9ab70e435b5d1b1211642a60601c9a57b25e6205
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33  * Radio control handlers.
34  */
35 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
36 {
37         int status;
38
39         /*
40          * Don't enable the radio twice.
41          * And check if the hardware button has been disabled.
42          */
43         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
44                 return 0;
45
46         /*
47          * Initialize all data queues.
48          */
49         rt2x00queue_init_queues(rt2x00dev);
50
51         /*
52          * Enable radio.
53          */
54         status =
55             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
56         if (status)
57                 return status;
58
59         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
60
61         rt2x00leds_led_radio(rt2x00dev, true);
62         rt2x00led_led_activity(rt2x00dev, true);
63
64         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
65
66         /*
67          * Enable RX.
68          */
69         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
70
71         /*
72          * Start the TX queues.
73          */
74         ieee80211_wake_queues(rt2x00dev->hw);
75
76         return 0;
77 }
78
79 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
80 {
81         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
82                 return;
83
84         /*
85          * Stop the TX queues in mac80211.
86          */
87         ieee80211_stop_queues(rt2x00dev->hw);
88         rt2x00queue_stop_queues(rt2x00dev);
89
90         /*
91          * Disable RX.
92          */
93         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
94
95         /*
96          * Disable radio.
97          */
98         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
99         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
100         rt2x00led_led_activity(rt2x00dev, false);
101         rt2x00leds_led_radio(rt2x00dev, false);
102 }
103
104 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
105 {
106         /*
107          * When we are disabling the RX, we should also stop the link tuner.
108          */
109         if (state == STATE_RADIO_RX_OFF)
110                 rt2x00link_stop_tuner(rt2x00dev);
111
112         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
113
114         /*
115          * When we are enabling the RX, we should also start the link tuner.
116          */
117         if (state == STATE_RADIO_RX_ON)
118                 rt2x00link_start_tuner(rt2x00dev);
119 }
120
121 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
122 {
123         struct rt2x00_dev *rt2x00dev =
124             container_of(work, struct rt2x00_dev, filter_work);
125
126         rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
127 }
128
129 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
130                                           struct ieee80211_vif *vif)
131 {
132         struct rt2x00_dev *rt2x00dev = data;
133         struct rt2x00_intf *intf = vif_to_intf(vif);
134         struct ieee80211_bss_conf conf;
135         int delayed_flags;
136
137         /*
138          * Copy all data we need during this action under the protection
139          * of a spinlock. Otherwise race conditions might occur which results
140          * into an invalid configuration.
141          */
142         spin_lock(&intf->lock);
143
144         memcpy(&conf, &vif->bss_conf, sizeof(conf));
145         delayed_flags = intf->delayed_flags;
146         intf->delayed_flags = 0;
147
148         spin_unlock(&intf->lock);
149
150         /*
151          * It is possible the radio was disabled while the work had been
152          * scheduled. If that happens we should return here immediately,
153          * note that in the spinlock protected area above the delayed_flags
154          * have been cleared correctly.
155          */
156         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
157                 return;
158
159         if (delayed_flags & DELAYED_UPDATE_BEACON)
160                 rt2x00queue_update_beacon(rt2x00dev, vif, true);
161
162         if (delayed_flags & DELAYED_CONFIG_ERP)
163                 rt2x00lib_config_erp(rt2x00dev, intf, &conf);
164
165         if (delayed_flags & DELAYED_LED_ASSOC)
166                 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
167 }
168
169 static void rt2x00lib_intf_scheduled(struct work_struct *work)
170 {
171         struct rt2x00_dev *rt2x00dev =
172             container_of(work, struct rt2x00_dev, intf_work);
173
174         /*
175          * Iterate over each interface and perform the
176          * requested configurations.
177          */
178         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
179                                             rt2x00lib_intf_scheduled_iter,
180                                             rt2x00dev);
181 }
182
183 /*
184  * Interrupt context handlers.
185  */
186 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
187                                       struct ieee80211_vif *vif)
188 {
189         struct rt2x00_intf *intf = vif_to_intf(vif);
190
191         if (vif->type != NL80211_IFTYPE_AP &&
192             vif->type != NL80211_IFTYPE_ADHOC &&
193             vif->type != NL80211_IFTYPE_MESH_POINT &&
194             vif->type != NL80211_IFTYPE_WDS)
195                 return;
196
197         spin_lock(&intf->lock);
198         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
199         spin_unlock(&intf->lock);
200 }
201
202 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
203 {
204         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
205                 return;
206
207         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
208                                                    rt2x00lib_beacondone_iter,
209                                                    rt2x00dev);
210
211         ieee80211_queue_work(rt2x00dev->hw, &rt2x00dev->intf_work);
212 }
213 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
214
215 void rt2x00lib_txdone(struct queue_entry *entry,
216                       struct txdone_entry_desc *txdesc)
217 {
218         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
219         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
220         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
221         enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
222         unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
223         u8 rate_idx, rate_flags, retry_rates;
224         unsigned int i;
225
226         /*
227          * Unmap the skb.
228          */
229         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
230
231         /*
232          * Remove L2 padding which was added during
233          */
234         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
235                 rt2x00queue_payload_align(entry->skb, true, header_length);
236
237         /*
238          * If the IV/EIV data was stripped from the frame before it was
239          * passed to the hardware, we should now reinsert it again because
240          * mac80211 will expect the the same data to be present it the
241          * frame as it was passed to us.
242          */
243         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
244                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
245
246         /*
247          * Send frame to debugfs immediately, after this call is completed
248          * we are going to overwrite the skb->cb array.
249          */
250         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
251
252         /*
253          * Update TX statistics.
254          */
255         rt2x00dev->link.qual.tx_success +=
256             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
257             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
258         rt2x00dev->link.qual.tx_failed +=
259             test_bit(TXDONE_FAILURE, &txdesc->flags);
260
261         rate_idx = skbdesc->tx_rate_idx;
262         rate_flags = skbdesc->tx_rate_flags;
263         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
264             (txdesc->retry + 1) : 1;
265
266         /*
267          * Initialize TX status
268          */
269         memset(&tx_info->status, 0, sizeof(tx_info->status));
270         tx_info->status.ack_signal = 0;
271
272         /*
273          * Frame was send with retries, hardware tried
274          * different rates to send out the frame, at each
275          * retry it lowered the rate 1 step.
276          */
277         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
278                 tx_info->status.rates[i].idx = rate_idx - i;
279                 tx_info->status.rates[i].flags = rate_flags;
280                 tx_info->status.rates[i].count = 1;
281         }
282         if (i < (IEEE80211_TX_MAX_RATES -1))
283                 tx_info->status.rates[i].idx = -1; /* terminate */
284
285         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
286                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
287                                 test_bit(TXDONE_UNKNOWN, &txdesc->flags))
288                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
289                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
290                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
291         }
292
293         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
294                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
295                                 test_bit(TXDONE_UNKNOWN, &txdesc->flags))
296                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
297                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
298                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
299         }
300
301         /*
302          * Only send the status report to mac80211 when TX status was
303          * requested by it. If this was a extra frame coming through
304          * a mac80211 library call (RTS/CTS) then we should not send the
305          * status report back.
306          */
307         if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
308                 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
309         else
310                 dev_kfree_skb_irq(entry->skb);
311
312         /*
313          * Make this entry available for reuse.
314          */
315         entry->skb = NULL;
316         entry->flags = 0;
317
318         rt2x00dev->ops->lib->clear_entry(entry);
319
320         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
321         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
322
323         /*
324          * If the data queue was below the threshold before the txdone
325          * handler we must make sure the packet queue in the mac80211 stack
326          * is reenabled when the txdone handler has finished.
327          */
328         if (!rt2x00queue_threshold(entry->queue))
329                 ieee80211_wake_queue(rt2x00dev->hw, qid);
330 }
331 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
332
333 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
334                                         struct rxdone_entry_desc *rxdesc)
335 {
336         struct ieee80211_supported_band *sband;
337         const struct rt2x00_rate *rate;
338         unsigned int i;
339         int signal;
340         int type;
341
342         /*
343          * For non-HT rates the MCS value needs to contain the
344          * actually used rate modulation (CCK or OFDM).
345          */
346         if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
347                 signal = RATE_MCS(rxdesc->rate_mode, rxdesc->signal);
348         else
349                 signal = rxdesc->signal;
350
351         type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
352
353         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
354         for (i = 0; i < sband->n_bitrates; i++) {
355                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
356
357                 if (((type == RXDONE_SIGNAL_PLCP) &&
358                      (rate->plcp == signal)) ||
359                     ((type == RXDONE_SIGNAL_BITRATE) &&
360                       (rate->bitrate == signal)) ||
361                     ((type == RXDONE_SIGNAL_MCS) &&
362                       (rate->mcs == signal))) {
363                         return i;
364                 }
365         }
366
367         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
368                 "signal=0x%.4x, type=%d.\n", signal, type);
369         return 0;
370 }
371
372 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
373                       struct queue_entry *entry)
374 {
375         struct rxdone_entry_desc rxdesc;
376         struct sk_buff *skb;
377         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
378         unsigned int header_length;
379         bool l2pad;
380         int rate_idx;
381         /*
382          * Allocate a new sk_buffer. If no new buffer available, drop the
383          * received frame and reuse the existing buffer.
384          */
385         skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
386         if (!skb)
387                 return;
388
389         /*
390          * Unmap the skb.
391          */
392         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
393
394         /*
395          * Extract the RXD details.
396          */
397         memset(&rxdesc, 0, sizeof(rxdesc));
398         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
399
400         /* Trim buffer to correct size */
401         skb_trim(entry->skb, rxdesc.size);
402
403         /*
404          * The data behind the ieee80211 header must be
405          * aligned on a 4 byte boundary.
406          */
407         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
408         l2pad = !!(rxdesc.dev_flags & RXDONE_L2PAD);
409
410         /*
411          * Hardware might have stripped the IV/EIV/ICV data,
412          * in that case it is possible that the data was
413          * provided seperately (through hardware descriptor)
414          * in which case we should reinsert the data into the frame.
415          */
416         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
417             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
418                 rt2x00crypto_rx_insert_iv(entry->skb, l2pad, header_length,
419                                           &rxdesc);
420         else
421                 rt2x00queue_payload_align(entry->skb, l2pad, header_length);
422
423         /*
424          * Check if the frame was received using HT. In that case,
425          * the rate is the MCS index and should be passed to mac80211
426          * directly. Otherwise we need to translate the signal to
427          * the correct bitrate index.
428          */
429         if (rxdesc.rate_mode == RATE_MODE_CCK ||
430             rxdesc.rate_mode == RATE_MODE_OFDM) {
431                 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
432         } else {
433                 rxdesc.flags |= RX_FLAG_HT;
434                 rate_idx = rxdesc.signal;
435         }
436
437         /*
438          * Update extra components
439          */
440         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
441         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
442
443         rx_status->mactime = rxdesc.timestamp;
444         rx_status->rate_idx = rate_idx;
445         rx_status->qual = rt2x00link_calculate_signal(rt2x00dev, rxdesc.rssi);
446         rx_status->signal = rxdesc.rssi;
447         rx_status->noise = rxdesc.noise;
448         rx_status->flag = rxdesc.flags;
449         rx_status->antenna = rt2x00dev->link.ant.active.rx;
450
451         /*
452          * Send frame to mac80211 & debugfs.
453          * mac80211 will clean up the skb structure.
454          */
455         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
456         memcpy(IEEE80211_SKB_RXCB(entry->skb), rx_status, sizeof(*rx_status));
457         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb);
458
459         /*
460          * Replace the skb with the freshly allocated one.
461          */
462         entry->skb = skb;
463         entry->flags = 0;
464
465         rt2x00dev->ops->lib->clear_entry(entry);
466
467         rt2x00queue_index_inc(entry->queue, Q_INDEX);
468 }
469 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
470
471 /*
472  * Driver initialization handlers.
473  */
474 const struct rt2x00_rate rt2x00_supported_rates[12] = {
475         {
476                 .flags = DEV_RATE_CCK,
477                 .bitrate = 10,
478                 .ratemask = BIT(0),
479                 .plcp = 0x00,
480                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
481         },
482         {
483                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
484                 .bitrate = 20,
485                 .ratemask = BIT(1),
486                 .plcp = 0x01,
487                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
488         },
489         {
490                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
491                 .bitrate = 55,
492                 .ratemask = BIT(2),
493                 .plcp = 0x02,
494                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
495         },
496         {
497                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
498                 .bitrate = 110,
499                 .ratemask = BIT(3),
500                 .plcp = 0x03,
501                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
502         },
503         {
504                 .flags = DEV_RATE_OFDM,
505                 .bitrate = 60,
506                 .ratemask = BIT(4),
507                 .plcp = 0x0b,
508                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
509         },
510         {
511                 .flags = DEV_RATE_OFDM,
512                 .bitrate = 90,
513                 .ratemask = BIT(5),
514                 .plcp = 0x0f,
515                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
516         },
517         {
518                 .flags = DEV_RATE_OFDM,
519                 .bitrate = 120,
520                 .ratemask = BIT(6),
521                 .plcp = 0x0a,
522                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
523         },
524         {
525                 .flags = DEV_RATE_OFDM,
526                 .bitrate = 180,
527                 .ratemask = BIT(7),
528                 .plcp = 0x0e,
529                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
530         },
531         {
532                 .flags = DEV_RATE_OFDM,
533                 .bitrate = 240,
534                 .ratemask = BIT(8),
535                 .plcp = 0x09,
536                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
537         },
538         {
539                 .flags = DEV_RATE_OFDM,
540                 .bitrate = 360,
541                 .ratemask = BIT(9),
542                 .plcp = 0x0d,
543                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
544         },
545         {
546                 .flags = DEV_RATE_OFDM,
547                 .bitrate = 480,
548                 .ratemask = BIT(10),
549                 .plcp = 0x08,
550                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
551         },
552         {
553                 .flags = DEV_RATE_OFDM,
554                 .bitrate = 540,
555                 .ratemask = BIT(11),
556                 .plcp = 0x0c,
557                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
558         },
559 };
560
561 static void rt2x00lib_channel(struct ieee80211_channel *entry,
562                               const int channel, const int tx_power,
563                               const int value)
564 {
565         entry->center_freq = ieee80211_channel_to_frequency(channel);
566         entry->hw_value = value;
567         entry->max_power = tx_power;
568         entry->max_antenna_gain = 0xff;
569 }
570
571 static void rt2x00lib_rate(struct ieee80211_rate *entry,
572                            const u16 index, const struct rt2x00_rate *rate)
573 {
574         entry->flags = 0;
575         entry->bitrate = rate->bitrate;
576         entry->hw_value =index;
577         entry->hw_value_short = index;
578
579         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
580                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
581 }
582
583 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
584                                     struct hw_mode_spec *spec)
585 {
586         struct ieee80211_hw *hw = rt2x00dev->hw;
587         struct ieee80211_channel *channels;
588         struct ieee80211_rate *rates;
589         unsigned int num_rates;
590         unsigned int i;
591
592         num_rates = 0;
593         if (spec->supported_rates & SUPPORT_RATE_CCK)
594                 num_rates += 4;
595         if (spec->supported_rates & SUPPORT_RATE_OFDM)
596                 num_rates += 8;
597
598         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
599         if (!channels)
600                 return -ENOMEM;
601
602         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
603         if (!rates)
604                 goto exit_free_channels;
605
606         /*
607          * Initialize Rate list.
608          */
609         for (i = 0; i < num_rates; i++)
610                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
611
612         /*
613          * Initialize Channel list.
614          */
615         for (i = 0; i < spec->num_channels; i++) {
616                 rt2x00lib_channel(&channels[i],
617                                   spec->channels[i].channel,
618                                   spec->channels_info[i].tx_power1, i);
619         }
620
621         /*
622          * Intitialize 802.11b, 802.11g
623          * Rates: CCK, OFDM.
624          * Channels: 2.4 GHz
625          */
626         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
627                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
628                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
629                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
630                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
631                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
632                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
633                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
634                        &spec->ht, sizeof(spec->ht));
635         }
636
637         /*
638          * Intitialize 802.11a
639          * Rates: OFDM.
640          * Channels: OFDM, UNII, HiperLAN2.
641          */
642         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
643                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
644                     spec->num_channels - 14;
645                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
646                     num_rates - 4;
647                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
648                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
649                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
650                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
651                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
652                        &spec->ht, sizeof(spec->ht));
653         }
654
655         return 0;
656
657  exit_free_channels:
658         kfree(channels);
659         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
660         return -ENOMEM;
661 }
662
663 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
664 {
665         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
666                 ieee80211_unregister_hw(rt2x00dev->hw);
667
668         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
669                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
670                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
671                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
672                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
673         }
674
675         kfree(rt2x00dev->spec.channels_info);
676 }
677
678 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
679 {
680         struct hw_mode_spec *spec = &rt2x00dev->spec;
681         int status;
682
683         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
684                 return 0;
685
686         /*
687          * Initialize HW modes.
688          */
689         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
690         if (status)
691                 return status;
692
693         /*
694          * Initialize HW fields.
695          */
696         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
697
698         /*
699          * Register HW.
700          */
701         status = ieee80211_register_hw(rt2x00dev->hw);
702         if (status)
703                 return status;
704
705         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
706
707         return 0;
708 }
709
710 /*
711  * Initialization/uninitialization handlers.
712  */
713 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
714 {
715         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
716                 return;
717
718         /*
719          * Unregister extra components.
720          */
721         rt2x00rfkill_unregister(rt2x00dev);
722
723         /*
724          * Allow the HW to uninitialize.
725          */
726         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
727
728         /*
729          * Free allocated queue entries.
730          */
731         rt2x00queue_uninitialize(rt2x00dev);
732 }
733
734 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
735 {
736         int status;
737
738         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
739                 return 0;
740
741         /*
742          * Allocate all queue entries.
743          */
744         status = rt2x00queue_initialize(rt2x00dev);
745         if (status)
746                 return status;
747
748         /*
749          * Initialize the device.
750          */
751         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
752         if (status) {
753                 rt2x00queue_uninitialize(rt2x00dev);
754                 return status;
755         }
756
757         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
758
759         /*
760          * Register the extra components.
761          */
762         rt2x00rfkill_register(rt2x00dev);
763
764         return 0;
765 }
766
767 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
768 {
769         int retval;
770
771         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
772                 return 0;
773
774         /*
775          * If this is the first interface which is added,
776          * we should load the firmware now.
777          */
778         retval = rt2x00lib_load_firmware(rt2x00dev);
779         if (retval)
780                 return retval;
781
782         /*
783          * Initialize the device.
784          */
785         retval = rt2x00lib_initialize(rt2x00dev);
786         if (retval)
787                 return retval;
788
789         rt2x00dev->intf_ap_count = 0;
790         rt2x00dev->intf_sta_count = 0;
791         rt2x00dev->intf_associated = 0;
792
793         /* Enable the radio */
794         retval = rt2x00lib_enable_radio(rt2x00dev);
795         if (retval) {
796                 rt2x00queue_uninitialize(rt2x00dev);
797                 return retval;
798         }
799
800         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
801
802         return 0;
803 }
804
805 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
806 {
807         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
808                 return;
809
810         /*
811          * Perhaps we can add something smarter here,
812          * but for now just disabling the radio should do.
813          */
814         rt2x00lib_disable_radio(rt2x00dev);
815
816         rt2x00dev->intf_ap_count = 0;
817         rt2x00dev->intf_sta_count = 0;
818         rt2x00dev->intf_associated = 0;
819 }
820
821 /*
822  * driver allocation handlers.
823  */
824 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
825 {
826         int retval = -ENOMEM;
827
828         mutex_init(&rt2x00dev->csr_mutex);
829
830         /*
831          * Make room for rt2x00_intf inside the per-interface
832          * structure ieee80211_vif.
833          */
834         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
835
836         /*
837          * Determine which operating modes are supported, all modes
838          * which require beaconing, depend on the availability of
839          * beacon entries.
840          */
841         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
842         if (rt2x00dev->ops->bcn->entry_num > 0)
843                 rt2x00dev->hw->wiphy->interface_modes |=
844                     BIT(NL80211_IFTYPE_ADHOC) |
845                     BIT(NL80211_IFTYPE_AP) |
846                     BIT(NL80211_IFTYPE_MESH_POINT) |
847                     BIT(NL80211_IFTYPE_WDS);
848
849         /*
850          * Let the driver probe the device to detect the capabilities.
851          */
852         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
853         if (retval) {
854                 ERROR(rt2x00dev, "Failed to allocate device.\n");
855                 goto exit;
856         }
857
858         /*
859          * Initialize configuration work.
860          */
861         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
862         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
863
864         /*
865          * Allocate queue array.
866          */
867         retval = rt2x00queue_allocate(rt2x00dev);
868         if (retval)
869                 goto exit;
870
871         /*
872          * Initialize ieee80211 structure.
873          */
874         retval = rt2x00lib_probe_hw(rt2x00dev);
875         if (retval) {
876                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
877                 goto exit;
878         }
879
880         /*
881          * Register extra components.
882          */
883         rt2x00link_register(rt2x00dev);
884         rt2x00leds_register(rt2x00dev);
885         rt2x00debug_register(rt2x00dev);
886
887         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
888
889         return 0;
890
891 exit:
892         rt2x00lib_remove_dev(rt2x00dev);
893
894         return retval;
895 }
896 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
897
898 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
899 {
900         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
901
902         /*
903          * Disable radio.
904          */
905         rt2x00lib_disable_radio(rt2x00dev);
906
907         /*
908          * Stop all work.
909          */
910         cancel_work_sync(&rt2x00dev->filter_work);
911         cancel_work_sync(&rt2x00dev->intf_work);
912
913         /*
914          * Uninitialize device.
915          */
916         rt2x00lib_uninitialize(rt2x00dev);
917
918         /*
919          * Free extra components
920          */
921         rt2x00debug_deregister(rt2x00dev);
922         rt2x00leds_unregister(rt2x00dev);
923
924         /*
925          * Free ieee80211_hw memory.
926          */
927         rt2x00lib_remove_hw(rt2x00dev);
928
929         /*
930          * Free firmware image.
931          */
932         rt2x00lib_free_firmware(rt2x00dev);
933
934         /*
935          * Free queue structures.
936          */
937         rt2x00queue_free(rt2x00dev);
938 }
939 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
940
941 /*
942  * Device state handlers
943  */
944 #ifdef CONFIG_PM
945 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
946 {
947         NOTICE(rt2x00dev, "Going to sleep.\n");
948
949         /*
950          * Prevent mac80211 from accessing driver while suspended.
951          */
952         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
953                 return 0;
954
955         /*
956          * Cleanup as much as possible.
957          */
958         rt2x00lib_uninitialize(rt2x00dev);
959
960         /*
961          * Suspend/disable extra components.
962          */
963         rt2x00leds_suspend(rt2x00dev);
964         rt2x00debug_deregister(rt2x00dev);
965
966         /*
967          * Set device mode to sleep for power management,
968          * on some hardware this call seems to consistently fail.
969          * From the specifications it is hard to tell why it fails,
970          * and if this is a "bad thing".
971          * Overall it is safe to just ignore the failure and
972          * continue suspending. The only downside is that the
973          * device will not be in optimal power save mode, but with
974          * the radio and the other components already disabled the
975          * device is as good as disabled.
976          */
977         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
978                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
979                         "continue suspending.\n");
980
981         return 0;
982 }
983 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
984
985 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
986 {
987         NOTICE(rt2x00dev, "Waking up.\n");
988
989         /*
990          * Restore/enable extra components.
991          */
992         rt2x00debug_register(rt2x00dev);
993         rt2x00leds_resume(rt2x00dev);
994
995         /*
996          * We are ready again to receive requests from mac80211.
997          */
998         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
999
1000         return 0;
1001 }
1002 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1003 #endif /* CONFIG_PM */
1004
1005 /*
1006  * rt2x00lib module information.
1007  */
1008 MODULE_AUTHOR(DRV_PROJECT);
1009 MODULE_VERSION(DRV_VERSION);
1010 MODULE_DESCRIPTION("rt2x00 library");
1011 MODULE_LICENSE("GPL");