2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
30 #include "print-tree.h"
31 #include "transaction.h"
34 #include "free-space-cache.h"
36 /* control flags for do_chunk_alloc's force field
37 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
38 * if we really need one.
40 * CHUNK_ALLOC_FORCE means it must try to allocate one
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
50 CHUNK_ALLOC_NO_FORCE = 0,
51 CHUNK_ALLOC_FORCE = 1,
52 CHUNK_ALLOC_LIMITED = 2,
55 static int update_block_group(struct btrfs_trans_handle *trans,
56 struct btrfs_root *root,
57 u64 bytenr, u64 num_bytes, int alloc);
58 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
59 struct btrfs_root *root,
60 u64 bytenr, u64 num_bytes, u64 parent,
61 u64 root_objectid, u64 owner_objectid,
62 u64 owner_offset, int refs_to_drop,
63 struct btrfs_delayed_extent_op *extra_op);
64 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
65 struct extent_buffer *leaf,
66 struct btrfs_extent_item *ei);
67 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
68 struct btrfs_root *root,
69 u64 parent, u64 root_objectid,
70 u64 flags, u64 owner, u64 offset,
71 struct btrfs_key *ins, int ref_mod);
72 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
73 struct btrfs_root *root,
74 u64 parent, u64 root_objectid,
75 u64 flags, struct btrfs_disk_key *key,
76 int level, struct btrfs_key *ins);
77 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
78 struct btrfs_root *extent_root, u64 alloc_bytes,
79 u64 flags, int force);
80 static int find_next_key(struct btrfs_path *path, int level,
81 struct btrfs_key *key);
82 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
83 int dump_block_groups);
86 block_group_cache_done(struct btrfs_block_group_cache *cache)
89 return cache->cached == BTRFS_CACHE_FINISHED;
92 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
94 return (cache->flags & bits) == bits;
97 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
99 atomic_inc(&cache->count);
102 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
104 if (atomic_dec_and_test(&cache->count)) {
105 WARN_ON(cache->pinned > 0);
106 WARN_ON(cache->reserved > 0);
107 WARN_ON(cache->reserved_pinned > 0);
108 kfree(cache->free_space_ctl);
114 * this adds the block group to the fs_info rb tree for the block group
117 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
118 struct btrfs_block_group_cache *block_group)
121 struct rb_node *parent = NULL;
122 struct btrfs_block_group_cache *cache;
124 spin_lock(&info->block_group_cache_lock);
125 p = &info->block_group_cache_tree.rb_node;
129 cache = rb_entry(parent, struct btrfs_block_group_cache,
131 if (block_group->key.objectid < cache->key.objectid) {
133 } else if (block_group->key.objectid > cache->key.objectid) {
136 spin_unlock(&info->block_group_cache_lock);
141 rb_link_node(&block_group->cache_node, parent, p);
142 rb_insert_color(&block_group->cache_node,
143 &info->block_group_cache_tree);
144 spin_unlock(&info->block_group_cache_lock);
150 * This will return the block group at or after bytenr if contains is 0, else
151 * it will return the block group that contains the bytenr
153 static struct btrfs_block_group_cache *
154 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
157 struct btrfs_block_group_cache *cache, *ret = NULL;
161 spin_lock(&info->block_group_cache_lock);
162 n = info->block_group_cache_tree.rb_node;
165 cache = rb_entry(n, struct btrfs_block_group_cache,
167 end = cache->key.objectid + cache->key.offset - 1;
168 start = cache->key.objectid;
170 if (bytenr < start) {
171 if (!contains && (!ret || start < ret->key.objectid))
174 } else if (bytenr > start) {
175 if (contains && bytenr <= end) {
186 btrfs_get_block_group(ret);
187 spin_unlock(&info->block_group_cache_lock);
192 static int add_excluded_extent(struct btrfs_root *root,
193 u64 start, u64 num_bytes)
195 u64 end = start + num_bytes - 1;
196 set_extent_bits(&root->fs_info->freed_extents[0],
197 start, end, EXTENT_UPTODATE, GFP_NOFS);
198 set_extent_bits(&root->fs_info->freed_extents[1],
199 start, end, EXTENT_UPTODATE, GFP_NOFS);
203 static void free_excluded_extents(struct btrfs_root *root,
204 struct btrfs_block_group_cache *cache)
208 start = cache->key.objectid;
209 end = start + cache->key.offset - 1;
211 clear_extent_bits(&root->fs_info->freed_extents[0],
212 start, end, EXTENT_UPTODATE, GFP_NOFS);
213 clear_extent_bits(&root->fs_info->freed_extents[1],
214 start, end, EXTENT_UPTODATE, GFP_NOFS);
217 static int exclude_super_stripes(struct btrfs_root *root,
218 struct btrfs_block_group_cache *cache)
225 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
226 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
227 cache->bytes_super += stripe_len;
228 ret = add_excluded_extent(root, cache->key.objectid,
233 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
234 bytenr = btrfs_sb_offset(i);
235 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
236 cache->key.objectid, bytenr,
237 0, &logical, &nr, &stripe_len);
241 cache->bytes_super += stripe_len;
242 ret = add_excluded_extent(root, logical[nr],
252 static struct btrfs_caching_control *
253 get_caching_control(struct btrfs_block_group_cache *cache)
255 struct btrfs_caching_control *ctl;
257 spin_lock(&cache->lock);
258 if (cache->cached != BTRFS_CACHE_STARTED) {
259 spin_unlock(&cache->lock);
263 /* We're loading it the fast way, so we don't have a caching_ctl. */
264 if (!cache->caching_ctl) {
265 spin_unlock(&cache->lock);
269 ctl = cache->caching_ctl;
270 atomic_inc(&ctl->count);
271 spin_unlock(&cache->lock);
275 static void put_caching_control(struct btrfs_caching_control *ctl)
277 if (atomic_dec_and_test(&ctl->count))
282 * this is only called by cache_block_group, since we could have freed extents
283 * we need to check the pinned_extents for any extents that can't be used yet
284 * since their free space will be released as soon as the transaction commits.
286 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
287 struct btrfs_fs_info *info, u64 start, u64 end)
289 u64 extent_start, extent_end, size, total_added = 0;
292 while (start < end) {
293 ret = find_first_extent_bit(info->pinned_extents, start,
294 &extent_start, &extent_end,
295 EXTENT_DIRTY | EXTENT_UPTODATE);
299 if (extent_start <= start) {
300 start = extent_end + 1;
301 } else if (extent_start > start && extent_start < end) {
302 size = extent_start - start;
304 ret = btrfs_add_free_space(block_group, start,
307 start = extent_end + 1;
316 ret = btrfs_add_free_space(block_group, start, size);
323 static noinline void caching_thread(struct btrfs_work *work)
325 struct btrfs_block_group_cache *block_group;
326 struct btrfs_fs_info *fs_info;
327 struct btrfs_caching_control *caching_ctl;
328 struct btrfs_root *extent_root;
329 struct btrfs_path *path;
330 struct extent_buffer *leaf;
331 struct btrfs_key key;
337 caching_ctl = container_of(work, struct btrfs_caching_control, work);
338 block_group = caching_ctl->block_group;
339 fs_info = block_group->fs_info;
340 extent_root = fs_info->extent_root;
342 path = btrfs_alloc_path();
346 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
349 * We don't want to deadlock with somebody trying to allocate a new
350 * extent for the extent root while also trying to search the extent
351 * root to add free space. So we skip locking and search the commit
352 * root, since its read-only
354 path->skip_locking = 1;
355 path->search_commit_root = 1;
360 key.type = BTRFS_EXTENT_ITEM_KEY;
362 mutex_lock(&caching_ctl->mutex);
363 /* need to make sure the commit_root doesn't disappear */
364 down_read(&fs_info->extent_commit_sem);
366 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
370 leaf = path->nodes[0];
371 nritems = btrfs_header_nritems(leaf);
374 if (btrfs_fs_closing(fs_info) > 1) {
379 if (path->slots[0] < nritems) {
380 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
382 ret = find_next_key(path, 0, &key);
386 if (need_resched() ||
387 btrfs_next_leaf(extent_root, path)) {
388 caching_ctl->progress = last;
389 btrfs_release_path(path);
390 up_read(&fs_info->extent_commit_sem);
391 mutex_unlock(&caching_ctl->mutex);
395 leaf = path->nodes[0];
396 nritems = btrfs_header_nritems(leaf);
400 if (key.objectid < block_group->key.objectid) {
405 if (key.objectid >= block_group->key.objectid +
406 block_group->key.offset)
409 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
410 total_found += add_new_free_space(block_group,
413 last = key.objectid + key.offset;
415 if (total_found > (1024 * 1024 * 2)) {
417 wake_up(&caching_ctl->wait);
424 total_found += add_new_free_space(block_group, fs_info, last,
425 block_group->key.objectid +
426 block_group->key.offset);
427 caching_ctl->progress = (u64)-1;
429 spin_lock(&block_group->lock);
430 block_group->caching_ctl = NULL;
431 block_group->cached = BTRFS_CACHE_FINISHED;
432 spin_unlock(&block_group->lock);
435 btrfs_free_path(path);
436 up_read(&fs_info->extent_commit_sem);
438 free_excluded_extents(extent_root, block_group);
440 mutex_unlock(&caching_ctl->mutex);
442 wake_up(&caching_ctl->wait);
444 put_caching_control(caching_ctl);
445 btrfs_put_block_group(block_group);
448 static int cache_block_group(struct btrfs_block_group_cache *cache,
449 struct btrfs_trans_handle *trans,
450 struct btrfs_root *root,
453 struct btrfs_fs_info *fs_info = cache->fs_info;
454 struct btrfs_caching_control *caching_ctl;
458 if (cache->cached != BTRFS_CACHE_NO)
462 * We can't do the read from on-disk cache during a commit since we need
463 * to have the normal tree locking. Also if we are currently trying to
464 * allocate blocks for the tree root we can't do the fast caching since
465 * we likely hold important locks.
467 if (trans && (!trans->transaction->in_commit) &&
468 (root && root != root->fs_info->tree_root)) {
469 spin_lock(&cache->lock);
470 if (cache->cached != BTRFS_CACHE_NO) {
471 spin_unlock(&cache->lock);
474 cache->cached = BTRFS_CACHE_STARTED;
475 spin_unlock(&cache->lock);
477 ret = load_free_space_cache(fs_info, cache);
479 spin_lock(&cache->lock);
481 cache->cached = BTRFS_CACHE_FINISHED;
482 cache->last_byte_to_unpin = (u64)-1;
484 cache->cached = BTRFS_CACHE_NO;
486 spin_unlock(&cache->lock);
488 free_excluded_extents(fs_info->extent_root, cache);
496 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
497 BUG_ON(!caching_ctl);
499 INIT_LIST_HEAD(&caching_ctl->list);
500 mutex_init(&caching_ctl->mutex);
501 init_waitqueue_head(&caching_ctl->wait);
502 caching_ctl->block_group = cache;
503 caching_ctl->progress = cache->key.objectid;
504 /* one for caching kthread, one for caching block group list */
505 atomic_set(&caching_ctl->count, 2);
506 caching_ctl->work.func = caching_thread;
508 spin_lock(&cache->lock);
509 if (cache->cached != BTRFS_CACHE_NO) {
510 spin_unlock(&cache->lock);
514 cache->caching_ctl = caching_ctl;
515 cache->cached = BTRFS_CACHE_STARTED;
516 spin_unlock(&cache->lock);
518 down_write(&fs_info->extent_commit_sem);
519 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
520 up_write(&fs_info->extent_commit_sem);
522 btrfs_get_block_group(cache);
524 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
530 * return the block group that starts at or after bytenr
532 static struct btrfs_block_group_cache *
533 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
535 struct btrfs_block_group_cache *cache;
537 cache = block_group_cache_tree_search(info, bytenr, 0);
543 * return the block group that contains the given bytenr
545 struct btrfs_block_group_cache *btrfs_lookup_block_group(
546 struct btrfs_fs_info *info,
549 struct btrfs_block_group_cache *cache;
551 cache = block_group_cache_tree_search(info, bytenr, 1);
556 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
559 struct list_head *head = &info->space_info;
560 struct btrfs_space_info *found;
562 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
563 BTRFS_BLOCK_GROUP_METADATA;
566 list_for_each_entry_rcu(found, head, list) {
567 if (found->flags & flags) {
577 * after adding space to the filesystem, we need to clear the full flags
578 * on all the space infos.
580 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
582 struct list_head *head = &info->space_info;
583 struct btrfs_space_info *found;
586 list_for_each_entry_rcu(found, head, list)
591 static u64 div_factor(u64 num, int factor)
600 static u64 div_factor_fine(u64 num, int factor)
609 u64 btrfs_find_block_group(struct btrfs_root *root,
610 u64 search_start, u64 search_hint, int owner)
612 struct btrfs_block_group_cache *cache;
614 u64 last = max(search_hint, search_start);
621 cache = btrfs_lookup_first_block_group(root->fs_info, last);
625 spin_lock(&cache->lock);
626 last = cache->key.objectid + cache->key.offset;
627 used = btrfs_block_group_used(&cache->item);
629 if ((full_search || !cache->ro) &&
630 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
631 if (used + cache->pinned + cache->reserved <
632 div_factor(cache->key.offset, factor)) {
633 group_start = cache->key.objectid;
634 spin_unlock(&cache->lock);
635 btrfs_put_block_group(cache);
639 spin_unlock(&cache->lock);
640 btrfs_put_block_group(cache);
648 if (!full_search && factor < 10) {
658 /* simple helper to search for an existing extent at a given offset */
659 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
662 struct btrfs_key key;
663 struct btrfs_path *path;
665 path = btrfs_alloc_path();
667 key.objectid = start;
669 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
670 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
672 btrfs_free_path(path);
677 * helper function to lookup reference count and flags of extent.
679 * the head node for delayed ref is used to store the sum of all the
680 * reference count modifications queued up in the rbtree. the head
681 * node may also store the extent flags to set. This way you can check
682 * to see what the reference count and extent flags would be if all of
683 * the delayed refs are not processed.
685 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
686 struct btrfs_root *root, u64 bytenr,
687 u64 num_bytes, u64 *refs, u64 *flags)
689 struct btrfs_delayed_ref_head *head;
690 struct btrfs_delayed_ref_root *delayed_refs;
691 struct btrfs_path *path;
692 struct btrfs_extent_item *ei;
693 struct extent_buffer *leaf;
694 struct btrfs_key key;
700 path = btrfs_alloc_path();
704 key.objectid = bytenr;
705 key.type = BTRFS_EXTENT_ITEM_KEY;
706 key.offset = num_bytes;
708 path->skip_locking = 1;
709 path->search_commit_root = 1;
712 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
718 leaf = path->nodes[0];
719 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
720 if (item_size >= sizeof(*ei)) {
721 ei = btrfs_item_ptr(leaf, path->slots[0],
722 struct btrfs_extent_item);
723 num_refs = btrfs_extent_refs(leaf, ei);
724 extent_flags = btrfs_extent_flags(leaf, ei);
726 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
727 struct btrfs_extent_item_v0 *ei0;
728 BUG_ON(item_size != sizeof(*ei0));
729 ei0 = btrfs_item_ptr(leaf, path->slots[0],
730 struct btrfs_extent_item_v0);
731 num_refs = btrfs_extent_refs_v0(leaf, ei0);
732 /* FIXME: this isn't correct for data */
733 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
738 BUG_ON(num_refs == 0);
748 delayed_refs = &trans->transaction->delayed_refs;
749 spin_lock(&delayed_refs->lock);
750 head = btrfs_find_delayed_ref_head(trans, bytenr);
752 if (!mutex_trylock(&head->mutex)) {
753 atomic_inc(&head->node.refs);
754 spin_unlock(&delayed_refs->lock);
756 btrfs_release_path(path);
759 * Mutex was contended, block until it's released and try
762 mutex_lock(&head->mutex);
763 mutex_unlock(&head->mutex);
764 btrfs_put_delayed_ref(&head->node);
767 if (head->extent_op && head->extent_op->update_flags)
768 extent_flags |= head->extent_op->flags_to_set;
770 BUG_ON(num_refs == 0);
772 num_refs += head->node.ref_mod;
773 mutex_unlock(&head->mutex);
775 spin_unlock(&delayed_refs->lock);
777 WARN_ON(num_refs == 0);
781 *flags = extent_flags;
783 btrfs_free_path(path);
788 * Back reference rules. Back refs have three main goals:
790 * 1) differentiate between all holders of references to an extent so that
791 * when a reference is dropped we can make sure it was a valid reference
792 * before freeing the extent.
794 * 2) Provide enough information to quickly find the holders of an extent
795 * if we notice a given block is corrupted or bad.
797 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
798 * maintenance. This is actually the same as #2, but with a slightly
799 * different use case.
801 * There are two kinds of back refs. The implicit back refs is optimized
802 * for pointers in non-shared tree blocks. For a given pointer in a block,
803 * back refs of this kind provide information about the block's owner tree
804 * and the pointer's key. These information allow us to find the block by
805 * b-tree searching. The full back refs is for pointers in tree blocks not
806 * referenced by their owner trees. The location of tree block is recorded
807 * in the back refs. Actually the full back refs is generic, and can be
808 * used in all cases the implicit back refs is used. The major shortcoming
809 * of the full back refs is its overhead. Every time a tree block gets
810 * COWed, we have to update back refs entry for all pointers in it.
812 * For a newly allocated tree block, we use implicit back refs for
813 * pointers in it. This means most tree related operations only involve
814 * implicit back refs. For a tree block created in old transaction, the
815 * only way to drop a reference to it is COW it. So we can detect the
816 * event that tree block loses its owner tree's reference and do the
817 * back refs conversion.
819 * When a tree block is COW'd through a tree, there are four cases:
821 * The reference count of the block is one and the tree is the block's
822 * owner tree. Nothing to do in this case.
824 * The reference count of the block is one and the tree is not the
825 * block's owner tree. In this case, full back refs is used for pointers
826 * in the block. Remove these full back refs, add implicit back refs for
827 * every pointers in the new block.
829 * The reference count of the block is greater than one and the tree is
830 * the block's owner tree. In this case, implicit back refs is used for
831 * pointers in the block. Add full back refs for every pointers in the
832 * block, increase lower level extents' reference counts. The original
833 * implicit back refs are entailed to the new block.
835 * The reference count of the block is greater than one and the tree is
836 * not the block's owner tree. Add implicit back refs for every pointer in
837 * the new block, increase lower level extents' reference count.
839 * Back Reference Key composing:
841 * The key objectid corresponds to the first byte in the extent,
842 * The key type is used to differentiate between types of back refs.
843 * There are different meanings of the key offset for different types
846 * File extents can be referenced by:
848 * - multiple snapshots, subvolumes, or different generations in one subvol
849 * - different files inside a single subvolume
850 * - different offsets inside a file (bookend extents in file.c)
852 * The extent ref structure for the implicit back refs has fields for:
854 * - Objectid of the subvolume root
855 * - objectid of the file holding the reference
856 * - original offset in the file
857 * - how many bookend extents
859 * The key offset for the implicit back refs is hash of the first
862 * The extent ref structure for the full back refs has field for:
864 * - number of pointers in the tree leaf
866 * The key offset for the implicit back refs is the first byte of
869 * When a file extent is allocated, The implicit back refs is used.
870 * the fields are filled in:
872 * (root_key.objectid, inode objectid, offset in file, 1)
874 * When a file extent is removed file truncation, we find the
875 * corresponding implicit back refs and check the following fields:
877 * (btrfs_header_owner(leaf), inode objectid, offset in file)
879 * Btree extents can be referenced by:
881 * - Different subvolumes
883 * Both the implicit back refs and the full back refs for tree blocks
884 * only consist of key. The key offset for the implicit back refs is
885 * objectid of block's owner tree. The key offset for the full back refs
886 * is the first byte of parent block.
888 * When implicit back refs is used, information about the lowest key and
889 * level of the tree block are required. These information are stored in
890 * tree block info structure.
893 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
894 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
895 struct btrfs_root *root,
896 struct btrfs_path *path,
897 u64 owner, u32 extra_size)
899 struct btrfs_extent_item *item;
900 struct btrfs_extent_item_v0 *ei0;
901 struct btrfs_extent_ref_v0 *ref0;
902 struct btrfs_tree_block_info *bi;
903 struct extent_buffer *leaf;
904 struct btrfs_key key;
905 struct btrfs_key found_key;
906 u32 new_size = sizeof(*item);
910 leaf = path->nodes[0];
911 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
913 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
914 ei0 = btrfs_item_ptr(leaf, path->slots[0],
915 struct btrfs_extent_item_v0);
916 refs = btrfs_extent_refs_v0(leaf, ei0);
918 if (owner == (u64)-1) {
920 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
921 ret = btrfs_next_leaf(root, path);
925 leaf = path->nodes[0];
927 btrfs_item_key_to_cpu(leaf, &found_key,
929 BUG_ON(key.objectid != found_key.objectid);
930 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
934 ref0 = btrfs_item_ptr(leaf, path->slots[0],
935 struct btrfs_extent_ref_v0);
936 owner = btrfs_ref_objectid_v0(leaf, ref0);
940 btrfs_release_path(path);
942 if (owner < BTRFS_FIRST_FREE_OBJECTID)
943 new_size += sizeof(*bi);
945 new_size -= sizeof(*ei0);
946 ret = btrfs_search_slot(trans, root, &key, path,
947 new_size + extra_size, 1);
952 ret = btrfs_extend_item(trans, root, path, new_size);
954 leaf = path->nodes[0];
955 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
956 btrfs_set_extent_refs(leaf, item, refs);
957 /* FIXME: get real generation */
958 btrfs_set_extent_generation(leaf, item, 0);
959 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
960 btrfs_set_extent_flags(leaf, item,
961 BTRFS_EXTENT_FLAG_TREE_BLOCK |
962 BTRFS_BLOCK_FLAG_FULL_BACKREF);
963 bi = (struct btrfs_tree_block_info *)(item + 1);
964 /* FIXME: get first key of the block */
965 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
966 btrfs_set_tree_block_level(leaf, bi, (int)owner);
968 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
970 btrfs_mark_buffer_dirty(leaf);
975 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
977 u32 high_crc = ~(u32)0;
978 u32 low_crc = ~(u32)0;
981 lenum = cpu_to_le64(root_objectid);
982 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
983 lenum = cpu_to_le64(owner);
984 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
985 lenum = cpu_to_le64(offset);
986 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
988 return ((u64)high_crc << 31) ^ (u64)low_crc;
991 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
992 struct btrfs_extent_data_ref *ref)
994 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
995 btrfs_extent_data_ref_objectid(leaf, ref),
996 btrfs_extent_data_ref_offset(leaf, ref));
999 static int match_extent_data_ref(struct extent_buffer *leaf,
1000 struct btrfs_extent_data_ref *ref,
1001 u64 root_objectid, u64 owner, u64 offset)
1003 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1004 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1005 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1010 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1011 struct btrfs_root *root,
1012 struct btrfs_path *path,
1013 u64 bytenr, u64 parent,
1015 u64 owner, u64 offset)
1017 struct btrfs_key key;
1018 struct btrfs_extent_data_ref *ref;
1019 struct extent_buffer *leaf;
1025 key.objectid = bytenr;
1027 key.type = BTRFS_SHARED_DATA_REF_KEY;
1028 key.offset = parent;
1030 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1031 key.offset = hash_extent_data_ref(root_objectid,
1036 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1045 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1046 key.type = BTRFS_EXTENT_REF_V0_KEY;
1047 btrfs_release_path(path);
1048 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1059 leaf = path->nodes[0];
1060 nritems = btrfs_header_nritems(leaf);
1062 if (path->slots[0] >= nritems) {
1063 ret = btrfs_next_leaf(root, path);
1069 leaf = path->nodes[0];
1070 nritems = btrfs_header_nritems(leaf);
1074 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1075 if (key.objectid != bytenr ||
1076 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1079 ref = btrfs_item_ptr(leaf, path->slots[0],
1080 struct btrfs_extent_data_ref);
1082 if (match_extent_data_ref(leaf, ref, root_objectid,
1085 btrfs_release_path(path);
1097 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1098 struct btrfs_root *root,
1099 struct btrfs_path *path,
1100 u64 bytenr, u64 parent,
1101 u64 root_objectid, u64 owner,
1102 u64 offset, int refs_to_add)
1104 struct btrfs_key key;
1105 struct extent_buffer *leaf;
1110 key.objectid = bytenr;
1112 key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 key.offset = parent;
1114 size = sizeof(struct btrfs_shared_data_ref);
1116 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 key.offset = hash_extent_data_ref(root_objectid,
1119 size = sizeof(struct btrfs_extent_data_ref);
1122 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1123 if (ret && ret != -EEXIST)
1126 leaf = path->nodes[0];
1128 struct btrfs_shared_data_ref *ref;
1129 ref = btrfs_item_ptr(leaf, path->slots[0],
1130 struct btrfs_shared_data_ref);
1132 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1134 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1135 num_refs += refs_to_add;
1136 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1139 struct btrfs_extent_data_ref *ref;
1140 while (ret == -EEXIST) {
1141 ref = btrfs_item_ptr(leaf, path->slots[0],
1142 struct btrfs_extent_data_ref);
1143 if (match_extent_data_ref(leaf, ref, root_objectid,
1146 btrfs_release_path(path);
1148 ret = btrfs_insert_empty_item(trans, root, path, &key,
1150 if (ret && ret != -EEXIST)
1153 leaf = path->nodes[0];
1155 ref = btrfs_item_ptr(leaf, path->slots[0],
1156 struct btrfs_extent_data_ref);
1158 btrfs_set_extent_data_ref_root(leaf, ref,
1160 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1161 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1162 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1164 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1165 num_refs += refs_to_add;
1166 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1169 btrfs_mark_buffer_dirty(leaf);
1172 btrfs_release_path(path);
1176 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1177 struct btrfs_root *root,
1178 struct btrfs_path *path,
1181 struct btrfs_key key;
1182 struct btrfs_extent_data_ref *ref1 = NULL;
1183 struct btrfs_shared_data_ref *ref2 = NULL;
1184 struct extent_buffer *leaf;
1188 leaf = path->nodes[0];
1189 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1191 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1192 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1193 struct btrfs_extent_data_ref);
1194 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1195 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1196 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1197 struct btrfs_shared_data_ref);
1198 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1199 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1200 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1201 struct btrfs_extent_ref_v0 *ref0;
1202 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1203 struct btrfs_extent_ref_v0);
1204 num_refs = btrfs_ref_count_v0(leaf, ref0);
1210 BUG_ON(num_refs < refs_to_drop);
1211 num_refs -= refs_to_drop;
1213 if (num_refs == 0) {
1214 ret = btrfs_del_item(trans, root, path);
1216 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1217 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1218 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1219 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1220 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1222 struct btrfs_extent_ref_v0 *ref0;
1223 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1224 struct btrfs_extent_ref_v0);
1225 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1228 btrfs_mark_buffer_dirty(leaf);
1233 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1234 struct btrfs_path *path,
1235 struct btrfs_extent_inline_ref *iref)
1237 struct btrfs_key key;
1238 struct extent_buffer *leaf;
1239 struct btrfs_extent_data_ref *ref1;
1240 struct btrfs_shared_data_ref *ref2;
1243 leaf = path->nodes[0];
1244 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1246 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1247 BTRFS_EXTENT_DATA_REF_KEY) {
1248 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1249 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1251 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1252 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1254 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1255 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1256 struct btrfs_extent_data_ref);
1257 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1258 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1259 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1260 struct btrfs_shared_data_ref);
1261 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1262 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1263 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1264 struct btrfs_extent_ref_v0 *ref0;
1265 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1266 struct btrfs_extent_ref_v0);
1267 num_refs = btrfs_ref_count_v0(leaf, ref0);
1275 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1276 struct btrfs_root *root,
1277 struct btrfs_path *path,
1278 u64 bytenr, u64 parent,
1281 struct btrfs_key key;
1284 key.objectid = bytenr;
1286 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1287 key.offset = parent;
1289 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1290 key.offset = root_objectid;
1293 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1296 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1297 if (ret == -ENOENT && parent) {
1298 btrfs_release_path(path);
1299 key.type = BTRFS_EXTENT_REF_V0_KEY;
1300 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1308 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1309 struct btrfs_root *root,
1310 struct btrfs_path *path,
1311 u64 bytenr, u64 parent,
1314 struct btrfs_key key;
1317 key.objectid = bytenr;
1319 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1320 key.offset = parent;
1322 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1323 key.offset = root_objectid;
1326 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1327 btrfs_release_path(path);
1331 static inline int extent_ref_type(u64 parent, u64 owner)
1334 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1336 type = BTRFS_SHARED_BLOCK_REF_KEY;
1338 type = BTRFS_TREE_BLOCK_REF_KEY;
1341 type = BTRFS_SHARED_DATA_REF_KEY;
1343 type = BTRFS_EXTENT_DATA_REF_KEY;
1348 static int find_next_key(struct btrfs_path *path, int level,
1349 struct btrfs_key *key)
1352 for (; level < BTRFS_MAX_LEVEL; level++) {
1353 if (!path->nodes[level])
1355 if (path->slots[level] + 1 >=
1356 btrfs_header_nritems(path->nodes[level]))
1359 btrfs_item_key_to_cpu(path->nodes[level], key,
1360 path->slots[level] + 1);
1362 btrfs_node_key_to_cpu(path->nodes[level], key,
1363 path->slots[level] + 1);
1370 * look for inline back ref. if back ref is found, *ref_ret is set
1371 * to the address of inline back ref, and 0 is returned.
1373 * if back ref isn't found, *ref_ret is set to the address where it
1374 * should be inserted, and -ENOENT is returned.
1376 * if insert is true and there are too many inline back refs, the path
1377 * points to the extent item, and -EAGAIN is returned.
1379 * NOTE: inline back refs are ordered in the same way that back ref
1380 * items in the tree are ordered.
1382 static noinline_for_stack
1383 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1384 struct btrfs_root *root,
1385 struct btrfs_path *path,
1386 struct btrfs_extent_inline_ref **ref_ret,
1387 u64 bytenr, u64 num_bytes,
1388 u64 parent, u64 root_objectid,
1389 u64 owner, u64 offset, int insert)
1391 struct btrfs_key key;
1392 struct extent_buffer *leaf;
1393 struct btrfs_extent_item *ei;
1394 struct btrfs_extent_inline_ref *iref;
1405 key.objectid = bytenr;
1406 key.type = BTRFS_EXTENT_ITEM_KEY;
1407 key.offset = num_bytes;
1409 want = extent_ref_type(parent, owner);
1411 extra_size = btrfs_extent_inline_ref_size(want);
1412 path->keep_locks = 1;
1415 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1422 leaf = path->nodes[0];
1423 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1424 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1425 if (item_size < sizeof(*ei)) {
1430 ret = convert_extent_item_v0(trans, root, path, owner,
1436 leaf = path->nodes[0];
1437 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1440 BUG_ON(item_size < sizeof(*ei));
1442 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1443 flags = btrfs_extent_flags(leaf, ei);
1445 ptr = (unsigned long)(ei + 1);
1446 end = (unsigned long)ei + item_size;
1448 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1449 ptr += sizeof(struct btrfs_tree_block_info);
1452 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1461 iref = (struct btrfs_extent_inline_ref *)ptr;
1462 type = btrfs_extent_inline_ref_type(leaf, iref);
1466 ptr += btrfs_extent_inline_ref_size(type);
1470 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1471 struct btrfs_extent_data_ref *dref;
1472 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1473 if (match_extent_data_ref(leaf, dref, root_objectid,
1478 if (hash_extent_data_ref_item(leaf, dref) <
1479 hash_extent_data_ref(root_objectid, owner, offset))
1483 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1485 if (parent == ref_offset) {
1489 if (ref_offset < parent)
1492 if (root_objectid == ref_offset) {
1496 if (ref_offset < root_objectid)
1500 ptr += btrfs_extent_inline_ref_size(type);
1502 if (err == -ENOENT && insert) {
1503 if (item_size + extra_size >=
1504 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1509 * To add new inline back ref, we have to make sure
1510 * there is no corresponding back ref item.
1511 * For simplicity, we just do not add new inline back
1512 * ref if there is any kind of item for this block
1514 if (find_next_key(path, 0, &key) == 0 &&
1515 key.objectid == bytenr &&
1516 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1521 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1524 path->keep_locks = 0;
1525 btrfs_unlock_up_safe(path, 1);
1531 * helper to add new inline back ref
1533 static noinline_for_stack
1534 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1535 struct btrfs_root *root,
1536 struct btrfs_path *path,
1537 struct btrfs_extent_inline_ref *iref,
1538 u64 parent, u64 root_objectid,
1539 u64 owner, u64 offset, int refs_to_add,
1540 struct btrfs_delayed_extent_op *extent_op)
1542 struct extent_buffer *leaf;
1543 struct btrfs_extent_item *ei;
1546 unsigned long item_offset;
1552 leaf = path->nodes[0];
1553 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1554 item_offset = (unsigned long)iref - (unsigned long)ei;
1556 type = extent_ref_type(parent, owner);
1557 size = btrfs_extent_inline_ref_size(type);
1559 ret = btrfs_extend_item(trans, root, path, size);
1561 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1562 refs = btrfs_extent_refs(leaf, ei);
1563 refs += refs_to_add;
1564 btrfs_set_extent_refs(leaf, ei, refs);
1566 __run_delayed_extent_op(extent_op, leaf, ei);
1568 ptr = (unsigned long)ei + item_offset;
1569 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1570 if (ptr < end - size)
1571 memmove_extent_buffer(leaf, ptr + size, ptr,
1574 iref = (struct btrfs_extent_inline_ref *)ptr;
1575 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1576 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1577 struct btrfs_extent_data_ref *dref;
1578 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1579 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1580 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1581 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1582 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1583 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1584 struct btrfs_shared_data_ref *sref;
1585 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1586 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1587 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1588 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1589 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1591 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1593 btrfs_mark_buffer_dirty(leaf);
1597 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1598 struct btrfs_root *root,
1599 struct btrfs_path *path,
1600 struct btrfs_extent_inline_ref **ref_ret,
1601 u64 bytenr, u64 num_bytes, u64 parent,
1602 u64 root_objectid, u64 owner, u64 offset)
1606 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1607 bytenr, num_bytes, parent,
1608 root_objectid, owner, offset, 0);
1612 btrfs_release_path(path);
1615 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1616 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1619 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1620 root_objectid, owner, offset);
1626 * helper to update/remove inline back ref
1628 static noinline_for_stack
1629 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1630 struct btrfs_root *root,
1631 struct btrfs_path *path,
1632 struct btrfs_extent_inline_ref *iref,
1634 struct btrfs_delayed_extent_op *extent_op)
1636 struct extent_buffer *leaf;
1637 struct btrfs_extent_item *ei;
1638 struct btrfs_extent_data_ref *dref = NULL;
1639 struct btrfs_shared_data_ref *sref = NULL;
1648 leaf = path->nodes[0];
1649 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1650 refs = btrfs_extent_refs(leaf, ei);
1651 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1652 refs += refs_to_mod;
1653 btrfs_set_extent_refs(leaf, ei, refs);
1655 __run_delayed_extent_op(extent_op, leaf, ei);
1657 type = btrfs_extent_inline_ref_type(leaf, iref);
1659 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1660 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1661 refs = btrfs_extent_data_ref_count(leaf, dref);
1662 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1663 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1664 refs = btrfs_shared_data_ref_count(leaf, sref);
1667 BUG_ON(refs_to_mod != -1);
1670 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1671 refs += refs_to_mod;
1674 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1675 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1677 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1679 size = btrfs_extent_inline_ref_size(type);
1680 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1681 ptr = (unsigned long)iref;
1682 end = (unsigned long)ei + item_size;
1683 if (ptr + size < end)
1684 memmove_extent_buffer(leaf, ptr, ptr + size,
1687 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1689 btrfs_mark_buffer_dirty(leaf);
1693 static noinline_for_stack
1694 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1695 struct btrfs_root *root,
1696 struct btrfs_path *path,
1697 u64 bytenr, u64 num_bytes, u64 parent,
1698 u64 root_objectid, u64 owner,
1699 u64 offset, int refs_to_add,
1700 struct btrfs_delayed_extent_op *extent_op)
1702 struct btrfs_extent_inline_ref *iref;
1705 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1706 bytenr, num_bytes, parent,
1707 root_objectid, owner, offset, 1);
1709 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1710 ret = update_inline_extent_backref(trans, root, path, iref,
1711 refs_to_add, extent_op);
1712 } else if (ret == -ENOENT) {
1713 ret = setup_inline_extent_backref(trans, root, path, iref,
1714 parent, root_objectid,
1715 owner, offset, refs_to_add,
1721 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1722 struct btrfs_root *root,
1723 struct btrfs_path *path,
1724 u64 bytenr, u64 parent, u64 root_objectid,
1725 u64 owner, u64 offset, int refs_to_add)
1728 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1729 BUG_ON(refs_to_add != 1);
1730 ret = insert_tree_block_ref(trans, root, path, bytenr,
1731 parent, root_objectid);
1733 ret = insert_extent_data_ref(trans, root, path, bytenr,
1734 parent, root_objectid,
1735 owner, offset, refs_to_add);
1740 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1741 struct btrfs_root *root,
1742 struct btrfs_path *path,
1743 struct btrfs_extent_inline_ref *iref,
1744 int refs_to_drop, int is_data)
1748 BUG_ON(!is_data && refs_to_drop != 1);
1750 ret = update_inline_extent_backref(trans, root, path, iref,
1751 -refs_to_drop, NULL);
1752 } else if (is_data) {
1753 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1755 ret = btrfs_del_item(trans, root, path);
1760 static int btrfs_issue_discard(struct block_device *bdev,
1763 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1766 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1767 u64 num_bytes, u64 *actual_bytes)
1770 u64 discarded_bytes = 0;
1771 struct btrfs_multi_bio *multi = NULL;
1774 /* Tell the block device(s) that the sectors can be discarded */
1775 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1776 bytenr, &num_bytes, &multi, 0);
1778 struct btrfs_bio_stripe *stripe = multi->stripes;
1782 for (i = 0; i < multi->num_stripes; i++, stripe++) {
1783 ret = btrfs_issue_discard(stripe->dev->bdev,
1787 discarded_bytes += stripe->length;
1788 else if (ret != -EOPNOTSUPP)
1793 if (discarded_bytes && ret == -EOPNOTSUPP)
1797 *actual_bytes = discarded_bytes;
1803 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1804 struct btrfs_root *root,
1805 u64 bytenr, u64 num_bytes, u64 parent,
1806 u64 root_objectid, u64 owner, u64 offset)
1809 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1810 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1812 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1813 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1814 parent, root_objectid, (int)owner,
1815 BTRFS_ADD_DELAYED_REF, NULL);
1817 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1818 parent, root_objectid, owner, offset,
1819 BTRFS_ADD_DELAYED_REF, NULL);
1824 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1825 struct btrfs_root *root,
1826 u64 bytenr, u64 num_bytes,
1827 u64 parent, u64 root_objectid,
1828 u64 owner, u64 offset, int refs_to_add,
1829 struct btrfs_delayed_extent_op *extent_op)
1831 struct btrfs_path *path;
1832 struct extent_buffer *leaf;
1833 struct btrfs_extent_item *item;
1838 path = btrfs_alloc_path();
1843 path->leave_spinning = 1;
1844 /* this will setup the path even if it fails to insert the back ref */
1845 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1846 path, bytenr, num_bytes, parent,
1847 root_objectid, owner, offset,
1848 refs_to_add, extent_op);
1852 if (ret != -EAGAIN) {
1857 leaf = path->nodes[0];
1858 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1859 refs = btrfs_extent_refs(leaf, item);
1860 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1862 __run_delayed_extent_op(extent_op, leaf, item);
1864 btrfs_mark_buffer_dirty(leaf);
1865 btrfs_release_path(path);
1868 path->leave_spinning = 1;
1870 /* now insert the actual backref */
1871 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1872 path, bytenr, parent, root_objectid,
1873 owner, offset, refs_to_add);
1876 btrfs_free_path(path);
1880 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1881 struct btrfs_root *root,
1882 struct btrfs_delayed_ref_node *node,
1883 struct btrfs_delayed_extent_op *extent_op,
1884 int insert_reserved)
1887 struct btrfs_delayed_data_ref *ref;
1888 struct btrfs_key ins;
1893 ins.objectid = node->bytenr;
1894 ins.offset = node->num_bytes;
1895 ins.type = BTRFS_EXTENT_ITEM_KEY;
1897 ref = btrfs_delayed_node_to_data_ref(node);
1898 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1899 parent = ref->parent;
1901 ref_root = ref->root;
1903 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1905 BUG_ON(extent_op->update_key);
1906 flags |= extent_op->flags_to_set;
1908 ret = alloc_reserved_file_extent(trans, root,
1909 parent, ref_root, flags,
1910 ref->objectid, ref->offset,
1911 &ins, node->ref_mod);
1912 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1913 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1914 node->num_bytes, parent,
1915 ref_root, ref->objectid,
1916 ref->offset, node->ref_mod,
1918 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1919 ret = __btrfs_free_extent(trans, root, node->bytenr,
1920 node->num_bytes, parent,
1921 ref_root, ref->objectid,
1922 ref->offset, node->ref_mod,
1930 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1931 struct extent_buffer *leaf,
1932 struct btrfs_extent_item *ei)
1934 u64 flags = btrfs_extent_flags(leaf, ei);
1935 if (extent_op->update_flags) {
1936 flags |= extent_op->flags_to_set;
1937 btrfs_set_extent_flags(leaf, ei, flags);
1940 if (extent_op->update_key) {
1941 struct btrfs_tree_block_info *bi;
1942 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1943 bi = (struct btrfs_tree_block_info *)(ei + 1);
1944 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1948 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1949 struct btrfs_root *root,
1950 struct btrfs_delayed_ref_node *node,
1951 struct btrfs_delayed_extent_op *extent_op)
1953 struct btrfs_key key;
1954 struct btrfs_path *path;
1955 struct btrfs_extent_item *ei;
1956 struct extent_buffer *leaf;
1961 path = btrfs_alloc_path();
1965 key.objectid = node->bytenr;
1966 key.type = BTRFS_EXTENT_ITEM_KEY;
1967 key.offset = node->num_bytes;
1970 path->leave_spinning = 1;
1971 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1982 leaf = path->nodes[0];
1983 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1984 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1985 if (item_size < sizeof(*ei)) {
1986 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1992 leaf = path->nodes[0];
1993 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1996 BUG_ON(item_size < sizeof(*ei));
1997 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1998 __run_delayed_extent_op(extent_op, leaf, ei);
2000 btrfs_mark_buffer_dirty(leaf);
2002 btrfs_free_path(path);
2006 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2007 struct btrfs_root *root,
2008 struct btrfs_delayed_ref_node *node,
2009 struct btrfs_delayed_extent_op *extent_op,
2010 int insert_reserved)
2013 struct btrfs_delayed_tree_ref *ref;
2014 struct btrfs_key ins;
2018 ins.objectid = node->bytenr;
2019 ins.offset = node->num_bytes;
2020 ins.type = BTRFS_EXTENT_ITEM_KEY;
2022 ref = btrfs_delayed_node_to_tree_ref(node);
2023 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2024 parent = ref->parent;
2026 ref_root = ref->root;
2028 BUG_ON(node->ref_mod != 1);
2029 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2030 BUG_ON(!extent_op || !extent_op->update_flags ||
2031 !extent_op->update_key);
2032 ret = alloc_reserved_tree_block(trans, root,
2034 extent_op->flags_to_set,
2037 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2038 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2039 node->num_bytes, parent, ref_root,
2040 ref->level, 0, 1, extent_op);
2041 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2042 ret = __btrfs_free_extent(trans, root, node->bytenr,
2043 node->num_bytes, parent, ref_root,
2044 ref->level, 0, 1, extent_op);
2051 /* helper function to actually process a single delayed ref entry */
2052 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2053 struct btrfs_root *root,
2054 struct btrfs_delayed_ref_node *node,
2055 struct btrfs_delayed_extent_op *extent_op,
2056 int insert_reserved)
2059 if (btrfs_delayed_ref_is_head(node)) {
2060 struct btrfs_delayed_ref_head *head;
2062 * we've hit the end of the chain and we were supposed
2063 * to insert this extent into the tree. But, it got
2064 * deleted before we ever needed to insert it, so all
2065 * we have to do is clean up the accounting
2068 head = btrfs_delayed_node_to_head(node);
2069 if (insert_reserved) {
2070 btrfs_pin_extent(root, node->bytenr,
2071 node->num_bytes, 1);
2072 if (head->is_data) {
2073 ret = btrfs_del_csums(trans, root,
2079 mutex_unlock(&head->mutex);
2083 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2084 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2085 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2087 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2088 node->type == BTRFS_SHARED_DATA_REF_KEY)
2089 ret = run_delayed_data_ref(trans, root, node, extent_op,
2096 static noinline struct btrfs_delayed_ref_node *
2097 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2099 struct rb_node *node;
2100 struct btrfs_delayed_ref_node *ref;
2101 int action = BTRFS_ADD_DELAYED_REF;
2104 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2105 * this prevents ref count from going down to zero when
2106 * there still are pending delayed ref.
2108 node = rb_prev(&head->node.rb_node);
2112 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2114 if (ref->bytenr != head->node.bytenr)
2116 if (ref->action == action)
2118 node = rb_prev(node);
2120 if (action == BTRFS_ADD_DELAYED_REF) {
2121 action = BTRFS_DROP_DELAYED_REF;
2127 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2128 struct btrfs_root *root,
2129 struct list_head *cluster)
2131 struct btrfs_delayed_ref_root *delayed_refs;
2132 struct btrfs_delayed_ref_node *ref;
2133 struct btrfs_delayed_ref_head *locked_ref = NULL;
2134 struct btrfs_delayed_extent_op *extent_op;
2137 int must_insert_reserved = 0;
2139 delayed_refs = &trans->transaction->delayed_refs;
2142 /* pick a new head ref from the cluster list */
2143 if (list_empty(cluster))
2146 locked_ref = list_entry(cluster->next,
2147 struct btrfs_delayed_ref_head, cluster);
2149 /* grab the lock that says we are going to process
2150 * all the refs for this head */
2151 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2154 * we may have dropped the spin lock to get the head
2155 * mutex lock, and that might have given someone else
2156 * time to free the head. If that's true, it has been
2157 * removed from our list and we can move on.
2159 if (ret == -EAGAIN) {
2167 * record the must insert reserved flag before we
2168 * drop the spin lock.
2170 must_insert_reserved = locked_ref->must_insert_reserved;
2171 locked_ref->must_insert_reserved = 0;
2173 extent_op = locked_ref->extent_op;
2174 locked_ref->extent_op = NULL;
2177 * locked_ref is the head node, so we have to go one
2178 * node back for any delayed ref updates
2180 ref = select_delayed_ref(locked_ref);
2182 /* All delayed refs have been processed, Go ahead
2183 * and send the head node to run_one_delayed_ref,
2184 * so that any accounting fixes can happen
2186 ref = &locked_ref->node;
2188 if (extent_op && must_insert_reserved) {
2194 spin_unlock(&delayed_refs->lock);
2196 ret = run_delayed_extent_op(trans, root,
2202 spin_lock(&delayed_refs->lock);
2206 list_del_init(&locked_ref->cluster);
2211 rb_erase(&ref->rb_node, &delayed_refs->root);
2212 delayed_refs->num_entries--;
2214 spin_unlock(&delayed_refs->lock);
2216 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2217 must_insert_reserved);
2220 btrfs_put_delayed_ref(ref);
2225 spin_lock(&delayed_refs->lock);
2231 * this starts processing the delayed reference count updates and
2232 * extent insertions we have queued up so far. count can be
2233 * 0, which means to process everything in the tree at the start
2234 * of the run (but not newly added entries), or it can be some target
2235 * number you'd like to process.
2237 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2238 struct btrfs_root *root, unsigned long count)
2240 struct rb_node *node;
2241 struct btrfs_delayed_ref_root *delayed_refs;
2242 struct btrfs_delayed_ref_node *ref;
2243 struct list_head cluster;
2245 int run_all = count == (unsigned long)-1;
2248 if (root == root->fs_info->extent_root)
2249 root = root->fs_info->tree_root;
2251 delayed_refs = &trans->transaction->delayed_refs;
2252 INIT_LIST_HEAD(&cluster);
2254 spin_lock(&delayed_refs->lock);
2256 count = delayed_refs->num_entries * 2;
2260 if (!(run_all || run_most) &&
2261 delayed_refs->num_heads_ready < 64)
2265 * go find something we can process in the rbtree. We start at
2266 * the beginning of the tree, and then build a cluster
2267 * of refs to process starting at the first one we are able to
2270 ret = btrfs_find_ref_cluster(trans, &cluster,
2271 delayed_refs->run_delayed_start);
2275 ret = run_clustered_refs(trans, root, &cluster);
2278 count -= min_t(unsigned long, ret, count);
2285 node = rb_first(&delayed_refs->root);
2288 count = (unsigned long)-1;
2291 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2293 if (btrfs_delayed_ref_is_head(ref)) {
2294 struct btrfs_delayed_ref_head *head;
2296 head = btrfs_delayed_node_to_head(ref);
2297 atomic_inc(&ref->refs);
2299 spin_unlock(&delayed_refs->lock);
2301 * Mutex was contended, block until it's
2302 * released and try again
2304 mutex_lock(&head->mutex);
2305 mutex_unlock(&head->mutex);
2307 btrfs_put_delayed_ref(ref);
2311 node = rb_next(node);
2313 spin_unlock(&delayed_refs->lock);
2314 schedule_timeout(1);
2318 spin_unlock(&delayed_refs->lock);
2322 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2323 struct btrfs_root *root,
2324 u64 bytenr, u64 num_bytes, u64 flags,
2327 struct btrfs_delayed_extent_op *extent_op;
2330 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2334 extent_op->flags_to_set = flags;
2335 extent_op->update_flags = 1;
2336 extent_op->update_key = 0;
2337 extent_op->is_data = is_data ? 1 : 0;
2339 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2345 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2346 struct btrfs_root *root,
2347 struct btrfs_path *path,
2348 u64 objectid, u64 offset, u64 bytenr)
2350 struct btrfs_delayed_ref_head *head;
2351 struct btrfs_delayed_ref_node *ref;
2352 struct btrfs_delayed_data_ref *data_ref;
2353 struct btrfs_delayed_ref_root *delayed_refs;
2354 struct rb_node *node;
2358 delayed_refs = &trans->transaction->delayed_refs;
2359 spin_lock(&delayed_refs->lock);
2360 head = btrfs_find_delayed_ref_head(trans, bytenr);
2364 if (!mutex_trylock(&head->mutex)) {
2365 atomic_inc(&head->node.refs);
2366 spin_unlock(&delayed_refs->lock);
2368 btrfs_release_path(path);
2371 * Mutex was contended, block until it's released and let
2374 mutex_lock(&head->mutex);
2375 mutex_unlock(&head->mutex);
2376 btrfs_put_delayed_ref(&head->node);
2380 node = rb_prev(&head->node.rb_node);
2384 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2386 if (ref->bytenr != bytenr)
2390 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2393 data_ref = btrfs_delayed_node_to_data_ref(ref);
2395 node = rb_prev(node);
2397 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2398 if (ref->bytenr == bytenr)
2402 if (data_ref->root != root->root_key.objectid ||
2403 data_ref->objectid != objectid || data_ref->offset != offset)
2408 mutex_unlock(&head->mutex);
2410 spin_unlock(&delayed_refs->lock);
2414 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2415 struct btrfs_root *root,
2416 struct btrfs_path *path,
2417 u64 objectid, u64 offset, u64 bytenr)
2419 struct btrfs_root *extent_root = root->fs_info->extent_root;
2420 struct extent_buffer *leaf;
2421 struct btrfs_extent_data_ref *ref;
2422 struct btrfs_extent_inline_ref *iref;
2423 struct btrfs_extent_item *ei;
2424 struct btrfs_key key;
2428 key.objectid = bytenr;
2429 key.offset = (u64)-1;
2430 key.type = BTRFS_EXTENT_ITEM_KEY;
2432 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2438 if (path->slots[0] == 0)
2442 leaf = path->nodes[0];
2443 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2445 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2449 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2450 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2451 if (item_size < sizeof(*ei)) {
2452 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2456 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2458 if (item_size != sizeof(*ei) +
2459 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2462 if (btrfs_extent_generation(leaf, ei) <=
2463 btrfs_root_last_snapshot(&root->root_item))
2466 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2467 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2468 BTRFS_EXTENT_DATA_REF_KEY)
2471 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2472 if (btrfs_extent_refs(leaf, ei) !=
2473 btrfs_extent_data_ref_count(leaf, ref) ||
2474 btrfs_extent_data_ref_root(leaf, ref) !=
2475 root->root_key.objectid ||
2476 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2477 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2485 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2486 struct btrfs_root *root,
2487 u64 objectid, u64 offset, u64 bytenr)
2489 struct btrfs_path *path;
2493 path = btrfs_alloc_path();
2498 ret = check_committed_ref(trans, root, path, objectid,
2500 if (ret && ret != -ENOENT)
2503 ret2 = check_delayed_ref(trans, root, path, objectid,
2505 } while (ret2 == -EAGAIN);
2507 if (ret2 && ret2 != -ENOENT) {
2512 if (ret != -ENOENT || ret2 != -ENOENT)
2515 btrfs_free_path(path);
2516 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2521 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2522 struct btrfs_root *root,
2523 struct extent_buffer *buf,
2524 int full_backref, int inc)
2531 struct btrfs_key key;
2532 struct btrfs_file_extent_item *fi;
2536 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2537 u64, u64, u64, u64, u64, u64);
2539 ref_root = btrfs_header_owner(buf);
2540 nritems = btrfs_header_nritems(buf);
2541 level = btrfs_header_level(buf);
2543 if (!root->ref_cows && level == 0)
2547 process_func = btrfs_inc_extent_ref;
2549 process_func = btrfs_free_extent;
2552 parent = buf->start;
2556 for (i = 0; i < nritems; i++) {
2558 btrfs_item_key_to_cpu(buf, &key, i);
2559 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2561 fi = btrfs_item_ptr(buf, i,
2562 struct btrfs_file_extent_item);
2563 if (btrfs_file_extent_type(buf, fi) ==
2564 BTRFS_FILE_EXTENT_INLINE)
2566 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2570 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2571 key.offset -= btrfs_file_extent_offset(buf, fi);
2572 ret = process_func(trans, root, bytenr, num_bytes,
2573 parent, ref_root, key.objectid,
2578 bytenr = btrfs_node_blockptr(buf, i);
2579 num_bytes = btrfs_level_size(root, level - 1);
2580 ret = process_func(trans, root, bytenr, num_bytes,
2581 parent, ref_root, level - 1, 0);
2592 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2593 struct extent_buffer *buf, int full_backref)
2595 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2598 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2599 struct extent_buffer *buf, int full_backref)
2601 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2604 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2605 struct btrfs_root *root,
2606 struct btrfs_path *path,
2607 struct btrfs_block_group_cache *cache)
2610 struct btrfs_root *extent_root = root->fs_info->extent_root;
2612 struct extent_buffer *leaf;
2614 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2619 leaf = path->nodes[0];
2620 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2621 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2622 btrfs_mark_buffer_dirty(leaf);
2623 btrfs_release_path(path);
2631 static struct btrfs_block_group_cache *
2632 next_block_group(struct btrfs_root *root,
2633 struct btrfs_block_group_cache *cache)
2635 struct rb_node *node;
2636 spin_lock(&root->fs_info->block_group_cache_lock);
2637 node = rb_next(&cache->cache_node);
2638 btrfs_put_block_group(cache);
2640 cache = rb_entry(node, struct btrfs_block_group_cache,
2642 btrfs_get_block_group(cache);
2645 spin_unlock(&root->fs_info->block_group_cache_lock);
2649 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2650 struct btrfs_trans_handle *trans,
2651 struct btrfs_path *path)
2653 struct btrfs_root *root = block_group->fs_info->tree_root;
2654 struct inode *inode = NULL;
2656 int dcs = BTRFS_DC_ERROR;
2662 * If this block group is smaller than 100 megs don't bother caching the
2665 if (block_group->key.offset < (100 * 1024 * 1024)) {
2666 spin_lock(&block_group->lock);
2667 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2668 spin_unlock(&block_group->lock);
2673 inode = lookup_free_space_inode(root, block_group, path);
2674 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2675 ret = PTR_ERR(inode);
2676 btrfs_release_path(path);
2680 if (IS_ERR(inode)) {
2684 if (block_group->ro)
2687 ret = create_free_space_inode(root, trans, block_group, path);
2694 * We want to set the generation to 0, that way if anything goes wrong
2695 * from here on out we know not to trust this cache when we load up next
2698 BTRFS_I(inode)->generation = 0;
2699 ret = btrfs_update_inode(trans, root, inode);
2702 if (i_size_read(inode) > 0) {
2703 ret = btrfs_truncate_free_space_cache(root, trans, path,
2709 spin_lock(&block_group->lock);
2710 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2711 /* We're not cached, don't bother trying to write stuff out */
2712 dcs = BTRFS_DC_WRITTEN;
2713 spin_unlock(&block_group->lock);
2716 spin_unlock(&block_group->lock);
2718 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2723 * Just to make absolutely sure we have enough space, we're going to
2724 * preallocate 12 pages worth of space for each block group. In
2725 * practice we ought to use at most 8, but we need extra space so we can
2726 * add our header and have a terminator between the extents and the
2730 num_pages *= PAGE_CACHE_SIZE;
2732 ret = btrfs_check_data_free_space(inode, num_pages);
2736 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2737 num_pages, num_pages,
2740 dcs = BTRFS_DC_SETUP;
2741 btrfs_free_reserved_data_space(inode, num_pages);
2745 btrfs_release_path(path);
2747 spin_lock(&block_group->lock);
2748 block_group->disk_cache_state = dcs;
2749 spin_unlock(&block_group->lock);
2754 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2755 struct btrfs_root *root)
2757 struct btrfs_block_group_cache *cache;
2759 struct btrfs_path *path;
2762 path = btrfs_alloc_path();
2768 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2770 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2772 cache = next_block_group(root, cache);
2780 err = cache_save_setup(cache, trans, path);
2781 last = cache->key.objectid + cache->key.offset;
2782 btrfs_put_block_group(cache);
2787 err = btrfs_run_delayed_refs(trans, root,
2792 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2794 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2795 btrfs_put_block_group(cache);
2801 cache = next_block_group(root, cache);
2810 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2811 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2813 last = cache->key.objectid + cache->key.offset;
2815 err = write_one_cache_group(trans, root, path, cache);
2817 btrfs_put_block_group(cache);
2822 * I don't think this is needed since we're just marking our
2823 * preallocated extent as written, but just in case it can't
2827 err = btrfs_run_delayed_refs(trans, root,
2832 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2835 * Really this shouldn't happen, but it could if we
2836 * couldn't write the entire preallocated extent and
2837 * splitting the extent resulted in a new block.
2840 btrfs_put_block_group(cache);
2843 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2845 cache = next_block_group(root, cache);
2854 btrfs_write_out_cache(root, trans, cache, path);
2857 * If we didn't have an error then the cache state is still
2858 * NEED_WRITE, so we can set it to WRITTEN.
2860 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2861 cache->disk_cache_state = BTRFS_DC_WRITTEN;
2862 last = cache->key.objectid + cache->key.offset;
2863 btrfs_put_block_group(cache);
2866 btrfs_free_path(path);
2870 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2872 struct btrfs_block_group_cache *block_group;
2875 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2876 if (!block_group || block_group->ro)
2879 btrfs_put_block_group(block_group);
2883 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2884 u64 total_bytes, u64 bytes_used,
2885 struct btrfs_space_info **space_info)
2887 struct btrfs_space_info *found;
2891 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2892 BTRFS_BLOCK_GROUP_RAID10))
2897 found = __find_space_info(info, flags);
2899 spin_lock(&found->lock);
2900 found->total_bytes += total_bytes;
2901 found->disk_total += total_bytes * factor;
2902 found->bytes_used += bytes_used;
2903 found->disk_used += bytes_used * factor;
2905 spin_unlock(&found->lock);
2906 *space_info = found;
2909 found = kzalloc(sizeof(*found), GFP_NOFS);
2913 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2914 INIT_LIST_HEAD(&found->block_groups[i]);
2915 init_rwsem(&found->groups_sem);
2916 spin_lock_init(&found->lock);
2917 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
2918 BTRFS_BLOCK_GROUP_SYSTEM |
2919 BTRFS_BLOCK_GROUP_METADATA);
2920 found->total_bytes = total_bytes;
2921 found->disk_total = total_bytes * factor;
2922 found->bytes_used = bytes_used;
2923 found->disk_used = bytes_used * factor;
2924 found->bytes_pinned = 0;
2925 found->bytes_reserved = 0;
2926 found->bytes_readonly = 0;
2927 found->bytes_may_use = 0;
2929 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
2930 found->chunk_alloc = 0;
2932 init_waitqueue_head(&found->wait);
2933 *space_info = found;
2934 list_add_rcu(&found->list, &info->space_info);
2938 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2940 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2941 BTRFS_BLOCK_GROUP_RAID1 |
2942 BTRFS_BLOCK_GROUP_RAID10 |
2943 BTRFS_BLOCK_GROUP_DUP);
2945 if (flags & BTRFS_BLOCK_GROUP_DATA)
2946 fs_info->avail_data_alloc_bits |= extra_flags;
2947 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2948 fs_info->avail_metadata_alloc_bits |= extra_flags;
2949 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2950 fs_info->avail_system_alloc_bits |= extra_flags;
2954 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2957 * we add in the count of missing devices because we want
2958 * to make sure that any RAID levels on a degraded FS
2959 * continue to be honored.
2961 u64 num_devices = root->fs_info->fs_devices->rw_devices +
2962 root->fs_info->fs_devices->missing_devices;
2964 if (num_devices == 1)
2965 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
2966 if (num_devices < 4)
2967 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
2969 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
2970 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
2971 BTRFS_BLOCK_GROUP_RAID10))) {
2972 flags &= ~BTRFS_BLOCK_GROUP_DUP;
2975 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
2976 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
2977 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
2980 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
2981 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
2982 (flags & BTRFS_BLOCK_GROUP_RAID10) |
2983 (flags & BTRFS_BLOCK_GROUP_DUP)))
2984 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
2988 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
2990 if (flags & BTRFS_BLOCK_GROUP_DATA)
2991 flags |= root->fs_info->avail_data_alloc_bits &
2992 root->fs_info->data_alloc_profile;
2993 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2994 flags |= root->fs_info->avail_system_alloc_bits &
2995 root->fs_info->system_alloc_profile;
2996 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
2997 flags |= root->fs_info->avail_metadata_alloc_bits &
2998 root->fs_info->metadata_alloc_profile;
2999 return btrfs_reduce_alloc_profile(root, flags);
3002 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3007 flags = BTRFS_BLOCK_GROUP_DATA;
3008 else if (root == root->fs_info->chunk_root)
3009 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3011 flags = BTRFS_BLOCK_GROUP_METADATA;
3013 return get_alloc_profile(root, flags);
3016 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3018 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3019 BTRFS_BLOCK_GROUP_DATA);
3023 * This will check the space that the inode allocates from to make sure we have
3024 * enough space for bytes.
3026 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3028 struct btrfs_space_info *data_sinfo;
3029 struct btrfs_root *root = BTRFS_I(inode)->root;
3031 int ret = 0, committed = 0, alloc_chunk = 1;
3033 /* make sure bytes are sectorsize aligned */
3034 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3036 if (root == root->fs_info->tree_root ||
3037 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {