4719         }
4720         btrfs_update_inode_block_group(trans, inode);
4721         btrfs_update_inode_block_group(trans, dir);
4722 out_unlock:
4723         nr = trans->blocks_used;
4724         btrfs_end_transaction_throttle(trans, root);
4725         btrfs_btree_balance_dirty(root, nr);
4726         if (drop_inode) {
4727                 inode_dec_link_count(inode);
4728                 iput(inode);
4729         }
4730         return err;
4731 }
4732
4733 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4734                         int mode, struct nameidata *nd)
4735 {
4736         struct btrfs_trans_handle *trans;
4737         struct btrfs_root *root = BTRFS_I(dir)->root;
4738         struct inode *inode = NULL;
4739         int drop_inode = 0;
4740         int err;
4741         unsigned long nr = 0;
4742         u64 objectid;
4743         u64 index = 0;
4744
4745         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4746         if (err)
4747                 return err;
4748         /*
4749          * 2 for inode item and ref
4750          * 2 for dir items
4751          * 1 for xattr if selinux is on
4752          */
4753         trans = btrfs_start_transaction(root, 5);
4754         if (IS_ERR(trans))
4755                 return PTR_ERR(trans);
4756
4757         btrfs_set_trans_block_group(trans, dir);
4758
4759         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4760                                 dentry->d_name.len, dir->i_ino, objectid,
4761                                 BTRFS_I(dir)->block_group, mode, &index);
4762         err = PTR_ERR(inode);
4763         if (IS_ERR(inode))
4764                 goto out_unlock;
4765
4766         err = btrfs_init_inode_security(trans, inode, dir);
4767         if (err) {
4768                 drop_inode = 1;
4769                 goto out_unlock;
4770         }
4771
4772         btrfs_set_trans_block_group(trans, inode);
4773         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4774         if (err)
4775                 drop_inode = 1;
4776         else {
4777                 inode->i_mapping->a_ops = &btrfs_aops;
4778                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4779                 inode->i_fop = &btrfs_file_operations;
4780                 inode->i_op = &btrfs_file_inode_operations;
4781                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4782         }
4783         btrfs_update_inode_block_group(trans, inode);
4784         btrfs_update_inode_block_group(trans, dir);
4785 out_unlock:
4786         nr = trans->blocks_used;
4787         btrfs_end_transaction_throttle(trans, root);
4788         if (drop_inode) {
4789                 inode_dec_link_count(inode);
4790                 iput(inode);
4791         }
4792         btrfs_btree_balance_dirty(root, nr);
4793         return err;
4794 }
4795
4796 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4797                       struct dentry *dentry)
4798 {
4799         struct btrfs_trans_handle *trans;
4800         struct btrfs_root *root = BTRFS_I(dir)->root;
4801         struct inode *inode = old_dentry->d_inode;
4802         u64 index;
4803         unsigned long nr = 0;
4804         int err;
4805         int drop_inode = 0;
4806
4807         if (inode->i_nlink == 0)
4808                 return -ENOENT;
4809
4810         /* do not allow sys_link's with other subvols of the same device */
4811         if (root->objectid != BTRFS_I(inode)->root->objectid)
4812                 return -EPERM;
4813
4814         btrfs_inc_nlink(inode);
4815         inode->i_ctime = CURRENT_TIME;
4816
4817         err = btrfs_set_inode_index(dir, &index);
4818         if (err)
4819                 goto fail;
4820
4821         /*
4822          * 2 items for inode and inode ref
4823          * 2 items for dir items
4824          * 1 item for parent inode
4825          */
4826         trans = btrfs_start_transaction(root, 5);
4827         if (IS_ERR(trans)) {
4828                 err = PTR_ERR(trans);
4829                 goto fail;
4830         }
4831
4832         btrfs_set_trans_block_group(trans, dir);
4833         ihold(inode);
4834
4835         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4836
4837         if (err) {
4838                 drop_inode = 1;
4839         } else {
4840                 struct dentry *parent = dget_parent(dentry);
4841                 btrfs_update_inode_block_group(trans, dir);
4842                 err = btrfs_update_inode(trans, root, inode);
4843                 BUG_ON(err);
4844                 btrfs_log_new_name(trans, inode, NULL, parent);
4845                 dput(parent);
4846         }
4847
4848         nr = trans->blocks_used;
4849         btrfs_end_transaction_throttle(trans, root);
4850 fail:
4851         if (drop_inode) {
4852                 inode_dec_link_count(inode);
4853                 iput(inode);
4854         }
4855         btrfs_btree_balance_dirty(root, nr);
4856         return err;
4857 }
4858
4859 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4860 {
4861         struct inode *inode = NULL;
4862         struct btrfs_trans_handle *trans;
4863         struct btrfs_root *root = BTRFS_I(dir)->root;
4864         int err = 0;
4865         int drop_on_err = 0;
4866         u64 objectid = 0;
4867         u64 index = 0;
4868         unsigned long nr = 1;
4869
4870         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4871         if (err)
4872                 return err;
4873
4874         /*
4875          * 2 items for inode and ref
4876          * 2 items for dir items
4877          * 1 for xattr if selinux is on
4878          */
4879         trans = btrfs_start_transaction(root, 5);
4880         if (IS_ERR(trans))
4881                 return PTR_ERR(trans);
4882         btrfs_set_trans_block_group(trans, dir);
4883
4884         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4885                                 dentry->d_name.len, dir->i_ino, objectid,
4886                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4887                                 &index);
4888         if (IS_ERR(inode)) {
4889                 err = PTR_ERR(inode);
4890                 goto out_fail;
4891         }
4892
4893         drop_on_err = 1;
4894
4895         err = btrfs_init_inode_security(trans, inode, dir);
4896         if (err)
4897                 goto out_fail;
4898
4899         inode->i_op = &btrfs_dir_inode_operations;
4900         inode->i_fop = &btrfs_dir_file_operations;
4901         btrfs_set_trans_block_group(trans, inode);
4902
4903         btrfs_i_size_write(inode, 0);
4904         err = btrfs_update_inode(trans, root, inode);
4905         if (err)
4906                 goto out_fail;
4907
4908         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4909                              dentry->d_name.len, 0, index);
4910         if (err)
4911                 goto out_fail;
4912
4913         d_instantiate(dentry, inode);
4914         drop_on_err = 0;
4915         btrfs_update_inode_block_group(trans, inode);
4916         btrfs_update_inode_block_group(trans, dir);
4917
4918 out_fail:
4919         nr = trans->blocks_used;
4920         btrfs_end_transaction_throttle(trans, root);
4921         if (drop_on_err)
4922                 iput(inode);
4923         btrfs_btree_balance_dirty(root, nr);
4924         return err;
4925 }
4926
4927 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4928  * and an extent that you want to insert, deal with overlap and insert
4929  * the new extent into the tree.
4930  */
4931 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4932                                 struct extent_map *existing,
4933                                 struct extent_map *em,
4934                                 u64 map_start, u64 map_len)
4935 {
4936         u64 start_diff;
4937
4938         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4939         start_diff = map_start - em->start;
4940         em->start = map_start;
4941         em->len = map_len;
4942         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4943             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4944                 em->block_start += start_diff;
4945                 em->block_len -= start_diff;
4946         }
4947         return add_extent_mapping(em_tree, em);
4948 }
4949
4950 static noinline int uncompress_inline(struct btrfs_path *path,
4951                                       struct inode *inode, struct page *page,
4952                                       size_t pg_offset, u64 extent_offset,
4953                                       struct btrfs_file_extent_item *item)
4954 {
4955         int ret;
4956         struct extent_buffer *leaf = path->nodes[0];
4957         char *tmp;
4958         size_t max_size;
4959         unsigned long inline_size;
4960         unsigned long ptr;
4961         int compress_type;
4962
4963         WARN_ON(pg_offset != 0);
4964         compress_type = btrfs_file_extent_compression(leaf, item);
4965         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4966         inline_size = btrfs_file_extent_inline_item_len(leaf,
4967                                         btrfs_item_nr(leaf, path->slots[0]));
4968         tmp = kmalloc(inline_size, GFP_NOFS);
4969         ptr = btrfs_file_extent_inline_start(item);
4970
4971         read_extent_buffer(leaf, tmp, ptr, inline_size);
4972
4973         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4974         ret = btrfs_decompress(compress_type, tmp, page,
4975                                extent_offset, inline_size, max_size);
4976         if (ret) {
4977                 char *kaddr = kmap_atomic(page, KM_USER0);
4978                 unsigned long copy_size = min_t(u64,
4979                                   PAGE_CACHE_SIZE - pg_offset,
4980                                   max_size - extent_offset);
4981                 memset(kaddr + pg_offset, 0, copy_size);
4982                 kunmap_atomic(kaddr, KM_USER0);
4983         }
4984         kfree(tmp);
4985         return 0;
4986 }
4987
4988 /*
4989  * a bit scary, this does extent mapping from logical file offset to the disk.
4990  * the ugly parts come from merging extents from the disk with the in-ram
4991  * representation.  This gets more complex because of the data=ordered code,
4992  * where the in-ram extents might be locked pending data=ordered completion.
4993  *
4994  * This also copies inline extents directly into the page.
4995  */
4996
4997 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4998                                     size_t pg_offset, u64 start, u64 len,
4999                                     int create)
5000 {
5001         int ret;
5002         int err = 0;
5003         u64 bytenr;
5004         u64 extent_start = 0;
5005         u64 extent_end = 0;
5006         u64 objectid = inode->i_ino;
5007         u32 found_type;
5008         struct btrfs_path *path = NULL;
5009         struct btrfs_root *root = BTRFS_I(inode)->root;
5010         struct btrfs_file_extent_item *item;
5011         struct extent_buffer *leaf;
5012         struct btrfs_key found_key;
5013         struct extent_map *em = NULL;
5014         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5015         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5016         struct btrfs_trans_handle *trans = NULL;
5017         int compress_type;
5018
5019 again:
5020         read_lock(&em_tree->lock);
5021         em = lookup_extent_mapping(em_tree, start, len);
5022         if (em)
5023                 em->bdev = root->fs_info->fs_devices->latest_bdev;
5024         read_unlock(&em_tree->lock);
5025
5026         if (em) {
5027                 if (em->start > start || em->start + em->len <= start)
5028                         free_extent_map(em);
5029                 else if (em->block_start == EXTENT_MAP_INLINE && page)
5030                         free_extent_map(em);
5031                 else
5032                         goto out;
5033         }
5034         em = alloc_extent_map(GFP_NOFS);
5035         if (!em) {
5036                 err = -ENOMEM;
5037                 goto out;
5038         }
5039         em->bdev = root->fs_info->fs_devices->latest_bdev;
5040         em->start = EXTENT_MAP_HOLE;
5041         em->orig_start = EXTENT_MAP_HOLE;
5042         em->len = (u64)-1;
5043         em->block_len = (u64)-1;
5044
5045         if (!path) {
5046                 path = btrfs_alloc_path();
5047                 BUG_ON(!path);
5048         }
5049
5050         ret = btrfs_lookup_file_extent(trans, root, path,
5051                                        objectid, start, trans != NULL);
5052         if (ret < 0) {
5053                 err = ret;
5054                 goto out;
5055         }
5056
5057         if (ret != 0) {
5058                 if (path->slots[0] == 0)
5059                         goto not_found;
5060                 path->slots[0]--;
5061         }
5062
5063         leaf = path->nodes[0];
5064         item = btrfs_item_ptr(leaf, path->slots[0],
5065                               struct btrfs_file_extent_item);
5066         /* are we inside the extent that was found? */
5067         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5068         found_type = btrfs_key_type(&found_key);
5069         if (found_key.objectid != objectid ||
5070             found_type != BTRFS_EXTENT_DATA_KEY) {
5071                 goto not_found;
5072         }
5073
5074         found_type = btrfs_file_extent_type(leaf, item);
5075         extent_start = found_key.offset;
5076         compress_type = btrfs_file_extent_compression(leaf, item);
5077         if (found_type == BTRFS_FILE_EXTENT_REG ||
5078             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5079                 extent_end = extent_start +
5080                        btrfs_file_extent_num_bytes(leaf, item);
5081         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5082                 size_t size;
5083                 size = btrfs_file_extent_inline_len(leaf, item);
5084                 extent_end = (extent_start + size + root->sectorsize - 1) &
5085                         ~((u64)root->sectorsize - 1);
5086         }
5087
5088         if (start >= extent_end) {
5089                 path->slots[0]++;
5090                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5091                         ret = btrfs_next_leaf(root, path);
5092                         if (ret < 0) {
5093                                 err = ret;
5094                                 goto out;
5095                         }
5096                         if (ret > 0)
5097                                 goto not_found;
5098                         leaf = path->nodes[0];
5099                 }
5100                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5101                 if (found_key.objectid != objectid ||
5102                     found_key.type != BTRFS_EXTENT_DATA_KEY)
5103                         goto not_found;
5104                 if (start + len <= found_key.offset)
5105                         goto not_found;
5106                 em->start = start;
5107                 em->len = found_key.offset - start;
5108                 goto not_found_em;
5109         }
5110
5111         if (found_type == BTRFS_FILE_EXTENT_REG ||
5112             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5113                 em->start = extent_start;
5114                 em->len = extent_end - extent_start;
5115                 em->orig_start = extent_start -
5116                                  btrfs_file_extent_offset(leaf, item);
5117                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5118                 if (bytenr == 0) {
5119                         em->block_start = EXTENT_MAP_HOLE;
5120                         goto insert;
5121                 }
5122                 if (compress_type != BTRFS_COMPRESS_NONE) {
5123                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5124                         em->compress_type = compress_type;
5125                         em->block_start = bytenr;
5126                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5127                                                                          item);
5128                 } else {
5129                         bytenr += btrfs_file_extent_offset(leaf, item);
5130                         em->block_start = bytenr;
5131                         em->block_len = em->len;
5132                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5133                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5134                 }
5135                 goto insert;
5136         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5137                 unsigned long ptr;
5138                 char *map;
5139                 size_t size;
5140                 size_t extent_offset;
5141                 size_t copy_size;
5142
5143                 em->block_start = EXTENT_MAP_INLINE;
5144                 if (!page || create) {
5145                         em->start = extent_start;
5146                         em->len = extent_end - extent_start;
5147                         goto out;
5148                 }
5149
5150                 size = btrfs_file_extent_inline_len(leaf, item);
5151                 extent_offset = page_offset(page) + pg_offset - extent_start;
5152                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5153                                 size - extent_offset);
5154                 em->start = extent_start + extent_offset;
5155                 em->len = (copy_size + root->sectorsize - 1) &
5156                         ~((u64)root->sectorsize - 1);
5157                 em->orig_start = EXTENT_MAP_INLINE;
5158                 if (compress_type) {
5159                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5160                         em->compress_type = compress_type;
5161                 }
5162                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5163                 if (create == 0 && !PageUptodate(page)) {
5164                         if (btrfs_file_extent_compression(leaf, item) !=
5165                             BTRFS_COMPRESS_NONE) {
5166                                 ret = uncompress_inline(path, inode, page,
5167                                                         pg_offset,
5168                                                         extent_offset, item);
5169                                 BUG_ON(ret);
5170                         } else {
5171                                 map = kmap(page);
5172                                 read_extent_buffer(leaf, map + pg_offset, ptr,
5173                                                    copy_size);
5174                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5175                                         memset(map + pg_offset + copy_size, 0,
5176                                                PAGE_CACHE_SIZE - pg_offset -
5177                                                copy_size);
5178                                 }
5179                                 kunmap(page);
5180                         }
5181                         flush_dcache_page(page);
5182                 } else if (create && PageUptodate(page)) {
5183                         WARN_ON(1);
5184                         if (!trans) {
5185                                 kunmap(page);
5186                                 free_extent_map(em);
5187                                 em = NULL;
5188                                 btrfs_release_path(root, path);
5189                                 trans = btrfs_join_transaction(root, 1);
5190                                 if (IS_ERR(trans))
5191                                         return ERR_CAST(trans);
5192                                 goto again;
5193                         }
5194                         map = kmap(page);
5195                         write_extent_buffer(leaf, map + pg_offset, ptr,
5196                                             copy_size);
5197                         kunmap(page);
5198                         btrfs_mark_buffer_dirty(leaf);
5199                 }
5200                 set_extent_uptodate(io_tree, em->start,
5201                                     extent_map_end(em) - 1, GFP_NOFS);
5202                 goto insert;
5203         } else {
5204                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5205                 WARN_ON(1);
5206         }
5207 not_found:
5208         em->start = start;
5209         em->len = len;
5210 not_found_em:
5211         em->block_start = EXTENT_MAP_HOLE;
5212         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5213 insert:
5214         btrfs_release_path(root, path);
5215         if (em->start > start || extent_map_end(em) <= start) {
5216                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5217                        "[%llu %llu]\n", (unsigned long long)em->start,
5218                        (unsigned long long)em->len,
5219                        (unsigned long long)start,
5220                        (unsigned long long)len);
5221                 err = -EIO;
5222                 goto out;
5223         }
5224
5225         err = 0;
5226         write_lock(&em_tree->lock);
5227         ret = add_extent_mapping(em_tree, em);
5228         /* it is possible that someone inserted the extent into the tree
5229          * while we had the lock dropped.  It is also possible that
5230          * an overlapping map exists in the tree
5231          */
5232         if (ret == -EEXIST) {
5233                 struct extent_map *existing;
5234
5235                 ret = 0;
5236
5237                 existing = lookup_extent_mapping(em_tree, start, len);
5238                 if (existing && (existing->start > start ||
5239                     existing->start + existing->len <= start)) {
5240                         free_extent_map(existing);
5241                         existing = NULL;
5242                 }
5243                 if (!existing) {
5244                         existing = lookup_extent_mapping(em_tree, em->start,
5245                                                          em->len);
5246                         if (existing) {
5247                                 err = merge_extent_mapping(em_tree, existing,
5248                                                            em, start,
5249                                                            root->sectorsize);
5250                                 free_extent_map(existing);
5251                                 if (err) {
5252                                         free_extent_map(em);
5253                                         em = NULL;
5254                                 }
5255                         } else {
5256                                 err = -EIO;
5257                                 free_extent_map(em);
5258                                 em = NULL;
5259                         }
5260                 } else {
5261                         free_extent_map(em);
5262                         em = existing;
5263                         err = 0;
5264                 }
5265         }
5266         write_unlock(&em_tree->lock);
5267 out:
5268         if (path)
5269                 btrfs_free_path(path);
5270         if (trans) {
5271                 ret = btrfs_end_transaction(trans, root);
5272                 if (!err)
5273                         err = ret;
5274         }
5275         if (err) {
5276                 free_extent_map(em);
5277                 return ERR_PTR(err);
5278         }
5279         return em;
5280 }
5281
5282 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5283                                            size_t pg_offset, u64 start, u64 len,
5284                                            int create)
5285 {
5286         struct extent_map *em;
5287         struct extent_map *hole_em = NULL;
5288         u64 range_start = start;
5289         u64 end;
5290         u64 found;
5291         u64 found_end;
5292         int err = 0;
5293
5294         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5295         if (IS_ERR(em))
5296                 return em;
5297         if (em) {
5298                 /*
5299                  * if our em maps to a hole, there might
5300                  * actually be delalloc bytes behind it
5301                  */
5302                 if (em->block_start != EXTENT_MAP_HOLE)
5303                         return em;
5304                 else
5305                         hole_em = em;
5306         }
5307
5308         /* check to see if we've wrapped (len == -1 or similar) */
5309         end = start + len;
5310         if (end < start)
5311                 end = (u64)-1;
5312         else
5313                 end -= 1;
5314
5315         em = NULL;
5316
5317         /* ok, we didn't find anything, lets look for delalloc */
5318         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5319                                  end, len, EXTENT_DELALLOC, 1);
5320         found_end = range_start + found;
5321         if (found_end < range_start)
5322                 found_end = (u64)-1;
5323
5324         /*
5325          * we didn't find anything useful, return
5326          * the original results from get_extent()
5327          */
5328         if (range_start > end || found_end <= start) {
5329                 em = hole_em;
5330                 hole_em = NULL;
5331                 goto out;
5332         }
5333
5334         /* adjust the range_start to make sure it doesn't
5335          * go backwards from the start they passed in
5336          */
5337         range_start = max(start,range_start);
5338         found = found_end - range_start;
5339
5340         if (found > 0) {
5341                 u64 hole_start = start;
5342                 u64 hole_len = len;
5343
5344                 em = alloc_extent_map(GFP_NOFS);
5345                 if (!em) {
5346                         err = -ENOMEM;
5347                         goto out;
5348                 }
5349                 /*
5350                  * when btrfs_get_extent can't find anything it
5351                  * returns one huge hole
5352                  *
5353                  * make sure what it found really fits our range, and
5354                  * adjust to make sure it is based on the start from
5355                  * the caller
5356                  */
5357                 if (hole_em) {
5358                         u64 calc_end = extent_map_end(hole_em);
5359
5360                         if (calc_end <= start || (hole_em->start > end)) {
5361                                 free_extent_map(hole_em);
5362                                 hole_em = NULL;
5363                         } else {
5364                                 hole_start = max(hole_em->start, start);
5365                                 hole_len = calc_end - hole_start;
5366                         }
5367                 }
5368                 em->bdev = NULL;
5369                 if (hole_em && range_start > hole_start) {
5370                         /* our hole starts before our delalloc, so we
5371                          * have to return just the parts of the hole
5372                          * that go until  the delalloc starts
5373                          */
5374                         em->len = min(hole_len,
5375                                       range_start - hole_start);
5376                         em->start = hole_start;
5377                         em->orig_start = hole_start;
5378                         /*
5379                          * don't adjust block start at all,
5380                          * it is fixed at EXTENT_MAP_HOLE
5381                          */
5382                         em->block_start = hole_em->block_start;
5383                         em->block_len = hole_len;
5384                 } else {
5385                         em->start = range_start;
5386                         em->len = found;
5387                         em->orig_start = range_start;
5388                         em->block_start = EXTENT_MAP_DELALLOC;
5389                         em->block_len = found;
5390                 }
5391         } else if (hole_em) {
5392                 return hole_em;
5393         }
5394 out:
5395
5396         free_extent_map(hole_em);
5397         if (err) {
5398                 free_extent_map(em);
5399                 return ERR_PTR(err);
5400         }
5401         return em;
5402 }
5403
5404 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5405                                                   u64 start, u64 len)
5406 {
5407         struct btrfs_root *root = BTRFS_I(inode)->root;
5408         struct btrfs_trans_handle *trans;
5409         struct extent_map *em;
5410         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5411         struct btrfs_key ins;
5412         u64 alloc_hint;
5413         int ret;
5414
5415         btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5416
5417         trans = btrfs_join_transaction(root, 0);
5418         if (IS_ERR(trans))
5419                 return ERR_CAST(trans);
5420
5421         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5422
5423         alloc_hint = get_extent_allocation_hint(inode, start, len);
5424         ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5425                                    alloc_hint, (u64)-1, &ins, 1);
5426         if (ret) {
5427                 em = ERR_PTR(ret);
5428                 goto out;
5429         }
5430
5431         em = alloc_extent_map(GFP_NOFS);
5432         if (!em) {
5433                 em = ERR_PTR(-ENOMEM);
5434                 goto out;
5435         }
5436
5437         em->start = start;
5438         em->orig_start = em->start;
5439         em->len = ins.offset;
5440
5441         em->block_start = ins.objectid;
5442         em->block_len = ins.offset;
5443         em->bdev = root->fs_info->fs_devices->latest_bdev;
5444         set_bit(EXTENT_FLAG_PINNED, &em->flags);
5445
5446         while (1) {
5447                 write_lock(&em_tree->lock);
5448                 ret = add_extent_mapping(em_tree, em);
5449                 write_unlock(&em_tree->lock);
5450                 if (ret != -EEXIST)
5451                         break;
5452                 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5453         }
5454
5455         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5456                                            ins.offset, ins.offset, 0);
5457         if (ret) {
5458                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5459                 em = ERR_PTR(ret);
5460         }
5461 out:
5462         btrfs_end_transaction(trans, root);
5463         return em;
5464 }
5465
5466 /*
5467  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5468  * block must be cow'd
5469  */
5470 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5471                                       struct inode *inode, u64 offset, u64 len)
5472 {
5473         struct btrfs_path *path;
5474         int ret;
5475         struct extent_buffer *leaf;
5476         struct btrfs_root *root = BTRFS_I(inode)->root;
5477         struct btrfs_file_extent_item *fi;
5478         struct btrfs_key key;
5479         u64 disk_bytenr;
5480         u64 backref_offset;
5481         u64 extent_end;
5482         u64 num_bytes;
5483         int slot;
5484         int found_type;
5485
5486         path = btrfs_alloc_path();
5487         if (!path)
5488                 return -ENOMEM;
5489
5490         ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5491                                        offset, 0);
5492         if (ret < 0)
5493                 goto out;
5494
5495         slot = path->slots[0];
5496         if (ret == 1) {
5497                 if (slot == 0) {
5498                         /* can't find the item, must cow */
5499                         ret = 0;
5500                         goto out;
5501                 }
5502                 slot--;
5503         }
5504         ret = 0;
5505         leaf = path->nodes[0];
5506         btrfs_item_key_to_cpu(leaf, &key, slot);
5507         if (key.objectid != inode->i_ino ||
5508             key.type != BTRFS_EXTENT_DATA_KEY) {
5509                 /* not our file or wrong item type, must cow */
5510                 goto out;
5511         }
5512
5513         if (key.offset > offset) {
5514                 /* Wrong offset, must cow */
5515                 goto out;
5516         }
5517
5518         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5519         found_type = btrfs_file_extent_type(leaf, fi);
5520         if (found_type != BTRFS_FILE_EXTENT_REG &&
5521             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5522                 /* not a regular extent, must cow */
5523                 goto out;
5524         }
5525         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5526         backref_offset = btrfs_file_extent_offset(leaf, fi);
5527
5528         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5529         if (extent_end < offset + len) {
5530                 /* extent doesn't include our full range, must cow */
5531                 goto out;
5532         }
5533
5534         if (btrfs_extent_readonly(root, disk_bytenr))
5535                 goto out;
5536
5537         /*
5538          * look for other files referencing this extent, if we
5539          * find any we must cow
5540          */
5541         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5542                                   key.offset - backref_offset, disk_bytenr))
5543                 goto out;
5544
5545         /*
5546          * adjust disk_bytenr and num_bytes to cover just the bytes
5547          * in this extent we are about to write.  If there
5548          * are any csums in that range we have to cow in order
5549          * to keep the csums correct
5550          */
5551         disk_bytenr += backref_offset;
5552         disk_bytenr += offset - key.offset;
5553         num_bytes = min(offset + len, extent_end) - offset;
5554         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5555                                 goto out;
5556         /*
5557          * all of the above have passed, it is safe to overwrite this extent
5558          * without cow
5559          */
5560         ret = 1;
5561 out:
5562         btrfs_free_path(path);
5563         return ret;
5564 }
5565
5566 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5567                                    struct buffer_head *bh_result, int create)
5568 {
5569         struct extent_map *em;
5570         struct btrfs_root *root = BTRFS_I(inode)->root;
5571         u64 start = iblock << inode->i_blkbits;
5572         u64 len = bh_result->b_size;
5573         struct btrfs_trans_handle *trans;
5574
5575         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5576         if (IS_ERR(em))
5577                 return PTR_ERR(em);
5578
5579         /*
5580          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5581          * io.  INLINE is special, and we could probably kludge it in here, but
5582          * it's still buffered so for safety lets just fall back to the generic
5583          * buffered path.
5584          *
5585          * For COMPRESSED we _have_ to read the entire extent in so we can
5586          * decompress it, so there will be buffering required no matter what we
5587          * do, so go ahead and fallback to buffered.
5588          *
5589          * We return -ENOTBLK because thats what makes DIO go ahead and go back
5590          * to buffered IO.  Don't blame me, this is the price we pay for using
5591          * the generic code.
5592          */
5593         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5594             em->block_start == EXTENT_MAP_INLINE) {
5595                 free_extent_map(em);
5596                 return -ENOTBLK;
5597         }
5598
5599         /* Just a good old fashioned hole, return */
5600         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5601                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5602                 free_extent_map(em);
5603                 /* DIO will do one hole at a time, so just unlock a sector */
5604                 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5605                               start + root->sectorsize - 1, GFP_NOFS);
5606                 return 0;
5607         }
5608
5609         /*
5610          * We don't allocate a new extent in the following cases
5611          *
5612          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5613          * existing extent.
5614          * 2) The extent is marked as PREALLOC.  We're good to go here and can
5615          * just use the extent.
5616          *
5617          */
5618         if (!create) {
5619                 len = em->len - (start - em->start);
5620                 goto map;
5621         }
5622
5623         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5624             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5625              em->block_start != EXTENT_MAP_HOLE)) {
5626                 int type;
5627                 int ret;
5628                 u64 block_start;
5629
5630                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5631                         type = BTRFS_ORDERED_PREALLOC;
5632                 else
5633                         type = BTRFS_ORDERED_NOCOW;
5634                 len = min(len, em->len - (start - em->start));
5635                 block_start = em->block_start + (start - em->start);
5636
5637                 /*
5638                  * we're not going to log anything, but we do need
5639                  * to make sure the current transaction stays open
5640                  * while we look for nocow cross refs
5641                  */
5642                 trans = btrfs_join_transaction(root, 0);
5643                 if (IS_ERR(trans))
5644                         goto must_cow;
5645
5646                 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5647                         ret = btrfs_add_ordered_extent_dio(inode, start,
5648                                            block_start, len, len, type);
5649                         btrfs_end_transaction(trans, root);
5650                         if (ret) {
5651                                 free_extent_map(em);
5652                                 return ret;
5653                         }
5654                         goto unlock;
5655                 }
5656                 btrfs_end_transaction(trans, root);
5657         }
5658 must_cow:
5659         /*
5660          * this will cow the extent, reset the len in case we changed
5661          * it above
5662          */
5663         len = bh_result->b_size;
5664         free_extent_map(em);
5665         em = btrfs_new_extent_direct(inode, start, len);
5666         if (IS_ERR(em))
5667                 return PTR_ERR(em);
5668         len = min(len, em->len - (start - em->start));
5669 unlock:
5670         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5671                           EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5672                           0, NULL, GFP_NOFS);
5673 map:
5674         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5675                 inode->i_blkbits;
5676         bh_result->b_size = len;
5677         bh_result->b_bdev = em->bdev;
5678         set_buffer_mapped(bh_result);
5679         if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5680                 set_buffer_new(bh_result);
5681
5682         free_extent_map(em);
5683
5684         return 0;
5685 }
5686
5687 struct btrfs_dio_private {
5688         struct inode *inode;
5689         u64 logical_offset;
5690         u64 disk_bytenr;
5691         u64 bytes;
5692         u32 *csums;
5693         void *private;
5694
5695         /* number of bios pending for this dio */
5696         atomic_t pending_bios;
5697
5698         /* IO errors */
5699         int errors;
5700
5701         struct bio *orig_bio;
5702 };
5703
5704 static void btrfs_endio_direct_read(struct bio *bio, int err)
5705 {
5706         struct btrfs_dio_private *dip = bio->bi_private;
5707         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5708         struct bio_vec *bvec = bio->bi_io_vec;
5709         struct inode *inode = dip->inode;
5710         struct btrfs_root *root = BTRFS_I(inode)->root;
5711         u64 start;
5712         u32 *private = dip->csums;
5713
5714         start = dip->logical_offset;
5715         do {
5716                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5717                         struct page *page = bvec->bv_page;
5718                         char *kaddr;
5719                         u32 csum = ~(u32)0;
5720                         unsigned long flags;
5721
5722                         local_irq_save(flags);
5723                         kaddr = kmap_atomic(page, KM_IRQ0);
5724                         csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5725                                                csum, bvec->bv_len);
5726                         btrfs_csum_final(csum, (char *)&csum);
5727                         kunmap_atomic(kaddr, KM_IRQ0);
5728                         local_irq_restore(flags);
5729
5730                         flush_dcache_page(bvec->bv_page);
5731                         if (csum != *private) {
5732                                 printk(KERN_ERR "btrfs csum failed ino %lu off"
5733                                       " %llu csum %u private %u\n",
5734                                       inode->i_ino, (unsigned long long)start,
5735                                       csum, *private);
5736                                 err = -EIO;
5737                         }
5738                 }
5739
5740                 start += bvec->bv_len;
5741                 private++;
5742                 bvec++;
5743         } while (bvec <= bvec_end);
5744
5745         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5746                       dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5747         bio->bi_private = dip->private;
5748
5749         kfree(dip->csums);
5750         kfree(dip);
5751         dio_end_io(bio, err);
5752 }
5753
5754 static void btrfs_endio_direct_write(struct bio *bio, int err)
5755 {
5756         struct btrfs_dio_private *dip = bio->bi_private;
5757         struct inode *inode = dip->inode;
5758         struct btrfs_root *root = BTRFS_I(inode)->root;
5759         struct btrfs_trans_handle *trans;
5760         struct btrfs_ordered_extent *ordered = NULL;
5761         struct extent_state *cached_state = NULL;
5762         u64 ordered_offset = dip->logical_offset;
5763         u64 ordered_bytes = dip->bytes;
5764         int ret;
5765
5766         if (err)
5767                 goto out_done;
5768 again:
5769         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5770                                                    &ordered_offset,
5771                                                    ordered_bytes);
5772         if (!ret)
5773                 goto out_test;
5774
5775         BUG_ON(!ordered);
5776
5777         trans = btrfs_join_transaction(root, 1);
5778         if (IS_ERR(trans)) {
5779                 err = -ENOMEM;
5780                 goto out;
5781         }
5782         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5783
5784         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5785                 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5786                 if (!ret)
5787                         ret = btrfs_update_inode(trans, root, inode);
5788                 err = ret;
5789                 goto out;
5790         }
5791
5792         lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5793                          ordered->file_offset + ordered->len - 1, 0,
5794                          &cached_state, GFP_NOFS);
5795
5796         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5797                 ret = btrfs_mark_extent_written(trans, inode,
5798                                                 ordered->file_offset,
5799                                                 ordered->file_offset +
5800                                                 ordered->len);
5801                 if (ret) {
5802                         err = ret;
5803                         goto out_unlock;
5804                 }
5805         } else {
5806                 ret = insert_reserved_file_extent(trans, inode,
5807                                                   ordered->file_offset,
5808                                                   ordered->start,
5809                                                   ordered->disk_len,
5810                                                   ordered->len,
5811                                                   ordered->len,
5812                                                   0, 0, 0,
5813                                                   BTRFS_FILE_EXTENT_REG);
5814                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5815                                    ordered->file_offset, ordered->len);
5816                 if (ret) {
5817                         err = ret;
5818                         WARN_ON(1);
5819                         goto out_unlock;
5820                 }
5821         }
5822
5823         add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5824         btrfs_ordered_update_i_size(inode, 0, ordered);
5825         btrfs_update_inode(trans, root, inode);
5826 out_unlock:
5827         unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5828                              ordered->file_offset + ordered->len - 1,
5829                              &cached_state, GFP_NOFS);
5830 out:
5831         btrfs_delalloc_release_metadata(inode, ordered->len);
5832         btrfs_end_transaction(trans, root);
5833         ordered_offset = ordered->file_offset + ordered->len;
5834         btrfs_put_ordered_extent(ordered);
5835         btrfs_put_ordered_extent(ordered);
5836
5837 out_test:
5838         /*
5839          * our bio might span multiple ordered extents.  If we haven't
5840          * completed the accounting for the whole dio, go back and try again
5841          */
5842         if (ordered_offset < dip->logical_offset + dip->bytes) {
5843                 ordered_bytes = dip->logical_offset + dip->bytes -
5844                         ordered_offset;
5845                 goto again;
5846         }
5847 out_done:
5848         bio->bi_private = dip->private;
5849
5850         kfree(dip->csums);
5851         kfree(dip);
5852         dio_end_io(bio, err);
5853 }
5854
5855 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5856                                     struct bio *bio, int mirror_num,
5857                                     unsigned long bio_flags, u64 offset)
5858 {
5859         int ret;
5860         struct btrfs_root *root = BTRFS_I(inode)->root;
5861         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5862         BUG_ON(ret);
5863         return 0;
5864 }
5865
5866 static void btrfs_end_dio_bio(struct bio *bio, int err)
5867 {
5868         struct btrfs_dio_private *dip = bio->bi_private;
5869
5870         if (err) {
5871                 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5872                       "sector %#Lx len %u err no %d\n",
5873                       dip->inode->i_ino, bio->bi_rw,
5874                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
5875                 dip->errors = 1;
5876
5877                 /*
5878                  * before atomic variable goto zero, we must make sure
5879                  * dip->errors is perceived to be set.
5880                  */
5881                 smp_mb__before_atomic_dec();
5882         }
5883
5884         /* if there are more bios still pending for this dio, just exit */
5885         if (!atomic_dec_and_test(&dip->pending_bios))
5886                 goto out;
5887
5888         if (dip->errors)
5889                 bio_io_error(dip->orig_bio);
5890         else {
5891                 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5892                 bio_endio(dip->orig_bio, 0);
5893         }
5894 out:
5895         bio_put(bio);
5896 }
5897
5898 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5899                                        u64 first_sector, gfp_t gfp_flags)
5900 {
5901         int nr_vecs = bio_get_nr_vecs(bdev);
5902         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5903 }
5904
5905 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5906                                          int rw, u64 file_offset, int skip_sum,
5907                                          u32 *csums)
5908 {
5909         int write = rw & REQ_WRITE;
5910         struct btrfs_root *root = BTRFS_I(inode)->root;
5911         int ret;
5912
5913         bio_get(bio);
5914         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5915         if (ret)
5916                 goto err;
5917
5918         if (write && !skip_sum) {
5919                 ret = btrfs_wq_submit_bio(root->fs_info,
5920                                    inode, rw, bio, 0, 0,
5921                                    file_offset,
5922                                    __btrfs_submit_bio_start_direct_io,
5923                                    __btrfs_submit_bio_done);
5924                 goto err;
5925         } else if (!skip_sum)
5926                 btrfs_lookup_bio_sums_dio(root, inode, bio,
5927                                           file_offset, csums);
5928
5929         ret = btrfs_map_bio(root, rw, bio, 0, 1);
5930 err:
5931         bio_put(bio);
5932         return ret;
5933 }
5934
5935 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5936                                     int skip_sum)
5937 {
5938         struct inode *inode = dip->inode;
5939         struct btrfs_root *root = BTRFS_I(inode)->root;
5940         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5941         struct bio *bio;
5942         struct bio *orig_bio = dip->orig_bio;
5943         struct bio_vec *bvec = orig_bio->bi_io_vec;
5944         u64 start_sector = orig_bio->bi_sector;
5945         u64 file_offset = dip->logical_offset;
5946         u64 submit_len = 0;
5947         u64 map_length;
5948         int nr_pages = 0;
5949         u32 *csums = dip->csums;
5950         int ret = 0;
5951
5952         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5953         if (!bio)
5954                 return -ENOMEM;
5955         bio->bi_private = dip;
5956         bio->bi_end_io = btrfs_end_dio_bio;
5957         atomic_inc(&dip->pending_bios);
5958
5959         map_length = orig_bio->bi_size;
5960         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5961                               &map_length, NULL, 0);
5962         if (ret) {
5963                 bio_put(bio);
5964                 return -EIO;
5965         }
5966
5967         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5968                 if (unlikely(map_length < submit_len + bvec->bv_len ||
5969                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5970                                  bvec->bv_offset) < bvec->bv_len)) {
5971                         /*
5972                          * inc the count before we submit the bio so
5973                          * we know the end IO handler won't happen before
5974                          * we inc the count. Otherwise, the dip might get freed
5975                          * before we're done setting it up
5976                          */
5977                         atomic_inc(&dip->pending_bios);
5978                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
5979                                                      file_offset, skip_sum,
5980                                                      csums);
5981                         if (ret) {
5982                                 bio_put(bio);
5983                                 atomic_dec(&dip->pending_bios);
5984                                 goto out_err;
5985                         }
5986
5987                         if (!skip_sum)
5988                                 csums = csums + nr_pages;
5989                         start_sector += submit_len >> 9;
5990                         file_offset += submit_len;
5991
5992                         submit_len = 0;
5993                         nr_pages = 0;
5994
5995                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5996                                                   start_sector, GFP_NOFS);
5997                         if (!bio)
5998                                 goto out_err;
5999                         bio->bi_private = dip;
6000                         bio->bi_end_io = btrfs_end_dio_bio;
6001
6002                         map_length = orig_bio->bi_size;
6003                         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6004                                               &map_length, NULL, 0);
6005                         if (ret) {
6006                                 bio_put(bio);
6007                                 goto out_err;
6008                         }
6009                 } else {
6010                         submit_len += bvec->bv_len;
6011                         nr_pages ++;
6012                         bvec++;
6013                 }
6014         }
6015
6016         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6017                                      csums);
6018         if (!ret)
6019                 return 0;
6020
6021         bio_put(bio);
6022 out_err:
6023         dip->errors = 1;
6024         /*
6025          * before atomic variable goto zero, we must
6026          * make sure dip->errors is perceived to be set.
6027          */
6028         smp_mb__before_atomic_dec();
6029         if (atomic_dec_and_test(&dip->pending_bios))
6030                 bio_io_error(dip->orig_bio);
6031
6032         /* bio_end_io() will handle error, so we needn't return it */
6033         return 0;
6034 }
6035
6036 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6037                                 loff_t file_offset)
6038 {
6039         struct btrfs_root *root = BTRFS_I(inode)->root;
6040         struct btrfs_dio_private *dip;
6041         struct bio_vec *bvec = bio->bi_io_vec;
6042         int skip_sum;
6043         int write = rw & REQ_WRITE;
6044         int ret = 0;
6045
6046         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6047
6048         dip = kmalloc(sizeof(*dip), GFP_NOFS);
6049         if (!dip) {
6050                 ret = -ENOMEM;
6051                 goto free_ordered;
6052         }
6053         dip->csums = NULL;
6054
6055         if (!skip_sum) {
6056                 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6057                 if (!dip->csums) {
6058                         kfree(dip);
6059                         ret = -ENOMEM;
6060                         goto free_ordered;
6061                 }
6062         }
6063
6064         dip->private = bio->bi_private;
6065         dip->inode = inode;
6066         dip->logical_offset = file_offset;
6067
6068         dip->bytes = 0;
6069         do {
6070                 dip->bytes += bvec->bv_len;
6071                 bvec++;
6072         } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6073
6074         dip->disk_bytenr = (u64)bio->bi_sector << 9;
6075         bio->bi_private = dip;
6076         dip->errors = 0;
6077         dip->orig_bio = bio;
6078         atomic_set(&dip->pending_bios, 0);
6079
6080         if (write)
6081                 bio->bi_end_io = btrfs_endio_direct_write;
6082         else
6083                 bio->bi_end_io = btrfs_endio_direct_read;
6084
6085         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6086         if (!ret)
6087                 return;
6088 free_ordered:
6089         /*
6090          * If this is a write, we need to clean up the reserved space and kill
6091          * the ordered extent.
6092          */
6093         if (write) {
6094                 struct btrfs_ordered_extent *ordered;
6095                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6096                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6097                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6098                         btrfs_free_reserved_extent(root, ordered->start,
6099                                                    ordered->disk_len);
6100                 btrfs_put_ordered_extent(ordered);
6101                 btrfs_put_ordered_extent(ordered);
6102         }
6103         bio_endio(bio, ret);
6104 }
6105
6106 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6107                         const struct iovec *iov, loff_t offset,
6108                         unsigned long nr_segs)
6109 {
6110         int seg;
6111         size_t size;
6112         unsigned long addr;
6113         unsigned blocksize_mask = root->sectorsize - 1;
6114         ssize_t retval = -EINVAL;
6115         loff_t end = offset;
6116
6117         if (offset & blocksize_mask)
6118                 goto out;
6119
6120         /* Check the memory alignment.  Blocks cannot straddle pages */
6121         for (seg = 0; seg < nr_segs; seg++) {
6122                 addr = (unsigned long)iov[seg].iov_base;
6123                 size = iov[seg].iov_len;
6124                 end += size;
6125                 if ((addr & blocksize_mask) || (size & blocksize_mask)) 
6126                         goto out;
6127         }
6128         retval = 0;
6129 out:
6130         return retval;
6131 }
6132 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6133                         const struct iovec *iov, loff_t offset,
6134                         unsigned long nr_segs)
6135 {
6136         struct file *file = iocb->ki_filp;
6137         struct inode *inode = file->f_mapping->host;
6138         struct btrfs_ordered_extent *ordered;
6139         struct extent_state *cached_state = NULL;
6140         u64 lockstart, lockend;
6141         ssize_t ret;
6142         int writing = rw & WRITE;
6143         int write_bits = 0;
6144         size_t count = iov_length(iov, nr_segs);
6145
6146         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6147                             offset, nr_segs)) {
6148                 return 0;
6149         }
6150
6151         lockstart = offset;
6152         lockend = offset + count - 1;
6153
6154         if (writing) {
6155                 ret = btrfs_delalloc_reserve_space(inode, count);
6156                 if (ret)
6157                         goto out;
6158         }
6159
6160         while (1) {
6161                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6162                                  0, &cached_state, GFP_NOFS);
6163                 /*
6164                  * We're concerned with the entire range that we're going to be
6165                  * doing DIO to, so we need to make sure theres no ordered
6166                  * extents in this range.
6167                  */
6168                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6169                                                      lockend - lockstart + 1);
6170                 if (!ordered)
6171                         break;
6172                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6173                                      &cached_state, GFP_NOFS);
6174                 btrfs_start_ordered_extent(inode, ordered, 1);
6175                 btrfs_put_ordered_extent(ordered);
6176                 cond_resched();
6177         }
6178
6179         /*
6180          * we don't use btrfs_set_extent_delalloc because we don't want
6181          * the dirty or uptodate bits
6182          */
6183         if (writing) {
6184                 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6185                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6186                                      EXTENT_DELALLOC, 0, NULL, &cached_state,
6187                                      GFP_NOFS);
6188                 if (ret) {
6189                         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6190                                          lockend, EXTENT_LOCKED | write_bits,
6191                                          1, 0, &cached_state, GFP_NOFS);
6192                         goto out;
6193                 }
6194         }
6195
6196         free_extent_state(cached_state);
6197         cached_state = NULL;
6198
6199         ret = __blockdev_direct_IO(rw, iocb, inode,
6200                    BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6201                    iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6202                    btrfs_submit_direct, 0);
6203
6204         if (ret < 0 && ret != -EIOCBQUEUED) {
6205                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6206                               offset + iov_length(iov, nr_segs) - 1,
6207                               EXTENT_LOCKED | write_bits, 1, 0,
6208                               &cached_state, GFP_NOFS);
6209         } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6210                 /*
6211                  * We're falling back to buffered, unlock the section we didn't
6212                  * do IO on.
6213                  */
6214                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6215                               offset + iov_length(iov, nr_segs) - 1,
6216                               EXTENT_LOCKED | write_bits, 1, 0,
6217                               &cached_state, GFP_NOFS);
6218         }
6219 out:
6220         free_extent_state(cached_state);
6221         return ret;
6222 }
6223
6224 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6225                 __u64 start, __u64 len)
6226 {
6227         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6228 }
6229
6230 int btrfs_readpage(struct file *file, struct page *page)
6231 {
6232         struct extent_io_tree *tree;
6233         tree = &BTRFS_I(page->mapping->host)->io_tree;
6234         return extent_read_full_page(tree, page, btrfs_get_extent);
6235 }
6236
6237 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6238 {
6239         struct extent_io_tree *tree;
6240
6241
6242         if (current->flags & PF_MEMALLOC) {
6243                 redirty_page_for_writepage(wbc, page);
6244                 unlock_page(page);
6245                 return 0;
6246         }
6247         tree = &BTRFS_I(page->mapping->host)->io_tree;
6248         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6249 }
6250
6251 int btrfs_writepages(struct address_space *mapping,
6252                      struct writeback_control *wbc)
6253 {
6254         struct extent_io_tree *tree;
6255
6256         tree = &BTRFS_I(mapping->host)->io_tree;
6257         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6258 }
6259
6260 static int
6261 btrfs_readpages(struct file *file, struct address_space *mapping,
6262                 struct list_head *pages, unsigned nr_pages)
6263 {
6264         struct extent_io_tree *tree;
6265         tree = &BTRFS_I(mapping->host)->io_tree;
6266         return extent_readpages(tree, mapping, pages, nr_pages,
6267                                 btrfs_get_extent);
6268 }
6269 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6270 {
6271         struct extent_io_tree *tree;
6272         struct extent_map_tree *map;
6273         int ret;
6274
6275         tree = &BTRFS_I(page->mapping->host)->io_tree;
6276         map = &BTRFS_I(page->mapping->host)->extent_tree;
6277         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6278         if (ret == 1) {
6279                 ClearPagePrivate(page);
6280                 set_page_private(page, 0);
6281                 page_cache_release(page);
6282         }
6283         return ret;
6284 }
6285
6286 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6287 {
6288         if (PageWriteback(page) || PageDirty(page))
6289                 return 0;
6290         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6291 }
6292
6293 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6294 {
6295         struct extent_io_tree *tree;
6296         struct btrfs_ordered_extent *ordered;
6297         struct extent_state *cached_state = NULL;
6298         u64 page_start = page_offset(page);
6299         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6300
6301
6302         /*
6303          * we have the page locked, so new writeback can't start,
6304          * and the dirty bit won't be cleared while we are here.
6305          *
6306          * Wait for IO on this page so that we can safely clear
6307          * the PagePrivate2 bit and do ordered accounting
6308          */
6309         wait_on_page_writeback(page);
6310
6311         tree = &BTRFS_I(page->mapping->host)->io_tree;
6312         if (offset) {
6313                 btrfs_releasepage(page, GFP_NOFS);
6314                 return;
6315         }
6316         lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6317                          GFP_NOFS);
6318         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6319                                            page_offset(page));
6320         if (ordered) {
6321                 /*
6322                  * IO on this page will never be started, so we need
6323                  * to account for any ordered extents now
6324                  */
6325                 clear_extent_bit(tree, page_start, page_end,
6326                                  EXTENT_DIRTY | EXTENT_DELALLOC |
6327                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6328                                  &cached_state, GFP_NOFS);
6329                 /*
6330                  * whoever cleared the private bit is responsible
6331                  * for the finish_ordered_io
6332                  */
6333                 if (TestClearPagePrivate2(page)) {
6334                         btrfs_finish_ordered_io(page->mapping->host,
6335                                                 page_start, page_end);
6336                 }
6337                 btrfs_put_ordered_extent(ordered);
6338                 cached_state = NULL;
6339                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6340                                  GFP_NOFS);
6341         }
6342         clear_extent_bit(tree, page_start, page_end,
6343                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6344                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6345         __btrfs_releasepage(page, GFP_NOFS);
6346
6347         ClearPageChecked(page);
6348         if (PagePrivate(page)) {
6349                 ClearPagePrivate(page);
6350                 set_page_private(page, 0);
6351                 page_cache_release(page);
6352         }
6353 }
6354
6355 /*
6356  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6357  * called from a page fault handler when a page is first dirtied. Hence we must
6358  * be careful to check for EOF conditions here. We set the page up correctly
6359  * for a written page which means we get ENOSPC checking when writing into
6360  * holes and correct delalloc and unwritten extent mapping on filesystems that
6361  * support these features.
6362  *
6363  * We are not allowed to take the i_mutex here so we have to play games to
6364  * protect against truncate races as the page could now be beyond EOF.  Because
6365  * vmtruncate() writes the inode size before removing pages, once we have the
6366  * page lock we can determine safely if the page is beyond EOF. If it is not
6367  * beyond EOF, then the page is guaranteed safe against truncation until we
6368  * unlock the page.
6369  */
6370 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6371 {
6372         struct page *page = vmf->page;
6373         struct inode *inode = fdentry(vma->vm_file)->d_inode;
6374         struct btrfs_root *root = BTRFS_I(inode)->root;
6375         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6376         struct btrfs_ordered_extent *ordered;
6377         struct extent_state *cached_state = NULL;
6378         char *kaddr;
6379         unsigned long zero_start;
6380         loff_t size;
6381         int ret;
6382         u64 page_start;
6383         u64 page_end;
6384
6385         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6386         if (ret) {
6387                 if (ret == -ENOMEM)
6388                         ret = VM_FAULT_OOM;
6389                 else /* -ENOSPC, -EIO, etc */
6390                         ret = VM_FAULT_SIGBUS;
6391                 goto out;
6392         }
6393
6394         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6395 again:
6396         lock_page(page);
6397         size = i_size_read(inode);
6398         page_start = page_offset(page);
6399         page_end = page_start + PAGE_CACHE_SIZE - 1;
6400
6401         if ((page->mapping != inode->i_mapping) ||
6402             (page_start >= size)) {
6403                 /* page got truncated out from underneath us */
6404                 goto out_unlock;
6405         }
6406         wait_on_page_writeback(page);
6407
6408         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6409                          GFP_NOFS);
6410         set_page_extent_mapped(page);
6411
6412         /*
6413          * we can't set the delalloc bits if there are pending ordered
6414          * extents.  Drop our locks and wait for them to finish
6415          */
6416         ordered = btrfs_lookup_ordered_extent(inode, page_start);
6417         if (ordered) {
6418                 unlock_extent_cached(io_tree, page_start, page_end,
6419                                      &cached_state, GFP_NOFS);
6420                 unlock_page(page);
6421                 btrfs_start_ordered_extent(inode, ordered, 1);
6422                 btrfs_put_ordered_extent(ordered);
6423                 goto again;
6424         }
6425
6426         /*
6427          * XXX - page_mkwrite gets called every time the page is dirtied, even
6428          * if it was already dirty, so for space accounting reasons we need to
6429          * clear any delalloc bits for the range we are fixing to save.  There
6430          * is probably a better way to do this, but for now keep consistent with
6431          * prepare_pages in the normal write path.
6432          */
6433         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6434                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6435                           0, 0, &cached_state, GFP_NOFS);
6436
6437         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6438                                         &cached_state);
6439         if (ret) {
6440                 unlock_extent_cached(io_tree, page_start, page_end,
6441                                      &cached_state, GFP_NOFS);
6442                 ret = VM_FAULT_SIGBUS;
6443                 goto out_unlock;
6444         }
6445         ret = 0;
6446
6447         /* page is wholly or partially inside EOF */
6448         if (page_start + PAGE_CACHE_SIZE > size)
6449                 zero_start = size & ~PAGE_CACHE_MASK;
6450         else
6451                 zero_start = PAGE_CACHE_SIZE;
6452
6453         if (zero_start != PAGE_CACHE_SIZE) {
6454                 kaddr = kmap(page);
6455                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6456                 flush_dcache_page(page);
6457                 kunmap(page);
6458         }
6459         ClearPageChecked(page);
6460         set_page_dirty(page);
6461         SetPageUptodate(page);
6462
6463         BTRFS_I(inode)->last_trans = root->fs_info->generation;
6464         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6465
6466         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6467
6468 out_unlock:
6469         if (!ret)
6470                 return VM_FAULT_LOCKED;
6471         unlock_page(page);
6472         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6473 out:
6474         return ret;
6475 }
6476
6477 static int btrfs_truncate(struct inode *inode)
6478 {
6479         struct btrfs_root *root = BTRFS_I(inode)->root;
6480         int ret;
6481         struct btrfs_trans_handle *trans;
6482         unsigned long nr;
6483         u64 mask = root->sectorsize - 1;
6484
6485         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6486         if (ret)
6487                 return ret;
6488
6489         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6490         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6491
6492         trans = btrfs_start_transaction(root, 0);
6493         BUG_ON(IS_ERR(trans));
6494         btrfs_set_trans_block_group(trans, inode);
6495         trans->block_rsv = root->orphan_block_rsv;
6496
6497         /*
6498          * setattr is responsible for setting the ordered_data_close flag,
6499          * but that is only tested during the last file release.  That
6500          * could happen well after the next commit, leaving a great big
6501          * window where new writes may get lost if someone chooses to write
6502          * to this file after truncating to zero
6503          *
6504          * The inode doesn't have any dirty data here, and so if we commit
6505          * this is a noop.  If someone immediately starts writing to the inode
6506          * it is very likely we'll catch some of their writes in this
6507          * transaction, and the commit will find this file on the ordered
6508          * data list with good things to send down.
6509          *
6510          * This is a best effort solution, there is still a window where
6511          * using truncate to replace the contents of the file will
6512          * end up with a zero length file after a crash.
6513          */
6514         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6515                 btrfs_add_ordered_operation(trans, root, inode);
6516
6517         while (1) {
6518                 if (!trans) {
6519                         trans = btrfs_start_transaction(root, 0);
6520                         BUG_ON(IS_ERR(trans));
6521                         btrfs_set_trans_block_group(trans, inode);
6522                         trans->block_rsv = root->orphan_block_rsv;
6523                 }
6524
6525                 ret = btrfs_block_rsv_check(trans, root,
6526                                             root->orphan_block_rsv, 0, 5);
6527                 if (ret) {
6528                         BUG_ON(ret != -EAGAIN);
6529                         ret = btrfs_commit_transaction(trans, root);
6530                         BUG_ON(ret);
6531                         trans = NULL;
6532                         continue;
6533                 }
6534
6535                 ret = btrfs_truncate_inode_items(trans, root, inode,
6536                                                  inode->i_size,
6537                                                  BTRFS_EXTENT_DATA_KEY);
6538                 if (ret != -EAGAIN)
6539                         break;
6540
6541                 ret = btrfs_update_inode(trans, root, inode);
6542                 BUG_ON(ret);
6543
6544                 nr = trans->blocks_used;
6545                 btrfs_end_transaction(trans, root);
6546                 trans = NULL;
6547                 btrfs_btree_balance_dirty(root, nr);
6548         }
6549
6550         if (ret == 0 && inode->i_nlink > 0) {
6551                 ret = btrfs_orphan_del(trans, inode);
6552                 BUG_ON(ret);
6553         }
6554
6555         ret = btrfs_update_inode(trans, root, inode);
6556         BUG_ON(ret);
6557
6558         nr = trans->blocks_used;
6559         ret = btrfs_end_transaction_throttle(trans, root);
6560         BUG_ON(ret);
6561         btrfs_btree_balance_dirty(root, nr);
6562
6563         return ret;
6564 }
6565
6566 /*
6567  * create a new subvolume directory/inode (helper for the ioctl).
6568  */
6569 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6570                              struct btrfs_root *new_root,
6571                              u64 new_dirid, u64 alloc_hint)
6572 {
6573         struct inode *inode;
6574         int err;
6575         u64 index = 0;
6576
6577         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6578                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6579         if (IS_ERR(inode))
6580                 return PTR_ERR(inode);
6581         inode->i_op = &btrfs_dir_inode_operations;
6582         inode->i_fop = &btrfs_dir_file_operations;
6583
6584         inode->i_nlink = 1;
6585         btrfs_i_size_write(inode, 0);
6586
6587         err = btrfs_update_inode(trans, new_root, inode);
6588         BUG_ON(err);
6589
6590         iput(inode);
6591         return 0;
6592 }
6593
6594 /* helper function for file defrag and space balancing.  This
6595  * forces readahead on a given range of bytes in an inode
6596  */
6597 unsigned long btrfs_force_ra(struct address_space *mapping,
6598                               struct file_ra_state *ra, struct file *file,
6599                               pgoff_t offset, pgoff_t last_index)
6600 {
6601         pgoff_t req_size = last_index - offset + 1;
6602
6603         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6604         return offset + req_size;
6605 }
6606
6607 struct inode *btrfs_alloc_inode(struct super_block *sb)
6608 {
6609         struct btrfs_inode *ei;
6610         struct inode *inode;
6611
6612         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6613         if (!ei)
6614                 return NULL;
6615
6616         ei->root = NULL;
6617         ei->space_info = NULL;
6618         ei->generation = 0;
6619         ei->sequence = 0;
6620         ei->last_trans = 0;
6621         ei->last_sub_trans = 0;
6622         ei->logged_trans = 0;
6623         ei->delalloc_bytes = 0;
6624         ei->reserved_bytes = 0;
6625         ei->disk_i_size = 0;
6626         ei->flags = 0;
6627         ei->index_cnt = (u64)-1;
6628         ei->last_unlink_trans = 0;
6629
6630         atomic_set(&ei->outstanding_extents, 0);
6631         atomic_set(&ei->reserved_extents, 0);
6632
6633         ei->ordered_data_close = 0;
6634         ei->orphan_meta_reserved = 0;
6635         ei->dummy_inode = 0;
6636         ei->force_compress = BTRFS_COMPRESS_NONE;
6637
6638         inode = &ei->vfs_inode;
6639         extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6640         extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6641         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6642         mutex_init(&ei->log_mutex);
6643         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6644         INIT_LIST_HEAD(&ei->i_orphan);
6645         INIT_LIST_HEAD(&ei->delalloc_inodes);
6646         INIT_LIST_HEAD(&ei->ordered_operations);
6647         RB_CLEAR_NODE(&ei->rb_node);
6648
6649         return inode;
6650 }
6651
6652 static void btrfs_i_callback(struct rcu_head *head)
6653 {
6654         struct inode *inode = container_of(head, struct inode, i_rcu);
6655         INIT_LIST_HEAD(&inode->i_dentry);
6656         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6657 }
6658
6659 void btrfs_destroy_inode(struct inode *inode)
6660 {
6661         struct btrfs_ordered_extent *ordered;
6662         struct btrfs_root *root = BTRFS_I(inode)->root;
6663
6664         WARN_ON(!list_empty(&inode->i_dentry));
6665         WARN_ON(inode->i_data.nrpages);
6666         WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6667         WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6668
6669         /*
6670          * This can happen where we create an inode, but somebody else also
6671          * created the same inode and we need to destroy the one we already
6672          * created.
6673          */
6674         if (!root)
6675                 goto free;
6676
6677         /*
6678          * Make sure we're properly removed from the ordered operation
6679          * lists.
6680          */
6681         smp_mb();
6682         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6683                 spin_lock(&root->fs_info->ordered_extent_lock);
6684                 list_del_init(&BTRFS_I(inode)->ordered_operations);
6685                 spin_unlock(&root->fs_info->ordered_extent_lock);
6686         }
6687
6688         if (root == root->fs_info->tree_root) {
6689                 struct btrfs_block_group_cache *block_group;
6690
6691                 block_group = btrfs_lookup_block_group(root->fs_info,
6692                                                 BTRFS_I(inode)->block_group);
6693                 if (block_group && block_group->inode == inode) {
6694                         spin_lock(&block_group->lock);
6695                         block_group->inode = NULL;
6696                         spin_unlock(&block_group->lock);
6697                         btrfs_put_block_group(block_group);
6698                 } else if (block_group) {
6699                         btrfs_put_block_group(block_group);
6700                 }
6701         }
6702
6703         spin_lock(&root->orphan_lock);
6704         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6705                 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6706                        inode->i_ino);
6707                 list_del_init(&BTRFS_I(inode)->i_orphan);
6708         }
6709         spin_unlock(&root->orphan_lock);
6710
6711         while (1) {
6712                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6713                 if (!ordered)
6714                         break;
6715                 else {
6716                         printk(KERN_ERR "btrfs found ordered "
6717                                "extent %llu %llu on inode cleanup\n",
6718                                (unsigned long long)ordered->file_offset,
6719                                (unsigned long long)ordered->len);
6720                         btrfs_remove_ordered_extent(inode, ordered);
6721                         btrfs_put_ordered_extent(ordered);
6722                         btrfs_put_ordered_extent(ordered);
6723                 }
6724         }
6725         inode_tree_del(inode);
6726         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6727 free:
6728         call_rcu(&inode->i_rcu, btrfs_i_callback);
6729 }
6730
6731 int btrfs_drop_inode(struct inode *inode)
6732 {
6733         struct btrfs_root *root = BTRFS_I(inode)->root;
6734
6735         if (btrfs_root_refs(&root->root_item) == 0 &&
6736             root != root->fs_info->tree_root)
6737                 return 1;
6738         else
6739                 return generic_drop_inode(inode);
6740 }
6741
6742 static void init_once(void *foo)
6743 {
6744         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6745
6746         inode_init_once(&ei->vfs_inode);
6747 }
6748
6749 void btrfs_destroy_cachep(void)
6750 {
6751         if (btrfs_inode_cachep)
6752                 kmem_cache_destroy(btrfs_inode_cachep);
6753         if (btrfs_trans_handle_cachep)
6754                 kmem_cache_destroy(btrfs_trans_handle_cachep);
6755         if (btrfs_transaction_cachep)
6756                 kmem_cache_destroy(btrfs_transaction_cachep);
6757         if (btrfs_path_cachep)
6758                 kmem_cache_destroy(btrfs_path_cachep);
6759         if (btrfs_free_space_cachep)
6760                 kmem_cache_destroy(btrfs_free_space_cachep);
6761 }
6762
6763 int btrfs_init_cachep(void)
6764 {
6765         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6766                         sizeof(struct btrfs_inode), 0,
6767                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6768         if (!btrfs_inode_cachep)
6769                 goto fail;
6770
6771         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6772                         sizeof(struct btrfs_trans_handle), 0,
6773                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6774         if (!btrfs_trans_handle_cachep)
6775                 goto fail;
6776
6777         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6778                         sizeof(struct btrfs_transaction), 0,
6779                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6780         if (!btrfs_transaction_cachep)
6781                 goto fail;
6782
6783         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6784                         sizeof(struct btrfs_path), 0,
6785                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6786         if (!btrfs_path_cachep)
6787                 goto fail;
6788
6789         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6790                         sizeof(struct btrfs_free_space), 0,
6791                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6792         if (!btrfs_free_space_cachep)
6793                 goto fail;
6794
6795         return 0;
6796 fail:
6797         btrfs_destroy_cachep();
6798         return -ENOMEM;
6799 }
6800
6801 static int btrfs_getattr(struct vfsmount *mnt,
6802                          struct dentry *dentry, struct kstat *stat)
6803 {
6804         struct inode *inode = dentry->d_inode;
6805         generic_fillattr(inode, stat);
6806         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6807         stat->blksize = PAGE_CACHE_SIZE;
6808         stat->blocks = (inode_get_bytes(inode) +
6809                         BTRFS_I(inode)->delalloc_bytes) >> 9;
6810         return 0;
6811 }
6812
6813 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6814                            struct inode *new_dir, struct dentry *new_dentry)
6815 {
6816         struct btrfs_trans_handle *trans;
6817         struct btrfs_root *root = BTRFS_I(old_dir)->root;
6818         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6819         struct inode *new_inode = new_dentry->d_inode;
6820         struct inode *old_inode = old_dentry->d_inode;
6821         struct timespec ctime = CURRENT_TIME;
6822         u64 index = 0;
6823         u64 root_objectid;
6824         int ret;
6825
6826         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6827                 return -EPERM;
6828
6829         /* we only allow rename subvolume link between subvolumes */
6830         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6831                 return -EXDEV;
6832
6833         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6834             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6835                 return -ENOTEMPTY;
6836
6837         if (S_ISDIR(old_inode->i_mode) && new_inode &&
6838             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6839                 return -ENOTEMPTY;
6840         /*
6841          * we're using rename to replace one file with another.
6842          * and the replacement file is large.  Start IO on it now so
6843          * we don't add too much work to the end of the transaction
6844          */
6845         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6846             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6847                 filemap_flush(old_inode->i_mapping);
6848
6849         /* close the racy window with snapshot create/destroy ioctl */
6850         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6851                 down_read(&root->fs_info->subvol_sem);
6852         /*
6853          * We want to reserve the absolute worst case amount of items.  So if
6854          * both inodes are subvols and we need to unlink them then that would
6855          * require 4 item modifications, but if they are both normal inodes it
6856          * would require 5 item modifications, so we'll assume their normal
6857          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6858          * should cover the worst case number of items we'll modify.
6859          */
6860         trans = btrfs_start_transaction(root, 20);
6861         if (IS_ERR(trans))
6862                 return PTR_ERR(trans);
6863
6864         btrfs_set_trans_block_group(trans, new_dir);
6865
6866         if (dest != root)
6867                 btrfs_record_root_in_trans(trans, dest);
6868
6869         ret = btrfs_set_inode_index(new_dir, &index);
6870         if (ret)
6871                 goto out_fail;
6872
6873         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6874                 /* force full log commit if subvolume involved. */
6875                 root->fs_info->last_trans_log_full_commit = trans->transid;
6876         } else {
6877                 ret = btrfs_insert_inode_ref(trans, dest,
6878                                              new_dentry->d_name.name,
6879                                              new_dentry->d_name.len,
6880                                              old_inode->i_ino,
6881                                              new_dir->i_ino, index);
6882                 if (ret)
6883                         goto out_fail;
6884                 /*
6885                  * this is an ugly little race, but the rename is required
6886                  * to make sure that if we crash, the inode is either at the
6887                  * old name or the new one.  pinning the log transaction lets
6888                  * us make sure we don't allow a log commit to come in after
6889                  * we unlink the name but before we add the new name back in.
6890                  */
6891                 btrfs_pin_log_trans(root);
6892         }
6893         /*
6894          * make sure the inode gets flushed if it is replacing
6895          * something.
6896          */
6897         if (new_inode && new_inode->i_size &&
6898             old_inode && S_ISREG(old_inode->i_mode)) {
6899                 btrfs_add_ordered_operation(trans, root, old_inode);
6900         }
6901
6902         old_dir->i_ctime = old_dir->i_mtime = ctime;
6903         new_dir->i_ctime = new_dir->i_mtime = ctime;
6904         old_inode->i_ctime = ctime;
6905
6906         if (old_dentry->d_parent != new_dentry->d_parent)
6907                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6908
6909         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6910                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6911                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6912                                         old_dentry->d_name.name,
6913                                         old_dentry->d_name.len);
6914         } else {
6915                 btrfs_inc_nlink(old_dentry->d_inode);
6916                 ret = btrfs_unlink_inode(trans, root, old_dir,
6917                                          old_dentry->d_inode,
6918                                          old_dentry->d_name.name,
6919                                          old_dentry->d_name.len);
6920         }
6921         BUG_ON(ret);
6922
6923         if (new_inode) {
6924                 new_inode->i_ctime = CURRENT_TIME;
6925                 if (unlikely(new_inode->i_ino ==
6926                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6927                         root_objectid = BTRFS_I(new_inode)->location.objectid;
6928                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
6929                                                 root_objectid,
6930                                                 new_dentry->d_name.name,
6931                                                 new_dentry->d_name.len);
6932                         BUG_ON(new_inode->i_nlink == 0);
6933                 } else {
6934                         ret = btrfs_unlink_inode(trans, dest, new_dir,
6935                                                  new_dentry->d_inode,
6936                                                  new_dentry->d_name.name,
6937                                                  new_dentry->d_name.len);
6938                 }
6939                 BUG_ON(ret);
6940                 if (new_inode->i_nlink == 0) {
6941                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6942                         BUG_ON(ret);
6943                 }
6944         }
6945
6946         ret = btrfs_add_link(trans, new_dir, old_inode,
6947                              new_dentry->d_name.name,
6948                              new_dentry->d_name.len, 0, index);
6949         BUG_ON(ret);
6950
6951         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6952                 struct dentry *parent = dget_parent(new_dentry);
6953                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
6954                 dput(parent);
6955                 btrfs_end_log_trans(root);
6956         }
6957 out_fail:
6958         btrfs_end_transaction_throttle(trans, root);
6959
6960         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6961                 up_read(&root->fs_info->subvol_sem);
6962
6963         return ret;
6964 }
6965
6966 /*
6967  * some fairly slow code that needs optimization. This walks the list
6968  * of all the inodes with pending delalloc and forces them to disk.
6969  */
6970 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
6971 {
6972         struct list_head *head = &root->fs_info->delalloc_inodes;
6973         struct btrfs_inode *binode;
6974         struct inode *inode;
6975
6976         if (root->fs_info->sb->s_flags & MS_RDONLY)
6977                 return -EROFS;
6978
6979         spin_lock(&root->fs_info->delalloc_lock);
6980         while (!list_empty(head)) {
6981                 binode = list_entry(head->next, struct btrfs_inode,
6982                                     delalloc_inodes);
6983                 inode = igrab(&binode->vfs_inode);
6984                 if (!inode)
6985                         list_del_init(&binode->delalloc_inodes);
6986                 spin_unlock(&root->fs_info->delalloc_lock);
6987                 if (inode) {
6988                         filemap_flush(inode->i_mapping);
6989                         if (delay_iput)
6990                                 btrfs_add_delayed_iput(inode);
6991                         else
6992                                 iput(inode);
6993                 }
6994                 cond_resched();
6995                 spin_lock(&root->fs_info->delalloc_lock);
6996         }
6997         spin_unlock(&root->fs_info->delalloc_lock);
6998
6999         /* the filemap_flush will queue IO into the worker threads, but
7000          * we have to make sure the IO is actually started and that
7001          * ordered extents get created before we return
7002          */
7003         atomic_inc(&root->fs_info->async_submit_draining);
7004         while (atomic_read(&root->fs_info->nr_async_submits) ||
7005               atomic_read(&root->fs_info->async_delalloc_pages)) {
7006                 wait_event(root->fs_info->async_submit_wait,
7007                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7008                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7009         }
7010         atomic_dec(&root->fs_info->async_submit_draining);
7011         return 0;
7012 }
7013
7014 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7015                                    int sync)
7016 {
7017         struct btrfs_inode *binode;
7018         struct inode *inode = NULL;
7019
7020         spin_lock(&root->fs_info->delalloc_lock);
7021         while (!list_empty(&root->fs_info->delalloc_inodes)) {
7022                 binode = list_entry(root->fs_info->delalloc_inodes.next,
7023                                     struct btrfs_inode, delalloc_inodes);
7024                 inode = igrab(&binode->vfs_inode);
7025                 if (inode) {
7026                         list_move_tail(&binode->delalloc_inodes,
7027                                        &root->fs_info->delalloc_inodes);
7028                         break;
7029                 }
7030
7031                 list_del_init(&binode->delalloc_inodes);
7032                 cond_resched_lock(&root->fs_info->delalloc_lock);
7033         }
7034         spin_unlock(&root->fs_info->delalloc_lock);
7035
7036         if (inode) {
7037                 if (sync) {
7038                         filemap_write_and_wait(inode->i_mapping);
7039                         /*
7040                          * We have to do this because compression doesn't
7041                          * actually set PG_writeback until it submits the pages
7042                          * for IO, which happens in an async thread, so we could
7043                          * race and not actually wait for any writeback pages
7044                          * because they've not been submitted yet.  Technically
7045                          * this could still be the case for the ordered stuff
7046                          * since the async thread may not have started to do its
7047                          * work yet.  If this becomes the case then we need to
7048                          * figure out a way to make sure that in writepage we
7049                          * wait for any async pages to be submitted before
7050                          * returning so that fdatawait does what its supposed to
7051                          * do.
7052                          */
7053                         btrfs_wait_ordered_range(inode, 0, (u64)-1);
7054                 } else {
7055                         filemap_flush(inode->i_mapping);
7056                 }
7057                 if (delay_iput)
7058                         btrfs_add_delayed_iput(inode);
7059                 else
7060                         iput(inode);
7061                 return 1;
7062         }
7063         return 0;
7064 }
7065
7066 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7067                          const char *symname)
7068 {
7069         struct btrfs_trans_handle *trans;
7070         struct btrfs_root *root = BTRFS_I(dir)->root;
7071         struct btrfs_path *path;
7072         struct btrfs_key key;
7073         struct inode *inode = NULL;
7074         int err;
7075         int drop_inode = 0;
7076         u64 objectid;
7077         u64 index = 0 ;
7078         int name_len;
7079         int datasize;
7080         unsigned long ptr;
7081         struct btrfs_file_extent_item *ei;
7082         struct extent_buffer *leaf;
7083         unsigned long nr = 0;
7084
7085         name_len = strlen(symname) + 1;
7086         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7087                 return -ENAMETOOLONG;
7088
7089         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7090         if (err)
7091                 return err;
7092         /*
7093          * 2 items for inode item and ref
7094          * 2 items for dir items
7095          * 1 item for xattr if selinux is on
7096          */
7097         trans = btrfs_start_transaction(root, 5);
7098         if (IS_ERR(trans))
7099                 return PTR_ERR(trans);
7100
7101         btrfs_set_trans_block_group(trans, dir);
7102
7103         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7104                                 dentry->d_name.len, dir->i_ino, objectid,
7105                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7106                                 &index);
7107         err = PTR_ERR(inode);
7108         if (IS_ERR(inode))
7109                 goto out_unlock;
7110
7111         err = btrfs_init_inode_security(trans, inode, dir);
7112         if (err) {
7113                 drop_inode = 1;
7114                 goto out_unlock;
7115         }
7116
7117         btrfs_set_trans_block_group(trans, inode);
7118         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7119         if (err)
7120                 drop_inode = 1;
7121         else {
7122                 inode->i_mapping->a_ops = &btrfs_aops;
7123                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7124                 inode->i_fop = &btrfs_file_operations;
7125                 inode->i_op = &btrfs_file_inode_operations;
7126                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7127         }
7128         btrfs_update_inode_block_group(trans, inode);
7129         btrfs_update_inode_block_group(trans, dir);
7130         if (drop_inode)
7131                 goto out_unlock;
7132
7133         path = btrfs_alloc_path();
7134         BUG_ON(!path);
7135         key.objectid = inode->i_ino;
7136         key.offset = 0;
7137         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7138         datasize = btrfs_file_extent_calc_inline_size(name_len);
7139         err = btrfs_insert_empty_item(trans, root, path, &key,
7140                                       datasize);
7141         if (err) {
7142                 drop_inode = 1;
7143                 goto out_unlock;
7144         }
7145         leaf = path->nodes[0];
7146         ei = btrfs_item_ptr(leaf, path->slots[0],
7147                             struct btrfs_file_extent_item);
7148         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7149         btrfs_set_file_extent_type(leaf, ei,
7150                                    BTRFS_FILE_EXTENT_INLINE);
7151         btrfs_set_file_extent_encryption(leaf, ei, 0);
7152         btrfs_set_file_extent_compression(leaf, ei, 0);
7153         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7154         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7155
7156         ptr = btrfs_file_extent_inline_start(ei);
7157         write_extent_buffer(leaf, symname, ptr, name_len);
7158         btrfs_mark_buffer_dirty(leaf);
7159         btrfs_free_path(path);
7160
7161         inode->i_op = &btrfs_symlink_inode_operations;
7162         inode->i_mapping->a_ops = &btrfs_symlink_aops;
7163         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7164         inode_set_bytes(inode, name_len);
7165         btrfs_i_size_write(inode, name_len - 1);
7166         err = btrfs_update_inode(trans, root, inode);
7167         if (err)
7168                 drop_inode = 1;
7169
7170 out_unlock:
7171         nr = trans->blocks_used;
7172         btrfs_end_transaction_throttle(trans, root);
7173         if (drop_inode) {
7174                 inode_dec_link_count(inode);
7175                 iput(inode);
7176         }
7177         btrfs_btree_balance_dirty(root, nr);
7178         return err;
7179 }
7180
7181 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7182                                        u64 start, u64 num_bytes, u64 min_size,
7183                                        loff_t actual_len, u64 *alloc_hint,
7184                                        struct btrfs_trans_handle *trans)
7185 {
7186         struct btrfs_root *root = BTRFS_I(inode)->root;
7187         struct btrfs_key ins;
7188         u64 cur_offset = start;
7189         u64 i_size;
7190         int ret = 0;
7191         bool own_trans = true;
7192
7193         if (trans)
7194                 own_trans = false;
7195         while (num_bytes > 0) {
7196                 if (own_trans) {
7197                         trans = btrfs_start_transaction(root, 3);
7198                         if (IS_ERR(trans)) {
7199                                 ret = PTR_ERR(trans);
7200                                 break;
7201                         }
7202                 }
7203
7204                 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7205                                            0, *alloc_hint, (u64)-1, &ins, 1);
7206                 if (ret) {
7207                         if (own_trans)
7208                                 btrfs_end_transaction(trans, root);
7209                         break;
7210                 }
7211
7212                 ret = insert_reserved_file_extent(trans, inode,
7213                                                   cur_offset, ins.objectid,
7214                                                   ins.offset, ins.offset,
7215                                                   ins.offset, 0, 0, 0,
7216                                                   BTRFS_FILE_EXTENT_PREALLOC);
7217                 BUG_ON(ret);
7218                 btrfs_drop_extent_cache(inode, cur_offset,
7219                                         cur_offset + ins.offset -1, 0);
7220
7221                 num_bytes -= ins.offset;
7222                 cur_offset += ins.offset;
7223                 *alloc_hint = ins.objectid + ins.offset;
7224
7225                 inode->i_ctime = CURRENT_TIME;
7226                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7227                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7228                     (actual_len > inode->i_size) &&
7229                     (cur_offset > inode->i_size)) {
7230                         if (cur_offset > actual_len)
7231                                 i_size = actual_len;
7232                         else
7233                                 i_size = cur_offset;
7234                         i_size_write(inode, i_size);
7235                         btrfs_ordered_update_i_size(inode, i_size, NULL);
7236                 }
7237
7238                 ret = btrfs_update_inode(trans, root, inode);
7239                 BUG_ON(ret);
7240
7241                 if (own_trans)
7242                         btrfs_end_transaction(trans, root);
7243         }
7244         return ret;
7245 }
7246
7247 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7248                               u64 start, u64 num_bytes, u64 min_size,
7249                               loff_t actual_len, u64 *alloc_hint)
7250 {
7251         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7252                                            min_size, actual_len, alloc_hint,
7253                                            NULL);
7254 }
7255
7256 int btrfs_prealloc_file_range_trans(struct inode *inode,
7257                                     struct btrfs_trans_handle *trans, int mode,
7258                                     u64 start, u64 num_bytes, u64 min_size,
7259                                     loff_t actual_len, u64 *alloc_hint)
7260 {
7261         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7262                                            min_size, actual_len, alloc_hint, trans);
7263 }
7264
7265 static int btrfs_set_page_dirty(struct page *page)
7266 {
7267         return __set_page_dirty_nobuffers(page);
7268 }
7269
7270 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7271 {
7272         struct btrfs_root *root = BTRFS_I(inode)->root;
7273
7274         if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7275                 return -EROFS;
7276         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7277                 return -EACCES;
7278         return generic_permission(inode, mask, flags, btrfs_check_acl);
7279 }
7280
7281 static const struct inode_operations btrfs_dir_inode_operations = {
7282         .getattr        = btrfs_getattr,
7283         .lookup         = btrfs_lookup,
7284         .create         = btrfs_create,
7285         .unlink         = btrfs_unlink,
7286         .link           = btrfs_link,
7287         .mkdir          = btrfs_mkdir,
7288         .rmdir          = btrfs_rmdir,
7289         .rename         = btrfs_rename,
7290         .symlink        = btrfs_symlink,
7291         .setattr        = btrfs_setattr,
7292         .mknod          = btrfs_mknod,
7293         .setxattr       = btrfs_setxattr,
7294         .getxattr       = btrfs_getxattr,
7295         .listxattr      = btrfs_listxattr,
7296         .removexattr    = btrfs_removexattr,
7297         .permission     = btrfs_permission,
7298 };
7299 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7300         .lookup         = btrfs_lookup,
7301         .permission     = btrfs_permission,
7302 };
7303
7304 static const struct file_operations btrfs_dir_file_operations = {
7305         .llseek         = generic_file_llseek,
7306         .read           = generic_read_dir,
7307         .readdir        = btrfs_real_readdir,
7308         .unlocked_ioctl = btrfs_ioctl,
7309 #ifdef CONFIG_COMPAT
7310         .compat_ioctl   = btrfs_ioctl,
7311 #endif
7312         .release        = btrfs_release_file,
7313         .fsync          = btrfs_sync_file,
7314 };
7315
7316 static struct extent_io_ops btrfs_extent_io_ops = {
7317         .fill_delalloc = run_delalloc_range,
7318         .submit_bio_hook = btrfs_submit_bio_hook,
7319         .merge_bio_hook = btrfs_merge_bio_hook,
7320         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7321         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7322         .writepage_start_hook = btrfs_writepage_start_hook,
7323         .readpage_io_failed_hook = btrfs_io_failed_hook,
7324         .set_bit_hook = btrfs_set_bit_hook,
7325         .clear_bit_hook = btrfs_clear_bit_hook,
7326         .merge_extent_hook = btrfs_merge_extent_hook,
7327         .split_extent_hook = btrfs_split_extent_hook,
7328 };
7329
7330 /*
7331  * btrfs doesn't support the bmap operation because swapfiles
7332  * use bmap to make a mapping of extents in the file.  They assume
7333  * these extents won't change over the life of the file and they
7334  * use the bmap result to do IO directly to the drive.
7335  *
7336  * the btrfs bmap call would return logical addresses that aren't
7337  * suitable for IO and they also will change frequently as COW
7338  * operations happen.  So, swapfile + btrfs == corruption.
7339  *
7340  * For now we're avoiding this by dropping bmap.
7341  */
7342 static const struct address_space_operations btrfs_aops = {
7343         .readpage       = btrfs_readpage,
7344         .writepage      = btrfs_writepage,
7345         .writepages     = btrfs_writepages,
7346         .readpages      = btrfs_readpages,
7347         .sync_page      = block_sync_page,
7348         .direct_IO      = btrfs_direct_IO,
7349         .invalidatepage = btrfs_invalidatepage,
7350         .releasepage    = btrfs_releasepage,
7351         .set_page_dirty = btrfs_set_page_dirty,
7352         .error_remove_page = generic_error_remove_page,
7353 };
7354
7355 static const struct address_space_operations btrfs_symlink_aops = {
7356         .readpage       = btrfs_readpage,
7357         .writepage      = btrfs_writepage,
7358         .invalidatepage = btrfs_invalidatepage,
7359         .releasepage    = btrfs_releasepage,
7360 };
7361
7362 static const struct inode_operations btrfs_file_inode_operations = {
7363         .getattr        = btrfs_getattr,
7364         .setattr        = btrfs_setattr,
7365         .setxattr       = btrfs_setxattr,
7366         .getxattr       = btrfs_getxattr,
7367         .listxattr      = btrfs_listxattr,
7368         .removexattr    = btrfs_removexattr,
7369         .permission     = btrfs_permission,
7370         .fiemap         = btrfs_fiemap,
7371 };
7372 static const struct inode_operations btrfs_special_inode_operations = {
7373         .getattr        = btrfs_getattr,
7374         .setattr        = btrfs_setattr,
7375         .permission     = btrfs_permission,
7376         .setxattr       = btrfs_setxattr,
7377         .getxattr       = btrfs_getxattr,
7378         .listxattr      = btrfs_listxattr,
7379         .removexattr    = btrfs_removexattr,
7380 };
7381 static const struct inode_operations btrfs_symlink_inode_operations = {
7382         .readlink       = generic_readlink,
7383         .follow_link    = page_follow_link_light,
7384         .put_link       = page_put_link,
7385         .getattr        = btrfs_getattr,
7386         .permission     = btrfs_permission,
7387         .setxattr       = btrfs_setxattr,
7388         .getxattr       = btrfs_getxattr,
7389         .listxattr      = btrfs_listxattr,
7390         .removexattr    = btrfs_removexattr,
7391 };
7392
7393 const struct dentry_operations btrfs_dentry_operations = {
7394         .d_delete       = btrfs_dentry_delete,
7395 };