1 #include <linux/bitops.h>
2 #include <linux/slab.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include "extent_io.h"
14 #include "extent_map.h"
17 #include "btrfs_inode.h"
19 static struct kmem_cache *extent_state_cache;
20 static struct kmem_cache *extent_buffer_cache;
22 static LIST_HEAD(buffers);
23 static LIST_HEAD(states);
27 static DEFINE_SPINLOCK(leak_lock);
30 #define BUFFER_LRU_MAX 64
35 struct rb_node rb_node;
38 struct extent_page_data {
40 struct extent_io_tree *tree;
41 get_extent_t *get_extent;
43 /* tells writepage not to lock the state bits for this range
44 * it still does the unlocking
46 unsigned int extent_locked:1;
48 /* tells the submit_bio code to use a WRITE_SYNC */
49 unsigned int sync_io:1;
52 int __init extent_io_init(void)
54 extent_state_cache = kmem_cache_create("extent_state",
55 sizeof(struct extent_state), 0,
56 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
57 if (!extent_state_cache)
60 extent_buffer_cache = kmem_cache_create("extent_buffers",
61 sizeof(struct extent_buffer), 0,
62 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
63 if (!extent_buffer_cache)
64 goto free_state_cache;
68 kmem_cache_destroy(extent_state_cache);
72 void extent_io_exit(void)
74 struct extent_state *state;
75 struct extent_buffer *eb;
77 while (!list_empty(&states)) {
78 state = list_entry(states.next, struct extent_state, leak_list);
79 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
80 "state %lu in tree %p refs %d\n",
81 (unsigned long long)state->start,
82 (unsigned long long)state->end,
83 state->state, state->tree, atomic_read(&state->refs));
84 list_del(&state->leak_list);
85 kmem_cache_free(extent_state_cache, state);
89 while (!list_empty(&buffers)) {
90 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
91 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
92 "refs %d\n", (unsigned long long)eb->start,
93 eb->len, atomic_read(&eb->refs));
94 list_del(&eb->leak_list);
95 kmem_cache_free(extent_buffer_cache, eb);
97 if (extent_state_cache)
98 kmem_cache_destroy(extent_state_cache);
99 if (extent_buffer_cache)
100 kmem_cache_destroy(extent_buffer_cache);
103 void extent_io_tree_init(struct extent_io_tree *tree,
104 struct address_space *mapping, gfp_t mask)
106 tree->state = RB_ROOT;
107 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
109 tree->dirty_bytes = 0;
110 spin_lock_init(&tree->lock);
111 spin_lock_init(&tree->buffer_lock);
112 tree->mapping = mapping;
115 static struct extent_state *alloc_extent_state(gfp_t mask)
117 struct extent_state *state;
122 state = kmem_cache_alloc(extent_state_cache, mask);
129 spin_lock_irqsave(&leak_lock, flags);
130 list_add(&state->leak_list, &states);
131 spin_unlock_irqrestore(&leak_lock, flags);
133 atomic_set(&state->refs, 1);
134 init_waitqueue_head(&state->wq);
138 void free_extent_state(struct extent_state *state)
142 if (atomic_dec_and_test(&state->refs)) {
146 WARN_ON(state->tree);
148 spin_lock_irqsave(&leak_lock, flags);
149 list_del(&state->leak_list);
150 spin_unlock_irqrestore(&leak_lock, flags);
152 kmem_cache_free(extent_state_cache, state);
156 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
157 struct rb_node *node)
159 struct rb_node **p = &root->rb_node;
160 struct rb_node *parent = NULL;
161 struct tree_entry *entry;
165 entry = rb_entry(parent, struct tree_entry, rb_node);
167 if (offset < entry->start)
169 else if (offset > entry->end)
175 entry = rb_entry(node, struct tree_entry, rb_node);
176 rb_link_node(node, parent, p);
177 rb_insert_color(node, root);
181 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
182 struct rb_node **prev_ret,
183 struct rb_node **next_ret)
185 struct rb_root *root = &tree->state;
186 struct rb_node *n = root->rb_node;
187 struct rb_node *prev = NULL;
188 struct rb_node *orig_prev = NULL;
189 struct tree_entry *entry;
190 struct tree_entry *prev_entry = NULL;
193 entry = rb_entry(n, struct tree_entry, rb_node);
197 if (offset < entry->start)
199 else if (offset > entry->end)
207 while (prev && offset > prev_entry->end) {
208 prev = rb_next(prev);
209 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
216 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
217 while (prev && offset < prev_entry->start) {
218 prev = rb_prev(prev);
219 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
226 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
229 struct rb_node *prev = NULL;
232 ret = __etree_search(tree, offset, &prev, NULL);
238 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
239 struct extent_state *other)
241 if (tree->ops && tree->ops->merge_extent_hook)
242 tree->ops->merge_extent_hook(tree->mapping->host, new,
247 * utility function to look for merge candidates inside a given range.
248 * Any extents with matching state are merged together into a single
249 * extent in the tree. Extents with EXTENT_IO in their state field
250 * are not merged because the end_io handlers need to be able to do
251 * operations on them without sleeping (or doing allocations/splits).
253 * This should be called with the tree lock held.
255 static int merge_state(struct extent_io_tree *tree,
256 struct extent_state *state)
258 struct extent_state *other;
259 struct rb_node *other_node;
261 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
264 other_node = rb_prev(&state->rb_node);
266 other = rb_entry(other_node, struct extent_state, rb_node);
267 if (other->end == state->start - 1 &&
268 other->state == state->state) {
269 merge_cb(tree, state, other);
270 state->start = other->start;
272 rb_erase(&other->rb_node, &tree->state);
273 free_extent_state(other);
276 other_node = rb_next(&state->rb_node);
278 other = rb_entry(other_node, struct extent_state, rb_node);
279 if (other->start == state->end + 1 &&
280 other->state == state->state) {
281 merge_cb(tree, state, other);
282 other->start = state->start;
284 rb_erase(&state->rb_node, &tree->state);
285 free_extent_state(state);
293 static int set_state_cb(struct extent_io_tree *tree,
294 struct extent_state *state, int *bits)
296 if (tree->ops && tree->ops->set_bit_hook) {
297 return tree->ops->set_bit_hook(tree->mapping->host,
304 static void clear_state_cb(struct extent_io_tree *tree,
305 struct extent_state *state, int *bits)
307 if (tree->ops && tree->ops->clear_bit_hook)
308 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
312 * insert an extent_state struct into the tree. 'bits' are set on the
313 * struct before it is inserted.
315 * This may return -EEXIST if the extent is already there, in which case the
316 * state struct is freed.
318 * The tree lock is not taken internally. This is a utility function and
319 * probably isn't what you want to call (see set/clear_extent_bit).
321 static int insert_state(struct extent_io_tree *tree,
322 struct extent_state *state, u64 start, u64 end,
325 struct rb_node *node;
326 int bits_to_set = *bits & ~EXTENT_CTLBITS;
330 printk(KERN_ERR "btrfs end < start %llu %llu\n",
331 (unsigned long long)end,
332 (unsigned long long)start);
335 state->start = start;
337 ret = set_state_cb(tree, state, bits);
341 if (bits_to_set & EXTENT_DIRTY)
342 tree->dirty_bytes += end - start + 1;
343 state->state |= bits_to_set;
344 node = tree_insert(&tree->state, end, &state->rb_node);
346 struct extent_state *found;
347 found = rb_entry(node, struct extent_state, rb_node);
348 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
349 "%llu %llu\n", (unsigned long long)found->start,
350 (unsigned long long)found->end,
351 (unsigned long long)start, (unsigned long long)end);
352 free_extent_state(state);
356 merge_state(tree, state);
360 static int split_cb(struct extent_io_tree *tree, struct extent_state *orig,
363 if (tree->ops && tree->ops->split_extent_hook)
364 return tree->ops->split_extent_hook(tree->mapping->host,
370 * split a given extent state struct in two, inserting the preallocated
371 * struct 'prealloc' as the newly created second half. 'split' indicates an
372 * offset inside 'orig' where it should be split.
375 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
376 * are two extent state structs in the tree:
377 * prealloc: [orig->start, split - 1]
378 * orig: [ split, orig->end ]
380 * The tree locks are not taken by this function. They need to be held
383 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
384 struct extent_state *prealloc, u64 split)
386 struct rb_node *node;
388 split_cb(tree, orig, split);
390 prealloc->start = orig->start;
391 prealloc->end = split - 1;
392 prealloc->state = orig->state;
395 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
397 free_extent_state(prealloc);
400 prealloc->tree = tree;
405 * utility function to clear some bits in an extent state struct.
406 * it will optionally wake up any one waiting on this state (wake == 1), or
407 * forcibly remove the state from the tree (delete == 1).
409 * If no bits are set on the state struct after clearing things, the
410 * struct is freed and removed from the tree
412 static int clear_state_bit(struct extent_io_tree *tree,
413 struct extent_state *state,
416 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
417 int ret = state->state & bits_to_clear;
419 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
420 u64 range = state->end - state->start + 1;
421 WARN_ON(range > tree->dirty_bytes);
422 tree->dirty_bytes -= range;
424 clear_state_cb(tree, state, bits);
425 state->state &= ~bits_to_clear;
428 if (state->state == 0) {
430 rb_erase(&state->rb_node, &tree->state);
432 free_extent_state(state);
437 merge_state(tree, state);
443 * clear some bits on a range in the tree. This may require splitting
444 * or inserting elements in the tree, so the gfp mask is used to
445 * indicate which allocations or sleeping are allowed.
447 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
448 * the given range from the tree regardless of state (ie for truncate).
450 * the range [start, end] is inclusive.
452 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
453 * bits were already set, or zero if none of the bits were already set.
455 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
456 int bits, int wake, int delete,
457 struct extent_state **cached_state,
460 struct extent_state *state;
461 struct extent_state *cached;
462 struct extent_state *prealloc = NULL;
463 struct rb_node *next_node;
464 struct rb_node *node;
471 bits |= ~EXTENT_CTLBITS;
472 bits |= EXTENT_FIRST_DELALLOC;
474 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
477 if (!prealloc && (mask & __GFP_WAIT)) {
478 prealloc = alloc_extent_state(mask);
483 spin_lock(&tree->lock);
485 cached = *cached_state;
488 *cached_state = NULL;
492 if (cached && cached->tree && cached->start == start) {
494 atomic_dec(&cached->refs);
499 free_extent_state(cached);
502 * this search will find the extents that end after
505 node = tree_search(tree, start);
508 state = rb_entry(node, struct extent_state, rb_node);
510 if (state->start > end)
512 WARN_ON(state->end < start);
513 last_end = state->end;
516 * | ---- desired range ---- |
518 * | ------------- state -------------- |
520 * We need to split the extent we found, and may flip
521 * bits on second half.
523 * If the extent we found extends past our range, we
524 * just split and search again. It'll get split again
525 * the next time though.
527 * If the extent we found is inside our range, we clear
528 * the desired bit on it.
531 if (state->start < start) {
533 prealloc = alloc_extent_state(GFP_ATOMIC);
534 err = split_state(tree, state, prealloc, start);
535 BUG_ON(err == -EEXIST);
539 if (state->end <= end) {
540 set |= clear_state_bit(tree, state, &bits, wake);
541 if (last_end == (u64)-1)
543 start = last_end + 1;
548 * | ---- desired range ---- |
550 * We need to split the extent, and clear the bit
553 if (state->start <= end && state->end > end) {
555 prealloc = alloc_extent_state(GFP_ATOMIC);
556 err = split_state(tree, state, prealloc, end + 1);
557 BUG_ON(err == -EEXIST);
561 set |= clear_state_bit(tree, prealloc, &bits, wake);
567 if (state->end < end && prealloc && !need_resched())
568 next_node = rb_next(&state->rb_node);
572 set |= clear_state_bit(tree, state, &bits, wake);
573 if (last_end == (u64)-1)
575 start = last_end + 1;
576 if (start <= end && next_node) {
577 state = rb_entry(next_node, struct extent_state,
579 if (state->start == start)
585 spin_unlock(&tree->lock);
587 free_extent_state(prealloc);
594 spin_unlock(&tree->lock);
595 if (mask & __GFP_WAIT)
600 static int wait_on_state(struct extent_io_tree *tree,
601 struct extent_state *state)
602 __releases(tree->lock)
603 __acquires(tree->lock)
606 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock(&tree->lock);
609 spin_lock(&tree->lock);
610 finish_wait(&state->wq, &wait);
615 * waits for one or more bits to clear on a range in the state tree.
616 * The range [start, end] is inclusive.
617 * The tree lock is taken by this function
619 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
621 struct extent_state *state;
622 struct rb_node *node;
624 spin_lock(&tree->lock);
628 * this search will find all the extents that end after
631 node = tree_search(tree, start);
635 state = rb_entry(node, struct extent_state, rb_node);
637 if (state->start > end)
640 if (state->state & bits) {
641 start = state->start;
642 atomic_inc(&state->refs);
643 wait_on_state(tree, state);
644 free_extent_state(state);
647 start = state->end + 1;
652 if (need_resched()) {
653 spin_unlock(&tree->lock);
655 spin_lock(&tree->lock);
659 spin_unlock(&tree->lock);
663 static int set_state_bits(struct extent_io_tree *tree,
664 struct extent_state *state,
668 int bits_to_set = *bits & ~EXTENT_CTLBITS;
670 ret = set_state_cb(tree, state, bits);
673 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
674 u64 range = state->end - state->start + 1;
675 tree->dirty_bytes += range;
677 state->state |= bits_to_set;
682 static void cache_state(struct extent_state *state,
683 struct extent_state **cached_ptr)
685 if (cached_ptr && !(*cached_ptr)) {
686 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
688 atomic_inc(&state->refs);
694 * set some bits on a range in the tree. This may require allocations or
695 * sleeping, so the gfp mask is used to indicate what is allowed.
697 * If any of the exclusive bits are set, this will fail with -EEXIST if some
698 * part of the range already has the desired bits set. The start of the
699 * existing range is returned in failed_start in this case.
701 * [start, end] is inclusive This takes the tree lock.
704 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
705 int bits, int exclusive_bits, u64 *failed_start,
706 struct extent_state **cached_state, gfp_t mask)
708 struct extent_state *state;
709 struct extent_state *prealloc = NULL;
710 struct rb_node *node;
715 bits |= EXTENT_FIRST_DELALLOC;
717 if (!prealloc && (mask & __GFP_WAIT)) {
718 prealloc = alloc_extent_state(mask);
723 spin_lock(&tree->lock);
724 if (cached_state && *cached_state) {
725 state = *cached_state;
726 if (state->start == start && state->tree) {
727 node = &state->rb_node;
732 * this search will find all the extents that end after
735 node = tree_search(tree, start);
737 err = insert_state(tree, prealloc, start, end, &bits);
739 BUG_ON(err == -EEXIST);
742 state = rb_entry(node, struct extent_state, rb_node);
744 last_start = state->start;
745 last_end = state->end;
748 * | ---- desired range ---- |
751 * Just lock what we found and keep going
753 if (state->start == start && state->end <= end) {
754 struct rb_node *next_node;
755 if (state->state & exclusive_bits) {
756 *failed_start = state->start;
761 err = set_state_bits(tree, state, &bits);
765 cache_state(state, cached_state);
766 merge_state(tree, state);
767 if (last_end == (u64)-1)
770 start = last_end + 1;
771 if (start < end && prealloc && !need_resched()) {
772 next_node = rb_next(node);
774 state = rb_entry(next_node, struct extent_state,
776 if (state->start == start)
784 * | ---- desired range ---- |
787 * | ------------- state -------------- |
789 * We need to split the extent we found, and may flip bits on
792 * If the extent we found extends past our
793 * range, we just split and search again. It'll get split
794 * again the next time though.
796 * If the extent we found is inside our range, we set the
799 if (state->start < start) {
800 if (state->state & exclusive_bits) {
801 *failed_start = start;
805 err = split_state(tree, state, prealloc, start);
806 BUG_ON(err == -EEXIST);
810 if (state->end <= end) {
811 err = set_state_bits(tree, state, &bits);
814 cache_state(state, cached_state);
815 merge_state(tree, state);
816 if (last_end == (u64)-1)
818 start = last_end + 1;
823 * | ---- desired range ---- |
824 * | state | or | state |
826 * There's a hole, we need to insert something in it and
827 * ignore the extent we found.
829 if (state->start > start) {
831 if (end < last_start)
834 this_end = last_start - 1;
835 err = insert_state(tree, prealloc, start, this_end,
837 BUG_ON(err == -EEXIST);
842 cache_state(prealloc, cached_state);
844 start = this_end + 1;
848 * | ---- desired range ---- |
850 * We need to split the extent, and set the bit
853 if (state->start <= end && state->end > end) {
854 if (state->state & exclusive_bits) {
855 *failed_start = start;
859 err = split_state(tree, state, prealloc, end + 1);
860 BUG_ON(err == -EEXIST);
862 err = set_state_bits(tree, prealloc, &bits);
867 cache_state(prealloc, cached_state);
868 merge_state(tree, prealloc);
876 spin_unlock(&tree->lock);
878 free_extent_state(prealloc);
885 spin_unlock(&tree->lock);
886 if (mask & __GFP_WAIT)
891 /* wrappers around set/clear extent bit */
892 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
895 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
899 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
900 int bits, gfp_t mask)
902 return set_extent_bit(tree, start, end, bits, 0, NULL,
906 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
907 int bits, gfp_t mask)
909 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
912 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
913 struct extent_state **cached_state, gfp_t mask)
915 return set_extent_bit(tree, start, end,
916 EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
917 0, NULL, cached_state, mask);
920 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
923 return clear_extent_bit(tree, start, end,
924 EXTENT_DIRTY | EXTENT_DELALLOC |
925 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
928 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
931 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
935 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
938 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0,
942 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
945 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
949 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
950 u64 end, struct extent_state **cached_state,
953 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
957 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
959 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
963 * either insert or lock state struct between start and end use mask to tell
964 * us if waiting is desired.
966 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
967 int bits, struct extent_state **cached_state, gfp_t mask)
972 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
973 EXTENT_LOCKED, &failed_start,
975 if (err == -EEXIST && (mask & __GFP_WAIT)) {
976 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
977 start = failed_start;
981 WARN_ON(start > end);
986 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
988 return lock_extent_bits(tree, start, end, 0, NULL, mask);
991 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
997 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
998 &failed_start, NULL, mask);
999 if (err == -EEXIST) {
1000 if (failed_start > start)
1001 clear_extent_bit(tree, start, failed_start - 1,
1002 EXTENT_LOCKED, 1, 0, NULL, mask);
1008 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1009 struct extent_state **cached, gfp_t mask)
1011 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1015 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1018 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1023 * helper function to set pages and extents in the tree dirty
1025 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
1027 unsigned long index = start >> PAGE_CACHE_SHIFT;
1028 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1031 while (index <= end_index) {
1032 page = find_get_page(tree->mapping, index);
1034 __set_page_dirty_nobuffers(page);
1035 page_cache_release(page);
1042 * helper function to set both pages and extents in the tree writeback
1044 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1046 unsigned long index = start >> PAGE_CACHE_SHIFT;
1047 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1050 while (index <= end_index) {
1051 page = find_get_page(tree->mapping, index);
1053 set_page_writeback(page);
1054 page_cache_release(page);
1061 * find the first offset in the io tree with 'bits' set. zero is
1062 * returned if we find something, and *start_ret and *end_ret are
1063 * set to reflect the state struct that was found.
1065 * If nothing was found, 1 is returned, < 0 on error
1067 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1068 u64 *start_ret, u64 *end_ret, int bits)
1070 struct rb_node *node;
1071 struct extent_state *state;
1074 spin_lock(&tree->lock);
1076 * this search will find all the extents that end after
1079 node = tree_search(tree, start);
1084 state = rb_entry(node, struct extent_state, rb_node);
1085 if (state->end >= start && (state->state & bits)) {
1086 *start_ret = state->start;
1087 *end_ret = state->end;
1091 node = rb_next(node);
1096 spin_unlock(&tree->lock);
1100 /* find the first state struct with 'bits' set after 'start', and
1101 * return it. tree->lock must be held. NULL will returned if
1102 * nothing was found after 'start'
1104 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1105 u64 start, int bits)
1107 struct rb_node *node;
1108 struct extent_state *state;
1111 * this search will find all the extents that end after
1114 node = tree_search(tree, start);
1119 state = rb_entry(node, struct extent_state, rb_node);
1120 if (state->end >= start && (state->state & bits))
1123 node = rb_next(node);
1132 * find a contiguous range of bytes in the file marked as delalloc, not
1133 * more than 'max_bytes'. start and end are used to return the range,
1135 * 1 is returned if we find something, 0 if nothing was in the tree
1137 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1138 u64 *start, u64 *end, u64 max_bytes,
1139 struct extent_state **cached_state)
1141 struct rb_node *node;
1142 struct extent_state *state;
1143 u64 cur_start = *start;
1145 u64 total_bytes = 0;
1147 spin_lock(&tree->lock);
1150 * this search will find all the extents that end after
1153 node = tree_search(tree, cur_start);
1161 state = rb_entry(node, struct extent_state, rb_node);
1162 if (found && (state->start != cur_start ||
1163 (state->state & EXTENT_BOUNDARY))) {
1166 if (!(state->state & EXTENT_DELALLOC)) {
1172 *start = state->start;
1173 *cached_state = state;
1174 atomic_inc(&state->refs);
1178 cur_start = state->end + 1;
1179 node = rb_next(node);
1182 total_bytes += state->end - state->start + 1;
1183 if (total_bytes >= max_bytes)
1187 spin_unlock(&tree->lock);
1191 static noinline int __unlock_for_delalloc(struct inode *inode,
1192 struct page *locked_page,
1196 struct page *pages[16];
1197 unsigned long index = start >> PAGE_CACHE_SHIFT;
1198 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1199 unsigned long nr_pages = end_index - index + 1;
1202 if (index == locked_page->index && end_index == index)
1205 while (nr_pages > 0) {
1206 ret = find_get_pages_contig(inode->i_mapping, index,
1207 min_t(unsigned long, nr_pages,
1208 ARRAY_SIZE(pages)), pages);
1209 for (i = 0; i < ret; i++) {
1210 if (pages[i] != locked_page)
1211 unlock_page(pages[i]);
1212 page_cache_release(pages[i]);
1221 static noinline int lock_delalloc_pages(struct inode *inode,
1222 struct page *locked_page,
1226 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1227 unsigned long start_index = index;
1228 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1229 unsigned long pages_locked = 0;
1230 struct page *pages[16];
1231 unsigned long nrpages;
1235 /* the caller is responsible for locking the start index */
1236 if (index == locked_page->index && index == end_index)
1239 /* skip the page at the start index */
1240 nrpages = end_index - index + 1;
1241 while (nrpages > 0) {
1242 ret = find_get_pages_contig(inode->i_mapping, index,
1243 min_t(unsigned long,
1244 nrpages, ARRAY_SIZE(pages)), pages);
1249 /* now we have an array of pages, lock them all */
1250 for (i = 0; i < ret; i++) {
1252 * the caller is taking responsibility for
1255 if (pages[i] != locked_page) {
1256 lock_page(pages[i]);
1257 if (!PageDirty(pages[i]) ||
1258 pages[i]->mapping != inode->i_mapping) {
1260 unlock_page(pages[i]);
1261 page_cache_release(pages[i]);
1265 page_cache_release(pages[i]);
1274 if (ret && pages_locked) {
1275 __unlock_for_delalloc(inode, locked_page,
1277 ((u64)(start_index + pages_locked - 1)) <<
1284 * find a contiguous range of bytes in the file marked as delalloc, not
1285 * more than 'max_bytes'. start and end are used to return the range,
1287 * 1 is returned if we find something, 0 if nothing was in the tree
1289 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1290 struct extent_io_tree *tree,
1291 struct page *locked_page,
1292 u64 *start, u64 *end,
1298 struct extent_state *cached_state = NULL;
1303 /* step one, find a bunch of delalloc bytes starting at start */
1304 delalloc_start = *start;
1306 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1307 max_bytes, &cached_state);
1308 if (!found || delalloc_end <= *start) {
1309 *start = delalloc_start;
1310 *end = delalloc_end;
1311 free_extent_state(cached_state);
1316 * start comes from the offset of locked_page. We have to lock
1317 * pages in order, so we can't process delalloc bytes before
1320 if (delalloc_start < *start)
1321 delalloc_start = *start;
1324 * make sure to limit the number of pages we try to lock down
1327 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1328 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1330 /* step two, lock all the pages after the page that has start */
1331 ret = lock_delalloc_pages(inode, locked_page,
1332 delalloc_start, delalloc_end);
1333 if (ret == -EAGAIN) {
1334 /* some of the pages are gone, lets avoid looping by
1335 * shortening the size of the delalloc range we're searching
1337 free_extent_state(cached_state);
1339 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1340 max_bytes = PAGE_CACHE_SIZE - offset;
1350 /* step three, lock the state bits for the whole range */
1351 lock_extent_bits(tree, delalloc_start, delalloc_end,
1352 0, &cached_state, GFP_NOFS);
1354 /* then test to make sure it is all still delalloc */
1355 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1356 EXTENT_DELALLOC, 1, cached_state);
1358 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1359 &cached_state, GFP_NOFS);
1360 __unlock_for_delalloc(inode, locked_page,
1361 delalloc_start, delalloc_end);
1365 free_extent_state(cached_state);
1366 *start = delalloc_start;
1367 *end = delalloc_end;
1372 int extent_clear_unlock_delalloc(struct inode *inode,
1373 struct extent_io_tree *tree,
1374 u64 start, u64 end, struct page *locked_page,
1378 struct page *pages[16];
1379 unsigned long index = start >> PAGE_CACHE_SHIFT;
1380 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1381 unsigned long nr_pages = end_index - index + 1;
1385 if (op & EXTENT_CLEAR_UNLOCK)
1386 clear_bits |= EXTENT_LOCKED;
1387 if (op & EXTENT_CLEAR_DIRTY)
1388 clear_bits |= EXTENT_DIRTY;
1390 if (op & EXTENT_CLEAR_DELALLOC)
1391 clear_bits |= EXTENT_DELALLOC;
1393 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1394 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1395 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1396 EXTENT_SET_PRIVATE2)))
1399 while (nr_pages > 0) {
1400 ret = find_get_pages_contig(inode->i_mapping, index,
1401 min_t(unsigned long,
1402 nr_pages, ARRAY_SIZE(pages)), pages);
1403 for (i = 0; i < ret; i++) {
1405 if (op & EXTENT_SET_PRIVATE2)
1406 SetPagePrivate2(pages[i]);
1408 if (pages[i] == locked_page) {
1409 page_cache_release(pages[i]);
1412 if (op & EXTENT_CLEAR_DIRTY)
1413 clear_page_dirty_for_io(pages[i]);
1414 if (op & EXTENT_SET_WRITEBACK)
1415 set_page_writeback(pages[i]);
1416 if (op & EXTENT_END_WRITEBACK)
1417 end_page_writeback(pages[i]);
1418 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1419 unlock_page(pages[i]);
1420 page_cache_release(pages[i]);
1430 * count the number of bytes in the tree that have a given bit(s)
1431 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1432 * cached. The total number found is returned.
1434 u64 count_range_bits(struct extent_io_tree *tree,
1435 u64 *start, u64 search_end, u64 max_bytes,
1438 struct rb_node *node;
1439 struct extent_state *state;
1440 u64 cur_start = *start;
1441 u64 total_bytes = 0;
1444 if (search_end <= cur_start) {
1449 spin_lock(&tree->lock);
1450 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1451 total_bytes = tree->dirty_bytes;
1455 * this search will find all the extents that end after
1458 node = tree_search(tree, cur_start);
1463 state = rb_entry(node, struct extent_state, rb_node);
1464 if (state->start > search_end)
1466 if (state->end >= cur_start && (state->state & bits)) {
1467 total_bytes += min(search_end, state->end) + 1 -
1468 max(cur_start, state->start);
1469 if (total_bytes >= max_bytes)
1472 *start = state->start;
1476 node = rb_next(node);
1481 spin_unlock(&tree->lock);
1486 * set the private field for a given byte offset in the tree. If there isn't
1487 * an extent_state there already, this does nothing.
1489 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1491 struct rb_node *node;
1492 struct extent_state *state;
1495 spin_lock(&tree->lock);
1497 * this search will find all the extents that end after
1500 node = tree_search(tree, start);
1505 state = rb_entry(node, struct extent_state, rb_node);
1506 if (state->start != start) {
1510 state->private = private;
1512 spin_unlock(&tree->lock);
1516 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1518 struct rb_node *node;
1519 struct extent_state *state;
1522 spin_lock(&tree->lock);
1524 * this search will find all the extents that end after
1527 node = tree_search(tree, start);
1532 state = rb_entry(node, struct extent_state, rb_node);
1533 if (state->start != start) {
1537 *private = state->private;
1539 spin_unlock(&tree->lock);
1544 * searches a range in the state tree for a given mask.
1545 * If 'filled' == 1, this returns 1 only if every extent in the tree
1546 * has the bits set. Otherwise, 1 is returned if any bit in the
1547 * range is found set.
1549 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1550 int bits, int filled, struct extent_state *cached)
1552 struct extent_state *state = NULL;
1553 struct rb_node *node;
1556 spin_lock(&tree->lock);
1557 if (cached && cached->tree && cached->start == start)
1558 node = &cached->rb_node;
1560 node = tree_search(tree, start);
1561 while (node && start <= end) {
1562 state = rb_entry(node, struct extent_state, rb_node);
1564 if (filled && state->start > start) {
1569 if (state->start > end)
1572 if (state->state & bits) {
1576 } else if (filled) {
1581 if (state->end == (u64)-1)
1584 start = state->end + 1;
1587 node = rb_next(node);
1594 spin_unlock(&tree->lock);
1599 * helper function to set a given page up to date if all the
1600 * extents in the tree for that page are up to date
1602 static int check_page_uptodate(struct extent_io_tree *tree,
1605 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1606 u64 end = start + PAGE_CACHE_SIZE - 1;
1607 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1608 SetPageUptodate(page);
1613 * helper function to unlock a page if all the extents in the tree
1614 * for that page are unlocked
1616 static int check_page_locked(struct extent_io_tree *tree,
1619 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1620 u64 end = start + PAGE_CACHE_SIZE - 1;
1621 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1627 * helper function to end page writeback if all the extents
1628 * in the tree for that page are done with writeback
1630 static int check_page_writeback(struct extent_io_tree *tree,
1633 end_page_writeback(page);
1637 /* lots and lots of room for performance fixes in the end_bio funcs */
1640 * after a writepage IO is done, we need to:
1641 * clear the uptodate bits on error
1642 * clear the writeback bits in the extent tree for this IO
1643 * end_page_writeback if the page has no more pending IO
1645 * Scheduling is not allowed, so the extent state tree is expected
1646 * to have one and only one object corresponding to this IO.
1648 static void end_bio_extent_writepage(struct bio *bio, int err)
1650 int uptodate = err == 0;
1651 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1652 struct extent_io_tree *tree;
1659 struct page *page = bvec->bv_page;
1660 tree = &BTRFS_I(page->mapping->host)->io_tree;
1662 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1664 end = start + bvec->bv_len - 1;
1666 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1671 if (--bvec >= bio->bi_io_vec)
1672 prefetchw(&bvec->bv_page->flags);
1673 if (tree->ops && tree->ops->writepage_end_io_hook) {
1674 ret = tree->ops->writepage_end_io_hook(page, start,
1675 end, NULL, uptodate);
1680 if (!uptodate && tree->ops &&
1681 tree->ops->writepage_io_failed_hook) {
1682 ret = tree->ops->writepage_io_failed_hook(bio, page,
1685 uptodate = (err == 0);
1691 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
1692 ClearPageUptodate(page);
1697 end_page_writeback(page);
1699 check_page_writeback(tree, page);
1700 } while (bvec >= bio->bi_io_vec);
1706 * after a readpage IO is done, we need to:
1707 * clear the uptodate bits on error
1708 * set the uptodate bits if things worked
1709 * set the page up to date if all extents in the tree are uptodate
1710 * clear the lock bit in the extent tree
1711 * unlock the page if there are no other extents locked for it
1713 * Scheduling is not allowed, so the extent state tree is expected
1714 * to have one and only one object corresponding to this IO.
1716 static void end_bio_extent_readpage(struct bio *bio, int err)
1718 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1719 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
1720 struct bio_vec *bvec = bio->bi_io_vec;
1721 struct extent_io_tree *tree;
1731 struct page *page = bvec->bv_page;
1732 tree = &BTRFS_I(page->mapping->host)->io_tree;
1734 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1736 end = start + bvec->bv_len - 1;
1738 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1743 if (++bvec <= bvec_end)
1744 prefetchw(&bvec->bv_page->flags);
1746 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1747 ret = tree->ops->readpage_end_io_hook(page, start, end,
1752 if (!uptodate && tree->ops &&
1753 tree->ops->readpage_io_failed_hook) {
1754 ret = tree->ops->readpage_io_failed_hook(bio, page,
1758 test_bit(BIO_UPTODATE, &bio->bi_flags);
1766 set_extent_uptodate(tree, start, end,
1769 unlock_extent(tree, start, end, GFP_ATOMIC);
1773 SetPageUptodate(page);
1775 ClearPageUptodate(page);
1781 check_page_uptodate(tree, page);
1783 ClearPageUptodate(page);
1786 check_page_locked(tree, page);
1788 } while (bvec <= bvec_end);
1794 * IO done from prepare_write is pretty simple, we just unlock
1795 * the structs in the extent tree when done, and set the uptodate bits
1798 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1800 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1801 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1802 struct extent_io_tree *tree;
1807 struct page *page = bvec->bv_page;
1808 tree = &BTRFS_I(page->mapping->host)->io_tree;
1810 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1812 end = start + bvec->bv_len - 1;
1814 if (--bvec >= bio->bi_io_vec)
1815 prefetchw(&bvec->bv_page->flags);
1818 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1820 ClearPageUptodate(page);
1824 unlock_extent(tree, start, end, GFP_ATOMIC);
1826 } while (bvec >= bio->bi_io_vec);
1832 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1837 bio = bio_alloc(gfp_flags, nr_vecs);
1839 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1840 while (!bio && (nr_vecs /= 2))
1841 bio = bio_alloc(gfp_flags, nr_vecs);
1846 bio->bi_bdev = bdev;
1847 bio->bi_sector = first_sector;
1852 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1853 unsigned long bio_flags)
1856 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1857 struct page *page = bvec->bv_page;
1858 struct extent_io_tree *tree = bio->bi_private;
1861 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1863 bio->bi_private = NULL;
1867 if (tree->ops && tree->ops->submit_bio_hook)
1868 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1869 mirror_num, bio_flags, start);
1871 submit_bio(rw, bio);
1872 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1878 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1879 struct page *page, sector_t sector,
1880 size_t size, unsigned long offset,
1881 struct block_device *bdev,
1882 struct bio **bio_ret,
1883 unsigned long max_pages,
1884 bio_end_io_t end_io_func,
1886 unsigned long prev_bio_flags,
1887 unsigned long bio_flags)
1893 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1894 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1895 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1897 if (bio_ret && *bio_ret) {
1900 contig = bio->bi_sector == sector;
1902 contig = bio->bi_sector + (bio->bi_size >> 9) ==
1905 if (prev_bio_flags != bio_flags || !contig ||
1906 (tree->ops && tree->ops->merge_bio_hook &&
1907 tree->ops->merge_bio_hook(page, offset, page_size, bio,
1909 bio_add_page(bio, page, page_size, offset) < page_size) {
1910 ret = submit_one_bio(rw, bio, mirror_num,
1917 if (this_compressed)
1920 nr = bio_get_nr_vecs(bdev);
1922 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1926 bio_add_page(bio, page, page_size, offset);
1927 bio->bi_end_io = end_io_func;
1928 bio->bi_private = tree;
1933 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1938 void set_page_extent_mapped(struct page *page)
1940 if (!PagePrivate(page)) {
1941 SetPagePrivate(page);
1942 page_cache_get(page);
1943 set_page_private(page, EXTENT_PAGE_PRIVATE);
1947 static void set_page_extent_head(struct page *page, unsigned long len)
1949 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1953 * basic readpage implementation. Locked extent state structs are inserted
1954 * into the tree that are removed when the IO is done (by the end_io
1957 static int __extent_read_full_page(struct extent_io_tree *tree,
1959 get_extent_t *get_extent,
1960 struct bio **bio, int mirror_num,
1961 unsigned long *bio_flags)
1963 struct inode *inode = page->mapping->host;
1964 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1965 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1969 u64 last_byte = i_size_read(inode);
1973 struct extent_map *em;
1974 struct block_device *bdev;
1975 struct btrfs_ordered_extent *ordered;
1978 size_t page_offset = 0;
1980 size_t disk_io_size;
1981 size_t blocksize = inode->i_sb->s_blocksize;
1982 unsigned long this_bio_flag = 0;
1984 set_page_extent_mapped(page);
1988 lock_extent(tree, start, end, GFP_NOFS);
1989 ordered = btrfs_lookup_ordered_extent(inode, start);
1992 unlock_extent(tree, start, end, GFP_NOFS);
1993 btrfs_start_ordered_extent(inode, ordered, 1);
1994 btrfs_put_ordered_extent(ordered);
1997 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
1999 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2002 iosize = PAGE_CACHE_SIZE - zero_offset;
2003 userpage = kmap_atomic(page, KM_USER0);
2004 memset(userpage + zero_offset, 0, iosize);
2005 flush_dcache_page(page);
2006 kunmap_atomic(userpage, KM_USER0);
2009 while (cur <= end) {
2010 if (cur >= last_byte) {
2012 iosize = PAGE_CACHE_SIZE - page_offset;
2013 userpage = kmap_atomic(page, KM_USER0);
2014 memset(userpage + page_offset, 0, iosize);
2015 flush_dcache_page(page);
2016 kunmap_atomic(userpage, KM_USER0);
2017 set_extent_uptodate(tree, cur, cur + iosize - 1,
2019 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2022 em = get_extent(inode, page, page_offset, cur,
2024 if (IS_ERR(em) || !em) {
2026 unlock_extent(tree, cur, end, GFP_NOFS);
2029 extent_offset = cur - em->start;
2030 BUG_ON(extent_map_end(em) <= cur);
2033 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2034 this_bio_flag = EXTENT_BIO_COMPRESSED;
2035 extent_set_compress_type(&this_bio_flag,
2039 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2040 cur_end = min(extent_map_end(em) - 1, end);
2041 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2042 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2043 disk_io_size = em->block_len;
2044 sector = em->block_start >> 9;
2046 sector = (em->block_start + extent_offset) >> 9;
2047 disk_io_size = iosize;
2050 block_start = em->block_start;
2051 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2052 block_start = EXTENT_MAP_HOLE;
2053 free_extent_map(em);
2056 /* we've found a hole, just zero and go on */
2057 if (block_start == EXTENT_MAP_HOLE) {
2059 userpage = kmap_atomic(page, KM_USER0);
2060 memset(userpage + page_offset, 0, iosize);
2061 flush_dcache_page(page);
2062 kunmap_atomic(userpage, KM_USER0);
2064 set_extent_uptodate(tree, cur, cur + iosize - 1,
2066 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2068 page_offset += iosize;
2071 /* the get_extent function already copied into the page */
2072 if (test_range_bit(tree, cur, cur_end,
2073 EXTENT_UPTODATE, 1, NULL)) {
2074 check_page_uptodate(tree, page);
2075 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2077 page_offset += iosize;
2080 /* we have an inline extent but it didn't get marked up
2081 * to date. Error out
2083 if (block_start == EXTENT_MAP_INLINE) {
2085 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2087 page_offset += iosize;
2092 if (tree->ops && tree->ops->readpage_io_hook) {
2093 ret = tree->ops->readpage_io_hook(page, cur,
2097 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2099 ret = submit_extent_page(READ, tree, page,
2100 sector, disk_io_size, page_offset,
2102 end_bio_extent_readpage, mirror_num,
2106 *bio_flags = this_bio_flag;
2111 page_offset += iosize;
2114 if (!PageError(page))
2115 SetPageUptodate(page);
2121 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2122 get_extent_t *get_extent)
2124 struct bio *bio = NULL;
2125 unsigned long bio_flags = 0;
2128 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2131 ret = submit_one_bio(READ, bio, 0, bio_flags);
2135 static noinline void update_nr_written(struct page *page,
2136 struct writeback_control *wbc,
2137 unsigned long nr_written)
2139 wbc->nr_to_write -= nr_written;
2140 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2141 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2142 page->mapping->writeback_index = page->index + nr_written;
2146 * the writepage semantics are similar to regular writepage. extent
2147 * records are inserted to lock ranges in the tree, and as dirty areas
2148 * are found, they are marked writeback. Then the lock bits are removed
2149 * and the end_io handler clears the writeback ranges
2151 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2154 struct inode *inode = page->mapping->host;
2155 struct extent_page_data *epd = data;
2156 struct extent_io_tree *tree = epd->tree;
2157 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2159 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2163 u64 last_byte = i_size_read(inode);
2167 struct extent_state *cached_state = NULL;
2168 struct extent_map *em;
2169 struct block_device *bdev;
2172 size_t pg_offset = 0;
2174 loff_t i_size = i_size_read(inode);
2175 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2181 unsigned long nr_written = 0;
2183 if (wbc->sync_mode == WB_SYNC_ALL)
2184 write_flags = WRITE_SYNC_PLUG;
2186 write_flags = WRITE;
2188 WARN_ON(!PageLocked(page));
2189 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2190 if (page->index > end_index ||
2191 (page->index == end_index && !pg_offset)) {
2192 page->mapping->a_ops->invalidatepage(page, 0);
2197 if (page->index == end_index) {
2200 userpage = kmap_atomic(page, KM_USER0);
2201 memset(userpage + pg_offset, 0,
2202 PAGE_CACHE_SIZE - pg_offset);
2203 kunmap_atomic(userpage, KM_USER0);
2204 flush_dcache_page(page);
2208 set_page_extent_mapped(page);
2210 delalloc_start = start;
2213 if (!epd->extent_locked) {
2214 u64 delalloc_to_write = 0;
2216 * make sure the wbc mapping index is at least updated
2219 update_nr_written(page, wbc, 0);
2221 while (delalloc_end < page_end) {
2222 nr_delalloc = find_lock_delalloc_range(inode, tree,
2227 if (nr_delalloc == 0) {
2228 delalloc_start = delalloc_end + 1;
2231 tree->ops->fill_delalloc(inode, page, delalloc_start,
2232 delalloc_end, &page_started,
2235 * delalloc_end is already one less than the total
2236 * length, so we don't subtract one from
2239 delalloc_to_write += (delalloc_end - delalloc_start +
2242 delalloc_start = delalloc_end + 1;
2244 if (wbc->nr_to_write < delalloc_to_write) {
2247 if (delalloc_to_write < thresh * 2)
2248 thresh = delalloc_to_write;
2249 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2253 /* did the fill delalloc function already unlock and start
2259 * we've unlocked the page, so we can't update
2260 * the mapping's writeback index, just update
2263 wbc->nr_to_write -= nr_written;
2267 if (tree->ops && tree->ops->writepage_start_hook) {
2268 ret = tree->ops->writepage_start_hook(page, start,
2270 if (ret == -EAGAIN) {
2271 redirty_page_for_writepage(wbc, page);
2272 update_nr_written(page, wbc, nr_written);
2280 * we don't want to touch the inode after unlocking the page,
2281 * so we update the mapping writeback index now
2283 update_nr_written(page, wbc, nr_written + 1);
2286 if (last_byte <= start) {
2287 if (tree->ops && tree->ops->writepage_end_io_hook)
2288 tree->ops->writepage_end_io_hook(page, start,
2293 blocksize = inode->i_sb->s_blocksize;
2295 while (cur <= end) {
2296 if (cur >= last_byte) {
2297 if (tree->ops && tree->ops->writepage_end_io_hook)
2298 tree->ops->writepage_end_io_hook(page, cur,
2302 em = epd->get_extent(inode, page, pg_offset, cur,
2304 if (IS_ERR(em) || !em) {
2309 extent_offset = cur - em->start;
2310 BUG_ON(extent_map_end(em) <= cur);
2312 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2313 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2314 sector = (em->block_start + extent_offset) >> 9;
2316 block_start = em->block_start;
2317 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2318 free_extent_map(em);
2322 * compressed and inline extents are written through other
2325 if (compressed || block_start == EXTENT_MAP_HOLE ||
2326 block_start == EXTENT_MAP_INLINE) {
2328 * end_io notification does not happen here for
2329 * compressed extents
2331 if (!compressed && tree->ops &&
2332 tree->ops->writepage_end_io_hook)
2333 tree->ops->writepage_end_io_hook(page, cur,
2336 else if (compressed) {
2337 /* we don't want to end_page_writeback on
2338 * a compressed extent. this happens
2345 pg_offset += iosize;
2348 /* leave this out until we have a page_mkwrite call */
2349 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2350 EXTENT_DIRTY, 0, NULL)) {
2352 pg_offset += iosize;
2356 if (tree->ops && tree->ops->writepage_io_hook) {
2357 ret = tree->ops->writepage_io_hook(page, cur,
2365 unsigned long max_nr = end_index + 1;
2367 set_range_writeback(tree, cur, cur + iosize - 1);
2368 if (!PageWriteback(page)) {
2369 printk(KERN_ERR "btrfs warning page %lu not "
2370 "writeback, cur %llu end %llu\n",
2371 page->index, (unsigned long long)cur,
2372 (unsigned long long)end);
2375 ret = submit_extent_page(write_flags, tree, page,
2376 sector, iosize, pg_offset,
2377 bdev, &epd->bio, max_nr,
2378 end_bio_extent_writepage,
2384 pg_offset += iosize;
2389 /* make sure the mapping tag for page dirty gets cleared */
2390 set_page_writeback(page);
2391 end_page_writeback(page);
2397 /* drop our reference on any cached states */
2398 free_extent_state(cached_state);
2403 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2404 * @mapping: address space structure to write
2405 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2406 * @writepage: function called for each page
2407 * @data: data passed to writepage function
2409 * If a page is already under I/O, write_cache_pages() skips it, even
2410 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2411 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2412 * and msync() need to guarantee that all the data which was dirty at the time
2413 * the call was made get new I/O started against them. If wbc->sync_mode is
2414 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2415 * existing IO to complete.
2417 static int extent_write_cache_pages(struct extent_io_tree *tree,
2418 struct address_space *mapping,
2419 struct writeback_control *wbc,
2420 writepage_t writepage, void *data,
2421 void (*flush_fn)(void *))
2425 int nr_to_write_done = 0;
2426 struct pagevec pvec;
2429 pgoff_t end; /* Inclusive */
2432 pagevec_init(&pvec, 0);
2433 if (wbc->range_cyclic) {
2434 index = mapping->writeback_index; /* Start from prev offset */
2437 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2438 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2442 while (!done && !nr_to_write_done && (index <= end) &&
2443 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2444 PAGECACHE_TAG_DIRTY, min(end - index,
2445 (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2449 for (i = 0; i < nr_pages; i++) {
2450 struct page *page = pvec.pages[i];
2453 * At this point we hold neither mapping->tree_lock nor
2454 * lock on the page itself: the page may be truncated or
2455 * invalidated (changing page->mapping to NULL), or even
2456 * swizzled back from swapper_space to tmpfs file
2459 if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2460 tree->ops->write_cache_pages_lock_hook(page);
2464 if (unlikely(page->mapping != mapping)) {
2469 if (!wbc->range_cyclic && page->index > end) {
2475 if (wbc->sync_mode != WB_SYNC_NONE) {
2476 if (PageWriteback(page))
2478 wait_on_page_writeback(page);
2481 if (PageWriteback(page) ||
2482 !clear_page_dirty_for_io(page)) {
2487 ret = (*writepage)(page, wbc, data);
2489 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2497 * the filesystem may choose to bump up nr_to_write.
2498 * We have to make sure to honor the new nr_to_write
2501 nr_to_write_done = wbc->nr_to_write <= 0;
2503 pagevec_release(&pvec);
2506 if (!scanned && !done) {
2508 * We hit the last page and there is more work to be done: wrap
2509 * back to the start of the file
2518 static void flush_epd_write_bio(struct extent_page_data *epd)
2522 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2524 submit_one_bio(WRITE, epd->bio, 0, 0);
2529 static noinline void flush_write_bio(void *data)
2531 struct extent_page_data *epd = data;
2532 flush_epd_write_bio(epd);
2535 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2536 get_extent_t *get_extent,
2537 struct writeback_control *wbc)
2540 struct address_space *mapping = page->mapping;
2541 struct extent_page_data epd = {
2544 .get_extent = get_extent,
2546 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2548 struct writeback_control wbc_writepages = {
2549 .sync_mode = wbc->sync_mode,
2550 .older_than_this = NULL,
2552 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2553 .range_end = (loff_t)-1,
2556 ret = __extent_writepage(page, wbc, &epd);
2558 extent_write_cache_pages(tree, mapping, &wbc_writepages,
2559 __extent_writepage, &epd, flush_write_bio);
2560 flush_epd_write_bio(&epd);
2564 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2565 u64 start, u64 end, get_extent_t *get_extent,
2569 struct address_space *mapping = inode->i_mapping;
2571 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2574 struct extent_page_data epd = {
2577 .get_extent = get_extent,
2579 .sync_io = mode == WB_SYNC_ALL,
2581 struct writeback_control wbc_writepages = {
2583 .older_than_this = NULL,
2584 .nr_to_write = nr_pages * 2,
2585 .range_start = start,
2586 .range_end = end + 1,
2589 while (start <= end) {
2590 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2591 if (clear_page_dirty_for_io(page))
2592 ret = __extent_writepage(page, &wbc_writepages, &epd);
2594 if (tree->ops && tree->ops->writepage_end_io_hook)
2595 tree->ops->writepage_end_io_hook(page, start,
2596 start + PAGE_CACHE_SIZE - 1,
2600 page_cache_release(page);
2601 start += PAGE_CACHE_SIZE;
2604 flush_epd_write_bio(&epd);
2608 int extent_writepages(struct extent_io_tree *tree,
2609 struct address_space *mapping,
2610 get_extent_t *get_extent,
2611 struct writeback_control *wbc)
2614 struct extent_page_data epd = {
2617 .get_extent = get_extent,
2619 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2622 ret = extent_write_cache_pages(tree, mapping, wbc,
2623 __extent_writepage, &epd,
2625 flush_epd_write_bio(&epd);
2629 int extent_readpages(struct extent_io_tree *tree,
2630 struct address_space *mapping,
2631 struct list_head *pages, unsigned nr_pages,
2632 get_extent_t get_extent)
2634 struct bio *bio = NULL;
2636 unsigned long bio_flags = 0;
2638 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2639 struct page *page = list_entry(pages->prev, struct page, lru);
2641 prefetchw(&page->flags);
2642 list_del(&page->lru);
2643 if (!add_to_page_cache_lru(page, mapping,
2644 page->index, GFP_KERNEL)) {
2645 __extent_read_full_page(tree, page, get_extent,
2646 &bio, 0, &bio_flags);
2648 page_cache_release(page);
2650 BUG_ON(!list_empty(pages));
2652 submit_one_bio(READ, bio, 0, bio_flags);
2657 * basic invalidatepage code, this waits on any locked or writeback
2658 * ranges corresponding to the page, and then deletes any extent state
2659 * records from the tree
2661 int extent_invalidatepage(struct extent_io_tree *tree,
2662 struct page *page, unsigned long offset)
2664 struct extent_state *cached_state = NULL;
2665 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2666 u64 end = start + PAGE_CACHE_SIZE - 1;
2667 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2669 start += (offset + blocksize - 1) & ~(blocksize - 1);
2673 lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
2674 wait_on_page_writeback(page);
2675 clear_extent_bit(tree, start, end,
2676 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2677 EXTENT_DO_ACCOUNTING,
2678 1, 1, &cached_state, GFP_NOFS);
2683 * simple commit_write call, set_range_dirty is used to mark both
2684 * the pages and the extent records as dirty
2686 int extent_commit_write(struct extent_io_tree *tree,
2687 struct inode *inode, struct page *page,
2688 unsigned from, unsigned to)
2690 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2692 set_page_extent_mapped(page);
2693 set_page_dirty(page);
2695 if (pos > inode->i_size) {
2696 i_size_write(inode, pos);
2697 mark_inode_dirty(inode);
2702 int extent_prepare_write(struct extent_io_tree *tree,
2703 struct inode *inode, struct page *page,
2704 unsigned from, unsigned to, get_extent_t *get_extent)
2706 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2707 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2709 u64 orig_block_start;
2712 struct extent_map *em;
2713 unsigned blocksize = 1 << inode->i_blkbits;
2714 size_t page_offset = 0;
2715 size_t block_off_start;
2716 size_t block_off_end;
2722 set_page_extent_mapped(page);
2724 block_start = (page_start + from) & ~((u64)blocksize - 1);
2725 block_end = (page_start + to - 1) | (blocksize - 1);
2726 orig_block_start = block_start;
2728 lock_extent(tree, page_start, page_end, GFP_NOFS);
2729 while (block_start <= block_end) {
2730 em = get_extent(inode, page, page_offset, block_start,
2731 block_end - block_start + 1, 1);
2732 if (IS_ERR(em) || !em)
2735 cur_end = min(block_end, extent_map_end(em) - 1);
2736 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2737 block_off_end = block_off_start + blocksize;
2738 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2740 if (!PageUptodate(page) && isnew &&
2741 (block_off_end > to || block_off_start < from)) {
2744 kaddr = kmap_atomic(page, KM_USER0);
2745 if (block_off_end > to)
2746 memset(kaddr + to, 0, block_off_end - to);
2747 if (block_off_start < from)
2748 memset(kaddr + block_off_start, 0,
2749 from - block_off_start);
2750 flush_dcache_page(page);
2751 kunmap_atomic(kaddr, KM_USER0);
2753 if ((em->block_start != EXTENT_MAP_HOLE &&
2754 em->block_start != EXTENT_MAP_INLINE) &&
2755 !isnew && !PageUptodate(page) &&
2756 (block_off_end > to || block_off_start < from) &&
2757 !test_range_bit(tree, block_start, cur_end,
2758 EXTENT_UPTODATE, 1, NULL)) {
2760 u64 extent_offset = block_start - em->start;
2762 sector = (em->block_start + extent_offset) >> 9;
2763 iosize = (cur_end - block_start + blocksize) &
2764 ~((u64)blocksize - 1);
2766 * we've already got the extent locked, but we
2767 * need to split the state such that our end_bio
2768 * handler can clear the lock.
2770 set_extent_bit(tree, block_start,
2771 block_start + iosize - 1,
2772 EXTENT_LOCKED, 0, NULL, NULL, GFP_NOFS);
2773 ret = submit_extent_page(READ, tree, page,
2774 sector, iosize, page_offset, em->bdev,
2776 end_bio_extent_preparewrite, 0,
2781 block_start = block_start + iosize;
2783 set_extent_uptodate(tree, block_start, cur_end,
2785 unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2786 block_start = cur_end + 1;
2788 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2789 free_extent_map(em);
2792 wait_extent_bit(tree, orig_block_start,
2793 block_end, EXTENT_LOCKED);
2795 check_page_uptodate(tree, page);
2797 /* FIXME, zero out newly allocated blocks on error */
2802 * a helper for releasepage, this tests for areas of the page that
2803 * are locked or under IO and drops the related state bits if it is safe
2806 int try_release_extent_state(struct extent_map_tree *map,
2807 struct extent_io_tree *tree, struct page *page,
2810 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2811 u64 end = start + PAGE_CACHE_SIZE - 1;
2814 if (test_range_bit(tree, start, end,
2815 EXTENT_IOBITS, 0, NULL))
2818 if ((mask & GFP_NOFS) == GFP_NOFS)
2821 * at this point we can safely clear everything except the
2822 * locked bit and the nodatasum bit
2824 clear_extent_bit(tree, start, end,
2825 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
2832 * a helper for releasepage. As long as there are no locked extents
2833 * in the range corresponding to the page, both state records and extent
2834 * map records are removed
2836 int try_release_extent_mapping(struct extent_map_tree *map,
2837 struct extent_io_tree *tree, struct page *page,
2840 struct extent_map *em;
2841 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2842 u64 end = start + PAGE_CACHE_SIZE - 1;
2844 if ((mask & __GFP_WAIT) &&
2845 page->mapping->host->i_size > 16 * 1024 * 1024) {
2847 while (start <= end) {
2848 len = end - start + 1;
2849 write_lock(&map->lock);
2850 em = lookup_extent_mapping(map, start, len);
2851 if (!em || IS_ERR(em)) {
2852 write_unlock(&map->lock);
2855 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2856 em->start != start) {
2857 write_unlock(&map->lock);
2858 free_extent_map(em);
2861 if (!test_range_bit(tree, em->start,
2862 extent_map_end(em) - 1,
2863 EXTENT_LOCKED | EXTENT_WRITEBACK,
2865 remove_extent_mapping(map, em);
2866 /* once for the rb tree */
2867 free_extent_map(em);
2869 start = extent_map_end(em);
2870 write_unlock(&map->lock);
2873 free_extent_map(em);
2876 return try_release_extent_state(map, tree, page, mask);
2879 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2880 get_extent_t *get_extent)
2882 struct inode *inode = mapping->host;
2883 struct extent_state *cached_state = NULL;
2884 u64 start = iblock << inode->i_blkbits;
2885 sector_t sector = 0;
2886 size_t blksize = (1 << inode->i_blkbits);
2887 struct extent_map *em;
2889 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2890 0, &cached_state, GFP_NOFS);
2891 em = get_extent(inode, NULL, 0, start, blksize, 0);
2892 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start,
2893 start + blksize - 1, &cached_state, GFP_NOFS);
2894 if (!em || IS_ERR(em))
2897 if (em->block_start > EXTENT_MAP_LAST_BYTE)
2900 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2902 free_extent_map(em);
2906 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2907 __u64 start, __u64 len, get_extent_t *get_extent)
2911 u64 max = start + len;
2916 struct btrfs_key found_key;
2917 struct extent_map *em = NULL;
2918 struct extent_state *cached_state = NULL;
2919 struct btrfs_path *path;
2920 struct btrfs_file_extent_item *item;
2922 u64 em_start = 0, em_len = 0;
2923 unsigned long emflags;
2929 path = btrfs_alloc_path();
2932 path->leave_spinning = 1;
2934 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
2935 path, inode->i_ino, -1, 0);
2937 btrfs_free_path(path);
2942 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2943 struct btrfs_file_extent_item);
2944 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
2945 found_type = btrfs_key_type(&found_key);
2947 /* No extents, just return */
2948 if (found_key.objectid != inode->i_ino ||
2949 found_type != BTRFS_EXTENT_DATA_KEY) {
2950 btrfs_free_path(path);
2953 last = found_key.offset;
2954 btrfs_free_path(path);
2956 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
2957 &cached_state, GFP_NOFS);
2958 em = get_extent(inode, NULL, 0, off, max - off, 0);
2968 off = em->start + em->len;
2972 if (em->block_start == EXTENT_MAP_HOLE) {
2977 em_start = em->start;
2983 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
2985 flags |= FIEMAP_EXTENT_LAST;
2986 } else if (em->block_start == EXTENT_MAP_INLINE) {
2987 flags |= (FIEMAP_EXTENT_DATA_INLINE |
2988 FIEMAP_EXTENT_NOT_ALIGNED);
2989 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
2990 flags |= (FIEMAP_EXTENT_DELALLOC |
2991 FIEMAP_EXTENT_UNKNOWN);
2993 disko = em->block_start;
2995 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2996 flags |= FIEMAP_EXTENT_ENCODED;
2999 emflags = em->flags;
3000 free_extent_map(em);
3003 em = get_extent(inode, NULL, 0, off, max - off, 0);
3010 emflags = em->flags;
3013 if (test_bit(EXTENT_FLAG_VACANCY, &emflags)) {
3014 flags |= FIEMAP_EXTENT_LAST;
3018 if (em_start == last) {
3019 flags |= FIEMAP_EXTENT_LAST;
3024 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3031 free_extent_map(em);
3033 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3034 &cached_state, GFP_NOFS);
3038 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
3042 struct address_space *mapping;
3045 return eb->first_page;
3046 i += eb->start >> PAGE_CACHE_SHIFT;
3047 mapping = eb->first_page->mapping;
3052 * extent_buffer_page is only called after pinning the page