2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
42 #include "transaction.h"
43 #include "btrfs_inode.h"
45 #include "print-tree.h"
47 #include "ordered-data.h"
50 #include "compression.h"
53 struct btrfs_iget_args {
55 struct btrfs_root *root;
58 static struct inode_operations btrfs_dir_inode_operations;
59 static struct inode_operations btrfs_symlink_inode_operations;
60 static struct inode_operations btrfs_dir_ro_inode_operations;
61 static struct inode_operations btrfs_special_inode_operations;
62 static struct inode_operations btrfs_file_inode_operations;
63 static struct address_space_operations btrfs_aops;
64 static struct address_space_operations btrfs_symlink_aops;
65 static struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87 struct page *locked_page,
88 u64 start, u64 end, int *page_started,
89 unsigned long *nr_written, int unlock);
91 static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
95 err = btrfs_init_acl(inode, dir);
97 err = btrfs_xattr_security_init(inode, dir);
102 * this does all the hard work for inserting an inline extent into
103 * the btree. The caller should have done a btrfs_drop_extents so that
104 * no overlapping inline items exist in the btree
106 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
107 struct btrfs_root *root, struct inode *inode,
108 u64 start, size_t size, size_t compressed_size,
109 struct page **compressed_pages)
111 struct btrfs_key key;
112 struct btrfs_path *path;
113 struct extent_buffer *leaf;
114 struct page *page = NULL;
117 struct btrfs_file_extent_item *ei;
120 size_t cur_size = size;
122 unsigned long offset;
123 int use_compress = 0;
125 if (compressed_size && compressed_pages) {
127 cur_size = compressed_size;
130 path = btrfs_alloc_path();
134 path->leave_spinning = 1;
135 btrfs_set_trans_block_group(trans, inode);
137 key.objectid = inode->i_ino;
139 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
140 datasize = btrfs_file_extent_calc_inline_size(cur_size);
142 inode_add_bytes(inode, size);
143 ret = btrfs_insert_empty_item(trans, root, path, &key,
150 leaf = path->nodes[0];
151 ei = btrfs_item_ptr(leaf, path->slots[0],
152 struct btrfs_file_extent_item);
153 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
154 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
155 btrfs_set_file_extent_encryption(leaf, ei, 0);
156 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
157 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
158 ptr = btrfs_file_extent_inline_start(ei);
163 while (compressed_size > 0) {
164 cpage = compressed_pages[i];
165 cur_size = min_t(unsigned long, compressed_size,
168 kaddr = kmap_atomic(cpage, KM_USER0);
169 write_extent_buffer(leaf, kaddr, ptr, cur_size);
170 kunmap_atomic(kaddr, KM_USER0);
174 compressed_size -= cur_size;
176 btrfs_set_file_extent_compression(leaf, ei,
177 BTRFS_COMPRESS_ZLIB);
179 page = find_get_page(inode->i_mapping,
180 start >> PAGE_CACHE_SHIFT);
181 btrfs_set_file_extent_compression(leaf, ei, 0);
182 kaddr = kmap_atomic(page, KM_USER0);
183 offset = start & (PAGE_CACHE_SIZE - 1);
184 write_extent_buffer(leaf, kaddr + offset, ptr, size);
185 kunmap_atomic(kaddr, KM_USER0);
186 page_cache_release(page);
188 btrfs_mark_buffer_dirty(leaf);
189 btrfs_free_path(path);
191 BTRFS_I(inode)->disk_i_size = inode->i_size;
192 btrfs_update_inode(trans, root, inode);
195 btrfs_free_path(path);
201 * conditionally insert an inline extent into the file. This
202 * does the checks required to make sure the data is small enough
203 * to fit as an inline extent.
205 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
206 struct btrfs_root *root,
207 struct inode *inode, u64 start, u64 end,
208 size_t compressed_size,
209 struct page **compressed_pages)
211 u64 isize = i_size_read(inode);
212 u64 actual_end = min(end + 1, isize);
213 u64 inline_len = actual_end - start;
214 u64 aligned_end = (end + root->sectorsize - 1) &
215 ~((u64)root->sectorsize - 1);
217 u64 data_len = inline_len;
221 data_len = compressed_size;
224 actual_end >= PAGE_CACHE_SIZE ||
225 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
227 (actual_end & (root->sectorsize - 1)) == 0) ||
229 data_len > root->fs_info->max_inline) {
233 ret = btrfs_drop_extents(trans, root, inode, start,
234 aligned_end, aligned_end, start, &hint_byte);
237 if (isize > actual_end)
238 inline_len = min_t(u64, isize, actual_end);
239 ret = insert_inline_extent(trans, root, inode, start,
240 inline_len, compressed_size,
243 btrfs_drop_extent_cache(inode, start, aligned_end, 0);
247 struct async_extent {
252 unsigned long nr_pages;
253 struct list_head list;
258 struct btrfs_root *root;
259 struct page *locked_page;
262 struct list_head extents;
263 struct btrfs_work work;
266 static noinline int add_async_extent(struct async_cow *cow,
267 u64 start, u64 ram_size,
270 unsigned long nr_pages)
272 struct async_extent *async_extent;
274 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
275 async_extent->start = start;
276 async_extent->ram_size = ram_size;
277 async_extent->compressed_size = compressed_size;
278 async_extent->pages = pages;
279 async_extent->nr_pages = nr_pages;
280 list_add_tail(&async_extent->list, &cow->extents);
285 * we create compressed extents in two phases. The first
286 * phase compresses a range of pages that have already been
287 * locked (both pages and state bits are locked).
289 * This is done inside an ordered work queue, and the compression
290 * is spread across many cpus. The actual IO submission is step
291 * two, and the ordered work queue takes care of making sure that
292 * happens in the same order things were put onto the queue by
293 * writepages and friends.
295 * If this code finds it can't get good compression, it puts an
296 * entry onto the work queue to write the uncompressed bytes. This
297 * makes sure that both compressed inodes and uncompressed inodes
298 * are written in the same order that pdflush sent them down.
300 static noinline int compress_file_range(struct inode *inode,
301 struct page *locked_page,
303 struct async_cow *async_cow,
306 struct btrfs_root *root = BTRFS_I(inode)->root;
307 struct btrfs_trans_handle *trans;
311 u64 blocksize = root->sectorsize;
313 u64 isize = i_size_read(inode);
315 struct page **pages = NULL;
316 unsigned long nr_pages;
317 unsigned long nr_pages_ret = 0;
318 unsigned long total_compressed = 0;
319 unsigned long total_in = 0;
320 unsigned long max_compressed = 128 * 1024;
321 unsigned long max_uncompressed = 128 * 1024;
327 actual_end = min_t(u64, isize, end + 1);
330 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
331 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
334 * we don't want to send crud past the end of i_size through
335 * compression, that's just a waste of CPU time. So, if the
336 * end of the file is before the start of our current
337 * requested range of bytes, we bail out to the uncompressed
338 * cleanup code that can deal with all of this.
340 * It isn't really the fastest way to fix things, but this is a
341 * very uncommon corner.
343 if (actual_end <= start)
344 goto cleanup_and_bail_uncompressed;
346 total_compressed = actual_end - start;
348 /* we want to make sure that amount of ram required to uncompress
349 * an extent is reasonable, so we limit the total size in ram
350 * of a compressed extent to 128k. This is a crucial number
351 * because it also controls how easily we can spread reads across
352 * cpus for decompression.
354 * We also want to make sure the amount of IO required to do
355 * a random read is reasonably small, so we limit the size of
356 * a compressed extent to 128k.
358 total_compressed = min(total_compressed, max_uncompressed);
359 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
360 num_bytes = max(blocksize, num_bytes);
361 disk_num_bytes = num_bytes;
366 * we do compression for mount -o compress and when the
367 * inode has not been flagged as nocompress. This flag can
368 * change at any time if we discover bad compression ratios.
370 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
371 btrfs_test_opt(root, COMPRESS)) {
373 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
375 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
376 total_compressed, pages,
377 nr_pages, &nr_pages_ret,
383 unsigned long offset = total_compressed &
384 (PAGE_CACHE_SIZE - 1);
385 struct page *page = pages[nr_pages_ret - 1];
388 /* zero the tail end of the last page, we might be
389 * sending it down to disk
392 kaddr = kmap_atomic(page, KM_USER0);
393 memset(kaddr + offset, 0,
394 PAGE_CACHE_SIZE - offset);
395 kunmap_atomic(kaddr, KM_USER0);
401 trans = btrfs_join_transaction(root, 1);
403 btrfs_set_trans_block_group(trans, inode);
405 /* lets try to make an inline extent */
406 if (ret || total_in < (actual_end - start)) {
407 /* we didn't compress the entire range, try
408 * to make an uncompressed inline extent.
410 ret = cow_file_range_inline(trans, root, inode,
411 start, end, 0, NULL);
413 /* try making a compressed inline extent */
414 ret = cow_file_range_inline(trans, root, inode,
416 total_compressed, pages);
418 btrfs_end_transaction(trans, root);
421 * inline extent creation worked, we don't need
422 * to create any more async work items. Unlock
423 * and free up our temp pages.
425 extent_clear_unlock_delalloc(inode,
426 &BTRFS_I(inode)->io_tree,
427 start, end, NULL, 1, 0,
436 * we aren't doing an inline extent round the compressed size
437 * up to a block size boundary so the allocator does sane
440 total_compressed = (total_compressed + blocksize - 1) &
444 * one last check to make sure the compression is really a
445 * win, compare the page count read with the blocks on disk
447 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
448 ~(PAGE_CACHE_SIZE - 1);
449 if (total_compressed >= total_in) {
452 disk_num_bytes = total_compressed;
453 num_bytes = total_in;
456 if (!will_compress && pages) {
458 * the compression code ran but failed to make things smaller,
459 * free any pages it allocated and our page pointer array
461 for (i = 0; i < nr_pages_ret; i++) {
462 WARN_ON(pages[i]->mapping);
463 page_cache_release(pages[i]);
467 total_compressed = 0;
470 /* flag the file so we don't compress in the future */
471 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
476 /* the async work queues will take care of doing actual
477 * allocation on disk for these compressed pages,
478 * and will submit them to the elevator.
480 add_async_extent(async_cow, start, num_bytes,
481 total_compressed, pages, nr_pages_ret);
483 if (start + num_bytes < end && start + num_bytes < actual_end) {
490 cleanup_and_bail_uncompressed:
492 * No compression, but we still need to write the pages in
493 * the file we've been given so far. redirty the locked
494 * page if it corresponds to our extent and set things up
495 * for the async work queue to run cow_file_range to do
496 * the normal delalloc dance
498 if (page_offset(locked_page) >= start &&
499 page_offset(locked_page) <= end) {
500 __set_page_dirty_nobuffers(locked_page);
501 /* unlocked later on in the async handlers */
503 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
511 for (i = 0; i < nr_pages_ret; i++) {
512 WARN_ON(pages[i]->mapping);
513 page_cache_release(pages[i]);
521 * phase two of compressed writeback. This is the ordered portion
522 * of the code, which only gets called in the order the work was
523 * queued. We walk all the async extents created by compress_file_range
524 * and send them down to the disk.
526 static noinline int submit_compressed_extents(struct inode *inode,
527 struct async_cow *async_cow)
529 struct async_extent *async_extent;
531 struct btrfs_trans_handle *trans;
532 struct btrfs_key ins;
533 struct extent_map *em;
534 struct btrfs_root *root = BTRFS_I(inode)->root;
535 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
536 struct extent_io_tree *io_tree;
539 if (list_empty(&async_cow->extents))
542 trans = btrfs_join_transaction(root, 1);
544 while (!list_empty(&async_cow->extents)) {
545 async_extent = list_entry(async_cow->extents.next,
546 struct async_extent, list);
547 list_del(&async_extent->list);
549 io_tree = &BTRFS_I(inode)->io_tree;
551 /* did the compression code fall back to uncompressed IO? */
552 if (!async_extent->pages) {
553 int page_started = 0;
554 unsigned long nr_written = 0;
556 lock_extent(io_tree, async_extent->start,
557 async_extent->start +
558 async_extent->ram_size - 1, GFP_NOFS);
560 /* allocate blocks */
561 cow_file_range(inode, async_cow->locked_page,
563 async_extent->start +
564 async_extent->ram_size - 1,
565 &page_started, &nr_written, 0);
568 * if page_started, cow_file_range inserted an
569 * inline extent and took care of all the unlocking
570 * and IO for us. Otherwise, we need to submit
571 * all those pages down to the drive.
574 extent_write_locked_range(io_tree,
575 inode, async_extent->start,
576 async_extent->start +
577 async_extent->ram_size - 1,
585 lock_extent(io_tree, async_extent->start,
586 async_extent->start + async_extent->ram_size - 1,
589 * here we're doing allocation and writeback of the
592 btrfs_drop_extent_cache(inode, async_extent->start,
593 async_extent->start +
594 async_extent->ram_size - 1, 0);
596 ret = btrfs_reserve_extent(trans, root,
597 async_extent->compressed_size,
598 async_extent->compressed_size,
602 em = alloc_extent_map(GFP_NOFS);
603 em->start = async_extent->start;
604 em->len = async_extent->ram_size;
605 em->orig_start = em->start;
607 em->block_start = ins.objectid;
608 em->block_len = ins.offset;
609 em->bdev = root->fs_info->fs_devices->latest_bdev;
610 set_bit(EXTENT_FLAG_PINNED, &em->flags);
611 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
614 spin_lock(&em_tree->lock);
615 ret = add_extent_mapping(em_tree, em);
616 spin_unlock(&em_tree->lock);
617 if (ret != -EEXIST) {
621 btrfs_drop_extent_cache(inode, async_extent->start,
622 async_extent->start +
623 async_extent->ram_size - 1, 0);
626 ret = btrfs_add_ordered_extent(inode, async_extent->start,
628 async_extent->ram_size,
630 BTRFS_ORDERED_COMPRESSED);
633 btrfs_end_transaction(trans, root);
636 * clear dirty, set writeback and unlock the pages.
638 extent_clear_unlock_delalloc(inode,
639 &BTRFS_I(inode)->io_tree,
641 async_extent->start +
642 async_extent->ram_size - 1,
643 NULL, 1, 1, 0, 1, 1, 0);
645 ret = btrfs_submit_compressed_write(inode,
647 async_extent->ram_size,
649 ins.offset, async_extent->pages,
650 async_extent->nr_pages);
653 trans = btrfs_join_transaction(root, 1);
654 alloc_hint = ins.objectid + ins.offset;
659 btrfs_end_transaction(trans, root);
664 * when extent_io.c finds a delayed allocation range in the file,
665 * the call backs end up in this code. The basic idea is to
666 * allocate extents on disk for the range, and create ordered data structs
667 * in ram to track those extents.
669 * locked_page is the page that writepage had locked already. We use
670 * it to make sure we don't do extra locks or unlocks.
672 * *page_started is set to one if we unlock locked_page and do everything
673 * required to start IO on it. It may be clean and already done with
676 static noinline int cow_file_range(struct inode *inode,
677 struct page *locked_page,
678 u64 start, u64 end, int *page_started,
679 unsigned long *nr_written,
682 struct btrfs_root *root = BTRFS_I(inode)->root;
683 struct btrfs_trans_handle *trans;
686 unsigned long ram_size;
689 u64 blocksize = root->sectorsize;
691 u64 isize = i_size_read(inode);
692 struct btrfs_key ins;
693 struct extent_map *em;
694 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
697 trans = btrfs_join_transaction(root, 1);
699 btrfs_set_trans_block_group(trans, inode);
701 actual_end = min_t(u64, isize, end + 1);
703 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
704 num_bytes = max(blocksize, num_bytes);
705 disk_num_bytes = num_bytes;
709 /* lets try to make an inline extent */
710 ret = cow_file_range_inline(trans, root, inode,
711 start, end, 0, NULL);
713 extent_clear_unlock_delalloc(inode,
714 &BTRFS_I(inode)->io_tree,
715 start, end, NULL, 1, 1,
717 *nr_written = *nr_written +
718 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
725 BUG_ON(disk_num_bytes >
726 btrfs_super_total_bytes(&root->fs_info->super_copy));
728 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
730 while (disk_num_bytes > 0) {
731 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
732 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
733 root->sectorsize, 0, alloc_hint,
737 em = alloc_extent_map(GFP_NOFS);
739 em->orig_start = em->start;
741 ram_size = ins.offset;
742 em->len = ins.offset;
744 em->block_start = ins.objectid;
745 em->block_len = ins.offset;
746 em->bdev = root->fs_info->fs_devices->latest_bdev;
747 set_bit(EXTENT_FLAG_PINNED, &em->flags);
750 spin_lock(&em_tree->lock);
751 ret = add_extent_mapping(em_tree, em);
752 spin_unlock(&em_tree->lock);
753 if (ret != -EEXIST) {
757 btrfs_drop_extent_cache(inode, start,
758 start + ram_size - 1, 0);
761 cur_alloc_size = ins.offset;
762 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
763 ram_size, cur_alloc_size, 0);
766 if (root->root_key.objectid ==
767 BTRFS_DATA_RELOC_TREE_OBJECTID) {
768 ret = btrfs_reloc_clone_csums(inode, start,
773 if (disk_num_bytes < cur_alloc_size)
776 /* we're not doing compressed IO, don't unlock the first
777 * page (which the caller expects to stay locked), don't
778 * clear any dirty bits and don't set any writeback bits
780 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
781 start, start + ram_size - 1,
782 locked_page, unlock, 1,
784 disk_num_bytes -= cur_alloc_size;
785 num_bytes -= cur_alloc_size;
786 alloc_hint = ins.objectid + ins.offset;
787 start += cur_alloc_size;
791 btrfs_end_transaction(trans, root);
797 * work queue call back to started compression on a file and pages
799 static noinline void async_cow_start(struct btrfs_work *work)
801 struct async_cow *async_cow;
803 async_cow = container_of(work, struct async_cow, work);
805 compress_file_range(async_cow->inode, async_cow->locked_page,
806 async_cow->start, async_cow->end, async_cow,
809 async_cow->inode = NULL;
813 * work queue call back to submit previously compressed pages
815 static noinline void async_cow_submit(struct btrfs_work *work)
817 struct async_cow *async_cow;
818 struct btrfs_root *root;
819 unsigned long nr_pages;
821 async_cow = container_of(work, struct async_cow, work);
823 root = async_cow->root;
824 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
827 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
829 if (atomic_read(&root->fs_info->async_delalloc_pages) <
831 waitqueue_active(&root->fs_info->async_submit_wait))
832 wake_up(&root->fs_info->async_submit_wait);
834 if (async_cow->inode)
835 submit_compressed_extents(async_cow->inode, async_cow);
838 static noinline void async_cow_free(struct btrfs_work *work)
840 struct async_cow *async_cow;
841 async_cow = container_of(work, struct async_cow, work);
845 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
846 u64 start, u64 end, int *page_started,
847 unsigned long *nr_written)
849 struct async_cow *async_cow;
850 struct btrfs_root *root = BTRFS_I(inode)->root;
851 unsigned long nr_pages;
853 int limit = 10 * 1024 * 1042;
855 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
856 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
857 while (start < end) {
858 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
859 async_cow->inode = inode;
860 async_cow->root = root;
861 async_cow->locked_page = locked_page;
862 async_cow->start = start;
864 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
867 cur_end = min(end, start + 512 * 1024 - 1);
869 async_cow->end = cur_end;
870 INIT_LIST_HEAD(&async_cow->extents);
872 async_cow->work.func = async_cow_start;
873 async_cow->work.ordered_func = async_cow_submit;
874 async_cow->work.ordered_free = async_cow_free;
875 async_cow->work.flags = 0;
877 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
879 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
881 btrfs_queue_worker(&root->fs_info->delalloc_workers,
884 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
885 wait_event(root->fs_info->async_submit_wait,
886 (atomic_read(&root->fs_info->async_delalloc_pages) <
890 while (atomic_read(&root->fs_info->async_submit_draining) &&
891 atomic_read(&root->fs_info->async_delalloc_pages)) {
892 wait_event(root->fs_info->async_submit_wait,
893 (atomic_read(&root->fs_info->async_delalloc_pages) ==
897 *nr_written += nr_pages;
904 static noinline int csum_exist_in_range(struct btrfs_root *root,
905 u64 bytenr, u64 num_bytes)
908 struct btrfs_ordered_sum *sums;
911 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
912 bytenr + num_bytes - 1, &list);
913 if (ret == 0 && list_empty(&list))
916 while (!list_empty(&list)) {
917 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
918 list_del(&sums->list);
925 * when nowcow writeback call back. This checks for snapshots or COW copies
926 * of the extents that exist in the file, and COWs the file as required.
928 * If no cow copies or snapshots exist, we write directly to the existing
931 static noinline int run_delalloc_nocow(struct inode *inode,
932 struct page *locked_page,
933 u64 start, u64 end, int *page_started, int force,
934 unsigned long *nr_written)
936 struct btrfs_root *root = BTRFS_I(inode)->root;
937 struct btrfs_trans_handle *trans;
938 struct extent_buffer *leaf;
939 struct btrfs_path *path;
940 struct btrfs_file_extent_item *fi;
941 struct btrfs_key found_key;
954 path = btrfs_alloc_path();
956 trans = btrfs_join_transaction(root, 1);
962 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
965 if (ret > 0 && path->slots[0] > 0 && check_prev) {
966 leaf = path->nodes[0];
967 btrfs_item_key_to_cpu(leaf, &found_key,
969 if (found_key.objectid == inode->i_ino &&
970 found_key.type == BTRFS_EXTENT_DATA_KEY)
975 leaf = path->nodes[0];
976 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
977 ret = btrfs_next_leaf(root, path);
982 leaf = path->nodes[0];
988 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
990 if (found_key.objectid > inode->i_ino ||
991 found_key.type > BTRFS_EXTENT_DATA_KEY ||
992 found_key.offset > end)
995 if (found_key.offset > cur_offset) {
996 extent_end = found_key.offset;
1000 fi = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_file_extent_item);
1002 extent_type = btrfs_file_extent_type(leaf, fi);
1004 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1005 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1006 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1007 extent_offset = btrfs_file_extent_offset(leaf, fi);
1008 extent_end = found_key.offset +
1009 btrfs_file_extent_num_bytes(leaf, fi);
1010 if (extent_end <= start) {
1014 if (disk_bytenr == 0)
1016 if (btrfs_file_extent_compression(leaf, fi) ||
1017 btrfs_file_extent_encryption(leaf, fi) ||
1018 btrfs_file_extent_other_encoding(leaf, fi))
1020 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1022 if (btrfs_extent_readonly(root, disk_bytenr))
1024 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1026 extent_offset, disk_bytenr))
1028 disk_bytenr += extent_offset;
1029 disk_bytenr += cur_offset - found_key.offset;
1030 num_bytes = min(end + 1, extent_end) - cur_offset;
1032 * force cow if csum exists in the range.
1033 * this ensure that csum for a given extent are
1034 * either valid or do not exist.
1036 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1039 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1040 extent_end = found_key.offset +
1041 btrfs_file_extent_inline_len(leaf, fi);
1042 extent_end = ALIGN(extent_end, root->sectorsize);
1047 if (extent_end <= start) {
1052 if (cow_start == (u64)-1)
1053 cow_start = cur_offset;
1054 cur_offset = extent_end;
1055 if (cur_offset > end)
1061 btrfs_release_path(root, path);
1062 if (cow_start != (u64)-1) {
1063 ret = cow_file_range(inode, locked_page, cow_start,
1064 found_key.offset - 1, page_started,
1067 cow_start = (u64)-1;
1070 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1071 struct extent_map *em;
1072 struct extent_map_tree *em_tree;
1073 em_tree = &BTRFS_I(inode)->extent_tree;
1074 em = alloc_extent_map(GFP_NOFS);
1075 em->start = cur_offset;
1076 em->orig_start = em->start;
1077 em->len = num_bytes;
1078 em->block_len = num_bytes;
1079 em->block_start = disk_bytenr;
1080 em->bdev = root->fs_info->fs_devices->latest_bdev;
1081 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1083 spin_lock(&em_tree->lock);
1084 ret = add_extent_mapping(em_tree, em);
1085 spin_unlock(&em_tree->lock);
1086 if (ret != -EEXIST) {
1087 free_extent_map(em);
1090 btrfs_drop_extent_cache(inode, em->start,
1091 em->start + em->len - 1, 0);
1093 type = BTRFS_ORDERED_PREALLOC;
1095 type = BTRFS_ORDERED_NOCOW;
1098 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1099 num_bytes, num_bytes, type);
1102 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1103 cur_offset, cur_offset + num_bytes - 1,
1104 locked_page, 1, 1, 1, 0, 0, 0);
1105 cur_offset = extent_end;
1106 if (cur_offset > end)
1109 btrfs_release_path(root, path);
1111 if (cur_offset <= end && cow_start == (u64)-1)
1112 cow_start = cur_offset;
1113 if (cow_start != (u64)-1) {
1114 ret = cow_file_range(inode, locked_page, cow_start, end,
1115 page_started, nr_written, 1);
1119 ret = btrfs_end_transaction(trans, root);
1121 btrfs_free_path(path);
1126 * extent_io.c call back to do delayed allocation processing
1128 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1129 u64 start, u64 end, int *page_started,
1130 unsigned long *nr_written)
1133 struct btrfs_root *root = BTRFS_I(inode)->root;
1135 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1136 ret = run_delalloc_nocow(inode, locked_page, start, end,
1137 page_started, 1, nr_written);
1138 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1139 ret = run_delalloc_nocow(inode, locked_page, start, end,
1140 page_started, 0, nr_written);
1141 else if (!btrfs_test_opt(root, COMPRESS))
1142 ret = cow_file_range(inode, locked_page, start, end,
1143 page_started, nr_written, 1);
1145 ret = cow_file_range_async(inode, locked_page, start, end,
1146 page_started, nr_written);
1151 * extent_io.c set_bit_hook, used to track delayed allocation
1152 * bytes in this file, and to maintain the list of inodes that
1153 * have pending delalloc work to be done.
1155 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1156 unsigned long old, unsigned long bits)
1159 * set_bit and clear bit hooks normally require _irqsave/restore
1160 * but in this case, we are only testeing for the DELALLOC
1161 * bit, which is only set or cleared with irqs on
1163 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1164 struct btrfs_root *root = BTRFS_I(inode)->root;
1165 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1166 spin_lock(&root->fs_info->delalloc_lock);
1167 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1168 root->fs_info->delalloc_bytes += end - start + 1;
1169 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1170 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1171 &root->fs_info->delalloc_inodes);
1173 spin_unlock(&root->fs_info->delalloc_lock);
1179 * extent_io.c clear_bit_hook, see set_bit_hook for why
1181 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1182 unsigned long old, unsigned long bits)
1185 * set_bit and clear bit hooks normally require _irqsave/restore
1186 * but in this case, we are only testeing for the DELALLOC
1187 * bit, which is only set or cleared with irqs on
1189 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1190 struct btrfs_root *root = BTRFS_I(inode)->root;
1192 spin_lock(&root->fs_info->delalloc_lock);
1193 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1194 printk(KERN_INFO "btrfs warning: delalloc account "
1196 (unsigned long long)end - start + 1,
1197 (unsigned long long)
1198 root->fs_info->delalloc_bytes);
1199 btrfs_delalloc_free_space(root, inode, (u64)-1);
1200 root->fs_info->delalloc_bytes = 0;
1201 BTRFS_I(inode)->delalloc_bytes = 0;
1203 btrfs_delalloc_free_space(root, inode,
1205 root->fs_info->delalloc_bytes -= end - start + 1;
1206 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1208 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1209 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1210 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1212 spin_unlock(&root->fs_info->delalloc_lock);
1218 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1219 * we don't create bios that span stripes or chunks
1221 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1222 size_t size, struct bio *bio,
1223 unsigned long bio_flags)
1225 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1226 struct btrfs_mapping_tree *map_tree;
1227 u64 logical = (u64)bio->bi_sector << 9;
1232 if (bio_flags & EXTENT_BIO_COMPRESSED)
1235 length = bio->bi_size;
1236 map_tree = &root->fs_info->mapping_tree;
1237 map_length = length;
1238 ret = btrfs_map_block(map_tree, READ, logical,
1239 &map_length, NULL, 0);
1241 if (map_length < length + size)
1247 * in order to insert checksums into the metadata in large chunks,
1248 * we wait until bio submission time. All the pages in the bio are
1249 * checksummed and sums are attached onto the ordered extent record.
1251 * At IO completion time the cums attached on the ordered extent record
1252 * are inserted into the btree
1254 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1255 struct bio *bio, int mirror_num,
1256 unsigned long bio_flags)
1258 struct btrfs_root *root = BTRFS_I(inode)->root;
1261 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1267 * in order to insert checksums into the metadata in large chunks,
1268 * we wait until bio submission time. All the pages in the bio are
1269 * checksummed and sums are attached onto the ordered extent record.
1271 * At IO completion time the cums attached on the ordered extent record
1272 * are inserted into the btree
1274 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1275 int mirror_num, unsigned long bio_flags)
1277 struct btrfs_root *root = BTRFS_I(inode)->root;
1278 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1282 * extent_io.c submission hook. This does the right thing for csum calculation
1283 * on write, or reading the csums from the tree before a read
1285 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1286 int mirror_num, unsigned long bio_flags)
1288 struct btrfs_root *root = BTRFS_I(inode)->root;
1292 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1294 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1297 if (!(rw & (1 << BIO_RW))) {
1298 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1299 return btrfs_submit_compressed_read(inode, bio,
1300 mirror_num, bio_flags);
1301 } else if (!skip_sum)
1302 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1304 } else if (!skip_sum) {
1305 /* csum items have already been cloned */
1306 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1308 /* we're doing a write, do the async checksumming */
1309 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1310 inode, rw, bio, mirror_num,
1311 bio_flags, __btrfs_submit_bio_start,
1312 __btrfs_submit_bio_done);
1316 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1320 * given a list of ordered sums record them in the inode. This happens
1321 * at IO completion time based on sums calculated at bio submission time.
1323 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1324 struct inode *inode, u64 file_offset,
1325 struct list_head *list)
1327 struct btrfs_ordered_sum *sum;
1329 btrfs_set_trans_block_group(trans, inode);
1331 list_for_each_entry(sum, list, list) {
1332 btrfs_csum_file_blocks(trans,
1333 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1338 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1340 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1342 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1346 /* see btrfs_writepage_start_hook for details on why this is required */
1347 struct btrfs_writepage_fixup {
1349 struct btrfs_work work;
1352 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1354 struct btrfs_writepage_fixup *fixup;
1355 struct btrfs_ordered_extent *ordered;
1357 struct inode *inode;
1361 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1365 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1366 ClearPageChecked(page);
1370 inode = page->mapping->host;
1371 page_start = page_offset(page);
1372 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1374 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1376 /* already ordered? We're done */
1377 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1378 EXTENT_ORDERED, 0)) {
1382 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1384 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1385 page_end, GFP_NOFS);
1387 btrfs_start_ordered_extent(inode, ordered, 1);
1391 btrfs_set_extent_delalloc(inode, page_start, page_end);
1392 ClearPageChecked(page);
1394 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1397 page_cache_release(page);
1401 * There are a few paths in the higher layers of the kernel that directly
1402 * set the page dirty bit without asking the filesystem if it is a
1403 * good idea. This causes problems because we want to make sure COW
1404 * properly happens and the data=ordered rules are followed.
1406 * In our case any range that doesn't have the ORDERED bit set
1407 * hasn't been properly setup for IO. We kick off an async process
1408 * to fix it up. The async helper will wait for ordered extents, set
1409 * the delalloc bit and make it safe to write the page.
1411 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1413 struct inode *inode = page->mapping->host;
1414 struct btrfs_writepage_fixup *fixup;
1415 struct btrfs_root *root = BTRFS_I(inode)->root;
1418 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1423 if (PageChecked(page))
1426 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1430 SetPageChecked(page);
1431 page_cache_get(page);
1432 fixup->work.func = btrfs_writepage_fixup_worker;
1434 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1438 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1439 struct inode *inode, u64 file_pos,
1440 u64 disk_bytenr, u64 disk_num_bytes,
1441 u64 num_bytes, u64 ram_bytes,
1443 u8 compression, u8 encryption,
1444 u16 other_encoding, int extent_type)
1446 struct btrfs_root *root = BTRFS_I(inode)->root;
1447 struct btrfs_file_extent_item *fi;
1448 struct btrfs_path *path;
1449 struct extent_buffer *leaf;
1450 struct btrfs_key ins;
1454 path = btrfs_alloc_path();
1457 path->leave_spinning = 1;
1458 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1459 file_pos + num_bytes, locked_end,
1463 ins.objectid = inode->i_ino;
1464 ins.offset = file_pos;
1465 ins.type = BTRFS_EXTENT_DATA_KEY;
1466 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1468 leaf = path->nodes[0];
1469 fi = btrfs_item_ptr(leaf, path->slots[0],
1470 struct btrfs_file_extent_item);
1471 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1472 btrfs_set_file_extent_type(leaf, fi, extent_type);
1473 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1474 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1475 btrfs_set_file_extent_offset(leaf, fi, 0);
1476 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1477 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1478 btrfs_set_file_extent_compression(leaf, fi, compression);
1479 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1480 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1482 btrfs_unlock_up_safe(path, 1);
1483 btrfs_set_lock_blocking(leaf);
1485 btrfs_mark_buffer_dirty(leaf);
1487 inode_add_bytes(inode, num_bytes);
1488 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1490 ins.objectid = disk_bytenr;
1491 ins.offset = disk_num_bytes;
1492 ins.type = BTRFS_EXTENT_ITEM_KEY;
1493 ret = btrfs_alloc_reserved_file_extent(trans, root,
1494 root->root_key.objectid,
1495 inode->i_ino, file_pos, &ins);
1497 btrfs_free_path(path);
1503 * helper function for btrfs_finish_ordered_io, this
1504 * just reads in some of the csum leaves to prime them into ram
1505 * before we start the transaction. It limits the amount of btree
1506 * reads required while inside the transaction.
1508 static noinline void reada_csum(struct btrfs_root *root,
1509 struct btrfs_path *path,
1510 struct btrfs_ordered_extent *ordered_extent)
1512 struct btrfs_ordered_sum *sum;
1515 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1517 bytenr = sum->sums[0].bytenr;
1520 * we don't care about the results, the point of this search is
1521 * just to get the btree leaves into ram
1523 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1526 /* as ordered data IO finishes, this gets called so we can finish
1527 * an ordered extent if the range of bytes in the file it covers are
1530 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1532 struct btrfs_root *root = BTRFS_I(inode)->root;
1533 struct btrfs_trans_handle *trans;
1534 struct btrfs_ordered_extent *ordered_extent = NULL;
1535 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1536 struct btrfs_path *path;
1540 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1545 * before we join the transaction, try to do some of our IO.
1546 * This will limit the amount of IO that we have to do with
1547 * the transaction running. We're unlikely to need to do any
1548 * IO if the file extents are new, the disk_i_size checks
1549 * covers the most common case.
1551 if (start < BTRFS_I(inode)->disk_i_size) {
1552 path = btrfs_alloc_path();
1554 ret = btrfs_lookup_file_extent(NULL, root, path,
1557 ordered_extent = btrfs_lookup_ordered_extent(inode,
1559 if (!list_empty(&ordered_extent->list)) {
1560 btrfs_release_path(root, path);
1561 reada_csum(root, path, ordered_extent);
1563 btrfs_free_path(path);
1567 trans = btrfs_join_transaction(root, 1);
1569 if (!ordered_extent)
1570 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1571 BUG_ON(!ordered_extent);
1572 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1575 lock_extent(io_tree, ordered_extent->file_offset,
1576 ordered_extent->file_offset + ordered_extent->len - 1,
1579 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1581 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1583 ret = btrfs_mark_extent_written(trans, root, inode,
1584 ordered_extent->file_offset,
1585 ordered_extent->file_offset +
1586 ordered_extent->len);
1589 ret = insert_reserved_file_extent(trans, inode,
1590 ordered_extent->file_offset,
1591 ordered_extent->start,
1592 ordered_extent->disk_len,
1593 ordered_extent->len,
1594 ordered_extent->len,
1595 ordered_extent->file_offset +
1596 ordered_extent->len,
1598 BTRFS_FILE_EXTENT_REG);
1601 unlock_extent(io_tree, ordered_extent->file_offset,
1602 ordered_extent->file_offset + ordered_extent->len - 1,
1605 add_pending_csums(trans, inode, ordered_extent->file_offset,
1606 &ordered_extent->list);
1608 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1609 btrfs_ordered_update_i_size(inode, ordered_extent);
1610 btrfs_update_inode(trans, root, inode);
1611 btrfs_remove_ordered_extent(inode, ordered_extent);
1612 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1615 btrfs_put_ordered_extent(ordered_extent);
1616 /* once for the tree */
1617 btrfs_put_ordered_extent(ordered_extent);
1619 btrfs_end_transaction(trans, root);
1623 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1624 struct extent_state *state, int uptodate)
1626 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1630 * When IO fails, either with EIO or csum verification fails, we
1631 * try other mirrors that might have a good copy of the data. This
1632 * io_failure_record is used to record state as we go through all the
1633 * mirrors. If another mirror has good data, the page is set up to date
1634 * and things continue. If a good mirror can't be found, the original
1635 * bio end_io callback is called to indicate things have failed.
1637 struct io_failure_record {
1642 unsigned long bio_flags;
1646 static int btrfs_io_failed_hook(struct bio *failed_bio,
1647 struct page *page, u64 start, u64 end,
1648 struct extent_state *state)
1650 struct io_failure_record *failrec = NULL;
1652 struct extent_map *em;
1653 struct inode *inode = page->mapping->host;
1654 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1655 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1662 ret = get_state_private(failure_tree, start, &private);
1664 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1667 failrec->start = start;
1668 failrec->len = end - start + 1;
1669 failrec->last_mirror = 0;
1670 failrec->bio_flags = 0;
1672 spin_lock(&em_tree->lock);
1673 em = lookup_extent_mapping(em_tree, start, failrec->len);
1674 if (em->start > start || em->start + em->len < start) {
1675 free_extent_map(em);
1678 spin_unlock(&em_tree->lock);
1680 if (!em || IS_ERR(em)) {
1684 logical = start - em->start;
1685 logical = em->block_start + logical;
1686 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1687 logical = em->block_start;
1688 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1690 failrec->logical = logical;
1691 free_extent_map(em);
1692 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1693 EXTENT_DIRTY, GFP_NOFS);
1694 set_state_private(failure_tree, start,
1695 (u64)(unsigned long)failrec);
1697 failrec = (struct io_failure_record *)(unsigned long)private;
1699 num_copies = btrfs_num_copies(
1700 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1701 failrec->logical, failrec->len);
1702 failrec->last_mirror++;
1704 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1705 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1708 if (state && state->start != failrec->start)
1710 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1712 if (!state || failrec->last_mirror > num_copies) {
1713 set_state_private(failure_tree, failrec->start, 0);
1714 clear_extent_bits(failure_tree, failrec->start,
1715 failrec->start + failrec->len - 1,
1716 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1720 bio = bio_alloc(GFP_NOFS, 1);
1721 bio->bi_private = state;
1722 bio->bi_end_io = failed_bio->bi_end_io;
1723 bio->bi_sector = failrec->logical >> 9;
1724 bio->bi_bdev = failed_bio->bi_bdev;
1727 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1728 if (failed_bio->bi_rw & (1 << BIO_RW))
1733 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1734 failrec->last_mirror,
1735 failrec->bio_flags);
1740 * each time an IO finishes, we do a fast check in the IO failure tree
1741 * to see if we need to process or clean up an io_failure_record
1743 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1746 u64 private_failure;
1747 struct io_failure_record *failure;
1751 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1752 (u64)-1, 1, EXTENT_DIRTY)) {
1753 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1754 start, &private_failure);
1756 failure = (struct io_failure_record *)(unsigned long)
1758 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1760 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1762 failure->start + failure->len - 1,
1763 EXTENT_DIRTY | EXTENT_LOCKED,
1772 * when reads are done, we need to check csums to verify the data is correct
1773 * if there's a match, we allow the bio to finish. If not, we go through
1774 * the io_failure_record routines to find good copies
1776 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1777 struct extent_state *state)
1779 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1780 struct inode *inode = page->mapping->host;
1781 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1783 u64 private = ~(u32)0;
1785 struct btrfs_root *root = BTRFS_I(inode)->root;
1788 if (PageChecked(page)) {
1789 ClearPageChecked(page);
1793 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1796 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1797 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1798 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1803 if (state && state->start == start) {
1804 private = state->private;
1807 ret = get_state_private(io_tree, start, &private);
1809 kaddr = kmap_atomic(page, KM_USER0);
1813 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1814 btrfs_csum_final(csum, (char *)&csum);
1815 if (csum != private)
1818 kunmap_atomic(kaddr, KM_USER0);
1820 /* if the io failure tree for this inode is non-empty,
1821 * check to see if we've recovered from a failed IO
1823 btrfs_clean_io_failures(inode, start);
1827 if (printk_ratelimit()) {
1828 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1829 "private %llu\n", page->mapping->host->i_ino,
1830 (unsigned long long)start, csum,
1831 (unsigned long long)private);
1833 memset(kaddr + offset, 1, end - start + 1);
1834 flush_dcache_page(page);
1835 kunmap_atomic(kaddr, KM_USER0);
1842 * This creates an orphan entry for the given inode in case something goes
1843 * wrong in the middle of an unlink/truncate.
1845 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1847 struct btrfs_root *root = BTRFS_I(inode)->root;
1850 spin_lock(&root->list_lock);
1852 /* already on the orphan list, we're good */
1853 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1854 spin_unlock(&root->list_lock);
1858 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1860 spin_unlock(&root->list_lock);
1863 * insert an orphan item to track this unlinked/truncated file
1865 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1871 * We have done the truncate/delete so we can go ahead and remove the orphan
1872 * item for this particular inode.
1874 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1876 struct btrfs_root *root = BTRFS_I(inode)->root;
1879 spin_lock(&root->list_lock);
1881 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1882 spin_unlock(&root->list_lock);
1886 list_del_init(&BTRFS_I(inode)->i_orphan);
1888 spin_unlock(&root->list_lock);
1892 spin_unlock(&root->list_lock);
1894 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1900 * this cleans up any orphans that may be left on the list from the last use
1903 void btrfs_orphan_cleanup(struct btrfs_root *root)
1905 struct btrfs_path *path;
1906 struct extent_buffer *leaf;
1907 struct btrfs_item *item;
1908 struct btrfs_key key, found_key;
1909 struct btrfs_trans_handle *trans;
1910 struct inode *inode;
1911 int ret = 0, nr_unlink = 0, nr_truncate = 0;
1913 path = btrfs_alloc_path();
1918 key.objectid = BTRFS_ORPHAN_OBJECTID;
1919 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1920 key.offset = (u64)-1;
1924 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1926 printk(KERN_ERR "Error searching slot for orphan: %d"
1932 * if ret == 0 means we found what we were searching for, which
1933 * is weird, but possible, so only screw with path if we didnt
1934 * find the key and see if we have stuff that matches
1937 if (path->slots[0] == 0)
1942 /* pull out the item */
1943 leaf = path->nodes[0];
1944 item = btrfs_item_nr(leaf, path->slots[0]);
1945 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1947 /* make sure the item matches what we want */
1948 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1950 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1953 /* release the path since we're done with it */
1954 btrfs_release_path(root, path);
1957 * this is where we are basically btrfs_lookup, without the
1958 * crossing root thing. we store the inode number in the
1959 * offset of the orphan item.
1961 found_key.objectid = found_key.offset;
1962 found_key.type = BTRFS_INODE_ITEM_KEY;
1963 found_key.offset = 0;
1964 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
1969 * add this inode to the orphan list so btrfs_orphan_del does
1970 * the proper thing when we hit it
1972 spin_lock(&root->list_lock);
1973 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1974 spin_unlock(&root->list_lock);
1977 * if this is a bad inode, means we actually succeeded in
1978 * removing the inode, but not the orphan record, which means
1979 * we need to manually delete the orphan since iput will just
1980 * do a destroy_inode
1982 if (is_bad_inode(inode)) {
1983 trans = btrfs_start_transaction(root, 1);
1984 btrfs_orphan_del(trans, inode);
1985 btrfs_end_transaction(trans, root);
1990 /* if we have links, this was a truncate, lets do that */
1991 if (inode->i_nlink) {
1993 btrfs_truncate(inode);
1998 /* this will do delete_inode and everything for us */
2003 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2005 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2007 btrfs_free_path(path);
2011 * very simple check to peek ahead in the leaf looking for xattrs. If we
2012 * don't find any xattrs, we know there can't be any acls.
2014 * slot is the slot the inode is in, objectid is the objectid of the inode
2016 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2017 int slot, u64 objectid)
2019 u32 nritems = btrfs_header_nritems(leaf);
2020 struct btrfs_key found_key;
2024 while (slot < nritems) {
2025 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2027 /* we found a different objectid, there must not be acls */
2028 if (found_key.objectid != objectid)
2031 /* we found an xattr, assume we've got an acl */
2032 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2036 * we found a key greater than an xattr key, there can't
2037 * be any acls later on
2039 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2046 * it goes inode, inode backrefs, xattrs, extents,
2047 * so if there are a ton of hard links to an inode there can
2048 * be a lot of backrefs. Don't waste time searching too hard,
2049 * this is just an optimization
2054 /* we hit the end of the leaf before we found an xattr or
2055 * something larger than an xattr. We have to assume the inode
2062 * read an inode from the btree into the in-memory inode
2064 static void btrfs_read_locked_inode(struct inode *inode)
2066 struct btrfs_path *path;
2067 struct extent_buffer *leaf;
2068 struct btrfs_inode_item *inode_item;
2069 struct btrfs_timespec *tspec;
2070 struct btrfs_root *root = BTRFS_I(inode)->root;
2071 struct btrfs_key location;
2073 u64 alloc_group_block;
2077 path = btrfs_alloc_path();
2079 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2081 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2085 leaf = path->nodes[0];
2086 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2087 struct btrfs_inode_item);
2089 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2090 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2091 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2092 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2093 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2095 tspec = btrfs_inode_atime(inode_item);
2096 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2097 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2099 tspec = btrfs_inode_mtime(inode_item);
2100 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2101 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2103 tspec = btrfs_inode_ctime(inode_item);
2104 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2105 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2107 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2108 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2109 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2110 inode->i_generation = BTRFS_I(inode)->generation;
2112 rdev = btrfs_inode_rdev(leaf, inode_item);
2114 BTRFS_I(inode)->index_cnt = (u64)-1;
2115 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2117 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2120 * try to precache a NULL acl entry for files that don't have
2121 * any xattrs or acls
2123 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2125 cache_no_acl(inode);
2127 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2128 alloc_group_block, 0);
2129 btrfs_free_path(path);
2132 switch (inode->i_mode & S_IFMT) {
2134 inode->i_mapping->a_ops = &btrfs_aops;
2135 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2136 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2137 inode->i_fop = &btrfs_file_operations;
2138 inode->i_op = &btrfs_file_inode_operations;
2141 inode->i_fop = &btrfs_dir_file_operations;
2142 if (root == root->fs_info->tree_root)
2143 inode->i_op = &btrfs_dir_ro_inode_operations;
2145 inode->i_op = &btrfs_dir_inode_operations;
2148 inode->i_op = &btrfs_symlink_inode_operations;
2149 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2150 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2153 inode->i_op = &btrfs_special_inode_operations;
2154 init_special_inode(inode, inode->i_mode, rdev);
2158 btrfs_update_iflags(inode);
2162 btrfs_free_path(path);
2163 make_bad_inode(inode);
2167 * given a leaf and an inode, copy the inode fields into the leaf
2169 static void fill_inode_item(struct btrfs_trans_handle *trans,
2170 struct extent_buffer *leaf,
2171 struct btrfs_inode_item *item,
2172 struct inode *inode)
2174 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2175 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2176 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2177 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2178 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2180 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2181 inode->i_atime.tv_sec);
2182 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2183 inode->i_atime.tv_nsec);
2185 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2186 inode->i_mtime.tv_sec);
2187 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2188 inode->i_mtime.tv_nsec);
2190 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2191 inode->i_ctime.tv_sec);
2192 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2193 inode->i_ctime.tv_nsec);
2195 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2196 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2197 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2198 btrfs_set_inode_transid(leaf, item, trans->transid);
2199 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2200 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2201 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2205 * copy everything in the in-memory inode into the btree.
2207 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2208 struct btrfs_root *root, struct inode *inode)
2210 struct btrfs_inode_item *inode_item;
2211 struct btrfs_path *path;
2212 struct extent_buffer *leaf;
2215 path = btrfs_alloc_path();
2217 path->leave_spinning = 1;
2218 ret = btrfs_lookup_inode(trans, root, path,
2219 &BTRFS_I(inode)->location, 1);
2226 btrfs_unlock_up_safe(path, 1);
2227 leaf = path->nodes[0];
2228 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2229 struct btrfs_inode_item);
2231 fill_inode_item(trans, leaf, inode_item, inode);
2232 btrfs_mark_buffer_dirty(leaf);
2233 btrfs_set_inode_last_trans(trans, inode);
2236 btrfs_free_path(path);
2242 * unlink helper that gets used here in inode.c and in the tree logging
2243 * recovery code. It remove a link in a directory with a given name, and
2244 * also drops the back refs in the inode to the directory
2246 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2247 struct btrfs_root *root,
2248 struct inode *dir, struct inode *inode,
2249 const char *name, int name_len)
2251 struct btrfs_path *path;
2253 struct extent_buffer *leaf;
2254 struct btrfs_dir_item *di;
2255 struct btrfs_key key;
2258 path = btrfs_alloc_path();
2264 path->leave_spinning = 1;
2265 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2266 name, name_len, -1);
2275 leaf = path->nodes[0];
2276 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2277 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2280 btrfs_release_path(root, path);
2282 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2284 dir->i_ino, &index);
2286 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2287 "inode %lu parent %lu\n", name_len, name,
2288 inode->i_ino, dir->i_ino);
2292 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2293 index, name, name_len, -1);
2302 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2303 btrfs_release_path(root, path);
2305 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2307 BUG_ON(ret != 0 && ret != -ENOENT);
2309 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2313 btrfs_free_path(path);
2317 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2318 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2319 btrfs_update_inode(trans, root, dir);
2320 btrfs_drop_nlink(inode);
2321 ret = btrfs_update_inode(trans, root, inode);
2326 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2328 struct btrfs_root *root;
2329 struct btrfs_trans_handle *trans;
2330 struct inode *inode = dentry->d_inode;
2332 unsigned long nr = 0;
2334 root = BTRFS_I(dir)->root;
2336 trans = btrfs_start_transaction(root, 1);
2338 btrfs_set_trans_block_group(trans, dir);
2340 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2342 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2343 dentry->d_name.name, dentry->d_name.len);
2345 if (inode->i_nlink == 0)
2346 ret = btrfs_orphan_add(trans, inode);
2348 nr = trans->blocks_used;
2350 btrfs_end_transaction_throttle(trans, root);
2351 btrfs_btree_balance_dirty(root, nr);
2355 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2357 struct inode *inode = dentry->d_inode;
2360 struct btrfs_root *root = BTRFS_I(dir)->root;
2361 struct btrfs_trans_handle *trans;
2362 unsigned long nr = 0;
2365 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2366 * the root of a subvolume or snapshot
2368 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2369 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2373 trans = btrfs_start_transaction(root, 1);
2374 btrfs_set_trans_block_group(trans, dir);
2376 err = btrfs_orphan_add(trans, inode);
2380 /* now the directory is empty */
2381 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2382 dentry->d_name.name, dentry->d_name.len);
2384 btrfs_i_size_write(inode, 0);
2387 nr = trans->blocks_used;
2388 ret = btrfs_end_transaction_throttle(trans, root);
2389 btrfs_btree_balance_dirty(root, nr);
2398 * when truncating bytes in a file, it is possible to avoid reading
2399 * the leaves that contain only checksum items. This can be the
2400 * majority of the IO required to delete a large file, but it must
2401 * be done carefully.
2403 * The keys in the level just above the leaves are checked to make sure
2404 * the lowest key in a given leaf is a csum key, and starts at an offset
2405 * after the new size.
2407 * Then the key for the next leaf is checked to make sure it also has
2408 * a checksum item for the same file. If it does, we know our target leaf
2409 * contains only checksum items, and it can be safely freed without reading
2412 * This is just an optimization targeted at large files. It may do
2413 * nothing. It will return 0 unless things went badly.
2415 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2416 struct btrfs_root *root,
2417 struct btrfs_path *path,
2418 struct inode *inode, u64 new_size)
2420 struct btrfs_key key;
2423 struct btrfs_key found_key;
2424 struct btrfs_key other_key;
2425 struct btrfs_leaf_ref *ref;
2429 path->lowest_level = 1;
2430 key.objectid = inode->i_ino;
2431 key.type = BTRFS_CSUM_ITEM_KEY;
2432 key.offset = new_size;
2434 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2438 if (path->nodes[1] == NULL) {
2443 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2444 nritems = btrfs_header_nritems(path->nodes[1]);
2449 if (path->slots[1] >= nritems)
2452 /* did we find a key greater than anything we want to delete? */
2453 if (found_key.objectid > inode->i_ino ||
2454 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2457 /* we check the next key in the node to make sure the leave contains
2458 * only checksum items. This comparison doesn't work if our
2459 * leaf is the last one in the node
2461 if (path->slots[1] + 1 >= nritems) {
2463 /* search forward from the last key in the node, this
2464 * will bring us into the next node in the tree
2466 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2468 /* unlikely, but we inc below, so check to be safe */
2469 if (found_key.offset == (u64)-1)
2472 /* search_forward needs a path with locks held, do the
2473 * search again for the original key. It is possible
2474 * this will race with a balance and return a path that
2475 * we could modify, but this drop is just an optimization
2476 * and is allowed to miss some leaves.
2478 btrfs_release_path(root, path);
2481 /* setup a max key for search_forward */
2482 other_key.offset = (u64)-1;
2483 other_key.type = key.type;
2484 other_key.objectid = key.objectid;
2486 path->keep_locks = 1;
2487 ret = btrfs_search_forward(root, &found_key, &other_key,
2489 path->keep_locks = 0;
2490 if (ret || found_key.objectid != key.objectid ||
2491 found_key.type != key.type) {
2496 key.offset = found_key.offset;
2497 btrfs_release_path(root, path);
2502 /* we know there's one more slot after us in the tree,
2503 * read that key so we can verify it is also a checksum item
2505 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2507 if (found_key.objectid < inode->i_ino)
2510 if (found_key.type != key.type || found_key.offset < new_size)
2514 * if the key for the next leaf isn't a csum key from this objectid,
2515 * we can't be sure there aren't good items inside this leaf.
2518 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2521 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2522 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2524 * it is safe to delete this leaf, it contains only
2525 * csum items from this inode at an offset >= new_size
2527 ret = btrfs_del_leaf(trans, root, path, leaf_start);
2530 if (root->ref_cows && leaf_gen < trans->transid) {
2531 ref = btrfs_alloc_leaf_ref(root, 0);
2533 ref->root_gen = root->root_key.offset;
2534 ref->bytenr = leaf_start;
2536 ref->generation = leaf_gen;
2539 btrfs_sort_leaf_ref(ref);
2541 ret = btrfs_add_leaf_ref(root, ref, 0);
2543 btrfs_free_leaf_ref(root, ref);
2549 btrfs_release_path(root, path);
2551 if (other_key.objectid == inode->i_ino &&
2552 other_key.type == key.type && other_key.offset > key.offset) {
2553 key.offset = other_key.offset;
2559 /* fixup any changes we've made to the path */
2560 path->lowest_level = 0;
2561 path->keep_locks = 0;
2562 btrfs_release_path(root, path);
2569 * this can truncate away extent items, csum items and directory items.
2570 * It starts at a high offset and removes keys until it can't find
2571 * any higher than new_size
2573 * csum items that cross the new i_size are truncated to the new size
2576 * min_type is the minimum key type to truncate down to. If set to 0, this
2577 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2579 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2580 struct btrfs_root *root,
2581 struct inode *inode,
2582 u64 new_size, u32 min_type)
2585 struct btrfs_path *path;
2586 struct btrfs_key key;
2587 struct btrfs_key found_key;
2588 u32 found_type = (u8)-1;
2589 struct extent_buffer *leaf;
2590 struct btrfs_file_extent_item *fi;
2591 u64 extent_start = 0;
2592 u64 extent_num_bytes = 0;
2593 u64 extent_offset = 0;
2597 int pending_del_nr = 0;
2598 int pending_del_slot = 0;
2599 int extent_type = -1;
2601 u64 mask = root->sectorsize - 1;
2604 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2605 path = btrfs_alloc_path();
2609 /* FIXME, add redo link to tree so we don't leak on crash */
2610 key.objectid = inode->i_ino;
2611 key.offset = (u64)-1;
2615 path->leave_spinning = 1;
2616 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2621 /* there are no items in the tree for us to truncate, we're
2624 if (path->slots[0] == 0) {
2633 leaf = path->nodes[0];
2634 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2635 found_type = btrfs_key_type(&found_key);
2638 if (found_key.objectid != inode->i_ino)
2641 if (found_type < min_type)
2644 item_end = found_key.offset;
2645 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2646 fi = btrfs_item_ptr(leaf, path->slots[0],
2647 struct btrfs_file_extent_item);
2648 extent_type = btrfs_file_extent_type(leaf, fi);
2649 encoding = btrfs_file_extent_compression(leaf, fi);
2650 encoding |= btrfs_file_extent_encryption(leaf, fi);
2651 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2653 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2655 btrfs_file_extent_num_bytes(leaf, fi);
2656 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2657 item_end += btrfs_file_extent_inline_len(leaf,
2662 if (item_end < new_size) {
2663 if (found_type == BTRFS_DIR_ITEM_KEY)
2664 found_type = BTRFS_INODE_ITEM_KEY;
2665 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2666 found_type = BTRFS_EXTENT_DATA_KEY;
2667 else if (found_type == BTRFS_EXTENT_DATA_KEY)
2668 found_type = BTRFS_XATTR_ITEM_KEY;
2669 else if (found_type == BTRFS_XATTR_ITEM_KEY)
2670 found_type = BTRFS_INODE_REF_KEY;
2671 else if (found_type)
2675 btrfs_set_key_type(&key, found_type);
2678 if (found_key.offset >= new_size)
2684 /* FIXME, shrink the extent if the ref count is only 1 */
2685 if (found_type != BTRFS_EXTENT_DATA_KEY)
2688 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2690 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2691 if (!del_item && !encoding) {
2692 u64 orig_num_bytes =
2693 btrfs_file_extent_num_bytes(leaf, fi);
2694 extent_num_bytes = new_size -
2695 found_key.offset + root->sectorsize - 1;
2696 extent_num_bytes = extent_num_bytes &
2697 ~((u64)root->sectorsize - 1);
2698 btrfs_set_file_extent_num_bytes(leaf, fi,
2700 num_dec = (orig_num_bytes -
2702 if (root->ref_cows && extent_start != 0)
2703 inode_sub_bytes(inode, num_dec);
2704 btrfs_mark_buffer_dirty(leaf);
2707 btrfs_file_extent_disk_num_bytes(leaf,
2709 extent_offset = found_key.offset -
2710 btrfs_file_extent_offset(leaf, fi);
2712 /* FIXME blocksize != 4096 */
2713 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2714 if (extent_start != 0) {
2717 inode_sub_bytes(inode, num_dec);
2720 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2722 * we can't truncate inline items that have had
2726 btrfs_file_extent_compression(leaf, fi) == 0 &&
2727 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2728 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2729 u32 size = new_size - found_key.offset;
2731 if (root->ref_cows) {
2732 inode_sub_bytes(inode, item_end + 1 -
2736 btrfs_file_extent_calc_inline_size(size);
2737 ret = btrfs_truncate_item(trans, root, path,
2740 } else if (root->ref_cows) {
2741 inode_sub_bytes(inode, item_end + 1 -
2747 if (!pending_del_nr) {
2748 /* no pending yet, add ourselves */
2749 pending_del_slot = path->slots[0];
2751 } else if (pending_del_nr &&
2752 path->slots[0] + 1 == pending_del_slot) {
2753 /* hop on the pending chunk */
2755 pending_del_slot = path->slots[0];
2762 if (found_extent && root->ref_cows) {
2763 btrfs_set_path_blocking(path);
2764 ret = btrfs_free_extent(trans, root, extent_start,
2765 extent_num_bytes, 0,
2766 btrfs_header_owner(leaf),
2767 inode->i_ino, extent_offset);
2771 if (path->slots[0] == 0) {
2774 btrfs_release_path(root, path);
2775 if (found_type == BTRFS_INODE_ITEM_KEY)
2781 if (pending_del_nr &&
2782 path->slots[0] + 1 != pending_del_slot) {
2783 struct btrfs_key debug;
2785 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2787 ret = btrfs_del_items(trans, root, path,
2792 btrfs_release_path(root, path);
2793 if (found_type == BTRFS_INODE_ITEM_KEY)
2800 if (pending_del_nr) {
2801 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2804 btrfs_free_path(path);
2809 * taken from block_truncate_page, but does cow as it zeros out
2810 * any bytes left in the last page in the file.
2812 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2814 struct inode *inode = mapping->host;
2815 struct btrfs_root *root = BTRFS_I(inode)->root;
2816 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2817 struct btrfs_ordered_extent *ordered;
2819 u32 blocksize = root->sectorsize;
2820 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2821 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2827 if ((offset & (blocksize - 1)) == 0)
2832 page = grab_cache_page(mapping, index);
2836 page_start = page_offset(page);
2837 page_end = page_start + PAGE_CACHE_SIZE - 1;
2839 if (!PageUptodate(page)) {
2840 ret = btrfs_readpage(NULL, page);
2842 if (page->mapping != mapping) {
2844 page_cache_release(page);
2847 if (!PageUptodate(page)) {
2852 wait_on_page_writeback(page);
2854 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2855 set_page_extent_mapped(page);
2857 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2859 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2861 page_cache_release(page);
2862 btrfs_start_ordered_extent(inode, ordered, 1);
2863 btrfs_put_ordered_extent(ordered);
2867 btrfs_set_extent_delalloc(inode, page_start, page_end);
2869 if (offset != PAGE_CACHE_SIZE) {
2871 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2872 flush_dcache_page(page);
2875 ClearPageChecked(page);
2876 set_page_dirty(page);
2877 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2881 page_cache_release(page);
2886 int btrfs_cont_expand(struct inode *inode, loff_t size)
2888 struct btrfs_trans_handle *trans;
2889 struct btrfs_root *root = BTRFS_I(inode)->root;
2890 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2891 struct extent_map *em;
2892 u64 mask = root->sectorsize - 1;
2893 u64 hole_start = (inode->i_size + mask) & ~mask;
2894 u64 block_end = (size + mask) & ~mask;
2900 if (size <= hole_start)
2903 err = btrfs_check_metadata_free_space(root);
2907 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2910 struct btrfs_ordered_extent *ordered;
2911 btrfs_wait_ordered_range(inode, hole_start,
2912 block_end - hole_start);
2913 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2914 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2917 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2918 btrfs_put_ordered_extent(ordered);
2921 trans = btrfs_start_transaction(root, 1);
2922 btrfs_set_trans_block_group(trans, inode);
2924 cur_offset = hole_start;
2926 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2927 block_end - cur_offset, 0);
2928 BUG_ON(IS_ERR(em) || !em);
2929 last_byte = min(extent_map_end(em), block_end);
2930 last_byte = (last_byte + mask) & ~mask;
2931 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2933 hole_size = last_byte - cur_offset;
2934 err = btrfs_drop_extents(trans, root, inode,
2936 cur_offset + hole_size,
2938 cur_offset, &hint_byte);
2941 err = btrfs_insert_file_extent(trans, root,
2942 inode->i_ino, cur_offset, 0,
2943 0, hole_size, 0, hole_size,
2945 btrfs_drop_extent_cache(inode, hole_start,
2948 free_extent_map(em);
2949 cur_offset = last_byte;
2950 if (err || cur_offset >= block_end)
2954 btrfs_end_transaction(trans, root);
2955 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2959 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2961 struct inode *inode = dentry->d_inode;
2964 err = inode_change_ok(inode, attr);
2968 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
2969 if (attr->ia_size > inode->i_size) {
2970 err = btrfs_cont_expand(inode, attr->ia_size);
2973 } else if (inode->i_size > 0 &&
2974 attr->ia_size == 0) {
2976 /* we're truncating a file that used to have good
2977 * data down to zero. Make sure it gets into
2978 * the ordered flush list so that any new writes
2979 * get down to disk quickly.
2981 BTRFS_I(inode)->ordered_data_close = 1;
2985 err = inode_setattr(inode, attr);
2987 if (!err && ((attr->ia_valid & ATTR_MODE)))
2988 err = btrfs_acl_chmod(inode);
2992 void btrfs_delete_inode(struct inode *inode)
2994 struct btrfs_trans_handle *trans;
2995 struct btrfs_root *root = BTRFS_I(inode)->root;
2999 truncate_inode_pages(&inode->i_data, 0);
3000 if (is_bad_inode(inode)) {
3001 btrfs_orphan_del(NULL, inode);
3004 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3006 btrfs_i_size_write(inode, 0);
3007 trans = btrfs_join_transaction(root, 1);
3009 btrfs_set_trans_block_group(trans, inode);
3010 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
3012 btrfs_orphan_del(NULL, inode);
3013 goto no_delete_lock;
3016 btrfs_orphan_del(trans, inode);
3018 nr = trans->blocks_used;
3021 btrfs_end_transaction(trans, root);
3022 btrfs_btree_balance_dirty(root, nr);
3026 nr = trans->blocks_used;
3027 btrfs_end_transaction(trans, root);
3028 btrfs_btree_balance_dirty(root, nr);
3034 * this returns the key found in the dir entry in the location pointer.
3035 * If no dir entries were found, location->objectid is 0.
3037 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3038 struct btrfs_key *location)
3040 const char *name = dentry->d_name.name;
3041 int namelen = dentry->d_name.len;
3042 struct btrfs_dir_item *di;
3043 struct btrfs_path *path;
3044 struct btrfs_root *root = BTRFS_I(dir)->root;
3047 path = btrfs_alloc_path();
3050 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3055 if (!di || IS_ERR(di))
3058 btrfs_dir_item_key_to_cpu(path->nodes[0], di, locatio