a0d1f576cf406e0c292982ca1b29a40ae58f870b
[pandora-kernel.git] / drivers / platform / x86 / intel_ips.c
1 /*
2  * Copyright (c) 2009-2010 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * The full GNU General Public License is included in this distribution in
18  * the file called "COPYING".
19  *
20  * Authors:
21  *      Jesse Barnes <jbarnes@virtuousgeek.org>
22  */
23
24 /*
25  * Some Intel Ibex Peak based platforms support so-called "intelligent
26  * power sharing", which allows the CPU and GPU to cooperate to maximize
27  * performance within a given TDP (thermal design point).  This driver
28  * performs the coordination between the CPU and GPU, monitors thermal and
29  * power statistics in the platform, and initializes power monitoring
30  * hardware.  It also provides a few tunables to control behavior.  Its
31  * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
32  * by tracking power and thermal budget; secondarily it can boost turbo
33  * performance by allocating more power or thermal budget to the CPU or GPU
34  * based on available headroom and activity.
35  *
36  * The basic algorithm is driven by a 5s moving average of tempurature.  If
37  * thermal headroom is available, the CPU and/or GPU power clamps may be
38  * adjusted upwards.  If we hit the thermal ceiling or a thermal trigger,
39  * we scale back the clamp.  Aside from trigger events (when we're critically
40  * close or over our TDP) we don't adjust the clamps more than once every
41  * five seconds.
42  *
43  * The thermal device (device 31, function 6) has a set of registers that
44  * are updated by the ME firmware.  The ME should also take the clamp values
45  * written to those registers and write them to the CPU, but we currently
46  * bypass that functionality and write the CPU MSR directly.
47  *
48  * UNSUPPORTED:
49  *   - dual MCP configs
50  *
51  * TODO:
52  *   - handle CPU hotplug
53  *   - provide turbo enable/disable api
54  *
55  * Related documents:
56  *   - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
57  *   - CDI 401376 - Ibex Peak EDS
58  *   - ref 26037, 26641 - IPS BIOS spec
59  *   - ref 26489 - Nehalem BIOS writer's guide
60  *   - ref 26921 - Ibex Peak BIOS Specification
61  */
62
63 #include <linux/debugfs.h>
64 #include <linux/delay.h>
65 #include <linux/interrupt.h>
66 #include <linux/kernel.h>
67 #include <linux/kthread.h>
68 #include <linux/module.h>
69 #include <linux/pci.h>
70 #include <linux/sched.h>
71 #include <linux/seq_file.h>
72 #include <linux/string.h>
73 #include <linux/tick.h>
74 #include <linux/timer.h>
75 #include <linux/dmi.h>
76 #include <drm/i915_drm.h>
77 #include <asm/msr.h>
78 #include <asm/processor.h>
79 #include "intel_ips.h"
80
81 #include <asm-generic/io-64-nonatomic-lo-hi.h>
82
83 #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
84
85 /*
86  * Package level MSRs for monitor/control
87  */
88 #define PLATFORM_INFO   0xce
89 #define   PLATFORM_TDP          (1<<29)
90 #define   PLATFORM_RATIO        (1<<28)
91
92 #define IA32_MISC_ENABLE        0x1a0
93 #define   IA32_MISC_TURBO_EN    (1ULL<<38)
94
95 #define TURBO_POWER_CURRENT_LIMIT       0x1ac
96 #define   TURBO_TDC_OVR_EN      (1UL<<31)
97 #define   TURBO_TDC_MASK        (0x000000007fff0000UL)
98 #define   TURBO_TDC_SHIFT       (16)
99 #define   TURBO_TDP_OVR_EN      (1UL<<15)
100 #define   TURBO_TDP_MASK        (0x0000000000003fffUL)
101
102 /*
103  * Core/thread MSRs for monitoring
104  */
105 #define IA32_PERF_CTL           0x199
106 #define   IA32_PERF_TURBO_DIS   (1ULL<<32)
107
108 /*
109  * Thermal PCI device regs
110  */
111 #define THM_CFG_TBAR    0x10
112 #define THM_CFG_TBAR_HI 0x14
113
114 #define THM_TSIU        0x00
115 #define THM_TSE         0x01
116 #define   TSE_EN        0xb8
117 #define THM_TSS         0x02
118 #define THM_TSTR        0x03
119 #define THM_TSTTP       0x04
120 #define THM_TSCO        0x08
121 #define THM_TSES        0x0c
122 #define THM_TSGPEN      0x0d
123 #define   TSGPEN_HOT_LOHI       (1<<1)
124 #define   TSGPEN_CRIT_LOHI      (1<<2)
125 #define THM_TSPC        0x0e
126 #define THM_PPEC        0x10
127 #define THM_CTA         0x12
128 #define THM_PTA         0x14
129 #define   PTA_SLOPE_MASK        (0xff00)
130 #define   PTA_SLOPE_SHIFT       8
131 #define   PTA_OFFSET_MASK       (0x00ff)
132 #define THM_MGTA        0x16
133 #define   MGTA_SLOPE_MASK       (0xff00)
134 #define   MGTA_SLOPE_SHIFT      8
135 #define   MGTA_OFFSET_MASK      (0x00ff)
136 #define THM_TRC         0x1a
137 #define   TRC_CORE2_EN  (1<<15)
138 #define   TRC_THM_EN    (1<<12)
139 #define   TRC_C6_WAR    (1<<8)
140 #define   TRC_CORE1_EN  (1<<7)
141 #define   TRC_CORE_PWR  (1<<6)
142 #define   TRC_PCH_EN    (1<<5)
143 #define   TRC_MCH_EN    (1<<4)
144 #define   TRC_DIMM4     (1<<3)
145 #define   TRC_DIMM3     (1<<2)
146 #define   TRC_DIMM2     (1<<1)
147 #define   TRC_DIMM1     (1<<0)
148 #define THM_TES         0x20
149 #define THM_TEN         0x21
150 #define   TEN_UPDATE_EN 1
151 #define THM_PSC         0x24
152 #define   PSC_NTG       (1<<0) /* No GFX turbo support */
153 #define   PSC_NTPC      (1<<1) /* No CPU turbo support */
154 #define   PSC_PP_DEF    (0<<2) /* Perf policy up to driver */
155 #define   PSP_PP_PC     (1<<2) /* BIOS prefers CPU perf */
156 #define   PSP_PP_BAL    (2<<2) /* BIOS wants balanced perf */
157 #define   PSP_PP_GFX    (3<<2) /* BIOS prefers GFX perf */
158 #define   PSP_PBRT      (1<<4) /* BIOS run time support */
159 #define THM_CTV1        0x30
160 #define   CTV_TEMP_ERROR (1<<15)
161 #define   CTV_TEMP_MASK 0x3f
162 #define   CTV_
163 #define THM_CTV2        0x32
164 #define THM_CEC         0x34 /* undocumented power accumulator in joules */
165 #define THM_AE          0x3f
166 #define THM_HTS         0x50 /* 32 bits */
167 #define   HTS_PCPL_MASK (0x7fe00000)
168 #define   HTS_PCPL_SHIFT 21
169 #define   HTS_GPL_MASK  (0x001ff000)
170 #define   HTS_GPL_SHIFT 12
171 #define   HTS_PP_MASK   (0x00000c00)
172 #define   HTS_PP_SHIFT  10
173 #define   HTS_PP_DEF    0
174 #define   HTS_PP_PROC   1
175 #define   HTS_PP_BAL    2
176 #define   HTS_PP_GFX    3
177 #define   HTS_PCTD_DIS  (1<<9)
178 #define   HTS_GTD_DIS   (1<<8)
179 #define   HTS_PTL_MASK  (0x000000fe)
180 #define   HTS_PTL_SHIFT 1
181 #define   HTS_NVV       (1<<0)
182 #define THM_HTSHI       0x54 /* 16 bits */
183 #define   HTS2_PPL_MASK         (0x03ff)
184 #define   HTS2_PRST_MASK        (0x3c00)
185 #define   HTS2_PRST_SHIFT       10
186 #define   HTS2_PRST_UNLOADED    0
187 #define   HTS2_PRST_RUNNING     1
188 #define   HTS2_PRST_TDISOP      2 /* turbo disabled due to power */
189 #define   HTS2_PRST_TDISHT      3 /* turbo disabled due to high temp */
190 #define   HTS2_PRST_TDISUSR     4 /* user disabled turbo */
191 #define   HTS2_PRST_TDISPLAT    5 /* platform disabled turbo */
192 #define   HTS2_PRST_TDISPM      6 /* power management disabled turbo */
193 #define   HTS2_PRST_TDISERR     7 /* some kind of error disabled turbo */
194 #define THM_PTL         0x56
195 #define THM_MGTV        0x58
196 #define   TV_MASK       0x000000000000ff00
197 #define   TV_SHIFT      8
198 #define THM_PTV         0x60
199 #define   PTV_MASK      0x00ff
200 #define THM_MMGPC       0x64
201 #define THM_MPPC        0x66
202 #define THM_MPCPC       0x68
203 #define THM_TSPIEN      0x82
204 #define   TSPIEN_AUX_LOHI       (1<<0)
205 #define   TSPIEN_HOT_LOHI       (1<<1)
206 #define   TSPIEN_CRIT_LOHI      (1<<2)
207 #define   TSPIEN_AUX2_LOHI      (1<<3)
208 #define THM_TSLOCK      0x83
209 #define THM_ATR         0x84
210 #define THM_TOF         0x87
211 #define THM_STS         0x98
212 #define   STS_PCPL_MASK         (0x7fe00000)
213 #define   STS_PCPL_SHIFT        21
214 #define   STS_GPL_MASK          (0x001ff000)
215 #define   STS_GPL_SHIFT         12
216 #define   STS_PP_MASK           (0x00000c00)
217 #define   STS_PP_SHIFT          10
218 #define   STS_PP_DEF            0
219 #define   STS_PP_PROC           1
220 #define   STS_PP_BAL            2
221 #define   STS_PP_GFX            3
222 #define   STS_PCTD_DIS          (1<<9)
223 #define   STS_GTD_DIS           (1<<8)
224 #define   STS_PTL_MASK          (0x000000fe)
225 #define   STS_PTL_SHIFT         1
226 #define   STS_NVV               (1<<0)
227 #define THM_SEC         0x9c
228 #define   SEC_ACK       (1<<0)
229 #define THM_TC3         0xa4
230 #define THM_TC1         0xa8
231 #define   STS_PPL_MASK          (0x0003ff00)
232 #define   STS_PPL_SHIFT         16
233 #define THM_TC2         0xac
234 #define THM_DTV         0xb0
235 #define THM_ITV         0xd8
236 #define   ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
237 #define   ITV_ME_SEQNO_SHIFT (16)
238 #define   ITV_MCH_TEMP_MASK 0x0000ff00
239 #define   ITV_MCH_TEMP_SHIFT (8)
240 #define   ITV_PCH_TEMP_MASK 0x000000ff
241
242 #define thm_readb(off) readb(ips->regmap + (off))
243 #define thm_readw(off) readw(ips->regmap + (off))
244 #define thm_readl(off) readl(ips->regmap + (off))
245 #define thm_readq(off) readq(ips->regmap + (off))
246
247 #define thm_writeb(off, val) writeb((val), ips->regmap + (off))
248 #define thm_writew(off, val) writew((val), ips->regmap + (off))
249 #define thm_writel(off, val) writel((val), ips->regmap + (off))
250
251 static const int IPS_ADJUST_PERIOD = 5000; /* ms */
252 static bool late_i915_load = false;
253
254 /* For initial average collection */
255 static const int IPS_SAMPLE_PERIOD = 200; /* ms */
256 static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
257 #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
258
259 /* Per-SKU limits */
260 struct ips_mcp_limits {
261         int cpu_family;
262         int cpu_model; /* includes extended model... */
263         int mcp_power_limit; /* mW units */
264         int core_power_limit;
265         int mch_power_limit;
266         int core_temp_limit; /* degrees C */
267         int mch_temp_limit;
268 };
269
270 /* Max temps are -10 degrees C to avoid PROCHOT# */
271
272 struct ips_mcp_limits ips_sv_limits = {
273         .mcp_power_limit = 35000,
274         .core_power_limit = 29000,
275         .mch_power_limit = 20000,
276         .core_temp_limit = 95,
277         .mch_temp_limit = 90
278 };
279
280 struct ips_mcp_limits ips_lv_limits = {
281         .mcp_power_limit = 25000,
282         .core_power_limit = 21000,
283         .mch_power_limit = 13000,
284         .core_temp_limit = 95,
285         .mch_temp_limit = 90
286 };
287
288 struct ips_mcp_limits ips_ulv_limits = {
289         .mcp_power_limit = 18000,
290         .core_power_limit = 14000,
291         .mch_power_limit = 11000,
292         .core_temp_limit = 95,
293         .mch_temp_limit = 90
294 };
295
296 struct ips_driver {
297         struct pci_dev *dev;
298         void *regmap;
299         struct task_struct *monitor;
300         struct task_struct *adjust;
301         struct dentry *debug_root;
302
303         /* Average CPU core temps (all averages in .01 degrees C for precision) */
304         u16 ctv1_avg_temp;
305         u16 ctv2_avg_temp;
306         /* GMCH average */
307         u16 mch_avg_temp;
308         /* Average for the CPU (both cores?) */
309         u16 mcp_avg_temp;
310         /* Average power consumption (in mW) */
311         u32 cpu_avg_power;
312         u32 mch_avg_power;
313
314         /* Offset values */
315         u16 cta_val;
316         u16 pta_val;
317         u16 mgta_val;
318
319         /* Maximums & prefs, protected by turbo status lock */
320         spinlock_t turbo_status_lock;
321         u16 mcp_temp_limit;
322         u16 mcp_power_limit;
323         u16 core_power_limit;
324         u16 mch_power_limit;
325         bool cpu_turbo_enabled;
326         bool __cpu_turbo_on;
327         bool gpu_turbo_enabled;
328         bool __gpu_turbo_on;
329         bool gpu_preferred;
330         bool poll_turbo_status;
331         bool second_cpu;
332         bool turbo_toggle_allowed;
333         struct ips_mcp_limits *limits;
334
335         /* Optional MCH interfaces for if i915 is in use */
336         unsigned long (*read_mch_val)(void);
337         bool (*gpu_raise)(void);
338         bool (*gpu_lower)(void);
339         bool (*gpu_busy)(void);
340         bool (*gpu_turbo_disable)(void);
341
342         /* For restoration at unload */
343         u64 orig_turbo_limit;
344         u64 orig_turbo_ratios;
345 };
346
347 static bool
348 ips_gpu_turbo_enabled(struct ips_driver *ips);
349
350 /**
351  * ips_cpu_busy - is CPU busy?
352  * @ips: IPS driver struct
353  *
354  * Check CPU for load to see whether we should increase its thermal budget.
355  *
356  * RETURNS:
357  * True if the CPU could use more power, false otherwise.
358  */
359 static bool ips_cpu_busy(struct ips_driver *ips)
360 {
361         if ((avenrun[0] >> FSHIFT) > 1)
362                 return true;
363
364         return false;
365 }
366
367 /**
368  * ips_cpu_raise - raise CPU power clamp
369  * @ips: IPS driver struct
370  *
371  * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
372  * this platform.
373  *
374  * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
375  * long as we haven't hit the TDP limit for the SKU).
376  */
377 static void ips_cpu_raise(struct ips_driver *ips)
378 {
379         u64 turbo_override;
380         u16 cur_tdp_limit, new_tdp_limit;
381
382         if (!ips->cpu_turbo_enabled)
383                 return;
384
385         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
386
387         cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
388         new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
389
390         /* Clamp to SKU TDP limit */
391         if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
392                 new_tdp_limit = cur_tdp_limit;
393
394         thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
395
396         turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
397         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
398
399         turbo_override &= ~TURBO_TDP_MASK;
400         turbo_override |= new_tdp_limit;
401
402         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
403 }
404
405 /**
406  * ips_cpu_lower - lower CPU power clamp
407  * @ips: IPS driver struct
408  *
409  * Lower CPU power clamp b %IPS_CPU_STEP if possible.
410  *
411  * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
412  * as low as the platform limits will allow (though we could go lower there
413  * wouldn't be much point).
414  */
415 static void ips_cpu_lower(struct ips_driver *ips)
416 {
417         u64 turbo_override;
418         u16 cur_limit, new_limit;
419
420         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
421
422         cur_limit = turbo_override & TURBO_TDP_MASK;
423         new_limit = cur_limit - 8; /* 1W decrease */
424
425         /* Clamp to SKU TDP limit */
426         if (new_limit  < (ips->orig_turbo_limit & TURBO_TDP_MASK))
427                 new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
428
429         thm_writew(THM_MPCPC, (new_limit * 10) / 8);
430
431         turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
432         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
433
434         turbo_override &= ~TURBO_TDP_MASK;
435         turbo_override |= new_limit;
436
437         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
438 }
439
440 /**
441  * do_enable_cpu_turbo - internal turbo enable function
442  * @data: unused
443  *
444  * Internal function for actually updating MSRs.  When we enable/disable
445  * turbo, we need to do it on each CPU; this function is the one called
446  * by on_each_cpu() when needed.
447  */
448 static void do_enable_cpu_turbo(void *data)
449 {
450         u64 perf_ctl;
451
452         rdmsrl(IA32_PERF_CTL, perf_ctl);
453         if (perf_ctl & IA32_PERF_TURBO_DIS) {
454                 perf_ctl &= ~IA32_PERF_TURBO_DIS;
455                 wrmsrl(IA32_PERF_CTL, perf_ctl);
456         }
457 }
458
459 /**
460  * ips_enable_cpu_turbo - enable turbo mode on all CPUs
461  * @ips: IPS driver struct
462  *
463  * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
464  * all logical threads.
465  */
466 static void ips_enable_cpu_turbo(struct ips_driver *ips)
467 {
468         /* Already on, no need to mess with MSRs */
469         if (ips->__cpu_turbo_on)
470                 return;
471
472         if (ips->turbo_toggle_allowed)
473                 on_each_cpu(do_enable_cpu_turbo, ips, 1);
474
475         ips->__cpu_turbo_on = true;
476 }
477
478 /**
479  * do_disable_cpu_turbo - internal turbo disable function
480  * @data: unused
481  *
482  * Internal function for actually updating MSRs.  When we enable/disable
483  * turbo, we need to do it on each CPU; this function is the one called
484  * by on_each_cpu() when needed.
485  */
486 static void do_disable_cpu_turbo(void *data)
487 {
488         u64 perf_ctl;
489
490         rdmsrl(IA32_PERF_CTL, perf_ctl);
491         if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
492                 perf_ctl |= IA32_PERF_TURBO_DIS;
493                 wrmsrl(IA32_PERF_CTL, perf_ctl);
494         }
495 }
496
497 /**
498  * ips_disable_cpu_turbo - disable turbo mode on all CPUs
499  * @ips: IPS driver struct
500  *
501  * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
502  * all logical threads.
503  */
504 static void ips_disable_cpu_turbo(struct ips_driver *ips)
505 {
506         /* Already off, leave it */
507         if (!ips->__cpu_turbo_on)
508                 return;
509
510         if (ips->turbo_toggle_allowed)
511                 on_each_cpu(do_disable_cpu_turbo, ips, 1);
512
513         ips->__cpu_turbo_on = false;
514 }
515
516 /**
517  * ips_gpu_busy - is GPU busy?
518  * @ips: IPS driver struct
519  *
520  * Check GPU for load to see whether we should increase its thermal budget.
521  * We need to call into the i915 driver in this case.
522  *
523  * RETURNS:
524  * True if the GPU could use more power, false otherwise.
525  */
526 static bool ips_gpu_busy(struct ips_driver *ips)
527 {
528         if (!ips_gpu_turbo_enabled(ips))
529                 return false;
530
531         return ips->gpu_busy();
532 }
533
534 /**
535  * ips_gpu_raise - raise GPU power clamp
536  * @ips: IPS driver struct
537  *
538  * Raise the GPU frequency/power if possible.  We need to call into the
539  * i915 driver in this case.
540  */
541 static void ips_gpu_raise(struct ips_driver *ips)
542 {
543         if (!ips_gpu_turbo_enabled(ips))
544                 return;
545
546         if (!ips->gpu_raise())
547                 ips->gpu_turbo_enabled = false;
548
549         return;
550 }
551
552 /**
553  * ips_gpu_lower - lower GPU power clamp
554  * @ips: IPS driver struct
555  *
556  * Lower GPU frequency/power if possible.  Need to call i915.
557  */
558 static void ips_gpu_lower(struct ips_driver *ips)
559 {
560         if (!ips_gpu_turbo_enabled(ips))
561                 return;
562
563         if (!ips->gpu_lower())
564                 ips->gpu_turbo_enabled = false;
565
566         return;
567 }
568
569 /**
570  * ips_enable_gpu_turbo - notify the gfx driver turbo is available
571  * @ips: IPS driver struct
572  *
573  * Call into the graphics driver indicating that it can safely use
574  * turbo mode.
575  */
576 static void ips_enable_gpu_turbo(struct ips_driver *ips)
577 {
578         if (ips->__gpu_turbo_on)
579                 return;
580         ips->__gpu_turbo_on = true;
581 }
582
583 /**
584  * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
585  * @ips: IPS driver struct
586  *
587  * Request that the graphics driver disable turbo mode.
588  */
589 static void ips_disable_gpu_turbo(struct ips_driver *ips)
590 {
591         /* Avoid calling i915 if turbo is already disabled */
592         if (!ips->__gpu_turbo_on)
593                 return;
594
595         if (!ips->gpu_turbo_disable())
596                 dev_err(&ips->dev->dev, "failed to disable graphis turbo\n");
597         else
598                 ips->__gpu_turbo_on = false;
599 }
600
601 /**
602  * mcp_exceeded - check whether we're outside our thermal & power limits
603  * @ips: IPS driver struct
604  *
605  * Check whether the MCP is over its thermal or power budget.
606  */
607 static bool mcp_exceeded(struct ips_driver *ips)
608 {
609         unsigned long flags;
610         bool ret = false;
611         u32 temp_limit;
612         u32 avg_power;
613
614         spin_lock_irqsave(&ips->turbo_status_lock, flags);
615
616         temp_limit = ips->mcp_temp_limit * 100;
617         if (ips->mcp_avg_temp > temp_limit)
618                 ret = true;
619
620         avg_power = ips->cpu_avg_power + ips->mch_avg_power;
621         if (avg_power > ips->mcp_power_limit)
622                 ret = true;
623
624         spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
625
626         return ret;
627 }
628
629 /**
630  * cpu_exceeded - check whether a CPU core is outside its limits
631  * @ips: IPS driver struct
632  * @cpu: CPU number to check
633  *
634  * Check a given CPU's average temp or power is over its limit.
635  */
636 static bool cpu_exceeded(struct ips_driver *ips, int cpu)
637 {
638         unsigned long flags;
639         int avg;
640         bool ret = false;
641
642         spin_lock_irqsave(&ips->turbo_status_lock, flags);
643         avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
644         if (avg > (ips->limits->core_temp_limit * 100))
645                 ret = true;
646         if (ips->cpu_avg_power > ips->core_power_limit * 100)
647                 ret = true;
648         spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
649
650         if (ret)
651                 dev_info(&ips->dev->dev,
652                          "CPU power or thermal limit exceeded\n");
653
654         return ret;
655 }
656
657 /**
658  * mch_exceeded - check whether the GPU is over budget
659  * @ips: IPS driver struct
660  *
661  * Check the MCH temp & power against their maximums.
662  */
663 static bool mch_exceeded(struct ips_driver *ips)
664 {
665         unsigned long flags;
666         bool ret = false;
667
668         spin_lock_irqsave(&ips->turbo_status_lock, flags);
669         if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
670                 ret = true;
671         if (ips->mch_avg_power > ips->mch_power_limit)
672                 ret = true;
673         spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
674
675         return ret;
676 }
677
678 /**
679  * verify_limits - verify BIOS provided limits
680  * @ips: IPS structure
681  *
682  * BIOS can optionally provide non-default limits for power and temp.  Check
683  * them here and use the defaults if the BIOS values are not provided or
684  * are otherwise unusable.
685  */
686 static void verify_limits(struct ips_driver *ips)
687 {
688         if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
689             ips->mcp_power_limit > 35000)
690                 ips->mcp_power_limit = ips->limits->mcp_power_limit;
691
692         if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
693             ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
694             ips->mcp_temp_limit > 150)
695                 ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
696                                           ips->limits->mch_temp_limit);
697 }
698
699 /**
700  * update_turbo_limits - get various limits & settings from regs
701  * @ips: IPS driver struct
702  *
703  * Update the IPS power & temp limits, along with turbo enable flags,
704  * based on latest register contents.
705  *
706  * Used at init time and for runtime BIOS support, which requires polling
707  * the regs for updates (as a result of AC->DC transition for example).
708  *
709  * LOCKING:
710  * Caller must hold turbo_status_lock (outside of init)
711  */
712 static void update_turbo_limits(struct ips_driver *ips)
713 {
714         u32 hts = thm_readl(THM_HTS);
715
716         ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
717         /* 
718          * Disable turbo for now, until we can figure out why the power figures
719          * are wrong
720          */
721         ips->cpu_turbo_enabled = false;
722
723         if (ips->gpu_busy)
724                 ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
725
726         ips->core_power_limit = thm_readw(THM_MPCPC);
727         ips->mch_power_limit = thm_readw(THM_MMGPC);
728         ips->mcp_temp_limit = thm_readw(THM_PTL);
729         ips->mcp_power_limit = thm_readw(THM_MPPC);
730
731         verify_limits(ips);
732         /* Ignore BIOS CPU vs GPU pref */
733 }
734
735 /**
736  * ips_adjust - adjust power clamp based on thermal state
737  * @data: ips driver structure
738  *
739  * Wake up every 5s or so and check whether we should adjust the power clamp.
740  * Check CPU and GPU load to determine which needs adjustment.  There are
741  * several things to consider here:
742  *   - do we need to adjust up or down?
743  *   - is CPU busy?
744  *   - is GPU busy?
745  *   - is CPU in turbo?
746  *   - is GPU in turbo?
747  *   - is CPU or GPU preferred? (CPU is default)
748  *
749  * So, given the above, we do the following:
750  *   - up (TDP available)
751  *     - CPU not busy, GPU not busy - nothing
752  *     - CPU busy, GPU not busy - adjust CPU up
753  *     - CPU not busy, GPU busy - adjust GPU up
754  *     - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
755  *       non-preferred unit if necessary
756  *   - down (at TDP limit)
757  *     - adjust both CPU and GPU down if possible
758  *
759                 cpu+ gpu+       cpu+gpu-        cpu-gpu+        cpu-gpu-
760 cpu < gpu <     cpu+gpu+        cpu+            gpu+            nothing
761 cpu < gpu >=    cpu+gpu-(mcp<)  cpu+gpu-(mcp<)  gpu-            gpu-
762 cpu >= gpu <    cpu-gpu+(mcp<)  cpu-            cpu-gpu+(mcp<)  cpu-
763 cpu >= gpu >=   cpu-gpu-        cpu-gpu-        cpu-gpu-        cpu-gpu-
764  *
765  */
766 static int ips_adjust(void *data)
767 {
768         struct ips_driver *ips = data;
769         unsigned long flags;
770
771         dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n");
772
773         /*
774          * Adjust CPU and GPU clamps every 5s if needed.  Doing it more
775          * often isn't recommended due to ME interaction.
776          */
777         do {
778                 bool cpu_busy = ips_cpu_busy(ips);
779                 bool gpu_busy = ips_gpu_busy(ips);
780
781                 spin_lock_irqsave(&ips->turbo_status_lock, flags);
782                 if (ips->poll_turbo_status)
783                         update_turbo_limits(ips);
784                 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
785
786                 /* Update turbo status if necessary */
787                 if (ips->cpu_turbo_enabled)
788                         ips_enable_cpu_turbo(ips);
789                 else
790                         ips_disable_cpu_turbo(ips);
791
792                 if (ips->gpu_turbo_enabled)
793                         ips_enable_gpu_turbo(ips);
794                 else
795                         ips_disable_gpu_turbo(ips);
796
797                 /* We're outside our comfort zone, crank them down */
798                 if (mcp_exceeded(ips)) {
799                         ips_cpu_lower(ips);
800                         ips_gpu_lower(ips);
801                         goto sleep;
802                 }
803
804                 if (!cpu_exceeded(ips, 0) && cpu_busy)
805                         ips_cpu_raise(ips);
806                 else
807                         ips_cpu_lower(ips);
808
809                 if (!mch_exceeded(ips) && gpu_busy)
810                         ips_gpu_raise(ips);
811                 else
812                         ips_gpu_lower(ips);
813
814 sleep:
815                 schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
816         } while (!kthread_should_stop());
817
818         dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n");
819
820         return 0;
821 }
822
823 /*
824  * Helpers for reading out temp/power values and calculating their
825  * averages for the decision making and monitoring functions.
826  */
827
828 static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
829 {
830         u64 total = 0;
831         int i;
832         u16 avg;
833
834         for (i = 0; i < IPS_SAMPLE_COUNT; i++)
835                 total += (u64)(array[i] * 100);
836
837         do_div(total, IPS_SAMPLE_COUNT);
838
839         avg = (u16)total;
840
841         return avg;
842 }
843
844 static u16 read_mgtv(struct ips_driver *ips)
845 {
846         u16 ret;
847         u64 slope, offset;
848         u64 val;
849
850         val = thm_readq(THM_MGTV);
851         val = (val & TV_MASK) >> TV_SHIFT;
852
853         slope = offset = thm_readw(THM_MGTA);
854         slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
855         offset = offset & MGTA_OFFSET_MASK;
856
857         ret = ((val * slope + 0x40) >> 7) + offset;
858
859         return 0; /* MCH temp reporting buggy */
860 }
861
862 static u16 read_ptv(struct ips_driver *ips)
863 {
864         u16 val, slope, offset;
865
866         slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT;
867         offset = ips->pta_val & PTA_OFFSET_MASK;
868
869         val = thm_readw(THM_PTV) & PTV_MASK;
870
871         return val;
872 }
873
874 static u16 read_ctv(struct ips_driver *ips, int cpu)
875 {
876         int reg = cpu ? THM_CTV2 : THM_CTV1;
877         u16 val;
878
879         val = thm_readw(reg);
880         if (!(val & CTV_TEMP_ERROR))
881                 val = (val) >> 6; /* discard fractional component */
882         else
883                 val = 0;
884
885         return val;
886 }
887
888 static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
889 {
890         u32 val;
891         u32 ret;
892
893         /*
894          * CEC is in joules/65535.  Take difference over time to
895          * get watts.
896          */
897         val = thm_readl(THM_CEC);
898
899         /* period is in ms and we want mW */
900         ret = (((val - *last) * 1000) / period);
901         ret = (ret * 1000) / 65535;
902         *last = val;
903
904         return 0;
905 }
906
907 static const u16 temp_decay_factor = 2;
908 static u16 update_average_temp(u16 avg, u16 val)
909 {
910         u16 ret;
911
912         /* Multiply by 100 for extra precision */
913         ret = (val * 100 / temp_decay_factor) +
914                 (((temp_decay_factor - 1) * avg) / temp_decay_factor);
915         return ret;
916 }
917
918 static const u16 power_decay_factor = 2;
919 static u16 update_average_power(u32 avg, u32 val)
920 {
921         u32 ret;
922
923         ret = (val / power_decay_factor) +
924                 (((power_decay_factor - 1) * avg) / power_decay_factor);
925
926         return ret;
927 }
928
929 static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
930 {
931         u64 total = 0;
932         u32 avg;
933         int i;
934
935         for (i = 0; i < IPS_SAMPLE_COUNT; i++)
936                 total += array[i];
937
938         do_div(total, IPS_SAMPLE_COUNT);
939         avg = (u32)total;
940
941         return avg;
942 }
943
944 static void monitor_timeout(unsigned long arg)
945 {
946         wake_up_process((struct task_struct *)arg);
947 }
948
949 /**
950  * ips_monitor - temp/power monitoring thread
951  * @data: ips driver structure
952  *
953  * This is the main function for the IPS driver.  It monitors power and
954  * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
955  *
956  * We keep a 5s moving average of power consumption and tempurature.  Using
957  * that data, along with CPU vs GPU preference, we adjust the power clamps
958  * up or down.
959  */
960 static int ips_monitor(void *data)
961 {
962         struct ips_driver *ips = data;
963         struct timer_list timer;
964         unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
965         int i;
966         u32 *cpu_samples, *mchp_samples, old_cpu_power;
967         u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
968         u8 cur_seqno, last_seqno;
969
970         mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
971         ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
972         ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
973         mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
974         cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
975         mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
976         if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
977                         !cpu_samples || !mchp_samples) {
978                 dev_err(&ips->dev->dev,
979                         "failed to allocate sample array, ips disabled\n");
980                 kfree(mcp_samples);
981                 kfree(ctv1_samples);
982                 kfree(ctv2_samples);
983                 kfree(mch_samples);
984                 kfree(cpu_samples);
985                 kfree(mchp_samples);
986                 return -ENOMEM;
987         }
988
989         last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
990                 ITV_ME_SEQNO_SHIFT;
991         seqno_timestamp = get_jiffies_64();
992
993         old_cpu_power = thm_readl(THM_CEC);
994         schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
995
996         /* Collect an initial average */
997         for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
998                 u32 mchp, cpu_power;
999                 u16 val;
1000
1001                 mcp_samples[i] = read_ptv(ips);
1002
1003                 val = read_ctv(ips, 0);
1004                 ctv1_samples[i] = val;
1005
1006                 val = read_ctv(ips, 1);
1007                 ctv2_samples[i] = val;
1008
1009                 val = read_mgtv(ips);
1010                 mch_samples[i] = val;
1011
1012                 cpu_power = get_cpu_power(ips, &old_cpu_power,
1013                                           IPS_SAMPLE_PERIOD);
1014                 cpu_samples[i] = cpu_power;
1015
1016                 if (ips->read_mch_val) {
1017                         mchp = ips->read_mch_val();
1018                         mchp_samples[i] = mchp;
1019                 }
1020
1021                 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1022                 if (kthread_should_stop())
1023                         break;
1024         }
1025
1026         ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1027         ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1028         ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1029         ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1030         ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1031         ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1032         kfree(mcp_samples);
1033         kfree(ctv1_samples);
1034         kfree(ctv2_samples);
1035         kfree(mch_samples);
1036         kfree(cpu_samples);
1037         kfree(mchp_samples);
1038
1039         /* Start the adjustment thread now that we have data */
1040         wake_up_process(ips->adjust);
1041
1042         /*
1043          * Ok, now we have an initial avg.  From here on out, we track the
1044          * running avg using a decaying average calculation.  This allows
1045          * us to reduce the sample frequency if the CPU and GPU are idle.
1046          */
1047         old_cpu_power = thm_readl(THM_CEC);
1048         schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1049         last_sample_period = IPS_SAMPLE_PERIOD;
1050
1051         setup_deferrable_timer_on_stack(&timer, monitor_timeout,
1052                                         (unsigned long)current);
1053         do {
1054                 u32 cpu_val, mch_val;
1055                 u16 val;
1056
1057                 /* MCP itself */
1058                 val = read_ptv(ips);
1059                 ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1060
1061                 /* Processor 0 */
1062                 val = read_ctv(ips, 0);
1063                 ips->ctv1_avg_temp =
1064                         update_average_temp(ips->ctv1_avg_temp, val);
1065                 /* Power */
1066                 cpu_val = get_cpu_power(ips, &old_cpu_power,
1067                                         last_sample_period);
1068                 ips->cpu_avg_power =
1069                         update_average_power(ips->cpu_avg_power, cpu_val);
1070
1071                 if (ips->second_cpu) {
1072                         /* Processor 1 */
1073                         val = read_ctv(ips, 1);
1074                         ips->ctv2_avg_temp =
1075                                 update_average_temp(ips->ctv2_avg_temp, val);
1076                 }
1077
1078                 /* MCH */
1079                 val = read_mgtv(ips);
1080                 ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1081                 /* Power */
1082                 if (ips->read_mch_val) {
1083                         mch_val = ips->read_mch_val();
1084                         ips->mch_avg_power =
1085                                 update_average_power(ips->mch_avg_power,
1086                                                      mch_val);
1087                 }
1088
1089                 /*
1090                  * Make sure ME is updating thermal regs.
1091                  * Note:
1092                  * If it's been more than a second since the last update,
1093                  * the ME is probably hung.
1094                  */
1095                 cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1096                         ITV_ME_SEQNO_SHIFT;
1097                 if (cur_seqno == last_seqno &&
1098                     time_after(jiffies, seqno_timestamp + HZ)) {
1099                         dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n");
1100                 } else {
1101                         seqno_timestamp = get_jiffies_64();
1102                         last_seqno = cur_seqno;
1103                 }
1104
1105                 last_msecs = jiffies_to_msecs(jiffies);
1106                 expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1107
1108                 __set_current_state(TASK_INTERRUPTIBLE);
1109                 mod_timer(&timer, expire);
1110                 schedule();
1111
1112                 /* Calculate actual sample period for power averaging */
1113                 last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1114                 if (!last_sample_period)
1115                         last_sample_period = 1;
1116         } while (!kthread_should_stop());
1117
1118         del_timer_sync(&timer);
1119         destroy_timer_on_stack(&timer);
1120
1121         dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n");
1122
1123         return 0;
1124 }
1125
1126 #if 0
1127 #define THM_DUMPW(reg) \
1128         { \
1129         u16 val = thm_readw(reg); \
1130         dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \
1131         }
1132 #define THM_DUMPL(reg) \
1133         { \
1134         u32 val = thm_readl(reg); \
1135         dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \
1136         }
1137 #define THM_DUMPQ(reg) \
1138         { \
1139         u64 val = thm_readq(reg); \
1140         dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \
1141         }
1142
1143 static void dump_thermal_info(struct ips_driver *ips)
1144 {
1145         u16 ptl;
1146
1147         ptl = thm_readw(THM_PTL);
1148         dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl);
1149
1150         THM_DUMPW(THM_CTA);
1151         THM_DUMPW(THM_TRC);
1152         THM_DUMPW(THM_CTV1);
1153         THM_DUMPL(THM_STS);
1154         THM_DUMPW(THM_PTV);
1155         THM_DUMPQ(THM_MGTV);
1156 }
1157 #endif
1158
1159 /**
1160  * ips_irq_handler - handle temperature triggers and other IPS events
1161  * @irq: irq number
1162  * @arg: unused
1163  *
1164  * Handle temperature limit trigger events, generally by lowering the clamps.
1165  * If we're at a critical limit, we clamp back to the lowest possible value
1166  * to prevent emergency shutdown.
1167  */
1168 static irqreturn_t ips_irq_handler(int irq, void *arg)
1169 {
1170         struct ips_driver *ips = arg;
1171         u8 tses = thm_readb(THM_TSES);
1172         u8 tes = thm_readb(THM_TES);
1173
1174         if (!tses && !tes)
1175                 return IRQ_NONE;
1176
1177         dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses);
1178         dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes);
1179
1180         /* STS update from EC? */
1181         if (tes & 1) {
1182                 u32 sts, tc1;
1183
1184                 sts = thm_readl(THM_STS);
1185                 tc1 = thm_readl(THM_TC1);
1186
1187                 if (sts & STS_NVV) {
1188                         spin_lock(&ips->turbo_status_lock);
1189                         ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1190                                 STS_PCPL_SHIFT;
1191                         ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1192                                 STS_GPL_SHIFT;
1193                         /* ignore EC CPU vs GPU pref */
1194                         ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1195                         /* 
1196                          * Disable turbo for now, until we can figure
1197                          * out why the power figures are wrong
1198                          */
1199                         ips->cpu_turbo_enabled = false;
1200                         if (ips->gpu_busy)
1201                                 ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1202                         ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1203                                 STS_PTL_SHIFT;
1204                         ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1205                                 STS_PPL_SHIFT;
1206                         verify_limits(ips);
1207                         spin_unlock(&ips->turbo_status_lock);
1208
1209                         thm_writeb(THM_SEC, SEC_ACK);
1210                 }
1211                 thm_writeb(THM_TES, tes);
1212         }
1213
1214         /* Thermal trip */
1215         if (tses) {
1216                 dev_warn(&ips->dev->dev,
1217                          "thermal trip occurred, tses: 0x%04x\n", tses);
1218                 thm_writeb(THM_TSES, tses);
1219         }
1220
1221         return IRQ_HANDLED;
1222 }
1223
1224 #ifndef CONFIG_DEBUG_FS
1225 static void ips_debugfs_init(struct ips_driver *ips) { return; }
1226 static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1227 #else
1228
1229 /* Expose current state and limits in debugfs if possible */
1230
1231 struct ips_debugfs_node {
1232         struct ips_driver *ips;
1233         char *name;
1234         int (*show)(struct seq_file *m, void *data);
1235 };
1236
1237 static int show_cpu_temp(struct seq_file *m, void *data)
1238 {
1239         struct ips_driver *ips = m->private;
1240
1241         seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1242                    ips->ctv1_avg_temp % 100);
1243
1244         return 0;
1245 }
1246
1247 static int show_cpu_power(struct seq_file *m, void *data)
1248 {
1249         struct ips_driver *ips = m->private;
1250
1251         seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1252
1253         return 0;
1254 }
1255
1256 static int show_cpu_clamp(struct seq_file *m, void *data)
1257 {
1258         u64 turbo_override;
1259         int tdp, tdc;
1260
1261         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1262
1263         tdp = (int)(turbo_override & TURBO_TDP_MASK);
1264         tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1265
1266         /* Convert to .1W/A units */
1267         tdp = tdp * 10 / 8;
1268         tdc = tdc * 10 / 8;
1269
1270         /* Watts Amperes */
1271         seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1272                    tdc / 10, tdc % 10);
1273
1274         return 0;
1275 }
1276
1277 static int show_mch_temp(struct seq_file *m, void *data)
1278 {
1279         struct ips_driver *ips = m->private;
1280
1281         seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1282                    ips->mch_avg_temp % 100);
1283
1284         return 0;
1285 }
1286
1287 static int show_mch_power(struct seq_file *m, void *data)
1288 {
1289         struct ips_driver *ips = m->private;
1290
1291         seq_printf(m, "%dmW\n", ips->mch_avg_power);
1292
1293         return 0;
1294 }
1295
1296 static struct ips_debugfs_node ips_debug_files[] = {
1297         { NULL, "cpu_temp", show_cpu_temp },
1298         { NULL, "cpu_power", show_cpu_power },
1299         { NULL, "cpu_clamp", show_cpu_clamp },
1300         { NULL, "mch_temp", show_mch_temp },
1301         { NULL, "mch_power", show_mch_power },
1302 };
1303
1304 static int ips_debugfs_open(struct inode *inode, struct file *file)
1305 {
1306         struct ips_debugfs_node *node = inode->i_private;
1307
1308         return single_open(file, node->show, node->ips);
1309 }
1310
1311 static const struct file_operations ips_debugfs_ops = {
1312         .owner = THIS_MODULE,
1313         .open = ips_debugfs_open,
1314         .read = seq_read,
1315         .llseek = seq_lseek,
1316         .release = single_release,
1317 };
1318
1319 static void ips_debugfs_cleanup(struct ips_driver *ips)
1320 {
1321         if (ips->debug_root)
1322                 debugfs_remove_recursive(ips->debug_root);
1323         return;
1324 }
1325
1326 static void ips_debugfs_init(struct ips_driver *ips)
1327 {
1328         int i;
1329
1330         ips->debug_root = debugfs_create_dir("ips", NULL);
1331         if (!ips->debug_root) {
1332                 dev_err(&ips->dev->dev,
1333                         "failed to create debugfs entries: %ld\n",
1334                         PTR_ERR(ips->debug_root));
1335                 return;
1336         }
1337
1338         for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
1339                 struct dentry *ent;
1340                 struct ips_debugfs_node *node = &ips_debug_files[i];
1341
1342                 node->ips = ips;
1343                 ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
1344                                           ips->debug_root, node,
1345                                           &ips_debugfs_ops);
1346                 if (!ent) {
1347                         dev_err(&ips->dev->dev,
1348                                 "failed to create debug file: %ld\n",
1349                                 PTR_ERR(ent));
1350                         goto err_cleanup;
1351                 }
1352         }
1353
1354         return;
1355
1356 err_cleanup:
1357         ips_debugfs_cleanup(ips);
1358         return;
1359 }
1360 #endif /* CONFIG_DEBUG_FS */
1361
1362 /**
1363  * ips_detect_cpu - detect whether CPU supports IPS
1364  *
1365  * Walk our list and see if we're on a supported CPU.  If we find one,
1366  * return the limits for it.
1367  */
1368 static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1369 {
1370         u64 turbo_power, misc_en;
1371         struct ips_mcp_limits *limits = NULL;
1372         u16 tdp;
1373
1374         if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1375                 dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n");
1376                 goto out;
1377         }
1378
1379         rdmsrl(IA32_MISC_ENABLE, misc_en);
1380         /*
1381          * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1382          * turbo manually or we'll get an illegal MSR access, even though
1383          * turbo will still be available.
1384          */
1385         if (misc_en & IA32_MISC_TURBO_EN)
1386                 ips->turbo_toggle_allowed = true;
1387         else
1388                 ips->turbo_toggle_allowed = false;
1389
1390         if (strstr(boot_cpu_data.x86_model_id, "CPU       M"))
1391                 limits = &ips_sv_limits;
1392         else if (strstr(boot_cpu_data.x86_model_id, "CPU       L"))
1393                 limits = &ips_lv_limits;
1394         else if (strstr(boot_cpu_data.x86_model_id, "CPU       U"))
1395                 limits = &ips_ulv_limits;
1396         else {
1397                 dev_info(&ips->dev->dev, "No CPUID match found.\n");
1398                 goto out;
1399         }
1400
1401         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1402         tdp = turbo_power & TURBO_TDP_MASK;
1403
1404         /* Sanity check TDP against CPU */
1405         if (limits->core_power_limit != (tdp / 8) * 1000) {
1406                 dev_info(&ips->dev->dev, "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1407                          tdp / 8, limits->core_power_limit / 1000);
1408                 limits->core_power_limit = (tdp / 8) * 1000;
1409         }
1410
1411 out:
1412         return limits;
1413 }
1414
1415 /**
1416  * ips_get_i915_syms - try to get GPU control methods from i915 driver
1417  * @ips: IPS driver
1418  *
1419  * The i915 driver exports several interfaces to allow the IPS driver to
1420  * monitor and control graphics turbo mode.  If we can find them, we can
1421  * enable graphics turbo, otherwise we must disable it to avoid exceeding
1422  * thermal and power limits in the MCP.
1423  */
1424 static bool ips_get_i915_syms(struct ips_driver *ips)
1425 {
1426         ips->read_mch_val = symbol_get(i915_read_mch_val);
1427         if (!ips->read_mch_val)
1428                 goto out_err;
1429         ips->gpu_raise = symbol_get(i915_gpu_raise);
1430         if (!ips->gpu_raise)
1431                 goto out_put_mch;
1432         ips->gpu_lower = symbol_get(i915_gpu_lower);
1433         if (!ips->gpu_lower)
1434                 goto out_put_raise;
1435         ips->gpu_busy = symbol_get(i915_gpu_busy);
1436         if (!ips->gpu_busy)
1437                 goto out_put_lower;
1438         ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1439         if (!ips->gpu_turbo_disable)
1440                 goto out_put_busy;
1441
1442         return true;
1443
1444 out_put_busy:
1445         symbol_put(i915_gpu_busy);
1446 out_put_lower:
1447         symbol_put(i915_gpu_lower);
1448 out_put_raise:
1449         symbol_put(i915_gpu_raise);
1450 out_put_mch:
1451         symbol_put(i915_read_mch_val);
1452 out_err:
1453         return false;
1454 }
1455
1456 static bool
1457 ips_gpu_turbo_enabled(struct ips_driver *ips)
1458 {
1459         if (!ips->gpu_busy && late_i915_load) {
1460                 if (ips_get_i915_syms(ips)) {
1461                         dev_info(&ips->dev->dev,
1462                                  "i915 driver attached, reenabling gpu turbo\n");
1463                         ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
1464                 }
1465         }
1466
1467         return ips->gpu_turbo_enabled;
1468 }
1469
1470 void
1471 ips_link_to_i915_driver(void)
1472 {
1473         /* We can't cleanly get at the various ips_driver structs from
1474          * this caller (the i915 driver), so just set a flag saying
1475          * that it's time to try getting the symbols again.
1476          */
1477         late_i915_load = true;
1478 }
1479 EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
1480
1481 static const struct pci_device_id ips_id_table[] = {
1482         { PCI_DEVICE(PCI_VENDOR_ID_INTEL,
1483                      PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1484         { 0, }
1485 };
1486
1487 MODULE_DEVICE_TABLE(pci, ips_id_table);
1488
1489 static int ips_blacklist_callback(const struct dmi_system_id *id)
1490 {
1491         pr_info("Blacklisted intel_ips for %s\n", id->ident);
1492         return 1;
1493 }
1494
1495 static const struct dmi_system_id ips_blacklist[] = {
1496         {
1497                 .callback = ips_blacklist_callback,
1498                 .ident = "HP ProBook",
1499                 .matches = {
1500                         DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
1501                         DMI_MATCH(DMI_PRODUCT_NAME, "HP ProBook"),
1502                 },
1503         },
1504         { }     /* terminating entry */
1505 };
1506
1507 static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1508 {
1509         u64 platform_info;
1510         struct ips_driver *ips;
1511         u32 hts;
1512         int ret = 0;
1513         u16 htshi, trc, trc_required_mask;
1514         u8 tse;
1515
1516         if (dmi_check_system(ips_blacklist))
1517                 return -ENODEV;
1518
1519         ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL);
1520         if (!ips)
1521                 return -ENOMEM;
1522
1523         pci_set_drvdata(dev, ips);
1524         ips->dev = dev;
1525
1526         ips->limits = ips_detect_cpu(ips);
1527         if (!ips->limits) {
1528                 dev_info(&dev->dev, "IPS not supported on this CPU\n");
1529                 ret = -ENXIO;
1530                 goto error_free;
1531         }
1532
1533         spin_lock_init(&ips->turbo_status_lock);
1534
1535         ret = pci_enable_device(dev);
1536         if (ret) {
1537                 dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1538                 goto error_free;
1539         }
1540
1541         if (!pci_resource_start(dev, 0)) {
1542                 dev_err(&dev->dev, "TBAR not assigned, aborting\n");
1543                 ret = -ENXIO;
1544                 goto error_free;
1545         }
1546
1547         ret = pci_request_regions(dev, "ips thermal sensor");
1548         if (ret) {
1549                 dev_err(&dev->dev, "thermal resource busy, aborting\n");
1550                 goto error_free;
1551         }
1552
1553
1554         ips->regmap = ioremap(pci_resource_start(dev, 0),
1555                               pci_resource_len(dev, 0));
1556         if (!ips->regmap) {
1557                 dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1558                 ret = -EBUSY;
1559                 goto error_release;
1560         }
1561
1562         tse = thm_readb(THM_TSE);
1563         if (tse != TSE_EN) {
1564                 dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1565                 ret = -ENXIO;
1566                 goto error_unmap;
1567         }
1568
1569         trc = thm_readw(THM_TRC);
1570         trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1571         if ((trc & trc_required_mask) != trc_required_mask) {
1572                 dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1573                 ret = -ENXIO;
1574                 goto error_unmap;
1575         }
1576
1577         if (trc & TRC_CORE2_EN)
1578                 ips->second_cpu = true;
1579
1580         update_turbo_limits(ips);
1581         dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1582                 ips->mcp_power_limit / 10);
1583         dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1584                 ips->core_power_limit / 10);
1585         /* BIOS may update limits at runtime */
1586         if (thm_readl(THM_PSC) & PSP_PBRT)
1587                 ips->poll_turbo_status = true;
1588
1589         if (!ips_get_i915_syms(ips)) {
1590                 dev_info(&dev->dev, "failed to get i915 symbols, graphics turbo disabled until i915 loads\n");
1591                 ips->gpu_turbo_enabled = false;
1592         } else {
1593                 dev_dbg(&dev->dev, "graphics turbo enabled\n");
1594                 ips->gpu_turbo_enabled = true;
1595         }
1596
1597         /*
1598          * Check PLATFORM_INFO MSR to make sure this chip is
1599          * turbo capable.
1600          */
1601         rdmsrl(PLATFORM_INFO, platform_info);
1602         if (!(platform_info & PLATFORM_TDP)) {
1603                 dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1604                 ret = -ENODEV;
1605                 goto error_unmap;
1606         }
1607
1608         /*
1609          * IRQ handler for ME interaction
1610          * Note: don't use MSI here as the PCH has bugs.
1611          */
1612         pci_disable_msi(dev);
1613         ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips",
1614                           ips);
1615         if (ret) {
1616                 dev_err(&dev->dev, "request irq failed, aborting\n");
1617                 goto error_unmap;
1618         }
1619
1620         /* Enable aux, hot & critical interrupts */
1621         thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1622                    TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1623         thm_writeb(THM_TEN, TEN_UPDATE_EN);
1624
1625         /* Collect adjustment values */
1626         ips->cta_val = thm_readw(THM_CTA);
1627         ips->pta_val = thm_readw(THM_PTA);
1628         ips->mgta_val = thm_readw(THM_MGTA);
1629
1630         /* Save turbo limits & ratios */
1631         rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1632
1633         ips_disable_cpu_turbo(ips);
1634         ips->cpu_turbo_enabled = false;
1635
1636         /* Create thermal adjust thread */
1637         ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1638         if (IS_ERR(ips->adjust)) {
1639                 dev_err(&dev->dev,
1640                         "failed to create thermal adjust thread, aborting\n");
1641                 ret = -ENOMEM;
1642                 goto error_free_irq;
1643
1644         }
1645
1646         /*
1647          * Set up the work queue and monitor thread. The monitor thread
1648          * will wake up ips_adjust thread.
1649          */
1650         ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1651         if (IS_ERR(ips->monitor)) {
1652                 dev_err(&dev->dev,
1653                         "failed to create thermal monitor thread, aborting\n");
1654                 ret = -ENOMEM;
1655                 goto error_thread_cleanup;
1656         }
1657
1658         hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1659                 (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1660         htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1661
1662         thm_writew(THM_HTSHI, htshi);
1663         thm_writel(THM_HTS, hts);
1664
1665         ips_debugfs_init(ips);
1666
1667         dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1668                  ips->mcp_temp_limit);
1669         return ret;
1670
1671 error_thread_cleanup:
1672         kthread_stop(ips->adjust);
1673 error_free_irq:
1674         free_irq(ips->dev->irq, ips);
1675 error_unmap:
1676         iounmap(ips->regmap);
1677 error_release:
1678         pci_release_regions(dev);
1679 error_free:
1680         kfree(ips);
1681         return ret;
1682 }
1683
1684 static void ips_remove(struct pci_dev *dev)
1685 {
1686         struct ips_driver *ips = pci_get_drvdata(dev);
1687         u64 turbo_override;
1688
1689         if (!ips)
1690                 return;
1691
1692         ips_debugfs_cleanup(ips);
1693
1694         /* Release i915 driver */
1695         if (ips->read_mch_val)
1696                 symbol_put(i915_read_mch_val);
1697         if (ips->gpu_raise)
1698                 symbol_put(i915_gpu_raise);
1699         if (ips->gpu_lower)
1700                 symbol_put(i915_gpu_lower);
1701         if (ips->gpu_busy)
1702                 symbol_put(i915_gpu_busy);
1703         if (ips->gpu_turbo_disable)
1704                 symbol_put(i915_gpu_turbo_disable);
1705
1706         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1707         turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1708         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1709         wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1710
1711         free_irq(ips->dev->irq, ips);
1712         if (ips->adjust)
1713                 kthread_stop(ips->adjust);
1714         if (ips->monitor)
1715                 kthread_stop(ips->monitor);
1716         iounmap(ips->regmap);
1717         pci_release_regions(dev);
1718         kfree(ips);
1719         dev_dbg(&dev->dev, "IPS driver removed\n");
1720 }
1721
1722 static void ips_shutdown(struct pci_dev *dev)
1723 {
1724 }
1725
1726 static struct pci_driver ips_pci_driver = {
1727         .name = "intel ips",
1728         .id_table = ips_id_table,
1729         .probe = ips_probe,
1730         .remove = ips_remove,
1731         .shutdown = ips_shutdown,
1732 };
1733
1734 module_pci_driver(ips_pci_driver);
1735
1736 MODULE_LICENSE("GPL");
1737 MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1738 MODULE_DESCRIPTION("Intelligent Power Sharing Driver");