2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <linux/tboot.h>
41 #include <linux/dmi.h>
42 #include <asm/cacheflush.h>
43 #include <asm/iommu.h>
46 #define ROOT_SIZE VTD_PAGE_SIZE
47 #define CONTEXT_SIZE VTD_PAGE_SIZE
49 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
50 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
51 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
53 #define IOAPIC_RANGE_START (0xfee00000)
54 #define IOAPIC_RANGE_END (0xfeefffff)
55 #define IOVA_START_ADDR (0x1000)
57 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
59 #define MAX_AGAW_WIDTH 64
61 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
62 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
64 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
65 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
66 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
67 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
68 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
70 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
71 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
72 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
75 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
76 are never going to work. */
77 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
79 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
82 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
84 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
86 static inline unsigned long page_to_dma_pfn(struct page *pg)
88 return mm_to_dma_pfn(page_to_pfn(pg));
90 static inline unsigned long virt_to_dma_pfn(void *p)
92 return page_to_dma_pfn(virt_to_page(p));
95 /* global iommu list, set NULL for ignored DMAR units */
96 static struct intel_iommu **g_iommus;
98 static void __init check_tylersburg_isoch(void);
99 static int rwbf_quirk;
104 * 12-63: Context Ptr (12 - (haw-1))
111 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
112 static inline bool root_present(struct root_entry *root)
114 return (root->val & 1);
116 static inline void set_root_present(struct root_entry *root)
120 static inline void set_root_value(struct root_entry *root, unsigned long value)
122 root->val |= value & VTD_PAGE_MASK;
125 static inline struct context_entry *
126 get_context_addr_from_root(struct root_entry *root)
128 return (struct context_entry *)
129 (root_present(root)?phys_to_virt(
130 root->val & VTD_PAGE_MASK) :
137 * 1: fault processing disable
138 * 2-3: translation type
139 * 12-63: address space root
145 struct context_entry {
150 static inline bool context_present(struct context_entry *context)
152 return (context->lo & 1);
154 static inline void context_set_present(struct context_entry *context)
159 static inline void context_set_fault_enable(struct context_entry *context)
161 context->lo &= (((u64)-1) << 2) | 1;
164 static inline void context_set_translation_type(struct context_entry *context,
167 context->lo &= (((u64)-1) << 4) | 3;
168 context->lo |= (value & 3) << 2;
171 static inline void context_set_address_root(struct context_entry *context,
174 context->lo |= value & VTD_PAGE_MASK;
177 static inline void context_set_address_width(struct context_entry *context,
180 context->hi |= value & 7;
183 static inline void context_set_domain_id(struct context_entry *context,
186 context->hi |= (value & ((1 << 16) - 1)) << 8;
189 static inline void context_clear_entry(struct context_entry *context)
202 * 12-63: Host physcial address
208 static inline void dma_clear_pte(struct dma_pte *pte)
213 static inline void dma_set_pte_readable(struct dma_pte *pte)
215 pte->val |= DMA_PTE_READ;
218 static inline void dma_set_pte_writable(struct dma_pte *pte)
220 pte->val |= DMA_PTE_WRITE;
223 static inline void dma_set_pte_snp(struct dma_pte *pte)
225 pte->val |= DMA_PTE_SNP;
228 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
230 pte->val = (pte->val & ~3) | (prot & 3);
233 static inline u64 dma_pte_addr(struct dma_pte *pte)
236 return pte->val & VTD_PAGE_MASK;
238 /* Must have a full atomic 64-bit read */
239 return __cmpxchg64(pte, 0ULL, 0ULL) & VTD_PAGE_MASK;
243 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
245 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
248 static inline bool dma_pte_present(struct dma_pte *pte)
250 return (pte->val & 3) != 0;
253 static inline int first_pte_in_page(struct dma_pte *pte)
255 return !((unsigned long)pte & ~VTD_PAGE_MASK);
259 * This domain is a statically identity mapping domain.
260 * 1. This domain creats a static 1:1 mapping to all usable memory.
261 * 2. It maps to each iommu if successful.
262 * 3. Each iommu mapps to this domain if successful.
264 static struct dmar_domain *si_domain;
265 static int hw_pass_through = 1;
267 /* devices under the same p2p bridge are owned in one domain */
268 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
270 /* domain represents a virtual machine, more than one devices
271 * across iommus may be owned in one domain, e.g. kvm guest.
273 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
275 /* si_domain contains mulitple devices */
276 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
279 int id; /* domain id */
280 int nid; /* node id */
281 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
283 struct list_head devices; /* all devices' list */
284 struct iova_domain iovad; /* iova's that belong to this domain */
286 struct dma_pte *pgd; /* virtual address */
287 int gaw; /* max guest address width */
289 /* adjusted guest address width, 0 is level 2 30-bit */
292 int flags; /* flags to find out type of domain */
294 int iommu_coherency;/* indicate coherency of iommu access */
295 int iommu_snooping; /* indicate snooping control feature*/
296 int iommu_count; /* reference count of iommu */
297 spinlock_t iommu_lock; /* protect iommu set in domain */
298 u64 max_addr; /* maximum mapped address */
301 /* PCI domain-device relationship */
302 struct device_domain_info {
303 struct list_head link; /* link to domain siblings */
304 struct list_head global; /* link to global list */
305 int segment; /* PCI domain */
306 u8 bus; /* PCI bus number */
307 u8 devfn; /* PCI devfn number */
308 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
309 struct intel_iommu *iommu; /* IOMMU used by this device */
310 struct dmar_domain *domain; /* pointer to domain */
313 static void flush_unmaps_timeout(unsigned long data);
315 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
317 #define HIGH_WATER_MARK 250
318 struct deferred_flush_tables {
320 struct iova *iova[HIGH_WATER_MARK];
321 struct dmar_domain *domain[HIGH_WATER_MARK];
324 static struct deferred_flush_tables *deferred_flush;
326 /* bitmap for indexing intel_iommus */
327 static int g_num_of_iommus;
329 static DEFINE_SPINLOCK(async_umap_flush_lock);
330 static LIST_HEAD(unmaps_to_do);
333 static long list_size;
335 static void domain_remove_dev_info(struct dmar_domain *domain);
337 #ifdef CONFIG_DMAR_DEFAULT_ON
338 int dmar_disabled = 0;
340 int dmar_disabled = 1;
341 #endif /*CONFIG_DMAR_DEFAULT_ON*/
343 static int __initdata dmar_map_gfx = 1;
344 static int dmar_forcedac;
345 static int intel_iommu_strict;
347 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
348 static DEFINE_SPINLOCK(device_domain_lock);
349 static LIST_HEAD(device_domain_list);
351 static struct iommu_ops intel_iommu_ops;
353 static int __init intel_iommu_setup(char *str)
358 if (!strncmp(str, "on", 2)) {
360 printk(KERN_INFO "Intel-IOMMU: enabled\n");
361 } else if (!strncmp(str, "off", 3)) {
363 printk(KERN_INFO "Intel-IOMMU: disabled\n");
364 } else if (!strncmp(str, "igfx_off", 8)) {
367 "Intel-IOMMU: disable GFX device mapping\n");
368 } else if (!strncmp(str, "forcedac", 8)) {
370 "Intel-IOMMU: Forcing DAC for PCI devices\n");
372 } else if (!strncmp(str, "strict", 6)) {
374 "Intel-IOMMU: disable batched IOTLB flush\n");
375 intel_iommu_strict = 1;
378 str += strcspn(str, ",");
384 __setup("intel_iommu=", intel_iommu_setup);
386 static struct kmem_cache *iommu_domain_cache;
387 static struct kmem_cache *iommu_devinfo_cache;
388 static struct kmem_cache *iommu_iova_cache;
390 static inline void *alloc_pgtable_page(int node)
395 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
397 vaddr = page_address(page);
401 static inline void free_pgtable_page(void *vaddr)
403 free_page((unsigned long)vaddr);
406 static inline void *alloc_domain_mem(void)
408 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
411 static void free_domain_mem(void *vaddr)
413 kmem_cache_free(iommu_domain_cache, vaddr);
416 static inline void * alloc_devinfo_mem(void)
418 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
421 static inline void free_devinfo_mem(void *vaddr)
423 kmem_cache_free(iommu_devinfo_cache, vaddr);
426 struct iova *alloc_iova_mem(void)
428 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
431 void free_iova_mem(struct iova *iova)
433 kmem_cache_free(iommu_iova_cache, iova);
437 static inline int width_to_agaw(int width);
439 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
444 sagaw = cap_sagaw(iommu->cap);
445 for (agaw = width_to_agaw(max_gaw);
447 if (test_bit(agaw, &sagaw))
455 * Calculate max SAGAW for each iommu.
457 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
459 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
463 * calculate agaw for each iommu.
464 * "SAGAW" may be different across iommus, use a default agaw, and
465 * get a supported less agaw for iommus that don't support the default agaw.
467 int iommu_calculate_agaw(struct intel_iommu *iommu)
469 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
472 /* This functionin only returns single iommu in a domain */
473 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
477 /* si_domain and vm domain should not get here. */
478 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
479 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
481 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
482 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
485 return g_iommus[iommu_id];
488 static void domain_update_iommu_coherency(struct dmar_domain *domain)
492 domain->iommu_coherency = 1;
494 for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
495 if (!ecap_coherent(g_iommus[i]->ecap)) {
496 domain->iommu_coherency = 0;
502 static void domain_update_iommu_snooping(struct dmar_domain *domain)
506 domain->iommu_snooping = 1;
508 for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
509 if (!ecap_sc_support(g_iommus[i]->ecap)) {
510 domain->iommu_snooping = 0;
516 /* Some capabilities may be different across iommus */
517 static void domain_update_iommu_cap(struct dmar_domain *domain)
519 domain_update_iommu_coherency(domain);
520 domain_update_iommu_snooping(domain);
523 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
525 struct dmar_drhd_unit *drhd = NULL;
528 for_each_drhd_unit(drhd) {
531 if (segment != drhd->segment)
534 for (i = 0; i < drhd->devices_cnt; i++) {
535 if (drhd->devices[i] &&
536 drhd->devices[i]->bus->number == bus &&
537 drhd->devices[i]->devfn == devfn)
539 if (drhd->devices[i] &&
540 drhd->devices[i]->subordinate &&
541 drhd->devices[i]->subordinate->number <= bus &&
542 drhd->devices[i]->subordinate->subordinate >= bus)
546 if (drhd->include_all)
553 static void domain_flush_cache(struct dmar_domain *domain,
554 void *addr, int size)
556 if (!domain->iommu_coherency)
557 clflush_cache_range(addr, size);
560 /* Gets context entry for a given bus and devfn */
561 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
564 struct root_entry *root;
565 struct context_entry *context;
566 unsigned long phy_addr;
569 spin_lock_irqsave(&iommu->lock, flags);
570 root = &iommu->root_entry[bus];
571 context = get_context_addr_from_root(root);
573 context = (struct context_entry *)
574 alloc_pgtable_page(iommu->node);
576 spin_unlock_irqrestore(&iommu->lock, flags);
579 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
580 phy_addr = virt_to_phys((void *)context);
581 set_root_value(root, phy_addr);
582 set_root_present(root);
583 __iommu_flush_cache(iommu, root, sizeof(*root));
585 spin_unlock_irqrestore(&iommu->lock, flags);
586 return &context[devfn];
589 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
591 struct root_entry *root;
592 struct context_entry *context;
596 spin_lock_irqsave(&iommu->lock, flags);
597 root = &iommu->root_entry[bus];
598 context = get_context_addr_from_root(root);
603 ret = context_present(&context[devfn]);
605 spin_unlock_irqrestore(&iommu->lock, flags);
609 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
611 struct root_entry *root;
612 struct context_entry *context;
615 spin_lock_irqsave(&iommu->lock, flags);
616 root = &iommu->root_entry[bus];
617 context = get_context_addr_from_root(root);
619 context_clear_entry(&context[devfn]);
620 __iommu_flush_cache(iommu, &context[devfn], \
623 spin_unlock_irqrestore(&iommu->lock, flags);
626 static void free_context_table(struct intel_iommu *iommu)
628 struct root_entry *root;
631 struct context_entry *context;
633 spin_lock_irqsave(&iommu->lock, flags);
634 if (!iommu->root_entry) {
637 for (i = 0; i < ROOT_ENTRY_NR; i++) {
638 root = &iommu->root_entry[i];
639 context = get_context_addr_from_root(root);
641 free_pgtable_page(context);
643 free_pgtable_page(iommu->root_entry);
644 iommu->root_entry = NULL;
646 spin_unlock_irqrestore(&iommu->lock, flags);
649 /* page table handling */
650 #define LEVEL_STRIDE (9)
651 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
653 static inline int agaw_to_level(int agaw)
658 static inline int agaw_to_width(int agaw)
660 return 30 + agaw * LEVEL_STRIDE;
664 static inline int width_to_agaw(int width)
666 return (width - 30) / LEVEL_STRIDE;
669 static inline unsigned int level_to_offset_bits(int level)
671 return (level - 1) * LEVEL_STRIDE;
674 static inline int pfn_level_offset(unsigned long pfn, int level)
676 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
679 static inline unsigned long level_mask(int level)
681 return -1UL << level_to_offset_bits(level);
684 static inline unsigned long level_size(int level)
686 return 1UL << level_to_offset_bits(level);
689 static inline unsigned long align_to_level(unsigned long pfn, int level)
691 return (pfn + level_size(level) - 1) & level_mask(level);
694 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
697 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
698 struct dma_pte *parent, *pte = NULL;
699 int level = agaw_to_level(domain->agaw);
702 BUG_ON(!domain->pgd);
703 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
704 parent = domain->pgd;
709 offset = pfn_level_offset(pfn, level);
710 pte = &parent[offset];
714 if (!dma_pte_present(pte)) {
717 tmp_page = alloc_pgtable_page(domain->nid);
722 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
723 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
724 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
725 /* Someone else set it while we were thinking; use theirs. */
726 free_pgtable_page(tmp_page);
729 domain_flush_cache(domain, pte, sizeof(*pte));
732 parent = phys_to_virt(dma_pte_addr(pte));
739 /* return address's pte at specific level */
740 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
744 struct dma_pte *parent, *pte = NULL;
745 int total = agaw_to_level(domain->agaw);
748 parent = domain->pgd;
749 while (level <= total) {
750 offset = pfn_level_offset(pfn, total);
751 pte = &parent[offset];
755 if (!dma_pte_present(pte))
757 parent = phys_to_virt(dma_pte_addr(pte));
763 /* clear last level pte, a tlb flush should be followed */
764 static void dma_pte_clear_range(struct dmar_domain *domain,
765 unsigned long start_pfn,
766 unsigned long last_pfn)
768 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
769 struct dma_pte *first_pte, *pte;
771 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
772 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
773 BUG_ON(start_pfn > last_pfn);
775 /* we don't need lock here; nobody else touches the iova range */
777 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1);
779 start_pfn = align_to_level(start_pfn + 1, 2);
786 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
788 domain_flush_cache(domain, first_pte,
789 (void *)pte - (void *)first_pte);
791 } while (start_pfn && start_pfn <= last_pfn);
794 /* free page table pages. last level pte should already be cleared */
795 static void dma_pte_free_pagetable(struct dmar_domain *domain,
796 unsigned long start_pfn,
797 unsigned long last_pfn)
799 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
800 struct dma_pte *first_pte, *pte;
801 int total = agaw_to_level(domain->agaw);
805 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
806 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
807 BUG_ON(start_pfn > last_pfn);
809 /* We don't need lock here; nobody else touches the iova range */
811 while (level <= total) {
812 tmp = align_to_level(start_pfn, level);
814 /* If we can't even clear one PTE at this level, we're done */
815 if (tmp + level_size(level) - 1 > last_pfn)
819 first_pte = pte = dma_pfn_level_pte(domain, tmp, level);
821 tmp = align_to_level(tmp + 1, level + 1);
825 if (dma_pte_present(pte)) {
826 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
830 tmp += level_size(level);
831 } while (!first_pte_in_page(pte) &&
832 tmp + level_size(level) - 1 <= last_pfn);
834 domain_flush_cache(domain, first_pte,
835 (void *)pte - (void *)first_pte);
837 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
841 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
842 free_pgtable_page(domain->pgd);
848 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
850 struct root_entry *root;
853 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
857 __iommu_flush_cache(iommu, root, ROOT_SIZE);
859 spin_lock_irqsave(&iommu->lock, flags);
860 iommu->root_entry = root;
861 spin_unlock_irqrestore(&iommu->lock, flags);
866 static void iommu_set_root_entry(struct intel_iommu *iommu)
872 addr = iommu->root_entry;
874 spin_lock_irqsave(&iommu->register_lock, flag);
875 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
877 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
879 /* Make sure hardware complete it */
880 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
881 readl, (sts & DMA_GSTS_RTPS), sts);
883 spin_unlock_irqrestore(&iommu->register_lock, flag);
886 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
891 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
894 spin_lock_irqsave(&iommu->register_lock, flag);
895 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
897 /* Make sure hardware complete it */
898 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
899 readl, (!(val & DMA_GSTS_WBFS)), val);
901 spin_unlock_irqrestore(&iommu->register_lock, flag);
904 /* return value determine if we need a write buffer flush */
905 static void __iommu_flush_context(struct intel_iommu *iommu,
906 u16 did, u16 source_id, u8 function_mask,
913 case DMA_CCMD_GLOBAL_INVL:
914 val = DMA_CCMD_GLOBAL_INVL;
916 case DMA_CCMD_DOMAIN_INVL:
917 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
919 case DMA_CCMD_DEVICE_INVL:
920 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
921 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
928 spin_lock_irqsave(&iommu->register_lock, flag);
929 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
931 /* Make sure hardware complete it */
932 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
933 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
935 spin_unlock_irqrestore(&iommu->register_lock, flag);
938 /* return value determine if we need a write buffer flush */
939 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
940 u64 addr, unsigned int size_order, u64 type)
942 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
943 u64 val = 0, val_iva = 0;
947 case DMA_TLB_GLOBAL_FLUSH:
948 /* global flush doesn't need set IVA_REG */
949 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
951 case DMA_TLB_DSI_FLUSH:
952 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
954 case DMA_TLB_PSI_FLUSH:
955 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
956 /* Note: always flush non-leaf currently */
957 val_iva = size_order | addr;
962 /* Note: set drain read/write */
965 * This is probably to be super secure.. Looks like we can
966 * ignore it without any impact.
968 if (cap_read_drain(iommu->cap))
969 val |= DMA_TLB_READ_DRAIN;
971 if (cap_write_drain(iommu->cap))
972 val |= DMA_TLB_WRITE_DRAIN;
974 spin_lock_irqsave(&iommu->register_lock, flag);
975 /* Note: Only uses first TLB reg currently */
977 dmar_writeq(iommu->reg + tlb_offset, val_iva);
978 dmar_writeq(iommu->reg + tlb_offset + 8, val);
980 /* Make sure hardware complete it */
981 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
982 dmar_readq, (!(val & DMA_TLB_IVT)), val);
984 spin_unlock_irqrestore(&iommu->register_lock, flag);
986 /* check IOTLB invalidation granularity */
987 if (DMA_TLB_IAIG(val) == 0)
988 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
989 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
990 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
991 (unsigned long long)DMA_TLB_IIRG(type),
992 (unsigned long long)DMA_TLB_IAIG(val));
995 static struct device_domain_info *iommu_support_dev_iotlb(
996 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1000 struct device_domain_info *info;
1001 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1003 if (!ecap_dev_iotlb_support(iommu->ecap))
1009 spin_lock_irqsave(&device_domain_lock, flags);
1010 list_for_each_entry(info, &domain->devices, link)
1011 if (info->bus == bus && info->devfn == devfn) {
1015 spin_unlock_irqrestore(&device_domain_lock, flags);
1017 if (!found || !info->dev)
1020 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1023 if (!dmar_find_matched_atsr_unit(info->dev))
1026 info->iommu = iommu;
1031 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1036 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1039 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1041 if (!info->dev || !pci_ats_enabled(info->dev))
1044 pci_disable_ats(info->dev);
1047 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1048 u64 addr, unsigned mask)
1051 unsigned long flags;
1052 struct device_domain_info *info;
1054 spin_lock_irqsave(&device_domain_lock, flags);
1055 list_for_each_entry(info, &domain->devices, link) {
1056 if (!info->dev || !pci_ats_enabled(info->dev))
1059 sid = info->bus << 8 | info->devfn;
1060 qdep = pci_ats_queue_depth(info->dev);
1061 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1063 spin_unlock_irqrestore(&device_domain_lock, flags);
1066 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1067 unsigned long pfn, unsigned int pages, int map)
1069 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1070 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1075 * Fallback to domain selective flush if no PSI support or the size is
1077 * PSI requires page size to be 2 ^ x, and the base address is naturally
1078 * aligned to the size
1080 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1081 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1084 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1088 * In caching mode, changes of pages from non-present to present require
1089 * flush. However, device IOTLB doesn't need to be flushed in this case.
1091 if (!cap_caching_mode(iommu->cap) || !map)
1092 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1095 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1098 unsigned long flags;
1100 spin_lock_irqsave(&iommu->register_lock, flags);
1101 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1102 pmen &= ~DMA_PMEN_EPM;
1103 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1105 /* wait for the protected region status bit to clear */
1106 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1107 readl, !(pmen & DMA_PMEN_PRS), pmen);
1109 spin_unlock_irqrestore(&iommu->register_lock, flags);
1112 static int iommu_enable_translation(struct intel_iommu *iommu)
1115 unsigned long flags;
1117 spin_lock_irqsave(&iommu->register_lock, flags);
1118 iommu->gcmd |= DMA_GCMD_TE;
1119 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1121 /* Make sure hardware complete it */
1122 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1123 readl, (sts & DMA_GSTS_TES), sts);
1125 spin_unlock_irqrestore(&iommu->register_lock, flags);
1129 static int iommu_disable_translation(struct intel_iommu *iommu)
1134 spin_lock_irqsave(&iommu->register_lock, flag);
1135 iommu->gcmd &= ~DMA_GCMD_TE;
1136 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1138 /* Make sure hardware complete it */
1139 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1140 readl, (!(sts & DMA_GSTS_TES)), sts);
1142 spin_unlock_irqrestore(&iommu->register_lock, flag);
1147 static int iommu_init_domains(struct intel_iommu *iommu)
1149 unsigned long ndomains;
1150 unsigned long nlongs;
1152 ndomains = cap_ndoms(iommu->cap);
1153 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1154 nlongs = BITS_TO_LONGS(ndomains);
1156 spin_lock_init(&iommu->lock);
1158 /* TBD: there might be 64K domains,
1159 * consider other allocation for future chip
1161 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1162 if (!iommu->domain_ids) {
1163 printk(KERN_ERR "Allocating domain id array failed\n");
1166 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1168 if (!iommu->domains) {
1169 printk(KERN_ERR "Allocating domain array failed\n");
1174 * if Caching mode is set, then invalid translations are tagged
1175 * with domainid 0. Hence we need to pre-allocate it.
1177 if (cap_caching_mode(iommu->cap))
1178 set_bit(0, iommu->domain_ids);
1183 static void domain_exit(struct dmar_domain *domain);
1184 static void vm_domain_exit(struct dmar_domain *domain);
1186 void free_dmar_iommu(struct intel_iommu *iommu)
1188 struct dmar_domain *domain;
1190 unsigned long flags;
1192 if ((iommu->domains) && (iommu->domain_ids)) {
1193 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1194 domain = iommu->domains[i];
1195 clear_bit(i, iommu->domain_ids);
1197 spin_lock_irqsave(&domain->iommu_lock, flags);
1198 if (--domain->iommu_count == 0) {
1199 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1200 vm_domain_exit(domain);
1202 domain_exit(domain);
1204 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1208 if (iommu->gcmd & DMA_GCMD_TE)
1209 iommu_disable_translation(iommu);
1212 set_irq_data(iommu->irq, NULL);
1213 /* This will mask the irq */
1214 free_irq(iommu->irq, iommu);
1215 destroy_irq(iommu->irq);
1218 kfree(iommu->domains);
1219 kfree(iommu->domain_ids);
1221 g_iommus[iommu->seq_id] = NULL;
1223 /* if all iommus are freed, free g_iommus */
1224 for (i = 0; i < g_num_of_iommus; i++) {
1229 if (i == g_num_of_iommus)
1232 /* free context mapping */
1233 free_context_table(iommu);
1236 static struct dmar_domain *alloc_domain(void)
1238 struct dmar_domain *domain;
1240 domain = alloc_domain_mem();
1245 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1251 static int iommu_attach_domain(struct dmar_domain *domain,
1252 struct intel_iommu *iommu)
1255 unsigned long ndomains;
1256 unsigned long flags;
1258 ndomains = cap_ndoms(iommu->cap);
1260 spin_lock_irqsave(&iommu->lock, flags);
1262 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1263 if (num >= ndomains) {
1264 spin_unlock_irqrestore(&iommu->lock, flags);
1265 printk(KERN_ERR "IOMMU: no free domain ids\n");
1270 set_bit(num, iommu->domain_ids);
1271 set_bit(iommu->seq_id, &domain->iommu_bmp);
1272 iommu->domains[num] = domain;
1273 spin_unlock_irqrestore(&iommu->lock, flags);
1278 static void iommu_detach_domain(struct dmar_domain *domain,
1279 struct intel_iommu *iommu)
1281 unsigned long flags;
1285 spin_lock_irqsave(&iommu->lock, flags);
1286 ndomains = cap_ndoms(iommu->cap);
1287 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1288 if (iommu->domains[num] == domain) {
1295 clear_bit(num, iommu->domain_ids);
1296 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1297 iommu->domains[num] = NULL;
1299 spin_unlock_irqrestore(&iommu->lock, flags);
1302 static struct iova_domain reserved_iova_list;
1303 static struct lock_class_key reserved_rbtree_key;
1305 static void dmar_init_reserved_ranges(void)
1307 struct pci_dev *pdev = NULL;
1311 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1313 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1314 &reserved_rbtree_key);
1316 /* IOAPIC ranges shouldn't be accessed by DMA */
1317 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1318 IOVA_PFN(IOAPIC_RANGE_END));
1320 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1322 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1323 for_each_pci_dev(pdev) {
1326 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1327 r = &pdev->resource[i];
1328 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1330 iova = reserve_iova(&reserved_iova_list,
1334 printk(KERN_ERR "Reserve iova failed\n");
1340 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1342 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1345 static inline int guestwidth_to_adjustwidth(int gaw)
1348 int r = (gaw - 12) % 9;
1359 static int domain_init(struct dmar_domain *domain, int guest_width)
1361 struct intel_iommu *iommu;
1362 int adjust_width, agaw;
1363 unsigned long sagaw;
1365 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1366 spin_lock_init(&domain->iommu_lock);
1368 domain_reserve_special_ranges(domain);
1370 /* calculate AGAW */
1371 iommu = domain_get_iommu(domain);
1372 if (guest_width > cap_mgaw(iommu->cap))
1373 guest_width = cap_mgaw(iommu->cap);
1374 domain->gaw = guest_width;
1375 adjust_width = guestwidth_to_adjustwidth(guest_width);
1376 agaw = width_to_agaw(adjust_width);
1377 sagaw = cap_sagaw(iommu->cap);
1378 if (!test_bit(agaw, &sagaw)) {
1379 /* hardware doesn't support it, choose a bigger one */
1380 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1381 agaw = find_next_bit(&sagaw, 5, agaw);
1385 domain->agaw = agaw;
1386 INIT_LIST_HEAD(&domain->devices);
1388 if (ecap_coherent(iommu->ecap))
1389 domain->iommu_coherency = 1;
1391 domain->iommu_coherency = 0;
1393 if (ecap_sc_support(iommu->ecap))
1394 domain->iommu_snooping = 1;
1396 domain->iommu_snooping = 0;
1398 domain->iommu_count = 1;
1399 domain->nid = iommu->node;
1401 /* always allocate the top pgd */
1402 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1405 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1409 static void domain_exit(struct dmar_domain *domain)
1411 struct dmar_drhd_unit *drhd;
1412 struct intel_iommu *iommu;
1414 /* Domain 0 is reserved, so dont process it */
1418 domain_remove_dev_info(domain);
1420 put_iova_domain(&domain->iovad);
1423 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1425 /* free page tables */
1426 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1428 for_each_active_iommu(iommu, drhd)
1429 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1430 iommu_detach_domain(domain, iommu);
1432 free_domain_mem(domain);
1435 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1436 u8 bus, u8 devfn, int translation)
1438 struct context_entry *context;
1439 unsigned long flags;
1440 struct intel_iommu *iommu;
1441 struct dma_pte *pgd;
1443 unsigned long ndomains;
1446 struct device_domain_info *info = NULL;
1448 pr_debug("Set context mapping for %02x:%02x.%d\n",
1449 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1451 BUG_ON(!domain->pgd);
1452 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1453 translation != CONTEXT_TT_MULTI_LEVEL);
1455 iommu = device_to_iommu(segment, bus, devfn);
1459 context = device_to_context_entry(iommu, bus, devfn);
1462 spin_lock_irqsave(&iommu->lock, flags);
1463 if (context_present(context)) {
1464 spin_unlock_irqrestore(&iommu->lock, flags);
1471 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1472 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1475 /* find an available domain id for this device in iommu */
1476 ndomains = cap_ndoms(iommu->cap);
1477 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1478 if (iommu->domains[num] == domain) {
1486 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1487 if (num >= ndomains) {
1488 spin_unlock_irqrestore(&iommu->lock, flags);
1489 printk(KERN_ERR "IOMMU: no free domain ids\n");
1493 set_bit(num, iommu->domain_ids);
1494 iommu->domains[num] = domain;
1498 /* Skip top levels of page tables for
1499 * iommu which has less agaw than default.
1500 * Unnecessary for PT mode.
1502 if (translation != CONTEXT_TT_PASS_THROUGH) {
1503 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1504 pgd = phys_to_virt(dma_pte_addr(pgd));
1505 if (!dma_pte_present(pgd)) {
1506 spin_unlock_irqrestore(&iommu->lock, flags);
1513 context_set_domain_id(context, id);
1515 if (translation != CONTEXT_TT_PASS_THROUGH) {
1516 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1517 translation = info ? CONTEXT_TT_DEV_IOTLB :
1518 CONTEXT_TT_MULTI_LEVEL;
1521 * In pass through mode, AW must be programmed to indicate the largest
1522 * AGAW value supported by hardware. And ASR is ignored by hardware.
1524 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1525 context_set_address_width(context, iommu->msagaw);
1527 context_set_address_root(context, virt_to_phys(pgd));
1528 context_set_address_width(context, iommu->agaw);
1531 context_set_translation_type(context, translation);
1532 context_set_fault_enable(context);
1533 context_set_present(context);
1534 domain_flush_cache(domain, context, sizeof(*context));
1537 * It's a non-present to present mapping. If hardware doesn't cache
1538 * non-present entry we only need to flush the write-buffer. If the
1539 * _does_ cache non-present entries, then it does so in the special
1540 * domain #0, which we have to flush:
1542 if (cap_caching_mode(iommu->cap)) {
1543 iommu->flush.flush_context(iommu, 0,
1544 (((u16)bus) << 8) | devfn,
1545 DMA_CCMD_MASK_NOBIT,
1546 DMA_CCMD_DEVICE_INVL);
1547 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1549 iommu_flush_write_buffer(iommu);
1551 iommu_enable_dev_iotlb(info);
1552 spin_unlock_irqrestore(&iommu->lock, flags);
1554 spin_lock_irqsave(&domain->iommu_lock, flags);
1555 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1556 domain->iommu_count++;
1557 if (domain->iommu_count == 1)
1558 domain->nid = iommu->node;
1559 domain_update_iommu_cap(domain);
1561 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1566 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1570 struct pci_dev *tmp, *parent;
1572 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1573 pdev->bus->number, pdev->devfn,
1578 /* dependent device mapping */
1579 tmp = pci_find_upstream_pcie_bridge(pdev);
1582 /* Secondary interface's bus number and devfn 0 */
1583 parent = pdev->bus->self;
1584 while (parent != tmp) {
1585 ret = domain_context_mapping_one(domain,
1586 pci_domain_nr(parent->bus),
1587 parent->bus->number,
1588 parent->devfn, translation);
1591 parent = parent->bus->self;
1593 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1594 return domain_context_mapping_one(domain,
1595 pci_domain_nr(tmp->subordinate),
1596 tmp->subordinate->number, 0,
1598 else /* this is a legacy PCI bridge */
1599 return domain_context_mapping_one(domain,
1600 pci_domain_nr(tmp->bus),
1606 static int domain_context_mapped(struct pci_dev *pdev)
1609 struct pci_dev *tmp, *parent;
1610 struct intel_iommu *iommu;
1612 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1617 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1620 /* dependent device mapping */
1621 tmp = pci_find_upstream_pcie_bridge(pdev);
1624 /* Secondary interface's bus number and devfn 0 */
1625 parent = pdev->bus->self;
1626 while (parent != tmp) {
1627 ret = device_context_mapped(iommu, parent->bus->number,
1631 parent = parent->bus->self;
1633 if (pci_is_pcie(tmp))
1634 return device_context_mapped(iommu, tmp->subordinate->number,
1637 return device_context_mapped(iommu, tmp->bus->number,
1641 /* Returns a number of VTD pages, but aligned to MM page size */
1642 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1645 host_addr &= ~PAGE_MASK;
1646 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1649 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1650 struct scatterlist *sg, unsigned long phys_pfn,
1651 unsigned long nr_pages, int prot)
1653 struct dma_pte *first_pte = NULL, *pte = NULL;
1654 phys_addr_t uninitialized_var(pteval);
1655 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1656 unsigned long sg_res;
1658 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1660 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1663 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1668 sg_res = nr_pages + 1;
1669 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1672 while (nr_pages--) {
1676 sg_res = aligned_nrpages(sg->offset, sg->length);
1677 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1678 sg->dma_length = sg->length;
1679 pteval = page_to_phys(sg_page(sg)) | prot;
1682 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn);
1686 /* We don't need lock here, nobody else
1687 * touches the iova range
1689 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1691 static int dumps = 5;
1692 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1693 iov_pfn, tmp, (unsigned long long)pteval);
1696 debug_dma_dump_mappings(NULL);
1701 if (!nr_pages || first_pte_in_page(pte)) {
1702 domain_flush_cache(domain, first_pte,
1703 (void *)pte - (void *)first_pte);
1707 pteval += VTD_PAGE_SIZE;
1715 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1716 struct scatterlist *sg, unsigned long nr_pages,
1719 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1722 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1723 unsigned long phys_pfn, unsigned long nr_pages,
1726 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1729 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1734 clear_context_table(iommu, bus, devfn);
1735 iommu->flush.flush_context(iommu, 0, 0, 0,
1736 DMA_CCMD_GLOBAL_INVL);
1737 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1740 static void domain_remove_dev_info(struct dmar_domain *domain)
1742 struct device_domain_info *info;
1743 unsigned long flags;
1744 struct intel_iommu *iommu;
1746 spin_lock_irqsave(&device_domain_lock, flags);
1747 while (!list_empty(&domain->devices)) {
1748 info = list_entry(domain->devices.next,
1749 struct device_domain_info, link);
1750 list_del(&info->link);
1751 list_del(&info->global);
1753 info->dev->dev.archdata.iommu = NULL;
1754 spin_unlock_irqrestore(&device_domain_lock, flags);
1756 iommu_disable_dev_iotlb(info);
1757 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1758 iommu_detach_dev(iommu, info->bus, info->devfn);
1759 free_devinfo_mem(info);
1761 spin_lock_irqsave(&device_domain_lock, flags);
1763 spin_unlock_irqrestore(&device_domain_lock, flags);
1768 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1770 static struct dmar_domain *
1771 find_domain(struct pci_dev *pdev)
1773 struct device_domain_info *info;
1775 /* No lock here, assumes no domain exit in normal case */
1776 info = pdev->dev.archdata.iommu;
1778 return info->domain;
1782 /* domain is initialized */
1783 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1785 struct dmar_domain *domain, *found = NULL;
1786 struct intel_iommu *iommu;
1787 struct dmar_drhd_unit *drhd;
1788 struct device_domain_info *info, *tmp;
1789 struct pci_dev *dev_tmp;
1790 unsigned long flags;
1791 int bus = 0, devfn = 0;
1795 domain = find_domain(pdev);
1799 segment = pci_domain_nr(pdev->bus);
1801 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1803 if (pci_is_pcie(dev_tmp)) {
1804 bus = dev_tmp->subordinate->number;
1807 bus = dev_tmp->bus->number;
1808 devfn = dev_tmp->devfn;
1810 spin_lock_irqsave(&device_domain_lock, flags);
1811 list_for_each_entry(info, &device_domain_list, global) {
1812 if (info->segment == segment &&
1813 info->bus == bus && info->devfn == devfn) {
1814 found = info->domain;
1818 spin_unlock_irqrestore(&device_domain_lock, flags);
1819 /* pcie-pci bridge already has a domain, uses it */
1826 domain = alloc_domain();
1830 /* Allocate new domain for the device */
1831 drhd = dmar_find_matched_drhd_unit(pdev);
1833 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1837 iommu = drhd->iommu;
1839 ret = iommu_attach_domain(domain, iommu);
1841 domain_exit(domain);
1845 if (domain_init(domain, gaw)) {
1846 domain_exit(domain);
1850 /* register pcie-to-pci device */
1852 info = alloc_devinfo_mem();
1854 domain_exit(domain);
1857 info->segment = segment;
1859 info->devfn = devfn;
1861 info->domain = domain;
1862 /* This domain is shared by devices under p2p bridge */
1863 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1865 /* pcie-to-pci bridge already has a domain, uses it */
1867 spin_lock_irqsave(&device_domain_lock, flags);
1868 list_for_each_entry(tmp, &device_domain_list, global) {
1869 if (tmp->segment == segment &&
1870 tmp->bus == bus && tmp->devfn == devfn) {
1871 found = tmp->domain;
1876 free_devinfo_mem(info);
1877 domain_exit(domain);
1880 list_add(&info->link, &domain->devices);
1881 list_add(&info->global, &device_domain_list);
1883 spin_unlock_irqrestore(&device_domain_lock, flags);
1887 info = alloc_devinfo_mem();
1890 info->segment = segment;
1891 info->bus = pdev->bus->number;
1892 info->devfn = pdev->devfn;
1894 info->domain = domain;
1895 spin_lock_irqsave(&device_domain_lock, flags);
1896 /* somebody is fast */
1897 found = find_domain(pdev);
1898 if (found != NULL) {
1899 spin_unlock_irqrestore(&device_domain_lock, flags);
1900 if (found != domain) {
1901 domain_exit(domain);
1904 free_devinfo_mem(info);
1907 list_add(&info->link, &domain->devices);
1908 list_add(&info->global, &device_domain_list);
1909 pdev->dev.archdata.iommu = info;
1910 spin_unlock_irqrestore(&device_domain_lock, flags);
1913 /* recheck it here, maybe others set it */
1914 return find_domain(pdev);
1917 static int iommu_identity_mapping;
1918 #define IDENTMAP_ALL 1
1919 #define IDENTMAP_GFX 2
1920 #define IDENTMAP_AZALIA 4
1922 static int iommu_domain_identity_map(struct dmar_domain *domain,
1923 unsigned long long start,
1924 unsigned long long end)
1926 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
1927 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
1929 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
1930 dma_to_mm_pfn(last_vpfn))) {
1931 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1935 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1936 start, end, domain->id);
1938 * RMRR range might have overlap with physical memory range,
1941 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
1943 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
1944 last_vpfn - first_vpfn + 1,
1945 DMA_PTE_READ|DMA_PTE_WRITE);
1948 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1949 unsigned long long start,
1950 unsigned long long end)
1952 struct dmar_domain *domain;
1955 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1959 /* For _hardware_ passthrough, don't bother. But for software
1960 passthrough, we do it anyway -- it may indicate a memory
1961 range which is reserved in E820, so which didn't get set
1962 up to start with in si_domain */
1963 if (domain == si_domain && hw_pass_through) {
1964 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
1965 pci_name(pdev), start, end);
1970 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1971 pci_name(pdev), start, end);
1974 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
1975 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
1976 dmi_get_system_info(DMI_BIOS_VENDOR),
1977 dmi_get_system_info(DMI_BIOS_VERSION),
1978 dmi_get_system_info(DMI_PRODUCT_VERSION));
1983 if (end >> agaw_to_width(domain->agaw)) {
1984 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
1985 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
1986 agaw_to_width(domain->agaw),
1987 dmi_get_system_info(DMI_BIOS_VENDOR),
1988 dmi_get_system_info(DMI_BIOS_VERSION),
1989 dmi_get_system_info(DMI_PRODUCT_VERSION));
1994 ret = iommu_domain_identity_map(domain, start, end);
1998 /* context entry init */
1999 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2006 domain_exit(domain);
2010 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2011 struct pci_dev *pdev)
2013 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2015 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2016 rmrr->end_address + 1);
2019 #ifdef CONFIG_DMAR_FLOPPY_WA
2020 static inline void iommu_prepare_isa(void)
2022 struct pci_dev *pdev;
2025 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2029 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2030 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
2033 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2034 "floppy might not work\n");
2038 static inline void iommu_prepare_isa(void)
2042 #endif /* !CONFIG_DMAR_FLPY_WA */
2044 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2046 static int __init si_domain_work_fn(unsigned long start_pfn,
2047 unsigned long end_pfn, void *datax)
2051 *ret = iommu_domain_identity_map(si_domain,
2052 (uint64_t)start_pfn << PAGE_SHIFT,
2053 (uint64_t)end_pfn << PAGE_SHIFT);
2058 static int __init si_domain_init(int hw)
2060 struct dmar_drhd_unit *drhd;
2061 struct intel_iommu *iommu;
2064 si_domain = alloc_domain();
2068 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2070 for_each_active_iommu(iommu, drhd) {
2071 ret = iommu_attach_domain(si_domain, iommu);
2073 domain_exit(si_domain);
2078 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2079 domain_exit(si_domain);
2083 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2088 for_each_online_node(nid) {
2089 work_with_active_regions(nid, si_domain_work_fn, &ret);
2097 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2098 struct pci_dev *pdev);
2099 static int identity_mapping(struct pci_dev *pdev)
2101 struct device_domain_info *info;
2103 if (likely(!iommu_identity_mapping))
2107 list_for_each_entry(info, &si_domain->devices, link)
2108 if (info->dev == pdev)
2113 static int domain_add_dev_info(struct dmar_domain *domain,
2114 struct pci_dev *pdev,
2117 struct device_domain_info *info;
2118 unsigned long flags;
2121 info = alloc_devinfo_mem();
2125 ret = domain_context_mapping(domain, pdev, translation);
2127 free_devinfo_mem(info);
2131 info->segment = pci_domain_nr(pdev->bus);
2132 info->bus = pdev->bus->number;
2133 info->devfn = pdev->devfn;
2135 info->domain = domain;
2137 spin_lock_irqsave(&device_domain_lock, flags);
2138 list_add(&info->link, &domain->devices);
2139 list_add(&info->global, &device_domain_list);
2140 pdev->dev.archdata.iommu = info;
2141 spin_unlock_irqrestore(&device_domain_lock, flags);
2146 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2148 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2151 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2154 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2158 * We want to start off with all devices in the 1:1 domain, and
2159 * take them out later if we find they can't access all of memory.
2161 * However, we can't do this for PCI devices behind bridges,
2162 * because all PCI devices behind the same bridge will end up
2163 * with the same source-id on their transactions.
2165 * Practically speaking, we can't change things around for these
2166 * devices at run-time, because we can't be sure there'll be no
2167 * DMA transactions in flight for any of their siblings.
2169 * So PCI devices (unless they're on the root bus) as well as
2170 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2171 * the 1:1 domain, just in _case_ one of their siblings turns out
2172 * not to be able to map all of memory.
2174 if (!pci_is_pcie(pdev)) {
2175 if (!pci_is_root_bus(pdev->bus))
2177 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2179 } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2183 * At boot time, we don't yet know if devices will be 64-bit capable.
2184 * Assume that they will -- if they turn out not to be, then we can
2185 * take them out of the 1:1 domain later.
2188 return pdev->dma_mask > DMA_BIT_MASK(32);
2193 static int __init iommu_prepare_static_identity_mapping(int hw)
2195 struct pci_dev *pdev = NULL;
2198 ret = si_domain_init(hw);
2202 for_each_pci_dev(pdev) {
2203 if (iommu_should_identity_map(pdev, 1)) {
2204 printk(KERN_INFO "IOMMU: %s identity mapping for device %s\n",
2205 hw ? "hardware" : "software", pci_name(pdev));
2207 ret = domain_add_dev_info(si_domain, pdev,
2208 hw ? CONTEXT_TT_PASS_THROUGH :
2209 CONTEXT_TT_MULTI_LEVEL);
2218 int __init init_dmars(void)
2220 struct dmar_drhd_unit *drhd;
2221 struct dmar_rmrr_unit *rmrr;
2222 struct pci_dev *pdev;
2223 struct intel_iommu *iommu;
2229 * initialize and program root entry to not present
2232 for_each_drhd_unit(drhd) {
2235 * lock not needed as this is only incremented in the single
2236 * threaded kernel __init code path all other access are read
2241 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2244 printk(KERN_ERR "Allocating global iommu array failed\n");
2249 deferred_flush = kzalloc(g_num_of_iommus *
2250 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2251 if (!deferred_flush) {
2256 for_each_drhd_unit(drhd) {
2260 iommu = drhd->iommu;
2261 g_iommus[iommu->seq_id] = iommu;
2263 ret = iommu_init_domains(iommu);
2269 * we could share the same root & context tables
2270 * amoung all IOMMU's. Need to Split it later.
2272 ret = iommu_alloc_root_entry(iommu);
2274 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2277 if (!ecap_pass_through(iommu->ecap))
2278 hw_pass_through = 0;
2282 * Start from the sane iommu hardware state.
2284 for_each_drhd_unit(drhd) {
2288 iommu = drhd->iommu;
2291 * If the queued invalidation is already initialized by us
2292 * (for example, while enabling interrupt-remapping) then
2293 * we got the things already rolling from a sane state.
2299 * Clear any previous faults.
2301 dmar_fault(-1, iommu);
2303 * Disable queued invalidation if supported and already enabled
2304 * before OS handover.
2306 dmar_disable_qi(iommu);
2309 for_each_drhd_unit(drhd) {
2313 iommu = drhd->iommu;
2315 if (dmar_enable_qi(iommu)) {
2317 * Queued Invalidate not enabled, use Register Based
2320 iommu->flush.flush_context = __iommu_flush_context;
2321 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2322 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2324 (unsigned long long)drhd->reg_base_addr);
2326 iommu->flush.flush_context = qi_flush_context;
2327 iommu->flush.flush_iotlb = qi_flush_iotlb;
2328 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2330 (unsigned long long)drhd->reg_base_addr);
2334 if (iommu_pass_through)
2335 iommu_identity_mapping |= IDENTMAP_ALL;
2337 #ifdef CONFIG_DMAR_BROKEN_GFX_WA
2338 iommu_identity_mapping |= IDENTMAP_GFX;
2341 check_tylersburg_isoch();
2344 * If pass through is not set or not enabled, setup context entries for
2345 * identity mappings for rmrr, gfx, and isa and may fall back to static
2346 * identity mapping if iommu_identity_mapping is set.
2348 if (iommu_identity_mapping) {
2349 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2351 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2357 * for each dev attached to rmrr
2359 * locate drhd for dev, alloc domain for dev
2360 * allocate free domain
2361 * allocate page table entries for rmrr
2362 * if context not allocated for bus
2363 * allocate and init context
2364 * set present in root table for this bus
2365 * init context with domain, translation etc
2369 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2370 for_each_rmrr_units(rmrr) {
2371 for (i = 0; i < rmrr->devices_cnt; i++) {
2372 pdev = rmrr->devices[i];
2374 * some BIOS lists non-exist devices in DMAR
2379 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2382 "IOMMU: mapping reserved region failed\n");
2386 iommu_prepare_isa();
2391 * global invalidate context cache
2392 * global invalidate iotlb
2393 * enable translation
2395 for_each_drhd_unit(drhd) {
2398 iommu = drhd->iommu;
2400 iommu_flush_write_buffer(iommu);
2402 ret = dmar_set_interrupt(iommu);
2406 iommu_set_root_entry(iommu);
2408 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2409 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2411 ret = iommu_enable_translation(iommu);
2415 iommu_disable_protect_mem_regions(iommu);
2420 for_each_drhd_unit(drhd) {
2423 iommu = drhd->iommu;
2430 /* This takes a number of _MM_ pages, not VTD pages */
2431 static struct iova *intel_alloc_iova(struct device *dev,
2432 struct dmar_domain *domain,
2433 unsigned long nrpages, uint64_t dma_mask)
2435 struct pci_dev *pdev = to_pci_dev(dev);
2436 struct iova *iova = NULL;
2438 /* Restrict dma_mask to the width that the iommu can handle */
2439 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2441 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2443 * First try to allocate an io virtual address in
2444 * DMA_BIT_MASK(32) and if that fails then try allocating
2447 iova = alloc_iova(&domain->iovad, nrpages,
2448 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2452 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2453 if (unlikely(!iova)) {
2454 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2455 nrpages, pci_name(pdev));
2462 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2464 struct dmar_domain *domain;
2467 domain = get_domain_for_dev(pdev,
2468 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2471 "Allocating domain for %s failed", pci_name(pdev));
2475 /* make sure context mapping is ok */
2476 if (unlikely(!domain_context_mapped(pdev))) {
2477 ret = domain_context_mapping(domain, pdev,
2478 CONTEXT_TT_MULTI_LEVEL);
2481 "Domain context map for %s failed",
2490 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2492 struct device_domain_info *info;
2494 /* No lock here, assumes no domain exit in normal case */
2495 info = dev->dev.archdata.iommu;
2497 return info->domain;
2499 return __get_valid_domain_for_dev(dev);
2502 static int iommu_dummy(struct pci_dev *pdev)
2504 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2507 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2508 static int iommu_no_mapping(struct device *dev)
2510 struct pci_dev *pdev;
2513 if (unlikely(dev->bus != &pci_bus_type))
2516 pdev = to_pci_dev(dev);
2517 if (iommu_dummy(pdev))
2520 if (!iommu_identity_mapping)
2523 found = identity_mapping(pdev);
2525 if (iommu_should_identity_map(pdev, 0))
2529 * 32 bit DMA is removed from si_domain and fall back
2530 * to non-identity mapping.
2532 domain_remove_one_dev_info(si_domain, pdev);
2533 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2539 * In case of a detached 64 bit DMA device from vm, the device
2540 * is put into si_domain for identity mapping.
2542 if (iommu_should_identity_map(pdev, 0)) {
2544 ret = domain_add_dev_info(si_domain, pdev,
2546 CONTEXT_TT_PASS_THROUGH :
2547 CONTEXT_TT_MULTI_LEVEL);
2549 printk(KERN_INFO "64bit %s uses identity mapping\n",
2559 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2560 size_t size, int dir, u64 dma_mask)
2562 struct pci_dev *pdev = to_pci_dev(hwdev);
2563 struct dmar_domain *domain;
2564 phys_addr_t start_paddr;
2568 struct intel_iommu *iommu;
2569 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2571 BUG_ON(dir == DMA_NONE);
2573 if (iommu_no_mapping(hwdev))
2576 domain = get_valid_domain_for_dev(pdev);
2580 iommu = domain_get_iommu(domain);
2581 size = aligned_nrpages(paddr, size);
2583 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2589 * Check if DMAR supports zero-length reads on write only
2592 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2593 !cap_zlr(iommu->cap))
2594 prot |= DMA_PTE_READ;
2595 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2596 prot |= DMA_PTE_WRITE;
2598 * paddr - (paddr + size) might be partial page, we should map the whole
2599 * page. Note: if two part of one page are separately mapped, we
2600 * might have two guest_addr mapping to the same host paddr, but this
2601 * is not a big problem
2603 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2604 mm_to_dma_pfn(paddr_pfn), size, prot);
2608 /* it's a non-present to present mapping. Only flush if caching mode */
2609 if (cap_caching_mode(iommu->cap))
2610 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2612 iommu_flush_write_buffer(iommu);
2614 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2615 start_paddr += paddr & ~PAGE_MASK;
2620 __free_iova(&domain->iovad, iova);
2621 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2622 pci_name(pdev), size, (unsigned long long)paddr, dir);
2626 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2627 unsigned long offset, size_t size,
2628 enum dma_data_direction dir,
2629 struct dma_attrs *attrs)
2631 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2632 dir, to_pci_dev(dev)->dma_mask);
2635 static void flush_unmaps(void)
2641 /* just flush them all */
2642 for (i = 0; i < g_num_of_iommus; i++) {
2643 struct intel_iommu *iommu = g_iommus[i];
2647 if (!deferred_flush[i].next)
2650 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2651 DMA_TLB_GLOBAL_FLUSH);
2652 for (j = 0; j < deferred_flush[i].next; j++) {
2654 struct iova *iova = deferred_flush[i].iova[j];
2656 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2657 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2658 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2659 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2661 deferred_flush[i].next = 0;
2667 static void flush_unmaps_timeout(unsigned long data)
2669 unsigned long flags;
2671 spin_lock_irqsave(&async_umap_flush_lock, flags);
2673 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2676 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2678 unsigned long flags;
2680 struct intel_iommu *iommu;
2682 spin_lock_irqsave(&async_umap_flush_lock, flags);
2683 if (list_size == HIGH_WATER_MARK)
2686 iommu = domain_get_iommu(dom);
2687 iommu_id = iommu->seq_id;
2689 next = deferred_flush[iommu_id].next;
2690 deferred_flush[iommu_id].domain[next] = dom;
2691 deferred_flush[iommu_id].iova[next] = iova;
2692 deferred_flush[iommu_id].next++;
2695 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2699 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2702 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2703 size_t size, enum dma_data_direction dir,
2704 struct dma_attrs *attrs)
2706 struct pci_dev *pdev = to_pci_dev(dev);
2707 struct dmar_domain *domain;
2708 unsigned long start_pfn, last_pfn;
2710 struct intel_iommu *iommu;
2712 if (iommu_no_mapping(dev))
2715 domain = find_domain(pdev);
2718 iommu = domain_get_iommu(domain);
2720 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2721 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2722 (unsigned long long)dev_addr))
2725 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2726 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2728 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2729 pci_name(pdev), start_pfn, last_pfn);
2731 /* clear the whole page */
2732 dma_pte_clear_range(domain, start_pfn, last_pfn);
2734 /* free page tables */
2735 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2737 if (intel_iommu_strict) {
2738 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2739 last_pfn - start_pfn + 1, 0);
2741 __free_iova(&domain->iovad, iova);
2743 add_unmap(domain, iova);
2745 * queue up the release of the unmap to save the 1/6th of the
2746 * cpu used up by the iotlb flush operation...
2751 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2752 dma_addr_t *dma_handle, gfp_t flags)
2757 size = PAGE_ALIGN(size);
2758 order = get_order(size);
2760 if (!iommu_no_mapping(hwdev))
2761 flags &= ~(GFP_DMA | GFP_DMA32);
2762 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
2763 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
2769 vaddr = (void *)__get_free_pages(flags, order);
2772 memset(vaddr, 0, size);
2774 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2776 hwdev->coherent_dma_mask);
2779 free_pages((unsigned long)vaddr, order);
2783 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2784 dma_addr_t dma_handle)
2788 size = PAGE_ALIGN(size);
2789 order = get_order(size);
2791 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
2792 free_pages((unsigned long)vaddr, order);
2795 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2796 int nelems, enum dma_data_direction dir,
2797 struct dma_attrs *attrs)
2799 struct pci_dev *pdev = to_pci_dev(hwdev);
2800 struct dmar_domain *domain;
2801 unsigned long start_pfn, last_pfn;
2803 struct intel_iommu *iommu;
2805 if (iommu_no_mapping(hwdev))
2808 domain = find_domain(pdev);
2811 iommu = domain_get_iommu(domain);
2813 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2814 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2815 (unsigned long long)sglist[0].dma_address))
2818 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2819 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2821 /* clear the whole page */
2822 dma_pte_clear_range(domain, start_pfn, last_pfn);
2824 /* free page tables */
2825 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2827 if (intel_iommu_strict) {
2828 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2829 last_pfn - start_pfn + 1, 0);
2831 __free_iova(&domain->iovad, iova);
2833 add_unmap(domain, iova);
2835 * queue up the release of the unmap to save the 1/6th of the
2836 * cpu used up by the iotlb flush operation...
2841 static int intel_nontranslate_map_sg(struct device *hddev,
2842 struct scatterlist *sglist, int nelems, int dir)
2845 struct scatterlist *sg;
2847 for_each_sg(sglist, sg, nelems, i) {
2848 BUG_ON(!sg_page(sg));
2849 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2850 sg->dma_length = sg->length;
2855 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2856 enum dma_data_direction dir, struct dma_attrs *attrs)
2859 struct pci_dev *pdev = to_pci_dev(hwdev);
2860 struct dmar_domain *domain;
2863 struct iova *iova = NULL;
2865 struct scatterlist *sg;
2866 unsigned long start_vpfn;
2867 struct intel_iommu *iommu;
2869 BUG_ON(dir == DMA_NONE);
2870 if (iommu_no_mapping(hwdev))
2871 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2873 domain = get_valid_domain_for_dev(pdev);
2877 iommu = domain_get_iommu(domain);
2879 for_each_sg(sglist, sg, nelems, i)
2880 size += aligned_nrpages(sg->offset, sg->length);
2882 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2885 sglist->dma_length = 0;
2890 * Check if DMAR supports zero-length reads on write only
2893 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2894 !cap_zlr(iommu->cap))
2895 prot |= DMA_PTE_READ;
2896 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2897 prot |= DMA_PTE_WRITE;
2899 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
2901 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
2902 if (unlikely(ret)) {
2903 /* clear the page */
2904 dma_pte_clear_range(domain, start_vpfn,
2905 start_vpfn + size - 1);
2906 /* free page tables */
2907 dma_pte_free_pagetable(domain, start_vpfn,
2908 start_vpfn + size - 1);
2910 __free_iova(&domain->iovad, iova);
2914 /* it's a non-present to present mapping. Only flush if caching mode */
2915 if (cap_caching_mode(iommu->cap))
2916 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
2918 iommu_flush_write_buffer(iommu);
2923 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2928 struct dma_map_ops intel_dma_ops = {
2929 .alloc_coherent = intel_alloc_coherent,
2930 .free_coherent = intel_free_coherent,
2931 .map_sg = intel_map_sg,
2932 .unmap_sg = intel_unmap_sg,
2933 .map_page = intel_map_page,
2934 .unmap_page = intel_unmap_page,
2935 .mapping_error = intel_mapping_error,
2938 static inline int iommu_domain_cache_init(void)
2942 iommu_domain_cache = kmem_cache_create("iommu_domain",
2943 sizeof(struct dmar_domain),
2948 if (!iommu_domain_cache) {
2949 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2956 static inline int iommu_devinfo_cache_init(void)
2960 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2961 sizeof(struct device_domain_info),
2965 if (!iommu_devinfo_cache) {
2966 printk(KERN_ERR "Couldn't create devinfo cache\n");
2973 static inline int iommu_iova_cache_init(void)
2977 iommu_iova_cache = kmem_cache_create("iommu_iova",
2978 sizeof(struct iova),
2982 if (!iommu_iova_cache) {
2983 printk(KERN_ERR "Couldn't create iova cache\n");
2990 static int __init iommu_init_mempool(void)
2993 ret = iommu_iova_cache_init();
2997 ret = iommu_domain_cache_init();
3001 ret = iommu_devinfo_cache_init();
3005 kmem_cache_destroy(iommu_domain_cache);
3007 kmem_cache_destroy(iommu_iova_cache);
3012 static void __init iommu_exit_mempool(void)
3014 kmem_cache_destroy(iommu_devinfo_cache);
3015 kmem_cache_destroy(iommu_domain_cache);
3016 kmem_cache_destroy(iommu_iova_cache);
3020 static void __init init_no_remapping_devices(void)
3022 struct dmar_drhd_unit *drhd;
3024 for_each_drhd_unit(drhd) {
3025 if (!drhd->include_all) {
3027 for (i = 0; i < drhd->devices_cnt; i++)
3028 if (drhd->devices[i] != NULL)
3030 /* ignore DMAR unit if no pci devices exist */
3031 if (i == drhd->devices_cnt)
3039 for_each_drhd_unit(drhd) {
3041 if (drhd->ignored || drhd->include_all)
3044 for (i = 0; i < drhd->devices_cnt; i++)
3045 if (drhd->devices[i] &&
3046 !IS_GFX_DEVICE(drhd->devices[i]))
3049 if (i < drhd->devices_cnt)
3052 /* bypass IOMMU if it is just for gfx devices */
3054 for (i = 0; i < drhd->devices_cnt; i++) {
3055 if (!drhd->devices[i])
3057 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3062 #ifdef CONFIG_SUSPEND
3063 static int init_iommu_hw(void)
3065 struct dmar_drhd_unit *drhd;
3066 struct intel_iommu *iommu = NULL;
3068 for_each_active_iommu(iommu, drhd)
3070 dmar_reenable_qi(iommu);
3072 for_each_active_iommu(iommu, drhd) {
3073 iommu_flush_write_buffer(iommu);
3075 iommu_set_root_entry(iommu);
3077 iommu->flush.flush_context(iommu, 0, 0, 0,
3078 DMA_CCMD_GLOBAL_INVL);
3079 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3080 DMA_TLB_GLOBAL_FLUSH);
3081 iommu_enable_translation(iommu);
3082 iommu_disable_protect_mem_regions(iommu);
3088 static void iommu_flush_all(void)
3090 struct dmar_drhd_unit *drhd;
3091 struct intel_iommu *iommu;
3093 for_each_active_iommu(iommu, drhd) {
3094 iommu->flush.flush_context(iommu, 0, 0, 0,
3095 DMA_CCMD_GLOBAL_INVL);
3096 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3097 DMA_TLB_GLOBAL_FLUSH);
3101 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
3103 struct dmar_drhd_unit *drhd;
3104 struct intel_iommu *iommu = NULL;
3107 for_each_active_iommu(iommu, drhd) {
3108 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3110 if (!iommu->iommu_state)
3116 for_each_active_iommu(iommu, drhd) {
3117 iommu_disable_translation(iommu);
3119 spin_lock_irqsave(&iommu->register_lock, flag);
3121 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3122 readl(iommu->reg + DMAR_FECTL_REG);
3123 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3124 readl(iommu->reg + DMAR_FEDATA_REG);
3125 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3126 readl(iommu->reg + DMAR_FEADDR_REG);
3127 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3128 readl(iommu->reg + DMAR_FEUADDR_REG);
3130 spin_unlock_irqrestore(&iommu->register_lock, flag);
3135 for_each_active_iommu(iommu, drhd)
3136 kfree(iommu->iommu_state);
3141 static int iommu_resume(struct sys_device *dev)
3143 struct dmar_drhd_unit *drhd;
3144 struct intel_iommu *iommu = NULL;
3147 if (init_iommu_hw()) {
3148 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3152 for_each_active_iommu(iommu, drhd) {
3154 spin_lock_irqsave(&iommu->register_lock, flag);
3156 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3157 iommu->reg + DMAR_FECTL_REG);
3158 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3159 iommu->reg + DMAR_FEDATA_REG);
3160 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3161 iommu->reg + DMAR_FEADDR_REG);
3162 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3163 iommu->reg + DMAR_FEUADDR_REG);
3165 spin_unlock_irqrestore(&iommu->register_lock, flag);
3168 for_each_active_iommu(iommu, drhd)
3169 kfree(iommu->iommu_state);
3174 static struct sysdev_class iommu_sysclass = {
3176 .resume = iommu_resume,
3177 .suspend = iommu_suspend,
3180 static struct sys_device device_iommu = {
3181 .cls = &iommu_sysclass,
3184 static int __init init_iommu_sysfs(void)
3188 error = sysdev_class_register(&iommu_sysclass);
3192 error = sysdev_register(&device_iommu);
3194 sysdev_class_unregister(&iommu_sysclass);
3200 static int __init init_iommu_sysfs(void)
3204 #endif /* CONFIG_PM */
3207 * Here we only respond to action of unbound device from driver.
3209 * Added device is not attached to its DMAR domain here yet. That will happen
3210 * when mapping the device to iova.
3212 static int device_notifier(struct notifier_block *nb,
3213 unsigned long action, void *data)
3215 struct device *dev = data;
3216 struct pci_dev *pdev = to_pci_dev(dev);
3217 struct dmar_domain *domain;
3219 if (iommu_no_mapping(dev))
3222 domain = find_domain(pdev);
3226 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through)
3227 domain_remove_one_dev_info(domain, pdev);
3232 static struct notifier_block device_nb = {
3233 .notifier_call = device_notifier,
3236 int __init intel_iommu_init(void)
3241 /* VT-d is required for a TXT/tboot launch, so enforce that */
3242 force_on = tboot_force_iommu();
3244 if (dmar_table_init()) {
3246 panic("tboot: Failed to initialize DMAR table\n");
3250 if (dmar_dev_scope_init()) {
3252 panic("tboot: Failed to initialize DMAR device scope\n");
3257 * Check the need for DMA-remapping initialization now.
3258 * Above initialization will also be used by Interrupt-remapping.
3260 if (no_iommu || dmar_disabled)
3263 iommu_init_mempool();
3264 dmar_init_reserved_ranges();
3266 init_no_remapping_devices();
3271 panic("tboot: Failed to initialize DMARs\n");
3272 printk(KERN_ERR "IOMMU: dmar init failed\n");
3273 put_iova_domain(&reserved_iova_list);
3274 iommu_exit_mempool();
3278 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3280 init_timer(&unmap_timer);
3281 #ifdef CONFIG_SWIOTLB
3284 dma_ops = &intel_dma_ops;
3288 register_iommu(&intel_iommu_ops);
3290 bus_register_notifier(&pci_bus_type, &device_nb);
3295 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3296 struct pci_dev *pdev)
3298 struct pci_dev *tmp, *parent;
3300 if (!iommu || !pdev)
3303 /* dependent device detach */
3304 tmp = pci_find_upstream_pcie_bridge(pdev);
3305 /* Secondary interface's bus number and devfn 0 */
3307 parent = pdev->bus->self;
3308 while (parent != tmp) {
3309 iommu_detach_dev(iommu, parent->bus->number,
3311 parent = parent->bus->self;
3313 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3314 iommu_detach_dev(iommu,
3315 tmp->subordinate->number, 0);
3316 else /* this is a legacy PCI bridge */
3317 iommu_detach_dev(iommu, tmp->bus->number,
3322 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3323 struct pci_dev *pdev)
3325 struct device_domain_info *info;
3326 struct intel_iommu *iommu;
3327 unsigned long flags;
3329 struct list_head *entry, *tmp;
3331 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3336 spin_lock_irqsave(&device_domain_lock, flags);
3337 list_for_each_safe(entry, tmp, &domain->devices) {
3338 info = list_entry(entry, struct device_domain_info, link);
3339 /* No need to compare PCI domain; it has to be the same */
3340 if (info->bus == pdev->bus->number &&
3341 info->devfn == pdev->devfn) {
3342 list_del(&info->link);
3343 list_del(&info->global);
3345 info->dev->dev.archdata.iommu = NULL;
3346 spin_unlock_irqrestore(&device_domain_lock, flags);
3348 iommu_disable_dev_iotlb(info);
3349 iommu_detach_dev(iommu, info->bus, info->devfn);
3350 iommu_detach_dependent_devices(iommu, pdev);
3351 free_devinfo_mem(info);
3353 spin_lock_irqsave(&device_domain_lock, flags);
3361 /* if there is no other devices under the same iommu
3362 * owned by this domain, clear this iommu in iommu_bmp
3363 * update iommu count and coherency
3365 if (iommu == device_to_iommu(info->segment, info->bus,
3371 unsigned long tmp_flags;
3372 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3373 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3374 domain->iommu_count--;
3375 domain_update_iommu_cap(domain);
3376 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3379 spin_unlock_irqrestore(&device_domain_lock, flags);
3382 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3384 struct device_domain_info *info;
3385 struct intel_iommu *iommu;
3386 unsigned long flags1, flags2;
3388 spin_lock_irqsave(&device_domain_lock, flags1);
3389 while (!list_empty(&domain->devices)) {
3390 info = list_entry(domain->devices.next,
3391 struct device_domain_info, link);
3392 list_del(&info->link);
3393 list_del(&info->global);
3395 info->dev->dev.archdata.iommu = NULL;
3397 spin_unlock_irqrestore(&device_domain_lock, flags1);
3399 iommu_disable_dev_iotlb(info);
3400 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3401 iommu_detach_dev(iommu, info->bus, info->devfn);
3402 iommu_detach_dependent_devices(iommu, info->dev);
3404 /* clear this iommu in iommu_bmp, update iommu count
3407 spin_lock_irqsave(&domain->iommu_lock, flags2);
3408 if (test_and_clear_bit(iommu->seq_id,
3409 &domain->iommu_bmp)) {
3410 domain->iommu_count--;
3411 domain_update_iommu_cap(domain);
3413 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3415 free_devinfo_mem(info);
3416 spin_lock_irqsave(&device_domain_lock, flags1);
3418 spin_unlock_irqrestore(&device_domain_lock, flags1);
3421 /* domain id for virtual machine, it won't be set in context */
3422 static unsigned long vm_domid;
3424 static int vm_domain_min_agaw(struct dmar_domain *domain)
3427 int min_agaw = domain->agaw;
3429 for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
3430 if (min_agaw > g_iommus[i]->agaw)
3431 min_agaw = g_iommus[i]->agaw;
3437 static struct dmar_domain *iommu_alloc_vm_domain(void)
3439 struct dmar_domain *domain;
3441 domain = alloc_domain_mem();
3445 domain->id = vm_domid++;
3447 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3448 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3453 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3457 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3458 spin_lock_init(&domain->iommu_lock);
3460 domain_reserve_special_ranges(domain);
3462 /* calculate AGAW */
3463 domain->gaw = guest_width;
3464 adjust_width = guestwidth_to_adjustwidth(guest_width);
3465 domain->agaw = width_to_agaw(adjust_width);
3467 INIT_LIST_HEAD(&domain->devices);
3469 domain->iommu_count = 0;
3470 domain->iommu_coherency = 0;
3471 domain->iommu_snooping = 0;
3472 domain->max_addr = 0;
3475 /* always allocate the top pgd */
3476 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3479 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3483 static void iommu_free_vm_domain(struct dmar_domain *domain)
3485 unsigned long flags;
3486 struct dmar_drhd_unit *drhd;
3487 struct intel_iommu *iommu;
3489 unsigned long ndomains;
3491 for_each_drhd_unit(drhd) {
3494 iommu = drhd->iommu;
3496 ndomains = cap_ndoms(iommu->cap);
3497 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3498 if (iommu->domains[i] == domain) {
3499 spin_lock_irqsave(&iommu->lock, flags);
3500 clear_bit(i, iommu->domain_ids);
3501 iommu->domains[i] = NULL;
3502 spin_unlock_irqrestore(&iommu->lock, flags);
3509 static void vm_domain_exit(struct dmar_domain *domain)
3511 /* Domain 0 is reserved, so dont process it */
3515 vm_domain_remove_all_dev_info(domain);
3517 put_iova_domain(&domain->iovad);
3520 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3522 /* free page tables */
3523 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3525 iommu_free_vm_domain(domain);
3526 free_domain_mem(domain);
3529 static int intel_iommu_domain_init(struct iommu_domain *domain)
3531 struct dmar_domain *dmar_domain;
3533 dmar_domain = iommu_alloc_vm_domain();
3536 "intel_iommu_domain_init: dmar_domain == NULL\n");
3539 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3541 "intel_iommu_domain_init() failed\n");
3542 vm_domain_exit(dmar_domain);
3545 domain->priv = dmar_domain;
3550 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3552 struct dmar_domain *dmar_domain = domain->priv;
3554 domain->priv = NULL;
3555 vm_domain_exit(dmar_domain);
3558 static int intel_iommu_attach_device(struct iommu_domain *domain,
3561 struct dmar_domain *dmar_domain = domain->priv;
3562 struct pci_dev *pdev = to_pci_dev(dev);
3563 struct intel_iommu *iommu;
3567 /* normally pdev is not mapped */
3568 if (unlikely(domain_context_mapped(pdev))) {
3569 struct dmar_domain *old_domain;
3571 old_domain = find_domain(pdev);
3573 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3574 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3575 domain_remove_one_dev_info(old_domain, pdev);
3577 domain_remove_dev_info(old_domain);
3581 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3586 /* check if this iommu agaw is sufficient for max mapped address */
3587 addr_width = agaw_to_width(iommu->agaw);
3588 end = DOMAIN_MAX_ADDR(addr_width);
3589 end = end & VTD_PAGE_MASK;
3590 if (end < dmar_domain->max_addr) {
3591 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3592 "sufficient for the mapped address (%llx)\n",
3593 __func__, iommu->agaw, dmar_domain->max_addr);
3597 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3600 static void intel_iommu_detach_device(struct iommu_domain *domain,
3603 struct dmar_domain *dmar_domain = domain->priv;
3604 struct pci_dev *pdev = to_pci_dev(dev);
3606 domain_remove_one_dev_info(dmar_domain, pdev);
3609 static int intel_iommu_map_range(struct iommu_domain *domain,
3610 unsigned long iova, phys_addr_t hpa,
3611 size_t size, int iommu_prot)
3613 struct dmar_domain *dmar_domain = domain->priv;
3619 if (iommu_prot & IOMMU_READ)
3620 prot |= DMA_PTE_READ;
3621 if (iommu_prot & IOMMU_WRITE)
3622 prot |= DMA_PTE_WRITE;
3623 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3624 prot |= DMA_PTE_SNP;
3626 max_addr = iova + size;
3627 if (dmar_domain->max_addr < max_addr) {
3631 /* check if minimum agaw is sufficient for mapped address */
3632 min_agaw = vm_domain_min_agaw(dmar_domain);
3633 addr_width = agaw_to_width(min_agaw);
3634 end = DOMAIN_MAX_ADDR(addr_width);
3635 end = end & VTD_PAGE_MASK;
3636 if (end < max_addr) {
3637 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3638 "sufficient for the mapped address (%llx)\n",
3639 __func__, min_agaw, max_addr);
3642 dmar_domain->max_addr = max_addr;
3644 /* Round up size to next multiple of PAGE_SIZE, if it and
3645 the low bits of hpa would take us onto the next page */
3646 size = aligned_nrpages(hpa, size);
3647 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
3648 hpa >> VTD_PAGE_SHIFT, size, prot);
3652 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3653 unsigned long iova, size_t size)
3655 struct dmar_domain *dmar_domain = domain->priv;
3660 dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
3661 (iova + size - 1) >> VTD_PAGE_SHIFT);
3663 if (dmar_domain->max_addr == iova + size)
3664 dmar_domain->max_addr = iova;
3667 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3670 struct dmar_domain *dmar_domain = domain->priv;
3671 struct dma_pte *pte;
3674 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT);
3676 phys = dma_pte_addr(pte);