7d9a263ea0a7a80d3b6a352f62ed72963b314dd5
[pandora-kernel.git] / drivers / net / wireless / ath9k / main.c
1 /*
2  * Copyright (c) 2008 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/nl80211.h>
18 #include "core.h"
19 #include "reg.h"
20 #include "hw.h"
21
22 #define ATH_PCI_VERSION "0.1"
23
24 static char *dev_info = "ath9k";
25
26 MODULE_AUTHOR("Atheros Communications");
27 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
28 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
29 MODULE_LICENSE("Dual BSD/GPL");
30
31 static struct pci_device_id ath_pci_id_table[] __devinitdata = {
32         { PCI_VDEVICE(ATHEROS, 0x0023) }, /* PCI   */
33         { PCI_VDEVICE(ATHEROS, 0x0024) }, /* PCI-E */
34         { PCI_VDEVICE(ATHEROS, 0x0027) }, /* PCI   */
35         { PCI_VDEVICE(ATHEROS, 0x0029) }, /* PCI   */
36         { PCI_VDEVICE(ATHEROS, 0x002A) }, /* PCI-E */
37         { PCI_VDEVICE(ATHEROS, 0x002B) }, /* PCI-E */
38         { 0 }
39 };
40
41 static void ath_detach(struct ath_softc *sc);
42
43 /* return bus cachesize in 4B word units */
44
45 static void bus_read_cachesize(struct ath_softc *sc, int *csz)
46 {
47         u8 u8tmp;
48
49         pci_read_config_byte(sc->pdev, PCI_CACHE_LINE_SIZE, (u8 *)&u8tmp);
50         *csz = (int)u8tmp;
51
52         /*
53          * This check was put in to avoid "unplesant" consequences if
54          * the bootrom has not fully initialized all PCI devices.
55          * Sometimes the cache line size register is not set
56          */
57
58         if (*csz == 0)
59                 *csz = DEFAULT_CACHELINE >> 2;   /* Use the default size */
60 }
61
62 static void ath_cache_conf_rate(struct ath_softc *sc,
63                                 struct ieee80211_conf *conf)
64 {
65         switch (conf->channel->band) {
66         case IEEE80211_BAND_2GHZ:
67                 if (conf_is_ht20(conf))
68                         sc->cur_rate_table =
69                           sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
70                 else if (conf_is_ht40_minus(conf))
71                         sc->cur_rate_table =
72                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
73                 else if (conf_is_ht40_plus(conf))
74                         sc->cur_rate_table =
75                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
76                 else
77                         sc->cur_rate_table =
78                           sc->hw_rate_table[ATH9K_MODE_11G];
79                 break;
80         case IEEE80211_BAND_5GHZ:
81                 if (conf_is_ht20(conf))
82                         sc->cur_rate_table =
83                           sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
84                 else if (conf_is_ht40_minus(conf))
85                         sc->cur_rate_table =
86                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
87                 else if (conf_is_ht40_plus(conf))
88                         sc->cur_rate_table =
89                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
90                 else
91                         sc->cur_rate_table =
92                           sc->hw_rate_table[ATH9K_MODE_11A];
93                 break;
94         default:
95                 BUG_ON(1);
96                 break;
97         }
98 }
99
100 static void ath_update_txpow(struct ath_softc *sc)
101 {
102         struct ath_hal *ah = sc->sc_ah;
103         u32 txpow;
104
105         if (sc->sc_curtxpow != sc->sc_config.txpowlimit) {
106                 ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit);
107                 /* read back in case value is clamped */
108                 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
109                 sc->sc_curtxpow = txpow;
110         }
111 }
112
113 static u8 parse_mpdudensity(u8 mpdudensity)
114 {
115         /*
116          * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
117          *   0 for no restriction
118          *   1 for 1/4 us
119          *   2 for 1/2 us
120          *   3 for 1 us
121          *   4 for 2 us
122          *   5 for 4 us
123          *   6 for 8 us
124          *   7 for 16 us
125          */
126         switch (mpdudensity) {
127         case 0:
128                 return 0;
129         case 1:
130         case 2:
131         case 3:
132                 /* Our lower layer calculations limit our precision to
133                    1 microsecond */
134                 return 1;
135         case 4:
136                 return 2;
137         case 5:
138                 return 4;
139         case 6:
140                 return 8;
141         case 7:
142                 return 16;
143         default:
144                 return 0;
145         }
146 }
147
148 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
149 {
150         struct ath_rate_table *rate_table = NULL;
151         struct ieee80211_supported_band *sband;
152         struct ieee80211_rate *rate;
153         int i, maxrates;
154
155         switch (band) {
156         case IEEE80211_BAND_2GHZ:
157                 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
158                 break;
159         case IEEE80211_BAND_5GHZ:
160                 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
161                 break;
162         default:
163                 break;
164         }
165
166         if (rate_table == NULL)
167                 return;
168
169         sband = &sc->sbands[band];
170         rate = sc->rates[band];
171
172         if (rate_table->rate_cnt > ATH_RATE_MAX)
173                 maxrates = ATH_RATE_MAX;
174         else
175                 maxrates = rate_table->rate_cnt;
176
177         for (i = 0; i < maxrates; i++) {
178                 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
179                 rate[i].hw_value = rate_table->info[i].ratecode;
180                 sband->n_bitrates++;
181                 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
182                         rate[i].bitrate / 10, rate[i].hw_value);
183         }
184 }
185
186 static int ath_setup_channels(struct ath_softc *sc)
187 {
188         struct ath_hal *ah = sc->sc_ah;
189         int nchan, i, a = 0, b = 0;
190         u8 regclassids[ATH_REGCLASSIDS_MAX];
191         u32 nregclass = 0;
192         struct ieee80211_supported_band *band_2ghz;
193         struct ieee80211_supported_band *band_5ghz;
194         struct ieee80211_channel *chan_2ghz;
195         struct ieee80211_channel *chan_5ghz;
196         struct ath9k_channel *c;
197
198         /* Fill in ah->ah_channels */
199         if (!ath9k_regd_init_channels(ah, ATH_CHAN_MAX, (u32 *)&nchan,
200                                       regclassids, ATH_REGCLASSIDS_MAX,
201                                       &nregclass, CTRY_DEFAULT, false, 1)) {
202                 u32 rd = ah->ah_currentRD;
203                 DPRINTF(sc, ATH_DBG_FATAL,
204                         "Unable to collect channel list; "
205                         "regdomain likely %u country code %u\n",
206                         rd, CTRY_DEFAULT);
207                 return -EINVAL;
208         }
209
210         band_2ghz = &sc->sbands[IEEE80211_BAND_2GHZ];
211         band_5ghz = &sc->sbands[IEEE80211_BAND_5GHZ];
212         chan_2ghz = sc->channels[IEEE80211_BAND_2GHZ];
213         chan_5ghz = sc->channels[IEEE80211_BAND_5GHZ];
214
215         for (i = 0; i < nchan; i++) {
216                 c = &ah->ah_channels[i];
217                 if (IS_CHAN_2GHZ(c)) {
218                         chan_2ghz[a].band = IEEE80211_BAND_2GHZ;
219                         chan_2ghz[a].center_freq = c->channel;
220                         chan_2ghz[a].max_power = c->maxTxPower;
221                         c->chan = &chan_2ghz[a];
222
223                         if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
224                                 chan_2ghz[a].flags |= IEEE80211_CHAN_NO_IBSS;
225                         if (c->channelFlags & CHANNEL_PASSIVE)
226                                 chan_2ghz[a].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
227
228                         band_2ghz->n_channels = ++a;
229
230                         DPRINTF(sc, ATH_DBG_CONFIG, "2MHz channel: %d, "
231                                 "channelFlags: 0x%x\n",
232                                 c->channel, c->channelFlags);
233                 } else if (IS_CHAN_5GHZ(c)) {
234                         chan_5ghz[b].band = IEEE80211_BAND_5GHZ;
235                         chan_5ghz[b].center_freq = c->channel;
236                         chan_5ghz[b].max_power = c->maxTxPower;
237                         c->chan = &chan_5ghz[a];
238
239                         if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
240                                 chan_5ghz[b].flags |= IEEE80211_CHAN_NO_IBSS;
241                         if (c->channelFlags & CHANNEL_PASSIVE)
242                                 chan_5ghz[b].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
243
244                         band_5ghz->n_channels = ++b;
245
246                         DPRINTF(sc, ATH_DBG_CONFIG, "5MHz channel: %d, "
247                                 "channelFlags: 0x%x\n",
248                                 c->channel, c->channelFlags);
249                 }
250         }
251
252         return 0;
253 }
254
255 /*
256  * Set/change channels.  If the channel is really being changed, it's done
257  * by reseting the chip.  To accomplish this we must first cleanup any pending
258  * DMA, then restart stuff.
259 */
260 static int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
261 {
262         struct ath_hal *ah = sc->sc_ah;
263         bool fastcc = true, stopped;
264         struct ieee80211_hw *hw = sc->hw;
265         struct ieee80211_channel *channel = hw->conf.channel;
266         int r;
267
268         if (sc->sc_flags & SC_OP_INVALID)
269                 return -EIO;
270
271         if (hchan->channel != sc->sc_ah->ah_curchan->channel ||
272             hchan->channelFlags != sc->sc_ah->ah_curchan->channelFlags ||
273             (sc->sc_flags & SC_OP_CHAINMASK_UPDATE) ||
274             (sc->sc_flags & SC_OP_FULL_RESET)) {
275                 /*
276                  * This is only performed if the channel settings have
277                  * actually changed.
278                  *
279                  * To switch channels clear any pending DMA operations;
280                  * wait long enough for the RX fifo to drain, reset the
281                  * hardware at the new frequency, and then re-enable
282                  * the relevant bits of the h/w.
283                  */
284                 ath9k_hw_set_interrupts(ah, 0);
285                 ath_draintxq(sc, false);
286                 stopped = ath_stoprecv(sc);
287
288                 /* XXX: do not flush receive queue here. We don't want
289                  * to flush data frames already in queue because of
290                  * changing channel. */
291
292                 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
293                         fastcc = false;
294
295                 DPRINTF(sc, ATH_DBG_CONFIG,
296                         "(%u MHz) -> (%u MHz), chanwidth: %d\n",
297                         sc->sc_ah->ah_curchan->channel,
298                         channel->center_freq, sc->tx_chan_width);
299
300                 spin_lock_bh(&sc->sc_resetlock);
301
302                 r = ath9k_hw_reset(ah, hchan, fastcc);
303                 if (r) {
304                         DPRINTF(sc, ATH_DBG_FATAL,
305                                 "Unable to reset channel (%u Mhz) "
306                                 "reset status %u\n",
307                                 channel->center_freq, r);
308                         spin_unlock_bh(&sc->sc_resetlock);
309                         return r;
310                 }
311                 spin_unlock_bh(&sc->sc_resetlock);
312
313                 sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
314                 sc->sc_flags &= ~SC_OP_FULL_RESET;
315
316                 if (ath_startrecv(sc) != 0) {
317                         DPRINTF(sc, ATH_DBG_FATAL,
318                                 "Unable to restart recv logic\n");
319                         return -EIO;
320                 }
321
322                 ath_cache_conf_rate(sc, &hw->conf);
323                 ath_update_txpow(sc);
324                 ath9k_hw_set_interrupts(ah, sc->sc_imask);
325         }
326         return 0;
327 }
328
329 /*
330  *  This routine performs the periodic noise floor calibration function
331  *  that is used to adjust and optimize the chip performance.  This
332  *  takes environmental changes (location, temperature) into account.
333  *  When the task is complete, it reschedules itself depending on the
334  *  appropriate interval that was calculated.
335  */
336 static void ath_ani_calibrate(unsigned long data)
337 {
338         struct ath_softc *sc;
339         struct ath_hal *ah;
340         bool longcal = false;
341         bool shortcal = false;
342         bool aniflag = false;
343         unsigned int timestamp = jiffies_to_msecs(jiffies);
344         u32 cal_interval;
345
346         sc = (struct ath_softc *)data;
347         ah = sc->sc_ah;
348
349         /*
350         * don't calibrate when we're scanning.
351         * we are most likely not on our home channel.
352         */
353         if (sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)
354                 return;
355
356         /* Long calibration runs independently of short calibration. */
357         if ((timestamp - sc->sc_ani.sc_longcal_timer) >= ATH_LONG_CALINTERVAL) {
358                 longcal = true;
359                 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
360                 sc->sc_ani.sc_longcal_timer = timestamp;
361         }
362
363         /* Short calibration applies only while sc_caldone is false */
364         if (!sc->sc_ani.sc_caldone) {
365                 if ((timestamp - sc->sc_ani.sc_shortcal_timer) >=
366                     ATH_SHORT_CALINTERVAL) {
367                         shortcal = true;
368                         DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
369                         sc->sc_ani.sc_shortcal_timer = timestamp;
370                         sc->sc_ani.sc_resetcal_timer = timestamp;
371                 }
372         } else {
373                 if ((timestamp - sc->sc_ani.sc_resetcal_timer) >=
374                     ATH_RESTART_CALINTERVAL) {
375                         sc->sc_ani.sc_caldone = ath9k_hw_reset_calvalid(ah);
376                         if (sc->sc_ani.sc_caldone)
377                                 sc->sc_ani.sc_resetcal_timer = timestamp;
378                 }
379         }
380
381         /* Verify whether we must check ANI */
382         if ((timestamp - sc->sc_ani.sc_checkani_timer) >=
383            ATH_ANI_POLLINTERVAL) {
384                 aniflag = true;
385                 sc->sc_ani.sc_checkani_timer = timestamp;
386         }
387
388         /* Skip all processing if there's nothing to do. */
389         if (longcal || shortcal || aniflag) {
390                 /* Call ANI routine if necessary */
391                 if (aniflag)
392                         ath9k_hw_ani_monitor(ah, &sc->sc_halstats,
393                                              ah->ah_curchan);
394
395                 /* Perform calibration if necessary */
396                 if (longcal || shortcal) {
397                         bool iscaldone = false;
398
399                         if (ath9k_hw_calibrate(ah, ah->ah_curchan,
400                                                sc->sc_rx_chainmask, longcal,
401                                                &iscaldone)) {
402                                 if (longcal)
403                                         sc->sc_ani.sc_noise_floor =
404                                                 ath9k_hw_getchan_noise(ah,
405                                                                ah->ah_curchan);
406
407                                 DPRINTF(sc, ATH_DBG_ANI,
408                                         "calibrate chan %u/%x nf: %d\n",
409                                         ah->ah_curchan->channel,
410                                         ah->ah_curchan->channelFlags,
411                                         sc->sc_ani.sc_noise_floor);
412                         } else {
413                                 DPRINTF(sc, ATH_DBG_ANY,
414                                         "calibrate chan %u/%x failed\n",
415                                         ah->ah_curchan->channel,
416                                         ah->ah_curchan->channelFlags);
417                         }
418                         sc->sc_ani.sc_caldone = iscaldone;
419                 }
420         }
421
422         /*
423         * Set timer interval based on previous results.
424         * The interval must be the shortest necessary to satisfy ANI,
425         * short calibration and long calibration.
426         */
427         cal_interval = ATH_LONG_CALINTERVAL;
428         if (sc->sc_ah->ah_config.enable_ani)
429                 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
430         if (!sc->sc_ani.sc_caldone)
431                 cal_interval = min(cal_interval, (u32)ATH_SHORT_CALINTERVAL);
432
433         mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(cal_interval));
434 }
435
436 /*
437  * Update tx/rx chainmask. For legacy association,
438  * hard code chainmask to 1x1, for 11n association, use
439  * the chainmask configuration.
440  */
441 static void ath_update_chainmask(struct ath_softc *sc, int is_ht)
442 {
443         sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
444         if (is_ht) {
445                 sc->sc_tx_chainmask = sc->sc_ah->ah_caps.tx_chainmask;
446                 sc->sc_rx_chainmask = sc->sc_ah->ah_caps.rx_chainmask;
447         } else {
448                 sc->sc_tx_chainmask = 1;
449                 sc->sc_rx_chainmask = 1;
450         }
451
452         DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
453                 sc->sc_tx_chainmask, sc->sc_rx_chainmask);
454 }
455
456 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
457 {
458         struct ath_node *an;
459
460         an = (struct ath_node *)sta->drv_priv;
461
462         if (sc->sc_flags & SC_OP_TXAGGR)
463                 ath_tx_node_init(sc, an);
464
465         an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
466                              sta->ht_cap.ampdu_factor);
467         an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
468 }
469
470 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
471 {
472         struct ath_node *an = (struct ath_node *)sta->drv_priv;
473
474         if (sc->sc_flags & SC_OP_TXAGGR)
475                 ath_tx_node_cleanup(sc, an);
476 }
477
478 static void ath9k_tasklet(unsigned long data)
479 {
480         struct ath_softc *sc = (struct ath_softc *)data;
481         u32 status = sc->sc_intrstatus;
482
483         if (status & ATH9K_INT_FATAL) {
484                 /* need a chip reset */
485                 ath_reset(sc, false);
486                 return;
487         } else {
488
489                 if (status &
490                     (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
491                         spin_lock_bh(&sc->rx.rxflushlock);
492                         ath_rx_tasklet(sc, 0);
493                         spin_unlock_bh(&sc->rx.rxflushlock);
494                 }
495                 /* XXX: optimize this */
496                 if (status & ATH9K_INT_TX)
497                         ath_tx_tasklet(sc);
498         }
499
500         /* re-enable hardware interrupt */
501         ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
502 }
503
504 static irqreturn_t ath_isr(int irq, void *dev)
505 {
506         struct ath_softc *sc = dev;
507         struct ath_hal *ah = sc->sc_ah;
508         enum ath9k_int status;
509         bool sched = false;
510
511         do {
512                 if (sc->sc_flags & SC_OP_INVALID) {
513                         /*
514                          * The hardware is not ready/present, don't
515                          * touch anything. Note this can happen early
516                          * on if the IRQ is shared.
517                          */
518                         return IRQ_NONE;
519                 }
520                 if (!ath9k_hw_intrpend(ah)) {   /* shared irq, not for us */
521                         return IRQ_NONE;
522                 }
523
524                 /*
525                  * Figure out the reason(s) for the interrupt.  Note
526                  * that the hal returns a pseudo-ISR that may include
527                  * bits we haven't explicitly enabled so we mask the
528                  * value to insure we only process bits we requested.
529                  */
530                 ath9k_hw_getisr(ah, &status);   /* NB: clears ISR too */
531
532                 status &= sc->sc_imask; /* discard unasked-for bits */
533
534                 /*
535                  * If there are no status bits set, then this interrupt was not
536                  * for me (should have been caught above).
537                  */
538                 if (!status)
539                         return IRQ_NONE;
540
541                 sc->sc_intrstatus = status;
542
543                 if (status & ATH9K_INT_FATAL) {
544                         /* need a chip reset */
545                         sched = true;
546                 } else if (status & ATH9K_INT_RXORN) {
547                         /* need a chip reset */
548                         sched = true;
549                 } else {
550                         if (status & ATH9K_INT_SWBA) {
551                                 /* schedule a tasklet for beacon handling */
552                                 tasklet_schedule(&sc->bcon_tasklet);
553                         }
554                         if (status & ATH9K_INT_RXEOL) {
555                                 /*
556                                  * NB: the hardware should re-read the link when
557                                  *     RXE bit is written, but it doesn't work
558                                  *     at least on older hardware revs.
559                                  */
560                                 sched = true;
561                         }
562
563                         if (status & ATH9K_INT_TXURN)
564                                 /* bump tx trigger level */
565                                 ath9k_hw_updatetxtriglevel(ah, true);
566                         /* XXX: optimize this */
567                         if (status & ATH9K_INT_RX)
568                                 sched = true;
569                         if (status & ATH9K_INT_TX)
570                                 sched = true;
571                         if (status & ATH9K_INT_BMISS)
572                                 sched = true;
573                         /* carrier sense timeout */
574                         if (status & ATH9K_INT_CST)
575                                 sched = true;
576                         if (status & ATH9K_INT_MIB) {
577                                 /*
578                                  * Disable interrupts until we service the MIB
579                                  * interrupt; otherwise it will continue to
580                                  * fire.
581                                  */
582                                 ath9k_hw_set_interrupts(ah, 0);
583                                 /*
584                                  * Let the hal handle the event. We assume
585                                  * it will clear whatever condition caused
586                                  * the interrupt.
587                                  */
588                                 ath9k_hw_procmibevent(ah, &sc->sc_halstats);
589                                 ath9k_hw_set_interrupts(ah, sc->sc_imask);
590                         }
591                         if (status & ATH9K_INT_TIM_TIMER) {
592                                 if (!(ah->ah_caps.hw_caps &
593                                       ATH9K_HW_CAP_AUTOSLEEP)) {
594                                         /* Clear RxAbort bit so that we can
595                                          * receive frames */
596                                         ath9k_hw_setrxabort(ah, 0);
597                                         sched = true;
598                                 }
599                         }
600                 }
601         } while (0);
602
603         ath_debug_stat_interrupt(sc, status);
604
605         if (sched) {
606                 /* turn off every interrupt except SWBA */
607                 ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA));
608                 tasklet_schedule(&sc->intr_tq);
609         }
610
611         return IRQ_HANDLED;
612 }
613
614 static int ath_get_channel(struct ath_softc *sc,
615                            struct ieee80211_channel *chan)
616 {
617         int i;
618
619         for (i = 0; i < sc->sc_ah->ah_nchan; i++) {
620                 if (sc->sc_ah->ah_channels[i].channel == chan->center_freq)
621                         return i;
622         }
623
624         return -1;
625 }
626
627 static u32 ath_get_extchanmode(struct ath_softc *sc,
628                                struct ieee80211_channel *chan,
629                                enum nl80211_channel_type channel_type)
630 {
631         u32 chanmode = 0;
632
633         switch (chan->band) {
634         case IEEE80211_BAND_2GHZ:
635                 switch(channel_type) {
636                 case NL80211_CHAN_NO_HT:
637                 case NL80211_CHAN_HT20:
638                         chanmode = CHANNEL_G_HT20;
639                         break;
640                 case NL80211_CHAN_HT40PLUS:
641                         chanmode = CHANNEL_G_HT40PLUS;
642                         break;
643                 case NL80211_CHAN_HT40MINUS:
644                         chanmode = CHANNEL_G_HT40MINUS;
645                         break;
646                 }
647                 break;
648         case IEEE80211_BAND_5GHZ:
649                 switch(channel_type) {
650                 case NL80211_CHAN_NO_HT:
651                 case NL80211_CHAN_HT20:
652                         chanmode = CHANNEL_A_HT20;
653                         break;
654                 case NL80211_CHAN_HT40PLUS:
655                         chanmode = CHANNEL_A_HT40PLUS;
656                         break;
657                 case NL80211_CHAN_HT40MINUS:
658                         chanmode = CHANNEL_A_HT40MINUS;
659                         break;
660                 }
661                 break;
662         default:
663                 break;
664         }
665
666         return chanmode;
667 }
668
669 static int ath_keyset(struct ath_softc *sc, u16 keyix,
670                struct ath9k_keyval *hk, const u8 mac[ETH_ALEN])
671 {
672         bool status;
673
674         status = ath9k_hw_set_keycache_entry(sc->sc_ah,
675                 keyix, hk, mac, false);
676
677         return status != false;
678 }
679
680 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
681                            struct ath9k_keyval *hk,
682                            const u8 *addr)
683 {
684         const u8 *key_rxmic;
685         const u8 *key_txmic;
686
687         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
688         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
689
690         if (addr == NULL) {
691                 /* Group key installation */
692                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
693                 return ath_keyset(sc, keyix, hk, addr);
694         }
695         if (!sc->sc_splitmic) {
696                 /*
697                  * data key goes at first index,
698                  * the hal handles the MIC keys at index+64.
699                  */
700                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
701                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
702                 return ath_keyset(sc, keyix, hk, addr);
703         }
704         /*
705          * TX key goes at first index, RX key at +32.
706          * The hal handles the MIC keys at index+64.
707          */
708         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
709         if (!ath_keyset(sc, keyix, hk, NULL)) {
710                 /* Txmic entry failed. No need to proceed further */
711                 DPRINTF(sc, ATH_DBG_KEYCACHE,
712                         "Setting TX MIC Key Failed\n");
713                 return 0;
714         }
715
716         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
717         /* XXX delete tx key on failure? */
718         return ath_keyset(sc, keyix + 32, hk, addr);
719 }
720
721 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
722 {
723         int i;
724
725         for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
726                 if (test_bit(i, sc->sc_keymap) ||
727                     test_bit(i + 64, sc->sc_keymap))
728                         continue; /* At least one part of TKIP key allocated */
729                 if (sc->sc_splitmic &&
730                     (test_bit(i + 32, sc->sc_keymap) ||
731                      test_bit(i + 64 + 32, sc->sc_keymap)))
732                         continue; /* At least one part of TKIP key allocated */
733
734                 /* Found a free slot for a TKIP key */
735                 return i;
736         }
737         return -1;
738 }
739
740 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
741 {
742         int i;
743
744         /* First, try to find slots that would not be available for TKIP. */
745         if (sc->sc_splitmic) {
746                 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 4; i++) {
747                         if (!test_bit(i, sc->sc_keymap) &&
748                             (test_bit(i + 32, sc->sc_keymap) ||
749                              test_bit(i + 64, sc->sc_keymap) ||
750                              test_bit(i + 64 + 32, sc->sc_keymap)))
751                                 return i;
752                         if (!test_bit(i + 32, sc->sc_keymap) &&
753                             (test_bit(i, sc->sc_keymap) ||
754                              test_bit(i + 64, sc->sc_keymap) ||
755                              test_bit(i + 64 + 32, sc->sc_keymap)))
756                                 return i + 32;
757                         if (!test_bit(i + 64, sc->sc_keymap) &&
758                             (test_bit(i , sc->sc_keymap) ||
759                              test_bit(i + 32, sc->sc_keymap) ||
760                              test_bit(i + 64 + 32, sc->sc_keymap)))
761                                 return i + 64;
762                         if (!test_bit(i + 64 + 32, sc->sc_keymap) &&
763                             (test_bit(i, sc->sc_keymap) ||
764                              test_bit(i + 32, sc->sc_keymap) ||
765                              test_bit(i + 64, sc->sc_keymap)))
766                                 return i + 64 + 32;
767                 }
768         } else {
769                 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
770                         if (!test_bit(i, sc->sc_keymap) &&
771                             test_bit(i + 64, sc->sc_keymap))
772                                 return i;
773                         if (test_bit(i, sc->sc_keymap) &&
774                             !test_bit(i + 64, sc->sc_keymap))
775                                 return i + 64;
776                 }
777         }
778
779         /* No partially used TKIP slots, pick any available slot */
780         for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax; i++) {
781                 /* Do not allow slots that could be needed for TKIP group keys
782                  * to be used. This limitation could be removed if we know that
783                  * TKIP will not be used. */
784                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
785                         continue;
786                 if (sc->sc_splitmic) {
787                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
788                                 continue;
789                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
790                                 continue;
791                 }
792
793                 if (!test_bit(i, sc->sc_keymap))
794                         return i; /* Found a free slot for a key */
795         }
796
797         /* No free slot found */
798         return -1;
799 }
800
801 static int ath_key_config(struct ath_softc *sc,
802                           const u8 *addr,
803                           struct ieee80211_key_conf *key)
804 {
805         struct ath9k_keyval hk;
806         const u8 *mac = NULL;
807         int ret = 0;
808         int idx;
809
810         memset(&hk, 0, sizeof(hk));
811
812         switch (key->alg) {
813         case ALG_WEP:
814                 hk.kv_type = ATH9K_CIPHER_WEP;
815                 break;
816         case ALG_TKIP:
817                 hk.kv_type = ATH9K_CIPHER_TKIP;
818                 break;
819         case ALG_CCMP:
820                 hk.kv_type = ATH9K_CIPHER_AES_CCM;
821                 break;
822         default:
823                 return -EINVAL;
824         }
825
826         hk.kv_len = key->keylen;
827         memcpy(hk.kv_val, key->key, key->keylen);
828
829         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
830                 /* For now, use the default keys for broadcast keys. This may
831                  * need to change with virtual interfaces. */
832                 idx = key->keyidx;
833         } else if (key->keyidx) {
834                 struct ieee80211_vif *vif;
835
836                 mac = addr;
837                 vif = sc->sc_vaps[0];
838                 if (vif->type != NL80211_IFTYPE_AP) {
839                         /* Only keyidx 0 should be used with unicast key, but
840                          * allow this for client mode for now. */
841                         idx = key->keyidx;
842                 } else
843                         return -EIO;
844         } else {
845                 mac = addr;
846                 if (key->alg == ALG_TKIP)
847                         idx = ath_reserve_key_cache_slot_tkip(sc);
848                 else
849                         idx = ath_reserve_key_cache_slot(sc);
850                 if (idx < 0)
851                         return -EIO; /* no free key cache entries */
852         }
853
854         if (key->alg == ALG_TKIP)
855                 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac);
856         else
857                 ret = ath_keyset(sc, idx, &hk, mac);
858
859         if (!ret)
860                 return -EIO;
861
862         set_bit(idx, sc->sc_keymap);
863         if (key->alg == ALG_TKIP) {
864                 set_bit(idx + 64, sc->sc_keymap);
865                 if (sc->sc_splitmic) {
866                         set_bit(idx + 32, sc->sc_keymap);
867                         set_bit(idx + 64 + 32, sc->sc_keymap);
868                 }
869         }
870
871         return idx;
872 }
873
874 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
875 {
876         ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
877         if (key->hw_key_idx < IEEE80211_WEP_NKID)
878                 return;
879
880         clear_bit(key->hw_key_idx, sc->sc_keymap);
881         if (key->alg != ALG_TKIP)
882                 return;
883
884         clear_bit(key->hw_key_idx + 64, sc->sc_keymap);
885         if (sc->sc_splitmic) {
886                 clear_bit(key->hw_key_idx + 32, sc->sc_keymap);
887                 clear_bit(key->hw_key_idx + 64 + 32, sc->sc_keymap);
888         }
889 }
890
891 static void setup_ht_cap(struct ieee80211_sta_ht_cap *ht_info)
892 {
893 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3       /* 2 ^ 16 */
894 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6          /* 8 usec */
895
896         ht_info->ht_supported = true;
897         ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
898                        IEEE80211_HT_CAP_SM_PS |
899                        IEEE80211_HT_CAP_SGI_40 |
900                        IEEE80211_HT_CAP_DSSSCCK40;
901
902         ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
903         ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
904         /* set up supported mcs set */
905         memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
906         ht_info->mcs.rx_mask[0] = 0xff;
907         ht_info->mcs.rx_mask[1] = 0xff;
908         ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
909 }
910
911 static void ath9k_bss_assoc_info(struct ath_softc *sc,
912                                  struct ieee80211_vif *vif,
913                                  struct ieee80211_bss_conf *bss_conf)
914 {
915         struct ath_vap *avp = (void *)vif->drv_priv;
916
917         if (bss_conf->assoc) {
918                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
919                         bss_conf->aid, sc->sc_curbssid);
920
921                 /* New association, store aid */
922                 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
923                         sc->sc_curaid = bss_conf->aid;
924                         ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
925                                                sc->sc_curaid);
926                 }
927
928                 /* Configure the beacon */
929                 ath_beacon_config(sc, 0);
930                 sc->sc_flags |= SC_OP_BEACONS;
931
932                 /* Reset rssi stats */
933                 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
934                 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
935                 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
936                 sc->sc_halstats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
937
938                 /* Start ANI */
939                 mod_timer(&sc->sc_ani.timer,
940                         jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
941
942         } else {
943                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
944                 sc->sc_curaid = 0;
945         }
946 }
947
948 /********************************/
949 /*       LED functions          */
950 /********************************/
951
952 static void ath_led_brightness(struct led_classdev *led_cdev,
953                                enum led_brightness brightness)
954 {
955         struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
956         struct ath_softc *sc = led->sc;
957
958         switch (brightness) {
959         case LED_OFF:
960                 if (led->led_type == ATH_LED_ASSOC ||
961                     led->led_type == ATH_LED_RADIO)
962                         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
963                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
964                                 (led->led_type == ATH_LED_RADIO) ? 1 :
965                                 !!(sc->sc_flags & SC_OP_LED_ASSOCIATED));
966                 break;
967         case LED_FULL:
968                 if (led->led_type == ATH_LED_ASSOC)
969                         sc->sc_flags |= SC_OP_LED_ASSOCIATED;
970                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
971                 break;
972         default:
973                 break;
974         }
975 }
976
977 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
978                             char *trigger)
979 {
980         int ret;
981
982         led->sc = sc;
983         led->led_cdev.name = led->name;
984         led->led_cdev.default_trigger = trigger;
985         led->led_cdev.brightness_set = ath_led_brightness;
986
987         ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
988         if (ret)
989                 DPRINTF(sc, ATH_DBG_FATAL,
990                         "Failed to register led:%s", led->name);
991         else
992                 led->registered = 1;
993         return ret;
994 }
995
996 static void ath_unregister_led(struct ath_led *led)
997 {
998         if (led->registered) {
999                 led_classdev_unregister(&led->led_cdev);
1000                 led->registered = 0;
1001         }
1002 }
1003
1004 static void ath_deinit_leds(struct ath_softc *sc)
1005 {
1006         ath_unregister_led(&sc->assoc_led);
1007         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1008         ath_unregister_led(&sc->tx_led);
1009         ath_unregister_led(&sc->rx_led);
1010         ath_unregister_led(&sc->radio_led);
1011         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1012 }
1013
1014 static void ath_init_leds(struct ath_softc *sc)
1015 {
1016         char *trigger;
1017         int ret;
1018
1019         /* Configure gpio 1 for output */
1020         ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1021                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1022         /* LED off, active low */
1023         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1024
1025         trigger = ieee80211_get_radio_led_name(sc->hw);
1026         snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1027                 "ath9k-%s:radio", wiphy_name(sc->hw->wiphy));
1028         ret = ath_register_led(sc, &sc->radio_led, trigger);
1029         sc->radio_led.led_type = ATH_LED_RADIO;
1030         if (ret)
1031                 goto fail;
1032
1033         trigger = ieee80211_get_assoc_led_name(sc->hw);
1034         snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1035                 "ath9k-%s:assoc", wiphy_name(sc->hw->wiphy));
1036         ret = ath_register_led(sc, &sc->assoc_led, trigger);
1037         sc->assoc_led.led_type = ATH_LED_ASSOC;
1038         if (ret)
1039                 goto fail;
1040
1041         trigger = ieee80211_get_tx_led_name(sc->hw);
1042         snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1043                 "ath9k-%s:tx", wiphy_name(sc->hw->wiphy));
1044         ret = ath_register_led(sc, &sc->tx_led, trigger);
1045         sc->tx_led.led_type = ATH_LED_TX;
1046         if (ret)
1047                 goto fail;
1048
1049         trigger = ieee80211_get_rx_led_name(sc->hw);
1050         snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1051                 "ath9k-%s:rx", wiphy_name(sc->hw->wiphy));
1052         ret = ath_register_led(sc, &sc->rx_led, trigger);
1053         sc->rx_led.led_type = ATH_LED_RX;
1054         if (ret)
1055                 goto fail;
1056
1057         return;
1058
1059 fail:
1060         ath_deinit_leds(sc);
1061 }
1062
1063 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1064
1065 /*******************/
1066 /*      Rfkill     */
1067 /*******************/
1068
1069 static void ath_radio_enable(struct ath_softc *sc)
1070 {
1071         struct ath_hal *ah = sc->sc_ah;
1072         struct ieee80211_channel *channel = sc->hw->conf.channel;
1073         int r;
1074
1075         spin_lock_bh(&sc->sc_resetlock);
1076
1077         r = ath9k_hw_reset(ah, ah->ah_curchan, false);
1078
1079         if (r) {
1080                 DPRINTF(sc, ATH_DBG_FATAL,
1081                         "Unable to reset channel %u (%uMhz) ",
1082                         "reset status %u\n",
1083                         channel->center_freq, r);
1084         }
1085         spin_unlock_bh(&sc->sc_resetlock);
1086
1087         ath_update_txpow(sc);
1088         if (ath_startrecv(sc) != 0) {
1089                 DPRINTF(sc, ATH_DBG_FATAL,
1090                         "Unable to restart recv logic\n");
1091                 return;
1092         }
1093
1094         if (sc->sc_flags & SC_OP_BEACONS)
1095                 ath_beacon_config(sc, ATH_IF_ID_ANY);   /* restart beacons */
1096
1097         /* Re-Enable  interrupts */
1098         ath9k_hw_set_interrupts(ah, sc->sc_imask);
1099
1100         /* Enable LED */
1101         ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1102                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1103         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1104
1105         ieee80211_wake_queues(sc->hw);
1106 }
1107
1108 static void ath_radio_disable(struct ath_softc *sc)
1109 {
1110         struct ath_hal *ah = sc->sc_ah;
1111         struct ieee80211_channel *channel = sc->hw->conf.channel;
1112         int r;
1113
1114         ieee80211_stop_queues(sc->hw);
1115
1116         /* Disable LED */
1117         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1118         ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1119
1120         /* Disable interrupts */
1121         ath9k_hw_set_interrupts(ah, 0);
1122
1123         ath_draintxq(sc, false);        /* clear pending tx frames */
1124         ath_stoprecv(sc);               /* turn off frame recv */
1125         ath_flushrecv(sc);              /* flush recv queue */
1126
1127         spin_lock_bh(&sc->sc_resetlock);
1128         r = ath9k_hw_reset(ah, ah->ah_curchan, false);
1129         if (r) {
1130                 DPRINTF(sc, ATH_DBG_FATAL,
1131                         "Unable to reset channel %u (%uMhz) "
1132                         "reset status %u\n",
1133                         channel->center_freq, r);
1134         }
1135         spin_unlock_bh(&sc->sc_resetlock);
1136
1137         ath9k_hw_phy_disable(ah);
1138         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1139 }
1140
1141 static bool ath_is_rfkill_set(struct ath_softc *sc)
1142 {
1143         struct ath_hal *ah = sc->sc_ah;
1144
1145         return ath9k_hw_gpio_get(ah, ah->ah_rfkill_gpio) ==
1146                                   ah->ah_rfkill_polarity;
1147 }
1148
1149 /* h/w rfkill poll function */
1150 static void ath_rfkill_poll(struct work_struct *work)
1151 {
1152         struct ath_softc *sc = container_of(work, struct ath_softc,
1153                                             rf_kill.rfkill_poll.work);
1154         bool radio_on;
1155
1156         if (sc->sc_flags & SC_OP_INVALID)
1157                 return;
1158
1159         radio_on = !ath_is_rfkill_set(sc);
1160
1161         /*
1162          * enable/disable radio only when there is a
1163          * state change in RF switch
1164          */
1165         if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1166                 enum rfkill_state state;
1167
1168                 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1169                         state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1170                                 : RFKILL_STATE_HARD_BLOCKED;
1171                 } else if (radio_on) {
1172                         ath_radio_enable(sc);
1173                         state = RFKILL_STATE_UNBLOCKED;
1174                 } else {
1175                         ath_radio_disable(sc);
1176                         state = RFKILL_STATE_HARD_BLOCKED;
1177                 }
1178
1179                 if (state == RFKILL_STATE_HARD_BLOCKED)
1180                         sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1181                 else
1182                         sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1183
1184                 rfkill_force_state(sc->rf_kill.rfkill, state);
1185         }
1186
1187         queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1188                            msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1189 }
1190
1191 /* s/w rfkill handler */
1192 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1193 {
1194         struct ath_softc *sc = data;
1195
1196         switch (state) {
1197         case RFKILL_STATE_SOFT_BLOCKED:
1198                 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1199                     SC_OP_RFKILL_SW_BLOCKED)))
1200                         ath_radio_disable(sc);
1201                 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1202                 return 0;
1203         case RFKILL_STATE_UNBLOCKED:
1204                 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1205                         sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1206                         if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1207                                 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1208                                         "radio as it is disabled by h/w\n");
1209                                 return -EPERM;
1210                         }
1211                         ath_radio_enable(sc);
1212                 }
1213                 return 0;
1214         default:
1215                 return -EINVAL;
1216         }
1217 }
1218
1219 /* Init s/w rfkill */
1220 static int ath_init_sw_rfkill(struct ath_softc *sc)
1221 {
1222         sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1223                                              RFKILL_TYPE_WLAN);
1224         if (!sc->rf_kill.rfkill) {
1225                 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1226                 return -ENOMEM;
1227         }
1228
1229         snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1230                 "ath9k-%s:rfkill", wiphy_name(sc->hw->wiphy));
1231         sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1232         sc->rf_kill.rfkill->data = sc;
1233         sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1234         sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1235         sc->rf_kill.rfkill->user_claim_unsupported = 1;
1236
1237         return 0;
1238 }
1239
1240 /* Deinitialize rfkill */
1241 static void ath_deinit_rfkill(struct ath_softc *sc)
1242 {
1243         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1244                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1245
1246         if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1247                 rfkill_unregister(sc->rf_kill.rfkill);
1248                 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1249                 sc->rf_kill.rfkill = NULL;
1250         }
1251 }
1252
1253 static int ath_start_rfkill_poll(struct ath_softc *sc)
1254 {
1255         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1256                 queue_delayed_work(sc->hw->workqueue,
1257                                    &sc->rf_kill.rfkill_poll, 0);
1258
1259         if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1260                 if (rfkill_register(sc->rf_kill.rfkill)) {
1261                         DPRINTF(sc, ATH_DBG_FATAL,
1262                                 "Unable to register rfkill\n");
1263                         rfkill_free(sc->rf_kill.rfkill);
1264
1265                         /* Deinitialize the device */
1266                         ath_detach(sc);
1267                         if (sc->pdev->irq)
1268                                 free_irq(sc->pdev->irq, sc);
1269                         pci_iounmap(sc->pdev, sc->mem);
1270                         pci_release_region(sc->pdev, 0);
1271                         pci_disable_device(sc->pdev);
1272                         ieee80211_free_hw(sc->hw);
1273                         return -EIO;
1274                 } else {
1275                         sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1276                 }
1277         }
1278
1279         return 0;
1280 }
1281 #endif /* CONFIG_RFKILL */
1282
1283 static void ath_detach(struct ath_softc *sc)
1284 {
1285         struct ieee80211_hw *hw = sc->hw;
1286         int i = 0;
1287
1288         DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1289
1290 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1291         ath_deinit_rfkill(sc);
1292 #endif
1293         ath_deinit_leds(sc);
1294
1295         ieee80211_unregister_hw(hw);
1296         ath_rx_cleanup(sc);
1297         ath_tx_cleanup(sc);
1298
1299         tasklet_kill(&sc->intr_tq);
1300         tasklet_kill(&sc->bcon_tasklet);
1301
1302         if (!(sc->sc_flags & SC_OP_INVALID))
1303                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1304
1305         /* cleanup tx queues */
1306         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1307                 if (ATH_TXQ_SETUP(sc, i))
1308                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1309
1310         ath9k_hw_detach(sc->sc_ah);
1311         ath9k_exit_debug(sc);
1312 }
1313
1314 static int ath_init(u16 devid, struct ath_softc *sc)
1315 {
1316         struct ath_hal *ah = NULL;
1317         int status;
1318         int error = 0, i;
1319         int csz = 0;
1320
1321         /* XXX: hardware will not be ready until ath_open() being called */
1322         sc->sc_flags |= SC_OP_INVALID;
1323
1324         if (ath9k_init_debug(sc) < 0)
1325                 printk(KERN_ERR "Unable to create debugfs files\n");
1326
1327         spin_lock_init(&sc->sc_resetlock);
1328         mutex_init(&sc->mutex);
1329         tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1330         tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
1331                      (unsigned long)sc);
1332
1333         /*
1334          * Cache line size is used to size and align various
1335          * structures used to communicate with the hardware.
1336          */
1337         bus_read_cachesize(sc, &csz);
1338         /* XXX assert csz is non-zero */
1339         sc->sc_cachelsz = csz << 2;     /* convert to bytes */
1340
1341         ah = ath9k_hw_attach(devid, sc, sc->mem, &status);
1342         if (ah == NULL) {
1343                 DPRINTF(sc, ATH_DBG_FATAL,
1344                         "Unable to attach hardware; HAL status %u\n", status);
1345                 error = -ENXIO;
1346                 goto bad;
1347         }
1348         sc->sc_ah = ah;
1349
1350         /* Get the hardware key cache size. */
1351         sc->sc_keymax = ah->ah_caps.keycache_size;
1352         if (sc->sc_keymax > ATH_KEYMAX) {
1353                 DPRINTF(sc, ATH_DBG_KEYCACHE,
1354                         "Warning, using only %u entries in %u key cache\n",
1355                         ATH_KEYMAX, sc->sc_keymax);
1356                 sc->sc_keymax = ATH_KEYMAX;
1357         }
1358
1359         /*
1360          * Reset the key cache since some parts do not
1361          * reset the contents on initial power up.
1362          */
1363         for (i = 0; i < sc->sc_keymax; i++)
1364                 ath9k_hw_keyreset(ah, (u16) i);
1365
1366         /* Collect the channel list using the default country code */
1367
1368         error = ath_setup_channels(sc);
1369         if (error)
1370                 goto bad;
1371
1372         /* default to MONITOR mode */
1373         sc->sc_ah->ah_opmode = NL80211_IFTYPE_MONITOR;
1374
1375
1376         /* Setup rate tables */
1377
1378         ath_rate_attach(sc);
1379         ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1380         ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1381
1382         /*
1383          * Allocate hardware transmit queues: one queue for
1384          * beacon frames and one data queue for each QoS
1385          * priority.  Note that the hal handles reseting
1386          * these queues at the needed time.
1387          */
1388         sc->beacon.beaconq = ath_beaconq_setup(ah);
1389         if (sc->beacon.beaconq == -1) {
1390                 DPRINTF(sc, ATH_DBG_FATAL,
1391                         "Unable to setup a beacon xmit queue\n");
1392                 error = -EIO;
1393                 goto bad2;
1394         }
1395         sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1396         if (sc->beacon.cabq == NULL) {
1397                 DPRINTF(sc, ATH_DBG_FATAL,
1398                         "Unable to setup CAB xmit queue\n");
1399                 error = -EIO;
1400                 goto bad2;
1401         }
1402
1403         sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME;
1404         ath_cabq_update(sc);
1405
1406         for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1407                 sc->tx.hwq_map[i] = -1;
1408
1409         /* Setup data queues */
1410         /* NB: ensure BK queue is the lowest priority h/w queue */
1411         if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1412                 DPRINTF(sc, ATH_DBG_FATAL,
1413                         "Unable to setup xmit queue for BK traffic\n");
1414                 error = -EIO;
1415                 goto bad2;
1416         }
1417
1418         if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1419                 DPRINTF(sc, ATH_DBG_FATAL,
1420                         "Unable to setup xmit queue for BE traffic\n");
1421                 error = -EIO;
1422                 goto bad2;
1423         }
1424         if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1425                 DPRINTF(sc, ATH_DBG_FATAL,
1426                         "Unable to setup xmit queue for VI traffic\n");
1427                 error = -EIO;
1428                 goto bad2;
1429         }
1430         if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1431                 DPRINTF(sc, ATH_DBG_FATAL,
1432                         "Unable to setup xmit queue for VO traffic\n");
1433                 error = -EIO;
1434                 goto bad2;
1435         }
1436
1437         /* Initializes the noise floor to a reasonable default value.
1438          * Later on this will be updated during ANI processing. */
1439
1440         sc->sc_ani.sc_noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1441         setup_timer(&sc->sc_ani.timer, ath_ani_calibrate, (unsigned long)sc);
1442
1443         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1444                                    ATH9K_CIPHER_TKIP, NULL)) {
1445                 /*
1446                  * Whether we should enable h/w TKIP MIC.
1447                  * XXX: if we don't support WME TKIP MIC, then we wouldn't
1448                  * report WMM capable, so it's always safe to turn on
1449                  * TKIP MIC in this case.
1450                  */
1451                 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1452                                        0, 1, NULL);
1453         }
1454
1455         /*
1456          * Check whether the separate key cache entries
1457          * are required to handle both tx+rx MIC keys.
1458          * With split mic keys the number of stations is limited
1459          * to 27 otherwise 59.
1460          */
1461         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1462                                    ATH9K_CIPHER_TKIP, NULL)
1463             && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1464                                       ATH9K_CIPHER_MIC, NULL)
1465             && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1466                                       0, NULL))
1467                 sc->sc_splitmic = 1;
1468
1469         /* turn on mcast key search if possible */
1470         if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1471                 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1472                                              1, NULL);
1473
1474         sc->sc_config.txpowlimit = ATH_TXPOWER_MAX;
1475         sc->sc_config.txpowlimit_override = 0;
1476
1477         /* 11n Capabilities */
1478         if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1479                 sc->sc_flags |= SC_OP_TXAGGR;
1480                 sc->sc_flags |= SC_OP_RXAGGR;
1481         }
1482
1483         sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask;
1484         sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask;
1485
1486         ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1487         sc->rx.defant = ath9k_hw_getdefantenna(ah);
1488
1489         ath9k_hw_getmac(ah, sc->sc_myaddr);
1490         if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
1491                 ath9k_hw_getbssidmask(ah, sc->sc_bssidmask);
1492                 ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask);
1493                 ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
1494         }
1495
1496         sc->beacon.slottime = ATH9K_SLOT_TIME_9;        /* default to short slot time */
1497
1498         /* initialize beacon slots */
1499         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
1500                 sc->beacon.bslot[i] = ATH_IF_ID_ANY;
1501
1502         /* save MISC configurations */
1503         sc->sc_config.swBeaconProcess = 1;
1504
1505         /* setup channels and rates */
1506
1507         sc->sbands[IEEE80211_BAND_2GHZ].channels =
1508                 sc->channels[IEEE80211_BAND_2GHZ];
1509         sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1510                 sc->rates[IEEE80211_BAND_2GHZ];
1511         sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1512
1513         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) {
1514                 sc->sbands[IEEE80211_BAND_5GHZ].channels =
1515                         sc->channels[IEEE80211_BAND_5GHZ];
1516                 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1517                         sc->rates[IEEE80211_BAND_5GHZ];
1518                 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1519         }
1520
1521         return 0;
1522 bad2:
1523         /* cleanup tx queues */
1524         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1525                 if (ATH_TXQ_SETUP(sc, i))
1526                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1527 bad:
1528         if (ah)
1529                 ath9k_hw_detach(ah);
1530
1531         return error;
1532 }
1533
1534 static int ath_attach(u16 devid, struct ath_softc *sc)
1535 {
1536         struct ieee80211_hw *hw = sc->hw;
1537         int error = 0;
1538
1539         DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1540
1541         error = ath_init(devid, sc);
1542         if (error != 0)
1543                 return error;
1544
1545         /* get mac address from hardware and set in mac80211 */
1546
1547         SET_IEEE80211_PERM_ADDR(hw, sc->sc_myaddr);
1548
1549         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1550                 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1551                 IEEE80211_HW_SIGNAL_DBM |
1552                 IEEE80211_HW_AMPDU_AGGREGATION;
1553
1554         hw->wiphy->interface_modes =
1555                 BIT(NL80211_IFTYPE_AP) |
1556                 BIT(NL80211_IFTYPE_STATION) |
1557                 BIT(NL80211_IFTYPE_ADHOC);
1558
1559         hw->queues = 4;
1560         hw->max_rates = 4;
1561         hw->max_rate_tries = ATH_11N_TXMAXTRY;
1562         hw->sta_data_size = sizeof(struct ath_node);
1563         hw->vif_data_size = sizeof(struct ath_vap);
1564
1565         hw->rate_control_algorithm = "ath9k_rate_control";
1566
1567         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1568                 setup_ht_cap(&sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1569                 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1570                         setup_ht_cap(&sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1571         }
1572
1573         hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &sc->sbands[IEEE80211_BAND_2GHZ];
1574         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1575                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1576                         &sc->sbands[IEEE80211_BAND_5GHZ];
1577
1578         /* initialize tx/rx engine */
1579         error = ath_tx_init(sc, ATH_TXBUF);
1580         if (error != 0)
1581                 goto detach;
1582
1583         error = ath_rx_init(sc, ATH_RXBUF);
1584         if (error != 0)
1585                 goto detach;
1586
1587 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1588         /* Initialze h/w Rfkill */
1589         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1590                 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1591
1592         /* Initialize s/w rfkill */
1593         if (ath_init_sw_rfkill(sc))
1594                 goto detach;
1595 #endif
1596
1597         error = ieee80211_register_hw(hw);
1598
1599         /* Initialize LED control */
1600         ath_init_leds(sc);
1601
1602         return 0;
1603 detach:
1604         ath_detach(sc);
1605         return error;
1606 }
1607
1608 int ath_reset(struct ath_softc *sc, bool retry_tx)
1609 {
1610         struct ath_hal *ah = sc->sc_ah;
1611         struct ieee80211_hw *hw = sc->hw;
1612         int r;
1613
1614         ath9k_hw_set_interrupts(ah, 0);
1615         ath_draintxq(sc, retry_tx);
1616         ath_stoprecv(sc);
1617         ath_flushrecv(sc);
1618
1619         spin_lock_bh(&sc->sc_resetlock);
1620         r = ath9k_hw_reset(ah, sc->sc_ah->ah_curchan, false);
1621         if (r)
1622                 DPRINTF(sc, ATH_DBG_FATAL,
1623                         "Unable to reset hardware; reset status %u\n", r);
1624         spin_unlock_bh(&sc->sc_resetlock);
1625
1626         if (ath_startrecv(sc) != 0)
1627                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1628
1629         /*
1630          * We may be doing a reset in response to a request
1631          * that changes the channel so update any state that
1632          * might change as a result.
1633          */
1634         ath_cache_conf_rate(sc, &hw->conf);
1635
1636         ath_update_txpow(sc);
1637
1638         if (sc->sc_flags & SC_OP_BEACONS)
1639                 ath_beacon_config(sc, ATH_IF_ID_ANY);   /* restart beacons */
1640
1641         ath9k_hw_set_interrupts(ah, sc->sc_imask);
1642
1643         if (retry_tx) {
1644                 int i;
1645                 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1646                         if (ATH_TXQ_SETUP(sc, i)) {
1647                                 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1648                                 ath_txq_schedule(sc, &sc->tx.txq[i]);
1649                                 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1650                         }
1651                 }
1652         }
1653
1654         return r;
1655 }
1656
1657 /*
1658  *  This function will allocate both the DMA descriptor structure, and the
1659  *  buffers it contains.  These are used to contain the descriptors used
1660  *  by the system.
1661 */
1662 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1663                       struct list_head *head, const char *name,
1664                       int nbuf, int ndesc)
1665 {
1666 #define DS2PHYS(_dd, _ds)                                               \
1667         ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1668 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1669 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1670
1671         struct ath_desc *ds;
1672         struct ath_buf *bf;
1673         int i, bsize, error;
1674
1675         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1676                 name, nbuf, ndesc);
1677
1678         /* ath_desc must be a multiple of DWORDs */
1679         if ((sizeof(struct ath_desc) % 4) != 0) {
1680                 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1681                 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1682                 error = -ENOMEM;
1683                 goto fail;
1684         }
1685
1686         dd->dd_name = name;
1687         dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1688
1689         /*
1690          * Need additional DMA memory because we can't use
1691          * descriptors that cross the 4K page boundary. Assume
1692          * one skipped descriptor per 4K page.
1693          */
1694         if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1695                 u32 ndesc_skipped =
1696                         ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1697                 u32 dma_len;
1698
1699                 while (ndesc_skipped) {
1700                         dma_len = ndesc_skipped * sizeof(struct ath_desc);
1701                         dd->dd_desc_len += dma_len;
1702
1703                         ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1704                 };
1705         }
1706
1707         /* allocate descriptors */
1708         dd->dd_desc = pci_alloc_consistent(sc->pdev,
1709                               dd->dd_desc_len,
1710                               &dd->dd_desc_paddr);
1711         if (dd->dd_desc == NULL) {
1712                 error = -ENOMEM;
1713                 goto fail;
1714         }
1715         ds = dd->dd_desc;
1716         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1717                 dd->dd_name, ds, (u32) dd->dd_desc_len,
1718                 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1719
1720         /* allocate buffers */
1721         bsize = sizeof(struct ath_buf) * nbuf;
1722         bf = kmalloc(bsize, GFP_KERNEL);
1723         if (bf == NULL) {
1724                 error = -ENOMEM;
1725                 goto fail2;
1726         }
1727         memset(bf, 0, bsize);
1728         dd->dd_bufptr = bf;
1729
1730         INIT_LIST_HEAD(head);
1731         for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1732                 bf->bf_desc = ds;
1733                 bf->bf_daddr = DS2PHYS(dd, ds);
1734
1735                 if (!(sc->sc_ah->ah_caps.hw_caps &
1736                       ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1737                         /*
1738                          * Skip descriptor addresses which can cause 4KB
1739                          * boundary crossing (addr + length) with a 32 dword
1740                          * descriptor fetch.
1741                          */
1742                         while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1743                                 ASSERT((caddr_t) bf->bf_desc <
1744                                        ((caddr_t) dd->dd_desc +
1745                                         dd->dd_desc_len));
1746
1747                                 ds += ndesc;
1748                                 bf->bf_desc = ds;
1749                                 bf->bf_daddr = DS2PHYS(dd, ds);
1750                         }
1751                 }
1752                 list_add_tail(&bf->list, head);
1753         }
1754         return 0;
1755 fail2:
1756         pci_free_consistent(sc->pdev,
1757                 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1758 fail:
1759         memset(dd, 0, sizeof(*dd));
1760         return error;
1761 #undef ATH_DESC_4KB_BOUND_CHECK
1762 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1763 #undef DS2PHYS
1764 }
1765
1766 void ath_descdma_cleanup(struct ath_softc *sc,
1767                          struct ath_descdma *dd,
1768                          struct list_head *head)
1769 {
1770         pci_free_consistent(sc->pdev,
1771                 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1772
1773         INIT_LIST_HEAD(head);
1774         kfree(dd->dd_bufptr);
1775         memset(dd, 0, sizeof(*dd));
1776 }
1777
1778 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1779 {
1780         int qnum;
1781
1782         switch (queue) {
1783         case 0:
1784                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1785                 break;
1786         case 1:
1787                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1788                 break;
1789         case 2:
1790                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1791                 break;
1792         case 3:
1793                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1794                 break;
1795         default:
1796                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1797                 break;
1798         }
1799
1800         return qnum;
1801 }
1802
1803 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1804 {
1805         int qnum;
1806
1807         switch (queue) {
1808         case ATH9K_WME_AC_VO:
1809                 qnum = 0;
1810                 break;
1811         case ATH9K_WME_AC_VI:
1812                 qnum = 1;
1813                 break;
1814         case ATH9K_WME_AC_BE:
1815                 qnum = 2;
1816                 break;
1817         case ATH9K_WME_AC_BK:
1818                 qnum = 3;
1819                 break;
1820         default:
1821                 qnum = -1;
1822                 break;
1823         }
1824
1825         return qnum;
1826 }
1827
1828 /**********************/
1829 /* mac80211 callbacks */
1830 /**********************/
1831
1832 static int ath9k_start(struct ieee80211_hw *hw)
1833 {
1834         struct ath_softc *sc = hw->priv;
1835         struct ieee80211_channel *curchan = hw->conf.channel;
1836         struct ath9k_channel *init_channel;
1837         int r, pos;
1838
1839         DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1840                 "initial channel: %d MHz\n", curchan->center_freq);
1841
1842         /* setup initial channel */
1843
1844         pos = ath_get_channel(sc, curchan);
1845         if (pos == -1) {
1846                 DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n", curchan->center_freq);
1847                 return -EINVAL;
1848         }
1849
1850         sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1851         sc->sc_ah->ah_channels[pos].chanmode =
1852                 (curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A;
1853         init_channel = &sc->sc_ah->ah_channels[pos];
1854
1855         /* Reset SERDES registers */
1856         ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1857
1858         /*
1859          * The basic interface to setting the hardware in a good
1860          * state is ``reset''.  On return the hardware is known to
1861          * be powered up and with interrupts disabled.  This must
1862          * be followed by initialization of the appropriate bits
1863          * and then setup of the interrupt mask.
1864          */
1865         spin_lock_bh(&sc->sc_resetlock);
1866         r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
1867         if (r) {
1868                 DPRINTF(sc, ATH_DBG_FATAL,
1869                         "Unable to reset hardware; reset status %u "
1870                         "(freq %u MHz)\n", r,
1871                         curchan->center_freq);
1872                 spin_unlock_bh(&sc->sc_resetlock);
1873                 return r;
1874         }
1875         spin_unlock_bh(&sc->sc_resetlock);
1876
1877         /*
1878          * This is needed only to setup initial state
1879          * but it's best done after a reset.
1880          */
1881         ath_update_txpow(sc);
1882
1883         /*
1884          * Setup the hardware after reset:
1885          * The receive engine is set going.
1886          * Frame transmit is handled entirely
1887          * in the frame output path; there's nothing to do
1888          * here except setup the interrupt mask.
1889          */
1890         if (ath_startrecv(sc) != 0) {
1891                 DPRINTF(sc, ATH_DBG_FATAL,
1892                         "Unable to start recv logic\n");
1893                 return -EIO;
1894         }
1895
1896         /* Setup our intr mask. */
1897         sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX
1898                 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1899                 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1900
1901         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_GTT)
1902                 sc->sc_imask |= ATH9K_INT_GTT;
1903
1904         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
1905                 sc->sc_imask |= ATH9K_INT_CST;
1906
1907         /*
1908          * Enable MIB interrupts when there are hardware phy counters.
1909          * Note we only do this (at the moment) for station mode.
1910          */
1911         if (ath9k_hw_phycounters(sc->sc_ah) &&
1912             ((sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) ||
1913              (sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC)))
1914                 sc->sc_imask |= ATH9K_INT_MIB;
1915         /*
1916          * Some hardware processes the TIM IE and fires an
1917          * interrupt when the TIM bit is set.  For hardware
1918          * that does, if not overridden by configuration,
1919          * enable the TIM interrupt when operating as station.
1920          */
1921         if ((sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
1922             (sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) &&
1923             !sc->sc_config.swBeaconProcess)
1924                 sc->sc_imask |= ATH9K_INT_TIM;
1925
1926         ath_cache_conf_rate(sc, &hw->conf);
1927
1928         sc->sc_flags &= ~SC_OP_INVALID;
1929
1930         /* Disable BMISS interrupt when we're not associated */
1931         sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1932         ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
1933
1934         ieee80211_wake_queues(sc->hw);
1935
1936 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1937         r = ath_start_rfkill_poll(sc);
1938 #endif
1939         return r;
1940 }
1941
1942 static int ath9k_tx(struct ieee80211_hw *hw,
1943                     struct sk_buff *skb)
1944 {
1945         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1946         struct ath_softc *sc = hw->priv;
1947         struct ath_tx_control txctl;
1948         int hdrlen, padsize;
1949
1950         memset(&txctl, 0, sizeof(struct ath_tx_control));
1951
1952         /*
1953          * As a temporary workaround, assign seq# here; this will likely need
1954          * to be cleaned up to work better with Beacon transmission and virtual
1955          * BSSes.
1956          */
1957         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1958                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1959                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1960                         sc->tx.seq_no += 0x10;
1961                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1962                 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1963         }
1964
1965         /* Add the padding after the header if this is not already done */
1966         hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1967         if (hdrlen & 3) {
1968                 padsize = hdrlen % 4;
1969                 if (skb_headroom(skb) < padsize)
1970                         return -1;
1971                 skb_push(skb, padsize);
1972                 memmove(skb->data, skb->data + padsize, hdrlen);
1973         }
1974
1975         /* Check if a tx queue is available */
1976
1977         txctl.txq = ath_test_get_txq(sc, skb);
1978         if (!txctl.txq)
1979                 goto exit;
1980
1981         DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
1982
1983         if (ath_tx_start(sc, skb, &txctl) != 0) {
1984                 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
1985                 goto exit;
1986         }
1987
1988         return 0;
1989 exit:
1990         dev_kfree_skb_any(skb);
1991         return 0;
1992 }
1993
1994 static void ath9k_stop(struct ieee80211_hw *hw)
1995 {
1996         struct ath_softc *sc = hw->priv;
1997
1998         if (sc->sc_flags & SC_OP_INVALID) {
1999                 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2000                 return;
2001         }
2002
2003         DPRINTF(sc, ATH_DBG_CONFIG, "Cleaning up\n");
2004
2005         ieee80211_stop_queues(sc->hw);
2006
2007         /* make sure h/w will not generate any interrupt
2008          * before setting the invalid flag. */
2009         ath9k_hw_set_interrupts(sc->sc_ah, 0);
2010
2011         if (!(sc->sc_flags & SC_OP_INVALID)) {
2012                 ath_draintxq(sc, false);
2013                 ath_stoprecv(sc);
2014                 ath9k_hw_phy_disable(sc->sc_ah);
2015         } else
2016                 sc->rx.rxlink = NULL;
2017
2018 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2019         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2020                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2021 #endif
2022         /* disable HAL and put h/w to sleep */
2023         ath9k_hw_disable(sc->sc_ah);
2024         ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2025
2026         sc->sc_flags |= SC_OP_INVALID;
2027
2028         DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2029 }
2030
2031 static int ath9k_add_interface(struct ieee80211_hw *hw,
2032                                struct ieee80211_if_init_conf *conf)
2033 {
2034         struct ath_softc *sc = hw->priv;
2035         struct ath_vap *avp = (void *)conf->vif->drv_priv;
2036         enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2037
2038         /* Support only vap for now */
2039
2040         if (sc->sc_nvaps)
2041                 return -ENOBUFS;
2042
2043         switch (conf->type) {
2044         case NL80211_IFTYPE_STATION:
2045                 ic_opmode = NL80211_IFTYPE_STATION;
2046                 break;
2047         case NL80211_IFTYPE_ADHOC:
2048                 ic_opmode = NL80211_IFTYPE_ADHOC;
2049                 break;
2050         case NL80211_IFTYPE_AP:
2051                 ic_opmode = NL80211_IFTYPE_AP;
2052                 break;
2053         default:
2054                 DPRINTF(sc, ATH_DBG_FATAL,
2055                         "Interface type %d not yet supported\n", conf->type);
2056                 return -EOPNOTSUPP;
2057         }
2058
2059         DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VAP of type: %d\n", ic_opmode);
2060
2061         /* Set the VAP opmode */
2062         avp->av_opmode = ic_opmode;
2063         avp->av_bslot = -1;
2064
2065         if (ic_opmode == NL80211_IFTYPE_AP)
2066                 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2067
2068         sc->sc_vaps[0] = conf->vif;
2069         sc->sc_nvaps++;
2070
2071         /* Set the device opmode */
2072         sc->sc_ah->ah_opmode = ic_opmode;
2073
2074         if (conf->type == NL80211_IFTYPE_AP) {
2075                 /* TODO: is this a suitable place to start ANI for AP mode? */
2076                 /* Start ANI */
2077                 mod_timer(&sc->sc_ani.timer,
2078                           jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2079         }
2080
2081         return 0;
2082 }
2083
2084 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2085                                    struct ieee80211_if_init_conf *conf)
2086 {
2087         struct ath_softc *sc = hw->priv;
2088         struct ath_vap *avp = (void *)conf->vif->drv_priv;
2089
2090         DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2091
2092         /* Stop ANI */
2093         del_timer_sync(&sc->sc_ani.timer);
2094
2095         /* Reclaim beacon resources */
2096         if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_AP ||
2097             sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC) {
2098                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2099                 ath_beacon_return(sc, avp);
2100         }
2101
2102         sc->sc_flags &= ~SC_OP_BEACONS;
2103
2104         sc->sc_vaps[0] = NULL;
2105         sc->sc_nvaps--;
2106 }
2107
2108 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2109 {
2110         struct ath_softc *sc = hw->priv;
2111         struct ieee80211_conf *conf = &hw->conf;
2112
2113         mutex_lock(&sc->mutex);
2114         if (changed & (IEEE80211_CONF_CHANGE_CHANNEL |
2115                        IEEE80211_CONF_CHANGE_HT)) {
2116                 struct ieee80211_channel *curchan = hw->conf.channel;
2117                 int pos;
2118
2119                 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2120                         curchan->center_freq);
2121
2122                 pos = ath_get_channel(sc, curchan);
2123                 if (pos == -1) {
2124                         DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n",
2125                                 curchan->center_freq);
2126                         mutex_unlock(&sc->mutex);
2127                         return -EINVAL;
2128                 }
2129
2130                 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
2131                 sc->sc_ah->ah_channels[pos].chanmode =
2132                         (curchan->band == IEEE80211_BAND_2GHZ) ?
2133                         CHANNEL_G : CHANNEL_A;
2134
2135                 if (conf->ht.enabled) {
2136                         if (conf->ht.channel_type == NL80211_CHAN_HT40PLUS ||
2137                             conf->ht.channel_type == NL80211_CHAN_HT40MINUS)
2138                                 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
2139
2140                         sc->sc_ah->ah_channels[pos].chanmode =
2141                                 ath_get_extchanmode(sc, curchan,
2142                                                     conf->ht.channel_type);
2143                 }
2144
2145                 ath_update_chainmask(sc, conf->ht.enabled);
2146
2147                 if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0) {
2148                         DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2149                         mutex_unlock(&sc->mutex);
2150                         return -EINVAL;
2151                 }
2152         }
2153
2154         if (changed & IEEE80211_CONF_CHANGE_POWER)
2155                 sc->sc_config.txpowlimit = 2 * conf->power_level;
2156
2157         mutex_unlock(&sc->mutex);
2158         return 0;
2159 }
2160
2161 static int ath9k_config_interface(struct ieee80211_hw *hw,
2162                                   struct ieee80211_vif *vif,
2163                                   struct ieee80211_if_conf *conf)
2164 {
2165         struct ath_softc *sc = hw->priv;
2166         struct ath_hal *ah = sc->sc_ah;
2167         struct ath_vap *avp = (void *)vif->drv_priv;
2168         u32 rfilt = 0;
2169         int error, i;
2170
2171         /* TODO: Need to decide which hw opmode to use for multi-interface
2172          * cases */
2173         if (vif->type == NL80211_IFTYPE_AP &&
2174             ah->ah_opmode != NL80211_IFTYPE_AP) {
2175                 ah->ah_opmode = NL80211_IFTYPE_STATION;
2176                 ath9k_hw_setopmode(ah);
2177                 ath9k_hw_write_associd(ah, sc->sc_myaddr, 0);
2178                 /* Request full reset to get hw opmode changed properly */
2179                 sc->sc_flags |= SC_OP_FULL_RESET;
2180         }
2181
2182         if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2183             !is_zero_ether_addr(conf->bssid)) {
2184                 switch (vif->type) {
2185                 case NL80211_IFTYPE_STATION:
2186                 case NL80211_IFTYPE_ADHOC:
2187                         /* Set BSSID */
2188                         memcpy(sc->sc_curbssid, conf->bssid, ETH_ALEN);
2189                         sc->sc_curaid = 0;
2190                         ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
2191                                                sc->sc_curaid);
2192
2193                         /* Set aggregation protection mode parameters */
2194                         sc->sc_config.ath_aggr_prot = 0;
2195
2196                         DPRINTF(sc, ATH_DBG_CONFIG,
2197                                 "RX filter 0x%x bssid %pM aid 0x%x\n",
2198                                 rfilt, sc->sc_curbssid, sc->sc_curaid);
2199
2200                         /* need to reconfigure the beacon */
2201                         sc->sc_flags &= ~SC_OP_BEACONS ;
2202
2203                         break;
2204                 default:
2205                         break;
2206                 }
2207         }
2208
2209         if ((conf->changed & IEEE80211_IFCC_BEACON) &&
2210             ((vif->type == NL80211_IFTYPE_ADHOC) ||
2211              (vif->type == NL80211_IFTYPE_AP))) {
2212                 /*
2213                  * Allocate and setup the beacon frame.
2214                  *
2215                  * Stop any previous beacon DMA.  This may be
2216                  * necessary, for example, when an ibss merge
2217                  * causes reconfiguration; we may be called
2218                  * with beacon transmission active.
2219                  */
2220                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2221
2222                 error = ath_beacon_alloc(sc, 0);
2223                 if (error != 0)
2224                         return error;
2225
2226                 ath_beacon_sync(sc, 0);
2227         }
2228
2229         /* Check for WLAN_CAPABILITY_PRIVACY ? */
2230         if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2231                 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2232                         if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2233                                 ath9k_hw_keysetmac(sc->sc_ah,
2234                                                    (u16)i,
2235                                                    sc->sc_curbssid);
2236         }
2237
2238         /* Only legacy IBSS for now */
2239         if (vif->type == NL80211_IFTYPE_ADHOC)
2240                 ath_update_chainmask(sc, 0);
2241
2242         return 0;
2243 }
2244
2245 #define SUPPORTED_FILTERS                       \
2246         (FIF_PROMISC_IN_BSS |                   \
2247         FIF_ALLMULTI |                          \
2248         FIF_CONTROL |                           \
2249         FIF_OTHER_BSS |                         \
2250         FIF_BCN_PRBRESP_PROMISC |               \
2251         FIF_FCSFAIL)
2252
2253 /* FIXME: sc->sc_full_reset ? */
2254 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2255                                    unsigned int changed_flags,
2256                                    unsigned int *total_flags,
2257                                    int mc_count,
2258                                    struct dev_mc_list *mclist)
2259 {
2260         struct ath_softc *sc = hw->priv;
2261         u32 rfilt;
2262
2263         changed_flags &= SUPPORTED_FILTERS;
2264         *total_flags &= SUPPORTED_FILTERS;
2265
2266         sc->rx.rxfilter = *total_flags;
2267         rfilt = ath_calcrxfilter(sc);
2268         ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2269
2270         if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
2271                 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
2272                         ath9k_hw_write_associd(sc->sc_ah, ath_bcast_mac, 0);
2273         }
2274
2275         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2276 }
2277
2278 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2279                              struct ieee80211_vif *vif,
2280                              enum sta_notify_cmd cmd,
2281                              struct ieee80211_sta *sta)
2282 {
2283         struct ath_softc *sc = hw->priv;
2284
2285         switch (cmd) {
2286         case STA_NOTIFY_ADD:
2287                 ath_node_attach(sc, sta);
2288                 break;
2289         case STA_NOTIFY_REMOVE:
2290                 ath_node_detach(sc, sta);
2291                 break;
2292         default:
2293                 break;
2294         }
2295 }
2296
2297 static int ath9k_conf_tx(struct ieee80211_hw *hw,
2298                          u16 queue,
2299                          const struct ieee80211_tx_queue_params *params)
2300 {
2301         struct ath_softc *sc = hw->priv;
2302         struct ath9k_tx_queue_info qi;
2303         int ret = 0, qnum;
2304
2305         if (queue >= WME_NUM_AC)
2306                 return 0;
2307
2308         qi.tqi_aifs = params->aifs;
2309         qi.tqi_cwmin = params->cw_min;
2310         qi.tqi_cwmax = params->cw_max;
2311         qi.tqi_burstTime = params->txop;
2312         qnum = ath_get_hal_qnum(queue, sc);
2313
2314         DPRINTF(sc, ATH_DBG_CONFIG,
2315                 "Configure tx [queue/halq] [%d/%d],  "
2316                 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2317                 queue, qnum, params->aifs, params->cw_min,
2318                 params->cw_max, params->txop);
2319
2320         ret = ath_txq_update(sc, qnum, &qi);
2321         if (ret)
2322                 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2323
2324         return ret;
2325 }
2326
2327 static int ath9k_set_key(struct ieee80211_hw *hw,
2328                          enum set_key_cmd cmd,
2329                          const u8 *local_addr,
2330                          const u8 *addr,
2331                          struct ieee80211_key_conf *key)
2332 {
2333         struct ath_softc *sc = hw->priv;
2334         int ret = 0;
2335
2336         DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n");
2337
2338         switch (cmd) {
2339         case SET_KEY:
2340                 ret = ath_key_config(sc, addr, key);
2341                 if (ret >= 0) {
2342                         key->hw_key_idx = ret;
2343                         /* push IV and Michael MIC generation to stack */
2344                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2345                         if (key->alg == ALG_TKIP)
2346                                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2347                         ret = 0;
2348                 }
2349                 break;
2350         case DISABLE_KEY:
2351                 ath_key_delete(sc, key);
2352                 break;
2353         default:
2354                 ret = -EINVAL;
2355         }
2356
2357         return ret;
2358 }
2359
2360 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2361                                    struct ieee80211_vif *vif,
2362                                    struct ieee80211_bss_conf *bss_conf,
2363                                    u32 changed)
2364 {
2365         struct ath_softc *sc = hw->priv;
2366
2367         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2368                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2369                         bss_conf->use_short_preamble);
2370                 if (bss_conf->use_short_preamble)
2371                         sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2372                 else
2373                         sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2374         }
2375
2376         if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2377                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2378                         bss_conf->use_cts_prot);
2379                 if (bss_conf->use_cts_prot &&
2380                     hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2381                         sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2382                 else
2383                         sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2384         }
2385
2386         if (changed & BSS_CHANGED_ASSOC) {
2387                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2388                         bss_conf->assoc);
2389                 ath9k_bss_assoc_info(sc, vif, bss_conf);
2390         }
2391 }
2392
2393 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2394 {
2395         u64 tsf;
2396         struct ath_softc *sc = hw->priv;
2397         struct ath_hal *ah = sc->sc_ah;
2398
2399         tsf = ath9k_hw_gettsf64(ah);
2400
2401         return tsf;
2402 }
2403
2404 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2405 {
2406         struct ath_softc *sc = hw->priv;
2407         struct ath_hal *ah = sc->sc_ah;
2408
2409         ath9k_hw_reset_tsf(ah);
2410 }
2411
2412 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2413                        enum ieee80211_ampdu_mlme_action action,
2414                        struct ieee80211_sta *sta,
2415                        u16 tid, u16 *ssn)
2416 {
2417         struct ath_softc *sc = hw->priv;
2418         int ret = 0;
2419
2420         switch (action) {
2421         case IEEE80211_AMPDU_RX_START:
2422                 if (!(sc->sc_flags & SC_OP_RXAGGR))
2423                         ret = -ENOTSUPP;
2424                 break;
2425         case IEEE80211_AMPDU_RX_STOP:
2426                 break;
2427         case IEEE80211_AMPDU_TX_START:
2428                 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2429                 if (ret < 0)
2430                         DPRINTF(sc, ATH_DBG_FATAL,
2431                                 "Unable to start TX aggregation\n");
2432                 else
2433                         ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2434                 break;
2435         case IEEE80211_AMPDU_TX_STOP:
2436                 ret = ath_tx_aggr_stop(sc, sta, tid);
2437                 if (ret < 0)
2438                         DPRINTF(sc, ATH_DBG_FATAL,
2439                                 "Unable to stop TX aggregation\n");
2440
2441                 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2442                 break;
2443         case IEEE80211_AMPDU_TX_RESUME:
2444                 ath_tx_aggr_resume(sc, sta, tid);
2445                 break;
2446         default:
2447                 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2448         }
2449
2450         return ret;
2451 }
2452
2453 static struct ieee80211_ops ath9k_ops = {
2454         .tx                 = ath9k_tx,
2455         .start              = ath9k_start,
2456         .stop               = ath9k_stop,
2457         .add_interface      = ath9k_add_interface,
2458         .remove_interface   = ath9k_remove_interface,
2459         .config             = ath9k_config,
2460         .config_interface   = ath9k_config_interface,
2461         .configure_filter   = ath9k_configure_filter,
2462         .sta_notify         = ath9k_sta_notify,
2463         .conf_tx            = ath9k_conf_tx,
2464         .bss_info_changed   = ath9k_bss_info_changed,
2465         .set_key            = ath9k_set_key,
2466         .get_tsf            = ath9k_get_tsf,
2467         .reset_tsf          = ath9k_reset_tsf,
2468         .ampdu_action       = ath9k_ampdu_action,
2469 };
2470
2471 static struct {
2472         u32 version;
2473         const char * name;
2474 } ath_mac_bb_names[] = {
2475         { AR_SREV_VERSION_5416_PCI,     "5416" },
2476         { AR_SREV_VERSION_5416_PCIE,    "5418" },
2477         { AR_SREV_VERSION_9100,         "9100" },
2478         { AR_SREV_VERSION_9160,         "9160" },
2479         { AR_SREV_VERSION_9280,         "9280" },
2480         { AR_SREV_VERSION_9285,         "9285" }
2481 };
2482
2483 static struct {
2484         u16 version;
2485         const char * name;
2486 } ath_rf_names[] = {
2487         { 0,                            "5133" },
2488         { AR_RAD5133_SREV_MAJOR,        "5133" },
2489         { AR_RAD5122_SREV_MAJOR,        "5122" },
2490         { AR_RAD2133_SREV_MAJOR,        "2133" },
2491         { AR_RAD2122_SREV_MAJOR,        "2122" }
2492 };
2493
2494 /*
2495  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2496  */
2497 static const char *
2498 ath_mac_bb_name(u32 mac_bb_version)
2499 {
2500         int i;
2501
2502         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2503                 if (ath_mac_bb_names[i].version == mac_bb_version) {
2504                         return ath_mac_bb_names[i].name;
2505                 }
2506         }
2507
2508         return "????";
2509 }
2510
2511 /*
2512  * Return the RF name. "????" is returned if the RF is unknown.
2513  */
2514 static const char *
2515 ath_rf_name(u16 rf_version)
2516 {
2517         int i;
2518
2519         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2520                 if (ath_rf_names[i].version == rf_version) {
2521                         return ath_rf_names[i].name;
2522                 }
2523         }
2524
2525         return "????";
2526 }
2527
2528 static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2529 {
2530         void __iomem *mem;
2531         struct ath_softc *sc;
2532         struct ieee80211_hw *hw;
2533         u8 csz;
2534         u32 val;
2535         int ret = 0;
2536         struct ath_hal *ah;
2537
2538         if (pci_enable_device(pdev))
2539                 return -EIO;
2540
2541         ret =  pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2542
2543         if (ret) {
2544                 printk(KERN_ERR "ath9k: 32-bit DMA not available\n");
2545                 goto bad;
2546         }
2547
2548         ret = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
2549
2550         if (ret) {
2551                 printk(KERN_ERR "ath9k: 32-bit DMA consistent "
2552                         "DMA enable failed\n");
2553                 goto bad;
2554         }
2555
2556         /*
2557          * Cache line size is used to size and align various
2558          * structures used to communicate with the hardware.
2559          */
2560         pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
2561         if (csz == 0) {
2562                 /*
2563                  * Linux 2.4.18 (at least) writes the cache line size
2564                  * register as a 16-bit wide register which is wrong.
2565                  * We must have this setup properly for rx buffer
2566                  * DMA to work so force a reasonable value here if it
2567                  * comes up zero.
2568                  */
2569                 csz = L1_CACHE_BYTES / sizeof(u32);
2570                 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
2571         }
2572         /*
2573          * The default setting of latency timer yields poor results,
2574          * set it to the value used by other systems. It may be worth
2575          * tweaking this setting more.
2576          */
2577         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
2578
2579         pci_set_master(pdev);
2580
2581         /*
2582          * Disable the RETRY_TIMEOUT register (0x41) to keep
2583          * PCI Tx retries from interfering with C3 CPU state.
2584          */
2585         pci_read_config_dword(pdev, 0x40, &val);
2586         if ((val & 0x0000ff00) != 0)
2587                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2588
2589         ret = pci_request_region(pdev, 0, "ath9k");
2590         if (ret) {
2591                 dev_err(&pdev->dev, "PCI memory region reserve error\n");
2592                 ret = -ENODEV;
2593                 goto bad;
2594         }
2595
2596         mem = pci_iomap(pdev, 0, 0);
2597         if (!mem) {
2598                 printk(KERN_ERR "PCI memory map error\n") ;
2599                 ret = -EIO;
2600                 goto bad1;
2601         }
2602
2603         hw = ieee80211_alloc_hw(sizeof(struct ath_softc), &ath9k_ops);
2604         if (hw == NULL) {
2605                 printk(KERN_ERR "ath_pci: no memory for ieee80211_hw\n");
2606                 goto bad2;
2607         }
2608
2609         SET_IEEE80211_DEV(hw, &pdev->dev);
2610         pci_set_drvdata(pdev, hw);
2611
2612         sc = hw->priv;
2613         sc->hw = hw;
2614         sc->pdev = pdev;
2615         sc->mem = mem;
2616
2617         if (ath_attach(id->device, sc) != 0) {
2618                 ret = -ENODEV;
2619                 goto bad3;
2620         }
2621
2622         /* setup interrupt service routine */
2623
2624         if (request_irq(pdev->irq, ath_isr, IRQF_SHARED, "ath", sc)) {
2625                 printk(KERN_ERR "%s: request_irq failed\n",
2626                         wiphy_name(hw->wiphy));
2627                 ret = -EIO;
2628                 goto bad4;
2629         }
2630
2631         ah = sc->sc_ah;
2632         printk(KERN_INFO
2633                "%s: Atheros AR%s MAC/BB Rev:%x "
2634                "AR%s RF Rev:%x: mem=0x%lx, irq=%d\n",
2635                wiphy_name(hw->wiphy),
2636                ath_mac_bb_name(ah->ah_macVersion),
2637                ah->ah_macRev,
2638                ath_rf_name((ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR)),
2639                ah->ah_phyRev,
2640                (unsigned long)mem, pdev->irq);
2641
2642         return 0;
2643 bad4:
2644         ath_detach(sc);
2645 bad3:
2646         ieee80211_free_hw(hw);
2647 bad2:
2648         pci_iounmap(pdev, mem);
2649 bad1:
2650         pci_release_region(pdev, 0);
2651 bad:
2652         pci_disable_device(pdev);
2653         return ret;
2654 }
2655
2656 static void ath_pci_remove(struct pci_dev *pdev)
2657 {
2658         struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2659         struct ath_softc *sc = hw->priv;
2660
2661         ath_detach(sc);
2662         if (pdev->irq)
2663                 free_irq(pdev->irq, sc);
2664         pci_iounmap(pdev, sc->mem);
2665         pci_release_region(pdev, 0);
2666         pci_disable_device(pdev);
2667         ieee80211_free_hw(hw);
2668 }
2669
2670 #ifdef CONFIG_PM
2671
2672 static int ath_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2673 {
2674         struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2675         struct ath_softc *sc = hw->priv;
2676
2677         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2678
2679 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2680         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2681                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2682 #endif
2683
2684         pci_save_state(pdev);
2685         pci_disable_device(pdev);
2686         pci_set_power_state(pdev, 3);
2687
2688         return 0;
2689 }
2690
2691 static int ath_pci_resume(struct pci_dev *pdev)
2692 {
2693         struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2694         struct ath_softc *sc = hw->priv;
2695         u32 val;
2696         int err;
2697
2698         err = pci_enable_device(pdev);
2699         if (err)
2700                 return err;
2701         pci_restore_state(pdev);
2702         /*
2703          * Suspend/Resume resets the PCI configuration space, so we have to
2704          * re-disable the RETRY_TIMEOUT register (0x41) to keep
2705          * PCI Tx retries from interfering with C3 CPU state
2706          */
2707         pci_read_config_dword(pdev, 0x40, &val);
2708         if ((val & 0x0000ff00) != 0)
2709                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2710
2711         /* Enable LED */
2712         ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
2713                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
2714         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2715
2716 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2717         /*
2718          * check the h/w rfkill state on resume
2719          * and start the rfkill poll timer
2720          */
2721         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2722                 queue_delayed_work(sc->hw->workqueue,
2723                                    &sc->rf_kill.rfkill_poll, 0);
2724 #endif
2725
2726         return 0;
2727 }
2728
2729 #endif /* CONFIG_PM */
2730
2731 MODULE_DEVICE_TABLE(pci, ath_pci_id_table);
2732
2733 static struct pci_driver ath_pci_driver = {
2734         .name       = "ath9k",
2735         .id_table   = ath_pci_id_table,
2736         .probe      = ath_pci_probe,
2737         .remove     = ath_pci_remove,
2738 #ifdef CONFIG_PM
2739         .suspend    = ath_pci_suspend,
2740         .resume     = ath_pci_resume,
2741 #endif /* CONFIG_PM */
2742 };
2743
2744 static int __init init_ath_pci(void)
2745 {
2746         int error;
2747
2748         printk(KERN_INFO "%s: %s\n", dev_info, ATH_PCI_VERSION);
2749
2750         /* Register rate control algorithm */
2751         error = ath_rate_control_register();
2752         if (error != 0) {
2753                 printk(KERN_ERR
2754                         "Unable to register rate control algorithm: %d\n",
2755                         error);
2756                 ath_rate_control_unregister();
2757                 return error;
2758         }
2759
2760         if (pci_register_driver(&ath_pci_driver) < 0) {
2761                 printk(KERN_ERR
2762                         "ath_pci: No devices found, driver not installed.\n");
2763                 ath_rate_control_unregister();
2764                 pci_unregister_driver(&ath_pci_driver);
2765                 return -ENODEV;
2766         }
2767
2768         return 0;
2769 }
2770 module_init(init_ath_pci);
2771
2772 static void __exit exit_ath_pci(void)
2773 {
2774         ath_rate_control_unregister();
2775         pci_unregister_driver(&ath_pci_driver);
2776         printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2777 }
2778 module_exit(exit_ath_pci);