00bfb2255cebeb62f66d556fd580c3ca7910c9df
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33  * Radio control handlers.
34  */
35 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
36 {
37         int status;
38
39         /*
40          * Don't enable the radio twice.
41          * And check if the hardware button has been disabled.
42          */
43         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
44                 return 0;
45
46         /*
47          * Initialize all data queues.
48          */
49         rt2x00queue_init_queues(rt2x00dev);
50
51         /*
52          * Enable radio.
53          */
54         status =
55             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
56         if (status)
57                 return status;
58
59         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
60
61         rt2x00leds_led_radio(rt2x00dev, true);
62         rt2x00led_led_activity(rt2x00dev, true);
63
64         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
65
66         /*
67          * Enable RX.
68          */
69         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
70
71         /*
72          * Start the TX queues.
73          */
74         ieee80211_wake_queues(rt2x00dev->hw);
75
76         return 0;
77 }
78
79 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
80 {
81         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
82                 return;
83
84         /*
85          * Stop the TX queues in mac80211.
86          */
87         ieee80211_stop_queues(rt2x00dev->hw);
88         rt2x00queue_stop_queues(rt2x00dev);
89
90         /*
91          * Disable RX.
92          */
93         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
94
95         /*
96          * Disable radio.
97          */
98         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
99         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
100         rt2x00led_led_activity(rt2x00dev, false);
101         rt2x00leds_led_radio(rt2x00dev, false);
102 }
103
104 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
105 {
106         /*
107          * When we are disabling the RX, we should also stop the link tuner.
108          */
109         if (state == STATE_RADIO_RX_OFF)
110                 rt2x00link_stop_tuner(rt2x00dev);
111
112         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
113
114         /*
115          * When we are enabling the RX, we should also start the link tuner.
116          */
117         if (state == STATE_RADIO_RX_ON)
118                 rt2x00link_start_tuner(rt2x00dev);
119 }
120
121 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
122                                           struct ieee80211_vif *vif)
123 {
124         struct rt2x00_dev *rt2x00dev = data;
125         struct rt2x00_intf *intf = vif_to_intf(vif);
126         int delayed_flags;
127
128         /*
129          * Copy all data we need during this action under the protection
130          * of a spinlock. Otherwise race conditions might occur which results
131          * into an invalid configuration.
132          */
133         spin_lock(&intf->lock);
134
135         delayed_flags = intf->delayed_flags;
136         intf->delayed_flags = 0;
137
138         spin_unlock(&intf->lock);
139
140         /*
141          * It is possible the radio was disabled while the work had been
142          * scheduled. If that happens we should return here immediately,
143          * note that in the spinlock protected area above the delayed_flags
144          * have been cleared correctly.
145          */
146         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
147                 return;
148
149         if (delayed_flags & DELAYED_UPDATE_BEACON)
150                 rt2x00queue_update_beacon(rt2x00dev, vif, true);
151 }
152
153 static void rt2x00lib_intf_scheduled(struct work_struct *work)
154 {
155         struct rt2x00_dev *rt2x00dev =
156             container_of(work, struct rt2x00_dev, intf_work);
157
158         /*
159          * Iterate over each interface and perform the
160          * requested configurations.
161          */
162         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
163                                             rt2x00lib_intf_scheduled_iter,
164                                             rt2x00dev);
165 }
166
167 /*
168  * Interrupt context handlers.
169  */
170 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
171                                       struct ieee80211_vif *vif)
172 {
173         struct rt2x00_intf *intf = vif_to_intf(vif);
174
175         if (vif->type != NL80211_IFTYPE_AP &&
176             vif->type != NL80211_IFTYPE_ADHOC &&
177             vif->type != NL80211_IFTYPE_MESH_POINT &&
178             vif->type != NL80211_IFTYPE_WDS)
179                 return;
180
181         spin_lock(&intf->lock);
182         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
183         spin_unlock(&intf->lock);
184 }
185
186 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
187 {
188         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
189                 return;
190
191         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
192                                                    rt2x00lib_beacondone_iter,
193                                                    rt2x00dev);
194
195         ieee80211_queue_work(rt2x00dev->hw, &rt2x00dev->intf_work);
196 }
197 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
198
199 void rt2x00lib_txdone(struct queue_entry *entry,
200                       struct txdone_entry_desc *txdesc)
201 {
202         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
203         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
204         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
205         enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
206         unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
207         u8 rate_idx, rate_flags, retry_rates;
208         unsigned int i;
209         bool success;
210
211         /*
212          * Unmap the skb.
213          */
214         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
215
216         /*
217          * Remove L2 padding which was added during
218          */
219         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
220                 rt2x00queue_remove_l2pad(entry->skb, header_length);
221
222         /*
223          * If the IV/EIV data was stripped from the frame before it was
224          * passed to the hardware, we should now reinsert it again because
225          * mac80211 will expect the the same data to be present it the
226          * frame as it was passed to us.
227          */
228         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
229                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
230
231         /*
232          * Send frame to debugfs immediately, after this call is completed
233          * we are going to overwrite the skb->cb array.
234          */
235         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
236
237         /*
238          * Determine if the frame has been successfully transmitted.
239          */
240         success =
241             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
242             test_bit(TXDONE_UNKNOWN, &txdesc->flags) ||
243             test_bit(TXDONE_FALLBACK, &txdesc->flags);
244
245         /*
246          * Update TX statistics.
247          */
248         rt2x00dev->link.qual.tx_success += success;
249         rt2x00dev->link.qual.tx_failed += !success;
250
251         rate_idx = skbdesc->tx_rate_idx;
252         rate_flags = skbdesc->tx_rate_flags;
253         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
254             (txdesc->retry + 1) : 1;
255
256         /*
257          * Initialize TX status
258          */
259         memset(&tx_info->status, 0, sizeof(tx_info->status));
260         tx_info->status.ack_signal = 0;
261
262         /*
263          * Frame was send with retries, hardware tried
264          * different rates to send out the frame, at each
265          * retry it lowered the rate 1 step.
266          */
267         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
268                 tx_info->status.rates[i].idx = rate_idx - i;
269                 tx_info->status.rates[i].flags = rate_flags;
270                 tx_info->status.rates[i].count = 1;
271         }
272         if (i < (IEEE80211_TX_MAX_RATES - 1))
273                 tx_info->status.rates[i].idx = -1; /* terminate */
274
275         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
276                 if (success)
277                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
278                 else
279                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
280         }
281
282         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
283                 if (success)
284                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
285                 else
286                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
287         }
288
289         /*
290          * Only send the status report to mac80211 when TX status was
291          * requested by it. If this was a extra frame coming through
292          * a mac80211 library call (RTS/CTS) then we should not send the
293          * status report back.
294          */
295         if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
296                 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
297         else
298                 dev_kfree_skb_irq(entry->skb);
299
300         /*
301          * Make this entry available for reuse.
302          */
303         entry->skb = NULL;
304         entry->flags = 0;
305
306         rt2x00dev->ops->lib->clear_entry(entry);
307
308         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
309         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
310
311         /*
312          * If the data queue was below the threshold before the txdone
313          * handler we must make sure the packet queue in the mac80211 stack
314          * is reenabled when the txdone handler has finished.
315          */
316         if (!rt2x00queue_threshold(entry->queue))
317                 ieee80211_wake_queue(rt2x00dev->hw, qid);
318 }
319 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
320
321 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
322                                         struct rxdone_entry_desc *rxdesc)
323 {
324         struct ieee80211_supported_band *sband;
325         const struct rt2x00_rate *rate;
326         unsigned int i;
327         int signal;
328         int type;
329
330         /*
331          * For non-HT rates the MCS value needs to contain the
332          * actually used rate modulation (CCK or OFDM).
333          */
334         if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
335                 signal = RATE_MCS(rxdesc->rate_mode, rxdesc->signal);
336         else
337                 signal = rxdesc->signal;
338
339         type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
340
341         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
342         for (i = 0; i < sband->n_bitrates; i++) {
343                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
344
345                 if (((type == RXDONE_SIGNAL_PLCP) &&
346                      (rate->plcp == signal)) ||
347                     ((type == RXDONE_SIGNAL_BITRATE) &&
348                       (rate->bitrate == signal)) ||
349                     ((type == RXDONE_SIGNAL_MCS) &&
350                       (rate->mcs == signal))) {
351                         return i;
352                 }
353         }
354
355         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
356                 "signal=0x%.4x, type=%d.\n", signal, type);
357         return 0;
358 }
359
360 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
361                       struct queue_entry *entry)
362 {
363         struct rxdone_entry_desc rxdesc;
364         struct sk_buff *skb;
365         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
366         unsigned int header_length;
367         int rate_idx;
368         /*
369          * Allocate a new sk_buffer. If no new buffer available, drop the
370          * received frame and reuse the existing buffer.
371          */
372         skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
373         if (!skb)
374                 return;
375
376         /*
377          * Unmap the skb.
378          */
379         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
380
381         /*
382          * Extract the RXD details.
383          */
384         memset(&rxdesc, 0, sizeof(rxdesc));
385         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
386
387         /* Trim buffer to correct size */
388         skb_trim(entry->skb, rxdesc.size);
389
390         /*
391          * The data behind the ieee80211 header must be
392          * aligned on a 4 byte boundary.
393          */
394         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
395
396         /*
397          * Hardware might have stripped the IV/EIV/ICV data,
398          * in that case it is possible that the data was
399          * provided seperately (through hardware descriptor)
400          * in which case we should reinsert the data into the frame.
401          */
402         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
403             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
404                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
405                                           &rxdesc);
406         else if (rxdesc.dev_flags & RXDONE_L2PAD)
407                 rt2x00queue_remove_l2pad(entry->skb, header_length);
408         else
409                 rt2x00queue_align_payload(entry->skb, header_length);
410
411         /*
412          * Check if the frame was received using HT. In that case,
413          * the rate is the MCS index and should be passed to mac80211
414          * directly. Otherwise we need to translate the signal to
415          * the correct bitrate index.
416          */
417         if (rxdesc.rate_mode == RATE_MODE_CCK ||
418             rxdesc.rate_mode == RATE_MODE_OFDM) {
419                 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
420         } else {
421                 rxdesc.flags |= RX_FLAG_HT;
422                 rate_idx = rxdesc.signal;
423         }
424
425         /*
426          * Update extra components
427          */
428         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
429         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
430
431         rx_status->mactime = rxdesc.timestamp;
432         rx_status->rate_idx = rate_idx;
433         rx_status->signal = rxdesc.rssi;
434         rx_status->noise = rxdesc.noise;
435         rx_status->flag = rxdesc.flags;
436         rx_status->antenna = rt2x00dev->link.ant.active.rx;
437
438         /*
439          * Send frame to mac80211 & debugfs.
440          * mac80211 will clean up the skb structure.
441          */
442         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
443         memcpy(IEEE80211_SKB_RXCB(entry->skb), rx_status, sizeof(*rx_status));
444         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb);
445
446         /*
447          * Replace the skb with the freshly allocated one.
448          */
449         entry->skb = skb;
450         entry->flags = 0;
451
452         rt2x00dev->ops->lib->clear_entry(entry);
453
454         rt2x00queue_index_inc(entry->queue, Q_INDEX);
455 }
456 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
457
458 /*
459  * Driver initialization handlers.
460  */
461 const struct rt2x00_rate rt2x00_supported_rates[12] = {
462         {
463                 .flags = DEV_RATE_CCK,
464                 .bitrate = 10,
465                 .ratemask = BIT(0),
466                 .plcp = 0x00,
467                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
468         },
469         {
470                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
471                 .bitrate = 20,
472                 .ratemask = BIT(1),
473                 .plcp = 0x01,
474                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
475         },
476         {
477                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
478                 .bitrate = 55,
479                 .ratemask = BIT(2),
480                 .plcp = 0x02,
481                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
482         },
483         {
484                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
485                 .bitrate = 110,
486                 .ratemask = BIT(3),
487                 .plcp = 0x03,
488                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
489         },
490         {
491                 .flags = DEV_RATE_OFDM,
492                 .bitrate = 60,
493                 .ratemask = BIT(4),
494                 .plcp = 0x0b,
495                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
496         },
497         {
498                 .flags = DEV_RATE_OFDM,
499                 .bitrate = 90,
500                 .ratemask = BIT(5),
501                 .plcp = 0x0f,
502                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
503         },
504         {
505                 .flags = DEV_RATE_OFDM,
506                 .bitrate = 120,
507                 .ratemask = BIT(6),
508                 .plcp = 0x0a,
509                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
510         },
511         {
512                 .flags = DEV_RATE_OFDM,
513                 .bitrate = 180,
514                 .ratemask = BIT(7),
515                 .plcp = 0x0e,
516                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
517         },
518         {
519                 .flags = DEV_RATE_OFDM,
520                 .bitrate = 240,
521                 .ratemask = BIT(8),
522                 .plcp = 0x09,
523                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
524         },
525         {
526                 .flags = DEV_RATE_OFDM,
527                 .bitrate = 360,
528                 .ratemask = BIT(9),
529                 .plcp = 0x0d,
530                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
531         },
532         {
533                 .flags = DEV_RATE_OFDM,
534                 .bitrate = 480,
535                 .ratemask = BIT(10),
536                 .plcp = 0x08,
537                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
538         },
539         {
540                 .flags = DEV_RATE_OFDM,
541                 .bitrate = 540,
542                 .ratemask = BIT(11),
543                 .plcp = 0x0c,
544                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
545         },
546 };
547
548 static void rt2x00lib_channel(struct ieee80211_channel *entry,
549                               const int channel, const int tx_power,
550                               const int value)
551 {
552         entry->center_freq = ieee80211_channel_to_frequency(channel);
553         entry->hw_value = value;
554         entry->max_power = tx_power;
555         entry->max_antenna_gain = 0xff;
556 }
557
558 static void rt2x00lib_rate(struct ieee80211_rate *entry,
559                            const u16 index, const struct rt2x00_rate *rate)
560 {
561         entry->flags = 0;
562         entry->bitrate = rate->bitrate;
563         entry->hw_value =index;
564         entry->hw_value_short = index;
565
566         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
567                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
568 }
569
570 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
571                                     struct hw_mode_spec *spec)
572 {
573         struct ieee80211_hw *hw = rt2x00dev->hw;
574         struct ieee80211_channel *channels;
575         struct ieee80211_rate *rates;
576         unsigned int num_rates;
577         unsigned int i;
578
579         num_rates = 0;
580         if (spec->supported_rates & SUPPORT_RATE_CCK)
581                 num_rates += 4;
582         if (spec->supported_rates & SUPPORT_RATE_OFDM)
583                 num_rates += 8;
584
585         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
586         if (!channels)
587                 return -ENOMEM;
588
589         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
590         if (!rates)
591                 goto exit_free_channels;
592
593         /*
594          * Initialize Rate list.
595          */
596         for (i = 0; i < num_rates; i++)
597                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
598
599         /*
600          * Initialize Channel list.
601          */
602         for (i = 0; i < spec->num_channels; i++) {
603                 rt2x00lib_channel(&channels[i],
604                                   spec->channels[i].channel,
605                                   spec->channels_info[i].tx_power1, i);
606         }
607
608         /*
609          * Intitialize 802.11b, 802.11g
610          * Rates: CCK, OFDM.
611          * Channels: 2.4 GHz
612          */
613         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
614                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
615                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
616                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
617                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
618                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
619                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
620                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
621                        &spec->ht, sizeof(spec->ht));
622         }
623
624         /*
625          * Intitialize 802.11a
626          * Rates: OFDM.
627          * Channels: OFDM, UNII, HiperLAN2.
628          */
629         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
630                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
631                     spec->num_channels - 14;
632                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
633                     num_rates - 4;
634                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
635                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
636                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
637                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
638                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
639                        &spec->ht, sizeof(spec->ht));
640         }
641
642         return 0;
643
644  exit_free_channels:
645         kfree(channels);
646         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
647         return -ENOMEM;
648 }
649
650 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
651 {
652         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
653                 ieee80211_unregister_hw(rt2x00dev->hw);
654
655         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
656                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
657                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
658                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
659                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
660         }
661
662         kfree(rt2x00dev->spec.channels_info);
663 }
664
665 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
666 {
667         struct hw_mode_spec *spec = &rt2x00dev->spec;
668         int status;
669
670         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
671                 return 0;
672
673         /*
674          * Initialize HW modes.
675          */
676         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
677         if (status)
678                 return status;
679
680         /*
681          * Initialize HW fields.
682          */
683         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
684
685         /*
686          * Register HW.
687          */
688         status = ieee80211_register_hw(rt2x00dev->hw);
689         if (status)
690                 return status;
691
692         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
693
694         return 0;
695 }
696
697 /*
698  * Initialization/uninitialization handlers.
699  */
700 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
701 {
702         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
703                 return;
704
705         /*
706          * Unregister extra components.
707          */
708         rt2x00rfkill_unregister(rt2x00dev);
709
710         /*
711          * Allow the HW to uninitialize.
712          */
713         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
714
715         /*
716          * Free allocated queue entries.
717          */
718         rt2x00queue_uninitialize(rt2x00dev);
719 }
720
721 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
722 {
723         int status;
724
725         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
726                 return 0;
727
728         /*
729          * Allocate all queue entries.
730          */
731         status = rt2x00queue_initialize(rt2x00dev);
732         if (status)
733                 return status;
734
735         /*
736          * Initialize the device.
737          */
738         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
739         if (status) {
740                 rt2x00queue_uninitialize(rt2x00dev);
741                 return status;
742         }
743
744         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
745
746         /*
747          * Register the extra components.
748          */
749         rt2x00rfkill_register(rt2x00dev);
750
751         return 0;
752 }
753
754 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
755 {
756         int retval;
757
758         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
759                 return 0;
760
761         /*
762          * If this is the first interface which is added,
763          * we should load the firmware now.
764          */
765         retval = rt2x00lib_load_firmware(rt2x00dev);
766         if (retval)
767                 return retval;
768
769         /*
770          * Initialize the device.
771          */
772         retval = rt2x00lib_initialize(rt2x00dev);
773         if (retval)
774                 return retval;
775
776         rt2x00dev->intf_ap_count = 0;
777         rt2x00dev->intf_sta_count = 0;
778         rt2x00dev->intf_associated = 0;
779
780         /* Enable the radio */
781         retval = rt2x00lib_enable_radio(rt2x00dev);
782         if (retval) {
783                 rt2x00queue_uninitialize(rt2x00dev);
784                 return retval;
785         }
786
787         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
788
789         return 0;
790 }
791
792 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
793 {
794         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
795                 return;
796
797         /*
798          * Perhaps we can add something smarter here,
799          * but for now just disabling the radio should do.
800          */
801         rt2x00lib_disable_radio(rt2x00dev);
802
803         rt2x00dev->intf_ap_count = 0;
804         rt2x00dev->intf_sta_count = 0;
805         rt2x00dev->intf_associated = 0;
806 }
807
808 /*
809  * driver allocation handlers.
810  */
811 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
812 {
813         int retval = -ENOMEM;
814
815         mutex_init(&rt2x00dev->csr_mutex);
816
817         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
818
819         /*
820          * Make room for rt2x00_intf inside the per-interface
821          * structure ieee80211_vif.
822          */
823         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
824
825         /*
826          * Determine which operating modes are supported, all modes
827          * which require beaconing, depend on the availability of
828          * beacon entries.
829          */
830         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
831         if (rt2x00dev->ops->bcn->entry_num > 0)
832                 rt2x00dev->hw->wiphy->interface_modes |=
833                     BIT(NL80211_IFTYPE_ADHOC) |
834                     BIT(NL80211_IFTYPE_AP) |
835                     BIT(NL80211_IFTYPE_MESH_POINT) |
836                     BIT(NL80211_IFTYPE_WDS);
837
838         /*
839          * Let the driver probe the device to detect the capabilities.
840          */
841         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
842         if (retval) {
843                 ERROR(rt2x00dev, "Failed to allocate device.\n");
844                 goto exit;
845         }
846
847         /*
848          * Initialize configuration work.
849          */
850         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
851
852         /*
853          * Allocate queue array.
854          */
855         retval = rt2x00queue_allocate(rt2x00dev);
856         if (retval)
857                 goto exit;
858
859         /*
860          * Initialize ieee80211 structure.
861          */
862         retval = rt2x00lib_probe_hw(rt2x00dev);
863         if (retval) {
864                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
865                 goto exit;
866         }
867
868         /*
869          * Register extra components.
870          */
871         rt2x00link_register(rt2x00dev);
872         rt2x00leds_register(rt2x00dev);
873         rt2x00debug_register(rt2x00dev);
874
875         return 0;
876
877 exit:
878         rt2x00lib_remove_dev(rt2x00dev);
879
880         return retval;
881 }
882 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
883
884 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
885 {
886         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
887
888         /*
889          * Disable radio.
890          */
891         rt2x00lib_disable_radio(rt2x00dev);
892
893         /*
894          * Stop all work.
895          */
896         cancel_work_sync(&rt2x00dev->intf_work);
897
898         /*
899          * Uninitialize device.
900          */
901         rt2x00lib_uninitialize(rt2x00dev);
902
903         /*
904          * Free extra components
905          */
906         rt2x00debug_deregister(rt2x00dev);
907         rt2x00leds_unregister(rt2x00dev);
908
909         /*
910          * Free ieee80211_hw memory.
911          */
912         rt2x00lib_remove_hw(rt2x00dev);
913
914         /*
915          * Free firmware image.
916          */
917         rt2x00lib_free_firmware(rt2x00dev);
918
919         /*
920          * Free queue structures.
921          */
922         rt2x00queue_free(rt2x00dev);
923 }
924 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
925
926 /*
927  * Device state handlers
928  */
929 #ifdef CONFIG_PM
930 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
931 {
932         NOTICE(rt2x00dev, "Going to sleep.\n");
933
934         /*
935          * Prevent mac80211 from accessing driver while suspended.
936          */
937         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
938                 return 0;
939
940         /*
941          * Cleanup as much as possible.
942          */
943         rt2x00lib_uninitialize(rt2x00dev);
944
945         /*
946          * Suspend/disable extra components.
947          */
948         rt2x00leds_suspend(rt2x00dev);
949         rt2x00debug_deregister(rt2x00dev);
950
951         /*
952          * Set device mode to sleep for power management,
953          * on some hardware this call seems to consistently fail.
954          * From the specifications it is hard to tell why it fails,
955          * and if this is a "bad thing".
956          * Overall it is safe to just ignore the failure and
957          * continue suspending. The only downside is that the
958          * device will not be in optimal power save mode, but with
959          * the radio and the other components already disabled the
960          * device is as good as disabled.
961          */
962         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
963                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
964                         "continue suspending.\n");
965
966         return 0;
967 }
968 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
969
970 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
971 {
972         NOTICE(rt2x00dev, "Waking up.\n");
973
974         /*
975          * Restore/enable extra components.
976          */
977         rt2x00debug_register(rt2x00dev);
978         rt2x00leds_resume(rt2x00dev);
979
980         /*
981          * We are ready again to receive requests from mac80211.
982          */
983         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
984
985         return 0;
986 }
987 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
988 #endif /* CONFIG_PM */
989
990 /*
991  * rt2x00lib module information.
992  */
993 MODULE_AUTHOR(DRV_PROJECT);
994 MODULE_VERSION(DRV_VERSION);
995 MODULE_DESCRIPTION("rt2x00 library");
996 MODULE_LICENSE("GPL");