f7c0a2a722b16bfc5e6b4d9f9f6312c46e4f1200
[pandora-kernel.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29
30 #include "xhci.h"
31
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55                       u32 mask, u32 done, int usec)
56 {
57         u32     result;
58
59         do {
60                 result = xhci_readl(xhci, ptr);
61                 if (result == ~(u32)0)          /* card removed */
62                         return -ENODEV;
63                 result &= mask;
64                 if (result == done)
65                         return 0;
66                 udelay(1);
67                 usec--;
68         } while (usec > 0);
69         return -ETIMEDOUT;
70 }
71
72 /*
73  * Disable interrupts and begin the xHCI halting process.
74  */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77         u32 halted;
78         u32 cmd;
79         u32 mask;
80
81         mask = ~(XHCI_IRQS);
82         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83         if (!halted)
84                 mask &= ~CMD_RUN;
85
86         cmd = xhci_readl(xhci, &xhci->op_regs->command);
87         cmd &= mask;
88         xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90
91 /*
92  * Force HC into halt state.
93  *
94  * Disable any IRQs and clear the run/stop bit.
95  * HC will complete any current and actively pipelined transactions, and
96  * should halt within 16 ms of the run/stop bit being cleared.
97  * Read HC Halted bit in the status register to see when the HC is finished.
98  */
99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101         int ret;
102         xhci_dbg(xhci, "// Halt the HC\n");
103         xhci_quiesce(xhci);
104
105         ret = handshake(xhci, &xhci->op_regs->status,
106                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107         if (!ret)
108                 xhci->xhc_state |= XHCI_STATE_HALTED;
109         return ret;
110 }
111
112 /*
113  * Set the run bit and wait for the host to be running.
114  */
115 static int xhci_start(struct xhci_hcd *xhci)
116 {
117         u32 temp;
118         int ret;
119
120         temp = xhci_readl(xhci, &xhci->op_regs->command);
121         temp |= (CMD_RUN);
122         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
123                         temp);
124         xhci_writel(xhci, temp, &xhci->op_regs->command);
125
126         /*
127          * Wait for the HCHalted Status bit to be 0 to indicate the host is
128          * running.
129          */
130         ret = handshake(xhci, &xhci->op_regs->status,
131                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
132         if (ret == -ETIMEDOUT)
133                 xhci_err(xhci, "Host took too long to start, "
134                                 "waited %u microseconds.\n",
135                                 XHCI_MAX_HALT_USEC);
136         if (!ret)
137                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
138         return ret;
139 }
140
141 /*
142  * Reset a halted HC.
143  *
144  * This resets pipelines, timers, counters, state machines, etc.
145  * Transactions will be terminated immediately, and operational registers
146  * will be set to their defaults.
147  */
148 int xhci_reset(struct xhci_hcd *xhci)
149 {
150         u32 command;
151         u32 state;
152         int ret;
153
154         state = xhci_readl(xhci, &xhci->op_regs->status);
155         if ((state & STS_HALT) == 0) {
156                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
157                 return 0;
158         }
159
160         xhci_dbg(xhci, "// Reset the HC\n");
161         command = xhci_readl(xhci, &xhci->op_regs->command);
162         command |= CMD_RESET;
163         xhci_writel(xhci, command, &xhci->op_regs->command);
164
165         ret = handshake(xhci, &xhci->op_regs->command,
166                         CMD_RESET, 0, 10 * 1000 * 1000);
167         if (ret)
168                 return ret;
169
170         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
171         /*
172          * xHCI cannot write to any doorbells or operational registers other
173          * than status until the "Controller Not Ready" flag is cleared.
174          */
175         return handshake(xhci, &xhci->op_regs->status,
176                          STS_CNR, 0, 10 * 1000 * 1000);
177 }
178
179 #ifdef CONFIG_PCI
180 static int xhci_free_msi(struct xhci_hcd *xhci)
181 {
182         int i;
183
184         if (!xhci->msix_entries)
185                 return -EINVAL;
186
187         for (i = 0; i < xhci->msix_count; i++)
188                 if (xhci->msix_entries[i].vector)
189                         free_irq(xhci->msix_entries[i].vector,
190                                         xhci_to_hcd(xhci));
191         return 0;
192 }
193
194 /*
195  * Set up MSI
196  */
197 static int xhci_setup_msi(struct xhci_hcd *xhci)
198 {
199         int ret;
200         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
201
202         ret = pci_enable_msi(pdev);
203         if (ret) {
204                 xhci_err(xhci, "failed to allocate MSI entry\n");
205                 return ret;
206         }
207
208         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
209                                 0, "xhci_hcd", xhci_to_hcd(xhci));
210         if (ret) {
211                 xhci_err(xhci, "disable MSI interrupt\n");
212                 pci_disable_msi(pdev);
213         }
214
215         return ret;
216 }
217
218 /*
219  * Free IRQs
220  * free all IRQs request
221  */
222 static void xhci_free_irq(struct xhci_hcd *xhci)
223 {
224         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
225         int ret;
226
227         /* return if using legacy interrupt */
228         if (xhci_to_hcd(xhci)->irq >= 0)
229                 return;
230
231         ret = xhci_free_msi(xhci);
232         if (!ret)
233                 return;
234         if (pdev->irq >= 0)
235                 free_irq(pdev->irq, xhci_to_hcd(xhci));
236
237         return;
238 }
239
240 /*
241  * Set up MSI-X
242  */
243 static int xhci_setup_msix(struct xhci_hcd *xhci)
244 {
245         int i, ret = 0;
246         struct usb_hcd *hcd = xhci_to_hcd(xhci);
247         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
248
249         /*
250          * calculate number of msi-x vectors supported.
251          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
252          *   with max number of interrupters based on the xhci HCSPARAMS1.
253          * - num_online_cpus: maximum msi-x vectors per CPUs core.
254          *   Add additional 1 vector to ensure always available interrupt.
255          */
256         xhci->msix_count = min(num_online_cpus() + 1,
257                                 HCS_MAX_INTRS(xhci->hcs_params1));
258
259         xhci->msix_entries =
260                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
261                                 GFP_KERNEL);
262         if (!xhci->msix_entries) {
263                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
264                 return -ENOMEM;
265         }
266
267         for (i = 0; i < xhci->msix_count; i++) {
268                 xhci->msix_entries[i].entry = i;
269                 xhci->msix_entries[i].vector = 0;
270         }
271
272         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
273         if (ret) {
274                 xhci_err(xhci, "Failed to enable MSI-X\n");
275                 goto free_entries;
276         }
277
278         for (i = 0; i < xhci->msix_count; i++) {
279                 ret = request_irq(xhci->msix_entries[i].vector,
280                                 (irq_handler_t)xhci_msi_irq,
281                                 0, "xhci_hcd", xhci_to_hcd(xhci));
282                 if (ret)
283                         goto disable_msix;
284         }
285
286         hcd->msix_enabled = 1;
287         return ret;
288
289 disable_msix:
290         xhci_err(xhci, "disable MSI-X interrupt\n");
291         xhci_free_irq(xhci);
292         pci_disable_msix(pdev);
293 free_entries:
294         kfree(xhci->msix_entries);
295         xhci->msix_entries = NULL;
296         return ret;
297 }
298
299 /* Free any IRQs and disable MSI-X */
300 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
301 {
302         struct usb_hcd *hcd = xhci_to_hcd(xhci);
303         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
304
305         xhci_free_irq(xhci);
306
307         if (xhci->msix_entries) {
308                 pci_disable_msix(pdev);
309                 kfree(xhci->msix_entries);
310                 xhci->msix_entries = NULL;
311         } else {
312                 pci_disable_msi(pdev);
313         }
314
315         hcd->msix_enabled = 0;
316         return;
317 }
318
319 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
320 {
321         int i;
322
323         if (xhci->msix_entries) {
324                 for (i = 0; i < xhci->msix_count; i++)
325                         synchronize_irq(xhci->msix_entries[i].vector);
326         }
327 }
328
329 static int xhci_try_enable_msi(struct usb_hcd *hcd)
330 {
331         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
332         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
333         int ret;
334
335         /*
336          * Some Fresco Logic host controllers advertise MSI, but fail to
337          * generate interrupts.  Don't even try to enable MSI.
338          */
339         if (xhci->quirks & XHCI_BROKEN_MSI)
340                 return 0;
341
342         /* unregister the legacy interrupt */
343         if (hcd->irq)
344                 free_irq(hcd->irq, hcd);
345         hcd->irq = -1;
346
347         ret = xhci_setup_msix(xhci);
348         if (ret)
349                 /* fall back to msi*/
350                 ret = xhci_setup_msi(xhci);
351
352         if (!ret)
353                 /* hcd->irq is -1, we have MSI */
354                 return 0;
355
356         if (!pdev->irq) {
357                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
358                 return -EINVAL;
359         }
360
361         /* fall back to legacy interrupt*/
362         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
363                         hcd->irq_descr, hcd);
364         if (ret) {
365                 xhci_err(xhci, "request interrupt %d failed\n",
366                                 pdev->irq);
367                 return ret;
368         }
369         hcd->irq = pdev->irq;
370         return 0;
371 }
372
373 #else
374
375 static int xhci_try_enable_msi(struct usb_hcd *hcd)
376 {
377         return 0;
378 }
379
380 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
381 {
382 }
383
384 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
385 {
386 }
387
388 #endif
389
390 /*
391  * Initialize memory for HCD and xHC (one-time init).
392  *
393  * Program the PAGESIZE register, initialize the device context array, create
394  * device contexts (?), set up a command ring segment (or two?), create event
395  * ring (one for now).
396  */
397 int xhci_init(struct usb_hcd *hcd)
398 {
399         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
400         int retval = 0;
401
402         xhci_dbg(xhci, "xhci_init\n");
403         spin_lock_init(&xhci->lock);
404         if (xhci->hci_version == 0x95 && link_quirk) {
405                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
406                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
407         } else {
408                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
409         }
410         retval = xhci_mem_init(xhci, GFP_KERNEL);
411         xhci_dbg(xhci, "Finished xhci_init\n");
412
413         return retval;
414 }
415
416 /*-------------------------------------------------------------------------*/
417
418
419 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
420 static void xhci_event_ring_work(unsigned long arg)
421 {
422         unsigned long flags;
423         int temp;
424         u64 temp_64;
425         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
426         int i, j;
427
428         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
429
430         spin_lock_irqsave(&xhci->lock, flags);
431         temp = xhci_readl(xhci, &xhci->op_regs->status);
432         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
433         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
434                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
435                 xhci_dbg(xhci, "HW died, polling stopped.\n");
436                 spin_unlock_irqrestore(&xhci->lock, flags);
437                 return;
438         }
439
440         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
441         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
442         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
443         xhci->error_bitmask = 0;
444         xhci_dbg(xhci, "Event ring:\n");
445         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
446         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
447         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
448         temp_64 &= ~ERST_PTR_MASK;
449         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
450         xhci_dbg(xhci, "Command ring:\n");
451         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
452         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
453         xhci_dbg_cmd_ptrs(xhci);
454         for (i = 0; i < MAX_HC_SLOTS; ++i) {
455                 if (!xhci->devs[i])
456                         continue;
457                 for (j = 0; j < 31; ++j) {
458                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
459                 }
460         }
461         spin_unlock_irqrestore(&xhci->lock, flags);
462
463         if (!xhci->zombie)
464                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
465         else
466                 xhci_dbg(xhci, "Quit polling the event ring.\n");
467 }
468 #endif
469
470 static int xhci_run_finished(struct xhci_hcd *xhci)
471 {
472         if (xhci_start(xhci)) {
473                 xhci_halt(xhci);
474                 return -ENODEV;
475         }
476         xhci->shared_hcd->state = HC_STATE_RUNNING;
477
478         if (xhci->quirks & XHCI_NEC_HOST)
479                 xhci_ring_cmd_db(xhci);
480
481         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
482         return 0;
483 }
484
485 /*
486  * Start the HC after it was halted.
487  *
488  * This function is called by the USB core when the HC driver is added.
489  * Its opposite is xhci_stop().
490  *
491  * xhci_init() must be called once before this function can be called.
492  * Reset the HC, enable device slot contexts, program DCBAAP, and
493  * set command ring pointer and event ring pointer.
494  *
495  * Setup MSI-X vectors and enable interrupts.
496  */
497 int xhci_run(struct usb_hcd *hcd)
498 {
499         u32 temp;
500         u64 temp_64;
501         int ret;
502         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
503
504         /* Start the xHCI host controller running only after the USB 2.0 roothub
505          * is setup.
506          */
507
508         hcd->uses_new_polling = 1;
509         if (!usb_hcd_is_primary_hcd(hcd))
510                 return xhci_run_finished(xhci);
511
512         xhci_dbg(xhci, "xhci_run\n");
513
514         ret = xhci_try_enable_msi(hcd);
515         if (ret)
516                 return ret;
517
518 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
519         init_timer(&xhci->event_ring_timer);
520         xhci->event_ring_timer.data = (unsigned long) xhci;
521         xhci->event_ring_timer.function = xhci_event_ring_work;
522         /* Poll the event ring */
523         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
524         xhci->zombie = 0;
525         xhci_dbg(xhci, "Setting event ring polling timer\n");
526         add_timer(&xhci->event_ring_timer);
527 #endif
528
529         xhci_dbg(xhci, "Command ring memory map follows:\n");
530         xhci_debug_ring(xhci, xhci->cmd_ring);
531         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
532         xhci_dbg_cmd_ptrs(xhci);
533
534         xhci_dbg(xhci, "ERST memory map follows:\n");
535         xhci_dbg_erst(xhci, &xhci->erst);
536         xhci_dbg(xhci, "Event ring:\n");
537         xhci_debug_ring(xhci, xhci->event_ring);
538         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
539         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
540         temp_64 &= ~ERST_PTR_MASK;
541         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
542
543         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
544         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
545         temp &= ~ER_IRQ_INTERVAL_MASK;
546         temp |= (u32) 160;
547         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
548
549         /* Set the HCD state before we enable the irqs */
550         temp = xhci_readl(xhci, &xhci->op_regs->command);
551         temp |= (CMD_EIE);
552         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
553                         temp);
554         xhci_writel(xhci, temp, &xhci->op_regs->command);
555
556         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
557         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
558                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
559         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
560                         &xhci->ir_set->irq_pending);
561         xhci_print_ir_set(xhci, 0);
562
563         if (xhci->quirks & XHCI_NEC_HOST)
564                 xhci_queue_vendor_command(xhci, 0, 0, 0,
565                                 TRB_TYPE(TRB_NEC_GET_FW));
566
567         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
568         return 0;
569 }
570
571 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
572 {
573         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
574
575         spin_lock_irq(&xhci->lock);
576         xhci_halt(xhci);
577
578         /* The shared_hcd is going to be deallocated shortly (the USB core only
579          * calls this function when allocation fails in usb_add_hcd(), or
580          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
581          */
582         xhci->shared_hcd = NULL;
583         spin_unlock_irq(&xhci->lock);
584 }
585
586 /*
587  * Stop xHCI driver.
588  *
589  * This function is called by the USB core when the HC driver is removed.
590  * Its opposite is xhci_run().
591  *
592  * Disable device contexts, disable IRQs, and quiesce the HC.
593  * Reset the HC, finish any completed transactions, and cleanup memory.
594  */
595 void xhci_stop(struct usb_hcd *hcd)
596 {
597         u32 temp;
598         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
599
600         if (!usb_hcd_is_primary_hcd(hcd)) {
601                 xhci_only_stop_hcd(xhci->shared_hcd);
602                 return;
603         }
604
605         spin_lock_irq(&xhci->lock);
606         /* Make sure the xHC is halted for a USB3 roothub
607          * (xhci_stop() could be called as part of failed init).
608          */
609         xhci_halt(xhci);
610         xhci_reset(xhci);
611         spin_unlock_irq(&xhci->lock);
612
613         xhci_cleanup_msix(xhci);
614
615 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
616         /* Tell the event ring poll function not to reschedule */
617         xhci->zombie = 1;
618         del_timer_sync(&xhci->event_ring_timer);
619 #endif
620
621         if (xhci->quirks & XHCI_AMD_PLL_FIX)
622                 usb_amd_dev_put();
623
624         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
625         temp = xhci_readl(xhci, &xhci->op_regs->status);
626         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
627         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
628         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
629                         &xhci->ir_set->irq_pending);
630         xhci_print_ir_set(xhci, 0);
631
632         xhci_dbg(xhci, "cleaning up memory\n");
633         xhci_mem_cleanup(xhci);
634         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
635                     xhci_readl(xhci, &xhci->op_regs->status));
636 }
637
638 /*
639  * Shutdown HC (not bus-specific)
640  *
641  * This is called when the machine is rebooting or halting.  We assume that the
642  * machine will be powered off, and the HC's internal state will be reset.
643  * Don't bother to free memory.
644  *
645  * This will only ever be called with the main usb_hcd (the USB3 roothub).
646  */
647 void xhci_shutdown(struct usb_hcd *hcd)
648 {
649         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
650
651         spin_lock_irq(&xhci->lock);
652         xhci_halt(xhci);
653         spin_unlock_irq(&xhci->lock);
654
655         xhci_cleanup_msix(xhci);
656
657         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
658                     xhci_readl(xhci, &xhci->op_regs->status));
659 }
660
661 #ifdef CONFIG_PM
662 static void xhci_save_registers(struct xhci_hcd *xhci)
663 {
664         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
665         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
666         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
667         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
668         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
669         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
670         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
671         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
672         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
673 }
674
675 static void xhci_restore_registers(struct xhci_hcd *xhci)
676 {
677         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
678         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
679         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
680         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
681         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
682         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
683         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
684         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
685         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
686 }
687
688 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
689 {
690         u64     val_64;
691
692         /* step 2: initialize command ring buffer */
693         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
694         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
695                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
696                                       xhci->cmd_ring->dequeue) &
697                  (u64) ~CMD_RING_RSVD_BITS) |
698                 xhci->cmd_ring->cycle_state;
699         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
700                         (long unsigned long) val_64);
701         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
702 }
703
704 /*
705  * The whole command ring must be cleared to zero when we suspend the host.
706  *
707  * The host doesn't save the command ring pointer in the suspend well, so we
708  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
709  * aligned, because of the reserved bits in the command ring dequeue pointer
710  * register.  Therefore, we can't just set the dequeue pointer back in the
711  * middle of the ring (TRBs are 16-byte aligned).
712  */
713 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
714 {
715         struct xhci_ring *ring;
716         struct xhci_segment *seg;
717
718         ring = xhci->cmd_ring;
719         seg = ring->deq_seg;
720         do {
721                 memset(seg->trbs, 0,
722                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
723                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
724                         cpu_to_le32(~TRB_CYCLE);
725                 seg = seg->next;
726         } while (seg != ring->deq_seg);
727
728         /* Reset the software enqueue and dequeue pointers */
729         ring->deq_seg = ring->first_seg;
730         ring->dequeue = ring->first_seg->trbs;
731         ring->enq_seg = ring->deq_seg;
732         ring->enqueue = ring->dequeue;
733
734         /*
735          * Ring is now zeroed, so the HW should look for change of ownership
736          * when the cycle bit is set to 1.
737          */
738         ring->cycle_state = 1;
739
740         /*
741          * Reset the hardware dequeue pointer.
742          * Yes, this will need to be re-written after resume, but we're paranoid
743          * and want to make sure the hardware doesn't access bogus memory
744          * because, say, the BIOS or an SMI started the host without changing
745          * the command ring pointers.
746          */
747         xhci_set_cmd_ring_deq(xhci);
748 }
749
750 /*
751  * Stop HC (not bus-specific)
752  *
753  * This is called when the machine transition into S3/S4 mode.
754  *
755  */
756 int xhci_suspend(struct xhci_hcd *xhci)
757 {
758         int                     rc = 0;
759         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
760         u32                     command;
761
762         spin_lock_irq(&xhci->lock);
763         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
764         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
765         /* step 1: stop endpoint */
766         /* skipped assuming that port suspend has done */
767
768         /* step 2: clear Run/Stop bit */
769         command = xhci_readl(xhci, &xhci->op_regs->command);
770         command &= ~CMD_RUN;
771         xhci_writel(xhci, command, &xhci->op_regs->command);
772         if (handshake(xhci, &xhci->op_regs->status,
773                       STS_HALT, STS_HALT, 100*100)) {
774                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
775                 spin_unlock_irq(&xhci->lock);
776                 return -ETIMEDOUT;
777         }
778         xhci_clear_command_ring(xhci);
779
780         /* step 3: save registers */
781         xhci_save_registers(xhci);
782
783         /* step 4: set CSS flag */
784         command = xhci_readl(xhci, &xhci->op_regs->command);
785         command |= CMD_CSS;
786         xhci_writel(xhci, command, &xhci->op_regs->command);
787         if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
788                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
789                 spin_unlock_irq(&xhci->lock);
790                 return -ETIMEDOUT;
791         }
792         spin_unlock_irq(&xhci->lock);
793
794         /* step 5: remove core well power */
795         /* synchronize irq when using MSI-X */
796         xhci_msix_sync_irqs(xhci);
797
798         return rc;
799 }
800
801 /*
802  * start xHC (not bus-specific)
803  *
804  * This is called when the machine transition from S3/S4 mode.
805  *
806  */
807 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
808 {
809         u32                     command, temp = 0;
810         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
811         struct usb_hcd          *secondary_hcd;
812         int                     retval = 0;
813
814         /* Wait a bit if either of the roothubs need to settle from the
815          * transition into bus suspend.
816          */
817         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
818                         time_before(jiffies,
819                                 xhci->bus_state[1].next_statechange))
820                 msleep(100);
821
822         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
823         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
824
825         spin_lock_irq(&xhci->lock);
826         if (xhci->quirks & XHCI_RESET_ON_RESUME)
827                 hibernated = true;
828
829         if (!hibernated) {
830                 /* step 1: restore register */
831                 xhci_restore_registers(xhci);
832                 /* step 2: initialize command ring buffer */
833                 xhci_set_cmd_ring_deq(xhci);
834                 /* step 3: restore state and start state*/
835                 /* step 3: set CRS flag */
836                 command = xhci_readl(xhci, &xhci->op_regs->command);
837                 command |= CMD_CRS;
838                 xhci_writel(xhci, command, &xhci->op_regs->command);
839                 if (handshake(xhci, &xhci->op_regs->status,
840                               STS_RESTORE, 0, 10 * 1000)) {
841                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
842                         spin_unlock_irq(&xhci->lock);
843                         return -ETIMEDOUT;
844                 }
845                 temp = xhci_readl(xhci, &xhci->op_regs->status);
846         }
847
848         /* If restore operation fails, re-initialize the HC during resume */
849         if ((temp & STS_SRE) || hibernated) {
850                 /* Let the USB core know _both_ roothubs lost power. */
851                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
852                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
853
854                 xhci_dbg(xhci, "Stop HCD\n");
855                 xhci_halt(xhci);
856                 xhci_reset(xhci);
857                 spin_unlock_irq(&xhci->lock);
858                 xhci_cleanup_msix(xhci);
859
860 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
861                 /* Tell the event ring poll function not to reschedule */
862                 xhci->zombie = 1;
863                 del_timer_sync(&xhci->event_ring_timer);
864 #endif
865
866                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
867                 temp = xhci_readl(xhci, &xhci->op_regs->status);
868                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
869                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
870                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
871                                 &xhci->ir_set->irq_pending);
872                 xhci_print_ir_set(xhci, 0);
873
874                 xhci_dbg(xhci, "cleaning up memory\n");
875                 xhci_mem_cleanup(xhci);
876                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
877                             xhci_readl(xhci, &xhci->op_regs->status));
878
879                 /* USB core calls the PCI reinit and start functions twice:
880                  * first with the primary HCD, and then with the secondary HCD.
881                  * If we don't do the same, the host will never be started.
882                  */
883                 if (!usb_hcd_is_primary_hcd(hcd))
884                         secondary_hcd = hcd;
885                 else
886                         secondary_hcd = xhci->shared_hcd;
887
888                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
889                 retval = xhci_init(hcd->primary_hcd);
890                 if (retval)
891                         return retval;
892                 xhci_dbg(xhci, "Start the primary HCD\n");
893                 retval = xhci_run(hcd->primary_hcd);
894                 if (!retval) {
895                         xhci_dbg(xhci, "Start the secondary HCD\n");
896                         retval = xhci_run(secondary_hcd);
897                 }
898                 hcd->state = HC_STATE_SUSPENDED;
899                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
900                 goto done;
901         }
902
903         /* step 4: set Run/Stop bit */
904         command = xhci_readl(xhci, &xhci->op_regs->command);
905         command |= CMD_RUN;
906         xhci_writel(xhci, command, &xhci->op_regs->command);
907         handshake(xhci, &xhci->op_regs->status, STS_HALT,
908                   0, 250 * 1000);
909
910         /* step 5: walk topology and initialize portsc,
911          * portpmsc and portli
912          */
913         /* this is done in bus_resume */
914
915         /* step 6: restart each of the previously
916          * Running endpoints by ringing their doorbells
917          */
918
919         spin_unlock_irq(&xhci->lock);
920
921  done:
922         if (retval == 0) {
923                 usb_hcd_resume_root_hub(hcd);
924                 usb_hcd_resume_root_hub(xhci->shared_hcd);
925         }
926         return retval;
927 }
928 #endif  /* CONFIG_PM */
929
930 /*-------------------------------------------------------------------------*/
931
932 /**
933  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
934  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
935  * value to right shift 1 for the bitmask.
936  *
937  * Index  = (epnum * 2) + direction - 1,
938  * where direction = 0 for OUT, 1 for IN.
939  * For control endpoints, the IN index is used (OUT index is unused), so
940  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
941  */
942 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
943 {
944         unsigned int index;
945         if (usb_endpoint_xfer_control(desc))
946                 index = (unsigned int) (usb_endpoint_num(desc)*2);
947         else
948                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
949                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
950         return index;
951 }
952
953 /* Find the flag for this endpoint (for use in the control context).  Use the
954  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
955  * bit 1, etc.
956  */
957 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
958 {
959         return 1 << (xhci_get_endpoint_index(desc) + 1);
960 }
961
962 /* Find the flag for this endpoint (for use in the control context).  Use the
963  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
964  * bit 1, etc.
965  */
966 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
967 {
968         return 1 << (ep_index + 1);
969 }
970
971 /* Compute the last valid endpoint context index.  Basically, this is the
972  * endpoint index plus one.  For slot contexts with more than valid endpoint,
973  * we find the most significant bit set in the added contexts flags.
974  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
975  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
976  */
977 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
978 {
979         return fls(added_ctxs) - 1;
980 }
981
982 /* Returns 1 if the arguments are OK;
983  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
984  */
985 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
986                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
987                 const char *func) {
988         struct xhci_hcd *xhci;
989         struct xhci_virt_device *virt_dev;
990
991         if (!hcd || (check_ep && !ep) || !udev) {
992                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
993                                 func);
994                 return -EINVAL;
995         }
996         if (!udev->parent) {
997                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
998                                 func);
999                 return 0;
1000         }
1001
1002         xhci = hcd_to_xhci(hcd);
1003         if (xhci->xhc_state & XHCI_STATE_HALTED)
1004                 return -ENODEV;
1005
1006         if (check_virt_dev) {
1007                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1008                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
1009                                                 "device\n", func);
1010                         return -EINVAL;
1011                 }
1012
1013                 virt_dev = xhci->devs[udev->slot_id];
1014                 if (virt_dev->udev != udev) {
1015                         printk(KERN_DEBUG "xHCI %s called with udev and "
1016                                           "virt_dev does not match\n", func);
1017                         return -EINVAL;
1018                 }
1019         }
1020
1021         return 1;
1022 }
1023
1024 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1025                 struct usb_device *udev, struct xhci_command *command,
1026                 bool ctx_change, bool must_succeed);
1027
1028 /*
1029  * Full speed devices may have a max packet size greater than 8 bytes, but the
1030  * USB core doesn't know that until it reads the first 8 bytes of the
1031  * descriptor.  If the usb_device's max packet size changes after that point,
1032  * we need to issue an evaluate context command and wait on it.
1033  */
1034 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1035                 unsigned int ep_index, struct urb *urb)
1036 {
1037         struct xhci_container_ctx *in_ctx;
1038         struct xhci_container_ctx *out_ctx;
1039         struct xhci_input_control_ctx *ctrl_ctx;
1040         struct xhci_ep_ctx *ep_ctx;
1041         int max_packet_size;
1042         int hw_max_packet_size;
1043         int ret = 0;
1044
1045         out_ctx = xhci->devs[slot_id]->out_ctx;
1046         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1047         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1048         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1049         if (hw_max_packet_size != max_packet_size) {
1050                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1051                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1052                                 max_packet_size);
1053                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1054                                 hw_max_packet_size);
1055                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1056
1057                 /* Set up the modified control endpoint 0 */
1058                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1059                                 xhci->devs[slot_id]->out_ctx, ep_index);
1060                 in_ctx = xhci->devs[slot_id]->in_ctx;
1061                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1062                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1063                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1064
1065                 /* Set up the input context flags for the command */
1066                 /* FIXME: This won't work if a non-default control endpoint
1067                  * changes max packet sizes.
1068                  */
1069                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1070                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1071                 ctrl_ctx->drop_flags = 0;
1072
1073                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1074                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1075                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1076                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1077
1078                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1079                                 true, false);
1080
1081                 /* Clean up the input context for later use by bandwidth
1082                  * functions.
1083                  */
1084                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1085         }
1086         return ret;
1087 }
1088
1089 /*
1090  * non-error returns are a promise to giveback() the urb later
1091  * we drop ownership so next owner (or urb unlink) can get it
1092  */
1093 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1094 {
1095         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1096         struct xhci_td *buffer;
1097         unsigned long flags;
1098         int ret = 0;
1099         unsigned int slot_id, ep_index;
1100         struct urb_priv *urb_priv;
1101         int size, i;
1102
1103         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1104                                         true, true, __func__) <= 0)
1105                 return -EINVAL;
1106
1107         slot_id = urb->dev->slot_id;
1108         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1109
1110         if (!HCD_HW_ACCESSIBLE(hcd)) {
1111                 if (!in_interrupt())
1112                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1113                 ret = -ESHUTDOWN;
1114                 goto exit;
1115         }
1116
1117         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1118                 size = urb->number_of_packets;
1119         else
1120                 size = 1;
1121
1122         urb_priv = kzalloc(sizeof(struct urb_priv) +
1123                                   size * sizeof(struct xhci_td *), mem_flags);
1124         if (!urb_priv)
1125                 return -ENOMEM;
1126
1127         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1128         if (!buffer) {
1129                 kfree(urb_priv);
1130                 return -ENOMEM;
1131         }
1132
1133         for (i = 0; i < size; i++) {
1134                 urb_priv->td[i] = buffer;
1135                 buffer++;
1136         }
1137
1138         urb_priv->length = size;
1139         urb_priv->td_cnt = 0;
1140         urb->hcpriv = urb_priv;
1141
1142         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1143                 /* Check to see if the max packet size for the default control
1144                  * endpoint changed during FS device enumeration
1145                  */
1146                 if (urb->dev->speed == USB_SPEED_FULL) {
1147                         ret = xhci_check_maxpacket(xhci, slot_id,
1148                                         ep_index, urb);
1149                         if (ret < 0) {
1150                                 xhci_urb_free_priv(xhci, urb_priv);
1151                                 urb->hcpriv = NULL;
1152                                 return ret;
1153                         }
1154                 }
1155
1156                 /* We have a spinlock and interrupts disabled, so we must pass
1157                  * atomic context to this function, which may allocate memory.
1158                  */
1159                 spin_lock_irqsave(&xhci->lock, flags);
1160                 if (xhci->xhc_state & XHCI_STATE_DYING)
1161                         goto dying;
1162                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1163                                 slot_id, ep_index);
1164                 if (ret)
1165                         goto free_priv;
1166                 spin_unlock_irqrestore(&xhci->lock, flags);
1167         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1168                 spin_lock_irqsave(&xhci->lock, flags);
1169                 if (xhci->xhc_state & XHCI_STATE_DYING)
1170                         goto dying;
1171                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1172                                 EP_GETTING_STREAMS) {
1173                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1174                                         "is transitioning to using streams.\n");
1175                         ret = -EINVAL;
1176                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1177                                 EP_GETTING_NO_STREAMS) {
1178                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1179                                         "is transitioning to "
1180                                         "not having streams.\n");
1181                         ret = -EINVAL;
1182                 } else {
1183                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1184                                         slot_id, ep_index);
1185                 }
1186                 if (ret)
1187                         goto free_priv;
1188                 spin_unlock_irqrestore(&xhci->lock, flags);
1189         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1190                 spin_lock_irqsave(&xhci->lock, flags);
1191                 if (xhci->xhc_state & XHCI_STATE_DYING)
1192                         goto dying;
1193                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1194                                 slot_id, ep_index);
1195                 if (ret)
1196                         goto free_priv;
1197                 spin_unlock_irqrestore(&xhci->lock, flags);
1198         } else {
1199                 spin_lock_irqsave(&xhci->lock, flags);
1200                 if (xhci->xhc_state & XHCI_STATE_DYING)
1201                         goto dying;
1202                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1203                                 slot_id, ep_index);
1204                 if (ret)
1205                         goto free_priv;
1206                 spin_unlock_irqrestore(&xhci->lock, flags);
1207         }
1208 exit:
1209         return ret;
1210 dying:
1211         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1212                         "non-responsive xHCI host.\n",
1213                         urb->ep->desc.bEndpointAddress, urb);
1214         ret = -ESHUTDOWN;
1215 free_priv:
1216         xhci_urb_free_priv(xhci, urb_priv);
1217         urb->hcpriv = NULL;
1218         spin_unlock_irqrestore(&xhci->lock, flags);
1219         return ret;
1220 }
1221
1222 /* Get the right ring for the given URB.
1223  * If the endpoint supports streams, boundary check the URB's stream ID.
1224  * If the endpoint doesn't support streams, return the singular endpoint ring.
1225  */
1226 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1227                 struct urb *urb)
1228 {
1229         unsigned int slot_id;
1230         unsigned int ep_index;
1231         unsigned int stream_id;
1232         struct xhci_virt_ep *ep;
1233
1234         slot_id = urb->dev->slot_id;
1235         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1236         stream_id = urb->stream_id;
1237         ep = &xhci->devs[slot_id]->eps[ep_index];
1238         /* Common case: no streams */
1239         if (!(ep->ep_state & EP_HAS_STREAMS))
1240                 return ep->ring;
1241
1242         if (stream_id == 0) {
1243                 xhci_warn(xhci,
1244                                 "WARN: Slot ID %u, ep index %u has streams, "
1245                                 "but URB has no stream ID.\n",
1246                                 slot_id, ep_index);
1247                 return NULL;
1248         }
1249
1250         if (stream_id < ep->stream_info->num_streams)
1251                 return ep->stream_info->stream_rings[stream_id];
1252
1253         xhci_warn(xhci,
1254                         "WARN: Slot ID %u, ep index %u has "
1255                         "stream IDs 1 to %u allocated, "
1256                         "but stream ID %u is requested.\n",
1257                         slot_id, ep_index,
1258                         ep->stream_info->num_streams - 1,
1259                         stream_id);
1260         return NULL;
1261 }
1262
1263 /*
1264  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1265  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1266  * should pick up where it left off in the TD, unless a Set Transfer Ring
1267  * Dequeue Pointer is issued.
1268  *
1269  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1270  * the ring.  Since the ring is a contiguous structure, they can't be physically
1271  * removed.  Instead, there are two options:
1272  *
1273  *  1) If the HC is in the middle of processing the URB to be canceled, we
1274  *     simply move the ring's dequeue pointer past those TRBs using the Set
1275  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1276  *     when drivers timeout on the last submitted URB and attempt to cancel.
1277  *
1278  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1279  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1280  *     HC will need to invalidate the any TRBs it has cached after the stop
1281  *     endpoint command, as noted in the xHCI 0.95 errata.
1282  *
1283  *  3) The TD may have completed by the time the Stop Endpoint Command
1284  *     completes, so software needs to handle that case too.
1285  *
1286  * This function should protect against the TD enqueueing code ringing the
1287  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1288  * It also needs to account for multiple cancellations on happening at the same
1289  * time for the same endpoint.
1290  *
1291  * Note that this function can be called in any context, or so says
1292  * usb_hcd_unlink_urb()
1293  */
1294 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1295 {
1296         unsigned long flags;
1297         int ret, i;
1298         u32 temp;
1299         struct xhci_hcd *xhci;
1300         struct urb_priv *urb_priv;
1301         struct xhci_td *td;
1302         unsigned int ep_index;
1303         struct xhci_ring *ep_ring;
1304         struct xhci_virt_ep *ep;
1305
1306         xhci = hcd_to_xhci(hcd);
1307         spin_lock_irqsave(&xhci->lock, flags);
1308         /* Make sure the URB hasn't completed or been unlinked already */
1309         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1310         if (ret || !urb->hcpriv)
1311                 goto done;
1312         temp = xhci_readl(xhci, &xhci->op_regs->status);
1313         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1314                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1315                 urb_priv = urb->hcpriv;
1316                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1317                         td = urb_priv->td[i];
1318                         if (!list_empty(&td->td_list))
1319                                 list_del_init(&td->td_list);
1320                         if (!list_empty(&td->cancelled_td_list))
1321                                 list_del_init(&td->cancelled_td_list);
1322                 }
1323
1324                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1325                 spin_unlock_irqrestore(&xhci->lock, flags);
1326                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1327                 xhci_urb_free_priv(xhci, urb_priv);
1328                 return ret;
1329         }
1330         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1331                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1332                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1333                                 "non-responsive xHCI host.\n",
1334                                 urb->ep->desc.bEndpointAddress, urb);
1335                 /* Let the stop endpoint command watchdog timer (which set this
1336                  * state) finish cleaning up the endpoint TD lists.  We must
1337                  * have caught it in the middle of dropping a lock and giving
1338                  * back an URB.
1339                  */
1340                 goto done;
1341         }
1342
1343         xhci_dbg(xhci, "Cancel URB %p\n", urb);
1344         xhci_dbg(xhci, "Event ring:\n");
1345         xhci_debug_ring(xhci, xhci->event_ring);
1346         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1347         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1348         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1349         if (!ep_ring) {
1350                 ret = -EINVAL;
1351                 goto done;
1352         }
1353
1354         xhci_dbg(xhci, "Endpoint ring:\n");
1355         xhci_debug_ring(xhci, ep_ring);
1356
1357         urb_priv = urb->hcpriv;
1358
1359         for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1360                 td = urb_priv->td[i];
1361                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1362         }
1363
1364         /* Queue a stop endpoint command, but only if this is
1365          * the first cancellation to be handled.
1366          */
1367         if (!(ep->ep_state & EP_HALT_PENDING)) {
1368                 ep->ep_state |= EP_HALT_PENDING;
1369                 ep->stop_cmds_pending++;
1370                 ep->stop_cmd_timer.expires = jiffies +
1371                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1372                 add_timer(&ep->stop_cmd_timer);
1373                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1374                 xhci_ring_cmd_db(xhci);
1375         }
1376 done:
1377         spin_unlock_irqrestore(&xhci->lock, flags);
1378         return ret;
1379 }
1380
1381 /* Drop an endpoint from a new bandwidth configuration for this device.
1382  * Only one call to this function is allowed per endpoint before
1383  * check_bandwidth() or reset_bandwidth() must be called.
1384  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1385  * add the endpoint to the schedule with possibly new parameters denoted by a
1386  * different endpoint descriptor in usb_host_endpoint.
1387  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1388  * not allowed.
1389  *
1390  * The USB core will not allow URBs to be queued to an endpoint that is being
1391  * disabled, so there's no need for mutual exclusion to protect
1392  * the xhci->devs[slot_id] structure.
1393  */
1394 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1395                 struct usb_host_endpoint *ep)
1396 {
1397         struct xhci_hcd *xhci;
1398         struct xhci_container_ctx *in_ctx, *out_ctx;
1399         struct xhci_input_control_ctx *ctrl_ctx;
1400         struct xhci_slot_ctx *slot_ctx;
1401         unsigned int last_ctx;
1402         unsigned int ep_index;
1403         struct xhci_ep_ctx *ep_ctx;
1404         u32 drop_flag;
1405         u32 new_add_flags, new_drop_flags, new_slot_info;
1406         int ret;
1407
1408         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1409         if (ret <= 0)
1410                 return ret;
1411         xhci = hcd_to_xhci(hcd);
1412         if (xhci->xhc_state & XHCI_STATE_DYING)
1413                 return -ENODEV;
1414
1415         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1416         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1417         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1418                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1419                                 __func__, drop_flag);
1420                 return 0;
1421         }
1422
1423         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1424         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1425         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1426         ep_index = xhci_get_endpoint_index(&ep->desc);
1427         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1428         /* If the HC already knows the endpoint is disabled,
1429          * or the HCD has noted it is disabled, ignore this request
1430          */
1431         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1432              cpu_to_le32(EP_STATE_DISABLED)) ||
1433             le32_to_cpu(ctrl_ctx->drop_flags) &
1434             xhci_get_endpoint_flag(&ep->desc)) {
1435                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1436                                 __func__, ep);
1437                 return 0;
1438         }
1439
1440         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1441         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1442
1443         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1444         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1445
1446         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1447         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1448         /* Update the last valid endpoint context, if we deleted the last one */
1449         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1450             LAST_CTX(last_ctx)) {
1451                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1452                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1453         }
1454         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1455
1456         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1457
1458         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1459                         (unsigned int) ep->desc.bEndpointAddress,
1460                         udev->slot_id,
1461                         (unsigned int) new_drop_flags,
1462                         (unsigned int) new_add_flags,
1463                         (unsigned int) new_slot_info);
1464         return 0;
1465 }
1466
1467 /* Add an endpoint to a new possible bandwidth configuration for this device.
1468  * Only one call to this function is allowed per endpoint before
1469  * check_bandwidth() or reset_bandwidth() must be called.
1470  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1471  * add the endpoint to the schedule with possibly new parameters denoted by a
1472  * different endpoint descriptor in usb_host_endpoint.
1473  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1474  * not allowed.
1475  *
1476  * The USB core will not allow URBs to be queued to an endpoint until the
1477  * configuration or alt setting is installed in the device, so there's no need
1478  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1479  */
1480 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1481                 struct usb_host_endpoint *ep)
1482 {
1483         struct xhci_hcd *xhci;
1484         struct xhci_container_ctx *in_ctx, *out_ctx;
1485         unsigned int ep_index;
1486         struct xhci_ep_ctx *ep_ctx;
1487         struct xhci_slot_ctx *slot_ctx;
1488         struct xhci_input_control_ctx *ctrl_ctx;
1489         u32 added_ctxs;
1490         unsigned int last_ctx;
1491         u32 new_add_flags, new_drop_flags, new_slot_info;
1492         struct xhci_virt_device *virt_dev;
1493         int ret = 0;
1494
1495         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1496         if (ret <= 0) {
1497                 /* So we won't queue a reset ep command for a root hub */
1498                 ep->hcpriv = NULL;
1499                 return ret;
1500         }
1501         xhci = hcd_to_xhci(hcd);
1502         if (xhci->xhc_state & XHCI_STATE_DYING)
1503                 return -ENODEV;
1504
1505         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1506         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1507         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1508                 /* FIXME when we have to issue an evaluate endpoint command to
1509                  * deal with ep0 max packet size changing once we get the
1510                  * descriptors
1511                  */
1512                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1513                                 __func__, added_ctxs);
1514                 return 0;
1515         }
1516
1517         virt_dev = xhci->devs[udev->slot_id];
1518         in_ctx = virt_dev->in_ctx;
1519         out_ctx = virt_dev->out_ctx;
1520         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1521         ep_index = xhci_get_endpoint_index(&ep->desc);
1522         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1523
1524         /* If this endpoint is already in use, and the upper layers are trying
1525          * to add it again without dropping it, reject the addition.
1526          */
1527         if (virt_dev->eps[ep_index].ring &&
1528                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1529                                 xhci_get_endpoint_flag(&ep->desc))) {
1530                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1531                                 "without dropping it.\n",
1532                                 (unsigned int) ep->desc.bEndpointAddress);
1533                 return -EINVAL;
1534         }
1535
1536         /* If the HCD has already noted the endpoint is enabled,
1537          * ignore this request.
1538          */
1539         if (le32_to_cpu(ctrl_ctx->add_flags) &
1540             xhci_get_endpoint_flag(&ep->desc)) {
1541                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1542                                 __func__, ep);
1543                 return 0;
1544         }
1545
1546         /*
1547          * Configuration and alternate setting changes must be done in
1548          * process context, not interrupt context (or so documenation
1549          * for usb_set_interface() and usb_set_configuration() claim).
1550          */
1551         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1552                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1553                                 __func__, ep->desc.bEndpointAddress);
1554                 return -ENOMEM;
1555         }
1556
1557         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1558         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1559
1560         /* If xhci_endpoint_disable() was called for this endpoint, but the
1561          * xHC hasn't been notified yet through the check_bandwidth() call,
1562          * this re-adds a new state for the endpoint from the new endpoint
1563          * descriptors.  We must drop and re-add this endpoint, so we leave the
1564          * drop flags alone.
1565          */
1566         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1567
1568         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1569         /* Update the last valid endpoint context, if we just added one past */
1570         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1571             LAST_CTX(last_ctx)) {
1572                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1573                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1574         }
1575         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1576
1577         /* Store the usb_device pointer for later use */
1578         ep->hcpriv = udev;
1579
1580         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1581                         (unsigned int) ep->desc.bEndpointAddress,
1582                         udev->slot_id,
1583                         (unsigned int) new_drop_flags,
1584                         (unsigned int) new_add_flags,
1585                         (unsigned int) new_slot_info);
1586         return 0;
1587 }
1588
1589 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1590 {
1591         struct xhci_input_control_ctx *ctrl_ctx;
1592         struct xhci_ep_ctx *ep_ctx;
1593         struct xhci_slot_ctx *slot_ctx;
1594         int i;
1595
1596         /* When a device's add flag and drop flag are zero, any subsequent
1597          * configure endpoint command will leave that endpoint's state
1598          * untouched.  Make sure we don't leave any old state in the input
1599          * endpoint contexts.
1600          */
1601         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1602         ctrl_ctx->drop_flags = 0;
1603         ctrl_ctx->add_flags = 0;
1604         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1605         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1606         /* Endpoint 0 is always valid */
1607         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1608         for (i = 1; i < 31; ++i) {
1609                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1610                 ep_ctx->ep_info = 0;
1611                 ep_ctx->ep_info2 = 0;
1612                 ep_ctx->deq = 0;
1613                 ep_ctx->tx_info = 0;
1614         }
1615 }
1616
1617 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1618                 struct usb_device *udev, u32 *cmd_status)
1619 {
1620         int ret;
1621
1622         switch (*cmd_status) {
1623         case COMP_ENOMEM:
1624                 dev_warn(&udev->dev, "Not enough host controller resources "
1625                                 "for new device state.\n");
1626                 ret = -ENOMEM;
1627                 /* FIXME: can we allocate more resources for the HC? */
1628                 break;
1629         case COMP_BW_ERR:
1630         case COMP_2ND_BW_ERR:
1631                 dev_warn(&udev->dev, "Not enough bandwidth "
1632                                 "for new device state.\n");
1633                 ret = -ENOSPC;
1634                 /* FIXME: can we go back to the old state? */
1635                 break;
1636         case COMP_TRB_ERR:
1637                 /* the HCD set up something wrong */
1638                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1639                                 "add flag = 1, "
1640                                 "and endpoint is not disabled.\n");
1641                 ret = -EINVAL;
1642                 break;
1643         case COMP_DEV_ERR:
1644                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1645                                 "configure command.\n");
1646                 ret = -ENODEV;
1647                 break;
1648         case COMP_SUCCESS:
1649                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1650                 ret = 0;
1651                 break;
1652         default:
1653                 xhci_err(xhci, "ERROR: unexpected command completion "
1654                                 "code 0x%x.\n", *cmd_status);
1655                 ret = -EINVAL;
1656                 break;
1657         }
1658         return ret;
1659 }
1660
1661 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1662                 struct usb_device *udev, u32 *cmd_status)
1663 {
1664         int ret;
1665         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1666
1667         switch (*cmd_status) {
1668         case COMP_EINVAL:
1669                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1670                                 "context command.\n");
1671                 ret = -EINVAL;
1672                 break;
1673         case COMP_EBADSLT:
1674                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1675                                 "evaluate context command.\n");
1676         case COMP_CTX_STATE:
1677                 dev_warn(&udev->dev, "WARN: invalid context state for "
1678                                 "evaluate context command.\n");
1679                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1680                 ret = -EINVAL;
1681                 break;
1682         case COMP_DEV_ERR:
1683                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1684                                 "context command.\n");
1685                 ret = -ENODEV;
1686                 break;
1687         case COMP_MEL_ERR:
1688                 /* Max Exit Latency too large error */
1689                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1690                 ret = -EINVAL;
1691                 break;
1692         case COMP_SUCCESS:
1693                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1694                 ret = 0;
1695                 break;
1696         default:
1697                 xhci_err(xhci, "ERROR: unexpected command completion "
1698                                 "code 0x%x.\n", *cmd_status);
1699                 ret = -EINVAL;
1700                 break;
1701         }
1702         return ret;
1703 }
1704
1705 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1706                 struct xhci_container_ctx *in_ctx)
1707 {
1708         struct xhci_input_control_ctx *ctrl_ctx;
1709         u32 valid_add_flags;
1710         u32 valid_drop_flags;
1711
1712         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1713         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1714          * (bit 1).  The default control endpoint is added during the Address
1715          * Device command and is never removed until the slot is disabled.
1716          */
1717         valid_add_flags = ctrl_ctx->add_flags >> 2;
1718         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1719
1720         /* Use hweight32 to count the number of ones in the add flags, or
1721          * number of endpoints added.  Don't count endpoints that are changed
1722          * (both added and dropped).
1723          */
1724         return hweight32(valid_add_flags) -
1725                 hweight32(valid_add_flags & valid_drop_flags);
1726 }
1727
1728 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1729                 struct xhci_container_ctx *in_ctx)
1730 {
1731         struct xhci_input_control_ctx *ctrl_ctx;
1732         u32 valid_add_flags;
1733         u32 valid_drop_flags;
1734
1735         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1736         valid_add_flags = ctrl_ctx->add_flags >> 2;
1737         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1738
1739         return hweight32(valid_drop_flags) -
1740                 hweight32(valid_add_flags & valid_drop_flags);
1741 }
1742
1743 /*
1744  * We need to reserve the new number of endpoints before the configure endpoint
1745  * command completes.  We can't subtract the dropped endpoints from the number
1746  * of active endpoints until the command completes because we can oversubscribe
1747  * the host in this case:
1748  *
1749  *  - the first configure endpoint command drops more endpoints than it adds
1750  *  - a second configure endpoint command that adds more endpoints is queued
1751  *  - the first configure endpoint command fails, so the config is unchanged
1752  *  - the second command may succeed, even though there isn't enough resources
1753  *
1754  * Must be called with xhci->lock held.
1755  */
1756 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1757                 struct xhci_container_ctx *in_ctx)
1758 {
1759         u32 added_eps;
1760
1761         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1762         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1763                 xhci_dbg(xhci, "Not enough ep ctxs: "
1764                                 "%u active, need to add %u, limit is %u.\n",
1765                                 xhci->num_active_eps, added_eps,
1766                                 xhci->limit_active_eps);
1767                 return -ENOMEM;
1768         }
1769         xhci->num_active_eps += added_eps;
1770         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1771                         xhci->num_active_eps);
1772         return 0;
1773 }
1774
1775 /*
1776  * The configure endpoint was failed by the xHC for some other reason, so we
1777  * need to revert the resources that failed configuration would have used.
1778  *
1779  * Must be called with xhci->lock held.
1780  */
1781 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1782                 struct xhci_container_ctx *in_ctx)
1783 {
1784         u32 num_failed_eps;
1785
1786         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1787         xhci->num_active_eps -= num_failed_eps;
1788         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1789                         num_failed_eps,
1790                         xhci->num_active_eps);
1791 }
1792
1793 /*
1794  * Now that the command has completed, clean up the active endpoint count by
1795  * subtracting out the endpoints that were dropped (but not changed).
1796  *
1797  * Must be called with xhci->lock held.
1798  */
1799 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1800                 struct xhci_container_ctx *in_ctx)
1801 {
1802         u32 num_dropped_eps;
1803
1804         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1805         xhci->num_active_eps -= num_dropped_eps;
1806         if (num_dropped_eps)
1807                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1808                                 num_dropped_eps,
1809                                 xhci->num_active_eps);
1810 }
1811
1812 unsigned int xhci_get_block_size(struct usb_device *udev)
1813 {
1814         switch (udev->speed) {
1815         case USB_SPEED_LOW:
1816         case USB_SPEED_FULL:
1817                 return FS_BLOCK;
1818         case USB_SPEED_HIGH:
1819                 return HS_BLOCK;
1820         case USB_SPEED_SUPER:
1821                 return SS_BLOCK;
1822         case USB_SPEED_UNKNOWN:
1823         case USB_SPEED_WIRELESS:
1824         default:
1825                 /* Should never happen */
1826                 return 1;
1827         }
1828 }
1829
1830 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1831 {
1832         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1833                 return LS_OVERHEAD;
1834         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1835                 return FS_OVERHEAD;
1836         return HS_OVERHEAD;
1837 }
1838
1839 /* If we are changing a LS/FS device under a HS hub,
1840  * make sure (if we are activating a new TT) that the HS bus has enough
1841  * bandwidth for this new TT.
1842  */
1843 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1844                 struct xhci_virt_device *virt_dev,
1845                 int old_active_eps)
1846 {
1847         struct xhci_interval_bw_table *bw_table;
1848         struct xhci_tt_bw_info *tt_info;
1849
1850         /* Find the bandwidth table for the root port this TT is attached to. */
1851         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1852         tt_info = virt_dev->tt_info;
1853         /* If this TT already had active endpoints, the bandwidth for this TT
1854          * has already been added.  Removing all periodic endpoints (and thus
1855          * making the TT enactive) will only decrease the bandwidth used.
1856          */
1857         if (old_active_eps)
1858                 return 0;
1859         if (old_active_eps == 0 && tt_info->active_eps != 0) {
1860                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
1861                         return -ENOMEM;
1862                 return 0;
1863         }
1864         /* Not sure why we would have no new active endpoints...
1865          *
1866          * Maybe because of an Evaluate Context change for a hub update or a
1867          * control endpoint 0 max packet size change?
1868          * FIXME: skip the bandwidth calculation in that case.
1869          */
1870         return 0;
1871 }
1872
1873 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
1874                 struct xhci_virt_device *virt_dev)
1875 {
1876         unsigned int bw_reserved;
1877
1878         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
1879         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
1880                 return -ENOMEM;
1881
1882         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
1883         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
1884                 return -ENOMEM;
1885
1886         return 0;
1887 }
1888
1889 /*
1890  * This algorithm is a very conservative estimate of the worst-case scheduling
1891  * scenario for any one interval.  The hardware dynamically schedules the
1892  * packets, so we can't tell which microframe could be the limiting factor in
1893  * the bandwidth scheduling.  This only takes into account periodic endpoints.
1894  *
1895  * Obviously, we can't solve an NP complete problem to find the minimum worst
1896  * case scenario.  Instead, we come up with an estimate that is no less than
1897  * the worst case bandwidth used for any one microframe, but may be an
1898  * over-estimate.
1899  *
1900  * We walk the requirements for each endpoint by interval, starting with the
1901  * smallest interval, and place packets in the schedule where there is only one
1902  * possible way to schedule packets for that interval.  In order to simplify
1903  * this algorithm, we record the largest max packet size for each interval, and
1904  * assume all packets will be that size.
1905  *
1906  * For interval 0, we obviously must schedule all packets for each interval.
1907  * The bandwidth for interval 0 is just the amount of data to be transmitted
1908  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
1909  * the number of packets).
1910  *
1911  * For interval 1, we have two possible microframes to schedule those packets
1912  * in.  For this algorithm, if we can schedule the same number of packets for
1913  * each possible scheduling opportunity (each microframe), we will do so.  The
1914  * remaining number of packets will be saved to be transmitted in the gaps in
1915  * the next interval's scheduling sequence.
1916  *
1917  * As we move those remaining packets to be scheduled with interval 2 packets,
1918  * we have to double the number of remaining packets to transmit.  This is
1919  * because the intervals are actually powers of 2, and we would be transmitting
1920  * the previous interval's packets twice in this interval.  We also have to be
1921  * sure that when we look at the largest max packet size for this interval, we
1922  * also look at the largest max packet size for the remaining packets and take
1923  * the greater of the two.
1924  *
1925  * The algorithm continues to evenly distribute packets in each scheduling
1926  * opportunity, and push the remaining packets out, until we get to the last
1927  * interval.  Then those packets and their associated overhead are just added
1928  * to the bandwidth used.
1929  */
1930 static int xhci_check_bw_table(struct xhci_hcd *xhci,
1931                 struct xhci_virt_device *virt_dev,
1932                 int old_active_eps)
1933 {
1934         unsigned int bw_reserved;
1935         unsigned int max_bandwidth;
1936         unsigned int bw_used;
1937         unsigned int block_size;
1938         struct xhci_interval_bw_table *bw_table;
1939         unsigned int packet_size = 0;
1940         unsigned int overhead = 0;
1941         unsigned int packets_transmitted = 0;
1942         unsigned int packets_remaining = 0;
1943         unsigned int i;
1944
1945         if (virt_dev->udev->speed == USB_SPEED_SUPER)
1946                 return xhci_check_ss_bw(xhci, virt_dev);
1947
1948         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
1949                 max_bandwidth = HS_BW_LIMIT;
1950                 /* Convert percent of bus BW reserved to blocks reserved */
1951                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
1952         } else {
1953                 max_bandwidth = FS_BW_LIMIT;
1954                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
1955         }
1956
1957         bw_table = virt_dev->bw_table;
1958         /* We need to translate the max packet size and max ESIT payloads into
1959          * the units the hardware uses.
1960          */
1961         block_size = xhci_get_block_size(virt_dev->udev);
1962
1963         /* If we are manipulating a LS/FS device under a HS hub, double check
1964          * that the HS bus has enough bandwidth if we are activing a new TT.
1965          */
1966         if (virt_dev->tt_info) {
1967                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1968                                 virt_dev->real_port);
1969                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
1970                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
1971                                         "newly activated TT.\n");
1972                         return -ENOMEM;
1973                 }
1974                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
1975                                 virt_dev->tt_info->slot_id,
1976                                 virt_dev->tt_info->ttport);
1977         } else {
1978                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1979                                 virt_dev->real_port);
1980         }
1981
1982         /* Add in how much bandwidth will be used for interval zero, or the
1983          * rounded max ESIT payload + number of packets * largest overhead.
1984          */
1985         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
1986                 bw_table->interval_bw[0].num_packets *
1987                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
1988
1989         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
1990                 unsigned int bw_added;
1991                 unsigned int largest_mps;
1992                 unsigned int interval_overhead;
1993
1994                 /*
1995                  * How many packets could we transmit in this interval?
1996                  * If packets didn't fit in the previous interval, we will need
1997                  * to transmit that many packets twice within this interval.
1998                  */
1999                 packets_remaining = 2 * packets_remaining +
2000                         bw_table->interval_bw[i].num_packets;
2001
2002                 /* Find the largest max packet size of this or the previous
2003                  * interval.
2004                  */
2005                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2006                         largest_mps = 0;
2007                 else {
2008                         struct xhci_virt_ep *virt_ep;
2009                         struct list_head *ep_entry;
2010
2011                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2012                         virt_ep = list_entry(ep_entry,
2013                                         struct xhci_virt_ep, bw_endpoint_list);
2014                         /* Convert to blocks, rounding up */
2015                         largest_mps = DIV_ROUND_UP(
2016                                         virt_ep->bw_info.max_packet_size,
2017                                         block_size);
2018                 }
2019                 if (largest_mps > packet_size)
2020                         packet_size = largest_mps;
2021
2022                 /* Use the larger overhead of this or the previous interval. */
2023                 interval_overhead = xhci_get_largest_overhead(
2024                                 &bw_table->interval_bw[i]);
2025                 if (interval_overhead > overhead)
2026                         overhead = interval_overhead;
2027
2028                 /* How many packets can we evenly distribute across
2029                  * (1 << (i + 1)) possible scheduling opportunities?
2030                  */
2031                 packets_transmitted = packets_remaining >> (i + 1);
2032
2033                 /* Add in the bandwidth used for those scheduled packets */
2034                 bw_added = packets_transmitted * (overhead + packet_size);
2035
2036                 /* How many packets do we have remaining to transmit? */
2037                 packets_remaining = packets_remaining % (1 << (i + 1));
2038
2039                 /* What largest max packet size should those packets have? */
2040                 /* If we've transmitted all packets, don't carry over the
2041                  * largest packet size.
2042                  */
2043                 if (packets_remaining == 0) {
2044                         packet_size = 0;
2045                         overhead = 0;
2046                 } else if (packets_transmitted > 0) {
2047                         /* Otherwise if we do have remaining packets, and we've
2048                          * scheduled some packets in this interval, take the
2049                          * largest max packet size from endpoints with this
2050                          * interval.
2051                          */
2052                         packet_size = largest_mps;
2053                         overhead = interval_overhead;
2054                 }
2055                 /* Otherwise carry over packet_size and overhead from the last
2056                  * time we had a remainder.
2057                  */
2058                 bw_used += bw_added;
2059                 if (bw_used > max_bandwidth) {
2060                         xhci_warn(xhci, "Not enough bandwidth. "
2061                                         "Proposed: %u, Max: %u\n",
2062                                 bw_used, max_bandwidth);
2063                         return -ENOMEM;
2064                 }
2065         }
2066         /*
2067          * Ok, we know we have some packets left over after even-handedly
2068          * scheduling interval 15.  We don't know which microframes they will
2069          * fit into, so we over-schedule and say they will be scheduled every
2070          * microframe.
2071          */
2072         if (packets_remaining > 0)
2073                 bw_used += overhead + packet_size;
2074
2075         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2076                 unsigned int port_index = virt_dev->real_port - 1;
2077
2078                 /* OK, we're manipulating a HS device attached to a
2079                  * root port bandwidth domain.  Include the number of active TTs
2080                  * in the bandwidth used.
2081                  */
2082                 bw_used += TT_HS_OVERHEAD *
2083                         xhci->rh_bw[port_index].num_active_tts;
2084         }
2085
2086         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2087                 "Available: %u " "percent\n",
2088                 bw_used, max_bandwidth, bw_reserved,
2089                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2090                 max_bandwidth);
2091
2092         bw_used += bw_reserved;
2093         if (bw_used > max_bandwidth) {
2094                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2095                                 bw_used, max_bandwidth);
2096                 return -ENOMEM;
2097         }
2098
2099         bw_table->bw_used = bw_used;
2100         return 0;
2101 }
2102
2103 static bool xhci_is_async_ep(unsigned int ep_type)
2104 {
2105         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2106                                         ep_type != ISOC_IN_EP &&
2107                                         ep_type != INT_IN_EP);
2108 }
2109
2110 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2111 {
2112         return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2113 }
2114
2115 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2116 {
2117         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2118
2119         if (ep_bw->ep_interval == 0)
2120                 return SS_OVERHEAD_BURST +
2121                         (ep_bw->mult * ep_bw->num_packets *
2122                                         (SS_OVERHEAD + mps));
2123         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2124                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2125                                 1 << ep_bw->ep_interval);
2126
2127 }
2128
2129 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2130                 struct xhci_bw_info *ep_bw,
2131                 struct xhci_interval_bw_table *bw_table,
2132                 struct usb_device *udev,
2133                 struct xhci_virt_ep *virt_ep,
2134                 struct xhci_tt_bw_info *tt_info)
2135 {
2136         struct xhci_interval_bw *interval_bw;
2137         int normalized_interval;
2138
2139         if (xhci_is_async_ep(ep_bw->type))
2140                 return;
2141
2142         if (udev->speed == USB_SPEED_SUPER) {
2143                 if (xhci_is_sync_in_ep(ep_bw->type))
2144                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2145                                 xhci_get_ss_bw_consumed(ep_bw);
2146                 else
2147                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2148                                 xhci_get_ss_bw_consumed(ep_bw);
2149                 return;
2150         }
2151
2152         /* SuperSpeed endpoints never get added to intervals in the table, so
2153          * this check is only valid for HS/FS/LS devices.
2154          */
2155         if (list_empty(&virt_ep->bw_endpoint_list))
2156                 return;
2157         /* For LS/FS devices, we need to translate the interval expressed in
2158          * microframes to frames.
2159          */
2160         if (udev->speed == USB_SPEED_HIGH)
2161                 normalized_interval = ep_bw->ep_interval;
2162         else
2163                 normalized_interval = ep_bw->ep_interval - 3;
2164
2165         if (normalized_interval == 0)
2166                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2167         interval_bw = &bw_table->interval_bw[normalized_interval];
2168         interval_bw->num_packets -= ep_bw->num_packets;
2169         switch (udev->speed) {
2170         case USB_SPEED_LOW:
2171                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2172                 break;
2173         case USB_SPEED_FULL:
2174                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2175                 break;
2176         case USB_SPEED_HIGH:
2177                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2178                 break;
2179         case USB_SPEED_SUPER:
2180         case USB_SPEED_UNKNOWN:
2181         case USB_SPEED_WIRELESS:
2182                 /* Should never happen because only LS/FS/HS endpoints will get
2183                  * added to the endpoint list.
2184                  */
2185                 return;
2186         }
2187         if (tt_info)
2188                 tt_info->active_eps -= 1;
2189         list_del_init(&virt_ep->bw_endpoint_list);
2190 }
2191
2192 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2193                 struct xhci_bw_info *ep_bw,
2194                 struct xhci_interval_bw_table *bw_table,
2195                 struct usb_device *udev,
2196                 struct xhci_virt_ep *virt_ep,
2197                 struct xhci_tt_bw_info *tt_info)
2198 {
2199         struct xhci_interval_bw *interval_bw;
2200         struct xhci_virt_ep *smaller_ep;
2201         int normalized_interval;
2202
2203         if (xhci_is_async_ep(ep_bw->type))
2204                 return;
2205
2206         if (udev->speed == USB_SPEED_SUPER) {
2207                 if (xhci_is_sync_in_ep(ep_bw->type))
2208                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2209                                 xhci_get_ss_bw_consumed(ep_bw);
2210                 else
2211                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2212                                 xhci_get_ss_bw_consumed(ep_bw);
2213                 return;
2214         }
2215
2216         /* For LS/FS devices, we need to translate the interval expressed in
2217          * microframes to frames.
2218          */
2219         if (udev->speed == USB_SPEED_HIGH)
2220                 normalized_interval = ep_bw->ep_interval;
2221         else
2222                 normalized_interval = ep_bw->ep_interval - 3;
2223
2224         if (normalized_interval == 0)
2225                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2226         interval_bw = &bw_table->interval_bw[normalized_interval];
2227         interval_bw->num_packets += ep_bw->num_packets;
2228         switch (udev->speed) {
2229         case USB_SPEED_LOW:
2230                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2231                 break;
2232         case USB_SPEED_FULL:
2233                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2234                 break;
2235         case USB_SPEED_HIGH:
2236                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2237                 break;
2238         case USB_SPEED_SUPER:
2239         case USB_SPEED_UNKNOWN:
2240         case USB_SPEED_WIRELESS:
2241                 /* Should never happen because only LS/FS/HS endpoints will get
2242                  * added to the endpoint list.
2243                  */
2244                 return;
2245         }
2246
2247         if (tt_info)
2248                 tt_info->active_eps += 1;
2249         /* Insert the endpoint into the list, largest max packet size first. */
2250         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2251                         bw_endpoint_list) {
2252                 if (ep_bw->max_packet_size >=
2253                                 smaller_ep->bw_info.max_packet_size) {
2254                         /* Add the new ep before the smaller endpoint */
2255                         list_add_tail(&virt_ep->bw_endpoint_list,
2256                                         &smaller_ep->bw_endpoint_list);
2257                         return;
2258                 }
2259         }
2260         /* Add the new endpoint at the end of the list. */
2261         list_add_tail(&virt_ep->bw_endpoint_list,
2262                         &interval_bw->endpoints);
2263 }
2264
2265 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2266                 struct xhci_virt_device *virt_dev,
2267                 int old_active_eps)
2268 {
2269         struct xhci_root_port_bw_info *rh_bw_info;
2270         if (!virt_dev->tt_info)
2271                 return;
2272
2273         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2274         if (old_active_eps == 0 &&
2275                                 virt_dev->tt_info->active_eps != 0) {
2276                 rh_bw_info->num_active_tts += 1;
2277                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2278         } else if (old_active_eps != 0 &&
2279                                 virt_dev->tt_info->active_eps == 0) {
2280                 rh_bw_info->num_active_tts -= 1;
2281                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2282         }
2283 }
2284
2285 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2286                 struct xhci_virt_device *virt_dev,
2287                 struct xhci_container_ctx *in_ctx)
2288 {
2289         struct xhci_bw_info ep_bw_info[31];
2290         int i;
2291         struct xhci_input_control_ctx *ctrl_ctx;
2292         int old_active_eps = 0;
2293
2294         if (virt_dev->tt_info)
2295                 old_active_eps = virt_dev->tt_info->active_eps;
2296
2297         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2298
2299         for (i = 0; i < 31; i++) {
2300                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2301                         continue;
2302
2303                 /* Make a copy of the BW info in case we need to revert this */
2304                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2305                                 sizeof(ep_bw_info[i]));
2306                 /* Drop the endpoint from the interval table if the endpoint is
2307                  * being dropped or changed.
2308                  */
2309                 if (EP_IS_DROPPED(ctrl_ctx, i))
2310                         xhci_drop_ep_from_interval_table(xhci,
2311                                         &virt_dev->eps[i].bw_info,
2312                                         virt_dev->bw_table,
2313                                         virt_dev->udev,
2314                                         &virt_dev->eps[i],
2315                                         virt_dev->tt_info);
2316         }
2317         /* Overwrite the information stored in the endpoints' bw_info */
2318         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2319         for (i = 0; i < 31; i++) {
2320                 /* Add any changed or added endpoints to the interval table */
2321                 if (EP_IS_ADDED(ctrl_ctx, i))
2322                         xhci_add_ep_to_interval_table(xhci,
2323                                         &virt_dev->eps[i].bw_info,
2324                                         virt_dev->bw_table,
2325                                         virt_dev->udev,
2326                                         &virt_dev->eps[i],
2327                                         virt_dev->tt_info);
2328         }
2329
2330         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2331                 /* Ok, this fits in the bandwidth we have.
2332                  * Update the number of active TTs.
2333                  */
2334                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2335                 return 0;
2336         }
2337
2338         /* We don't have enough bandwidth for this, revert the stored info. */
2339         for (i = 0; i < 31; i++) {
2340                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2341                         continue;
2342
2343                 /* Drop the new copies of any added or changed endpoints from
2344                  * the interval table.
2345                  */
2346                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2347                         xhci_drop_ep_from_interval_table(xhci,
2348                                         &virt_dev->eps[i].bw_info,
2349                                         virt_dev->bw_table,
2350                                         virt_dev->udev,
2351                                         &virt_dev->eps[i],
2352                                         virt_dev->tt_info);
2353                 }
2354                 /* Revert the endpoint back to its old information */
2355                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2356                                 sizeof(ep_bw_info[i]));
2357                 /* Add any changed or dropped endpoints back into the table */
2358                 if (EP_IS_DROPPED(ctrl_ctx, i))
2359                         xhci_add_ep_to_interval_table(xhci,
2360                                         &virt_dev->eps[i].bw_info,
2361                                         virt_dev->bw_table,
2362                                         virt_dev->udev,
2363                                         &virt_dev->eps[i],
2364                                         virt_dev->tt_info);
2365         }
2366         return -ENOMEM;
2367 }
2368
2369
2370 /* Issue a configure endpoint command or evaluate context command
2371  * and wait for it to finish.
2372  */
2373 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2374                 struct usb_device *udev,
2375                 struct xhci_command *command,
2376                 bool ctx_change, bool must_succeed)
2377 {
2378         int ret;
2379         int timeleft;
2380         unsigned long flags;
2381         struct xhci_container_ctx *in_ctx;
2382         struct completion *cmd_completion;
2383         u32 *cmd_status;
2384         struct xhci_virt_device *virt_dev;
2385
2386         spin_lock_irqsave(&xhci->lock, flags);
2387         virt_dev = xhci->devs[udev->slot_id];
2388
2389         if (command)
2390                 in_ctx = command->in_ctx;
2391         else
2392                 in_ctx = virt_dev->in_ctx;
2393
2394         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2395                         xhci_reserve_host_resources(xhci, in_ctx)) {
2396                 spin_unlock_irqrestore(&xhci->lock, flags);
2397                 xhci_warn(xhci, "Not enough host resources, "
2398                                 "active endpoint contexts = %u\n",
2399                                 xhci->num_active_eps);
2400                 return -ENOMEM;
2401         }
2402         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2403                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2404                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2405                         xhci_free_host_resources(xhci, in_ctx);
2406                 spin_unlock_irqrestore(&xhci->lock, flags);
2407                 xhci_warn(xhci, "Not enough bandwidth\n");
2408                 return -ENOMEM;
2409         }
2410
2411         if (command) {
2412                 cmd_completion = command->completion;
2413                 cmd_status = &command->status;
2414                 command->command_trb = xhci->cmd_ring->enqueue;
2415
2416                 /* Enqueue pointer can be left pointing to the link TRB,
2417                  * we must handle that
2418                  */
2419                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2420                         command->command_trb =
2421                                 xhci->cmd_ring->enq_seg->next->trbs;
2422
2423                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2424         } else {
2425                 cmd_completion = &virt_dev->cmd_completion;
2426                 cmd_status = &virt_dev->cmd_status;
2427         }
2428         init_completion(cmd_completion);
2429
2430         if (!ctx_change)
2431                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2432                                 udev->slot_id, must_succeed);
2433         else
2434                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2435                                 udev->slot_id);
2436         if (ret < 0) {
2437                 if (command)
2438                         list_del(&command->cmd_list);
2439                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2440                         xhci_free_host_resources(xhci, in_ctx);
2441                 spin_unlock_irqrestore(&xhci->lock, flags);
2442                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2443                 return -ENOMEM;
2444         }
2445         xhci_ring_cmd_db(xhci);
2446         spin_unlock_irqrestore(&xhci->lock, flags);
2447
2448         /* Wait for the configure endpoint command to complete */
2449         timeleft = wait_for_completion_interruptible_timeout(
2450                         cmd_completion,
2451                         USB_CTRL_SET_TIMEOUT);
2452         if (timeleft <= 0) {
2453                 xhci_warn(xhci, "%s while waiting for %s command\n",
2454                                 timeleft == 0 ? "Timeout" : "Signal",
2455                                 ctx_change == 0 ?
2456                                         "configure endpoint" :
2457                                         "evaluate context");
2458                 /* FIXME cancel the configure endpoint command */
2459                 return -ETIME;
2460         }
2461
2462         if (!ctx_change)
2463                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2464         else
2465                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2466
2467         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2468                 spin_lock_irqsave(&xhci->lock, flags);
2469                 /* If the command failed, remove the reserved resources.
2470                  * Otherwise, clean up the estimate to include dropped eps.
2471                  */
2472                 if (ret)
2473                         xhci_free_host_resources(xhci, in_ctx);
2474                 else
2475                         xhci_finish_resource_reservation(xhci, in_ctx);
2476                 spin_unlock_irqrestore(&xhci->lock, flags);
2477         }
2478         return ret;
2479 }
2480
2481 /* Called after one or more calls to xhci_add_endpoint() or
2482  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2483  * to call xhci_reset_bandwidth().
2484  *
2485  * Since we are in the middle of changing either configuration or
2486  * installing a new alt setting, the USB core won't allow URBs to be
2487  * enqueued for any endpoint on the old config or interface.  Nothing
2488  * else should be touching the xhci->devs[slot_id] structure, so we
2489  * don't need to take the xhci->lock for manipulating that.
2490  */
2491 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2492 {
2493         int i;
2494         int ret = 0;
2495         struct xhci_hcd *xhci;
2496         struct xhci_virt_device *virt_dev;
2497         struct xhci_input_control_ctx *ctrl_ctx;
2498         struct xhci_slot_ctx *slot_ctx;
2499
2500         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2501         if (ret <= 0)
2502                 return ret;
2503         xhci = hcd_to_xhci(hcd);
2504         if (xhci->xhc_state & XHCI_STATE_DYING)
2505                 return -ENODEV;
2506
2507         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2508         virt_dev = xhci->devs[udev->slot_id];
2509
2510         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2511         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2512         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2513         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2514         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2515
2516         /* Don't issue the command if there's no endpoints to update. */
2517         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2518                         ctrl_ctx->drop_flags == 0)
2519                 return 0;
2520
2521         xhci_dbg(xhci, "New Input Control Context:\n");
2522         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2523         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2524                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2525
2526         ret = xhci_configure_endpoint(xhci, udev, NULL,
2527                         false, false);
2528         if (ret) {
2529                 /* Callee should call reset_bandwidth() */
2530                 return ret;
2531         }
2532
2533         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2534         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2535                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2536
2537         /* Free any rings that were dropped, but not changed. */
2538         for (i = 1; i < 31; ++i) {
2539                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2540                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2541                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2542         }
2543         xhci_zero_in_ctx(xhci, virt_dev);
2544         /*
2545          * Install any rings for completely new endpoints or changed endpoints,
2546          * and free or cache any old rings from changed endpoints.
2547          */
2548         for (i = 1; i < 31; ++i) {
2549                 if (!virt_dev->eps[i].new_ring)
2550                         continue;
2551                 /* Only cache or free the old ring if it exists.
2552                  * It may not if this is the first add of an endpoint.
2553                  */
2554                 if (virt_dev->eps[i].ring) {
2555                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2556                 }
2557                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2558                 virt_dev->eps[i].new_ring = NULL;
2559         }
2560
2561         return ret;
2562 }
2563
2564 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2565 {
2566         struct xhci_hcd *xhci;
2567         struct xhci_virt_device *virt_dev;
2568         int i, ret;
2569
2570         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2571         if (ret <= 0)
2572                 return;
2573         xhci = hcd_to_xhci(hcd);
2574
2575         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2576         virt_dev = xhci->devs[udev->slot_id];
2577         /* Free any rings allocated for added endpoints */
2578         for (i = 0; i < 31; ++i) {
2579                 if (virt_dev->eps[i].new_ring) {
2580                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2581                         virt_dev->eps[i].new_ring = NULL;
2582                 }
2583         }
2584         xhci_zero_in_ctx(xhci, virt_dev);
2585 }
2586
2587 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2588                 struct xhci_container_ctx *in_ctx,
2589                 struct xhci_container_ctx *out_ctx,
2590                 u32 add_flags, u32 drop_flags)
2591 {
2592         struct xhci_input_control_ctx *ctrl_ctx;
2593         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2594         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2595         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2596         xhci_slot_copy(xhci, in_ctx, out_ctx);
2597         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2598
2599         xhci_dbg(xhci, "Input Context:\n");
2600         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2601 }
2602
2603 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2604                 unsigned int slot_id, unsigned int ep_index,
2605                 struct xhci_dequeue_state *deq_state)
2606 {
2607         struct xhci_container_ctx *in_ctx;
2608         struct xhci_ep_ctx *ep_ctx;
2609         u32 added_ctxs;
2610         dma_addr_t addr;
2611
2612         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2613                         xhci->devs[slot_id]->out_ctx, ep_index);
2614         in_ctx = xhci->devs[slot_id]->in_ctx;
2615         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2616         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2617                         deq_state->new_deq_ptr);
2618         if (addr == 0) {
2619                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2620                                 "reset ep command\n");
2621                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2622                                 deq_state->new_deq_seg,
2623                                 deq_state->new_deq_ptr);
2624                 return;
2625         }
2626         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2627
2628         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2629         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2630                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2631 }
2632
2633 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2634                 struct usb_device *udev, unsigned int ep_index)
2635 {
2636         struct xhci_dequeue_state deq_state;
2637         struct xhci_virt_ep *ep;
2638
2639         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2640         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2641         /* We need to move the HW's dequeue pointer past this TD,
2642          * or it will attempt to resend it on the next doorbell ring.
2643          */
2644         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2645                         ep_index, ep->stopped_stream, ep->stopped_td,
2646                         &deq_state);
2647
2648         /* HW with the reset endpoint quirk will use the saved dequeue state to
2649          * issue a configure endpoint command later.
2650          */
2651         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2652                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2653                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2654                                 ep_index, ep->stopped_stream, &deq_state);
2655         } else {
2656                 /* Better hope no one uses the input context between now and the
2657                  * reset endpoint completion!
2658                  * XXX: No idea how this hardware will react when stream rings
2659                  * are enabled.
2660                  */
2661                 xhci_dbg(xhci, "Setting up input context for "
2662                                 "configure endpoint command\n");
2663                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2664                                 ep_index, &deq_state);
2665         }
2666 }
2667
2668 /* Deal with stalled endpoints.  The core should have sent the control message
2669  * to clear the halt condition.  However, we need to make the xHCI hardware
2670  * reset its sequence number, since a device will expect a sequence number of
2671  * zero after the halt condition is cleared.
2672  * Context: in_interrupt
2673  */
2674 void xhci_endpoint_reset(struct usb_hcd *hcd,
2675                 struct usb_host_endpoint *ep)
2676 {
2677         struct xhci_hcd *xhci;
2678         struct usb_device *udev;
2679         unsigned int ep_index;
2680         unsigned long flags;
2681         int ret;
2682         struct xhci_virt_ep *virt_ep;
2683
2684         xhci = hcd_to_xhci(hcd);
2685         udev = (struct usb_device *) ep->hcpriv;
2686         /* Called with a root hub endpoint (or an endpoint that wasn't added
2687          * with xhci_add_endpoint()
2688          */
2689         if (!ep->hcpriv)
2690                 return;
2691         ep_index = xhci_get_endpoint_index(&ep->desc);
2692         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2693         if (!virt_ep->stopped_td) {
2694                 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2695                                 ep->desc.bEndpointAddress);
2696                 return;
2697         }
2698         if (usb_endpoint_xfer_control(&ep->desc)) {
2699                 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2700                 return;
2701         }
2702
2703         xhci_dbg(xhci, "Queueing reset endpoint command\n");
2704         spin_lock_irqsave(&xhci->lock, flags);
2705         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2706         /*
2707          * Can't change the ring dequeue pointer until it's transitioned to the
2708          * stopped state, which is only upon a successful reset endpoint
2709          * command.  Better hope that last command worked!
2710          */
2711         if (!ret) {
2712                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2713                 kfree(virt_ep->stopped_td);
2714                 xhci_ring_cmd_db(xhci);
2715         }
2716         virt_ep->stopped_td = NULL;
2717         virt_ep->stopped_trb = NULL;
2718         virt_ep->stopped_stream = 0;
2719         spin_unlock_irqrestore(&xhci->lock, flags);
2720
2721         if (ret)
2722                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2723 }
2724
2725 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2726                 struct usb_device *udev, struct usb_host_endpoint *ep,
2727                 unsigned int slot_id)
2728 {
2729         int ret;
2730         unsigned int ep_index;
2731         unsigned int ep_state;
2732
2733         if (!ep)
2734                 return -EINVAL;
2735         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2736         if (ret <= 0)
2737                 return -EINVAL;
2738         if (ep->ss_ep_comp.bmAttributes == 0) {
2739                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2740                                 " descriptor for ep 0x%x does not support streams\n",
2741                                 ep->desc.bEndpointAddress);
2742                 return -EINVAL;
2743         }
2744
2745         ep_index = xhci_get_endpoint_index(&ep->desc);
2746         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2747         if (ep_state & EP_HAS_STREAMS ||
2748                         ep_state & EP_GETTING_STREAMS) {
2749                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2750                                 "already has streams set up.\n",
2751                                 ep->desc.bEndpointAddress);
2752                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2753                                 "dynamic stream context array reallocation.\n");
2754                 return -EINVAL;
2755         }
2756         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2757                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2758                                 "endpoint 0x%x; URBs are pending.\n",
2759                                 ep->desc.bEndpointAddress);
2760                 return -EINVAL;
2761         }
2762         return 0;
2763 }
2764
2765 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2766                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2767 {
2768         unsigned int max_streams;
2769
2770         /* The stream context array size must be a power of two */
2771         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2772         /*
2773          * Find out how many primary stream array entries the host controller
2774          * supports.  Later we may use secondary stream arrays (similar to 2nd
2775          * level page entries), but that's an optional feature for xHCI host
2776          * controllers. xHCs must support at least 4 stream IDs.
2777          */
2778         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2779         if (*num_stream_ctxs > max_streams) {
2780                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2781                                 max_streams);
2782                 *num_stream_ctxs = max_streams;
2783                 *num_streams = max_streams;
2784         }
2785 }
2786
2787 /* Returns an error code if one of the endpoint already has streams.
2788  * This does not change any data structures, it only checks and gathers
2789  * information.
2790  */
2791 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2792                 struct usb_device *udev,
2793                 struct usb_host_endpoint **eps, unsigned int num_eps,
2794                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2795 {
2796         unsigned int max_streams;
2797         unsigned int endpoint_flag;
2798         int i;
2799         int ret;
2800
2801         for (i = 0; i < num_eps; i++) {
2802                 ret = xhci_check_streams_endpoint(xhci, udev,
2803                                 eps[i], udev->slot_id);
2804                 if (ret < 0)
2805                         return ret;
2806
2807                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2808                 if (max_streams < (*num_streams - 1)) {
2809                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2810                                         eps[i]->desc.bEndpointAddress,
2811                                         max_streams);
2812                         *num_streams = max_streams+1;
2813                 }
2814
2815                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2816                 if (*changed_ep_bitmask & endpoint_flag)
2817                         return -EINVAL;
2818                 *changed_ep_bitmask |= endpoint_flag;
2819         }
2820         return 0;
2821 }
2822
2823 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2824                 struct usb_device *udev,
2825                 struct usb_host_endpoint **eps, unsigned int num_eps)
2826 {
2827         u32 changed_ep_bitmask = 0;
2828         unsigned int slot_id;
2829         unsigned int ep_index;
2830         unsigned int ep_state;
2831         int i;
2832
2833         slot_id = udev->slot_id;
2834         if (!xhci->devs[slot_id])
2835                 return 0;
2836
2837         for (i = 0; i < num_eps; i++) {
2838                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2839                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2840                 /* Are streams already being freed for the endpoint? */
2841                 if (ep_state & EP_GETTING_NO_STREAMS) {
2842                         xhci_warn(xhci, "WARN Can't disable streams for "
2843                                         "endpoint 0x%x\n, "
2844                                         "streams are being disabled already.",
2845                                         eps[i]->desc.bEndpointAddress);
2846                         return 0;
2847                 }
2848                 /* Are there actually any streams to free? */
2849                 if (!(ep_state & EP_HAS_STREAMS) &&
2850                                 !(ep_state & EP_GETTING_STREAMS)) {
2851                         xhci_warn(xhci, "WARN Can't disable streams for "
2852                                         "endpoint 0x%x\n, "
2853                                         "streams are already disabled!",
2854                                         eps[i]->desc.bEndpointAddress);
2855                         xhci_warn(xhci, "WARN xhci_free_streams() called "
2856                                         "with non-streams endpoint\n");
2857                         return 0;
2858                 }
2859                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2860         }
2861         return changed_ep_bitmask;
2862 }
2863
2864 /*
2865  * The USB device drivers use this function (though the HCD interface in USB
2866  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2867  * coordinate mass storage command queueing across multiple endpoints (basically
2868  * a stream ID == a task ID).
2869  *
2870  * Setting up streams involves allocating the same size stream context array
2871  * for each endpoint and issuing a configure endpoint command for all endpoints.
2872  *
2873  * Don't allow the call to succeed if one endpoint only supports one stream
2874  * (which means it doesn't support streams at all).
2875  *
2876  * Drivers may get less stream IDs than they asked for, if the host controller
2877  * hardware or endpoints claim they can't support the number of requested
2878  * stream IDs.
2879  */
2880 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2881                 struct usb_host_endpoint **eps, unsigned int num_eps,
2882                 unsigned int num_streams, gfp_t mem_flags)
2883 {
2884         int i, ret;
2885         struct xhci_hcd *xhci;
2886         struct xhci_virt_device *vdev;
2887         struct xhci_command *config_cmd;
2888         unsigned int ep_index;
2889         unsigned int num_stream_ctxs;
2890         unsigned long flags;
2891         u32 changed_ep_bitmask = 0;
2892
2893         if (!eps)
2894                 return -EINVAL;
2895
2896         /* Add one to the number of streams requested to account for
2897          * stream 0 that is reserved for xHCI usage.
2898          */
2899         num_streams += 1;
2900         xhci = hcd_to_xhci(hcd);
2901         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2902                         num_streams);
2903
2904         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2905         if (!config_cmd) {
2906                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2907                 return -ENOMEM;
2908         }
2909
2910         /* Check to make sure all endpoints are not already configured for
2911          * streams.  While we're at it, find the maximum number of streams that
2912          * all the endpoints will support and check for duplicate endpoints.
2913          */
2914         spin_lock_irqsave(&xhci->lock, flags);
2915         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2916                         num_eps, &num_streams, &changed_ep_bitmask);
2917         if (ret < 0) {
2918                 xhci_free_command(xhci, config_cmd);
2919                 spin_unlock_irqrestore(&xhci->lock, flags);
2920                 return ret;
2921         }
2922         if (num_streams <= 1) {
2923                 xhci_warn(xhci, "WARN: endpoints can't handle "
2924                                 "more than one stream.\n");
2925                 xhci_free_command(xhci, config_cmd);
2926                 spin_unlock_irqrestore(&xhci->lock, flags);
2927                 return -EINVAL;
2928         }
2929         vdev = xhci->devs[udev->slot_id];
2930         /* Mark each endpoint as being in transition, so
2931          * xhci_urb_enqueue() will reject all URBs.
2932          */
2933         for (i = 0; i < num_eps; i++) {
2934                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2935                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2936         }
2937         spin_unlock_irqrestore(&xhci->lock, flags);
2938
2939         /* Setup internal data structures and allocate HW data structures for
2940          * streams (but don't install the HW structures in the input context
2941          * until we're sure all memory allocation succeeded).
2942          */
2943         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2944         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2945                         num_stream_ctxs, num_streams);
2946
2947         for (i = 0; i < num_eps; i++) {
2948                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2949                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2950                                 num_stream_ctxs,
2951                                 num_streams, mem_flags);
2952                 if (!vdev->eps[ep_index].stream_info)
2953                         goto cleanup;
2954                 /* Set maxPstreams in endpoint context and update deq ptr to
2955                  * point to stream context array. FIXME
2956                  */
2957         }
2958
2959         /* Set up the input context for a configure endpoint command. */
2960         for (i = 0; i < num_eps; i++) {
2961                 struct xhci_ep_ctx *ep_ctx;
2962
2963                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2964                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2965
2966                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2967                                 vdev->out_ctx, ep_index);
2968                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2969                                 vdev->eps[ep_index].stream_info);
2970         }
2971         /* Tell the HW to drop its old copy of the endpoint context info
2972          * and add the updated copy from the input context.
2973          */
2974         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2975                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2976
2977         /* Issue and wait for the configure endpoint command */
2978         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2979                         false, false);
2980
2981         /* xHC rejected the configure endpoint command for some reason, so we
2982          * leave the old ring intact and free our internal streams data
2983          * structure.
2984          */
2985         if (ret < 0)
2986                 goto cleanup;
2987
2988         spin_lock_irqsave(&xhci->lock, flags);
2989         for (i = 0; i < num_eps; i++) {
2990                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2991                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2992                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2993                          udev->slot_id, ep_index);
2994                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2995         }
2996         xhci_free_command(xhci, config_cmd);
2997         spin_unlock_irqrestore(&xhci->lock, flags);
2998
2999         /* Subtract 1 for stream 0, which drivers can't use */
3000         return num_streams - 1;
3001
3002 cleanup:
3003         /* If it didn't work, free the streams! */
3004         for (i = 0; i < num_eps; i++) {
3005                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3006                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3007                 vdev->eps[ep_index].stream_info = NULL;
3008                 /* FIXME Unset maxPstreams in endpoint context and
3009                  * update deq ptr to point to normal string ring.
3010                  */
3011                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3012                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3013                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3014         }
3015         xhci_free_command(xhci, config_cmd);
3016         return -ENOMEM;
3017 }
3018
3019 /* Transition the endpoint from using streams to being a "normal" endpoint
3020  * without streams.
3021  *
3022  * Modify the endpoint context state, submit a configure endpoint command,
3023  * and free all endpoint rings for streams if that completes successfully.
3024  */
3025 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3026                 struct usb_host_endpoint **eps, unsigned int num_eps,
3027                 gfp_t mem_flags)
3028 {
3029         int i, ret;
3030         struct xhci_hcd *xhci;
3031         struct xhci_virt_device *vdev;
3032         struct xhci_command *command;
3033         unsigned int ep_index;
3034         unsigned long flags;
3035         u32 changed_ep_bitmask;
3036
3037         xhci = hcd_to_xhci(hcd);
3038         vdev = xhci->devs[udev->slot_id];
3039
3040         /* Set up a configure endpoint command to remove the streams rings */
3041         spin_lock_irqsave(&xhci->lock, flags);
3042         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3043                         udev, eps, num_eps);
3044         if (changed_ep_bitmask == 0) {
3045                 spin_unlock_irqrestore(&xhci->lock, flags);
3046                 return -EINVAL;
3047         }
3048
3049         /* Use the xhci_command structure from the first endpoint.  We may have
3050          * allocated too many, but the driver may call xhci_free_streams() for
3051          * each endpoint it grouped into one call to xhci_alloc_streams().
3052          */
3053         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3054         command = vdev->eps[ep_index].stream_info->free_streams_command;
3055         for (i = 0; i < num_eps; i++) {
3056                 struct xhci_ep_ctx *ep_ctx;
3057
3058                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3059                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3060                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3061                         EP_GETTING_NO_STREAMS;
3062
3063                 xhci_endpoint_copy(xhci, command->in_ctx,
3064                                 vdev->out_ctx, ep_index);
3065                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3066                                 &vdev->eps[ep_index]);
3067         }
3068         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3069                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3070         spin_unlock_irqrestore(&xhci->lock, flags);
3071
3072         /* Issue and wait for the configure endpoint command,
3073          * which must succeed.
3074          */
3075         ret = xhci_configure_endpoint(xhci, udev, command,
3076                         false, true);
3077
3078         /* xHC rejected the configure endpoint command for some reason, so we
3079          * leave the streams rings intact.
3080          */
3081         if (ret < 0)
3082                 return ret;
3083
3084         spin_lock_irqsave(&xhci->lock, flags);
3085         for (i = 0; i < num_eps; i++) {
3086                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3087                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3088                 vdev->eps[ep_index].stream_info = NULL;
3089                 /* FIXME Unset maxPstreams in endpoint context and
3090                  * update deq ptr to point to normal string ring.
3091                  */
3092                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3093                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3094         }
3095         spin_unlock_irqrestore(&xhci->lock, flags);
3096
3097         return 0;
3098 }
3099
3100 /*
3101  * Deletes endpoint resources for endpoints that were active before a Reset
3102  * Device command, or a Disable Slot command.  The Reset Device command leaves
3103  * the control endpoint intact, whereas the Disable Slot command deletes it.
3104  *
3105  * Must be called with xhci->lock held.
3106  */
3107 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3108         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3109 {
3110         int i;
3111         unsigned int num_dropped_eps = 0;
3112         unsigned int drop_flags = 0;
3113
3114         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3115                 if (virt_dev->eps[i].ring) {
3116                         drop_flags |= 1 << i;
3117                         num_dropped_eps++;
3118                 }
3119         }
3120         xhci->num_active_eps -= num_dropped_eps;
3121         if (num_dropped_eps)
3122                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3123                                 "%u now active.\n",
3124                                 num_dropped_eps, drop_flags,
3125                                 xhci->num_active_eps);
3126 }
3127
3128 /*
3129  * This submits a Reset Device Command, which will set the device state to 0,
3130  * set the device address to 0, and disable all the endpoints except the default
3131  * control endpoint.  The USB core should come back and call
3132  * xhci_address_device(), and then re-set up the configuration.  If this is
3133  * called because of a usb_reset_and_verify_device(), then the old alternate
3134  * settings will be re-installed through the normal bandwidth allocation
3135  * functions.
3136  *
3137  * Wait for the Reset Device command to finish.  Remove all structures
3138  * associated with the endpoints that were disabled.  Clear the input device
3139  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3140  *
3141  * If the virt_dev to be reset does not exist or does not match the udev,
3142  * it means the device is lost, possibly due to the xHC restore error and
3143  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3144  * re-allocate the device.
3145  */
3146 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3147 {
3148         int ret, i;
3149         unsigned long flags;
3150         struct xhci_hcd *xhci;
3151         unsigned int slot_id;
3152         struct xhci_virt_device *virt_dev;
3153         struct xhci_command *reset_device_cmd;
3154         int timeleft;
3155         int last_freed_endpoint;
3156         struct xhci_slot_ctx *slot_ctx;
3157         int old_active_eps = 0;
3158
3159         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3160         if (ret <= 0)
3161                 return ret;
3162         xhci = hcd_to_xhci(hcd);
3163         slot_id = udev->slot_id;
3164         virt_dev = xhci->devs[slot_id];
3165         if (!virt_dev) {
3166                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3167                                 "not exist. Re-allocate the device\n", slot_id);
3168                 ret = xhci_alloc_dev(hcd, udev);
3169                 if (ret == 1)
3170                         return 0;
3171                 else
3172                         return -EINVAL;
3173         }
3174
3175         if (virt_dev->udev != udev) {
3176                 /* If the virt_dev and the udev does not match, this virt_dev
3177                  * may belong to another udev.
3178                  * Re-allocate the device.
3179                  */
3180                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3181                                 "not match the udev. Re-allocate the device\n",
3182                                 slot_id);
3183                 ret = xhci_alloc_dev(hcd, udev);
3184                 if (ret == 1)
3185                         return 0;
3186                 else
3187                         return -EINVAL;
3188         }
3189
3190         /* If device is not setup, there is no point in resetting it */
3191         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3192         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3193                                                 SLOT_STATE_DISABLED)
3194                 return 0;
3195
3196         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3197         /* Allocate the command structure that holds the struct completion.
3198          * Assume we're in process context, since the normal device reset
3199          * process has to wait for the device anyway.  Storage devices are
3200          * reset as part of error handling, so use GFP_NOIO instead of
3201          * GFP_KERNEL.
3202          */
3203         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3204         if (!reset_device_cmd) {
3205                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3206                 return -ENOMEM;
3207         }
3208
3209         /* Attempt to submit the Reset Device command to the command ring */
3210         spin_lock_irqsave(&xhci->lock, flags);
3211         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3212
3213         /* Enqueue pointer can be left pointing to the link TRB,
3214          * we must handle that
3215          */
3216         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3217                 reset_device_cmd->command_trb =
3218                         xhci->cmd_ring->enq_seg->next->trbs;
3219
3220         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3221         ret = xhci_queue_reset_device(xhci, slot_id);
3222         if (ret) {
3223                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3224                 list_del(&reset_device_cmd->cmd_list);
3225                 spin_unlock_irqrestore(&xhci->lock, flags);
3226                 goto command_cleanup;
3227         }
3228         xhci_ring_cmd_db(xhci);
3229         spin_unlock_irqrestore(&xhci->lock, flags);
3230
3231         /* Wait for the Reset Device command to finish */
3232         timeleft = wait_for_completion_interruptible_timeout(
3233                         reset_device_cmd->completion,
3234                         USB_CTRL_SET_TIMEOUT);
3235         if (timeleft <= 0) {
3236                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3237                                 timeleft == 0 ? "Timeout" : "Signal");
3238                 spin_lock_irqsave(&xhci->lock, flags);
3239                 /* The timeout might have raced with the event ring handler, so
3240                  * only delete from the list if the item isn't poisoned.
3241                  */
3242                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3243                         list_del(&reset_device_cmd->cmd_list);
3244                 spin_unlock_irqrestore(&xhci->lock, flags);
3245                 ret = -ETIME;
3246                 goto command_cleanup;
3247         }
3248
3249         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3250          * unless we tried to reset a slot ID that wasn't enabled,
3251          * or the device wasn't in the addressed or configured state.
3252          */
3253         ret = reset_device_cmd->status;
3254         switch (ret) {
3255         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3256         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3257                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3258                                 slot_id,
3259                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3260                 xhci_info(xhci, "Not freeing device rings.\n");
3261                 /* Don't treat this as an error.  May change my mind later. */
3262                 ret = 0;
3263                 goto command_cleanup;
3264         case COMP_SUCCESS:
3265                 xhci_dbg(xhci, "Successful reset device command.\n");
3266                 break;
3267         default:
3268                 if (xhci_is_vendor_info_code(xhci, ret))
3269                         break;
3270                 xhci_warn(xhci, "Unknown completion code %u for "
3271                                 "reset device command.\n", ret);
3272                 ret = -EINVAL;
3273                 goto command_cleanup;
3274         }
3275
3276         /* Free up host controller endpoint resources */
3277         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3278                 spin_lock_irqsave(&xhci->lock, flags);
3279                 /* Don't delete the default control endpoint resources */
3280                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3281                 spin_unlock_irqrestore(&xhci->lock, flags);
3282         }
3283
3284         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3285         last_freed_endpoint = 1;
3286         for (i = 1; i < 31; ++i) {
3287                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3288
3289                 if (ep->ep_state & EP_HAS_STREAMS) {
3290                         xhci_free_stream_info(xhci, ep->stream_info);
3291                         ep->stream_info = NULL;
3292                         ep->ep_state &= ~EP_HAS_STREAMS;
3293                 }
3294
3295                 if (ep->ring) {
3296                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3297                         last_freed_endpoint = i;
3298                 }
3299                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3300                         xhci_drop_ep_from_interval_table(xhci,
3301                                         &virt_dev->eps[i].bw_info,
3302                                         virt_dev->bw_table,
3303                                         udev,
3304                                         &virt_dev->eps[i],
3305                                         virt_dev->tt_info);
3306                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3307         }
3308         /* If necessary, update the number of active TTs on this root port */
3309         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3310
3311         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3312         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3313         ret = 0;
3314
3315 command_cleanup:
3316         xhci_free_command(xhci, reset_device_cmd);
3317         return ret;
3318 }
3319
3320 /*
3321  * At this point, the struct usb_device is about to go away, the device has
3322  * disconnected, and all traffic has been stopped and the endpoints have been
3323  * disabled.  Free any HC data structures associated with that device.
3324  */
3325 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3326 {
3327         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3328         struct xhci_virt_device *virt_dev;
3329         unsigned long flags;
3330         u32 state;
3331         int i, ret;
3332
3333         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3334         /* If the host is halted due to driver unload, we still need to free the
3335          * device.
3336          */
3337         if (ret <= 0 && ret != -ENODEV)
3338                 return;
3339
3340         virt_dev = xhci->devs[udev->slot_id];
3341
3342         /* Stop any wayward timer functions (which may grab the lock) */
3343         for (i = 0; i < 31; ++i) {
3344                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3345                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3346         }
3347
3348         if (udev->usb2_hw_lpm_enabled) {
3349                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3350                 udev->usb2_hw_lpm_enabled = 0;
3351         }
3352
3353         spin_lock_irqsave(&xhci->lock, flags);
3354         /* Don't disable the slot if the host controller is dead. */
3355         state = xhci_readl(xhci, &xhci->op_regs->status);
3356         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3357                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3358                 xhci_free_virt_device(xhci, udev->slot_id);
3359                 spin_unlock_irqrestore(&xhci->lock, flags);
3360                 return;
3361         }
3362
3363         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3364                 spin_unlock_irqrestore(&xhci->lock, flags);
3365                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3366                 return;
3367         }
3368         xhci_ring_cmd_db(xhci);
3369         spin_unlock_irqrestore(&xhci->lock, flags);
3370         /*
3371          * Event command completion handler will free any data structures
3372          * associated with the slot.  XXX Can free sleep?
3373          */
3374 }
3375
3376 /*
3377  * Checks if we have enough host controller resources for the default control
3378  * endpoint.
3379  *
3380  * Must be called with xhci->lock held.
3381  */
3382 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3383 {
3384         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3385                 xhci_dbg(xhci, "Not enough ep ctxs: "
3386                                 "%u active, need to add 1, limit is %u.\n",
3387                                 xhci->num_active_eps, xhci->limit_active_eps);
3388                 return -ENOMEM;
3389         }
3390         xhci->num_active_eps += 1;
3391         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3392                         xhci->num_active_eps);
3393         return 0;
3394 }
3395
3396
3397 /*
3398  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3399  * timed out, or allocating memory failed.  Returns 1 on success.
3400  */
3401 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3402 {
3403         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3404         unsigned long flags;
3405         int timeleft;
3406         int ret;
3407
3408         spin_lock_irqsave(&xhci->lock, flags);
3409         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3410         if (ret) {
3411                 spin_unlock_irqrestore(&xhci->lock, flags);
3412                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3413                 return 0;
3414         }
3415         xhci_ring_cmd_db(xhci);
3416         spin_unlock_irqrestore(&xhci->lock, flags);
3417
3418         /* XXX: how much time for xHC slot assignment? */
3419         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3420                         USB_CTRL_SET_TIMEOUT);
3421         if (timeleft <= 0) {
3422                 xhci_warn(xhci, "%s while waiting for a slot\n",
3423                                 timeleft == 0 ? "Timeout" : "Signal");
3424                 /* FIXME cancel the enable slot request */
3425                 return 0;
3426         }
3427
3428         if (!xhci->slot_id) {
3429                 xhci_err(xhci, "Error while assigning device slot ID\n");
3430                 return 0;
3431         }
3432
3433         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3434                 spin_lock_irqsave(&xhci->lock, flags);
3435                 ret = xhci_reserve_host_control_ep_resources(xhci);
3436                 if (ret) {
3437                         spin_unlock_irqrestore(&xhci->lock, flags);
3438                         xhci_warn(xhci, "Not enough host resources, "
3439                                         "active endpoint contexts = %u\n",
3440                                         xhci->num_active_eps);
3441                         goto disable_slot;
3442                 }
3443                 spin_unlock_irqrestore(&xhci->lock, flags);
3444         }
3445         /* Use GFP_NOIO, since this function can be called from
3446          * xhci_discover_or_reset_device(), which may be called as part of
3447          * mass storage driver error handling.
3448          */
3449         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3450                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3451                 goto disable_slot;
3452         }
3453         udev->slot_id = xhci->slot_id;
3454         /* Is this a LS or FS device under a HS hub? */
3455         /* Hub or peripherial? */
3456         return 1;
3457
3458 disable_slot:
3459         /* Disable slot, if we can do it without mem alloc */
3460         spin_lock_irqsave(&xhci->lock, flags);
3461         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3462                 xhci_ring_cmd_db(xhci);
3463         spin_unlock_irqrestore(&xhci->lock, flags);
3464         return 0;
3465 }
3466
3467 /*
3468  * Issue an Address Device command (which will issue a SetAddress request to
3469  * the device).
3470  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3471  * we should only issue and wait on one address command at the same time.
3472  *
3473  * We add one to the device address issued by the hardware because the USB core
3474  * uses address 1 for the root hubs (even though they're not really devices).
3475  */
3476 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3477 {
3478         unsigned long flags;
3479         int timeleft;
3480         struct xhci_virt_device *virt_dev;
3481         int ret = 0;
3482         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3483         struct xhci_slot_ctx *slot_ctx;
3484         struct xhci_input_control_ctx *ctrl_ctx;
3485         u64 temp_64;
3486
3487         if (!udev->slot_id) {
3488                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3489                 return -EINVAL;
3490         }
3491
3492         virt_dev = xhci->devs[udev->slot_id];
3493
3494         if (WARN_ON(!virt_dev)) {
3495                 /*
3496                  * In plug/unplug torture test with an NEC controller,
3497                  * a zero-dereference was observed once due to virt_dev = 0.
3498                  * Print useful debug rather than crash if it is observed again!
3499                  */
3500                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3501                         udev->slot_id);
3502                 return -EINVAL;
3503         }
3504
3505         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3506         /*
3507          * If this is the first Set Address since device plug-in or
3508          * virt_device realloaction after a resume with an xHCI power loss,
3509          * then set up the slot context.
3510          */
3511         if (!slot_ctx->dev_info)
3512                 xhci_setup_addressable_virt_dev(xhci, udev);
3513         /* Otherwise, update the control endpoint ring enqueue pointer. */
3514         else
3515                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3516         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3517         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3518         ctrl_ctx->drop_flags = 0;
3519
3520         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3521         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3522
3523         spin_lock_irqsave(&xhci->lock, flags);
3524         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3525                                         udev->slot_id);
3526         if (ret) {
3527                 spin_unlock_irqrestore(&xhci->lock, flags);
3528                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3529                 return ret;
3530         }
3531         xhci_ring_cmd_db(xhci);
3532         spin_unlock_irqrestore(&xhci->lock, flags);
3533
3534         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3535         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3536                         USB_CTRL_SET_TIMEOUT);
3537         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3538          * the SetAddress() "recovery interval" required by USB and aborting the
3539          * command on a timeout.
3540          */
3541         if (timeleft <= 0) {
3542                 xhci_warn(xhci, "%s while waiting for address device command\n",
3543                                 timeleft == 0 ? "Timeout" : "Signal");
3544                 /* FIXME cancel the address device command */
3545                 return -ETIME;
3546         }
3547
3548         switch (virt_dev->cmd_status) {
3549         case COMP_CTX_STATE:
3550         case COMP_EBADSLT:
3551                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3552                                 udev->slot_id);
3553                 ret = -EINVAL;
3554                 break;
3555         case COMP_TX_ERR:
3556                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3557                 ret = -EPROTO;
3558                 break;
3559         case COMP_DEV_ERR:
3560                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3561                                 "device command.\n");
3562                 ret = -ENODEV;
3563                 break;
3564         case COMP_SUCCESS:
3565                 xhci_dbg(xhci, "Successful Address Device command\n");
3566                 break;
3567         default:
3568                 xhci_err(xhci, "ERROR: unexpected command completion "
3569                                 "code 0x%x.\n", virt_dev->cmd_status);
3570                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3571                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3572                 ret = -EINVAL;
3573                 break;
3574         }
3575         if (ret) {
3576                 return ret;
3577         }
3578         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3579         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3580         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3581                  udev->slot_id,
3582                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3583                  (unsigned long long)
3584                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3585         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3586                         (unsigned long long)virt_dev->out_ctx->dma);
3587         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3588         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3589         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3590         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3591         /*
3592          * USB core uses address 1 for the roothubs, so we add one to the
3593          * address given back to us by the HC.
3594          */
3595         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3596         /* Use kernel assigned address for devices; store xHC assigned
3597          * address locally. */
3598         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3599                 + 1;
3600         /* Zero the input context control for later use */
3601         ctrl_ctx->add_flags = 0;
3602         ctrl_ctx->drop_flags = 0;
3603
3604         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3605
3606         return 0;
3607 }
3608
3609 #ifdef CONFIG_USB_SUSPEND
3610
3611 /* BESL to HIRD Encoding array for USB2 LPM */
3612 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3613         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3614
3615 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3616 static int xhci_calculate_hird_besl(int u2del, bool use_besl)
3617 {
3618         int hird;
3619
3620         if (use_besl) {
3621                 for (hird = 0; hird < 16; hird++) {
3622                         if (xhci_besl_encoding[hird] >= u2del)
3623                                 break;
3624                 }
3625         } else {
3626                 if (u2del <= 50)
3627                         hird = 0;
3628                 else
3629                         hird = (u2del - 51) / 75 + 1;
3630
3631                 if (hird > 15)
3632                         hird = 15;
3633         }
3634
3635         return hird;
3636 }
3637
3638 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3639                                         struct usb_device *udev)
3640 {
3641         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3642         struct dev_info *dev_info;
3643         __le32 __iomem  **port_array;
3644         __le32 __iomem  *addr, *pm_addr;
3645         u32             temp, dev_id;
3646         unsigned int    port_num;
3647         unsigned long   flags;
3648         int             u2del, hird;
3649         int             ret;
3650
3651         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3652                         !udev->lpm_capable)
3653                 return -EINVAL;
3654
3655         /* we only support lpm for non-hub device connected to root hub yet */
3656         if (!udev->parent || udev->parent->parent ||
3657                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3658                 return -EINVAL;
3659
3660         spin_lock_irqsave(&xhci->lock, flags);
3661
3662         /* Look for devices in lpm_failed_devs list */
3663         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3664                         le16_to_cpu(udev->descriptor.idProduct);
3665         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3666                 if (dev_info->dev_id == dev_id) {
3667                         ret = -EINVAL;
3668                         goto finish;
3669                 }
3670         }
3671
3672         port_array = xhci->usb2_ports;
3673         port_num = udev->portnum - 1;
3674
3675         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3676                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3677                 ret = -EINVAL;
3678                 goto finish;
3679         }
3680
3681         /*
3682          * Test USB 2.0 software LPM.
3683          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3684          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3685          * in the June 2011 errata release.
3686          */
3687         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3688         /*
3689          * Set L1 Device Slot and HIRD/BESL.
3690          * Check device's USB 2.0 extension descriptor to determine whether
3691          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3692          */
3693         pm_addr = port_array[port_num] + 1;
3694         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3695         if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3696                 hird = xhci_calculate_hird_besl(u2del, 1);
3697         else
3698                 hird = xhci_calculate_hird_besl(u2del, 0);
3699
3700         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3701         xhci_writel(xhci, temp, pm_addr);
3702
3703         /* Set port link state to U2(L1) */
3704         addr = port_array[port_num];
3705         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3706
3707         /* wait for ACK */
3708         spin_unlock_irqrestore(&xhci->lock, flags);
3709         msleep(10);
3710         spin_lock_irqsave(&xhci->lock, flags);
3711
3712         /* Check L1 Status */
3713         ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3714         if (ret != -ETIMEDOUT) {
3715                 /* enter L1 successfully */
3716                 temp = xhci_readl(xhci, addr);
3717                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3718                                 port_num, temp);
3719                 ret = 0;
3720         } else {
3721                 temp = xhci_readl(xhci, pm_addr);
3722                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3723                                 port_num, temp & PORT_L1S_MASK);
3724                 ret = -EINVAL;
3725         }
3726
3727         /* Resume the port */
3728         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3729
3730         spin_unlock_irqrestore(&xhci->lock, flags);
3731         msleep(10);
3732         spin_lock_irqsave(&xhci->lock, flags);
3733
3734         /* Clear PLC */
3735         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3736
3737         /* Check PORTSC to make sure the device is in the right state */
3738         if (!ret) {
3739                 temp = xhci_readl(xhci, addr);
3740                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3741                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3742                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
3743                         xhci_dbg(xhci, "port L1 resume fail\n");
3744                         ret = -EINVAL;
3745                 }
3746         }
3747
3748         if (ret) {
3749                 /* Insert dev to lpm_failed_devs list */
3750                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3751                                 "re-enumerate\n");
3752                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3753                 if (!dev_info) {
3754                         ret = -ENOMEM;
3755                         goto finish;
3756                 }
3757                 dev_info->dev_id = dev_id;
3758                 INIT_LIST_HEAD(&dev_info->list);
3759                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3760         } else {
3761                 xhci_ring_device(xhci, udev->slot_id);
3762         }
3763
3764 finish:
3765         spin_unlock_irqrestore(&xhci->lock, flags);
3766         return ret;
3767 }
3768
3769 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3770                         struct usb_device *udev, int enable)
3771 {
3772         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3773         __le32 __iomem  **port_array;
3774         __le32 __iomem  *pm_addr;
3775         u32             temp;
3776         unsigned int    port_num;
3777         unsigned long   flags;
3778         int             u2del, hird;
3779
3780         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3781                         !udev->lpm_capable)
3782                 return -EPERM;
3783
3784         if (!udev->parent || udev->parent->parent ||
3785                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3786                 return -EPERM;
3787
3788         if (udev->usb2_hw_lpm_capable != 1)
3789                 return -EPERM;
3790
3791         spin_lock_irqsave(&xhci->lock, flags);
3792
3793         port_array = xhci->usb2_ports;
3794         port_num = udev->portnum - 1;
3795         pm_addr = port_array[port_num] + 1;
3796         temp = xhci_readl(xhci, pm_addr);
3797
3798         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3799                         enable ? "enable" : "disable", port_num);
3800
3801         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3802         if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3803                 hird = xhci_calculate_hird_besl(u2del, 1);
3804         else
3805                 hird = xhci_calculate_hird_besl(u2del, 0);
3806
3807         if (enable) {
3808                 temp &= ~PORT_HIRD_MASK;
3809                 temp |= PORT_HIRD(hird) | PORT_RWE;
3810                 xhci_writel(xhci, temp, pm_addr);
3811                 temp = xhci_readl(xhci, pm_addr);
3812                 temp |= PORT_HLE;
3813                 xhci_writel(xhci, temp, pm_addr);
3814         } else {
3815                 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3816                 xhci_writel(xhci, temp, pm_addr);
3817         }
3818
3819         spin_unlock_irqrestore(&xhci->lock, flags);
3820         return 0;
3821 }
3822
3823 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3824 {
3825         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3826         int             ret;
3827
3828         ret = xhci_usb2_software_lpm_test(hcd, udev);
3829         if (!ret) {
3830                 xhci_dbg(xhci, "software LPM test succeed\n");
3831                 if (xhci->hw_lpm_support == 1) {
3832                         udev->usb2_hw_lpm_capable = 1;
3833                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3834                         if (!ret)
3835                                 udev->usb2_hw_lpm_enabled = 1;
3836                 }
3837         }
3838
3839         return 0;
3840 }
3841
3842 #else
3843
3844 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3845                                 struct usb_device *udev, int enable)
3846 {
3847         return 0;
3848 }
3849
3850 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3851 {
3852         return 0;
3853 }
3854
3855 #endif /* CONFIG_USB_SUSPEND */
3856
3857 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
3858  * internal data structures for the device.
3859  */
3860 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
3861                         struct usb_tt *tt, gfp_t mem_flags)
3862 {
3863         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3864         struct xhci_virt_device *vdev;
3865         struct xhci_command *config_cmd;
3866         struct xhci_input_control_ctx *ctrl_ctx;
3867         struct xhci_slot_ctx *slot_ctx;
3868         unsigned long flags;
3869         unsigned think_time;
3870         int ret;
3871
3872         /* Ignore root hubs */
3873         if (!hdev->parent)
3874                 return 0;
3875
3876         vdev = xhci->devs[hdev->slot_id];
3877         if (!vdev) {
3878                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
3879                 return -EINVAL;
3880         }
3881         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3882         if (!config_cmd) {
3883                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3884                 return -ENOMEM;
3885         }
3886
3887         spin_lock_irqsave(&xhci->lock, flags);
3888         if (hdev->speed == USB_SPEED_HIGH &&
3889                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
3890                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
3891                 xhci_free_command(xhci, config_cmd);
3892                 spin_unlock_irqrestore(&xhci->lock, flags);
3893                 return -ENOMEM;
3894         }
3895
3896         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
3897         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3898         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3899         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
3900         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
3901         if (tt->multi)
3902                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3903         if (xhci->hci_version > 0x95) {
3904                 xhci_dbg(xhci, "xHCI version %x needs hub "
3905                                 "TT think time and number of ports\n",
3906                                 (unsigned int) xhci->hci_version);
3907                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3908                 /* Set TT think time - convert from ns to FS bit times.
3909                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
3910                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
3911                  *
3912                  * xHCI 1.0: this field shall be 0 if the device is not a
3913                  * High-spped hub.
3914                  */
3915                 think_time = tt->think_time;
3916                 if (think_time != 0)
3917                         think_time = (think_time / 666) - 1;
3918                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3919                         slot_ctx->tt_info |=
3920                                 cpu_to_le32(TT_THINK_TIME(think_time));
3921         } else {
3922                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3923                                 "TT think time or number of ports\n",
3924                                 (unsigned int) xhci->hci_version);
3925         }
3926         slot_ctx->dev_state = 0;
3927         spin_unlock_irqrestore(&xhci->lock, flags);
3928
3929         xhci_dbg(xhci, "Set up %s for hub device.\n",
3930                         (xhci->hci_version > 0x95) ?
3931                         "configure endpoint" : "evaluate context");
3932         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3933         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3934
3935         /* Issue and wait for the configure endpoint or
3936          * evaluate context command.
3937          */
3938         if (xhci->hci_version > 0x95)
3939                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3940                                 false, false);
3941         else
3942                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3943                                 true, false);
3944
3945         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3946         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3947
3948         xhci_free_command(xhci, config_cmd);
3949         return ret;
3950 }
3951
3952 int xhci_get_frame(struct usb_hcd *hcd)
3953 {
3954         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3955         /* EHCI mods by the periodic size.  Why? */
3956         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3957 }
3958
3959 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
3960 {
3961         struct xhci_hcd         *xhci;
3962         struct device           *dev = hcd->self.controller;
3963         int                     retval;
3964         u32                     temp;
3965
3966         hcd->self.sg_tablesize = TRBS_PER_SEGMENT - 2;
3967
3968         if (usb_hcd_is_primary_hcd(hcd)) {
3969                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
3970                 if (!xhci)
3971                         return -ENOMEM;
3972                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
3973                 xhci->main_hcd = hcd;
3974                 /* Mark the first roothub as being USB 2.0.
3975                  * The xHCI driver will register the USB 3.0 roothub.
3976                  */
3977                 hcd->speed = HCD_USB2;
3978                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
3979                 /*
3980                  * USB 2.0 roothub under xHCI has an integrated TT,
3981                  * (rate matching hub) as opposed to having an OHCI/UHCI
3982                  * companion controller.
3983                  */
3984                 hcd->has_tt = 1;
3985         } else {
3986                 /* xHCI private pointer was set in xhci_pci_probe for the second
3987                  * registered roothub.
3988                  */
3989                 xhci = hcd_to_xhci(hcd);
3990                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
3991                 if (HCC_64BIT_ADDR(temp)) {
3992                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
3993                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
3994                 } else {
3995                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
3996                 }
3997                 return 0;
3998         }
3999
4000         xhci->cap_regs = hcd->regs;
4001         xhci->op_regs = hcd->regs +
4002                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4003         xhci->run_regs = hcd->regs +
4004                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4005         /* Cache read-only capability registers */
4006         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4007         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4008         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4009         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4010         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4011         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4012         xhci_print_registers(xhci);
4013
4014         get_quirks(dev, xhci);
4015
4016         /* Make sure the HC is halted. */
4017         retval = xhci_halt(xhci);
4018         if (retval)
4019                 goto error;
4020
4021         xhci_dbg(xhci, "Resetting HCD\n");
4022         /* Reset the internal HC memory state and registers. */
4023         retval = xhci_reset(xhci);
4024         if (retval)
4025                 goto error;
4026         xhci_dbg(xhci, "Reset complete\n");
4027
4028         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4029         if (HCC_64BIT_ADDR(temp)) {
4030                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4031                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4032         } else {
4033                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4034         }
4035
4036         xhci_dbg(xhci, "Calling HCD init\n");
4037         /* Initialize HCD and host controller data structures. */
4038         retval = xhci_init(hcd);
4039         if (retval)
4040                 goto error;
4041         xhci_dbg(xhci, "Called HCD init\n");
4042         return 0;
4043 error:
4044         kfree(xhci);
4045         return retval;
4046 }
4047
4048 MODULE_DESCRIPTION(DRIVER_DESC);
4049 MODULE_AUTHOR(DRIVER_AUTHOR);
4050 MODULE_LICENSE("GPL");
4051
4052 static int __init xhci_hcd_init(void)
4053 {
4054         int retval;
4055
4056         retval = xhci_register_pci();
4057         if (retval < 0) {
4058                 printk(KERN_DEBUG "Problem registering PCI driver.");
4059                 return retval;
4060         }
4061         /*
4062          * Check the compiler generated sizes of structures that must be laid
4063          * out in specific ways for hardware access.
4064          */
4065         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4066         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4067         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4068         /* xhci_device_control has eight fields, and also
4069          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4070          */
4071         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4072         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4073         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4074         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4075         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4076         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4077         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4078         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4079         return 0;
4080 }
4081 module_init(xhci_hcd_init);
4082
4083 static void __exit xhci_hcd_cleanup(void)
4084 {
4085         xhci_unregister_pci();
4086 }
4087 module_exit(xhci_hcd_cleanup);