1880ee06d7010e1c7f11675b2f79988da574cc74
[pandora-kernel.git] / drivers / pci / intel-iommu.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  * Author: Fenghua Yu <fenghua.yu@intel.com>
22  */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <linux/tboot.h>
41 #include <linux/dmi.h>
42 #include <asm/cacheflush.h>
43 #include <asm/iommu.h>
44 #include "pci.h"
45
46 #define ROOT_SIZE               VTD_PAGE_SIZE
47 #define CONTEXT_SIZE            VTD_PAGE_SIZE
48
49 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
50 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
51 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
52
53 #define IOAPIC_RANGE_START      (0xfee00000)
54 #define IOAPIC_RANGE_END        (0xfeefffff)
55 #define IOVA_START_ADDR         (0x1000)
56
57 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
58
59 #define MAX_AGAW_WIDTH 64
60
61 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
62 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
63
64 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
65    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
66 #define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
67                                 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
68 #define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
69
70 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
71 #define DMA_32BIT_PFN           IOVA_PFN(DMA_BIT_MASK(32))
72 #define DMA_64BIT_PFN           IOVA_PFN(DMA_BIT_MASK(64))
73
74
75 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
76    are never going to work. */
77 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
78 {
79         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
80 }
81
82 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
83 {
84         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
85 }
86 static inline unsigned long page_to_dma_pfn(struct page *pg)
87 {
88         return mm_to_dma_pfn(page_to_pfn(pg));
89 }
90 static inline unsigned long virt_to_dma_pfn(void *p)
91 {
92         return page_to_dma_pfn(virt_to_page(p));
93 }
94
95 /* global iommu list, set NULL for ignored DMAR units */
96 static struct intel_iommu **g_iommus;
97
98 static void __init check_tylersburg_isoch(void);
99 static int rwbf_quirk;
100
101 /*
102  * 0: Present
103  * 1-11: Reserved
104  * 12-63: Context Ptr (12 - (haw-1))
105  * 64-127: Reserved
106  */
107 struct root_entry {
108         u64     val;
109         u64     rsvd1;
110 };
111 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
112 static inline bool root_present(struct root_entry *root)
113 {
114         return (root->val & 1);
115 }
116 static inline void set_root_present(struct root_entry *root)
117 {
118         root->val |= 1;
119 }
120 static inline void set_root_value(struct root_entry *root, unsigned long value)
121 {
122         root->val |= value & VTD_PAGE_MASK;
123 }
124
125 static inline struct context_entry *
126 get_context_addr_from_root(struct root_entry *root)
127 {
128         return (struct context_entry *)
129                 (root_present(root)?phys_to_virt(
130                 root->val & VTD_PAGE_MASK) :
131                 NULL);
132 }
133
134 /*
135  * low 64 bits:
136  * 0: present
137  * 1: fault processing disable
138  * 2-3: translation type
139  * 12-63: address space root
140  * high 64 bits:
141  * 0-2: address width
142  * 3-6: aval
143  * 8-23: domain id
144  */
145 struct context_entry {
146         u64 lo;
147         u64 hi;
148 };
149
150 static inline bool context_present(struct context_entry *context)
151 {
152         return (context->lo & 1);
153 }
154 static inline void context_set_present(struct context_entry *context)
155 {
156         context->lo |= 1;
157 }
158
159 static inline void context_set_fault_enable(struct context_entry *context)
160 {
161         context->lo &= (((u64)-1) << 2) | 1;
162 }
163
164 static inline void context_set_translation_type(struct context_entry *context,
165                                                 unsigned long value)
166 {
167         context->lo &= (((u64)-1) << 4) | 3;
168         context->lo |= (value & 3) << 2;
169 }
170
171 static inline void context_set_address_root(struct context_entry *context,
172                                             unsigned long value)
173 {
174         context->lo |= value & VTD_PAGE_MASK;
175 }
176
177 static inline void context_set_address_width(struct context_entry *context,
178                                              unsigned long value)
179 {
180         context->hi |= value & 7;
181 }
182
183 static inline void context_set_domain_id(struct context_entry *context,
184                                          unsigned long value)
185 {
186         context->hi |= (value & ((1 << 16) - 1)) << 8;
187 }
188
189 static inline void context_clear_entry(struct context_entry *context)
190 {
191         context->lo = 0;
192         context->hi = 0;
193 }
194
195 /*
196  * 0: readable
197  * 1: writable
198  * 2-6: reserved
199  * 7: super page
200  * 8-10: available
201  * 11: snoop behavior
202  * 12-63: Host physcial address
203  */
204 struct dma_pte {
205         u64 val;
206 };
207
208 static inline void dma_clear_pte(struct dma_pte *pte)
209 {
210         pte->val = 0;
211 }
212
213 static inline void dma_set_pte_readable(struct dma_pte *pte)
214 {
215         pte->val |= DMA_PTE_READ;
216 }
217
218 static inline void dma_set_pte_writable(struct dma_pte *pte)
219 {
220         pte->val |= DMA_PTE_WRITE;
221 }
222
223 static inline void dma_set_pte_snp(struct dma_pte *pte)
224 {
225         pte->val |= DMA_PTE_SNP;
226 }
227
228 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
229 {
230         pte->val = (pte->val & ~3) | (prot & 3);
231 }
232
233 static inline u64 dma_pte_addr(struct dma_pte *pte)
234 {
235 #ifdef CONFIG_64BIT
236         return pte->val & VTD_PAGE_MASK;
237 #else
238         /* Must have a full atomic 64-bit read */
239         return  __cmpxchg64(pte, 0ULL, 0ULL) & VTD_PAGE_MASK;
240 #endif
241 }
242
243 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
244 {
245         pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
246 }
247
248 static inline bool dma_pte_present(struct dma_pte *pte)
249 {
250         return (pte->val & 3) != 0;
251 }
252
253 static inline int first_pte_in_page(struct dma_pte *pte)
254 {
255         return !((unsigned long)pte & ~VTD_PAGE_MASK);
256 }
257
258 /*
259  * This domain is a statically identity mapping domain.
260  *      1. This domain creats a static 1:1 mapping to all usable memory.
261  *      2. It maps to each iommu if successful.
262  *      3. Each iommu mapps to this domain if successful.
263  */
264 static struct dmar_domain *si_domain;
265 static int hw_pass_through = 1;
266
267 /* devices under the same p2p bridge are owned in one domain */
268 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
269
270 /* domain represents a virtual machine, more than one devices
271  * across iommus may be owned in one domain, e.g. kvm guest.
272  */
273 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 1)
274
275 /* si_domain contains mulitple devices */
276 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 2)
277
278 struct dmar_domain {
279         int     id;                     /* domain id */
280         int     nid;                    /* node id */
281         unsigned long iommu_bmp;        /* bitmap of iommus this domain uses*/
282
283         struct list_head devices;       /* all devices' list */
284         struct iova_domain iovad;       /* iova's that belong to this domain */
285
286         struct dma_pte  *pgd;           /* virtual address */
287         int             gaw;            /* max guest address width */
288
289         /* adjusted guest address width, 0 is level 2 30-bit */
290         int             agaw;
291
292         int             flags;          /* flags to find out type of domain */
293
294         int             iommu_coherency;/* indicate coherency of iommu access */
295         int             iommu_snooping; /* indicate snooping control feature*/
296         int             iommu_count;    /* reference count of iommu */
297         spinlock_t      iommu_lock;     /* protect iommu set in domain */
298         u64             max_addr;       /* maximum mapped address */
299 };
300
301 /* PCI domain-device relationship */
302 struct device_domain_info {
303         struct list_head link;  /* link to domain siblings */
304         struct list_head global; /* link to global list */
305         int segment;            /* PCI domain */
306         u8 bus;                 /* PCI bus number */
307         u8 devfn;               /* PCI devfn number */
308         struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
309         struct intel_iommu *iommu; /* IOMMU used by this device */
310         struct dmar_domain *domain; /* pointer to domain */
311 };
312
313 static void flush_unmaps_timeout(unsigned long data);
314
315 DEFINE_TIMER(unmap_timer,  flush_unmaps_timeout, 0, 0);
316
317 #define HIGH_WATER_MARK 250
318 struct deferred_flush_tables {
319         int next;
320         struct iova *iova[HIGH_WATER_MARK];
321         struct dmar_domain *domain[HIGH_WATER_MARK];
322 };
323
324 static struct deferred_flush_tables *deferred_flush;
325
326 /* bitmap for indexing intel_iommus */
327 static int g_num_of_iommus;
328
329 static DEFINE_SPINLOCK(async_umap_flush_lock);
330 static LIST_HEAD(unmaps_to_do);
331
332 static int timer_on;
333 static long list_size;
334
335 static void domain_remove_dev_info(struct dmar_domain *domain);
336
337 #ifdef CONFIG_DMAR_DEFAULT_ON
338 int dmar_disabled = 0;
339 #else
340 int dmar_disabled = 1;
341 #endif /*CONFIG_DMAR_DEFAULT_ON*/
342
343 static int __initdata dmar_map_gfx = 1;
344 static int dmar_forcedac;
345 static int intel_iommu_strict;
346
347 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
348 static DEFINE_SPINLOCK(device_domain_lock);
349 static LIST_HEAD(device_domain_list);
350
351 static struct iommu_ops intel_iommu_ops;
352
353 static int __init intel_iommu_setup(char *str)
354 {
355         if (!str)
356                 return -EINVAL;
357         while (*str) {
358                 if (!strncmp(str, "on", 2)) {
359                         dmar_disabled = 0;
360                         printk(KERN_INFO "Intel-IOMMU: enabled\n");
361                 } else if (!strncmp(str, "off", 3)) {
362                         dmar_disabled = 1;
363                         printk(KERN_INFO "Intel-IOMMU: disabled\n");
364                 } else if (!strncmp(str, "igfx_off", 8)) {
365                         dmar_map_gfx = 0;
366                         printk(KERN_INFO
367                                 "Intel-IOMMU: disable GFX device mapping\n");
368                 } else if (!strncmp(str, "forcedac", 8)) {
369                         printk(KERN_INFO
370                                 "Intel-IOMMU: Forcing DAC for PCI devices\n");
371                         dmar_forcedac = 1;
372                 } else if (!strncmp(str, "strict", 6)) {
373                         printk(KERN_INFO
374                                 "Intel-IOMMU: disable batched IOTLB flush\n");
375                         intel_iommu_strict = 1;
376                 }
377
378                 str += strcspn(str, ",");
379                 while (*str == ',')
380                         str++;
381         }
382         return 0;
383 }
384 __setup("intel_iommu=", intel_iommu_setup);
385
386 static struct kmem_cache *iommu_domain_cache;
387 static struct kmem_cache *iommu_devinfo_cache;
388 static struct kmem_cache *iommu_iova_cache;
389
390 static inline void *alloc_pgtable_page(int node)
391 {
392         struct page *page;
393         void *vaddr = NULL;
394
395         page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
396         if (page)
397                 vaddr = page_address(page);
398         return vaddr;
399 }
400
401 static inline void free_pgtable_page(void *vaddr)
402 {
403         free_page((unsigned long)vaddr);
404 }
405
406 static inline void *alloc_domain_mem(void)
407 {
408         return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
409 }
410
411 static void free_domain_mem(void *vaddr)
412 {
413         kmem_cache_free(iommu_domain_cache, vaddr);
414 }
415
416 static inline void * alloc_devinfo_mem(void)
417 {
418         return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
419 }
420
421 static inline void free_devinfo_mem(void *vaddr)
422 {
423         kmem_cache_free(iommu_devinfo_cache, vaddr);
424 }
425
426 struct iova *alloc_iova_mem(void)
427 {
428         return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
429 }
430
431 void free_iova_mem(struct iova *iova)
432 {
433         kmem_cache_free(iommu_iova_cache, iova);
434 }
435
436
437 static inline int width_to_agaw(int width);
438
439 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
440 {
441         unsigned long sagaw;
442         int agaw = -1;
443
444         sagaw = cap_sagaw(iommu->cap);
445         for (agaw = width_to_agaw(max_gaw);
446              agaw >= 0; agaw--) {
447                 if (test_bit(agaw, &sagaw))
448                         break;
449         }
450
451         return agaw;
452 }
453
454 /*
455  * Calculate max SAGAW for each iommu.
456  */
457 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
458 {
459         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
460 }
461
462 /*
463  * calculate agaw for each iommu.
464  * "SAGAW" may be different across iommus, use a default agaw, and
465  * get a supported less agaw for iommus that don't support the default agaw.
466  */
467 int iommu_calculate_agaw(struct intel_iommu *iommu)
468 {
469         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
470 }
471
472 /* This functionin only returns single iommu in a domain */
473 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
474 {
475         int iommu_id;
476
477         /* si_domain and vm domain should not get here. */
478         BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
479         BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
480
481         iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
482         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
483                 return NULL;
484
485         return g_iommus[iommu_id];
486 }
487
488 static void domain_update_iommu_coherency(struct dmar_domain *domain)
489 {
490         int i;
491
492         domain->iommu_coherency = 1;
493
494         for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
495                 if (!ecap_coherent(g_iommus[i]->ecap)) {
496                         domain->iommu_coherency = 0;
497                         break;
498                 }
499         }
500 }
501
502 static void domain_update_iommu_snooping(struct dmar_domain *domain)
503 {
504         int i;
505
506         domain->iommu_snooping = 1;
507
508         for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
509                 if (!ecap_sc_support(g_iommus[i]->ecap)) {
510                         domain->iommu_snooping = 0;
511                         break;
512                 }
513         }
514 }
515
516 /* Some capabilities may be different across iommus */
517 static void domain_update_iommu_cap(struct dmar_domain *domain)
518 {
519         domain_update_iommu_coherency(domain);
520         domain_update_iommu_snooping(domain);
521 }
522
523 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
524 {
525         struct dmar_drhd_unit *drhd = NULL;
526         int i;
527
528         for_each_drhd_unit(drhd) {
529                 if (drhd->ignored)
530                         continue;
531                 if (segment != drhd->segment)
532                         continue;
533
534                 for (i = 0; i < drhd->devices_cnt; i++) {
535                         if (drhd->devices[i] &&
536                             drhd->devices[i]->bus->number == bus &&
537                             drhd->devices[i]->devfn == devfn)
538                                 return drhd->iommu;
539                         if (drhd->devices[i] &&
540                             drhd->devices[i]->subordinate &&
541                             drhd->devices[i]->subordinate->number <= bus &&
542                             drhd->devices[i]->subordinate->subordinate >= bus)
543                                 return drhd->iommu;
544                 }
545
546                 if (drhd->include_all)
547                         return drhd->iommu;
548         }
549
550         return NULL;
551 }
552
553 static void domain_flush_cache(struct dmar_domain *domain,
554                                void *addr, int size)
555 {
556         if (!domain->iommu_coherency)
557                 clflush_cache_range(addr, size);
558 }
559
560 /* Gets context entry for a given bus and devfn */
561 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
562                 u8 bus, u8 devfn)
563 {
564         struct root_entry *root;
565         struct context_entry *context;
566         unsigned long phy_addr;
567         unsigned long flags;
568
569         spin_lock_irqsave(&iommu->lock, flags);
570         root = &iommu->root_entry[bus];
571         context = get_context_addr_from_root(root);
572         if (!context) {
573                 context = (struct context_entry *)
574                                 alloc_pgtable_page(iommu->node);
575                 if (!context) {
576                         spin_unlock_irqrestore(&iommu->lock, flags);
577                         return NULL;
578                 }
579                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
580                 phy_addr = virt_to_phys((void *)context);
581                 set_root_value(root, phy_addr);
582                 set_root_present(root);
583                 __iommu_flush_cache(iommu, root, sizeof(*root));
584         }
585         spin_unlock_irqrestore(&iommu->lock, flags);
586         return &context[devfn];
587 }
588
589 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
590 {
591         struct root_entry *root;
592         struct context_entry *context;
593         int ret;
594         unsigned long flags;
595
596         spin_lock_irqsave(&iommu->lock, flags);
597         root = &iommu->root_entry[bus];
598         context = get_context_addr_from_root(root);
599         if (!context) {
600                 ret = 0;
601                 goto out;
602         }
603         ret = context_present(&context[devfn]);
604 out:
605         spin_unlock_irqrestore(&iommu->lock, flags);
606         return ret;
607 }
608
609 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
610 {
611         struct root_entry *root;
612         struct context_entry *context;
613         unsigned long flags;
614
615         spin_lock_irqsave(&iommu->lock, flags);
616         root = &iommu->root_entry[bus];
617         context = get_context_addr_from_root(root);
618         if (context) {
619                 context_clear_entry(&context[devfn]);
620                 __iommu_flush_cache(iommu, &context[devfn], \
621                         sizeof(*context));
622         }
623         spin_unlock_irqrestore(&iommu->lock, flags);
624 }
625
626 static void free_context_table(struct intel_iommu *iommu)
627 {
628         struct root_entry *root;
629         int i;
630         unsigned long flags;
631         struct context_entry *context;
632
633         spin_lock_irqsave(&iommu->lock, flags);
634         if (!iommu->root_entry) {
635                 goto out;
636         }
637         for (i = 0; i < ROOT_ENTRY_NR; i++) {
638                 root = &iommu->root_entry[i];
639                 context = get_context_addr_from_root(root);
640                 if (context)
641                         free_pgtable_page(context);
642         }
643         free_pgtable_page(iommu->root_entry);
644         iommu->root_entry = NULL;
645 out:
646         spin_unlock_irqrestore(&iommu->lock, flags);
647 }
648
649 /* page table handling */
650 #define LEVEL_STRIDE            (9)
651 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
652
653 static inline int agaw_to_level(int agaw)
654 {
655         return agaw + 2;
656 }
657
658 static inline int agaw_to_width(int agaw)
659 {
660         return 30 + agaw * LEVEL_STRIDE;
661
662 }
663
664 static inline int width_to_agaw(int width)
665 {
666         return (width - 30) / LEVEL_STRIDE;
667 }
668
669 static inline unsigned int level_to_offset_bits(int level)
670 {
671         return (level - 1) * LEVEL_STRIDE;
672 }
673
674 static inline int pfn_level_offset(unsigned long pfn, int level)
675 {
676         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
677 }
678
679 static inline unsigned long level_mask(int level)
680 {
681         return -1UL << level_to_offset_bits(level);
682 }
683
684 static inline unsigned long level_size(int level)
685 {
686         return 1UL << level_to_offset_bits(level);
687 }
688
689 static inline unsigned long align_to_level(unsigned long pfn, int level)
690 {
691         return (pfn + level_size(level) - 1) & level_mask(level);
692 }
693
694 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
695                                       unsigned long pfn)
696 {
697         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
698         struct dma_pte *parent, *pte = NULL;
699         int level = agaw_to_level(domain->agaw);
700         int offset;
701
702         BUG_ON(!domain->pgd);
703         BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
704         parent = domain->pgd;
705
706         while (level > 0) {
707                 void *tmp_page;
708
709                 offset = pfn_level_offset(pfn, level);
710                 pte = &parent[offset];
711                 if (level == 1)
712                         break;
713
714                 if (!dma_pte_present(pte)) {
715                         uint64_t pteval;
716
717                         tmp_page = alloc_pgtable_page(domain->nid);
718
719                         if (!tmp_page)
720                                 return NULL;
721
722                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
723                         pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
724                         if (cmpxchg64(&pte->val, 0ULL, pteval)) {
725                                 /* Someone else set it while we were thinking; use theirs. */
726                                 free_pgtable_page(tmp_page);
727                         } else {
728                                 dma_pte_addr(pte);
729                                 domain_flush_cache(domain, pte, sizeof(*pte));
730                         }
731                 }
732                 parent = phys_to_virt(dma_pte_addr(pte));
733                 level--;
734         }
735
736         return pte;
737 }
738
739 /* return address's pte at specific level */
740 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
741                                          unsigned long pfn,
742                                          int level)
743 {
744         struct dma_pte *parent, *pte = NULL;
745         int total = agaw_to_level(domain->agaw);
746         int offset;
747
748         parent = domain->pgd;
749         while (level <= total) {
750                 offset = pfn_level_offset(pfn, total);
751                 pte = &parent[offset];
752                 if (level == total)
753                         return pte;
754
755                 if (!dma_pte_present(pte))
756                         break;
757                 parent = phys_to_virt(dma_pte_addr(pte));
758                 total--;
759         }
760         return NULL;
761 }
762
763 /* clear last level pte, a tlb flush should be followed */
764 static void dma_pte_clear_range(struct dmar_domain *domain,
765                                 unsigned long start_pfn,
766                                 unsigned long last_pfn)
767 {
768         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
769         struct dma_pte *first_pte, *pte;
770
771         BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
772         BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
773         BUG_ON(start_pfn > last_pfn);
774
775         /* we don't need lock here; nobody else touches the iova range */
776         do {
777                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1);
778                 if (!pte) {
779                         start_pfn = align_to_level(start_pfn + 1, 2);
780                         continue;
781                 }
782                 do { 
783                         dma_clear_pte(pte);
784                         start_pfn++;
785                         pte++;
786                 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
787
788                 domain_flush_cache(domain, first_pte,
789                                    (void *)pte - (void *)first_pte);
790
791         } while (start_pfn && start_pfn <= last_pfn);
792 }
793
794 /* free page table pages. last level pte should already be cleared */
795 static void dma_pte_free_pagetable(struct dmar_domain *domain,
796                                    unsigned long start_pfn,
797                                    unsigned long last_pfn)
798 {
799         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
800         struct dma_pte *first_pte, *pte;
801         int total = agaw_to_level(domain->agaw);
802         int level;
803         unsigned long tmp;
804
805         BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
806         BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
807         BUG_ON(start_pfn > last_pfn);
808
809         /* We don't need lock here; nobody else touches the iova range */
810         level = 2;
811         while (level <= total) {
812                 tmp = align_to_level(start_pfn, level);
813
814                 /* If we can't even clear one PTE at this level, we're done */
815                 if (tmp + level_size(level) - 1 > last_pfn)
816                         return;
817
818                 do {
819                         first_pte = pte = dma_pfn_level_pte(domain, tmp, level);
820                         if (!pte) {
821                                 tmp = align_to_level(tmp + 1, level + 1);
822                                 continue;
823                         }
824                         do {
825                                 if (dma_pte_present(pte)) {
826                                         free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
827                                         dma_clear_pte(pte);
828                                 }
829                                 pte++;
830                                 tmp += level_size(level);
831                         } while (!first_pte_in_page(pte) &&
832                                  tmp + level_size(level) - 1 <= last_pfn);
833
834                         domain_flush_cache(domain, first_pte,
835                                            (void *)pte - (void *)first_pte);
836                         
837                 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
838                 level++;
839         }
840         /* free pgd */
841         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
842                 free_pgtable_page(domain->pgd);
843                 domain->pgd = NULL;
844         }
845 }
846
847 /* iommu handling */
848 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
849 {
850         struct root_entry *root;
851         unsigned long flags;
852
853         root = (struct root_entry *)alloc_pgtable_page(iommu->node);
854         if (!root)
855                 return -ENOMEM;
856
857         __iommu_flush_cache(iommu, root, ROOT_SIZE);
858
859         spin_lock_irqsave(&iommu->lock, flags);
860         iommu->root_entry = root;
861         spin_unlock_irqrestore(&iommu->lock, flags);
862
863         return 0;
864 }
865
866 static void iommu_set_root_entry(struct intel_iommu *iommu)
867 {
868         void *addr;
869         u32 sts;
870         unsigned long flag;
871
872         addr = iommu->root_entry;
873
874         spin_lock_irqsave(&iommu->register_lock, flag);
875         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
876
877         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
878
879         /* Make sure hardware complete it */
880         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
881                       readl, (sts & DMA_GSTS_RTPS), sts);
882
883         spin_unlock_irqrestore(&iommu->register_lock, flag);
884 }
885
886 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
887 {
888         u32 val;
889         unsigned long flag;
890
891         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
892                 return;
893
894         spin_lock_irqsave(&iommu->register_lock, flag);
895         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
896
897         /* Make sure hardware complete it */
898         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
899                       readl, (!(val & DMA_GSTS_WBFS)), val);
900
901         spin_unlock_irqrestore(&iommu->register_lock, flag);
902 }
903
904 /* return value determine if we need a write buffer flush */
905 static void __iommu_flush_context(struct intel_iommu *iommu,
906                                   u16 did, u16 source_id, u8 function_mask,
907                                   u64 type)
908 {
909         u64 val = 0;
910         unsigned long flag;
911
912         switch (type) {
913         case DMA_CCMD_GLOBAL_INVL:
914                 val = DMA_CCMD_GLOBAL_INVL;
915                 break;
916         case DMA_CCMD_DOMAIN_INVL:
917                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
918                 break;
919         case DMA_CCMD_DEVICE_INVL:
920                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
921                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
922                 break;
923         default:
924                 BUG();
925         }
926         val |= DMA_CCMD_ICC;
927
928         spin_lock_irqsave(&iommu->register_lock, flag);
929         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
930
931         /* Make sure hardware complete it */
932         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
933                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
934
935         spin_unlock_irqrestore(&iommu->register_lock, flag);
936 }
937
938 /* return value determine if we need a write buffer flush */
939 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
940                                 u64 addr, unsigned int size_order, u64 type)
941 {
942         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
943         u64 val = 0, val_iva = 0;
944         unsigned long flag;
945
946         switch (type) {
947         case DMA_TLB_GLOBAL_FLUSH:
948                 /* global flush doesn't need set IVA_REG */
949                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
950                 break;
951         case DMA_TLB_DSI_FLUSH:
952                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
953                 break;
954         case DMA_TLB_PSI_FLUSH:
955                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
956                 /* Note: always flush non-leaf currently */
957                 val_iva = size_order | addr;
958                 break;
959         default:
960                 BUG();
961         }
962         /* Note: set drain read/write */
963 #if 0
964         /*
965          * This is probably to be super secure.. Looks like we can
966          * ignore it without any impact.
967          */
968         if (cap_read_drain(iommu->cap))
969                 val |= DMA_TLB_READ_DRAIN;
970 #endif
971         if (cap_write_drain(iommu->cap))
972                 val |= DMA_TLB_WRITE_DRAIN;
973
974         spin_lock_irqsave(&iommu->register_lock, flag);
975         /* Note: Only uses first TLB reg currently */
976         if (val_iva)
977                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
978         dmar_writeq(iommu->reg + tlb_offset + 8, val);
979
980         /* Make sure hardware complete it */
981         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
982                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
983
984         spin_unlock_irqrestore(&iommu->register_lock, flag);
985
986         /* check IOTLB invalidation granularity */
987         if (DMA_TLB_IAIG(val) == 0)
988                 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
989         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
990                 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
991                         (unsigned long long)DMA_TLB_IIRG(type),
992                         (unsigned long long)DMA_TLB_IAIG(val));
993 }
994
995 static struct device_domain_info *iommu_support_dev_iotlb(
996         struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
997 {
998         int found = 0;
999         unsigned long flags;
1000         struct device_domain_info *info;
1001         struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1002
1003         if (!ecap_dev_iotlb_support(iommu->ecap))
1004                 return NULL;
1005
1006         if (!iommu->qi)
1007                 return NULL;
1008
1009         spin_lock_irqsave(&device_domain_lock, flags);
1010         list_for_each_entry(info, &domain->devices, link)
1011                 if (info->bus == bus && info->devfn == devfn) {
1012                         found = 1;
1013                         break;
1014                 }
1015         spin_unlock_irqrestore(&device_domain_lock, flags);
1016
1017         if (!found || !info->dev)
1018                 return NULL;
1019
1020         if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1021                 return NULL;
1022
1023         if (!dmar_find_matched_atsr_unit(info->dev))
1024                 return NULL;
1025
1026         info->iommu = iommu;
1027
1028         return info;
1029 }
1030
1031 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1032 {
1033         if (!info)
1034                 return;
1035
1036         pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1037 }
1038
1039 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1040 {
1041         if (!info->dev || !pci_ats_enabled(info->dev))
1042                 return;
1043
1044         pci_disable_ats(info->dev);
1045 }
1046
1047 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1048                                   u64 addr, unsigned mask)
1049 {
1050         u16 sid, qdep;
1051         unsigned long flags;
1052         struct device_domain_info *info;
1053
1054         spin_lock_irqsave(&device_domain_lock, flags);
1055         list_for_each_entry(info, &domain->devices, link) {
1056                 if (!info->dev || !pci_ats_enabled(info->dev))
1057                         continue;
1058
1059                 sid = info->bus << 8 | info->devfn;
1060                 qdep = pci_ats_queue_depth(info->dev);
1061                 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1062         }
1063         spin_unlock_irqrestore(&device_domain_lock, flags);
1064 }
1065
1066 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1067                                   unsigned long pfn, unsigned int pages, int map)
1068 {
1069         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1070         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1071
1072         BUG_ON(pages == 0);
1073
1074         /*
1075          * Fallback to domain selective flush if no PSI support or the size is
1076          * too big.
1077          * PSI requires page size to be 2 ^ x, and the base address is naturally
1078          * aligned to the size
1079          */
1080         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1081                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1082                                                 DMA_TLB_DSI_FLUSH);
1083         else
1084                 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1085                                                 DMA_TLB_PSI_FLUSH);
1086
1087         /*
1088          * In caching mode, changes of pages from non-present to present require
1089          * flush. However, device IOTLB doesn't need to be flushed in this case.
1090          */
1091         if (!cap_caching_mode(iommu->cap) || !map)
1092                 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1093 }
1094
1095 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1096 {
1097         u32 pmen;
1098         unsigned long flags;
1099
1100         spin_lock_irqsave(&iommu->register_lock, flags);
1101         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1102         pmen &= ~DMA_PMEN_EPM;
1103         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1104
1105         /* wait for the protected region status bit to clear */
1106         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1107                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1108
1109         spin_unlock_irqrestore(&iommu->register_lock, flags);
1110 }
1111
1112 static int iommu_enable_translation(struct intel_iommu *iommu)
1113 {
1114         u32 sts;
1115         unsigned long flags;
1116
1117         spin_lock_irqsave(&iommu->register_lock, flags);
1118         iommu->gcmd |= DMA_GCMD_TE;
1119         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1120
1121         /* Make sure hardware complete it */
1122         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1123                       readl, (sts & DMA_GSTS_TES), sts);
1124
1125         spin_unlock_irqrestore(&iommu->register_lock, flags);
1126         return 0;
1127 }
1128
1129 static int iommu_disable_translation(struct intel_iommu *iommu)
1130 {
1131         u32 sts;
1132         unsigned long flag;
1133
1134         spin_lock_irqsave(&iommu->register_lock, flag);
1135         iommu->gcmd &= ~DMA_GCMD_TE;
1136         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1137
1138         /* Make sure hardware complete it */
1139         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1140                       readl, (!(sts & DMA_GSTS_TES)), sts);
1141
1142         spin_unlock_irqrestore(&iommu->register_lock, flag);
1143         return 0;
1144 }
1145
1146
1147 static int iommu_init_domains(struct intel_iommu *iommu)
1148 {
1149         unsigned long ndomains;
1150         unsigned long nlongs;
1151
1152         ndomains = cap_ndoms(iommu->cap);
1153         pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1154         nlongs = BITS_TO_LONGS(ndomains);
1155
1156         spin_lock_init(&iommu->lock);
1157
1158         /* TBD: there might be 64K domains,
1159          * consider other allocation for future chip
1160          */
1161         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1162         if (!iommu->domain_ids) {
1163                 printk(KERN_ERR "Allocating domain id array failed\n");
1164                 return -ENOMEM;
1165         }
1166         iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1167                         GFP_KERNEL);
1168         if (!iommu->domains) {
1169                 printk(KERN_ERR "Allocating domain array failed\n");
1170                 return -ENOMEM;
1171         }
1172
1173         /*
1174          * if Caching mode is set, then invalid translations are tagged
1175          * with domainid 0. Hence we need to pre-allocate it.
1176          */
1177         if (cap_caching_mode(iommu->cap))
1178                 set_bit(0, iommu->domain_ids);
1179         return 0;
1180 }
1181
1182
1183 static void domain_exit(struct dmar_domain *domain);
1184 static void vm_domain_exit(struct dmar_domain *domain);
1185
1186 void free_dmar_iommu(struct intel_iommu *iommu)
1187 {
1188         struct dmar_domain *domain;
1189         int i;
1190         unsigned long flags;
1191
1192         if ((iommu->domains) && (iommu->domain_ids)) {
1193                 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1194                         domain = iommu->domains[i];
1195                         clear_bit(i, iommu->domain_ids);
1196
1197                         spin_lock_irqsave(&domain->iommu_lock, flags);
1198                         if (--domain->iommu_count == 0) {
1199                                 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1200                                         vm_domain_exit(domain);
1201                                 else
1202                                         domain_exit(domain);
1203                         }
1204                         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1205                 }
1206         }
1207
1208         if (iommu->gcmd & DMA_GCMD_TE)
1209                 iommu_disable_translation(iommu);
1210
1211         if (iommu->irq) {
1212                 set_irq_data(iommu->irq, NULL);
1213                 /* This will mask the irq */
1214                 free_irq(iommu->irq, iommu);
1215                 destroy_irq(iommu->irq);
1216         }
1217
1218         kfree(iommu->domains);
1219         kfree(iommu->domain_ids);
1220
1221         g_iommus[iommu->seq_id] = NULL;
1222
1223         /* if all iommus are freed, free g_iommus */
1224         for (i = 0; i < g_num_of_iommus; i++) {
1225                 if (g_iommus[i])
1226                         break;
1227         }
1228
1229         if (i == g_num_of_iommus)
1230                 kfree(g_iommus);
1231
1232         /* free context mapping */
1233         free_context_table(iommu);
1234 }
1235
1236 static struct dmar_domain *alloc_domain(void)
1237 {
1238         struct dmar_domain *domain;
1239
1240         domain = alloc_domain_mem();
1241         if (!domain)
1242                 return NULL;
1243
1244         domain->nid = -1;
1245         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1246         domain->flags = 0;
1247
1248         return domain;
1249 }
1250
1251 static int iommu_attach_domain(struct dmar_domain *domain,
1252                                struct intel_iommu *iommu)
1253 {
1254         int num;
1255         unsigned long ndomains;
1256         unsigned long flags;
1257
1258         ndomains = cap_ndoms(iommu->cap);
1259
1260         spin_lock_irqsave(&iommu->lock, flags);
1261
1262         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1263         if (num >= ndomains) {
1264                 spin_unlock_irqrestore(&iommu->lock, flags);
1265                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1266                 return -ENOMEM;
1267         }
1268
1269         domain->id = num;
1270         set_bit(num, iommu->domain_ids);
1271         set_bit(iommu->seq_id, &domain->iommu_bmp);
1272         iommu->domains[num] = domain;
1273         spin_unlock_irqrestore(&iommu->lock, flags);
1274
1275         return 0;
1276 }
1277
1278 static void iommu_detach_domain(struct dmar_domain *domain,
1279                                 struct intel_iommu *iommu)
1280 {
1281         unsigned long flags;
1282         int num, ndomains;
1283         int found = 0;
1284
1285         spin_lock_irqsave(&iommu->lock, flags);
1286         ndomains = cap_ndoms(iommu->cap);
1287         for_each_set_bit(num, iommu->domain_ids, ndomains) {
1288                 if (iommu->domains[num] == domain) {
1289                         found = 1;
1290                         break;
1291                 }
1292         }
1293
1294         if (found) {
1295                 clear_bit(num, iommu->domain_ids);
1296                 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1297                 iommu->domains[num] = NULL;
1298         }
1299         spin_unlock_irqrestore(&iommu->lock, flags);
1300 }
1301
1302 static struct iova_domain reserved_iova_list;
1303 static struct lock_class_key reserved_rbtree_key;
1304
1305 static void dmar_init_reserved_ranges(void)
1306 {
1307         struct pci_dev *pdev = NULL;
1308         struct iova *iova;
1309         int i;
1310
1311         init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1312
1313         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1314                 &reserved_rbtree_key);
1315
1316         /* IOAPIC ranges shouldn't be accessed by DMA */
1317         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1318                 IOVA_PFN(IOAPIC_RANGE_END));
1319         if (!iova)
1320                 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1321
1322         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1323         for_each_pci_dev(pdev) {
1324                 struct resource *r;
1325
1326                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1327                         r = &pdev->resource[i];
1328                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1329                                 continue;
1330                         iova = reserve_iova(&reserved_iova_list,
1331                                             IOVA_PFN(r->start),
1332                                             IOVA_PFN(r->end));
1333                         if (!iova)
1334                                 printk(KERN_ERR "Reserve iova failed\n");
1335                 }
1336         }
1337
1338 }
1339
1340 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1341 {
1342         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1343 }
1344
1345 static inline int guestwidth_to_adjustwidth(int gaw)
1346 {
1347         int agaw;
1348         int r = (gaw - 12) % 9;
1349
1350         if (r == 0)
1351                 agaw = gaw;
1352         else
1353                 agaw = gaw + 9 - r;
1354         if (agaw > 64)
1355                 agaw = 64;
1356         return agaw;
1357 }
1358
1359 static int domain_init(struct dmar_domain *domain, int guest_width)
1360 {
1361         struct intel_iommu *iommu;
1362         int adjust_width, agaw;
1363         unsigned long sagaw;
1364
1365         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1366         spin_lock_init(&domain->iommu_lock);
1367
1368         domain_reserve_special_ranges(domain);
1369
1370         /* calculate AGAW */
1371         iommu = domain_get_iommu(domain);
1372         if (guest_width > cap_mgaw(iommu->cap))
1373                 guest_width = cap_mgaw(iommu->cap);
1374         domain->gaw = guest_width;
1375         adjust_width = guestwidth_to_adjustwidth(guest_width);
1376         agaw = width_to_agaw(adjust_width);
1377         sagaw = cap_sagaw(iommu->cap);
1378         if (!test_bit(agaw, &sagaw)) {
1379                 /* hardware doesn't support it, choose a bigger one */
1380                 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1381                 agaw = find_next_bit(&sagaw, 5, agaw);
1382                 if (agaw >= 5)
1383                         return -ENODEV;
1384         }
1385         domain->agaw = agaw;
1386         INIT_LIST_HEAD(&domain->devices);
1387
1388         if (ecap_coherent(iommu->ecap))
1389                 domain->iommu_coherency = 1;
1390         else
1391                 domain->iommu_coherency = 0;
1392
1393         if (ecap_sc_support(iommu->ecap))
1394                 domain->iommu_snooping = 1;
1395         else
1396                 domain->iommu_snooping = 0;
1397
1398         domain->iommu_count = 1;
1399         domain->nid = iommu->node;
1400
1401         /* always allocate the top pgd */
1402         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1403         if (!domain->pgd)
1404                 return -ENOMEM;
1405         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1406         return 0;
1407 }
1408
1409 static void domain_exit(struct dmar_domain *domain)
1410 {
1411         struct dmar_drhd_unit *drhd;
1412         struct intel_iommu *iommu;
1413
1414         /* Domain 0 is reserved, so dont process it */
1415         if (!domain)
1416                 return;
1417
1418         domain_remove_dev_info(domain);
1419         /* destroy iovas */
1420         put_iova_domain(&domain->iovad);
1421
1422         /* clear ptes */
1423         dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1424
1425         /* free page tables */
1426         dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1427
1428         for_each_active_iommu(iommu, drhd)
1429                 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1430                         iommu_detach_domain(domain, iommu);
1431
1432         free_domain_mem(domain);
1433 }
1434
1435 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1436                                  u8 bus, u8 devfn, int translation)
1437 {
1438         struct context_entry *context;
1439         unsigned long flags;
1440         struct intel_iommu *iommu;
1441         struct dma_pte *pgd;
1442         unsigned long num;
1443         unsigned long ndomains;
1444         int id;
1445         int agaw;
1446         struct device_domain_info *info = NULL;
1447
1448         pr_debug("Set context mapping for %02x:%02x.%d\n",
1449                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1450
1451         BUG_ON(!domain->pgd);
1452         BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1453                translation != CONTEXT_TT_MULTI_LEVEL);
1454
1455         iommu = device_to_iommu(segment, bus, devfn);
1456         if (!iommu)
1457                 return -ENODEV;
1458
1459         context = device_to_context_entry(iommu, bus, devfn);
1460         if (!context)
1461                 return -ENOMEM;
1462         spin_lock_irqsave(&iommu->lock, flags);
1463         if (context_present(context)) {
1464                 spin_unlock_irqrestore(&iommu->lock, flags);
1465                 return 0;
1466         }
1467
1468         id = domain->id;
1469         pgd = domain->pgd;
1470
1471         if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1472             domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1473                 int found = 0;
1474
1475                 /* find an available domain id for this device in iommu */
1476                 ndomains = cap_ndoms(iommu->cap);
1477                 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1478                         if (iommu->domains[num] == domain) {
1479                                 id = num;
1480                                 found = 1;
1481                                 break;
1482                         }
1483                 }
1484
1485                 if (found == 0) {
1486                         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1487                         if (num >= ndomains) {
1488                                 spin_unlock_irqrestore(&iommu->lock, flags);
1489                                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1490                                 return -EFAULT;
1491                         }
1492
1493                         set_bit(num, iommu->domain_ids);
1494                         iommu->domains[num] = domain;
1495                         id = num;
1496                 }
1497
1498                 /* Skip top levels of page tables for
1499                  * iommu which has less agaw than default.
1500                  * Unnecessary for PT mode.
1501                  */
1502                 if (translation != CONTEXT_TT_PASS_THROUGH) {
1503                         for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1504                                 pgd = phys_to_virt(dma_pte_addr(pgd));
1505                                 if (!dma_pte_present(pgd)) {
1506                                         spin_unlock_irqrestore(&iommu->lock, flags);
1507                                         return -ENOMEM;
1508                                 }
1509                         }
1510                 }
1511         }
1512
1513         context_set_domain_id(context, id);
1514
1515         if (translation != CONTEXT_TT_PASS_THROUGH) {
1516                 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1517                 translation = info ? CONTEXT_TT_DEV_IOTLB :
1518                                      CONTEXT_TT_MULTI_LEVEL;
1519         }
1520         /*
1521          * In pass through mode, AW must be programmed to indicate the largest
1522          * AGAW value supported by hardware. And ASR is ignored by hardware.
1523          */
1524         if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1525                 context_set_address_width(context, iommu->msagaw);
1526         else {
1527                 context_set_address_root(context, virt_to_phys(pgd));
1528                 context_set_address_width(context, iommu->agaw);
1529         }
1530
1531         context_set_translation_type(context, translation);
1532         context_set_fault_enable(context);
1533         context_set_present(context);
1534         domain_flush_cache(domain, context, sizeof(*context));
1535
1536         /*
1537          * It's a non-present to present mapping. If hardware doesn't cache
1538          * non-present entry we only need to flush the write-buffer. If the
1539          * _does_ cache non-present entries, then it does so in the special
1540          * domain #0, which we have to flush:
1541          */
1542         if (cap_caching_mode(iommu->cap)) {
1543                 iommu->flush.flush_context(iommu, 0,
1544                                            (((u16)bus) << 8) | devfn,
1545                                            DMA_CCMD_MASK_NOBIT,
1546                                            DMA_CCMD_DEVICE_INVL);
1547                 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1548         } else {
1549                 iommu_flush_write_buffer(iommu);
1550         }
1551         iommu_enable_dev_iotlb(info);
1552         spin_unlock_irqrestore(&iommu->lock, flags);
1553
1554         spin_lock_irqsave(&domain->iommu_lock, flags);
1555         if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1556                 domain->iommu_count++;
1557                 if (domain->iommu_count == 1)
1558                         domain->nid = iommu->node;
1559                 domain_update_iommu_cap(domain);
1560         }
1561         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1562         return 0;
1563 }
1564
1565 static int
1566 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1567                         int translation)
1568 {
1569         int ret;
1570         struct pci_dev *tmp, *parent;
1571
1572         ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1573                                          pdev->bus->number, pdev->devfn,
1574                                          translation);
1575         if (ret)
1576                 return ret;
1577
1578         /* dependent device mapping */
1579         tmp = pci_find_upstream_pcie_bridge(pdev);
1580         if (!tmp)
1581                 return 0;
1582         /* Secondary interface's bus number and devfn 0 */
1583         parent = pdev->bus->self;
1584         while (parent != tmp) {
1585                 ret = domain_context_mapping_one(domain,
1586                                                  pci_domain_nr(parent->bus),
1587                                                  parent->bus->number,
1588                                                  parent->devfn, translation);
1589                 if (ret)
1590                         return ret;
1591                 parent = parent->bus->self;
1592         }
1593         if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1594                 return domain_context_mapping_one(domain,
1595                                         pci_domain_nr(tmp->subordinate),
1596                                         tmp->subordinate->number, 0,
1597                                         translation);
1598         else /* this is a legacy PCI bridge */
1599                 return domain_context_mapping_one(domain,
1600                                                   pci_domain_nr(tmp->bus),
1601                                                   tmp->bus->number,
1602                                                   tmp->devfn,
1603                                                   translation);
1604 }
1605
1606 static int domain_context_mapped(struct pci_dev *pdev)
1607 {
1608         int ret;
1609         struct pci_dev *tmp, *parent;
1610         struct intel_iommu *iommu;
1611
1612         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1613                                 pdev->devfn);
1614         if (!iommu)
1615                 return -ENODEV;
1616
1617         ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1618         if (!ret)
1619                 return ret;
1620         /* dependent device mapping */
1621         tmp = pci_find_upstream_pcie_bridge(pdev);
1622         if (!tmp)
1623                 return ret;
1624         /* Secondary interface's bus number and devfn 0 */
1625         parent = pdev->bus->self;
1626         while (parent != tmp) {
1627                 ret = device_context_mapped(iommu, parent->bus->number,
1628                                             parent->devfn);
1629                 if (!ret)
1630                         return ret;
1631                 parent = parent->bus->self;
1632         }
1633         if (pci_is_pcie(tmp))
1634                 return device_context_mapped(iommu, tmp->subordinate->number,
1635                                              0);
1636         else
1637                 return device_context_mapped(iommu, tmp->bus->number,
1638                                              tmp->devfn);
1639 }
1640
1641 /* Returns a number of VTD pages, but aligned to MM page size */
1642 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1643                                             size_t size)
1644 {
1645         host_addr &= ~PAGE_MASK;
1646         return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1647 }
1648
1649 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1650                             struct scatterlist *sg, unsigned long phys_pfn,
1651                             unsigned long nr_pages, int prot)
1652 {
1653         struct dma_pte *first_pte = NULL, *pte = NULL;
1654         phys_addr_t uninitialized_var(pteval);
1655         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1656         unsigned long sg_res;
1657
1658         BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1659
1660         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1661                 return -EINVAL;
1662
1663         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1664
1665         if (sg)
1666                 sg_res = 0;
1667         else {
1668                 sg_res = nr_pages + 1;
1669                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1670         }
1671
1672         while (nr_pages--) {
1673                 uint64_t tmp;
1674
1675                 if (!sg_res) {
1676                         sg_res = aligned_nrpages(sg->offset, sg->length);
1677                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1678                         sg->dma_length = sg->length;
1679                         pteval = page_to_phys(sg_page(sg)) | prot;
1680                 }
1681                 if (!pte) {
1682                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn);
1683                         if (!pte)
1684                                 return -ENOMEM;
1685                 }
1686                 /* We don't need lock here, nobody else
1687                  * touches the iova range
1688                  */
1689                 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1690                 if (tmp) {
1691                         static int dumps = 5;
1692                         printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1693                                iov_pfn, tmp, (unsigned long long)pteval);
1694                         if (dumps) {
1695                                 dumps--;
1696                                 debug_dma_dump_mappings(NULL);
1697                         }
1698                         WARN_ON(1);
1699                 }
1700                 pte++;
1701                 if (!nr_pages || first_pte_in_page(pte)) {
1702                         domain_flush_cache(domain, first_pte,
1703                                            (void *)pte - (void *)first_pte);
1704                         pte = NULL;
1705                 }
1706                 iov_pfn++;
1707                 pteval += VTD_PAGE_SIZE;
1708                 sg_res--;
1709                 if (!sg_res)
1710                         sg = sg_next(sg);
1711         }
1712         return 0;
1713 }
1714
1715 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1716                                     struct scatterlist *sg, unsigned long nr_pages,
1717                                     int prot)
1718 {
1719         return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1720 }
1721
1722 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1723                                      unsigned long phys_pfn, unsigned long nr_pages,
1724                                      int prot)
1725 {
1726         return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1727 }
1728
1729 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1730 {
1731         if (!iommu)
1732                 return;
1733
1734         clear_context_table(iommu, bus, devfn);
1735         iommu->flush.flush_context(iommu, 0, 0, 0,
1736                                            DMA_CCMD_GLOBAL_INVL);
1737         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1738 }
1739
1740 static void domain_remove_dev_info(struct dmar_domain *domain)
1741 {
1742         struct device_domain_info *info;
1743         unsigned long flags;
1744         struct intel_iommu *iommu;
1745
1746         spin_lock_irqsave(&device_domain_lock, flags);
1747         while (!list_empty(&domain->devices)) {
1748                 info = list_entry(domain->devices.next,
1749                         struct device_domain_info, link);
1750                 list_del(&info->link);
1751                 list_del(&info->global);
1752                 if (info->dev)
1753                         info->dev->dev.archdata.iommu = NULL;
1754                 spin_unlock_irqrestore(&device_domain_lock, flags);
1755
1756                 iommu_disable_dev_iotlb(info);
1757                 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1758                 iommu_detach_dev(iommu, info->bus, info->devfn);
1759                 free_devinfo_mem(info);
1760
1761                 spin_lock_irqsave(&device_domain_lock, flags);
1762         }
1763         spin_unlock_irqrestore(&device_domain_lock, flags);
1764 }
1765
1766 /*
1767  * find_domain
1768  * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1769  */
1770 static struct dmar_domain *
1771 find_domain(struct pci_dev *pdev)
1772 {
1773         struct device_domain_info *info;
1774
1775         /* No lock here, assumes no domain exit in normal case */
1776         info = pdev->dev.archdata.iommu;
1777         if (info)
1778                 return info->domain;
1779         return NULL;
1780 }
1781
1782 /* domain is initialized */
1783 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1784 {
1785         struct dmar_domain *domain, *found = NULL;
1786         struct intel_iommu *iommu;
1787         struct dmar_drhd_unit *drhd;
1788         struct device_domain_info *info, *tmp;
1789         struct pci_dev *dev_tmp;
1790         unsigned long flags;
1791         int bus = 0, devfn = 0;
1792         int segment;
1793         int ret;
1794
1795         domain = find_domain(pdev);
1796         if (domain)
1797                 return domain;
1798
1799         segment = pci_domain_nr(pdev->bus);
1800
1801         dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1802         if (dev_tmp) {
1803                 if (pci_is_pcie(dev_tmp)) {
1804                         bus = dev_tmp->subordinate->number;
1805                         devfn = 0;
1806                 } else {
1807                         bus = dev_tmp->bus->number;
1808                         devfn = dev_tmp->devfn;
1809                 }
1810                 spin_lock_irqsave(&device_domain_lock, flags);
1811                 list_for_each_entry(info, &device_domain_list, global) {
1812                         if (info->segment == segment &&
1813                             info->bus == bus && info->devfn == devfn) {
1814                                 found = info->domain;
1815                                 break;
1816                         }
1817                 }
1818                 spin_unlock_irqrestore(&device_domain_lock, flags);
1819                 /* pcie-pci bridge already has a domain, uses it */
1820                 if (found) {
1821                         domain = found;
1822                         goto found_domain;
1823                 }
1824         }
1825
1826         domain = alloc_domain();
1827         if (!domain)
1828                 goto error;
1829
1830         /* Allocate new domain for the device */
1831         drhd = dmar_find_matched_drhd_unit(pdev);
1832         if (!drhd) {
1833                 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1834                         pci_name(pdev));
1835                 return NULL;
1836         }
1837         iommu = drhd->iommu;
1838
1839         ret = iommu_attach_domain(domain, iommu);
1840         if (ret) {
1841                 domain_exit(domain);
1842                 goto error;
1843         }
1844
1845         if (domain_init(domain, gaw)) {
1846                 domain_exit(domain);
1847                 goto error;
1848         }
1849
1850         /* register pcie-to-pci device */
1851         if (dev_tmp) {
1852                 info = alloc_devinfo_mem();
1853                 if (!info) {
1854                         domain_exit(domain);
1855                         goto error;
1856                 }
1857                 info->segment = segment;
1858                 info->bus = bus;
1859                 info->devfn = devfn;
1860                 info->dev = NULL;
1861                 info->domain = domain;
1862                 /* This domain is shared by devices under p2p bridge */
1863                 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1864
1865                 /* pcie-to-pci bridge already has a domain, uses it */
1866                 found = NULL;
1867                 spin_lock_irqsave(&device_domain_lock, flags);
1868                 list_for_each_entry(tmp, &device_domain_list, global) {
1869                         if (tmp->segment == segment &&
1870                             tmp->bus == bus && tmp->devfn == devfn) {
1871                                 found = tmp->domain;
1872                                 break;
1873                         }
1874                 }
1875                 if (found) {
1876                         free_devinfo_mem(info);
1877                         domain_exit(domain);
1878                         domain = found;
1879                 } else {
1880                         list_add(&info->link, &domain->devices);
1881                         list_add(&info->global, &device_domain_list);
1882                 }
1883                 spin_unlock_irqrestore(&device_domain_lock, flags);
1884         }
1885
1886 found_domain:
1887         info = alloc_devinfo_mem();
1888         if (!info)
1889                 goto error;
1890         info->segment = segment;
1891         info->bus = pdev->bus->number;
1892         info->devfn = pdev->devfn;
1893         info->dev = pdev;
1894         info->domain = domain;
1895         spin_lock_irqsave(&device_domain_lock, flags);
1896         /* somebody is fast */
1897         found = find_domain(pdev);
1898         if (found != NULL) {
1899                 spin_unlock_irqrestore(&device_domain_lock, flags);
1900                 if (found != domain) {
1901                         domain_exit(domain);
1902                         domain = found;
1903                 }
1904                 free_devinfo_mem(info);
1905                 return domain;
1906         }
1907         list_add(&info->link, &domain->devices);
1908         list_add(&info->global, &device_domain_list);
1909         pdev->dev.archdata.iommu = info;
1910         spin_unlock_irqrestore(&device_domain_lock, flags);
1911         return domain;
1912 error:
1913         /* recheck it here, maybe others set it */
1914         return find_domain(pdev);
1915 }
1916
1917 static int iommu_identity_mapping;
1918 #define IDENTMAP_ALL            1
1919 #define IDENTMAP_GFX            2
1920 #define IDENTMAP_AZALIA         4
1921
1922 static int iommu_domain_identity_map(struct dmar_domain *domain,
1923                                      unsigned long long start,
1924                                      unsigned long long end)
1925 {
1926         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
1927         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
1928
1929         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
1930                           dma_to_mm_pfn(last_vpfn))) {
1931                 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1932                 return -ENOMEM;
1933         }
1934
1935         pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1936                  start, end, domain->id);
1937         /*
1938          * RMRR range might have overlap with physical memory range,
1939          * clear it first
1940          */
1941         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
1942
1943         return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
1944                                   last_vpfn - first_vpfn + 1,
1945                                   DMA_PTE_READ|DMA_PTE_WRITE);
1946 }
1947
1948 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1949                                       unsigned long long start,
1950                                       unsigned long long end)
1951 {
1952         struct dmar_domain *domain;
1953         int ret;
1954
1955         domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1956         if (!domain)
1957                 return -ENOMEM;
1958
1959         /* For _hardware_ passthrough, don't bother. But for software
1960            passthrough, we do it anyway -- it may indicate a memory
1961            range which is reserved in E820, so which didn't get set
1962            up to start with in si_domain */
1963         if (domain == si_domain && hw_pass_through) {
1964                 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
1965                        pci_name(pdev), start, end);
1966                 return 0;
1967         }
1968
1969         printk(KERN_INFO
1970                "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1971                pci_name(pdev), start, end);
1972         
1973         if (end < start) {
1974                 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
1975                         "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
1976                         dmi_get_system_info(DMI_BIOS_VENDOR),
1977                         dmi_get_system_info(DMI_BIOS_VERSION),
1978                      dmi_get_system_info(DMI_PRODUCT_VERSION));
1979                 ret = -EIO;
1980                 goto error;
1981         }
1982
1983         if (end >> agaw_to_width(domain->agaw)) {
1984                 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
1985                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
1986                      agaw_to_width(domain->agaw),
1987                      dmi_get_system_info(DMI_BIOS_VENDOR),
1988                      dmi_get_system_info(DMI_BIOS_VERSION),
1989                      dmi_get_system_info(DMI_PRODUCT_VERSION));
1990                 ret = -EIO;
1991                 goto error;
1992         }
1993
1994         ret = iommu_domain_identity_map(domain, start, end);
1995         if (ret)
1996                 goto error;
1997
1998         /* context entry init */
1999         ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2000         if (ret)
2001                 goto error;
2002
2003         return 0;
2004
2005  error:
2006         domain_exit(domain);
2007         return ret;
2008 }
2009
2010 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2011         struct pci_dev *pdev)
2012 {
2013         if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2014                 return 0;
2015         return iommu_prepare_identity_map(pdev, rmrr->base_address,
2016                 rmrr->end_address + 1);
2017 }
2018
2019 #ifdef CONFIG_DMAR_FLOPPY_WA
2020 static inline void iommu_prepare_isa(void)
2021 {
2022         struct pci_dev *pdev;
2023         int ret;
2024
2025         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2026         if (!pdev)
2027                 return;
2028
2029         printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2030         ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
2031
2032         if (ret)
2033                 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2034                        "floppy might not work\n");
2035
2036 }
2037 #else
2038 static inline void iommu_prepare_isa(void)
2039 {
2040         return;
2041 }
2042 #endif /* !CONFIG_DMAR_FLPY_WA */
2043
2044 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2045
2046 static int __init si_domain_work_fn(unsigned long start_pfn,
2047                                     unsigned long end_pfn, void *datax)
2048 {
2049         int *ret = datax;
2050
2051         *ret = iommu_domain_identity_map(si_domain,
2052                                          (uint64_t)start_pfn << PAGE_SHIFT,
2053                                          (uint64_t)end_pfn << PAGE_SHIFT);
2054         return *ret;
2055
2056 }
2057
2058 static int __init si_domain_init(int hw)
2059 {
2060         struct dmar_drhd_unit *drhd;
2061         struct intel_iommu *iommu;
2062         int nid, ret = 0;
2063
2064         si_domain = alloc_domain();
2065         if (!si_domain)
2066                 return -EFAULT;
2067
2068         pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2069
2070         for_each_active_iommu(iommu, drhd) {
2071                 ret = iommu_attach_domain(si_domain, iommu);
2072                 if (ret) {
2073                         domain_exit(si_domain);
2074                         return -EFAULT;
2075                 }
2076         }
2077
2078         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2079                 domain_exit(si_domain);
2080                 return -EFAULT;
2081         }
2082
2083         si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2084
2085         if (hw)
2086                 return 0;
2087
2088         for_each_online_node(nid) {
2089                 work_with_active_regions(nid, si_domain_work_fn, &ret);
2090                 if (ret)
2091                         return ret;
2092         }
2093
2094         return 0;
2095 }
2096
2097 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2098                                           struct pci_dev *pdev);
2099 static int identity_mapping(struct pci_dev *pdev)
2100 {
2101         struct device_domain_info *info;
2102
2103         if (likely(!iommu_identity_mapping))
2104                 return 0;
2105
2106
2107         list_for_each_entry(info, &si_domain->devices, link)
2108                 if (info->dev == pdev)
2109                         return 1;
2110         return 0;
2111 }
2112
2113 static int domain_add_dev_info(struct dmar_domain *domain,
2114                                struct pci_dev *pdev,
2115                                int translation)
2116 {
2117         struct device_domain_info *info;
2118         unsigned long flags;
2119         int ret;
2120
2121         info = alloc_devinfo_mem();
2122         if (!info)
2123                 return -ENOMEM;
2124
2125         ret = domain_context_mapping(domain, pdev, translation);
2126         if (ret) {
2127                 free_devinfo_mem(info);
2128                 return ret;
2129         }
2130
2131         info->segment = pci_domain_nr(pdev->bus);
2132         info->bus = pdev->bus->number;
2133         info->devfn = pdev->devfn;
2134         info->dev = pdev;
2135         info->domain = domain;
2136
2137         spin_lock_irqsave(&device_domain_lock, flags);
2138         list_add(&info->link, &domain->devices);
2139         list_add(&info->global, &device_domain_list);
2140         pdev->dev.archdata.iommu = info;
2141         spin_unlock_irqrestore(&device_domain_lock, flags);
2142
2143         return 0;
2144 }
2145
2146 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2147 {
2148         if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2149                 return 1;
2150
2151         if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2152                 return 1;
2153
2154         if (!(iommu_identity_mapping & IDENTMAP_ALL))
2155                 return 0;
2156
2157         /*
2158          * We want to start off with all devices in the 1:1 domain, and
2159          * take them out later if we find they can't access all of memory.
2160          *
2161          * However, we can't do this for PCI devices behind bridges,
2162          * because all PCI devices behind the same bridge will end up
2163          * with the same source-id on their transactions.
2164          *
2165          * Practically speaking, we can't change things around for these
2166          * devices at run-time, because we can't be sure there'll be no
2167          * DMA transactions in flight for any of their siblings.
2168          * 
2169          * So PCI devices (unless they're on the root bus) as well as
2170          * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2171          * the 1:1 domain, just in _case_ one of their siblings turns out
2172          * not to be able to map all of memory.
2173          */
2174         if (!pci_is_pcie(pdev)) {
2175                 if (!pci_is_root_bus(pdev->bus))
2176                         return 0;
2177                 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2178                         return 0;
2179         } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2180                 return 0;
2181
2182         /* 
2183          * At boot time, we don't yet know if devices will be 64-bit capable.
2184          * Assume that they will -- if they turn out not to be, then we can 
2185          * take them out of the 1:1 domain later.
2186          */
2187         if (!startup)
2188                 return pdev->dma_mask > DMA_BIT_MASK(32);
2189
2190         return 1;
2191 }
2192
2193 static int __init iommu_prepare_static_identity_mapping(int hw)
2194 {
2195         struct pci_dev *pdev = NULL;
2196         int ret;
2197
2198         ret = si_domain_init(hw);
2199         if (ret)
2200                 return -EFAULT;
2201
2202         for_each_pci_dev(pdev) {
2203                 if (iommu_should_identity_map(pdev, 1)) {
2204                         printk(KERN_INFO "IOMMU: %s identity mapping for device %s\n",
2205                                hw ? "hardware" : "software", pci_name(pdev));
2206
2207                         ret = domain_add_dev_info(si_domain, pdev,
2208                                                      hw ? CONTEXT_TT_PASS_THROUGH :
2209                                                      CONTEXT_TT_MULTI_LEVEL);
2210                         if (ret)
2211                                 return ret;
2212                 }
2213         }
2214
2215         return 0;
2216 }
2217
2218 int __init init_dmars(void)
2219 {
2220         struct dmar_drhd_unit *drhd;
2221         struct dmar_rmrr_unit *rmrr;
2222         struct pci_dev *pdev;
2223         struct intel_iommu *iommu;
2224         int i, ret;
2225
2226         /*
2227          * for each drhd
2228          *    allocate root
2229          *    initialize and program root entry to not present
2230          * endfor
2231          */
2232         for_each_drhd_unit(drhd) {
2233                 g_num_of_iommus++;
2234                 /*
2235                  * lock not needed as this is only incremented in the single
2236                  * threaded kernel __init code path all other access are read
2237                  * only
2238                  */
2239         }
2240
2241         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2242                         GFP_KERNEL);
2243         if (!g_iommus) {
2244                 printk(KERN_ERR "Allocating global iommu array failed\n");
2245                 ret = -ENOMEM;
2246                 goto error;
2247         }
2248
2249         deferred_flush = kzalloc(g_num_of_iommus *
2250                 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2251         if (!deferred_flush) {
2252                 ret = -ENOMEM;
2253                 goto error;
2254         }
2255
2256         for_each_drhd_unit(drhd) {
2257                 if (drhd->ignored)
2258                         continue;
2259
2260                 iommu = drhd->iommu;
2261                 g_iommus[iommu->seq_id] = iommu;
2262
2263                 ret = iommu_init_domains(iommu);
2264                 if (ret)
2265                         goto error;
2266
2267                 /*
2268                  * TBD:
2269                  * we could share the same root & context tables
2270                  * amoung all IOMMU's. Need to Split it later.
2271                  */
2272                 ret = iommu_alloc_root_entry(iommu);
2273                 if (ret) {
2274                         printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2275                         goto error;
2276                 }
2277                 if (!ecap_pass_through(iommu->ecap))
2278                         hw_pass_through = 0;
2279         }
2280
2281         /*
2282          * Start from the sane iommu hardware state.
2283          */
2284         for_each_drhd_unit(drhd) {
2285                 if (drhd->ignored)
2286                         continue;
2287
2288                 iommu = drhd->iommu;
2289
2290                 /*
2291                  * If the queued invalidation is already initialized by us
2292                  * (for example, while enabling interrupt-remapping) then
2293                  * we got the things already rolling from a sane state.
2294                  */
2295                 if (iommu->qi)
2296                         continue;
2297
2298                 /*
2299                  * Clear any previous faults.
2300                  */
2301                 dmar_fault(-1, iommu);
2302                 /*
2303                  * Disable queued invalidation if supported and already enabled
2304                  * before OS handover.
2305                  */
2306                 dmar_disable_qi(iommu);
2307         }
2308
2309         for_each_drhd_unit(drhd) {
2310                 if (drhd->ignored)
2311                         continue;
2312
2313                 iommu = drhd->iommu;
2314
2315                 if (dmar_enable_qi(iommu)) {
2316                         /*
2317                          * Queued Invalidate not enabled, use Register Based
2318                          * Invalidate
2319                          */
2320                         iommu->flush.flush_context = __iommu_flush_context;
2321                         iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2322                         printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2323                                "invalidation\n",
2324                                (unsigned long long)drhd->reg_base_addr);
2325                 } else {
2326                         iommu->flush.flush_context = qi_flush_context;
2327                         iommu->flush.flush_iotlb = qi_flush_iotlb;
2328                         printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2329                                "invalidation\n",
2330                                (unsigned long long)drhd->reg_base_addr);
2331                 }
2332         }
2333
2334         if (iommu_pass_through)
2335                 iommu_identity_mapping |= IDENTMAP_ALL;
2336
2337 #ifdef CONFIG_DMAR_BROKEN_GFX_WA
2338         iommu_identity_mapping |= IDENTMAP_GFX;
2339 #endif
2340
2341         check_tylersburg_isoch();
2342
2343         /*
2344          * If pass through is not set or not enabled, setup context entries for
2345          * identity mappings for rmrr, gfx, and isa and may fall back to static
2346          * identity mapping if iommu_identity_mapping is set.
2347          */
2348         if (iommu_identity_mapping) {
2349                 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2350                 if (ret) {
2351                         printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2352                         goto error;
2353                 }
2354         }
2355         /*
2356          * For each rmrr
2357          *   for each dev attached to rmrr
2358          *   do
2359          *     locate drhd for dev, alloc domain for dev
2360          *     allocate free domain
2361          *     allocate page table entries for rmrr
2362          *     if context not allocated for bus
2363          *           allocate and init context
2364          *           set present in root table for this bus
2365          *     init context with domain, translation etc
2366          *    endfor
2367          * endfor
2368          */
2369         printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2370         for_each_rmrr_units(rmrr) {
2371                 for (i = 0; i < rmrr->devices_cnt; i++) {
2372                         pdev = rmrr->devices[i];
2373                         /*
2374                          * some BIOS lists non-exist devices in DMAR
2375                          * table.
2376                          */
2377                         if (!pdev)
2378                                 continue;
2379                         ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2380                         if (ret)
2381                                 printk(KERN_ERR
2382                                        "IOMMU: mapping reserved region failed\n");
2383                 }
2384         }
2385
2386         iommu_prepare_isa();
2387
2388         /*
2389          * for each drhd
2390          *   enable fault log
2391          *   global invalidate context cache
2392          *   global invalidate iotlb
2393          *   enable translation
2394          */
2395         for_each_drhd_unit(drhd) {
2396                 if (drhd->ignored)
2397                         continue;
2398                 iommu = drhd->iommu;
2399
2400                 iommu_flush_write_buffer(iommu);
2401
2402                 ret = dmar_set_interrupt(iommu);
2403                 if (ret)
2404                         goto error;
2405
2406                 iommu_set_root_entry(iommu);
2407
2408                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2409                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2410
2411                 ret = iommu_enable_translation(iommu);
2412                 if (ret)
2413                         goto error;
2414
2415                 iommu_disable_protect_mem_regions(iommu);
2416         }
2417
2418         return 0;
2419 error:
2420         for_each_drhd_unit(drhd) {
2421                 if (drhd->ignored)
2422                         continue;
2423                 iommu = drhd->iommu;
2424                 free_iommu(iommu);
2425         }
2426         kfree(g_iommus);
2427         return ret;
2428 }
2429
2430 /* This takes a number of _MM_ pages, not VTD pages */
2431 static struct iova *intel_alloc_iova(struct device *dev,
2432                                      struct dmar_domain *domain,
2433                                      unsigned long nrpages, uint64_t dma_mask)
2434 {
2435         struct pci_dev *pdev = to_pci_dev(dev);
2436         struct iova *iova = NULL;
2437
2438         /* Restrict dma_mask to the width that the iommu can handle */
2439         dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2440
2441         if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2442                 /*
2443                  * First try to allocate an io virtual address in
2444                  * DMA_BIT_MASK(32) and if that fails then try allocating
2445                  * from higher range
2446                  */
2447                 iova = alloc_iova(&domain->iovad, nrpages,
2448                                   IOVA_PFN(DMA_BIT_MASK(32)), 1);
2449                 if (iova)
2450                         return iova;
2451         }
2452         iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2453         if (unlikely(!iova)) {
2454                 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2455                        nrpages, pci_name(pdev));
2456                 return NULL;
2457         }
2458
2459         return iova;
2460 }
2461
2462 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2463 {
2464         struct dmar_domain *domain;
2465         int ret;
2466
2467         domain = get_domain_for_dev(pdev,
2468                         DEFAULT_DOMAIN_ADDRESS_WIDTH);
2469         if (!domain) {
2470                 printk(KERN_ERR
2471                         "Allocating domain for %s failed", pci_name(pdev));
2472                 return NULL;
2473         }
2474
2475         /* make sure context mapping is ok */
2476         if (unlikely(!domain_context_mapped(pdev))) {
2477                 ret = domain_context_mapping(domain, pdev,
2478                                              CONTEXT_TT_MULTI_LEVEL);
2479                 if (ret) {
2480                         printk(KERN_ERR
2481                                 "Domain context map for %s failed",
2482                                 pci_name(pdev));
2483                         return NULL;
2484                 }
2485         }
2486
2487         return domain;
2488 }
2489
2490 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2491 {
2492         struct device_domain_info *info;
2493
2494         /* No lock here, assumes no domain exit in normal case */
2495         info = dev->dev.archdata.iommu;
2496         if (likely(info))
2497                 return info->domain;
2498
2499         return __get_valid_domain_for_dev(dev);
2500 }
2501
2502 static int iommu_dummy(struct pci_dev *pdev)
2503 {
2504         return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2505 }
2506
2507 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2508 static int iommu_no_mapping(struct device *dev)
2509 {
2510         struct pci_dev *pdev;
2511         int found;
2512
2513         if (unlikely(dev->bus != &pci_bus_type))
2514                 return 1;
2515
2516         pdev = to_pci_dev(dev);
2517         if (iommu_dummy(pdev))
2518                 return 1;
2519
2520         if (!iommu_identity_mapping)
2521                 return 0;
2522
2523         found = identity_mapping(pdev);
2524         if (found) {
2525                 if (iommu_should_identity_map(pdev, 0))
2526                         return 1;
2527                 else {
2528                         /*
2529                          * 32 bit DMA is removed from si_domain and fall back
2530                          * to non-identity mapping.
2531                          */
2532                         domain_remove_one_dev_info(si_domain, pdev);
2533                         printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2534                                pci_name(pdev));
2535                         return 0;
2536                 }
2537         } else {
2538                 /*
2539                  * In case of a detached 64 bit DMA device from vm, the device
2540                  * is put into si_domain for identity mapping.
2541                  */
2542                 if (iommu_should_identity_map(pdev, 0)) {
2543                         int ret;
2544                         ret = domain_add_dev_info(si_domain, pdev,
2545                                                   hw_pass_through ?
2546                                                   CONTEXT_TT_PASS_THROUGH :
2547                                                   CONTEXT_TT_MULTI_LEVEL);
2548                         if (!ret) {
2549                                 printk(KERN_INFO "64bit %s uses identity mapping\n",
2550                                        pci_name(pdev));
2551                                 return 1;
2552                         }
2553                 }
2554         }
2555
2556         return 0;
2557 }
2558
2559 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2560                                      size_t size, int dir, u64 dma_mask)
2561 {
2562         struct pci_dev *pdev = to_pci_dev(hwdev);
2563         struct dmar_domain *domain;
2564         phys_addr_t start_paddr;
2565         struct iova *iova;
2566         int prot = 0;
2567         int ret;
2568         struct intel_iommu *iommu;
2569         unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2570
2571         BUG_ON(dir == DMA_NONE);
2572
2573         if (iommu_no_mapping(hwdev))
2574                 return paddr;
2575
2576         domain = get_valid_domain_for_dev(pdev);
2577         if (!domain)
2578                 return 0;
2579
2580         iommu = domain_get_iommu(domain);
2581         size = aligned_nrpages(paddr, size);
2582
2583         iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2584                                 pdev->dma_mask);
2585         if (!iova)
2586                 goto error;
2587
2588         /*
2589          * Check if DMAR supports zero-length reads on write only
2590          * mappings..
2591          */
2592         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2593                         !cap_zlr(iommu->cap))
2594                 prot |= DMA_PTE_READ;
2595         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2596                 prot |= DMA_PTE_WRITE;
2597         /*
2598          * paddr - (paddr + size) might be partial page, we should map the whole
2599          * page.  Note: if two part of one page are separately mapped, we
2600          * might have two guest_addr mapping to the same host paddr, but this
2601          * is not a big problem
2602          */
2603         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2604                                  mm_to_dma_pfn(paddr_pfn), size, prot);
2605         if (ret)
2606                 goto error;
2607
2608         /* it's a non-present to present mapping. Only flush if caching mode */
2609         if (cap_caching_mode(iommu->cap))
2610                 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2611         else
2612                 iommu_flush_write_buffer(iommu);
2613
2614         start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2615         start_paddr += paddr & ~PAGE_MASK;
2616         return start_paddr;
2617
2618 error:
2619         if (iova)
2620                 __free_iova(&domain->iovad, iova);
2621         printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2622                 pci_name(pdev), size, (unsigned long long)paddr, dir);
2623         return 0;
2624 }
2625
2626 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2627                                  unsigned long offset, size_t size,
2628                                  enum dma_data_direction dir,
2629                                  struct dma_attrs *attrs)
2630 {
2631         return __intel_map_single(dev, page_to_phys(page) + offset, size,
2632                                   dir, to_pci_dev(dev)->dma_mask);
2633 }
2634
2635 static void flush_unmaps(void)
2636 {
2637         int i, j;
2638
2639         timer_on = 0;
2640
2641         /* just flush them all */
2642         for (i = 0; i < g_num_of_iommus; i++) {
2643                 struct intel_iommu *iommu = g_iommus[i];
2644                 if (!iommu)
2645                         continue;
2646
2647                 if (!deferred_flush[i].next)
2648                         continue;
2649
2650                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2651                                          DMA_TLB_GLOBAL_FLUSH);
2652                 for (j = 0; j < deferred_flush[i].next; j++) {
2653                         unsigned long mask;
2654                         struct iova *iova = deferred_flush[i].iova[j];
2655
2656                         mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2657                         iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2658                                         (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2659                         __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2660                 }
2661                 deferred_flush[i].next = 0;
2662         }
2663
2664         list_size = 0;
2665 }
2666
2667 static void flush_unmaps_timeout(unsigned long data)
2668 {
2669         unsigned long flags;
2670
2671         spin_lock_irqsave(&async_umap_flush_lock, flags);
2672         flush_unmaps();
2673         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2674 }
2675
2676 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2677 {
2678         unsigned long flags;
2679         int next, iommu_id;
2680         struct intel_iommu *iommu;
2681
2682         spin_lock_irqsave(&async_umap_flush_lock, flags);
2683         if (list_size == HIGH_WATER_MARK)
2684                 flush_unmaps();
2685
2686         iommu = domain_get_iommu(dom);
2687         iommu_id = iommu->seq_id;
2688
2689         next = deferred_flush[iommu_id].next;
2690         deferred_flush[iommu_id].domain[next] = dom;
2691         deferred_flush[iommu_id].iova[next] = iova;
2692         deferred_flush[iommu_id].next++;
2693
2694         if (!timer_on) {
2695                 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2696                 timer_on = 1;
2697         }
2698         list_size++;
2699         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2700 }
2701
2702 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2703                              size_t size, enum dma_data_direction dir,
2704                              struct dma_attrs *attrs)
2705 {
2706         struct pci_dev *pdev = to_pci_dev(dev);
2707         struct dmar_domain *domain;
2708         unsigned long start_pfn, last_pfn;
2709         struct iova *iova;
2710         struct intel_iommu *iommu;
2711
2712         if (iommu_no_mapping(dev))
2713                 return;
2714
2715         domain = find_domain(pdev);
2716         BUG_ON(!domain);
2717
2718         iommu = domain_get_iommu(domain);
2719
2720         iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2721         if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2722                       (unsigned long long)dev_addr))
2723                 return;
2724
2725         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2726         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2727
2728         pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2729                  pci_name(pdev), start_pfn, last_pfn);
2730
2731         /*  clear the whole page */
2732         dma_pte_clear_range(domain, start_pfn, last_pfn);
2733
2734         /* free page tables */
2735         dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2736
2737         if (intel_iommu_strict) {
2738                 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2739                                       last_pfn - start_pfn + 1, 0);
2740                 /* free iova */
2741                 __free_iova(&domain->iovad, iova);
2742         } else {
2743                 add_unmap(domain, iova);
2744                 /*
2745                  * queue up the release of the unmap to save the 1/6th of the
2746                  * cpu used up by the iotlb flush operation...
2747                  */
2748         }
2749 }
2750
2751 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2752                                   dma_addr_t *dma_handle, gfp_t flags)
2753 {
2754         void *vaddr;
2755         int order;
2756
2757         size = PAGE_ALIGN(size);
2758         order = get_order(size);
2759
2760         if (!iommu_no_mapping(hwdev))
2761                 flags &= ~(GFP_DMA | GFP_DMA32);
2762         else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
2763                 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
2764                         flags |= GFP_DMA;
2765                 else
2766                         flags |= GFP_DMA32;
2767         }
2768
2769         vaddr = (void *)__get_free_pages(flags, order);
2770         if (!vaddr)
2771                 return NULL;
2772         memset(vaddr, 0, size);
2773
2774         *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2775                                          DMA_BIDIRECTIONAL,
2776                                          hwdev->coherent_dma_mask);
2777         if (*dma_handle)
2778                 return vaddr;
2779         free_pages((unsigned long)vaddr, order);
2780         return NULL;
2781 }
2782
2783 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2784                                 dma_addr_t dma_handle)
2785 {
2786         int order;
2787
2788         size = PAGE_ALIGN(size);
2789         order = get_order(size);
2790
2791         intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
2792         free_pages((unsigned long)vaddr, order);
2793 }
2794
2795 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2796                            int nelems, enum dma_data_direction dir,
2797                            struct dma_attrs *attrs)
2798 {
2799         struct pci_dev *pdev = to_pci_dev(hwdev);
2800         struct dmar_domain *domain;
2801         unsigned long start_pfn, last_pfn;
2802         struct iova *iova;
2803         struct intel_iommu *iommu;
2804
2805         if (iommu_no_mapping(hwdev))
2806                 return;
2807
2808         domain = find_domain(pdev);
2809         BUG_ON(!domain);
2810
2811         iommu = domain_get_iommu(domain);
2812
2813         iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2814         if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2815                       (unsigned long long)sglist[0].dma_address))
2816                 return;
2817
2818         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2819         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2820
2821         /*  clear the whole page */
2822         dma_pte_clear_range(domain, start_pfn, last_pfn);
2823
2824         /* free page tables */
2825         dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2826
2827         if (intel_iommu_strict) {
2828                 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2829                                       last_pfn - start_pfn + 1, 0);
2830                 /* free iova */
2831                 __free_iova(&domain->iovad, iova);
2832         } else {
2833                 add_unmap(domain, iova);
2834                 /*
2835                  * queue up the release of the unmap to save the 1/6th of the
2836                  * cpu used up by the iotlb flush operation...
2837                  */
2838         }
2839 }
2840
2841 static int intel_nontranslate_map_sg(struct device *hddev,
2842         struct scatterlist *sglist, int nelems, int dir)
2843 {
2844         int i;
2845         struct scatterlist *sg;
2846
2847         for_each_sg(sglist, sg, nelems, i) {
2848                 BUG_ON(!sg_page(sg));
2849                 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2850                 sg->dma_length = sg->length;
2851         }
2852         return nelems;
2853 }
2854
2855 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2856                         enum dma_data_direction dir, struct dma_attrs *attrs)
2857 {
2858         int i;
2859         struct pci_dev *pdev = to_pci_dev(hwdev);
2860         struct dmar_domain *domain;
2861         size_t size = 0;
2862         int prot = 0;
2863         struct iova *iova = NULL;
2864         int ret;
2865         struct scatterlist *sg;
2866         unsigned long start_vpfn;
2867         struct intel_iommu *iommu;
2868
2869         BUG_ON(dir == DMA_NONE);
2870         if (iommu_no_mapping(hwdev))
2871                 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2872
2873         domain = get_valid_domain_for_dev(pdev);
2874         if (!domain)
2875                 return 0;
2876
2877         iommu = domain_get_iommu(domain);
2878
2879         for_each_sg(sglist, sg, nelems, i)
2880                 size += aligned_nrpages(sg->offset, sg->length);
2881
2882         iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2883                                 pdev->dma_mask);
2884         if (!iova) {
2885                 sglist->dma_length = 0;
2886                 return 0;
2887         }
2888
2889         /*
2890          * Check if DMAR supports zero-length reads on write only
2891          * mappings..
2892          */
2893         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2894                         !cap_zlr(iommu->cap))
2895                 prot |= DMA_PTE_READ;
2896         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2897                 prot |= DMA_PTE_WRITE;
2898
2899         start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
2900
2901         ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
2902         if (unlikely(ret)) {
2903                 /*  clear the page */
2904                 dma_pte_clear_range(domain, start_vpfn,
2905                                     start_vpfn + size - 1);
2906                 /* free page tables */
2907                 dma_pte_free_pagetable(domain, start_vpfn,
2908                                        start_vpfn + size - 1);
2909                 /* free iova */
2910                 __free_iova(&domain->iovad, iova);
2911                 return 0;
2912         }
2913
2914         /* it's a non-present to present mapping. Only flush if caching mode */
2915         if (cap_caching_mode(iommu->cap))
2916                 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
2917         else
2918                 iommu_flush_write_buffer(iommu);
2919
2920         return nelems;
2921 }
2922
2923 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2924 {
2925         return !dma_addr;
2926 }
2927
2928 struct dma_map_ops intel_dma_ops = {
2929         .alloc_coherent = intel_alloc_coherent,
2930         .free_coherent = intel_free_coherent,
2931         .map_sg = intel_map_sg,
2932         .unmap_sg = intel_unmap_sg,
2933         .map_page = intel_map_page,
2934         .unmap_page = intel_unmap_page,
2935         .mapping_error = intel_mapping_error,
2936 };
2937
2938 static inline int iommu_domain_cache_init(void)
2939 {
2940         int ret = 0;
2941
2942         iommu_domain_cache = kmem_cache_create("iommu_domain",
2943                                          sizeof(struct dmar_domain),
2944                                          0,
2945                                          SLAB_HWCACHE_ALIGN,
2946
2947                                          NULL);
2948         if (!iommu_domain_cache) {
2949                 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2950                 ret = -ENOMEM;
2951         }
2952
2953         return ret;
2954 }
2955
2956 static inline int iommu_devinfo_cache_init(void)
2957 {
2958         int ret = 0;
2959
2960         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2961                                          sizeof(struct device_domain_info),
2962                                          0,
2963                                          SLAB_HWCACHE_ALIGN,
2964                                          NULL);
2965         if (!iommu_devinfo_cache) {
2966                 printk(KERN_ERR "Couldn't create devinfo cache\n");
2967                 ret = -ENOMEM;
2968         }
2969
2970         return ret;
2971 }
2972
2973 static inline int iommu_iova_cache_init(void)
2974 {
2975         int ret = 0;
2976
2977         iommu_iova_cache = kmem_cache_create("iommu_iova",
2978                                          sizeof(struct iova),
2979                                          0,
2980                                          SLAB_HWCACHE_ALIGN,
2981                                          NULL);
2982         if (!iommu_iova_cache) {
2983                 printk(KERN_ERR "Couldn't create iova cache\n");
2984                 ret = -ENOMEM;
2985         }
2986
2987         return ret;
2988 }
2989
2990 static int __init iommu_init_mempool(void)
2991 {
2992         int ret;
2993         ret = iommu_iova_cache_init();
2994         if (ret)
2995                 return ret;
2996
2997         ret = iommu_domain_cache_init();
2998         if (ret)
2999                 goto domain_error;
3000
3001         ret = iommu_devinfo_cache_init();
3002         if (!ret)
3003                 return ret;
3004
3005         kmem_cache_destroy(iommu_domain_cache);
3006 domain_error:
3007         kmem_cache_destroy(iommu_iova_cache);
3008
3009         return -ENOMEM;
3010 }
3011
3012 static void __init iommu_exit_mempool(void)
3013 {
3014         kmem_cache_destroy(iommu_devinfo_cache);
3015         kmem_cache_destroy(iommu_domain_cache);
3016         kmem_cache_destroy(iommu_iova_cache);
3017
3018 }
3019
3020 static void __init init_no_remapping_devices(void)
3021 {
3022         struct dmar_drhd_unit *drhd;
3023
3024         for_each_drhd_unit(drhd) {
3025                 if (!drhd->include_all) {
3026                         int i;
3027                         for (i = 0; i < drhd->devices_cnt; i++)
3028                                 if (drhd->devices[i] != NULL)
3029                                         break;
3030                         /* ignore DMAR unit if no pci devices exist */
3031                         if (i == drhd->devices_cnt)
3032                                 drhd->ignored = 1;
3033                 }
3034         }
3035
3036         if (dmar_map_gfx)
3037                 return;
3038
3039         for_each_drhd_unit(drhd) {
3040                 int i;
3041                 if (drhd->ignored || drhd->include_all)
3042                         continue;
3043
3044                 for (i = 0; i < drhd->devices_cnt; i++)
3045                         if (drhd->devices[i] &&
3046                                 !IS_GFX_DEVICE(drhd->devices[i]))
3047                                 break;
3048
3049                 if (i < drhd->devices_cnt)
3050                         continue;
3051
3052                 /* bypass IOMMU if it is just for gfx devices */
3053                 drhd->ignored = 1;
3054                 for (i = 0; i < drhd->devices_cnt; i++) {
3055                         if (!drhd->devices[i])
3056                                 continue;
3057                         drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3058                 }
3059         }
3060 }
3061
3062 #ifdef CONFIG_SUSPEND
3063 static int init_iommu_hw(void)
3064 {
3065         struct dmar_drhd_unit *drhd;
3066         struct intel_iommu *iommu = NULL;
3067
3068         for_each_active_iommu(iommu, drhd)
3069                 if (iommu->qi)
3070                         dmar_reenable_qi(iommu);
3071
3072         for_each_active_iommu(iommu, drhd) {
3073                 iommu_flush_write_buffer(iommu);
3074
3075                 iommu_set_root_entry(iommu);
3076
3077                 iommu->flush.flush_context(iommu, 0, 0, 0,
3078                                            DMA_CCMD_GLOBAL_INVL);
3079                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3080                                          DMA_TLB_GLOBAL_FLUSH);
3081                 iommu_enable_translation(iommu);
3082                 iommu_disable_protect_mem_regions(iommu);
3083         }
3084
3085         return 0;
3086 }
3087
3088 static void iommu_flush_all(void)
3089 {
3090         struct dmar_drhd_unit *drhd;
3091         struct intel_iommu *iommu;
3092
3093         for_each_active_iommu(iommu, drhd) {
3094                 iommu->flush.flush_context(iommu, 0, 0, 0,
3095                                            DMA_CCMD_GLOBAL_INVL);
3096                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3097                                          DMA_TLB_GLOBAL_FLUSH);
3098         }
3099 }
3100
3101 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
3102 {
3103         struct dmar_drhd_unit *drhd;
3104         struct intel_iommu *iommu = NULL;
3105         unsigned long flag;
3106
3107         for_each_active_iommu(iommu, drhd) {
3108                 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3109                                                  GFP_ATOMIC);
3110                 if (!iommu->iommu_state)
3111                         goto nomem;
3112         }
3113
3114         iommu_flush_all();
3115
3116         for_each_active_iommu(iommu, drhd) {
3117                 iommu_disable_translation(iommu);
3118
3119                 spin_lock_irqsave(&iommu->register_lock, flag);
3120
3121                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3122                         readl(iommu->reg + DMAR_FECTL_REG);
3123                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3124                         readl(iommu->reg + DMAR_FEDATA_REG);
3125                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3126                         readl(iommu->reg + DMAR_FEADDR_REG);
3127                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3128                         readl(iommu->reg + DMAR_FEUADDR_REG);
3129
3130                 spin_unlock_irqrestore(&iommu->register_lock, flag);
3131         }
3132         return 0;
3133
3134 nomem:
3135         for_each_active_iommu(iommu, drhd)
3136                 kfree(iommu->iommu_state);
3137
3138         return -ENOMEM;
3139 }
3140
3141 static int iommu_resume(struct sys_device *dev)
3142 {
3143         struct dmar_drhd_unit *drhd;
3144         struct intel_iommu *iommu = NULL;
3145         unsigned long flag;
3146
3147         if (init_iommu_hw()) {
3148                 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3149                 return -EIO;
3150         }
3151
3152         for_each_active_iommu(iommu, drhd) {
3153
3154                 spin_lock_irqsave(&iommu->register_lock, flag);
3155
3156                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3157                         iommu->reg + DMAR_FECTL_REG);
3158                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3159                         iommu->reg + DMAR_FEDATA_REG);
3160                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3161                         iommu->reg + DMAR_FEADDR_REG);
3162                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3163                         iommu->reg + DMAR_FEUADDR_REG);
3164
3165                 spin_unlock_irqrestore(&iommu->register_lock, flag);
3166         }
3167
3168         for_each_active_iommu(iommu, drhd)
3169                 kfree(iommu->iommu_state);
3170
3171         return 0;
3172 }
3173
3174 static struct sysdev_class iommu_sysclass = {
3175         .name           = "iommu",
3176         .resume         = iommu_resume,
3177         .suspend        = iommu_suspend,
3178 };
3179
3180 static struct sys_device device_iommu = {
3181         .cls    = &iommu_sysclass,
3182 };
3183
3184 static int __init init_iommu_sysfs(void)
3185 {
3186         int error;
3187
3188         error = sysdev_class_register(&iommu_sysclass);
3189         if (error)
3190                 return error;
3191
3192         error = sysdev_register(&device_iommu);
3193         if (error)
3194                 sysdev_class_unregister(&iommu_sysclass);
3195
3196         return error;
3197 }
3198
3199 #else
3200 static int __init init_iommu_sysfs(void)
3201 {
3202         return 0;
3203 }
3204 #endif  /* CONFIG_PM */
3205
3206 /*
3207  * Here we only respond to action of unbound device from driver.
3208  *
3209  * Added device is not attached to its DMAR domain here yet. That will happen
3210  * when mapping the device to iova.
3211  */
3212 static int device_notifier(struct notifier_block *nb,
3213                                   unsigned long action, void *data)
3214 {
3215         struct device *dev = data;
3216         struct pci_dev *pdev = to_pci_dev(dev);
3217         struct dmar_domain *domain;
3218
3219         if (iommu_no_mapping(dev))
3220                 return 0;
3221
3222         domain = find_domain(pdev);
3223         if (!domain)
3224                 return 0;
3225
3226         if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through)
3227                 domain_remove_one_dev_info(domain, pdev);
3228
3229         return 0;
3230 }
3231
3232 static struct notifier_block device_nb = {
3233         .notifier_call = device_notifier,
3234 };
3235
3236 int __init intel_iommu_init(void)
3237 {
3238         int ret = 0;
3239         int force_on = 0;
3240
3241         /* VT-d is required for a TXT/tboot launch, so enforce that */
3242         force_on = tboot_force_iommu();
3243
3244         if (dmar_table_init()) {
3245                 if (force_on)
3246                         panic("tboot: Failed to initialize DMAR table\n");
3247                 return  -ENODEV;
3248         }
3249
3250         if (dmar_dev_scope_init()) {
3251                 if (force_on)
3252                         panic("tboot: Failed to initialize DMAR device scope\n");
3253                 return  -ENODEV;
3254         }
3255
3256         /*
3257          * Check the need for DMA-remapping initialization now.
3258          * Above initialization will also be used by Interrupt-remapping.
3259          */
3260         if (no_iommu || dmar_disabled)
3261                 return -ENODEV;
3262
3263         iommu_init_mempool();
3264         dmar_init_reserved_ranges();
3265
3266         init_no_remapping_devices();
3267
3268         ret = init_dmars();
3269         if (ret) {
3270                 if (force_on)
3271                         panic("tboot: Failed to initialize DMARs\n");
3272                 printk(KERN_ERR "IOMMU: dmar init failed\n");
3273                 put_iova_domain(&reserved_iova_list);
3274                 iommu_exit_mempool();
3275                 return ret;
3276         }
3277         printk(KERN_INFO
3278         "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3279
3280         init_timer(&unmap_timer);
3281 #ifdef CONFIG_SWIOTLB
3282         swiotlb = 0;
3283 #endif
3284         dma_ops = &intel_dma_ops;
3285
3286         init_iommu_sysfs();
3287
3288         register_iommu(&intel_iommu_ops);
3289
3290         bus_register_notifier(&pci_bus_type, &device_nb);
3291
3292         return 0;
3293 }
3294
3295 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3296                                            struct pci_dev *pdev)
3297 {
3298         struct pci_dev *tmp, *parent;
3299
3300         if (!iommu || !pdev)
3301                 return;
3302
3303         /* dependent device detach */
3304         tmp = pci_find_upstream_pcie_bridge(pdev);
3305         /* Secondary interface's bus number and devfn 0 */
3306         if (tmp) {
3307                 parent = pdev->bus->self;
3308                 while (parent != tmp) {
3309                         iommu_detach_dev(iommu, parent->bus->number,
3310                                          parent->devfn);
3311                         parent = parent->bus->self;
3312                 }
3313                 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3314                         iommu_detach_dev(iommu,
3315                                 tmp->subordinate->number, 0);
3316                 else /* this is a legacy PCI bridge */
3317                         iommu_detach_dev(iommu, tmp->bus->number,
3318                                          tmp->devfn);
3319         }
3320 }
3321
3322 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3323                                           struct pci_dev *pdev)
3324 {
3325         struct device_domain_info *info;
3326         struct intel_iommu *iommu;
3327         unsigned long flags;
3328         int found = 0;
3329         struct list_head *entry, *tmp;
3330
3331         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3332                                 pdev->devfn);
3333         if (!iommu)
3334                 return;
3335
3336         spin_lock_irqsave(&device_domain_lock, flags);
3337         list_for_each_safe(entry, tmp, &domain->devices) {
3338                 info = list_entry(entry, struct device_domain_info, link);
3339                 /* No need to compare PCI domain; it has to be the same */
3340                 if (info->bus == pdev->bus->number &&
3341                     info->devfn == pdev->devfn) {
3342                         list_del(&info->link);
3343                         list_del(&info->global);
3344                         if (info->dev)
3345                                 info->dev->dev.archdata.iommu = NULL;
3346                         spin_unlock_irqrestore(&device_domain_lock, flags);
3347
3348                         iommu_disable_dev_iotlb(info);
3349                         iommu_detach_dev(iommu, info->bus, info->devfn);
3350                         iommu_detach_dependent_devices(iommu, pdev);
3351                         free_devinfo_mem(info);
3352
3353                         spin_lock_irqsave(&device_domain_lock, flags);
3354
3355                         if (found)
3356                                 break;
3357                         else
3358                                 continue;
3359                 }
3360
3361                 /* if there is no other devices under the same iommu
3362                  * owned by this domain, clear this iommu in iommu_bmp
3363                  * update iommu count and coherency
3364                  */
3365                 if (iommu == device_to_iommu(info->segment, info->bus,
3366                                             info->devfn))
3367                         found = 1;
3368         }
3369
3370         if (found == 0) {
3371                 unsigned long tmp_flags;
3372                 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3373                 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3374                 domain->iommu_count--;
3375                 domain_update_iommu_cap(domain);
3376                 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3377         }
3378
3379         spin_unlock_irqrestore(&device_domain_lock, flags);
3380 }
3381
3382 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3383 {
3384         struct device_domain_info *info;
3385         struct intel_iommu *iommu;
3386         unsigned long flags1, flags2;
3387
3388         spin_lock_irqsave(&device_domain_lock, flags1);
3389         while (!list_empty(&domain->devices)) {
3390                 info = list_entry(domain->devices.next,
3391                         struct device_domain_info, link);
3392                 list_del(&info->link);
3393                 list_del(&info->global);
3394                 if (info->dev)
3395                         info->dev->dev.archdata.iommu = NULL;
3396
3397                 spin_unlock_irqrestore(&device_domain_lock, flags1);
3398
3399                 iommu_disable_dev_iotlb(info);
3400                 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3401                 iommu_detach_dev(iommu, info->bus, info->devfn);
3402                 iommu_detach_dependent_devices(iommu, info->dev);
3403
3404                 /* clear this iommu in iommu_bmp, update iommu count
3405                  * and capabilities
3406                  */
3407                 spin_lock_irqsave(&domain->iommu_lock, flags2);
3408                 if (test_and_clear_bit(iommu->seq_id,
3409                                        &domain->iommu_bmp)) {
3410                         domain->iommu_count--;
3411                         domain_update_iommu_cap(domain);
3412                 }
3413                 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3414
3415                 free_devinfo_mem(info);
3416                 spin_lock_irqsave(&device_domain_lock, flags1);
3417         }
3418         spin_unlock_irqrestore(&device_domain_lock, flags1);
3419 }
3420
3421 /* domain id for virtual machine, it won't be set in context */
3422 static unsigned long vm_domid;
3423
3424 static int vm_domain_min_agaw(struct dmar_domain *domain)
3425 {
3426         int i;
3427         int min_agaw = domain->agaw;
3428
3429         for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
3430                 if (min_agaw > g_iommus[i]->agaw)
3431                         min_agaw = g_iommus[i]->agaw;
3432         }
3433
3434         return min_agaw;
3435 }
3436
3437 static struct dmar_domain *iommu_alloc_vm_domain(void)
3438 {
3439         struct dmar_domain *domain;
3440
3441         domain = alloc_domain_mem();
3442         if (!domain)
3443                 return NULL;
3444
3445         domain->id = vm_domid++;
3446         domain->nid = -1;
3447         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3448         domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3449
3450         return domain;
3451 }
3452
3453 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3454 {
3455         int adjust_width;
3456
3457         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3458         spin_lock_init(&domain->iommu_lock);
3459
3460         domain_reserve_special_ranges(domain);
3461
3462         /* calculate AGAW */
3463         domain->gaw = guest_width;
3464         adjust_width = guestwidth_to_adjustwidth(guest_width);
3465         domain->agaw = width_to_agaw(adjust_width);
3466
3467         INIT_LIST_HEAD(&domain->devices);
3468
3469         domain->iommu_count = 0;
3470         domain->iommu_coherency = 0;
3471         domain->iommu_snooping = 0;
3472         domain->max_addr = 0;
3473         domain->nid = -1;
3474
3475         /* always allocate the top pgd */
3476         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3477         if (!domain->pgd)
3478                 return -ENOMEM;
3479         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3480         return 0;
3481 }
3482
3483 static void iommu_free_vm_domain(struct dmar_domain *domain)
3484 {
3485         unsigned long flags;
3486         struct dmar_drhd_unit *drhd;
3487         struct intel_iommu *iommu;
3488         unsigned long i;
3489         unsigned long ndomains;
3490
3491         for_each_drhd_unit(drhd) {
3492                 if (drhd->ignored)
3493                         continue;
3494                 iommu = drhd->iommu;
3495
3496                 ndomains = cap_ndoms(iommu->cap);
3497                 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3498                         if (iommu->domains[i] == domain) {
3499                                 spin_lock_irqsave(&iommu->lock, flags);
3500                                 clear_bit(i, iommu->domain_ids);
3501                                 iommu->domains[i] = NULL;
3502                                 spin_unlock_irqrestore(&iommu->lock, flags);
3503                                 break;
3504                         }
3505                 }
3506         }
3507 }
3508
3509 static void vm_domain_exit(struct dmar_domain *domain)
3510 {
3511         /* Domain 0 is reserved, so dont process it */
3512         if (!domain)
3513                 return;
3514
3515         vm_domain_remove_all_dev_info(domain);
3516         /* destroy iovas */
3517         put_iova_domain(&domain->iovad);
3518
3519         /* clear ptes */
3520         dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3521
3522         /* free page tables */
3523         dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3524
3525         iommu_free_vm_domain(domain);
3526         free_domain_mem(domain);
3527 }
3528
3529 static int intel_iommu_domain_init(struct iommu_domain *domain)
3530 {
3531         struct dmar_domain *dmar_domain;
3532
3533         dmar_domain = iommu_alloc_vm_domain();
3534         if (!dmar_domain) {
3535                 printk(KERN_ERR
3536                         "intel_iommu_domain_init: dmar_domain == NULL\n");
3537                 return -ENOMEM;
3538         }
3539         if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3540                 printk(KERN_ERR
3541                         "intel_iommu_domain_init() failed\n");
3542                 vm_domain_exit(dmar_domain);
3543                 return -ENOMEM;
3544         }
3545         domain->priv = dmar_domain;
3546
3547         return 0;
3548 }
3549
3550 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3551 {
3552         struct dmar_domain *dmar_domain = domain->priv;
3553
3554         domain->priv = NULL;
3555         vm_domain_exit(dmar_domain);
3556 }
3557
3558 static int intel_iommu_attach_device(struct iommu_domain *domain,
3559                                      struct device *dev)
3560 {
3561         struct dmar_domain *dmar_domain = domain->priv;
3562         struct pci_dev *pdev = to_pci_dev(dev);
3563         struct intel_iommu *iommu;
3564         int addr_width;
3565         u64 end;
3566
3567         /* normally pdev is not mapped */
3568         if (unlikely(domain_context_mapped(pdev))) {
3569                 struct dmar_domain *old_domain;
3570
3571                 old_domain = find_domain(pdev);
3572                 if (old_domain) {
3573                         if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3574                             dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3575                                 domain_remove_one_dev_info(old_domain, pdev);
3576                         else
3577                                 domain_remove_dev_info(old_domain);
3578                 }
3579         }
3580
3581         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3582                                 pdev->devfn);
3583         if (!iommu)
3584                 return -ENODEV;
3585
3586         /* check if this iommu agaw is sufficient for max mapped address */
3587         addr_width = agaw_to_width(iommu->agaw);
3588         end = DOMAIN_MAX_ADDR(addr_width);
3589         end = end & VTD_PAGE_MASK;
3590         if (end < dmar_domain->max_addr) {
3591                 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3592                        "sufficient for the mapped address (%llx)\n",
3593                        __func__, iommu->agaw, dmar_domain->max_addr);
3594                 return -EFAULT;
3595         }
3596
3597         return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3598 }
3599
3600 static void intel_iommu_detach_device(struct iommu_domain *domain,
3601                                       struct device *dev)
3602 {
3603         struct dmar_domain *dmar_domain = domain->priv;
3604         struct pci_dev *pdev = to_pci_dev(dev);
3605
3606         domain_remove_one_dev_info(dmar_domain, pdev);
3607 }
3608
3609 static int intel_iommu_map_range(struct iommu_domain *domain,
3610                                  unsigned long iova, phys_addr_t hpa,
3611                                  size_t size, int iommu_prot)
3612 {
3613         struct dmar_domain *dmar_domain = domain->priv;
3614         u64 max_addr;
3615         int addr_width;
3616         int prot = 0;
3617         int ret;
3618
3619         if (iommu_prot & IOMMU_READ)
3620                 prot |= DMA_PTE_READ;
3621         if (iommu_prot & IOMMU_WRITE)
3622                 prot |= DMA_PTE_WRITE;
3623         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3624                 prot |= DMA_PTE_SNP;
3625
3626         max_addr = iova + size;
3627         if (dmar_domain->max_addr < max_addr) {
3628                 int min_agaw;
3629                 u64 end;
3630
3631                 /* check if minimum agaw is sufficient for mapped address */
3632                 min_agaw = vm_domain_min_agaw(dmar_domain);
3633                 addr_width = agaw_to_width(min_agaw);
3634                 end = DOMAIN_MAX_ADDR(addr_width);
3635                 end = end & VTD_PAGE_MASK;
3636                 if (end < max_addr) {
3637                         printk(KERN_ERR "%s: iommu agaw (%d) is not "
3638                                "sufficient for the mapped address (%llx)\n",
3639                                __func__, min_agaw, max_addr);
3640                         return -EFAULT;
3641                 }
3642                 dmar_domain->max_addr = max_addr;
3643         }
3644         /* Round up size to next multiple of PAGE_SIZE, if it and
3645            the low bits of hpa would take us onto the next page */
3646         size = aligned_nrpages(hpa, size);
3647         ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
3648                                  hpa >> VTD_PAGE_SHIFT, size, prot);
3649         return ret;
3650 }
3651
3652 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3653                                     unsigned long iova, size_t size)
3654 {
3655         struct dmar_domain *dmar_domain = domain->priv;
3656
3657         if (!size)
3658                 return;
3659
3660         dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
3661                             (iova + size - 1) >> VTD_PAGE_SHIFT);
3662
3663         if (dmar_domain->max_addr == iova + size)
3664                 dmar_domain->max_addr = iova;
3665 }
3666
3667 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3668                                             unsigned long iova)
3669 {
3670         struct dmar_domain *dmar_domain = domain->priv;
3671         struct dma_pte *pte;
3672         u64 phys = 0;
3673
3674         pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT);
3675         if (pte)
3676                 phys = dma_pte_addr(pte);
3677
3678         return phys;
3679 }
3680