3400ae6e93f83d2ae5b25395b97bbd6158877ec0
[pandora-kernel.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
46
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
54
55 #include "target_core_alua.h"
56 #include "target_core_cdb.h"
57 #include "target_core_hba.h"
58 #include "target_core_pr.h"
59 #include "target_core_ua.h"
60
61 static int sub_api_initialized;
62
63 static struct workqueue_struct *target_completion_wq;
64 static struct kmem_cache *se_cmd_cache;
65 static struct kmem_cache *se_sess_cache;
66 struct kmem_cache *se_tmr_req_cache;
67 struct kmem_cache *se_ua_cache;
68 struct kmem_cache *t10_pr_reg_cache;
69 struct kmem_cache *t10_alua_lu_gp_cache;
70 struct kmem_cache *t10_alua_lu_gp_mem_cache;
71 struct kmem_cache *t10_alua_tg_pt_gp_cache;
72 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
73
74 static int transport_generic_write_pending(struct se_cmd *);
75 static int transport_processing_thread(void *param);
76 static int __transport_execute_tasks(struct se_device *dev);
77 static void transport_complete_task_attr(struct se_cmd *cmd);
78 static void transport_handle_queue_full(struct se_cmd *cmd,
79                 struct se_device *dev);
80 static void transport_free_dev_tasks(struct se_cmd *cmd);
81 static int transport_generic_get_mem(struct se_cmd *cmd);
82 static void transport_put_cmd(struct se_cmd *cmd);
83 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
84 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
85 static void transport_generic_request_failure(struct se_cmd *, int, int);
86 static void target_complete_ok_work(struct work_struct *work);
87
88 int init_se_kmem_caches(void)
89 {
90         se_cmd_cache = kmem_cache_create("se_cmd_cache",
91                         sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
92         if (!se_cmd_cache) {
93                 pr_err("kmem_cache_create for struct se_cmd failed\n");
94                 goto out;
95         }
96         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
97                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
98                         0, NULL);
99         if (!se_tmr_req_cache) {
100                 pr_err("kmem_cache_create() for struct se_tmr_req"
101                                 " failed\n");
102                 goto out_free_cmd_cache;
103         }
104         se_sess_cache = kmem_cache_create("se_sess_cache",
105                         sizeof(struct se_session), __alignof__(struct se_session),
106                         0, NULL);
107         if (!se_sess_cache) {
108                 pr_err("kmem_cache_create() for struct se_session"
109                                 " failed\n");
110                 goto out_free_tmr_req_cache;
111         }
112         se_ua_cache = kmem_cache_create("se_ua_cache",
113                         sizeof(struct se_ua), __alignof__(struct se_ua),
114                         0, NULL);
115         if (!se_ua_cache) {
116                 pr_err("kmem_cache_create() for struct se_ua failed\n");
117                 goto out_free_sess_cache;
118         }
119         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
120                         sizeof(struct t10_pr_registration),
121                         __alignof__(struct t10_pr_registration), 0, NULL);
122         if (!t10_pr_reg_cache) {
123                 pr_err("kmem_cache_create() for struct t10_pr_registration"
124                                 " failed\n");
125                 goto out_free_ua_cache;
126         }
127         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
128                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
129                         0, NULL);
130         if (!t10_alua_lu_gp_cache) {
131                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
132                                 " failed\n");
133                 goto out_free_pr_reg_cache;
134         }
135         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
136                         sizeof(struct t10_alua_lu_gp_member),
137                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
138         if (!t10_alua_lu_gp_mem_cache) {
139                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
140                                 "cache failed\n");
141                 goto out_free_lu_gp_cache;
142         }
143         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
144                         sizeof(struct t10_alua_tg_pt_gp),
145                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
146         if (!t10_alua_tg_pt_gp_cache) {
147                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
148                                 "cache failed\n");
149                 goto out_free_lu_gp_mem_cache;
150         }
151         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
152                         "t10_alua_tg_pt_gp_mem_cache",
153                         sizeof(struct t10_alua_tg_pt_gp_member),
154                         __alignof__(struct t10_alua_tg_pt_gp_member),
155                         0, NULL);
156         if (!t10_alua_tg_pt_gp_mem_cache) {
157                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
158                                 "mem_t failed\n");
159                 goto out_free_tg_pt_gp_cache;
160         }
161
162         target_completion_wq = alloc_workqueue("target_completion",
163                                                WQ_MEM_RECLAIM, 0);
164         if (!target_completion_wq)
165                 goto out_free_tg_pt_gp_mem_cache;
166
167         return 0;
168
169 out_free_tg_pt_gp_mem_cache:
170         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
171 out_free_tg_pt_gp_cache:
172         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
173 out_free_lu_gp_mem_cache:
174         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 out_free_lu_gp_cache:
176         kmem_cache_destroy(t10_alua_lu_gp_cache);
177 out_free_pr_reg_cache:
178         kmem_cache_destroy(t10_pr_reg_cache);
179 out_free_ua_cache:
180         kmem_cache_destroy(se_ua_cache);
181 out_free_sess_cache:
182         kmem_cache_destroy(se_sess_cache);
183 out_free_tmr_req_cache:
184         kmem_cache_destroy(se_tmr_req_cache);
185 out_free_cmd_cache:
186         kmem_cache_destroy(se_cmd_cache);
187 out:
188         return -ENOMEM;
189 }
190
191 void release_se_kmem_caches(void)
192 {
193         destroy_workqueue(target_completion_wq);
194         kmem_cache_destroy(se_cmd_cache);
195         kmem_cache_destroy(se_tmr_req_cache);
196         kmem_cache_destroy(se_sess_cache);
197         kmem_cache_destroy(se_ua_cache);
198         kmem_cache_destroy(t10_pr_reg_cache);
199         kmem_cache_destroy(t10_alua_lu_gp_cache);
200         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
201         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
202         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
203 }
204
205 /* This code ensures unique mib indexes are handed out. */
206 static DEFINE_SPINLOCK(scsi_mib_index_lock);
207 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
208
209 /*
210  * Allocate a new row index for the entry type specified
211  */
212 u32 scsi_get_new_index(scsi_index_t type)
213 {
214         u32 new_index;
215
216         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
217
218         spin_lock(&scsi_mib_index_lock);
219         new_index = ++scsi_mib_index[type];
220         spin_unlock(&scsi_mib_index_lock);
221
222         return new_index;
223 }
224
225 void transport_init_queue_obj(struct se_queue_obj *qobj)
226 {
227         atomic_set(&qobj->queue_cnt, 0);
228         INIT_LIST_HEAD(&qobj->qobj_list);
229         init_waitqueue_head(&qobj->thread_wq);
230         spin_lock_init(&qobj->cmd_queue_lock);
231 }
232 EXPORT_SYMBOL(transport_init_queue_obj);
233
234 void transport_subsystem_check_init(void)
235 {
236         int ret;
237
238         if (sub_api_initialized)
239                 return;
240
241         ret = request_module("target_core_iblock");
242         if (ret != 0)
243                 pr_err("Unable to load target_core_iblock\n");
244
245         ret = request_module("target_core_file");
246         if (ret != 0)
247                 pr_err("Unable to load target_core_file\n");
248
249         ret = request_module("target_core_pscsi");
250         if (ret != 0)
251                 pr_err("Unable to load target_core_pscsi\n");
252
253         ret = request_module("target_core_stgt");
254         if (ret != 0)
255                 pr_err("Unable to load target_core_stgt\n");
256
257         sub_api_initialized = 1;
258         return;
259 }
260
261 struct se_session *transport_init_session(void)
262 {
263         struct se_session *se_sess;
264
265         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
266         if (!se_sess) {
267                 pr_err("Unable to allocate struct se_session from"
268                                 " se_sess_cache\n");
269                 return ERR_PTR(-ENOMEM);
270         }
271         INIT_LIST_HEAD(&se_sess->sess_list);
272         INIT_LIST_HEAD(&se_sess->sess_acl_list);
273         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
274         INIT_LIST_HEAD(&se_sess->sess_wait_list);
275         spin_lock_init(&se_sess->sess_cmd_lock);
276
277         return se_sess;
278 }
279 EXPORT_SYMBOL(transport_init_session);
280
281 /*
282  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
283  */
284 void __transport_register_session(
285         struct se_portal_group *se_tpg,
286         struct se_node_acl *se_nacl,
287         struct se_session *se_sess,
288         void *fabric_sess_ptr)
289 {
290         unsigned char buf[PR_REG_ISID_LEN];
291
292         se_sess->se_tpg = se_tpg;
293         se_sess->fabric_sess_ptr = fabric_sess_ptr;
294         /*
295          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
296          *
297          * Only set for struct se_session's that will actually be moving I/O.
298          * eg: *NOT* discovery sessions.
299          */
300         if (se_nacl) {
301                 /*
302                  * If the fabric module supports an ISID based TransportID,
303                  * save this value in binary from the fabric I_T Nexus now.
304                  */
305                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
306                         memset(&buf[0], 0, PR_REG_ISID_LEN);
307                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
308                                         &buf[0], PR_REG_ISID_LEN);
309                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
310                 }
311                 spin_lock_irq(&se_nacl->nacl_sess_lock);
312                 /*
313                  * The se_nacl->nacl_sess pointer will be set to the
314                  * last active I_T Nexus for each struct se_node_acl.
315                  */
316                 se_nacl->nacl_sess = se_sess;
317
318                 list_add_tail(&se_sess->sess_acl_list,
319                               &se_nacl->acl_sess_list);
320                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
321         }
322         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
323
324         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
325                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
326 }
327 EXPORT_SYMBOL(__transport_register_session);
328
329 void transport_register_session(
330         struct se_portal_group *se_tpg,
331         struct se_node_acl *se_nacl,
332         struct se_session *se_sess,
333         void *fabric_sess_ptr)
334 {
335         spin_lock_bh(&se_tpg->session_lock);
336         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
337         spin_unlock_bh(&se_tpg->session_lock);
338 }
339 EXPORT_SYMBOL(transport_register_session);
340
341 void transport_deregister_session_configfs(struct se_session *se_sess)
342 {
343         struct se_node_acl *se_nacl;
344         unsigned long flags;
345         /*
346          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
347          */
348         se_nacl = se_sess->se_node_acl;
349         if (se_nacl) {
350                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
351                 list_del(&se_sess->sess_acl_list);
352                 /*
353                  * If the session list is empty, then clear the pointer.
354                  * Otherwise, set the struct se_session pointer from the tail
355                  * element of the per struct se_node_acl active session list.
356                  */
357                 if (list_empty(&se_nacl->acl_sess_list))
358                         se_nacl->nacl_sess = NULL;
359                 else {
360                         se_nacl->nacl_sess = container_of(
361                                         se_nacl->acl_sess_list.prev,
362                                         struct se_session, sess_acl_list);
363                 }
364                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
365         }
366 }
367 EXPORT_SYMBOL(transport_deregister_session_configfs);
368
369 void transport_free_session(struct se_session *se_sess)
370 {
371         kmem_cache_free(se_sess_cache, se_sess);
372 }
373 EXPORT_SYMBOL(transport_free_session);
374
375 void transport_deregister_session(struct se_session *se_sess)
376 {
377         struct se_portal_group *se_tpg = se_sess->se_tpg;
378         struct se_node_acl *se_nacl;
379         unsigned long flags;
380
381         if (!se_tpg) {
382                 transport_free_session(se_sess);
383                 return;
384         }
385
386         spin_lock_irqsave(&se_tpg->session_lock, flags);
387         list_del(&se_sess->sess_list);
388         se_sess->se_tpg = NULL;
389         se_sess->fabric_sess_ptr = NULL;
390         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
391
392         /*
393          * Determine if we need to do extra work for this initiator node's
394          * struct se_node_acl if it had been previously dynamically generated.
395          */
396         se_nacl = se_sess->se_node_acl;
397         if (se_nacl) {
398                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
399                 if (se_nacl->dynamic_node_acl) {
400                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
401                                         se_tpg)) {
402                                 list_del(&se_nacl->acl_list);
403                                 se_tpg->num_node_acls--;
404                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
405
406                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
407                                 core_free_device_list_for_node(se_nacl, se_tpg);
408                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
409                                                 se_nacl);
410                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
411                         }
412                 }
413                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
414         }
415
416         transport_free_session(se_sess);
417
418         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
419                 se_tpg->se_tpg_tfo->get_fabric_name());
420 }
421 EXPORT_SYMBOL(transport_deregister_session);
422
423 /*
424  * Called with cmd->t_state_lock held.
425  */
426 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
427 {
428         struct se_device *dev = cmd->se_dev;
429         struct se_task *task;
430         unsigned long flags;
431
432         if (!dev)
433                 return;
434
435         list_for_each_entry(task, &cmd->t_task_list, t_list) {
436                 if (task->task_flags & TF_ACTIVE)
437                         continue;
438
439                 if (!atomic_read(&task->task_state_active))
440                         continue;
441
442                 spin_lock_irqsave(&dev->execute_task_lock, flags);
443                 list_del(&task->t_state_list);
444                 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
445                         cmd->se_tfo->get_task_tag(cmd), dev, task);
446                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
447
448                 atomic_set(&task->task_state_active, 0);
449                 atomic_dec(&cmd->t_task_cdbs_ex_left);
450         }
451 }
452
453 /*      transport_cmd_check_stop():
454  *
455  *      'transport_off = 1' determines if t_transport_active should be cleared.
456  *      'transport_off = 2' determines if task_dev_state should be removed.
457  *
458  *      A non-zero u8 t_state sets cmd->t_state.
459  *      Returns 1 when command is stopped, else 0.
460  */
461 static int transport_cmd_check_stop(
462         struct se_cmd *cmd,
463         int transport_off,
464         u8 t_state)
465 {
466         unsigned long flags;
467
468         spin_lock_irqsave(&cmd->t_state_lock, flags);
469         /*
470          * Determine if IOCTL context caller in requesting the stopping of this
471          * command for LUN shutdown purposes.
472          */
473         if (atomic_read(&cmd->transport_lun_stop)) {
474                 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
475                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
476                         cmd->se_tfo->get_task_tag(cmd));
477
478                 atomic_set(&cmd->t_transport_active, 0);
479                 if (transport_off == 2)
480                         transport_all_task_dev_remove_state(cmd);
481                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
482
483                 complete(&cmd->transport_lun_stop_comp);
484                 return 1;
485         }
486         /*
487          * Determine if frontend context caller is requesting the stopping of
488          * this command for frontend exceptions.
489          */
490         if (atomic_read(&cmd->t_transport_stop)) {
491                 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
492                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
493                         cmd->se_tfo->get_task_tag(cmd));
494
495                 if (transport_off == 2)
496                         transport_all_task_dev_remove_state(cmd);
497
498                 /*
499                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
500                  * to FE.
501                  */
502                 if (transport_off == 2)
503                         cmd->se_lun = NULL;
504                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
505
506                 complete(&cmd->t_transport_stop_comp);
507                 return 1;
508         }
509         if (transport_off) {
510                 atomic_set(&cmd->t_transport_active, 0);
511                 if (transport_off == 2) {
512                         transport_all_task_dev_remove_state(cmd);
513                         /*
514                          * Clear struct se_cmd->se_lun before the transport_off == 2
515                          * handoff to fabric module.
516                          */
517                         cmd->se_lun = NULL;
518                         /*
519                          * Some fabric modules like tcm_loop can release
520                          * their internally allocated I/O reference now and
521                          * struct se_cmd now.
522                          *
523                          * Fabric modules are expected to return '1' here if the
524                          * se_cmd being passed is released at this point,
525                          * or zero if not being released.
526                          */
527                         if (cmd->se_tfo->check_stop_free != NULL) {
528                                 spin_unlock_irqrestore(
529                                         &cmd->t_state_lock, flags);
530
531                                 return cmd->se_tfo->check_stop_free(cmd);
532                         }
533                 }
534                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
535
536                 return 0;
537         } else if (t_state)
538                 cmd->t_state = t_state;
539         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
540
541         return 0;
542 }
543
544 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
545 {
546         return transport_cmd_check_stop(cmd, 2, 0);
547 }
548
549 static void transport_lun_remove_cmd(struct se_cmd *cmd)
550 {
551         struct se_lun *lun = cmd->se_lun;
552         unsigned long flags;
553
554         if (!lun)
555                 return;
556
557         spin_lock_irqsave(&cmd->t_state_lock, flags);
558         if (!atomic_read(&cmd->transport_dev_active)) {
559                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
560                 goto check_lun;
561         }
562         atomic_set(&cmd->transport_dev_active, 0);
563         transport_all_task_dev_remove_state(cmd);
564         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
565
566
567 check_lun:
568         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
569         if (atomic_read(&cmd->transport_lun_active)) {
570                 list_del(&cmd->se_lun_node);
571                 atomic_set(&cmd->transport_lun_active, 0);
572 #if 0
573                 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
574                         cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
575 #endif
576         }
577         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
578 }
579
580 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
581 {
582         if (!cmd->se_tmr_req)
583                 transport_lun_remove_cmd(cmd);
584
585         if (transport_cmd_check_stop_to_fabric(cmd))
586                 return;
587         if (remove) {
588                 transport_remove_cmd_from_queue(cmd);
589                 transport_put_cmd(cmd);
590         }
591 }
592
593 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
594                 bool at_head)
595 {
596         struct se_device *dev = cmd->se_dev;
597         struct se_queue_obj *qobj = &dev->dev_queue_obj;
598         unsigned long flags;
599
600         if (t_state) {
601                 spin_lock_irqsave(&cmd->t_state_lock, flags);
602                 cmd->t_state = t_state;
603                 atomic_set(&cmd->t_transport_active, 1);
604                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
605         }
606
607         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
608
609         /* If the cmd is already on the list, remove it before we add it */
610         if (!list_empty(&cmd->se_queue_node))
611                 list_del(&cmd->se_queue_node);
612         else
613                 atomic_inc(&qobj->queue_cnt);
614
615         if (at_head)
616                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
617         else
618                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
619         atomic_set(&cmd->t_transport_queue_active, 1);
620         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
621
622         wake_up_interruptible(&qobj->thread_wq);
623 }
624
625 static struct se_cmd *
626 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
627 {
628         struct se_cmd *cmd;
629         unsigned long flags;
630
631         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
632         if (list_empty(&qobj->qobj_list)) {
633                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
634                 return NULL;
635         }
636         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
637
638         atomic_set(&cmd->t_transport_queue_active, 0);
639
640         list_del_init(&cmd->se_queue_node);
641         atomic_dec(&qobj->queue_cnt);
642         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
643
644         return cmd;
645 }
646
647 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
648 {
649         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
650         unsigned long flags;
651
652         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
653         if (!atomic_read(&cmd->t_transport_queue_active)) {
654                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
655                 return;
656         }
657         atomic_set(&cmd->t_transport_queue_active, 0);
658         atomic_dec(&qobj->queue_cnt);
659         list_del_init(&cmd->se_queue_node);
660         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
661
662         if (atomic_read(&cmd->t_transport_queue_active)) {
663                 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
664                         cmd->se_tfo->get_task_tag(cmd),
665                         atomic_read(&cmd->t_transport_queue_active));
666         }
667 }
668
669 /*
670  * Completion function used by TCM subsystem plugins (such as FILEIO)
671  * for queueing up response from struct se_subsystem_api->do_task()
672  */
673 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
674 {
675         struct se_task *task = list_entry(cmd->t_task_list.next,
676                                 struct se_task, t_list);
677
678         if (good) {
679                 cmd->scsi_status = SAM_STAT_GOOD;
680                 task->task_scsi_status = GOOD;
681         } else {
682                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
683                 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
684                 task->task_se_cmd->transport_error_status =
685                                         PYX_TRANSPORT_ILLEGAL_REQUEST;
686         }
687
688         transport_complete_task(task, good);
689 }
690 EXPORT_SYMBOL(transport_complete_sync_cache);
691
692 static void target_complete_failure_work(struct work_struct *work)
693 {
694         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
695
696         transport_generic_request_failure(cmd, 1, 1);
697 }
698
699 /*      transport_complete_task():
700  *
701  *      Called from interrupt and non interrupt context depending
702  *      on the transport plugin.
703  */
704 void transport_complete_task(struct se_task *task, int success)
705 {
706         struct se_cmd *cmd = task->task_se_cmd;
707         struct se_device *dev = cmd->se_dev;
708         unsigned long flags;
709 #if 0
710         pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
711                         cmd->t_task_cdb[0], dev);
712 #endif
713         if (dev)
714                 atomic_inc(&dev->depth_left);
715
716         spin_lock_irqsave(&cmd->t_state_lock, flags);
717         task->task_flags &= ~TF_ACTIVE;
718
719         /*
720          * See if any sense data exists, if so set the TASK_SENSE flag.
721          * Also check for any other post completion work that needs to be
722          * done by the plugins.
723          */
724         if (dev && dev->transport->transport_complete) {
725                 if (dev->transport->transport_complete(task) != 0) {
726                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
727                         task->task_sense = 1;
728                         success = 1;
729                 }
730         }
731
732         /*
733          * See if we are waiting for outstanding struct se_task
734          * to complete for an exception condition
735          */
736         if (task->task_flags & TF_REQUEST_STOP) {
737                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
738                 complete(&task->task_stop_comp);
739                 return;
740         }
741
742         if (!success)
743                 cmd->t_tasks_failed = 1;
744
745         /*
746          * Decrement the outstanding t_task_cdbs_left count.  The last
747          * struct se_task from struct se_cmd will complete itself into the
748          * device queue depending upon int success.
749          */
750         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
751                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
752                 return;
753         }
754
755         if (cmd->t_tasks_failed) {
756                 if (!task->task_error_status) {
757                         task->task_error_status =
758                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
759                         cmd->transport_error_status =
760                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
761                 }
762                 INIT_WORK(&cmd->work, target_complete_failure_work);
763         } else {
764                 atomic_set(&cmd->t_transport_complete, 1);
765                 INIT_WORK(&cmd->work, target_complete_ok_work);
766         }
767
768         cmd->t_state = TRANSPORT_COMPLETE;
769         atomic_set(&cmd->t_transport_active, 1);
770         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
771
772         queue_work(target_completion_wq, &cmd->work);
773 }
774 EXPORT_SYMBOL(transport_complete_task);
775
776 /*
777  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
778  * struct se_task list are ready to be added to the active execution list
779  * struct se_device
780
781  * Called with se_dev_t->execute_task_lock called.
782  */
783 static inline int transport_add_task_check_sam_attr(
784         struct se_task *task,
785         struct se_task *task_prev,
786         struct se_device *dev)
787 {
788         /*
789          * No SAM Task attribute emulation enabled, add to tail of
790          * execution queue
791          */
792         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
793                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
794                 return 0;
795         }
796         /*
797          * HEAD_OF_QUEUE attribute for received CDB, which means
798          * the first task that is associated with a struct se_cmd goes to
799          * head of the struct se_device->execute_task_list, and task_prev
800          * after that for each subsequent task
801          */
802         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
803                 list_add(&task->t_execute_list,
804                                 (task_prev != NULL) ?
805                                 &task_prev->t_execute_list :
806                                 &dev->execute_task_list);
807
808                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
809                                 " in execution queue\n",
810                                 task->task_se_cmd->t_task_cdb[0]);
811                 return 1;
812         }
813         /*
814          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
815          * transitioned from Dermant -> Active state, and are added to the end
816          * of the struct se_device->execute_task_list
817          */
818         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
819         return 0;
820 }
821
822 /*      __transport_add_task_to_execute_queue():
823  *
824  *      Called with se_dev_t->execute_task_lock called.
825  */
826 static void __transport_add_task_to_execute_queue(
827         struct se_task *task,
828         struct se_task *task_prev,
829         struct se_device *dev)
830 {
831         int head_of_queue;
832
833         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
834         atomic_inc(&dev->execute_tasks);
835
836         if (atomic_read(&task->task_state_active))
837                 return;
838         /*
839          * Determine if this task needs to go to HEAD_OF_QUEUE for the
840          * state list as well.  Running with SAM Task Attribute emulation
841          * will always return head_of_queue == 0 here
842          */
843         if (head_of_queue)
844                 list_add(&task->t_state_list, (task_prev) ?
845                                 &task_prev->t_state_list :
846                                 &dev->state_task_list);
847         else
848                 list_add_tail(&task->t_state_list, &dev->state_task_list);
849
850         atomic_set(&task->task_state_active, 1);
851
852         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
853                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
854                 task, dev);
855 }
856
857 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
858 {
859         struct se_device *dev = cmd->se_dev;
860         struct se_task *task;
861         unsigned long flags;
862
863         spin_lock_irqsave(&cmd->t_state_lock, flags);
864         list_for_each_entry(task, &cmd->t_task_list, t_list) {
865                 if (atomic_read(&task->task_state_active))
866                         continue;
867
868                 spin_lock(&dev->execute_task_lock);
869                 list_add_tail(&task->t_state_list, &dev->state_task_list);
870                 atomic_set(&task->task_state_active, 1);
871
872                 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
873                         task->task_se_cmd->se_tfo->get_task_tag(
874                         task->task_se_cmd), task, dev);
875
876                 spin_unlock(&dev->execute_task_lock);
877         }
878         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
879 }
880
881 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
882 {
883         struct se_device *dev = cmd->se_dev;
884         struct se_task *task, *task_prev = NULL;
885         unsigned long flags;
886
887         spin_lock_irqsave(&dev->execute_task_lock, flags);
888         list_for_each_entry(task, &cmd->t_task_list, t_list) {
889                 if (!list_empty(&task->t_execute_list))
890                         continue;
891                 /*
892                  * __transport_add_task_to_execute_queue() handles the
893                  * SAM Task Attribute emulation if enabled
894                  */
895                 __transport_add_task_to_execute_queue(task, task_prev, dev);
896                 task_prev = task;
897         }
898         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
899 }
900
901 void __transport_remove_task_from_execute_queue(struct se_task *task,
902                 struct se_device *dev)
903 {
904         list_del_init(&task->t_execute_list);
905         atomic_dec(&dev->execute_tasks);
906 }
907
908 void transport_remove_task_from_execute_queue(
909         struct se_task *task,
910         struct se_device *dev)
911 {
912         unsigned long flags;
913
914         if (WARN_ON(list_empty(&task->t_execute_list)))
915                 return;
916
917         spin_lock_irqsave(&dev->execute_task_lock, flags);
918         __transport_remove_task_from_execute_queue(task, dev);
919         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
920 }
921
922 /*
923  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
924  */
925
926 static void target_qf_do_work(struct work_struct *work)
927 {
928         struct se_device *dev = container_of(work, struct se_device,
929                                         qf_work_queue);
930         LIST_HEAD(qf_cmd_list);
931         struct se_cmd *cmd, *cmd_tmp;
932
933         spin_lock_irq(&dev->qf_cmd_lock);
934         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
935         spin_unlock_irq(&dev->qf_cmd_lock);
936
937         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
938                 list_del(&cmd->se_qf_node);
939                 atomic_dec(&dev->dev_qf_count);
940                 smp_mb__after_atomic_dec();
941
942                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
943                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
944                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
945                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
946                         : "UNKNOWN");
947
948                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
949         }
950 }
951
952 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
953 {
954         switch (cmd->data_direction) {
955         case DMA_NONE:
956                 return "NONE";
957         case DMA_FROM_DEVICE:
958                 return "READ";
959         case DMA_TO_DEVICE:
960                 return "WRITE";
961         case DMA_BIDIRECTIONAL:
962                 return "BIDI";
963         default:
964                 break;
965         }
966
967         return "UNKNOWN";
968 }
969
970 void transport_dump_dev_state(
971         struct se_device *dev,
972         char *b,
973         int *bl)
974 {
975         *bl += sprintf(b + *bl, "Status: ");
976         switch (dev->dev_status) {
977         case TRANSPORT_DEVICE_ACTIVATED:
978                 *bl += sprintf(b + *bl, "ACTIVATED");
979                 break;
980         case TRANSPORT_DEVICE_DEACTIVATED:
981                 *bl += sprintf(b + *bl, "DEACTIVATED");
982                 break;
983         case TRANSPORT_DEVICE_SHUTDOWN:
984                 *bl += sprintf(b + *bl, "SHUTDOWN");
985                 break;
986         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
987         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
988                 *bl += sprintf(b + *bl, "OFFLINE");
989                 break;
990         default:
991                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
992                 break;
993         }
994
995         *bl += sprintf(b + *bl, "  Execute/Left/Max Queue Depth: %d/%d/%d",
996                 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
997                 dev->queue_depth);
998         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
999                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1000         *bl += sprintf(b + *bl, "        ");
1001 }
1002
1003 void transport_dump_vpd_proto_id(
1004         struct t10_vpd *vpd,
1005         unsigned char *p_buf,
1006         int p_buf_len)
1007 {
1008         unsigned char buf[VPD_TMP_BUF_SIZE];
1009         int len;
1010
1011         memset(buf, 0, VPD_TMP_BUF_SIZE);
1012         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1013
1014         switch (vpd->protocol_identifier) {
1015         case 0x00:
1016                 sprintf(buf+len, "Fibre Channel\n");
1017                 break;
1018         case 0x10:
1019                 sprintf(buf+len, "Parallel SCSI\n");
1020                 break;
1021         case 0x20:
1022                 sprintf(buf+len, "SSA\n");
1023                 break;
1024         case 0x30:
1025                 sprintf(buf+len, "IEEE 1394\n");
1026                 break;
1027         case 0x40:
1028                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1029                                 " Protocol\n");
1030                 break;
1031         case 0x50:
1032                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1033                 break;
1034         case 0x60:
1035                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1036                 break;
1037         case 0x70:
1038                 sprintf(buf+len, "Automation/Drive Interface Transport"
1039                                 " Protocol\n");
1040                 break;
1041         case 0x80:
1042                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1043                 break;
1044         default:
1045                 sprintf(buf+len, "Unknown 0x%02x\n",
1046                                 vpd->protocol_identifier);
1047                 break;
1048         }
1049
1050         if (p_buf)
1051                 strncpy(p_buf, buf, p_buf_len);
1052         else
1053                 pr_debug("%s", buf);
1054 }
1055
1056 void
1057 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1058 {
1059         /*
1060          * Check if the Protocol Identifier Valid (PIV) bit is set..
1061          *
1062          * from spc3r23.pdf section 7.5.1
1063          */
1064          if (page_83[1] & 0x80) {
1065                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1066                 vpd->protocol_identifier_set = 1;
1067                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1068         }
1069 }
1070 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1071
1072 int transport_dump_vpd_assoc(
1073         struct t10_vpd *vpd,
1074         unsigned char *p_buf,
1075         int p_buf_len)
1076 {
1077         unsigned char buf[VPD_TMP_BUF_SIZE];
1078         int ret = 0;
1079         int len;
1080
1081         memset(buf, 0, VPD_TMP_BUF_SIZE);
1082         len = sprintf(buf, "T10 VPD Identifier Association: ");
1083
1084         switch (vpd->association) {
1085         case 0x00:
1086                 sprintf(buf+len, "addressed logical unit\n");
1087                 break;
1088         case 0x10:
1089                 sprintf(buf+len, "target port\n");
1090                 break;
1091         case 0x20:
1092                 sprintf(buf+len, "SCSI target device\n");
1093                 break;
1094         default:
1095                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1096                 ret = -EINVAL;
1097                 break;
1098         }
1099
1100         if (p_buf)
1101                 strncpy(p_buf, buf, p_buf_len);
1102         else
1103                 pr_debug("%s", buf);
1104
1105         return ret;
1106 }
1107
1108 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1109 {
1110         /*
1111          * The VPD identification association..
1112          *
1113          * from spc3r23.pdf Section 7.6.3.1 Table 297
1114          */
1115         vpd->association = (page_83[1] & 0x30);
1116         return transport_dump_vpd_assoc(vpd, NULL, 0);
1117 }
1118 EXPORT_SYMBOL(transport_set_vpd_assoc);
1119
1120 int transport_dump_vpd_ident_type(
1121         struct t10_vpd *vpd,
1122         unsigned char *p_buf,
1123         int p_buf_len)
1124 {
1125         unsigned char buf[VPD_TMP_BUF_SIZE];
1126         int ret = 0;
1127         int len;
1128
1129         memset(buf, 0, VPD_TMP_BUF_SIZE);
1130         len = sprintf(buf, "T10 VPD Identifier Type: ");
1131
1132         switch (vpd->device_identifier_type) {
1133         case 0x00:
1134                 sprintf(buf+len, "Vendor specific\n");
1135                 break;
1136         case 0x01:
1137                 sprintf(buf+len, "T10 Vendor ID based\n");
1138                 break;
1139         case 0x02:
1140                 sprintf(buf+len, "EUI-64 based\n");
1141                 break;
1142         case 0x03:
1143                 sprintf(buf+len, "NAA\n");
1144                 break;
1145         case 0x04:
1146                 sprintf(buf+len, "Relative target port identifier\n");
1147                 break;
1148         case 0x08:
1149                 sprintf(buf+len, "SCSI name string\n");
1150                 break;
1151         default:
1152                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1153                                 vpd->device_identifier_type);
1154                 ret = -EINVAL;
1155                 break;
1156         }
1157
1158         if (p_buf) {
1159                 if (p_buf_len < strlen(buf)+1)
1160                         return -EINVAL;
1161                 strncpy(p_buf, buf, p_buf_len);
1162         } else {
1163                 pr_debug("%s", buf);
1164         }
1165
1166         return ret;
1167 }
1168
1169 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1170 {
1171         /*
1172          * The VPD identifier type..
1173          *
1174          * from spc3r23.pdf Section 7.6.3.1 Table 298
1175          */
1176         vpd->device_identifier_type = (page_83[1] & 0x0f);
1177         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1178 }
1179 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1180
1181 int transport_dump_vpd_ident(
1182         struct t10_vpd *vpd,
1183         unsigned char *p_buf,
1184         int p_buf_len)
1185 {
1186         unsigned char buf[VPD_TMP_BUF_SIZE];
1187         int ret = 0;
1188
1189         memset(buf, 0, VPD_TMP_BUF_SIZE);
1190
1191         switch (vpd->device_identifier_code_set) {
1192         case 0x01: /* Binary */
1193                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1194                         &vpd->device_identifier[0]);
1195                 break;
1196         case 0x02: /* ASCII */
1197                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1198                         &vpd->device_identifier[0]);
1199                 break;
1200         case 0x03: /* UTF-8 */
1201                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1202                         &vpd->device_identifier[0]);
1203                 break;
1204         default:
1205                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1206                         " 0x%02x", vpd->device_identifier_code_set);
1207                 ret = -EINVAL;
1208                 break;
1209         }
1210
1211         if (p_buf)
1212                 strncpy(p_buf, buf, p_buf_len);
1213         else
1214                 pr_debug("%s", buf);
1215
1216         return ret;
1217 }
1218
1219 int
1220 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1221 {
1222         static const char hex_str[] = "0123456789abcdef";
1223         int j = 0, i = 4; /* offset to start of the identifer */
1224
1225         /*
1226          * The VPD Code Set (encoding)
1227          *
1228          * from spc3r23.pdf Section 7.6.3.1 Table 296
1229          */
1230         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1231         switch (vpd->device_identifier_code_set) {
1232         case 0x01: /* Binary */
1233                 vpd->device_identifier[j++] =
1234                                 hex_str[vpd->device_identifier_type];
1235                 while (i < (4 + page_83[3])) {
1236                         vpd->device_identifier[j++] =
1237                                 hex_str[(page_83[i] & 0xf0) >> 4];
1238                         vpd->device_identifier[j++] =
1239                                 hex_str[page_83[i] & 0x0f];
1240                         i++;
1241                 }
1242                 break;
1243         case 0x02: /* ASCII */
1244         case 0x03: /* UTF-8 */
1245                 while (i < (4 + page_83[3]))
1246                         vpd->device_identifier[j++] = page_83[i++];
1247                 break;
1248         default:
1249                 break;
1250         }
1251
1252         return transport_dump_vpd_ident(vpd, NULL, 0);
1253 }
1254 EXPORT_SYMBOL(transport_set_vpd_ident);
1255
1256 static void core_setup_task_attr_emulation(struct se_device *dev)
1257 {
1258         /*
1259          * If this device is from Target_Core_Mod/pSCSI, disable the
1260          * SAM Task Attribute emulation.
1261          *
1262          * This is currently not available in upsream Linux/SCSI Target
1263          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1264          */
1265         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1266                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1267                 return;
1268         }
1269
1270         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1271         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1272                 " device\n", dev->transport->name,
1273                 dev->transport->get_device_rev(dev));
1274 }
1275
1276 static void scsi_dump_inquiry(struct se_device *dev)
1277 {
1278         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1279         int i, device_type;
1280         /*
1281          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1282          */
1283         pr_debug("  Vendor: ");
1284         for (i = 0; i < 8; i++)
1285                 if (wwn->vendor[i] >= 0x20)
1286                         pr_debug("%c", wwn->vendor[i]);
1287                 else
1288                         pr_debug(" ");
1289
1290         pr_debug("  Model: ");
1291         for (i = 0; i < 16; i++)
1292                 if (wwn->model[i] >= 0x20)
1293                         pr_debug("%c", wwn->model[i]);
1294                 else
1295                         pr_debug(" ");
1296
1297         pr_debug("  Revision: ");
1298         for (i = 0; i < 4; i++)
1299                 if (wwn->revision[i] >= 0x20)
1300                         pr_debug("%c", wwn->revision[i]);
1301                 else
1302                         pr_debug(" ");
1303
1304         pr_debug("\n");
1305
1306         device_type = dev->transport->get_device_type(dev);
1307         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1308         pr_debug("                 ANSI SCSI revision: %02x\n",
1309                                 dev->transport->get_device_rev(dev));
1310 }
1311
1312 struct se_device *transport_add_device_to_core_hba(
1313         struct se_hba *hba,
1314         struct se_subsystem_api *transport,
1315         struct se_subsystem_dev *se_dev,
1316         u32 device_flags,
1317         void *transport_dev,
1318         struct se_dev_limits *dev_limits,
1319         const char *inquiry_prod,
1320         const char *inquiry_rev)
1321 {
1322         int force_pt;
1323         struct se_device  *dev;
1324
1325         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1326         if (!dev) {
1327                 pr_err("Unable to allocate memory for se_dev_t\n");
1328                 return NULL;
1329         }
1330
1331         transport_init_queue_obj(&dev->dev_queue_obj);
1332         dev->dev_flags          = device_flags;
1333         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1334         dev->dev_ptr            = transport_dev;
1335         dev->se_hba             = hba;
1336         dev->se_sub_dev         = se_dev;
1337         dev->transport          = transport;
1338         atomic_set(&dev->active_cmds, 0);
1339         INIT_LIST_HEAD(&dev->dev_list);
1340         INIT_LIST_HEAD(&dev->dev_sep_list);
1341         INIT_LIST_HEAD(&dev->dev_tmr_list);
1342         INIT_LIST_HEAD(&dev->execute_task_list);
1343         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1344         INIT_LIST_HEAD(&dev->ordered_cmd_list);
1345         INIT_LIST_HEAD(&dev->state_task_list);
1346         INIT_LIST_HEAD(&dev->qf_cmd_list);
1347         spin_lock_init(&dev->execute_task_lock);
1348         spin_lock_init(&dev->delayed_cmd_lock);
1349         spin_lock_init(&dev->ordered_cmd_lock);
1350         spin_lock_init(&dev->state_task_lock);
1351         spin_lock_init(&dev->dev_alua_lock);
1352         spin_lock_init(&dev->dev_reservation_lock);
1353         spin_lock_init(&dev->dev_status_lock);
1354         spin_lock_init(&dev->dev_status_thr_lock);
1355         spin_lock_init(&dev->se_port_lock);
1356         spin_lock_init(&dev->se_tmr_lock);
1357         spin_lock_init(&dev->qf_cmd_lock);
1358
1359         dev->queue_depth        = dev_limits->queue_depth;
1360         atomic_set(&dev->depth_left, dev->queue_depth);
1361         atomic_set(&dev->dev_ordered_id, 0);
1362
1363         se_dev_set_default_attribs(dev, dev_limits);
1364
1365         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1366         dev->creation_time = get_jiffies_64();
1367         spin_lock_init(&dev->stats_lock);
1368
1369         spin_lock(&hba->device_lock);
1370         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1371         hba->dev_count++;
1372         spin_unlock(&hba->device_lock);
1373         /*
1374          * Setup the SAM Task Attribute emulation for struct se_device
1375          */
1376         core_setup_task_attr_emulation(dev);
1377         /*
1378          * Force PR and ALUA passthrough emulation with internal object use.
1379          */
1380         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1381         /*
1382          * Setup the Reservations infrastructure for struct se_device
1383          */
1384         core_setup_reservations(dev, force_pt);
1385         /*
1386          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1387          */
1388         if (core_setup_alua(dev, force_pt) < 0)
1389                 goto out;
1390
1391         /*
1392          * Startup the struct se_device processing thread
1393          */
1394         dev->process_thread = kthread_run(transport_processing_thread, dev,
1395                                           "LIO_%s", dev->transport->name);
1396         if (IS_ERR(dev->process_thread)) {
1397                 pr_err("Unable to create kthread: LIO_%s\n",
1398                         dev->transport->name);
1399                 goto out;
1400         }
1401         /*
1402          * Setup work_queue for QUEUE_FULL
1403          */
1404         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1405         /*
1406          * Preload the initial INQUIRY const values if we are doing
1407          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1408          * passthrough because this is being provided by the backend LLD.
1409          * This is required so that transport_get_inquiry() copies these
1410          * originals once back into DEV_T10_WWN(dev) for the virtual device
1411          * setup.
1412          */
1413         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1414                 if (!inquiry_prod || !inquiry_rev) {
1415                         pr_err("All non TCM/pSCSI plugins require"
1416                                 " INQUIRY consts\n");
1417                         goto out;
1418                 }
1419
1420                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1421                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1422                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1423         }
1424         scsi_dump_inquiry(dev);
1425
1426         return dev;
1427 out:
1428         kthread_stop(dev->process_thread);
1429
1430         spin_lock(&hba->device_lock);
1431         list_del(&dev->dev_list);
1432         hba->dev_count--;
1433         spin_unlock(&hba->device_lock);
1434
1435         se_release_vpd_for_dev(dev);
1436
1437         kfree(dev);
1438
1439         return NULL;
1440 }
1441 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1442
1443 /*      transport_generic_prepare_cdb():
1444  *
1445  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1446  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1447  *      The point of this is since we are mapping iSCSI LUNs to
1448  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1449  *      devices and HBAs for a loop.
1450  */
1451 static inline void transport_generic_prepare_cdb(
1452         unsigned char *cdb)
1453 {
1454         switch (cdb[0]) {
1455         case READ_10: /* SBC - RDProtect */
1456         case READ_12: /* SBC - RDProtect */
1457         case READ_16: /* SBC - RDProtect */
1458         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1459         case VERIFY: /* SBC - VRProtect */
1460         case VERIFY_16: /* SBC - VRProtect */
1461         case WRITE_VERIFY: /* SBC - VRProtect */
1462         case WRITE_VERIFY_12: /* SBC - VRProtect */
1463                 break;
1464         default:
1465                 cdb[1] &= 0x1f; /* clear logical unit number */
1466                 break;
1467         }
1468 }
1469
1470 static struct se_task *
1471 transport_generic_get_task(struct se_cmd *cmd,
1472                 enum dma_data_direction data_direction)
1473 {
1474         struct se_task *task;
1475         struct se_device *dev = cmd->se_dev;
1476
1477         task = dev->transport->alloc_task(cmd->t_task_cdb);
1478         if (!task) {
1479                 pr_err("Unable to allocate struct se_task\n");
1480                 return NULL;
1481         }
1482
1483         INIT_LIST_HEAD(&task->t_list);
1484         INIT_LIST_HEAD(&task->t_execute_list);
1485         INIT_LIST_HEAD(&task->t_state_list);
1486         init_completion(&task->task_stop_comp);
1487         task->task_se_cmd = cmd;
1488         task->task_data_direction = data_direction;
1489
1490         return task;
1491 }
1492
1493 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1494
1495 /*
1496  * Used by fabric modules containing a local struct se_cmd within their
1497  * fabric dependent per I/O descriptor.
1498  */
1499 void transport_init_se_cmd(
1500         struct se_cmd *cmd,
1501         struct target_core_fabric_ops *tfo,
1502         struct se_session *se_sess,
1503         u32 data_length,
1504         int data_direction,
1505         int task_attr,
1506         unsigned char *sense_buffer)
1507 {
1508         INIT_LIST_HEAD(&cmd->se_lun_node);
1509         INIT_LIST_HEAD(&cmd->se_delayed_node);
1510         INIT_LIST_HEAD(&cmd->se_ordered_node);
1511         INIT_LIST_HEAD(&cmd->se_qf_node);
1512         INIT_LIST_HEAD(&cmd->se_queue_node);
1513         INIT_LIST_HEAD(&cmd->se_cmd_list);
1514         INIT_LIST_HEAD(&cmd->t_task_list);
1515         init_completion(&cmd->transport_lun_fe_stop_comp);
1516         init_completion(&cmd->transport_lun_stop_comp);
1517         init_completion(&cmd->t_transport_stop_comp);
1518         init_completion(&cmd->cmd_wait_comp);
1519         spin_lock_init(&cmd->t_state_lock);
1520         atomic_set(&cmd->transport_dev_active, 1);
1521
1522         cmd->se_tfo = tfo;
1523         cmd->se_sess = se_sess;
1524         cmd->data_length = data_length;
1525         cmd->data_direction = data_direction;
1526         cmd->sam_task_attr = task_attr;
1527         cmd->sense_buffer = sense_buffer;
1528 }
1529 EXPORT_SYMBOL(transport_init_se_cmd);
1530
1531 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1532 {
1533         /*
1534          * Check if SAM Task Attribute emulation is enabled for this
1535          * struct se_device storage object
1536          */
1537         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1538                 return 0;
1539
1540         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1541                 pr_debug("SAM Task Attribute ACA"
1542                         " emulation is not supported\n");
1543                 return -EINVAL;
1544         }
1545         /*
1546          * Used to determine when ORDERED commands should go from
1547          * Dormant to Active status.
1548          */
1549         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1550         smp_mb__after_atomic_inc();
1551         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1552                         cmd->se_ordered_id, cmd->sam_task_attr,
1553                         cmd->se_dev->transport->name);
1554         return 0;
1555 }
1556
1557 /*      transport_generic_allocate_tasks():
1558  *
1559  *      Called from fabric RX Thread.
1560  */
1561 int transport_generic_allocate_tasks(
1562         struct se_cmd *cmd,
1563         unsigned char *cdb)
1564 {
1565         int ret;
1566
1567         transport_generic_prepare_cdb(cdb);
1568         /*
1569          * Ensure that the received CDB is less than the max (252 + 8) bytes
1570          * for VARIABLE_LENGTH_CMD
1571          */
1572         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1573                 pr_err("Received SCSI CDB with command_size: %d that"
1574                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1575                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1576                 return -EINVAL;
1577         }
1578         /*
1579          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1580          * allocate the additional extended CDB buffer now..  Otherwise
1581          * setup the pointer from __t_task_cdb to t_task_cdb.
1582          */
1583         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1584                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1585                                                 GFP_KERNEL);
1586                 if (!cmd->t_task_cdb) {
1587                         pr_err("Unable to allocate cmd->t_task_cdb"
1588                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1589                                 scsi_command_size(cdb),
1590                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1591                         return -ENOMEM;
1592                 }
1593         } else
1594                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1595         /*
1596          * Copy the original CDB into cmd->
1597          */
1598         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1599         /*
1600          * Setup the received CDB based on SCSI defined opcodes and
1601          * perform unit attention, persistent reservations and ALUA
1602          * checks for virtual device backends.  The cmd->t_task_cdb
1603          * pointer is expected to be setup before we reach this point.
1604          */
1605         ret = transport_generic_cmd_sequencer(cmd, cdb);
1606         if (ret < 0)
1607                 return ret;
1608         /*
1609          * Check for SAM Task Attribute Emulation
1610          */
1611         if (transport_check_alloc_task_attr(cmd) < 0) {
1612                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1613                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1614                 return -EINVAL;
1615         }
1616         spin_lock(&cmd->se_lun->lun_sep_lock);
1617         if (cmd->se_lun->lun_sep)
1618                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1619         spin_unlock(&cmd->se_lun->lun_sep_lock);
1620         return 0;
1621 }
1622 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1623
1624 /*
1625  * Used by fabric module frontends to queue tasks directly.
1626  * Many only be used from process context only
1627  */
1628 int transport_handle_cdb_direct(
1629         struct se_cmd *cmd)
1630 {
1631         int ret;
1632
1633         if (!cmd->se_lun) {
1634                 dump_stack();
1635                 pr_err("cmd->se_lun is NULL\n");
1636                 return -EINVAL;
1637         }
1638         if (in_interrupt()) {
1639                 dump_stack();
1640                 pr_err("transport_generic_handle_cdb cannot be called"
1641                                 " from interrupt context\n");
1642                 return -EINVAL;
1643         }
1644         /*
1645          * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1646          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1647          * in existing usage to ensure that outstanding descriptors are handled
1648          * correctly during shutdown via transport_wait_for_tasks()
1649          *
1650          * Also, we don't take cmd->t_state_lock here as we only expect
1651          * this to be called for initial descriptor submission.
1652          */
1653         cmd->t_state = TRANSPORT_NEW_CMD;
1654         atomic_set(&cmd->t_transport_active, 1);
1655         /*
1656          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1657          * so follow TRANSPORT_NEW_CMD processing thread context usage
1658          * and call transport_generic_request_failure() if necessary..
1659          */
1660         ret = transport_generic_new_cmd(cmd);
1661         if (ret < 0) {
1662                 cmd->transport_error_status = ret;
1663                 transport_generic_request_failure(cmd, 0,
1664                                 (cmd->data_direction != DMA_TO_DEVICE));
1665         }
1666         return 0;
1667 }
1668 EXPORT_SYMBOL(transport_handle_cdb_direct);
1669
1670 /*
1671  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1672  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1673  * complete setup in TCM process context w/ TFO->new_cmd_map().
1674  */
1675 int transport_generic_handle_cdb_map(
1676         struct se_cmd *cmd)
1677 {
1678         if (!cmd->se_lun) {
1679                 dump_stack();
1680                 pr_err("cmd->se_lun is NULL\n");
1681                 return -EINVAL;
1682         }
1683
1684         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1685         return 0;
1686 }
1687 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1688
1689 /*      transport_generic_handle_data():
1690  *
1691  *
1692  */
1693 int transport_generic_handle_data(
1694         struct se_cmd *cmd)
1695 {
1696         /*
1697          * For the software fabric case, then we assume the nexus is being
1698          * failed/shutdown when signals are pending from the kthread context
1699          * caller, so we return a failure.  For the HW target mode case running
1700          * in interrupt code, the signal_pending() check is skipped.
1701          */
1702         if (!in_interrupt() && signal_pending(current))
1703                 return -EPERM;
1704         /*
1705          * If the received CDB has aleady been ABORTED by the generic
1706          * target engine, we now call transport_check_aborted_status()
1707          * to queue any delated TASK_ABORTED status for the received CDB to the
1708          * fabric module as we are expecting no further incoming DATA OUT
1709          * sequences at this point.
1710          */
1711         if (transport_check_aborted_status(cmd, 1) != 0)
1712                 return 0;
1713
1714         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1715         return 0;
1716 }
1717 EXPORT_SYMBOL(transport_generic_handle_data);
1718
1719 /*      transport_generic_handle_tmr():
1720  *
1721  *
1722  */
1723 int transport_generic_handle_tmr(
1724         struct se_cmd *cmd)
1725 {
1726         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1727         return 0;
1728 }
1729 EXPORT_SYMBOL(transport_generic_handle_tmr);
1730
1731 /*
1732  * If the task is active, request it to be stopped and sleep until it
1733  * has completed.
1734  */
1735 bool target_stop_task(struct se_task *task, unsigned long *flags)
1736 {
1737         struct se_cmd *cmd = task->task_se_cmd;
1738         bool was_active = false;
1739
1740         if (task->task_flags & TF_ACTIVE) {
1741                 task->task_flags |= TF_REQUEST_STOP;
1742                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1743
1744                 pr_debug("Task %p waiting to complete\n", task);
1745                 wait_for_completion(&task->task_stop_comp);
1746                 pr_debug("Task %p stopped successfully\n", task);
1747
1748                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1749                 atomic_dec(&cmd->t_task_cdbs_left);
1750                 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1751                 was_active = true;
1752         }
1753
1754         return was_active;
1755 }
1756
1757 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1758 {
1759         struct se_task *task, *task_tmp;
1760         unsigned long flags;
1761         int ret = 0;
1762
1763         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1764                 cmd->se_tfo->get_task_tag(cmd));
1765
1766         /*
1767          * No tasks remain in the execution queue
1768          */
1769         spin_lock_irqsave(&cmd->t_state_lock, flags);
1770         list_for_each_entry_safe(task, task_tmp,
1771                                 &cmd->t_task_list, t_list) {
1772                 pr_debug("Processing task %p\n", task);
1773                 /*
1774                  * If the struct se_task has not been sent and is not active,
1775                  * remove the struct se_task from the execution queue.
1776                  */
1777                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1778                         spin_unlock_irqrestore(&cmd->t_state_lock,
1779                                         flags);
1780                         transport_remove_task_from_execute_queue(task,
1781                                         cmd->se_dev);
1782
1783                         pr_debug("Task %p removed from execute queue\n", task);
1784                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1785                         continue;
1786                 }
1787
1788                 if (!target_stop_task(task, &flags)) {
1789                         pr_debug("Task %p - did nothing\n", task);
1790                         ret++;
1791                 }
1792         }
1793         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1794
1795         return ret;
1796 }
1797
1798 /*
1799  * Handle SAM-esque emulation for generic transport request failures.
1800  */
1801 static void transport_generic_request_failure(
1802         struct se_cmd *cmd,
1803         int complete,
1804         int sc)
1805 {
1806         int ret = 0;
1807
1808         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1809                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1810                 cmd->t_task_cdb[0]);
1811         pr_debug("-----[ i_state: %d t_state: %d transport_error_status: %d\n",
1812                 cmd->se_tfo->get_cmd_state(cmd),
1813                 cmd->t_state,
1814                 cmd->transport_error_status);
1815         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1816                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1817                 " t_transport_active: %d t_transport_stop: %d"
1818                 " t_transport_sent: %d\n", cmd->t_task_list_num,
1819                 atomic_read(&cmd->t_task_cdbs_left),
1820                 atomic_read(&cmd->t_task_cdbs_sent),
1821                 atomic_read(&cmd->t_task_cdbs_ex_left),
1822                 atomic_read(&cmd->t_transport_active),
1823                 atomic_read(&cmd->t_transport_stop),
1824                 atomic_read(&cmd->t_transport_sent));
1825
1826         /*
1827          * For SAM Task Attribute emulation for failed struct se_cmd
1828          */
1829         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1830                 transport_complete_task_attr(cmd);
1831
1832         if (complete) {
1833                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1834         }
1835
1836         switch (cmd->transport_error_status) {
1837         case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1838                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1839                 break;
1840         case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1841                 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1842                 break;
1843         case PYX_TRANSPORT_INVALID_CDB_FIELD:
1844                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1845                 break;
1846         case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1847                 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1848                 break;
1849         case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1850                 if (!sc)
1851                         transport_new_cmd_failure(cmd);
1852                 /*
1853                  * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1854                  * we force this session to fall back to session
1855                  * recovery.
1856                  */
1857                 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1858                 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1859
1860                 goto check_stop;
1861         case PYX_TRANSPORT_LU_COMM_FAILURE:
1862         case PYX_TRANSPORT_ILLEGAL_REQUEST:
1863                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1864                 break;
1865         case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1866                 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1867                 break;
1868         case PYX_TRANSPORT_WRITE_PROTECTED:
1869                 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1870                 break;
1871         case PYX_TRANSPORT_RESERVATION_CONFLICT:
1872                 /*
1873                  * No SENSE Data payload for this case, set SCSI Status
1874                  * and queue the response to $FABRIC_MOD.
1875                  *
1876                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1877                  */
1878                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1879                 /*
1880                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1881                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1882                  * CONFLICT STATUS.
1883                  *
1884                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1885                  */
1886                 if (cmd->se_sess &&
1887                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1888                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1889                                 cmd->orig_fe_lun, 0x2C,
1890                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1891
1892                 ret = cmd->se_tfo->queue_status(cmd);
1893                 if (ret == -EAGAIN || ret == -ENOMEM)
1894                         goto queue_full;
1895                 goto check_stop;
1896         case PYX_TRANSPORT_USE_SENSE_REASON:
1897                 /*
1898                  * struct se_cmd->scsi_sense_reason already set
1899                  */
1900                 break;
1901         default:
1902                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1903                         cmd->t_task_cdb[0],
1904                         cmd->transport_error_status);
1905                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1906                 break;
1907         }
1908         /*
1909          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1910          * make the call to transport_send_check_condition_and_sense()
1911          * directly.  Otherwise expect the fabric to make the call to
1912          * transport_send_check_condition_and_sense() after handling
1913          * possible unsoliticied write data payloads.
1914          */
1915         if (!sc && !cmd->se_tfo->new_cmd_map)
1916                 transport_new_cmd_failure(cmd);
1917         else {
1918                 ret = transport_send_check_condition_and_sense(cmd,
1919                                 cmd->scsi_sense_reason, 0);
1920                 if (ret == -EAGAIN || ret == -ENOMEM)
1921                         goto queue_full;
1922         }
1923
1924 check_stop:
1925         transport_lun_remove_cmd(cmd);
1926         if (!transport_cmd_check_stop_to_fabric(cmd))
1927                 ;
1928         return;
1929
1930 queue_full:
1931         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1932         transport_handle_queue_full(cmd, cmd->se_dev);
1933 }
1934
1935 static inline u32 transport_lba_21(unsigned char *cdb)
1936 {
1937         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1938 }
1939
1940 static inline u32 transport_lba_32(unsigned char *cdb)
1941 {
1942         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1943 }
1944
1945 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1946 {
1947         unsigned int __v1, __v2;
1948
1949         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1950         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1951
1952         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1953 }
1954
1955 /*
1956  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1957  */
1958 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1959 {
1960         unsigned int __v1, __v2;
1961
1962         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1963         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1964
1965         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1966 }
1967
1968 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1969 {
1970         unsigned long flags;
1971
1972         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1973         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1974         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1975 }
1976
1977 static inline int transport_tcq_window_closed(struct se_device *dev)
1978 {
1979         if (dev->dev_tcq_window_closed++ <
1980                         PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
1981                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
1982         } else
1983                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
1984
1985         wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
1986         return 0;
1987 }
1988
1989 /*
1990  * Called from Fabric Module context from transport_execute_tasks()
1991  *
1992  * The return of this function determins if the tasks from struct se_cmd
1993  * get added to the execution queue in transport_execute_tasks(),
1994  * or are added to the delayed or ordered lists here.
1995  */
1996 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1997 {
1998         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1999                 return 1;
2000         /*
2001          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2002          * to allow the passed struct se_cmd list of tasks to the front of the list.
2003          */
2004          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2005                 atomic_inc(&cmd->se_dev->dev_hoq_count);
2006                 smp_mb__after_atomic_inc();
2007                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2008                         " 0x%02x, se_ordered_id: %u\n",
2009                         cmd->t_task_cdb[0],
2010                         cmd->se_ordered_id);
2011                 return 1;
2012         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2013                 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2014                 list_add_tail(&cmd->se_ordered_node,
2015                                 &cmd->se_dev->ordered_cmd_list);
2016                 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2017
2018                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2019                 smp_mb__after_atomic_inc();
2020
2021                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2022                                 " list, se_ordered_id: %u\n",
2023                                 cmd->t_task_cdb[0],
2024                                 cmd->se_ordered_id);
2025                 /*
2026                  * Add ORDERED command to tail of execution queue if
2027                  * no other older commands exist that need to be
2028                  * completed first.
2029                  */
2030                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2031                         return 1;
2032         } else {
2033                 /*
2034                  * For SIMPLE and UNTAGGED Task Attribute commands
2035                  */
2036                 atomic_inc(&cmd->se_dev->simple_cmds);
2037                 smp_mb__after_atomic_inc();
2038         }
2039         /*
2040          * Otherwise if one or more outstanding ORDERED task attribute exist,
2041          * add the dormant task(s) built for the passed struct se_cmd to the
2042          * execution queue and become in Active state for this struct se_device.
2043          */
2044         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2045                 /*
2046                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2047                  * will be drained upon completion of HEAD_OF_QUEUE task.
2048                  */
2049                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2050                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2051                 list_add_tail(&cmd->se_delayed_node,
2052                                 &cmd->se_dev->delayed_cmd_list);
2053                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2054
2055                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2056                         " delayed CMD list, se_ordered_id: %u\n",
2057                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2058                         cmd->se_ordered_id);
2059                 /*
2060                  * Return zero to let transport_execute_tasks() know
2061                  * not to add the delayed tasks to the execution list.
2062                  */
2063                 return 0;
2064         }
2065         /*
2066          * Otherwise, no ORDERED task attributes exist..
2067          */
2068         return 1;
2069 }
2070
2071 /*
2072  * Called from fabric module context in transport_generic_new_cmd() and
2073  * transport_generic_process_write()
2074  */
2075 static int transport_execute_tasks(struct se_cmd *cmd)
2076 {
2077         int add_tasks;
2078
2079         if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2080                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2081                 transport_generic_request_failure(cmd, 0, 1);
2082                 return 0;
2083         }
2084
2085         /*
2086          * Call transport_cmd_check_stop() to see if a fabric exception
2087          * has occurred that prevents execution.
2088          */
2089         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2090                 /*
2091                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2092                  * attribute for the tasks of the received struct se_cmd CDB
2093                  */
2094                 add_tasks = transport_execute_task_attr(cmd);
2095                 if (!add_tasks)
2096                         goto execute_tasks;
2097                 /*
2098                  * This calls transport_add_tasks_from_cmd() to handle
2099                  * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2100                  * (if enabled) in __transport_add_task_to_execute_queue() and
2101                  * transport_add_task_check_sam_attr().
2102                  */
2103                 transport_add_tasks_from_cmd(cmd);
2104         }
2105         /*
2106          * Kick the execution queue for the cmd associated struct se_device
2107          * storage object.
2108          */
2109 execute_tasks:
2110         __transport_execute_tasks(cmd->se_dev);
2111         return 0;
2112 }
2113
2114 /*
2115  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2116  * from struct se_device->execute_task_list and
2117  *
2118  * Called from transport_processing_thread()
2119  */
2120 static int __transport_execute_tasks(struct se_device *dev)
2121 {
2122         int error;
2123         struct se_cmd *cmd = NULL;
2124         struct se_task *task = NULL;
2125         unsigned long flags;
2126
2127         /*
2128          * Check if there is enough room in the device and HBA queue to send
2129          * struct se_tasks to the selected transport.
2130          */
2131 check_depth:
2132         if (!atomic_read(&dev->depth_left))
2133                 return transport_tcq_window_closed(dev);
2134
2135         dev->dev_tcq_window_closed = 0;
2136
2137         spin_lock_irq(&dev->execute_task_lock);
2138         if (list_empty(&dev->execute_task_list)) {
2139                 spin_unlock_irq(&dev->execute_task_lock);
2140                 return 0;
2141         }
2142         task = list_first_entry(&dev->execute_task_list,
2143                                 struct se_task, t_execute_list);
2144         __transport_remove_task_from_execute_queue(task, dev);
2145         spin_unlock_irq(&dev->execute_task_lock);
2146
2147         atomic_dec(&dev->depth_left);
2148
2149         cmd = task->task_se_cmd;
2150
2151         spin_lock_irqsave(&cmd->t_state_lock, flags);
2152         task->task_flags |= (TF_ACTIVE | TF_SENT);
2153         atomic_inc(&cmd->t_task_cdbs_sent);
2154
2155         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2156             cmd->t_task_list_num)
2157                 atomic_set(&cmd->t_transport_sent, 1);
2158
2159         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2160
2161         if (cmd->execute_task)
2162                 error = cmd->execute_task(task);
2163         else
2164                 error = dev->transport->do_task(task);
2165         if (error != 0) {
2166                 cmd->transport_error_status = error;
2167                 spin_lock_irqsave(&cmd->t_state_lock, flags);
2168                 task->task_flags &= ~TF_ACTIVE;
2169                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2170                 atomic_set(&cmd->t_transport_sent, 0);
2171                 transport_stop_tasks_for_cmd(cmd);
2172                 atomic_inc(&dev->depth_left);
2173                 transport_generic_request_failure(cmd, 0, 1);
2174         }
2175
2176         goto check_depth;
2177
2178         return 0;
2179 }
2180
2181 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2182 {
2183         unsigned long flags;
2184         /*
2185          * Any unsolicited data will get dumped for failed command inside of
2186          * the fabric plugin
2187          */
2188         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2189         se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2190         se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2191         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2192 }
2193
2194 static inline u32 transport_get_sectors_6(
2195         unsigned char *cdb,
2196         struct se_cmd *cmd,
2197         int *ret)
2198 {
2199         struct se_device *dev = cmd->se_dev;
2200
2201         /*
2202          * Assume TYPE_DISK for non struct se_device objects.
2203          * Use 8-bit sector value.
2204          */
2205         if (!dev)
2206                 goto type_disk;
2207
2208         /*
2209          * Use 24-bit allocation length for TYPE_TAPE.
2210          */
2211         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2212                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2213
2214         /*
2215          * Everything else assume TYPE_DISK Sector CDB location.
2216          * Use 8-bit sector value.
2217          */
2218 type_disk:
2219         return (u32)cdb[4];
2220 }
2221
2222 static inline u32 transport_get_sectors_10(
2223         unsigned char *cdb,
2224         struct se_cmd *cmd,
2225         int *ret)
2226 {
2227         struct se_device *dev = cmd->se_dev;
2228
2229         /*
2230          * Assume TYPE_DISK for non struct se_device objects.
2231          * Use 16-bit sector value.
2232          */
2233         if (!dev)
2234                 goto type_disk;
2235
2236         /*
2237          * XXX_10 is not defined in SSC, throw an exception
2238          */
2239         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2240                 *ret = -EINVAL;
2241                 return 0;
2242         }
2243
2244         /*
2245          * Everything else assume TYPE_DISK Sector CDB location.
2246          * Use 16-bit sector value.
2247          */
2248 type_disk:
2249         return (u32)(cdb[7] << 8) + cdb[8];
2250 }
2251
2252 static inline u32 transport_get_sectors_12(
2253         unsigned char *cdb,
2254         struct se_cmd *cmd,
2255         int *ret)
2256 {
2257         struct se_device *dev = cmd->se_dev;
2258
2259         /*
2260          * Assume TYPE_DISK for non struct se_device objects.
2261          * Use 32-bit sector value.
2262          */
2263         if (!dev)
2264                 goto type_disk;
2265
2266         /*
2267          * XXX_12 is not defined in SSC, throw an exception
2268          */
2269         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2270                 *ret = -EINVAL;
2271                 return 0;
2272         }
2273
2274         /*
2275          * Everything else assume TYPE_DISK Sector CDB location.
2276          * Use 32-bit sector value.
2277          */
2278 type_disk:
2279         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2280 }
2281
2282 static inline u32 transport_get_sectors_16(
2283         unsigned char *cdb,
2284         struct se_cmd *cmd,
2285         int *ret)
2286 {
2287         struct se_device *dev = cmd->se_dev;
2288
2289         /*
2290          * Assume TYPE_DISK for non struct se_device objects.
2291          * Use 32-bit sector value.
2292          */
2293         if (!dev)
2294                 goto type_disk;
2295
2296         /*
2297          * Use 24-bit allocation length for TYPE_TAPE.
2298          */
2299         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2300                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2301
2302 type_disk:
2303         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2304                     (cdb[12] << 8) + cdb[13];
2305 }
2306
2307 /*
2308  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2309  */
2310 static inline u32 transport_get_sectors_32(
2311         unsigned char *cdb,
2312         struct se_cmd *cmd,
2313         int *ret)
2314 {
2315         /*
2316          * Assume TYPE_DISK for non struct se_device objects.
2317          * Use 32-bit sector value.
2318          */
2319         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2320                     (cdb[30] << 8) + cdb[31];
2321
2322 }
2323
2324 static inline u32 transport_get_size(
2325         u32 sectors,
2326         unsigned char *cdb,
2327         struct se_cmd *cmd)
2328 {
2329         struct se_device *dev = cmd->se_dev;
2330
2331         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2332                 if (cdb[1] & 1) { /* sectors */
2333                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2334                 } else /* bytes */
2335                         return sectors;
2336         }
2337 #if 0
2338         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2339                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2340                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2341                         dev->transport->name);
2342 #endif
2343         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2344 }
2345
2346 static void transport_xor_callback(struct se_cmd *cmd)
2347 {
2348         unsigned char *buf, *addr;
2349         struct scatterlist *sg;
2350         unsigned int offset;
2351         int i;
2352         int count;
2353         /*
2354          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2355          *
2356          * 1) read the specified logical block(s);
2357          * 2) transfer logical blocks from the data-out buffer;
2358          * 3) XOR the logical blocks transferred from the data-out buffer with
2359          *    the logical blocks read, storing the resulting XOR data in a buffer;
2360          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2361          *    blocks transferred from the data-out buffer; and
2362          * 5) transfer the resulting XOR data to the data-in buffer.
2363          */
2364         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2365         if (!buf) {
2366                 pr_err("Unable to allocate xor_callback buf\n");
2367                 return;
2368         }
2369         /*
2370          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2371          * into the locally allocated *buf
2372          */
2373         sg_copy_to_buffer(cmd->t_data_sg,
2374                           cmd->t_data_nents,
2375                           buf,
2376                           cmd->data_length);
2377
2378         /*
2379          * Now perform the XOR against the BIDI read memory located at
2380          * cmd->t_mem_bidi_list
2381          */
2382
2383         offset = 0;
2384         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2385                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2386                 if (!addr)
2387                         goto out;
2388
2389                 for (i = 0; i < sg->length; i++)
2390                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2391
2392                 offset += sg->length;
2393                 kunmap_atomic(addr, KM_USER0);
2394         }
2395
2396 out:
2397         kfree(buf);
2398 }
2399
2400 /*
2401  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2402  */
2403 static int transport_get_sense_data(struct se_cmd *cmd)
2404 {
2405         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2406         struct se_device *dev = cmd->se_dev;
2407         struct se_task *task = NULL, *task_tmp;
2408         unsigned long flags;
2409         u32 offset = 0;
2410
2411         WARN_ON(!cmd->se_lun);
2412
2413         if (!dev)
2414                 return 0;
2415
2416         spin_lock_irqsave(&cmd->t_state_lock, flags);
2417         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2418                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2419                 return 0;
2420         }
2421
2422         list_for_each_entry_safe(task, task_tmp,
2423                                 &cmd->t_task_list, t_list) {
2424                 if (!task->task_sense)
2425                         continue;
2426
2427                 if (!dev->transport->get_sense_buffer) {
2428                         pr_err("dev->transport->get_sense_buffer"
2429                                         " is NULL\n");
2430                         continue;
2431                 }
2432
2433                 sense_buffer = dev->transport->get_sense_buffer(task);
2434                 if (!sense_buffer) {
2435                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2436                                 " sense buffer for task with sense\n",
2437                                 cmd->se_tfo->get_task_tag(cmd), task);
2438                         continue;
2439                 }
2440                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2441
2442                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2443                                 TRANSPORT_SENSE_BUFFER);
2444
2445                 memcpy(&buffer[offset], sense_buffer,
2446                                 TRANSPORT_SENSE_BUFFER);
2447                 cmd->scsi_status = task->task_scsi_status;
2448                 /* Automatically padded */
2449                 cmd->scsi_sense_length =
2450                                 (TRANSPORT_SENSE_BUFFER + offset);
2451
2452                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2453                                 " and sense\n",
2454                         dev->se_hba->hba_id, dev->transport->name,
2455                                 cmd->scsi_status);
2456                 return 0;
2457         }
2458         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2459
2460         return -1;
2461 }
2462
2463 static int
2464 transport_handle_reservation_conflict(struct se_cmd *cmd)
2465 {
2466         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2467         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2468         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2469         /*
2470          * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2471          * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2472          * CONFLICT STATUS.
2473          *
2474          * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2475          */
2476         if (cmd->se_sess &&
2477             cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2478                 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2479                         cmd->orig_fe_lun, 0x2C,
2480                         ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2481         return -EINVAL;
2482 }
2483
2484 static inline long long transport_dev_end_lba(struct se_device *dev)
2485 {
2486         return dev->transport->get_blocks(dev) + 1;
2487 }
2488
2489 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2490 {
2491         struct se_device *dev = cmd->se_dev;
2492         u32 sectors;
2493
2494         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2495                 return 0;
2496
2497         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2498
2499         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2500                 pr_err("LBA: %llu Sectors: %u exceeds"
2501                         " transport_dev_end_lba(): %llu\n",
2502                         cmd->t_task_lba, sectors,
2503                         transport_dev_end_lba(dev));
2504                 return -EINVAL;
2505         }
2506
2507         return 0;
2508 }
2509
2510 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2511 {
2512         /*
2513          * Determine if the received WRITE_SAME is used to for direct
2514          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2515          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2516          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2517          */
2518         int passthrough = (dev->transport->transport_type ==
2519                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2520
2521         if (!passthrough) {
2522                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2523                         pr_err("WRITE_SAME PBDATA and LBDATA"
2524                                 " bits not supported for Block Discard"
2525                                 " Emulation\n");
2526                         return -ENOSYS;
2527                 }
2528                 /*
2529                  * Currently for the emulated case we only accept
2530                  * tpws with the UNMAP=1 bit set.
2531                  */
2532                 if (!(flags[0] & 0x08)) {
2533                         pr_err("WRITE_SAME w/o UNMAP bit not"
2534                                 " supported for Block Discard Emulation\n");
2535                         return -ENOSYS;
2536                 }
2537         }
2538
2539         return 0;
2540 }
2541
2542 /*      transport_generic_cmd_sequencer():
2543  *
2544  *      Generic Command Sequencer that should work for most DAS transport
2545  *      drivers.
2546  *
2547  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2548  *      RX Thread.
2549  *
2550  *      FIXME: Need to support other SCSI OPCODES where as well.
2551  */
2552 static int transport_generic_cmd_sequencer(
2553         struct se_cmd *cmd,
2554         unsigned char *cdb)
2555 {
2556         struct se_device *dev = cmd->se_dev;
2557         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2558         int ret = 0, sector_ret = 0, passthrough;
2559         u32 sectors = 0, size = 0, pr_reg_type = 0;
2560         u16 service_action;
2561         u8 alua_ascq = 0;
2562         /*
2563          * Check for an existing UNIT ATTENTION condition
2564          */
2565         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2566                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2567                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2568                 return -EINVAL;
2569         }
2570         /*
2571          * Check status of Asymmetric Logical Unit Assignment port
2572          */
2573         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2574         if (ret != 0) {
2575                 /*
2576                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2577                  * The ALUA additional sense code qualifier (ASCQ) is determined
2578                  * by the ALUA primary or secondary access state..
2579                  */
2580                 if (ret > 0) {
2581 #if 0
2582                         pr_debug("[%s]: ALUA TG Port not available,"
2583                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2584                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2585 #endif
2586                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2587                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2588                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2589                         return -EINVAL;
2590                 }
2591                 goto out_invalid_cdb_field;
2592         }
2593         /*
2594          * Check status for SPC-3 Persistent Reservations
2595          */
2596         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2597                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2598                                         cmd, cdb, pr_reg_type) != 0)
2599                         return transport_handle_reservation_conflict(cmd);
2600                 /*
2601                  * This means the CDB is allowed for the SCSI Initiator port
2602                  * when said port is *NOT* holding the legacy SPC-2 or
2603                  * SPC-3 Persistent Reservation.
2604                  */
2605         }
2606
2607         /*
2608          * If we operate in passthrough mode we skip most CDB emulation and
2609          * instead hand the commands down to the physical SCSI device.
2610          */
2611         passthrough =
2612                 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2613
2614         switch (cdb[0]) {
2615         case READ_6:
2616                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2617                 if (sector_ret)
2618                         goto out_unsupported_cdb;
2619                 size = transport_get_size(sectors, cdb, cmd);
2620                 cmd->t_task_lba = transport_lba_21(cdb);
2621                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2622                 break;
2623         case READ_10:
2624                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2625                 if (sector_ret)
2626                         goto out_unsupported_cdb;
2627                 size = transport_get_size(sectors, cdb, cmd);
2628                 cmd->t_task_lba = transport_lba_32(cdb);
2629                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2630                 break;
2631         case READ_12:
2632                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2633                 if (sector_ret)
2634                         goto out_unsupported_cdb;
2635                 size = transport_get_size(sectors, cdb, cmd);
2636                 cmd->t_task_lba = transport_lba_32(cdb);
2637                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2638                 break;
2639         case READ_16:
2640                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2641                 if (sector_ret)
2642                         goto out_unsupported_cdb;
2643                 size = transport_get_size(sectors, cdb, cmd);
2644                 cmd->t_task_lba = transport_lba_64(cdb);
2645                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2646                 break;
2647         case WRITE_6:
2648                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2649                 if (sector_ret)
2650                         goto out_unsupported_cdb;
2651                 size = transport_get_size(sectors, cdb, cmd);
2652                 cmd->t_task_lba = transport_lba_21(cdb);
2653                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2654                 break;
2655         case WRITE_10:
2656                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2657                 if (sector_ret)
2658                         goto out_unsupported_cdb;
2659                 size = transport_get_size(sectors, cdb, cmd);
2660                 cmd->t_task_lba = transport_lba_32(cdb);
2661                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2662                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2663                 break;
2664         case WRITE_12:
2665                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2666                 if (sector_ret)
2667                         goto out_unsupported_cdb;
2668                 size = transport_get_size(sectors, cdb, cmd);
2669                 cmd->t_task_lba = transport_lba_32(cdb);
2670                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2671                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2672                 break;
2673         case WRITE_16:
2674                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2675                 if (sector_ret)
2676                         goto out_unsupported_cdb;
2677                 size = transport_get_size(sectors, cdb, cmd);
2678                 cmd->t_task_lba = transport_lba_64(cdb);
2679                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2680                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2681                 break;
2682         case XDWRITEREAD_10:
2683                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2684                     !(cmd->t_tasks_bidi))
2685                         goto out_invalid_cdb_field;
2686                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2687                 if (sector_ret)
2688                         goto out_unsupported_cdb;
2689                 size = transport_get_size(sectors, cdb, cmd);
2690                 cmd->t_task_lba = transport_lba_32(cdb);
2691                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2692
2693                 /*
2694                  * Do now allow BIDI commands for passthrough mode.
2695                  */
2696                 if (passthrough)
2697                         goto out_unsupported_cdb;
2698
2699                 /*
2700                  * Setup BIDI XOR callback to be run after I/O completion.
2701                  */
2702                 cmd->transport_complete_callback = &transport_xor_callback;
2703                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2704                 break;
2705         case VARIABLE_LENGTH_CMD:
2706                 service_action = get_unaligned_be16(&cdb[8]);
2707                 switch (service_action) {
2708                 case XDWRITEREAD_32:
2709                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2710                         if (sector_ret)
2711                                 goto out_unsupported_cdb;
2712                         size = transport_get_size(sectors, cdb, cmd);
2713                         /*
2714                          * Use WRITE_32 and READ_32 opcodes for the emulated
2715                          * XDWRITE_READ_32 logic.
2716                          */
2717                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2718                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2719
2720                         /*
2721                          * Do now allow BIDI commands for passthrough mode.
2722                          */
2723                         if (passthrough)
2724                                 goto out_unsupported_cdb;
2725
2726                         /*
2727                          * Setup BIDI XOR callback to be run during after I/O
2728                          * completion.
2729                          */
2730                         cmd->transport_complete_callback = &transport_xor_callback;
2731                         cmd->t_tasks_fua = (cdb[10] & 0x8);
2732                         break;
2733                 case WRITE_SAME_32:
2734                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2735                         if (sector_ret)
2736                                 goto out_unsupported_cdb;
2737
2738                         if (sectors)
2739                                 size = transport_get_size(1, cdb, cmd);
2740                         else {
2741                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2742                                        " supported\n");
2743                                 goto out_invalid_cdb_field;
2744                         }
2745
2746                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2747                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2748
2749                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2750                                 goto out_invalid_cdb_field;
2751                         if (!passthrough)
2752                                 cmd->execute_task = target_emulate_write_same;
2753                         break;
2754                 default:
2755                         pr_err("VARIABLE_LENGTH_CMD service action"
2756                                 " 0x%04x not supported\n", service_action);
2757                         goto out_unsupported_cdb;
2758                 }
2759                 break;
2760         case MAINTENANCE_IN:
2761                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2762                         /* MAINTENANCE_IN from SCC-2 */
2763                         /*
2764                          * Check for emulated MI_REPORT_TARGET_PGS.
2765                          */
2766                         if (cdb[1] == MI_REPORT_TARGET_PGS &&
2767                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2768                                 cmd->execute_task =
2769                                         target_emulate_report_target_port_groups;
2770                         }
2771                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2772                                (cdb[8] << 8) | cdb[9];
2773                 } else {
2774                         /* GPCMD_SEND_KEY from multi media commands */
2775                         size = (cdb[8] << 8) + cdb[9];
2776                 }
2777                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2778                 break;
2779         case MODE_SELECT:
2780                 size = cdb[4];
2781                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2782                 break;
2783         case MODE_SELECT_10:
2784                 size = (cdb[7] << 8) + cdb[8];
2785                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2786                 break;
2787         case MODE_SENSE:
2788                 size = cdb[4];
2789                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2790                 if (!passthrough)
2791                         cmd->execute_task = target_emulate_modesense;
2792                 break;
2793         case MODE_SENSE_10:
2794                 size = (cdb[7] << 8) + cdb[8];
2795                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2796                 if (!passthrough)
2797                         cmd->execute_task = target_emulate_modesense;
2798                 break;
2799         case GPCMD_READ_BUFFER_CAPACITY:
2800         case GPCMD_SEND_OPC:
2801         case LOG_SELECT:
2802         case LOG_SENSE:
2803                 size = (cdb[7] << 8) + cdb[8];
2804                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2805                 break;
2806         case READ_BLOCK_LIMITS:
2807                 size = READ_BLOCK_LEN;
2808                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2809                 break;
2810         case GPCMD_GET_CONFIGURATION:
2811         case GPCMD_READ_FORMAT_CAPACITIES:
2812         case GPCMD_READ_DISC_INFO:
2813         case GPCMD_READ_TRACK_RZONE_INFO:
2814                 size = (cdb[7] << 8) + cdb[8];
2815                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2816                 break;
2817         case PERSISTENT_RESERVE_IN:
2818                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2819                         cmd->execute_task = target_scsi3_emulate_pr_in;
2820                 size = (cdb[7] << 8) + cdb[8];
2821                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2822                 break;
2823         case PERSISTENT_RESERVE_OUT:
2824                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2825                         cmd->execute_task = target_scsi3_emulate_pr_out;
2826                 size = (cdb[7] << 8) + cdb[8];
2827                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2828                 break;
2829         case GPCMD_MECHANISM_STATUS:
2830         case GPCMD_READ_DVD_STRUCTURE:
2831                 size = (cdb[8] << 8) + cdb[9];
2832                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2833                 break;
2834         case READ_POSITION:
2835                 size = READ_POSITION_LEN;
2836                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2837                 break;
2838         case MAINTENANCE_OUT:
2839                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2840                         /* MAINTENANCE_OUT from SCC-2
2841                          *
2842                          * Check for emulated MO_SET_TARGET_PGS.
2843                          */
2844                         if (cdb[1] == MO_SET_TARGET_PGS &&
2845                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2846                                 cmd->execute_task =
2847                                         target_emulate_set_target_port_groups;
2848                         }
2849
2850                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2851                                (cdb[8] << 8) | cdb[9];
2852                 } else  {
2853                         /* GPCMD_REPORT_KEY from multi media commands */
2854                         size = (cdb[8] << 8) + cdb[9];
2855                 }
2856                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2857                 break;
2858         case INQUIRY:
2859                 size = (cdb[3] << 8) + cdb[4];
2860                 /*
2861                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2862                  * See spc4r17 section 5.3
2863                  */
2864                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2865                         cmd->sam_task_attr = MSG_HEAD_TAG;
2866                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2867                 if (!passthrough)
2868                         cmd->execute_task = target_emulate_inquiry;
2869                 break;
2870         case READ_BUFFER:
2871                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2872                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2873                 break;
2874         case READ_CAPACITY:
2875                 size = READ_CAP_LEN;
2876                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2877                 if (!passthrough)
2878                         cmd->execute_task = target_emulate_readcapacity;
2879                 break;
2880         case READ_MEDIA_SERIAL_NUMBER:
2881         case SECURITY_PROTOCOL_IN:
2882         case SECURITY_PROTOCOL_OUT:
2883                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2884                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2885                 break;
2886         case SERVICE_ACTION_IN:
2887                 switch (cmd->t_task_cdb[1] & 0x1f) {
2888                 case SAI_READ_CAPACITY_16:
2889                         if (!passthrough)
2890                                 cmd->execute_task =
2891                                         target_emulate_readcapacity_16;
2892                         break;
2893                 default:
2894                         if (passthrough)
2895                                 break;
2896
2897                         pr_err("Unsupported SA: 0x%02x\n",
2898                                 cmd->t_task_cdb[1] & 0x1f);
2899                         goto out_unsupported_cdb;
2900                 }
2901                 /*FALLTHROUGH*/
2902         case ACCESS_CONTROL_IN:
2903         case ACCESS_CONTROL_OUT:
2904         case EXTENDED_COPY:
2905         case READ_ATTRIBUTE:
2906         case RECEIVE_COPY_RESULTS:
2907         case WRITE_ATTRIBUTE:
2908                 size = (cdb[10] << 24) | (cdb[11] << 16) |
2909                        (cdb[12] << 8) | cdb[13];
2910                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2911                 break;
2912         case RECEIVE_DIAGNOSTIC:
2913         case SEND_DIAGNOSTIC:
2914                 size = (cdb[3] << 8) | cdb[4];
2915                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2916                 break;
2917 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2918 #if 0
2919         case GPCMD_READ_CD:
2920                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2921                 size = (2336 * sectors);
2922                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2923                 break;
2924 #endif
2925         case READ_TOC:
2926                 size = cdb[8];
2927                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2928                 break;
2929         case REQUEST_SENSE:
2930                 size = cdb[4];
2931                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2932                 if (!passthrough)
2933                         cmd->execute_task = target_emulate_request_sense;
2934                 break;
2935         case READ_ELEMENT_STATUS:
2936                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2937                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2938                 break;
2939         case WRITE_BUFFER:
2940                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2941                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2942                 break;
2943         case RESERVE:
2944         case RESERVE_10:
2945                 /*
2946                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2947                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2948                  */
2949                 if (cdb[0] == RESERVE_10)
2950                         size = (cdb[7] << 8) | cdb[8];
2951                 else
2952                         size = cmd->data_length;
2953
2954                 /*
2955                  * Setup the legacy emulated handler for SPC-2 and
2956                  * >= SPC-3 compatible reservation handling (CRH=1)
2957                  * Otherwise, we assume the underlying SCSI logic is
2958                  * is running in SPC_PASSTHROUGH, and wants reservations
2959                  * emulation disabled.
2960                  */
2961                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2962                         cmd->execute_task = target_scsi2_reservation_reserve;
2963                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2964                 break;
2965         case RELEASE:
2966         case RELEASE_10:
2967                 /*
2968                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2969                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2970                 */
2971                 if (cdb[0] == RELEASE_10)
2972                         size = (cdb[7] << 8) | cdb[8];
2973                 else
2974                         size = cmd->data_length;
2975
2976                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2977                         cmd->execute_task = target_scsi2_reservation_release;
2978                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2979                 break;
2980         case SYNCHRONIZE_CACHE:
2981         case 0x91: /* SYNCHRONIZE_CACHE_16: */
2982                 /*
2983                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2984                  */
2985                 if (cdb[0] == SYNCHRONIZE_CACHE) {
2986                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2987                         cmd->t_task_lba = transport_lba_32(cdb);
2988                 } else {
2989                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2990                         cmd->t_task_lba = transport_lba_64(cdb);
2991                 }
2992                 if (sector_ret)
2993                         goto out_unsupported_cdb;
2994
2995                 size = transport_get_size(sectors, cdb, cmd);
2996                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2997
2998                 if (passthrough)
2999                         break;
3000
3001                 /*
3002                  * Check to ensure that LBA + Range does not exceed past end of
3003                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3004                  */
3005                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3006                         if (transport_cmd_get_valid_sectors(cmd) < 0)
3007                                 goto out_invalid_cdb_field;
3008                 }
3009                 cmd->execute_task = target_emulate_synchronize_cache;
3010                 break;
3011         case UNMAP:
3012                 size = get_unaligned_be16(&cdb[7]);
3013                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3014                 if (!passthrough)
3015                         cmd->execute_task = target_emulate_unmap;
3016                 break;
3017         case WRITE_SAME_16:
3018                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3019                 if (sector_ret)
3020                         goto out_unsupported_cdb;
3021
3022                 if (sectors)
3023                         size = transport_get_size(1, cdb, cmd);
3024                 else {
3025                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3026                         goto out_invalid_cdb_field;
3027                 }
3028
3029                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3030                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3031
3032                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3033                         goto out_invalid_cdb_field;
3034                 if (!passthrough)
3035                         cmd->execute_task = target_emulate_write_same;
3036                 break;
3037         case WRITE_SAME:
3038                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3039                 if (sector_ret)
3040                         goto out_unsupported_cdb;
3041
3042                 if (sectors)
3043                         size = transport_get_size(1, cdb, cmd);
3044                 else {
3045                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3046                         goto out_invalid_cdb_field;
3047                 }
3048
3049                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3050                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3051                 /*
3052                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3053                  * of byte 1 bit 3 UNMAP instead of original reserved field
3054                  */
3055                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3056                         goto out_invalid_cdb_field;
3057                 if (!passthrough)
3058                         cmd->execute_task = target_emulate_write_same;
3059                 break;
3060         case ALLOW_MEDIUM_REMOVAL:
3061         case ERASE:
3062         case REZERO_UNIT:
3063         case SEEK_10:
3064         case SPACE:
3065         case START_STOP:
3066         case TEST_UNIT_READY:
3067         case VERIFY:
3068         case WRITE_FILEMARKS:
3069                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3070                 if (!passthrough)
3071                         cmd->execute_task = target_emulate_noop;
3072                 break;
3073         case GPCMD_CLOSE_TRACK:
3074         case INITIALIZE_ELEMENT_STATUS:
3075         case GPCMD_LOAD_UNLOAD:
3076         case GPCMD_SET_SPEED:
3077         case MOVE_MEDIUM:
3078                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3079                 break;
3080         case REPORT_LUNS:
3081                 cmd->execute_task = target_report_luns;
3082                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3083                 /*
3084                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3085                  * See spc4r17 section 5.3
3086                  */
3087                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3088                         cmd->sam_task_attr = MSG_HEAD_TAG;
3089                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3090                 break;
3091         default:
3092                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3093                         " 0x%02x, sending CHECK_CONDITION.\n",
3094                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3095                 goto out_unsupported_cdb;
3096         }
3097
3098         if (size != cmd->data_length) {
3099                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3100                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3101                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3102                                 cmd->data_length, size, cdb[0]);
3103
3104                 cmd->cmd_spdtl = size;
3105
3106                 if (cmd->data_direction == DMA_TO_DEVICE) {
3107                         pr_err("Rejecting underflow/overflow"
3108                                         " WRITE data\n");
3109                         goto out_invalid_cdb_field;
3110                 }
3111                 /*
3112                  * Reject READ_* or WRITE_* with overflow/underflow for
3113                  * type SCF_SCSI_DATA_SG_IO_CDB.
3114                  */
3115                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3116                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3117                                 " CDB on non 512-byte sector setup subsystem"
3118                                 " plugin: %s\n", dev->transport->name);
3119                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3120                         goto out_invalid_cdb_field;
3121                 }
3122
3123                 if (size > cmd->data_length) {
3124                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3125                         cmd->residual_count = (size - cmd->data_length);
3126                 } else {
3127                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3128                         cmd->residual_count = (cmd->data_length - size);
3129                 }
3130                 cmd->data_length = size;
3131         }
3132
3133         /* reject any command that we don't have a handler for */
3134         if (!(passthrough || cmd->execute_task ||
3135              (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3136                 goto out_unsupported_cdb;
3137
3138         /* Let's limit control cdbs to a page, for simplicity's sake. */
3139         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3140             size > PAGE_SIZE)
3141                 goto out_invalid_cdb_field;
3142
3143         transport_set_supported_SAM_opcode(cmd);
3144         return ret;
3145
3146 out_unsupported_cdb:
3147         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3148         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3149         return -EINVAL;
3150 out_invalid_cdb_field:
3151         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3152         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3153         return -EINVAL;
3154 }
3155
3156 /*
3157  * Called from I/O completion to determine which dormant/delayed
3158  * and ordered cmds need to have their tasks added to the execution queue.
3159  */
3160 static void transport_complete_task_attr(struct se_cmd *cmd)
3161 {
3162         struct se_device *dev = cmd->se_dev;
3163         struct se_cmd *cmd_p, *cmd_tmp;
3164         int new_active_tasks = 0;
3165
3166         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3167                 atomic_dec(&dev->simple_cmds);
3168                 smp_mb__after_atomic_dec();
3169                 dev->dev_cur_ordered_id++;
3170                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3171                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3172                         cmd->se_ordered_id);
3173         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3174                 atomic_dec(&dev->dev_hoq_count);
3175                 smp_mb__after_atomic_dec();
3176                 dev->dev_cur_ordered_id++;
3177                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3178                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3179                         cmd->se_ordered_id);
3180         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3181                 spin_lock(&dev->ordered_cmd_lock);
3182                 list_del(&cmd->se_ordered_node);
3183                 atomic_dec(&dev->dev_ordered_sync);
3184                 smp_mb__after_atomic_dec();
3185                 spin_unlock(&dev->ordered_cmd_lock);
3186
3187                 dev->dev_cur_ordered_id++;
3188                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3189                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3190         }
3191         /*
3192          * Process all commands up to the last received
3193          * ORDERED task attribute which requires another blocking
3194          * boundary
3195          */
3196         spin_lock(&dev->delayed_cmd_lock);
3197         list_for_each_entry_safe(cmd_p, cmd_tmp,
3198                         &dev->delayed_cmd_list, se_delayed_node) {
3199
3200                 list_del(&cmd_p->se_delayed_node);
3201                 spin_unlock(&dev->delayed_cmd_lock);
3202
3203                 pr_debug("Calling add_tasks() for"
3204                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3205                         " Dormant -> Active, se_ordered_id: %u\n",
3206                         cmd_p->t_task_cdb[0],
3207                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3208
3209                 transport_add_tasks_from_cmd(cmd_p);
3210                 new_active_tasks++;
3211
3212                 spin_lock(&dev->delayed_cmd_lock);
3213                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3214                         break;
3215         }
3216         spin_unlock(&dev->delayed_cmd_lock);
3217         /*
3218          * If new tasks have become active, wake up the transport thread
3219          * to do the processing of the Active tasks.
3220          */
3221         if (new_active_tasks != 0)
3222                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3223 }
3224
3225 static void transport_complete_qf(struct se_cmd *cmd)
3226 {
3227         int ret = 0;
3228
3229         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3230                 transport_complete_task_attr(cmd);
3231
3232         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3233                 ret = cmd->se_tfo->queue_status(cmd);
3234                 if (ret)
3235                         goto out;
3236         }
3237
3238         switch (cmd->data_direction) {
3239         case DMA_FROM_DEVICE:
3240                 ret = cmd->se_tfo->queue_data_in(cmd);
3241                 break;
3242         case DMA_TO_DEVICE:
3243                 if (cmd->t_bidi_data_sg) {
3244                         ret = cmd->se_tfo->queue_data_in(cmd);
3245                         if (ret < 0)
3246                                 break;
3247                 }
3248                 /* Fall through for DMA_TO_DEVICE */
3249         case DMA_NONE:
3250                 ret = cmd->se_tfo->queue_status(cmd);
3251                 break;
3252         default:
3253                 break;
3254         }
3255
3256 out:
3257         if (ret < 0) {
3258                 transport_handle_queue_full(cmd, cmd->se_dev);
3259                 return;
3260         }
3261         transport_lun_remove_cmd(cmd);
3262         transport_cmd_check_stop_to_fabric(cmd);
3263 }
3264
3265 static void transport_handle_queue_full(
3266         struct se_cmd *cmd,
3267         struct se_device *dev)
3268 {
3269         spin_lock_irq(&dev->qf_cmd_lock);
3270         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3271         atomic_inc(&dev->dev_qf_count);
3272         smp_mb__after_atomic_inc();
3273         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3274
3275         schedule_work(&cmd->se_dev->qf_work_queue);
3276 }
3277
3278 static void target_complete_ok_work(struct work_struct *work)
3279 {
3280         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3281         int reason = 0, ret;
3282
3283         /*
3284          * Check if we need to move delayed/dormant tasks from cmds on the
3285          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3286          * Attribute.
3287          */
3288         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3289                 transport_complete_task_attr(cmd);
3290         /*
3291          * Check to schedule QUEUE_FULL work, or execute an existing
3292          * cmd->transport_qf_callback()
3293          */
3294         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3295                 schedule_work(&cmd->se_dev->qf_work_queue);
3296
3297         /*
3298          * Check if we need to retrieve a sense buffer from
3299          * the struct se_cmd in question.
3300          */
3301         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3302                 if (transport_get_sense_data(cmd) < 0)
3303                         reason = TCM_NON_EXISTENT_LUN;
3304
3305                 /*
3306                  * Only set when an struct se_task->task_scsi_status returned
3307                  * a non GOOD status.
3308                  */
3309                 if (cmd->scsi_status) {
3310                         ret = transport_send_check_condition_and_sense(
3311                                         cmd, reason, 1);
3312                         if (ret == -EAGAIN || ret == -ENOMEM)
3313                                 goto queue_full;
3314
3315                         transport_lun_remove_cmd(cmd);
3316                         transport_cmd_check_stop_to_fabric(cmd);
3317                         return;
3318                 }
3319         }
3320         /*
3321          * Check for a callback, used by amongst other things
3322          * XDWRITE_READ_10 emulation.
3323          */
3324         if (cmd->transport_complete_callback)
3325                 cmd->transport_complete_callback(cmd);
3326
3327         switch (cmd->data_direction) {
3328         case DMA_FROM_DEVICE:
3329                 spin_lock(&cmd->se_lun->lun_sep_lock);
3330                 if (cmd->se_lun->lun_sep) {
3331                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3332                                         cmd->data_length;
3333                 }
3334                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3335
3336                 ret = cmd->se_tfo->queue_data_in(cmd);
3337                 if (ret == -EAGAIN || ret == -ENOMEM)
3338                         goto queue_full;
3339                 break;
3340         case DMA_TO_DEVICE:
3341                 spin_lock(&cmd->se_lun->lun_sep_lock);
3342                 if (cmd->se_lun->lun_sep) {
3343                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3344                                 cmd->data_length;
3345                 }
3346                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3347                 /*
3348                  * Check if we need to send READ payload for BIDI-COMMAND
3349                  */
3350                 if (cmd->t_bidi_data_sg) {
3351                         spin_lock(&cmd->se_lun->lun_sep_lock);
3352                         if (cmd->se_lun->lun_sep) {
3353                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3354                                         cmd->data_length;
3355                         }
3356                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3357                         ret = cmd->se_tfo->queue_data_in(cmd);
3358                         if (ret == -EAGAIN || ret == -ENOMEM)
3359                                 goto queue_full;
3360                         break;
3361                 }
3362                 /* Fall through for DMA_TO_DEVICE */
3363         case DMA_NONE:
3364                 ret = cmd->se_tfo->queue_status(cmd);
3365                 if (ret == -EAGAIN || ret == -ENOMEM)
3366                         goto queue_full;
3367                 break;
3368         default:
3369                 break;
3370         }
3371
3372         transport_lun_remove_cmd(cmd);
3373         transport_cmd_check_stop_to_fabric(cmd);
3374         return;
3375
3376 queue_full:
3377         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3378                 " data_direction: %d\n", cmd, cmd->data_direction);
3379         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3380         transport_handle_queue_full(cmd, cmd->se_dev);
3381 }
3382
3383 static void transport_free_dev_tasks(struct se_cmd *cmd)
3384 {
3385         struct se_task *task, *task_tmp;
3386         unsigned long flags;
3387         LIST_HEAD(dispose_list);
3388
3389         spin_lock_irqsave(&cmd->t_state_lock, flags);
3390         list_for_each_entry_safe(task, task_tmp,
3391                                 &cmd->t_task_list, t_list) {
3392                 if (!(task->task_flags & TF_ACTIVE))
3393                         list_move_tail(&task->t_list, &dispose_list);
3394         }
3395         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3396
3397         while (!list_empty(&dispose_list)) {
3398                 task = list_first_entry(&dispose_list, struct se_task, t_list);
3399
3400                 if (task->task_sg != cmd->t_data_sg &&
3401                     task->task_sg != cmd->t_bidi_data_sg)
3402                         kfree(task->task_sg);
3403
3404                 list_del(&task->t_list);
3405
3406                 cmd->se_dev->transport->free_task(task);
3407         }
3408 }
3409
3410 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3411 {
3412         struct scatterlist *sg;
3413         int count;
3414
3415         for_each_sg(sgl, sg, nents, count)
3416                 __free_page(sg_page(sg));
3417
3418         kfree(sgl);
3419 }
3420
3421 static inline void transport_free_pages(struct se_cmd *cmd)
3422 {
3423         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3424                 return;
3425
3426         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3427         cmd->t_data_sg = NULL;
3428         cmd->t_data_nents = 0;
3429
3430         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3431         cmd->t_bidi_data_sg = NULL;
3432         cmd->t_bidi_data_nents = 0;
3433 }
3434
3435 /**
3436  * transport_put_cmd - release a reference to a command
3437  * @cmd:       command to release
3438  *
3439  * This routine releases our reference to the command and frees it if possible.
3440  */
3441 static void transport_put_cmd(struct se_cmd *cmd)
3442 {
3443         unsigned long flags;
3444         int free_tasks = 0;
3445
3446         spin_lock_irqsave(&cmd->t_state_lock, flags);
3447         if (atomic_read(&cmd->t_fe_count)) {
3448                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3449                         goto out_busy;
3450         }
3451
3452         if (atomic_read(&cmd->t_se_count)) {
3453                 if (!atomic_dec_and_test(&cmd->t_se_count))
3454                         goto out_busy;
3455         }
3456
3457         if (atomic_read(&cmd->transport_dev_active)) {
3458                 atomic_set(&cmd->transport_dev_active, 0);
3459                 transport_all_task_dev_remove_state(cmd);
3460                 free_tasks = 1;
3461         }
3462         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3463
3464         if (free_tasks != 0)
3465                 transport_free_dev_tasks(cmd);
3466
3467         transport_free_pages(cmd);
3468         transport_release_cmd(cmd);
3469         return;
3470 out_busy:
3471         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3472 }
3473
3474 /*
3475  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3476  * allocating in the core.
3477  * @cmd:  Associated se_cmd descriptor
3478  * @mem:  SGL style memory for TCM WRITE / READ
3479  * @sg_mem_num: Number of SGL elements
3480  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3481  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3482  *
3483  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3484  * of parameters.
3485  */
3486 int transport_generic_map_mem_to_cmd(
3487         struct se_cmd *cmd,
3488         struct scatterlist *sgl,
3489         u32 sgl_count,
3490         struct scatterlist *sgl_bidi,
3491         u32 sgl_bidi_count)
3492 {
3493         if (!sgl || !sgl_count)
3494                 return 0;
3495
3496         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3497             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3498
3499                 cmd->t_data_sg = sgl;
3500                 cmd->t_data_nents = sgl_count;
3501
3502                 if (sgl_bidi && sgl_bidi_count) {
3503                         cmd->t_bidi_data_sg = sgl_bidi;
3504                         cmd->t_bidi_data_nents = sgl_bidi_count;
3505                 }
3506                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3507         }
3508
3509         return 0;
3510 }
3511 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3512
3513 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3514 {
3515         struct scatterlist *sg = cmd->t_data_sg;
3516
3517         BUG_ON(!sg);
3518         /*
3519          * We need to take into account a possible offset here for fabrics like
3520          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3521          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3522          */
3523         return kmap(sg_page(sg)) + sg->offset;
3524 }
3525 EXPORT_SYMBOL(transport_kmap_first_data_page);
3526
3527 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3528 {
3529         kunmap(sg_page(cmd->t_data_sg));
3530 }
3531 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3532
3533 static int
3534 transport_generic_get_mem(struct se_cmd *cmd)
3535 {
3536         u32 length = cmd->data_length;
3537         unsigned int nents;
3538         struct page *page;
3539         int i = 0;
3540
3541         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3542         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3543         if (!cmd->t_data_sg)
3544                 return -ENOMEM;
3545
3546         cmd->t_data_nents = nents;
3547         sg_init_table(cmd->t_data_sg, nents);
3548
3549         while (length) {
3550                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3551                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3552                 if (!page)
3553                         goto out;
3554
3555                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3556                 length -= page_len;
3557                 i++;
3558         }
3559         return 0;
3560
3561 out:
3562         while (i >= 0) {
3563                 __free_page(sg_page(&cmd->t_data_sg[i]));
3564                 i--;
3565         }
3566         kfree(cmd->t_data_sg);
3567         cmd->t_data_sg = NULL;
3568         return -ENOMEM;
3569 }
3570
3571 /* Reduce sectors if they are too long for the device */
3572 static inline sector_t transport_limit_task_sectors(
3573         struct se_device *dev,
3574         unsigned long long lba,
3575         sector_t sectors)
3576 {
3577         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3578
3579         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3580                 if ((lba + sectors) > transport_dev_end_lba(dev))
3581                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3582
3583         return sectors;
3584 }
3585
3586
3587 /*
3588  * This function can be used by HW target mode drivers to create a linked
3589  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3590  * This is intended to be called during the completion path by TCM Core
3591  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3592  */
3593 void transport_do_task_sg_chain(struct se_cmd *cmd)
3594 {
3595         struct scatterlist *sg_first = NULL;
3596         struct scatterlist *sg_prev = NULL;
3597         int sg_prev_nents = 0;
3598         struct scatterlist *sg;
3599         struct se_task *task;
3600         u32 chained_nents = 0;
3601         int i;
3602
3603         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3604
3605         /*
3606          * Walk the struct se_task list and setup scatterlist chains
3607          * for each contiguously allocated struct se_task->task_sg[].
3608          */
3609         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3610                 if (!task->task_sg)
3611                         continue;
3612
3613                 if (!sg_first) {
3614                         sg_first = task->task_sg;
3615                         chained_nents = task->task_sg_nents;
3616                 } else {
3617                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3618                         chained_nents += task->task_sg_nents;
3619                 }
3620                 /*
3621                  * For the padded tasks, use the extra SGL vector allocated
3622                  * in transport_allocate_data_tasks() for the sg_prev_nents
3623                  * offset into sg_chain() above.
3624                  *
3625                  * We do not need the padding for the last task (or a single
3626                  * task), but in that case we will never use the sg_prev_nents
3627                  * value below which would be incorrect.
3628                  */
3629                 sg_prev_nents = (task->task_sg_nents + 1);
3630                 sg_prev = task->task_sg;
3631         }
3632         /*
3633          * Setup the starting pointer and total t_tasks_sg_linked_no including
3634          * padding SGs for linking and to mark the end.
3635          */
3636         cmd->t_tasks_sg_chained = sg_first;
3637         cmd->t_tasks_sg_chained_no = chained_nents;
3638
3639         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3640                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3641                 cmd->t_tasks_sg_chained_no);
3642
3643         for_each_sg(cmd->t_tasks_sg_chained, sg,
3644                         cmd->t_tasks_sg_chained_no, i) {
3645
3646                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3647                         i, sg, sg_page(sg), sg->length, sg->offset);
3648                 if (sg_is_chain(sg))
3649                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3650                 if (sg_is_last(sg))
3651                         pr_debug("SG: %p sg_is_last=1\n", sg);
3652         }
3653 }
3654 EXPORT_SYMBOL(transport_do_task_sg_chain);
3655
3656 /*
3657  * Break up cmd into chunks transport can handle
3658  */
3659 static int
3660 transport_allocate_data_tasks(struct se_cmd *cmd,
3661         enum dma_data_direction data_direction,
3662         struct scatterlist *cmd_sg, unsigned int sgl_nents)
3663 {
3664         struct se_device *dev = cmd->se_dev;
3665         int task_count, i;
3666         unsigned long long lba;
3667         sector_t sectors, dev_max_sectors;
3668         u32 sector_size;
3669
3670         if (transport_cmd_get_valid_sectors(cmd) < 0)
3671                 return -EINVAL;
3672
3673         dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3674         sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3675
3676         WARN_ON(cmd->data_length % sector_size);
3677
3678         lba = cmd->t_task_lba;
3679         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3680         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3681
3682         /*
3683          * If we need just a single task reuse the SG list in the command
3684          * and avoid a lot of work.
3685          */
3686         if (task_count == 1) {
3687                 struct se_task *task;
3688                 unsigned long flags;
3689
3690                 task = transport_generic_get_task(cmd, data_direction);
3691                 if (!task)
3692                         return -ENOMEM;
3693
3694                 task->task_sg = cmd_sg;
3695                 task->task_sg_nents = sgl_nents;
3696
3697                 task->task_lba = lba;
3698                 task->task_sectors = sectors;
3699                 task->task_size = task->task_sectors * sector_size;
3700
3701                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3702                 list_add_tail(&task->t_list, &cmd->t_task_list);
3703                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3704
3705                 return task_count;
3706         }
3707
3708         for (i = 0; i < task_count; i++) {
3709                 struct se_task *task;
3710                 unsigned int task_size, task_sg_nents_padded;
3711                 struct scatterlist *sg;
3712                 unsigned long flags;
3713                 int count;
3714
3715                 task = transport_generic_get_task(cmd, data_direction);
3716                 if (!task)
3717                         return -ENOMEM;
3718
3719                 task->task_lba = lba;
3720                 task->task_sectors = min(sectors, dev_max_sectors);
3721                 task->task_size = task->task_sectors * sector_size;
3722
3723                 /*
3724                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3725                  * in order to calculate the number per task SGL entries
3726                  */
3727                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3728                 /*
3729                  * Check if the fabric module driver is requesting that all
3730                  * struct se_task->task_sg[] be chained together..  If so,
3731                  * then allocate an extra padding SG entry for linking and
3732                  * marking the end of the chained SGL for every task except
3733                  * the last one for (task_count > 1) operation, or skipping
3734                  * the extra padding for the (task_count == 1) case.
3735                  */
3736                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3737                         task_sg_nents_padded = (task->task_sg_nents + 1);
3738                 } else
3739                         task_sg_nents_padded = task->task_sg_nents;
3740
3741                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3742                                         task_sg_nents_padded, GFP_KERNEL);
3743                 if (!task->task_sg) {
3744                         cmd->se_dev->transport->free_task(task);
3745                         return -ENOMEM;
3746                 }
3747
3748                 sg_init_table(task->task_sg, task_sg_nents_padded);
3749
3750                 task_size = task->task_size;
3751
3752                 /* Build new sgl, only up to task_size */
3753                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3754                         if (cmd_sg->length > task_size)
3755                                 break;
3756
3757                         *sg = *cmd_sg;
3758                         task_size -= cmd_sg->length;
3759                         cmd_sg = sg_next(cmd_sg);
3760                 }
3761
3762                 lba += task->task_sectors;
3763                 sectors -= task->task_sectors;
3764
3765                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3766                 list_add_tail(&task->t_list, &cmd->t_task_list);
3767                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3768         }
3769
3770         return task_count;
3771 }
3772
3773 static int
3774 transport_allocate_control_task(struct se_cmd *cmd)
3775 {
3776         struct se_task *task;
3777         unsigned long flags;
3778
3779         task = transport_generic_get_task(cmd, cmd->data_direction);
3780         if (!task)
3781                 return -ENOMEM;
3782
3783         task->task_sg = cmd->t_data_sg;
3784         task->task_size = cmd->data_length;
3785         task->task_sg_nents = cmd->t_data_nents;
3786
3787         spin_lock_irqsave(&cmd->t_state_lock, flags);
3788         list_add_tail(&task->t_list, &cmd->t_task_list);
3789         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3790
3791         /* Success! Return number of tasks allocated */
3792         return 1;
3793 }
3794
3795 /*
3796  * Allocate any required ressources to execute the command, and either place
3797  * it on the execution queue if possible.  For writes we might not have the
3798  * payload yet, thus notify the fabric via a call to ->write_pending instead.
3799  */
3800 int transport_generic_new_cmd(struct se_cmd *cmd)
3801 {
3802         struct se_device *dev = cmd->se_dev;
3803         int task_cdbs, task_cdbs_bidi = 0;
3804         int set_counts = 1;
3805         int ret = 0;
3806
3807         /*
3808          * Determine is the TCM fabric module has already allocated physical
3809          * memory, and is directly calling transport_generic_map_mem_to_cmd()
3810          * beforehand.
3811          */
3812         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3813             cmd->data_length) {
3814                 ret = transport_generic_get_mem(cmd);
3815                 if (ret < 0)
3816                         return ret;
3817         }
3818
3819         /*
3820          * For BIDI command set up the read tasks first.
3821          */
3822         if (cmd->t_bidi_data_sg &&
3823             dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3824                 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3825
3826                 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3827                                 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3828                                 cmd->t_bidi_data_nents);
3829                 if (task_cdbs_bidi <= 0)
3830                         goto out_fail;
3831
3832                 atomic_inc(&cmd->t_fe_count);
3833                 atomic_inc(&cmd->t_se_count);
3834                 set_counts = 0;
3835         }
3836
3837         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3838                 task_cdbs = transport_allocate_data_tasks(cmd,
3839                                         cmd->data_direction, cmd->t_data_sg,
3840                                         cmd->t_data_nents);
3841         } else {
3842                 task_cdbs = transport_allocate_control_task(cmd);
3843         }
3844
3845         if (task_cdbs <= 0)
3846                 goto out_fail;
3847
3848         if (set_counts) {
3849                 atomic_inc(&cmd->t_fe_count);
3850                 atomic_inc(&cmd->t_se_count);
3851         }
3852
3853         cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3854         atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3855         atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3856
3857         /*
3858          * For WRITEs, let the fabric know its buffer is ready..
3859          * This WRITE struct se_cmd (and all of its associated struct se_task's)
3860          * will be added to the struct se_device execution queue after its WRITE
3861          * data has arrived. (ie: It gets handled by the transport processing
3862          * thread a second time)
3863          */
3864         if (cmd->data_direction == DMA_TO_DEVICE) {
3865                 transport_add_tasks_to_state_queue(cmd);
3866                 return transport_generic_write_pending(cmd);
3867         }
3868         /*
3869          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3870          * to the execution queue.
3871          */
3872         transport_execute_tasks(cmd);
3873         return 0;
3874
3875 out_fail:
3876         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3877         cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3878         return -EINVAL;
3879 }
3880 EXPORT_SYMBOL(transport_generic_new_cmd);
3881
3882 /*      transport_generic_process_write():
3883  *
3884  *
3885  */
3886 void transport_generic_process_write(struct se_cmd *cmd)
3887 {
3888         transport_execute_tasks(cmd);
3889 }
3890 EXPORT_SYMBOL(transport_generic_process_write);
3891
3892 static void transport_write_pending_qf(struct se_cmd *cmd)
3893 {
3894         int ret;
3895
3896         ret = cmd->se_tfo->write_pending(cmd);
3897         if (ret == -EAGAIN || ret == -ENOMEM) {
3898                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3899                          cmd);
3900                 transport_handle_queue_full(cmd, cmd->se_dev);
3901         }
3902 }
3903
3904 static int transport_generic_write_pending(struct se_cmd *cmd)
3905 {
3906         unsigned long flags;
3907         int ret;
3908
3909         spin_lock_irqsave(&cmd->t_state_lock, flags);
3910         cmd->t_state = TRANSPORT_WRITE_PENDING;
3911         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3912
3913         /*
3914          * Clear the se_cmd for WRITE_PENDING status in order to set
3915          * cmd->t_transport_active=0 so that transport_generic_handle_data
3916          * can be called from HW target mode interrupt code.  This is safe
3917          * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3918          * because the se_cmd->se_lun pointer is not being cleared.
3919          */
3920         transport_cmd_check_stop(cmd, 1, 0);
3921
3922         /*
3923          * Call the fabric write_pending function here to let the
3924          * frontend know that WRITE buffers are ready.
3925          */
3926         ret = cmd->se_tfo->write_pending(cmd);
3927         if (ret == -EAGAIN || ret == -ENOMEM)
3928                 goto queue_full;
3929         else if (ret < 0)
3930                 return ret;
3931
3932         return PYX_TRANSPORT_WRITE_PENDING;
3933
3934 queue_full:
3935         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3936         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3937         transport_handle_queue_full(cmd, cmd->se_dev);
3938         return 0;
3939 }
3940
3941 /**
3942  * transport_release_cmd - free a command
3943  * @cmd:       command to free
3944  *
3945  * This routine unconditionally frees a command, and reference counting
3946  * or list removal must be done in the caller.
3947  */
3948 void transport_release_cmd(struct se_cmd *cmd)
3949 {
3950         BUG_ON(!cmd->se_tfo);
3951
3952         if (cmd->se_tmr_req)
3953                 core_tmr_release_req(cmd->se_tmr_req);
3954         if (cmd->t_task_cdb != cmd->__t_task_cdb)
3955                 kfree(cmd->t_task_cdb);
3956         /*
3957          * Check if target_wait_for_sess_cmds() is expecting to
3958          * release se_cmd directly here..
3959          */
3960         if (cmd->check_release != 0 && cmd->se_tfo->check_release_cmd)
3961                 if (cmd->se_tfo->check_release_cmd(cmd) != 0)
3962                         return;
3963
3964         cmd->se_tfo->release_cmd(cmd);
3965 }
3966 EXPORT_SYMBOL(transport_release_cmd);
3967
3968 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3969 {
3970         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3971                 if (wait_for_tasks && cmd->se_tmr_req)
3972                          transport_wait_for_tasks(cmd);
3973
3974                 transport_release_cmd(cmd);
3975         } else {
3976                 if (wait_for_tasks)
3977                         transport_wait_for_tasks(cmd);
3978
3979                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3980
3981                 if (cmd->se_lun)
3982                         transport_lun_remove_cmd(cmd);
3983
3984                 transport_free_dev_tasks(cmd);
3985
3986                 transport_put_cmd(cmd);
3987         }
3988 }
3989 EXPORT_SYMBOL(transport_generic_free_cmd);
3990
3991 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3992  * @se_sess:    session to reference
3993  * @se_cmd:     command descriptor to add
3994  */
3995 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
3996 {
3997         unsigned long flags;
3998
3999         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4000         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
4001         se_cmd->check_release = 1;
4002         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4003 }
4004 EXPORT_SYMBOL(target_get_sess_cmd);
4005
4006 /* target_put_sess_cmd - Check for active I/O shutdown or list delete
4007  * @se_sess:    session to reference
4008  * @se_cmd:     command descriptor to drop
4009  */
4010 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4011 {
4012         unsigned long flags;
4013
4014         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4015         if (list_empty(&se_cmd->se_cmd_list)) {
4016                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4017                 WARN_ON(1);
4018                 return 0;
4019         }
4020
4021         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
4022                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4023                 complete(&se_cmd->cmd_wait_comp);
4024                 return 1;
4025         }
4026         list_del(&se_cmd->se_cmd_list);
4027         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4028
4029         return 0;
4030 }
4031 EXPORT_SYMBOL(target_put_sess_cmd);
4032
4033 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4034  * @se_sess:    session to split
4035  */
4036 void target_splice_sess_cmd_list(struct se_session *se_sess)
4037 {
4038         struct se_cmd *se_cmd;
4039         unsigned long flags;
4040
4041         WARN_ON(!list_empty(&se_sess->sess_wait_list));
4042         INIT_LIST_HEAD(&se_sess->sess_wait_list);
4043
4044         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4045         se_sess->sess_tearing_down = 1;
4046
4047         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4048
4049         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4050                 se_cmd->cmd_wait_set = 1;
4051
4052         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4053 }
4054 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4055
4056 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4057  * @se_sess:    session to wait for active I/O
4058  * @wait_for_tasks:     Make extra transport_wait_for_tasks call
4059  */
4060 void target_wait_for_sess_cmds(
4061         struct se_session *se_sess,
4062         int wait_for_tasks)
4063 {
4064         struct se_cmd *se_cmd, *tmp_cmd;
4065         bool rc = false;
4066
4067         list_for_each_entry_safe(se_cmd, tmp_cmd,
4068                                 &se_sess->sess_wait_list, se_cmd_list) {
4069                 list_del(&se_cmd->se_cmd_list);
4070
4071                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4072                         " %d\n", se_cmd, se_cmd->t_state,
4073                         se_cmd->se_tfo->get_cmd_state(se_cmd));
4074
4075                 if (wait_for_tasks) {
4076                         pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4077                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4078                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4079
4080                         rc = transport_wait_for_tasks(se_cmd);
4081
4082                         pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4083                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4084                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4085                 }
4086
4087                 if (!rc) {
4088                         wait_for_completion(&se_cmd->cmd_wait_comp);
4089                         pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4090                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4091                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4092                 }
4093
4094                 se_cmd->se_tfo->release_cmd(se_cmd);
4095         }
4096 }
4097 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4098
4099 /*      transport_lun_wait_for_tasks():
4100  *
4101  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4102  *      an struct se_lun to be successfully shutdown.
4103  */
4104 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4105 {
4106         unsigned long flags;
4107         int ret;
4108         /*
4109          * If the frontend has already requested this struct se_cmd to
4110          * be stopped, we can safely ignore this struct se_cmd.
4111          */
4112         spin_lock_irqsave(&cmd->t_state_lock, flags);
4113         if (atomic_read(&cmd->t_transport_stop)) {
4114                 atomic_set(&cmd->transport_lun_stop, 0);
4115                 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4116                         " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4117                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4118                 transport_cmd_check_stop(cmd, 1, 0);
4119                 return -EPERM;
4120         }
4121         atomic_set(&cmd->transport_lun_fe_stop, 1);
4122         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4123
4124         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4125
4126         ret = transport_stop_tasks_for_cmd(cmd);
4127
4128         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4129                         " %d\n", cmd, cmd->t_task_list_num, ret);
4130         if (!ret) {
4131                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4132                                 cmd->se_tfo->get_task_tag(cmd));
4133                 wait_for_completion(&cmd->transport_lun_stop_comp);
4134                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4135                                 cmd->se_tfo->get_task_tag(cmd));
4136         }
4137         transport_remove_cmd_from_queue(cmd);
4138
4139         return 0;
4140 }
4141
4142 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4143 {
4144         struct se_cmd *cmd = NULL;
4145         unsigned long lun_flags, cmd_flags;
4146         /*
4147          * Do exception processing and return CHECK_CONDITION status to the
4148          * Initiator Port.
4149          */
4150         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4151         while (!list_empty(&lun->lun_cmd_list)) {
4152                 cmd = list_first_entry(&lun->lun_cmd_list,
4153                        struct se_cmd, se_lun_node);
4154                 list_del(&cmd->se_lun_node);
4155
4156                 atomic_set(&cmd->transport_lun_active, 0);
4157                 /*
4158                  * This will notify iscsi_target_transport.c:
4159                  * transport_cmd_check_stop() that a LUN shutdown is in
4160                  * progress for the iscsi_cmd_t.
4161                  */
4162                 spin_lock(&cmd->t_state_lock);
4163                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4164                         "_lun_stop for  ITT: 0x%08x\n",
4165                         cmd->se_lun->unpacked_lun,
4166                         cmd->se_tfo->get_task_tag(cmd));
4167                 atomic_set(&cmd->transport_lun_stop, 1);
4168                 spin_unlock(&cmd->t_state_lock);
4169
4170                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4171
4172                 if (!cmd->se_lun) {
4173                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4174                                 cmd->se_tfo->get_task_tag(cmd),
4175                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4176                         BUG();
4177                 }
4178                 /*
4179                  * If the Storage engine still owns the iscsi_cmd_t, determine
4180                  * and/or stop its context.
4181                  */
4182                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4183                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4184                         cmd->se_tfo->get_task_tag(cmd));
4185
4186                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4187                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4188                         continue;
4189                 }
4190
4191                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4192                         "_wait_for_tasks(): SUCCESS\n",
4193                         cmd->se_lun->unpacked_lun,
4194                         cmd->se_tfo->get_task_tag(cmd));
4195
4196                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4197                 if (!atomic_read(&cmd->transport_dev_active)) {
4198                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4199                         goto check_cond;
4200                 }
4201                 atomic_set(&cmd->transport_dev_active, 0);
4202                 transport_all_task_dev_remove_state(cmd);
4203                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4204
4205                 transport_free_dev_tasks(cmd);
4206                 /*
4207                  * The Storage engine stopped this struct se_cmd before it was
4208                  * send to the fabric frontend for delivery back to the
4209                  * Initiator Node.  Return this SCSI CDB back with an
4210                  * CHECK_CONDITION status.
4211                  */
4212 check_cond:
4213                 transport_send_check_condition_and_sense(cmd,
4214                                 TCM_NON_EXISTENT_LUN, 0);
4215                 /*
4216                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4217                  * be released, notify the waiting thread now that LU has
4218                  * finished accessing it.
4219                  */
4220                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4221                 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4222                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4223                                 " struct se_cmd: %p ITT: 0x%08x\n",
4224                                 lun->unpacked_lun,
4225                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4226
4227                         spin_unlock_irqrestore(&cmd->t_state_lock,
4228                                         cmd_flags);
4229                         transport_cmd_check_stop(cmd, 1, 0);
4230                         complete(&cmd->transport_lun_fe_stop_comp);
4231                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4232                         continue;
4233                 }
4234                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4235                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4236
4237                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4238                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4239         }
4240         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4241 }
4242
4243 static int transport_clear_lun_thread(void *p)
4244 {
4245         struct se_lun *lun = (struct se_lun *)p;
4246
4247         __transport_clear_lun_from_sessions(lun);
4248         complete(&lun->lun_shutdown_comp);
4249
4250         return 0;
4251 }
4252
4253 int transport_clear_lun_from_sessions(struct se_lun *lun)
4254 {
4255         struct task_struct *kt;
4256
4257         kt = kthread_run(transport_clear_lun_thread, lun,
4258                         "tcm_cl_%u", lun->unpacked_lun);
4259         if (IS_ERR(kt)) {
4260                 pr_err("Unable to start clear_lun thread\n");
4261                 return PTR_ERR(kt);
4262         }
4263         wait_for_completion(&lun->lun_shutdown_comp);
4264
4265         return 0;
4266 }
4267
4268 /**
4269  * transport_wait_for_tasks - wait for completion to occur
4270  * @cmd:        command to wait
4271  *
4272  * Called from frontend fabric context to wait for storage engine
4273  * to pause and/or release frontend generated struct se_cmd.
4274  */
4275 bool transport_wait_for_tasks(struct se_cmd *cmd)
4276 {
4277         unsigned long flags;
4278
4279         spin_lock_irqsave(&cmd->t_state_lock, flags);
4280         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4281                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4282                 return false;
4283         }
4284         /*
4285          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4286          * has been set in transport_set_supported_SAM_opcode().
4287          */
4288         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4289                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4290                 return false;
4291         }
4292         /*
4293          * If we are already stopped due to an external event (ie: LUN shutdown)
4294          * sleep until the connection can have the passed struct se_cmd back.
4295          * The cmd->transport_lun_stopped_sem will be upped by
4296          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4297          * has completed its operation on the struct se_cmd.
4298          */
4299         if (atomic_read(&cmd->transport_lun_stop)) {
4300
4301                 pr_debug("wait_for_tasks: Stopping"
4302                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4303                         "_stop_comp); for ITT: 0x%08x\n",
4304                         cmd->se_tfo->get_task_tag(cmd));
4305                 /*
4306                  * There is a special case for WRITES where a FE exception +
4307                  * LUN shutdown means ConfigFS context is still sleeping on
4308                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4309                  * We go ahead and up transport_lun_stop_comp just to be sure
4310                  * here.
4311                  */
4312                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4313                 complete(&cmd->transport_lun_stop_comp);
4314                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4315                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4316
4317                 transport_all_task_dev_remove_state(cmd);
4318                 /*
4319                  * At this point, the frontend who was the originator of this
4320                  * struct se_cmd, now owns the structure and can be released through
4321                  * normal means below.
4322                  */
4323                 pr_debug("wait_for_tasks: Stopped"
4324                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4325                         "stop_comp); for ITT: 0x%08x\n",
4326                         cmd->se_tfo->get_task_tag(cmd));
4327
4328                 atomic_set(&cmd->transport_lun_stop, 0);
4329         }
4330         if (!atomic_read(&cmd->t_transport_active) ||
4331              atomic_read(&cmd->t_transport_aborted)) {
4332                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4333                 return false;
4334         }
4335
4336         atomic_set(&cmd->t_transport_stop, 1);
4337
4338         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4339                 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4340                 cmd, cmd->se_tfo->get_task_tag(cmd),
4341                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4342
4343         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4344
4345         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4346
4347         wait_for_completion(&cmd->t_transport_stop_comp);
4348
4349         spin_lock_irqsave(&cmd->t_state_lock, flags);
4350         atomic_set(&cmd->t_transport_active, 0);
4351         atomic_set(&cmd->t_transport_stop, 0);
4352
4353         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4354                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4355                 cmd->se_tfo->get_task_tag(cmd));
4356
4357         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4358
4359         return true;
4360 }
4361 EXPORT_SYMBOL(transport_wait_for_tasks);
4362
4363 static int transport_get_sense_codes(
4364         struct se_cmd *cmd,
4365         u8 *asc,
4366         u8 *ascq)
4367 {
4368         *asc = cmd->scsi_asc;
4369         *ascq = cmd->scsi_ascq;
4370
4371         return 0;
4372 }
4373
4374 static int transport_set_sense_codes(
4375         struct se_cmd *cmd,
4376         u8 asc,
4377         u8 ascq)
4378 {
4379         cmd->scsi_asc = asc;
4380         cmd->scsi_ascq = ascq;
4381
4382         return 0;
4383 }
4384
4385 int transport_send_check_condition_and_sense(
4386         struct se_cmd *cmd,
4387         u8 reason,
4388         int from_transport)
4389 {
4390         unsigned char *buffer = cmd->sense_buffer;
4391         unsigned long flags;
4392         int offset;
4393         u8 asc = 0, ascq = 0;
4394
4395         spin_lock_irqsave(&cmd->t_state_lock, flags);
4396         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4397                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4398                 return 0;
4399         }
4400         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4401         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4402
4403         if (!reason && from_transport)
4404                 goto after_reason;
4405
4406         if (!from_transport)
4407                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4408         /*
4409          * Data Segment and SenseLength of the fabric response PDU.
4410          *
4411          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4412          * from include/scsi/scsi_cmnd.h
4413          */
4414         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4415                                 TRANSPORT_SENSE_BUFFER);
4416         /*
4417          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4418          * SENSE KEY values from include/scsi/scsi.h
4419          */
4420         switch (reason) {
4421         case TCM_NON_EXISTENT_LUN:
4422                 /* CURRENT ERROR */
4423                 buffer[offset] = 0x70;
4424                 /* ILLEGAL REQUEST */
4425                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4426                 /* LOGICAL UNIT NOT SUPPORTED */
4427                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4428                 break;
4429         case TCM_UNSUPPORTED_SCSI_OPCODE:
4430         case TCM_SECTOR_COUNT_TOO_MANY:
4431                 /* CURRENT ERROR */
4432                 buffer[offset] = 0x70;
4433                 /* ILLEGAL REQUEST */
4434                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4435                 /* INVALID COMMAND OPERATION CODE */
4436                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4437                 break;
4438         case TCM_UNKNOWN_MODE_PAGE:
4439                 /* CURRENT ERROR */
4440                 buffer[offset] = 0x70;
4441                 /* ILLEGAL REQUEST */
4442                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4443                 /* INVALID FIELD IN CDB */
4444                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4445                 break;
4446         case TCM_CHECK_CONDITION_ABORT_CMD:
4447                 /* CURRENT ERROR */
4448                 buffer[offset] = 0x70;
4449                 /* ABORTED COMMAND */
4450                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4451                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4452                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4453                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4454                 break;
4455         case TCM_INCORRECT_AMOUNT_OF_DATA:
4456                 /* CURRENT ERROR */
4457                 buffer[offset] = 0x70;
4458                 /* ABORTED COMMAND */
4459                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4460                 /* WRITE ERROR */
4461                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4462                 /* NOT ENOUGH UNSOLICITED DATA */
4463                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4464                 break;
4465         case TCM_INVALID_CDB_FIELD:
4466                 /* CURRENT ERROR */
4467                 buffer[offset] = 0x70;
4468                 /* ABORTED COMMAND */
4469                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4470                 /* INVALID FIELD IN CDB */
4471                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4472                 break;
4473         case TCM_INVALID_PARAMETER_LIST:
4474                 /* CURRENT ERROR */
4475                 buffer[offset] = 0x70;
4476                 /* ABORTED COMMAND */
4477                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4478                 /* INVALID FIELD IN PARAMETER LIST */
4479                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4480                 break;
4481         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4482                 /* CURRENT ERROR */
4483                 buffer[offset] = 0x70;
4484                 /* ABORTED COMMAND */
4485                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4486                 /* WRITE ERROR */
4487                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4488                 /* UNEXPECTED_UNSOLICITED_DATA */
4489                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4490                 break;
4491         case TCM_SERVICE_CRC_ERROR:
4492                 /* CURRENT ERROR */
4493                 buffer[offset] = 0x70;
4494                 /* ABORTED COMMAND */
4495                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4496                 /* PROTOCOL SERVICE CRC ERROR */
4497                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4498                 /* N/A */
4499                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4500                 break;
4501         case TCM_SNACK_REJECTED:
4502                 /* CURRENT ERROR */
4503                 buffer[offset] = 0x70;
4504                 /* ABORTED COMMAND */
4505                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4506                 /* READ ERROR */
4507                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4508                 /* FAILED RETRANSMISSION REQUEST */
4509                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4510                 break;
4511         case TCM_WRITE_PROTECTED:
4512                 /* CURRENT ERROR */
4513                 buffer[offset] = 0x70;
4514                 /* DATA PROTECT */
4515                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4516                 /* WRITE PROTECTED */
4517                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4518                 break;
4519         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4520                 /* CURRENT ERROR */
4521                 buffer[offset] = 0x70;
4522                 /* UNIT ATTENTION */
4523                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4524                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4525                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4526                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4527                 break;
4528         case TCM_CHECK_CONDITION_NOT_READY:
4529                 /* CURRENT ERROR */
4530                 buffer[offset] = 0x70;
4531                 /* Not Ready */
4532                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4533                 transport_get_sense_codes(cmd, &asc, &ascq);
4534                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4535                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4536                 break;
4537         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4538         default:
4539                 /* CURRENT ERROR */
4540                 buffer[offset] = 0x70;
4541                 /* ILLEGAL REQUEST */
4542                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4543                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4544                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4545                 break;
4546         }
4547         /*
4548          * This code uses linux/include/scsi/scsi.h SAM status codes!
4549          */
4550         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4551         /*
4552          * Automatically padded, this value is encoded in the fabric's
4553          * data_length response PDU containing the SCSI defined sense data.
4554          */
4555         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4556
4557 after_reason:
4558         return cmd->se_tfo->queue_status(cmd);
4559 }
4560 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4561
4562 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4563 {
4564         int ret = 0;
4565
4566         if (atomic_read(&cmd->t_transport_aborted) != 0) {
4567                 if (!send_status ||
4568                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4569                         return 1;
4570 #if 0
4571                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4572                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4573                         cmd->t_task_cdb[0],
4574                         cmd->se_tfo->get_task_tag(cmd));
4575 #endif
4576                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4577                 cmd->se_tfo->queue_status(cmd);
4578                 ret = 1;
4579         }
4580         return ret;
4581 }
4582 EXPORT_SYMBOL(transport_check_aborted_status);
4583
4584 void transport_send_task_abort(struct se_cmd *cmd)
4585 {
4586         unsigned long flags;
4587
4588         spin_lock_irqsave(&cmd->t_state_lock, flags);
4589         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4590                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4591                 return;
4592         }
4593         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4594
4595         /*
4596          * If there are still expected incoming fabric WRITEs, we wait
4597          * until until they have completed before sending a TASK_ABORTED
4598          * response.  This response with TASK_ABORTED status will be
4599          * queued back to fabric module by transport_check_aborted_status().
4600          */
4601         if (cmd->data_direction == DMA_TO_DEVICE) {
4602                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4603                         atomic_inc(&cmd->t_transport_aborted);
4604                         smp_mb__after_atomic_inc();
4605                         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4606                         transport_new_cmd_failure(cmd);
4607                         return;
4608                 }
4609         }
4610         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4611 #if 0
4612         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4613                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4614                 cmd->se_tfo->get_task_tag(cmd));
4615 #endif
4616         cmd->se_tfo->queue_status(cmd);
4617 }
4618
4619 /*      transport_generic_do_tmr():
4620  *
4621  *
4622  */
4623 int transport_generic_do_tmr(struct se_cmd *cmd)
4624 {
4625         struct se_device *dev = cmd->se_dev;
4626         struct se_tmr_req *tmr = cmd->se_tmr_req;
4627         int ret;
4628
4629         switch (tmr->function) {
4630         case TMR_ABORT_TASK:
4631                 tmr->response = TMR_FUNCTION_REJECTED;
4632                 break;
4633         case TMR_ABORT_TASK_SET:
4634         case TMR_CLEAR_ACA:
4635         case TMR_CLEAR_TASK_SET:
4636                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4637                 break;
4638         case TMR_LUN_RESET:
4639                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4640                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4641                                          TMR_FUNCTION_REJECTED;
4642                 break;
4643         case TMR_TARGET_WARM_RESET:
4644                 tmr->response = TMR_FUNCTION_REJECTED;
4645                 break;
4646         case TMR_TARGET_COLD_RESET:
4647                 tmr->response = TMR_FUNCTION_REJECTED;
4648                 break;
4649         default:
4650                 pr_err("Uknown TMR function: 0x%02x.\n",
4651                                 tmr->function);
4652                 tmr->response = TMR_FUNCTION_REJECTED;
4653                 break;
4654         }
4655
4656         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4657         cmd->se_tfo->queue_tm_rsp(cmd);
4658
4659         transport_cmd_check_stop_to_fabric(cmd);
4660         return 0;
4661 }
4662
4663 /*      transport_processing_thread():
4664  *
4665  *
4666  */
4667 static int transport_processing_thread(void *param)
4668 {
4669         int ret;
4670         struct se_cmd *cmd;
4671         struct se_device *dev = (struct se_device *) param;
4672
4673         set_user_nice(current, -20);
4674
4675         while (!kthread_should_stop()) {
4676                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4677                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4678                                 kthread_should_stop());
4679                 if (ret < 0)
4680                         goto out;
4681
4682 get_cmd:
4683                 __transport_execute_tasks(dev);
4684
4685                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4686                 if (!cmd)
4687                         continue;
4688
4689                 switch (cmd->t_state) {
4690                 case TRANSPORT_NEW_CMD:
4691                         BUG();
4692                         break;
4693                 case TRANSPORT_NEW_CMD_MAP:
4694                         if (!cmd->se_tfo->new_cmd_map) {
4695                                 pr_err("cmd->se_tfo->new_cmd_map is"
4696                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4697                                 BUG();
4698                         }
4699                         ret = cmd->se_tfo->new_cmd_map(cmd);
4700                         if (ret < 0) {
4701                                 cmd->transport_error_status = ret;
4702                                 transport_generic_request_failure(cmd,
4703                                                 0, (cmd->data_direction !=
4704                                                     DMA_TO_DEVICE));
4705                                 break;
4706                         }
4707                         ret = transport_generic_new_cmd(cmd);
4708                         if (ret < 0) {
4709                                 cmd->transport_error_status = ret;
4710                                 transport_generic_request_failure(cmd,
4711                                         0, (cmd->data_direction !=
4712                                          DMA_TO_DEVICE));
4713                         }
4714                         break;
4715                 case TRANSPORT_PROCESS_WRITE:
4716                         transport_generic_process_write(cmd);
4717                         break;
4718                 case TRANSPORT_PROCESS_TMR:
4719                         transport_generic_do_tmr(cmd);
4720                         break;
4721                 case TRANSPORT_COMPLETE_QF_WP:
4722                         transport_write_pending_qf(cmd);
4723                         break;
4724                 case TRANSPORT_COMPLETE_QF_OK:
4725                         transport_complete_qf(cmd);
4726                         break;
4727                 default:
4728                         pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4729                                 "i_state: %d on SE LUN: %u\n",
4730                                 cmd->t_state,
4731                                 cmd->se_tfo->get_task_tag(cmd),
4732                                 cmd->se_tfo->get_cmd_state(cmd),
4733                                 cmd->se_lun->unpacked_lun);
4734                         BUG();
4735                 }
4736
4737                 goto get_cmd;
4738         }
4739
4740 out:
4741         WARN_ON(!list_empty(&dev->state_task_list));
4742         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4743         dev->process_thread = NULL;
4744         return 0;
4745 }