5cbda92455603057f159cd8dd77829394b9ed35d
[pandora-kernel.git] / drivers / net / wireless / ath9k / main.c
1 /*
2  * Copyright (c) 2008 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/nl80211.h>
18 #include "core.h"
19 #include "reg.h"
20 #include "hw.h"
21
22 #define ATH_PCI_VERSION "0.1"
23
24 static char *dev_info = "ath9k";
25
26 MODULE_AUTHOR("Atheros Communications");
27 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
28 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
29 MODULE_LICENSE("Dual BSD/GPL");
30
31 static struct pci_device_id ath_pci_id_table[] __devinitdata = {
32         { PCI_VDEVICE(ATHEROS, 0x0023) }, /* PCI   */
33         { PCI_VDEVICE(ATHEROS, 0x0024) }, /* PCI-E */
34         { PCI_VDEVICE(ATHEROS, 0x0027) }, /* PCI   */
35         { PCI_VDEVICE(ATHEROS, 0x0029) }, /* PCI   */
36         { PCI_VDEVICE(ATHEROS, 0x002A) }, /* PCI-E */
37         { PCI_VDEVICE(ATHEROS, 0x002B) }, /* PCI-E */
38         { 0 }
39 };
40
41 static void ath_detach(struct ath_softc *sc);
42
43 /* return bus cachesize in 4B word units */
44
45 static void bus_read_cachesize(struct ath_softc *sc, int *csz)
46 {
47         u8 u8tmp;
48
49         pci_read_config_byte(sc->pdev, PCI_CACHE_LINE_SIZE, (u8 *)&u8tmp);
50         *csz = (int)u8tmp;
51
52         /*
53          * This check was put in to avoid "unplesant" consequences if
54          * the bootrom has not fully initialized all PCI devices.
55          * Sometimes the cache line size register is not set
56          */
57
58         if (*csz == 0)
59                 *csz = DEFAULT_CACHELINE >> 2;   /* Use the default size */
60 }
61
62 static void ath_cache_conf_rate(struct ath_softc *sc,
63                                 struct ieee80211_conf *conf)
64 {
65         switch (conf->channel->band) {
66         case IEEE80211_BAND_2GHZ:
67                 if (conf_is_ht20(conf))
68                         sc->cur_rate_table =
69                           sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
70                 else if (conf_is_ht40_minus(conf))
71                         sc->cur_rate_table =
72                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
73                 else if (conf_is_ht40_plus(conf))
74                         sc->cur_rate_table =
75                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
76                 else
77                         sc->cur_rate_table =
78                           sc->hw_rate_table[ATH9K_MODE_11G];
79                 break;
80         case IEEE80211_BAND_5GHZ:
81                 if (conf_is_ht20(conf))
82                         sc->cur_rate_table =
83                           sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
84                 else if (conf_is_ht40_minus(conf))
85                         sc->cur_rate_table =
86                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
87                 else if (conf_is_ht40_plus(conf))
88                         sc->cur_rate_table =
89                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
90                 else
91                         sc->cur_rate_table =
92                           sc->hw_rate_table[ATH9K_MODE_11A];
93                 break;
94         default:
95                 BUG_ON(1);
96                 break;
97         }
98 }
99
100 static void ath_update_txpow(struct ath_softc *sc)
101 {
102         struct ath_hal *ah = sc->sc_ah;
103         u32 txpow;
104
105         if (sc->sc_curtxpow != sc->sc_config.txpowlimit) {
106                 ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit);
107                 /* read back in case value is clamped */
108                 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
109                 sc->sc_curtxpow = txpow;
110         }
111 }
112
113 static u8 parse_mpdudensity(u8 mpdudensity)
114 {
115         /*
116          * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
117          *   0 for no restriction
118          *   1 for 1/4 us
119          *   2 for 1/2 us
120          *   3 for 1 us
121          *   4 for 2 us
122          *   5 for 4 us
123          *   6 for 8 us
124          *   7 for 16 us
125          */
126         switch (mpdudensity) {
127         case 0:
128                 return 0;
129         case 1:
130         case 2:
131         case 3:
132                 /* Our lower layer calculations limit our precision to
133                    1 microsecond */
134                 return 1;
135         case 4:
136                 return 2;
137         case 5:
138                 return 4;
139         case 6:
140                 return 8;
141         case 7:
142                 return 16;
143         default:
144                 return 0;
145         }
146 }
147
148 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
149 {
150         struct ath_rate_table *rate_table = NULL;
151         struct ieee80211_supported_band *sband;
152         struct ieee80211_rate *rate;
153         int i, maxrates;
154
155         switch (band) {
156         case IEEE80211_BAND_2GHZ:
157                 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
158                 break;
159         case IEEE80211_BAND_5GHZ:
160                 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
161                 break;
162         default:
163                 break;
164         }
165
166         if (rate_table == NULL)
167                 return;
168
169         sband = &sc->sbands[band];
170         rate = sc->rates[band];
171
172         if (rate_table->rate_cnt > ATH_RATE_MAX)
173                 maxrates = ATH_RATE_MAX;
174         else
175                 maxrates = rate_table->rate_cnt;
176
177         for (i = 0; i < maxrates; i++) {
178                 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
179                 rate[i].hw_value = rate_table->info[i].ratecode;
180                 sband->n_bitrates++;
181                 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
182                         rate[i].bitrate / 10, rate[i].hw_value);
183         }
184 }
185
186 static int ath_setup_channels(struct ath_softc *sc)
187 {
188         struct ath_hal *ah = sc->sc_ah;
189         int nchan, i, a = 0, b = 0;
190         u8 regclassids[ATH_REGCLASSIDS_MAX];
191         u32 nregclass = 0;
192         struct ieee80211_supported_band *band_2ghz;
193         struct ieee80211_supported_band *band_5ghz;
194         struct ieee80211_channel *chan_2ghz;
195         struct ieee80211_channel *chan_5ghz;
196         struct ath9k_channel *c;
197
198         /* Fill in ah->ah_channels */
199         if (!ath9k_regd_init_channels(ah, ATH_CHAN_MAX, (u32 *)&nchan,
200                                       regclassids, ATH_REGCLASSIDS_MAX,
201                                       &nregclass, CTRY_DEFAULT, false, 1)) {
202                 u32 rd = ah->ah_currentRD;
203                 DPRINTF(sc, ATH_DBG_FATAL,
204                         "Unable to collect channel list; "
205                         "regdomain likely %u country code %u\n",
206                         rd, CTRY_DEFAULT);
207                 return -EINVAL;
208         }
209
210         band_2ghz = &sc->sbands[IEEE80211_BAND_2GHZ];
211         band_5ghz = &sc->sbands[IEEE80211_BAND_5GHZ];
212         chan_2ghz = sc->channels[IEEE80211_BAND_2GHZ];
213         chan_5ghz = sc->channels[IEEE80211_BAND_5GHZ];
214
215         for (i = 0; i < nchan; i++) {
216                 c = &ah->ah_channels[i];
217                 if (IS_CHAN_2GHZ(c)) {
218                         chan_2ghz[a].band = IEEE80211_BAND_2GHZ;
219                         chan_2ghz[a].center_freq = c->channel;
220                         chan_2ghz[a].max_power = c->maxTxPower;
221                         c->chan = &chan_2ghz[a];
222
223                         if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
224                                 chan_2ghz[a].flags |= IEEE80211_CHAN_NO_IBSS;
225                         if (c->channelFlags & CHANNEL_PASSIVE)
226                                 chan_2ghz[a].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
227
228                         band_2ghz->n_channels = ++a;
229
230                         DPRINTF(sc, ATH_DBG_CONFIG, "2MHz channel: %d, "
231                                 "channelFlags: 0x%x\n",
232                                 c->channel, c->channelFlags);
233                 } else if (IS_CHAN_5GHZ(c)) {
234                         chan_5ghz[b].band = IEEE80211_BAND_5GHZ;
235                         chan_5ghz[b].center_freq = c->channel;
236                         chan_5ghz[b].max_power = c->maxTxPower;
237                         c->chan = &chan_5ghz[a];
238
239                         if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
240                                 chan_5ghz[b].flags |= IEEE80211_CHAN_NO_IBSS;
241                         if (c->channelFlags & CHANNEL_PASSIVE)
242                                 chan_5ghz[b].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
243
244                         band_5ghz->n_channels = ++b;
245
246                         DPRINTF(sc, ATH_DBG_CONFIG, "5MHz channel: %d, "
247                                 "channelFlags: 0x%x\n",
248                                 c->channel, c->channelFlags);
249                 }
250         }
251
252         return 0;
253 }
254
255 /*
256  * Set/change channels.  If the channel is really being changed, it's done
257  * by reseting the chip.  To accomplish this we must first cleanup any pending
258  * DMA, then restart stuff.
259 */
260 static int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
261 {
262         struct ath_hal *ah = sc->sc_ah;
263         bool fastcc = true, stopped;
264         struct ieee80211_hw *hw = sc->hw;
265         struct ieee80211_channel *channel = hw->conf.channel;
266         int r;
267
268         if (sc->sc_flags & SC_OP_INVALID)
269                 return -EIO;
270
271         /*
272          * This is only performed if the channel settings have
273          * actually changed.
274          *
275          * To switch channels clear any pending DMA operations;
276          * wait long enough for the RX fifo to drain, reset the
277          * hardware at the new frequency, and then re-enable
278          * the relevant bits of the h/w.
279          */
280         ath9k_hw_set_interrupts(ah, 0);
281         ath_draintxq(sc, false);
282         stopped = ath_stoprecv(sc);
283
284         /* XXX: do not flush receive queue here. We don't want
285          * to flush data frames already in queue because of
286          * changing channel. */
287
288         if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
289                 fastcc = false;
290
291         DPRINTF(sc, ATH_DBG_CONFIG,
292                 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
293                 sc->sc_ah->ah_curchan->channel,
294                 channel->center_freq, sc->tx_chan_width);
295
296         spin_lock_bh(&sc->sc_resetlock);
297
298         r = ath9k_hw_reset(ah, hchan, fastcc);
299         if (r) {
300                 DPRINTF(sc, ATH_DBG_FATAL,
301                         "Unable to reset channel (%u Mhz) "
302                         "reset status %u\n",
303                         channel->center_freq, r);
304                 spin_unlock_bh(&sc->sc_resetlock);
305                 return r;
306         }
307         spin_unlock_bh(&sc->sc_resetlock);
308
309         sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
310         sc->sc_flags &= ~SC_OP_FULL_RESET;
311
312         if (ath_startrecv(sc) != 0) {
313                 DPRINTF(sc, ATH_DBG_FATAL,
314                         "Unable to restart recv logic\n");
315                 return -EIO;
316         }
317
318         ath_cache_conf_rate(sc, &hw->conf);
319         ath_update_txpow(sc);
320         ath9k_hw_set_interrupts(ah, sc->sc_imask);
321         return 0;
322 }
323
324 /*
325  *  This routine performs the periodic noise floor calibration function
326  *  that is used to adjust and optimize the chip performance.  This
327  *  takes environmental changes (location, temperature) into account.
328  *  When the task is complete, it reschedules itself depending on the
329  *  appropriate interval that was calculated.
330  */
331 static void ath_ani_calibrate(unsigned long data)
332 {
333         struct ath_softc *sc;
334         struct ath_hal *ah;
335         bool longcal = false;
336         bool shortcal = false;
337         bool aniflag = false;
338         unsigned int timestamp = jiffies_to_msecs(jiffies);
339         u32 cal_interval;
340
341         sc = (struct ath_softc *)data;
342         ah = sc->sc_ah;
343
344         /*
345         * don't calibrate when we're scanning.
346         * we are most likely not on our home channel.
347         */
348         if (sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)
349                 return;
350
351         /* Long calibration runs independently of short calibration. */
352         if ((timestamp - sc->sc_ani.sc_longcal_timer) >= ATH_LONG_CALINTERVAL) {
353                 longcal = true;
354                 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
355                 sc->sc_ani.sc_longcal_timer = timestamp;
356         }
357
358         /* Short calibration applies only while sc_caldone is false */
359         if (!sc->sc_ani.sc_caldone) {
360                 if ((timestamp - sc->sc_ani.sc_shortcal_timer) >=
361                     ATH_SHORT_CALINTERVAL) {
362                         shortcal = true;
363                         DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
364                         sc->sc_ani.sc_shortcal_timer = timestamp;
365                         sc->sc_ani.sc_resetcal_timer = timestamp;
366                 }
367         } else {
368                 if ((timestamp - sc->sc_ani.sc_resetcal_timer) >=
369                     ATH_RESTART_CALINTERVAL) {
370                         sc->sc_ani.sc_caldone = ath9k_hw_reset_calvalid(ah);
371                         if (sc->sc_ani.sc_caldone)
372                                 sc->sc_ani.sc_resetcal_timer = timestamp;
373                 }
374         }
375
376         /* Verify whether we must check ANI */
377         if ((timestamp - sc->sc_ani.sc_checkani_timer) >=
378            ATH_ANI_POLLINTERVAL) {
379                 aniflag = true;
380                 sc->sc_ani.sc_checkani_timer = timestamp;
381         }
382
383         /* Skip all processing if there's nothing to do. */
384         if (longcal || shortcal || aniflag) {
385                 /* Call ANI routine if necessary */
386                 if (aniflag)
387                         ath9k_hw_ani_monitor(ah, &sc->sc_halstats,
388                                              ah->ah_curchan);
389
390                 /* Perform calibration if necessary */
391                 if (longcal || shortcal) {
392                         bool iscaldone = false;
393
394                         if (ath9k_hw_calibrate(ah, ah->ah_curchan,
395                                                sc->sc_rx_chainmask, longcal,
396                                                &iscaldone)) {
397                                 if (longcal)
398                                         sc->sc_ani.sc_noise_floor =
399                                                 ath9k_hw_getchan_noise(ah,
400                                                                ah->ah_curchan);
401
402                                 DPRINTF(sc, ATH_DBG_ANI,
403                                         "calibrate chan %u/%x nf: %d\n",
404                                         ah->ah_curchan->channel,
405                                         ah->ah_curchan->channelFlags,
406                                         sc->sc_ani.sc_noise_floor);
407                         } else {
408                                 DPRINTF(sc, ATH_DBG_ANY,
409                                         "calibrate chan %u/%x failed\n",
410                                         ah->ah_curchan->channel,
411                                         ah->ah_curchan->channelFlags);
412                         }
413                         sc->sc_ani.sc_caldone = iscaldone;
414                 }
415         }
416
417         /*
418         * Set timer interval based on previous results.
419         * The interval must be the shortest necessary to satisfy ANI,
420         * short calibration and long calibration.
421         */
422         cal_interval = ATH_LONG_CALINTERVAL;
423         if (sc->sc_ah->ah_config.enable_ani)
424                 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
425         if (!sc->sc_ani.sc_caldone)
426                 cal_interval = min(cal_interval, (u32)ATH_SHORT_CALINTERVAL);
427
428         mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(cal_interval));
429 }
430
431 /*
432  * Update tx/rx chainmask. For legacy association,
433  * hard code chainmask to 1x1, for 11n association, use
434  * the chainmask configuration.
435  */
436 static void ath_update_chainmask(struct ath_softc *sc, int is_ht)
437 {
438         sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
439         if (is_ht) {
440                 sc->sc_tx_chainmask = sc->sc_ah->ah_caps.tx_chainmask;
441                 sc->sc_rx_chainmask = sc->sc_ah->ah_caps.rx_chainmask;
442         } else {
443                 sc->sc_tx_chainmask = 1;
444                 sc->sc_rx_chainmask = 1;
445         }
446
447         DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
448                 sc->sc_tx_chainmask, sc->sc_rx_chainmask);
449 }
450
451 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
452 {
453         struct ath_node *an;
454
455         an = (struct ath_node *)sta->drv_priv;
456
457         if (sc->sc_flags & SC_OP_TXAGGR)
458                 ath_tx_node_init(sc, an);
459
460         an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
461                              sta->ht_cap.ampdu_factor);
462         an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
463 }
464
465 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
466 {
467         struct ath_node *an = (struct ath_node *)sta->drv_priv;
468
469         if (sc->sc_flags & SC_OP_TXAGGR)
470                 ath_tx_node_cleanup(sc, an);
471 }
472
473 static void ath9k_tasklet(unsigned long data)
474 {
475         struct ath_softc *sc = (struct ath_softc *)data;
476         u32 status = sc->sc_intrstatus;
477
478         if (status & ATH9K_INT_FATAL) {
479                 /* need a chip reset */
480                 ath_reset(sc, false);
481                 return;
482         } else {
483
484                 if (status &
485                     (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
486                         spin_lock_bh(&sc->rx.rxflushlock);
487                         ath_rx_tasklet(sc, 0);
488                         spin_unlock_bh(&sc->rx.rxflushlock);
489                 }
490                 /* XXX: optimize this */
491                 if (status & ATH9K_INT_TX)
492                         ath_tx_tasklet(sc);
493         }
494
495         /* re-enable hardware interrupt */
496         ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
497 }
498
499 static irqreturn_t ath_isr(int irq, void *dev)
500 {
501         struct ath_softc *sc = dev;
502         struct ath_hal *ah = sc->sc_ah;
503         enum ath9k_int status;
504         bool sched = false;
505
506         do {
507                 if (sc->sc_flags & SC_OP_INVALID) {
508                         /*
509                          * The hardware is not ready/present, don't
510                          * touch anything. Note this can happen early
511                          * on if the IRQ is shared.
512                          */
513                         return IRQ_NONE;
514                 }
515                 if (!ath9k_hw_intrpend(ah)) {   /* shared irq, not for us */
516                         return IRQ_NONE;
517                 }
518
519                 /*
520                  * Figure out the reason(s) for the interrupt.  Note
521                  * that the hal returns a pseudo-ISR that may include
522                  * bits we haven't explicitly enabled so we mask the
523                  * value to insure we only process bits we requested.
524                  */
525                 ath9k_hw_getisr(ah, &status);   /* NB: clears ISR too */
526
527                 status &= sc->sc_imask; /* discard unasked-for bits */
528
529                 /*
530                  * If there are no status bits set, then this interrupt was not
531                  * for me (should have been caught above).
532                  */
533                 if (!status)
534                         return IRQ_NONE;
535
536                 sc->sc_intrstatus = status;
537
538                 if (status & ATH9K_INT_FATAL) {
539                         /* need a chip reset */
540                         sched = true;
541                 } else if (status & ATH9K_INT_RXORN) {
542                         /* need a chip reset */
543                         sched = true;
544                 } else {
545                         if (status & ATH9K_INT_SWBA) {
546                                 /* schedule a tasklet for beacon handling */
547                                 tasklet_schedule(&sc->bcon_tasklet);
548                         }
549                         if (status & ATH9K_INT_RXEOL) {
550                                 /*
551                                  * NB: the hardware should re-read the link when
552                                  *     RXE bit is written, but it doesn't work
553                                  *     at least on older hardware revs.
554                                  */
555                                 sched = true;
556                         }
557
558                         if (status & ATH9K_INT_TXURN)
559                                 /* bump tx trigger level */
560                                 ath9k_hw_updatetxtriglevel(ah, true);
561                         /* XXX: optimize this */
562                         if (status & ATH9K_INT_RX)
563                                 sched = true;
564                         if (status & ATH9K_INT_TX)
565                                 sched = true;
566                         if (status & ATH9K_INT_BMISS)
567                                 sched = true;
568                         /* carrier sense timeout */
569                         if (status & ATH9K_INT_CST)
570                                 sched = true;
571                         if (status & ATH9K_INT_MIB) {
572                                 /*
573                                  * Disable interrupts until we service the MIB
574                                  * interrupt; otherwise it will continue to
575                                  * fire.
576                                  */
577                                 ath9k_hw_set_interrupts(ah, 0);
578                                 /*
579                                  * Let the hal handle the event. We assume
580                                  * it will clear whatever condition caused
581                                  * the interrupt.
582                                  */
583                                 ath9k_hw_procmibevent(ah, &sc->sc_halstats);
584                                 ath9k_hw_set_interrupts(ah, sc->sc_imask);
585                         }
586                         if (status & ATH9K_INT_TIM_TIMER) {
587                                 if (!(ah->ah_caps.hw_caps &
588                                       ATH9K_HW_CAP_AUTOSLEEP)) {
589                                         /* Clear RxAbort bit so that we can
590                                          * receive frames */
591                                         ath9k_hw_setrxabort(ah, 0);
592                                         sched = true;
593                                 }
594                         }
595                 }
596         } while (0);
597
598         ath_debug_stat_interrupt(sc, status);
599
600         if (sched) {
601                 /* turn off every interrupt except SWBA */
602                 ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA));
603                 tasklet_schedule(&sc->intr_tq);
604         }
605
606         return IRQ_HANDLED;
607 }
608
609 static int ath_get_channel(struct ath_softc *sc,
610                            struct ieee80211_channel *chan)
611 {
612         int i;
613
614         for (i = 0; i < sc->sc_ah->ah_nchan; i++) {
615                 if (sc->sc_ah->ah_channels[i].channel == chan->center_freq)
616                         return i;
617         }
618
619         return -1;
620 }
621
622 static u32 ath_get_extchanmode(struct ath_softc *sc,
623                                struct ieee80211_channel *chan,
624                                enum nl80211_channel_type channel_type)
625 {
626         u32 chanmode = 0;
627
628         switch (chan->band) {
629         case IEEE80211_BAND_2GHZ:
630                 switch(channel_type) {
631                 case NL80211_CHAN_NO_HT:
632                 case NL80211_CHAN_HT20:
633                         chanmode = CHANNEL_G_HT20;
634                         break;
635                 case NL80211_CHAN_HT40PLUS:
636                         chanmode = CHANNEL_G_HT40PLUS;
637                         break;
638                 case NL80211_CHAN_HT40MINUS:
639                         chanmode = CHANNEL_G_HT40MINUS;
640                         break;
641                 }
642                 break;
643         case IEEE80211_BAND_5GHZ:
644                 switch(channel_type) {
645                 case NL80211_CHAN_NO_HT:
646                 case NL80211_CHAN_HT20:
647                         chanmode = CHANNEL_A_HT20;
648                         break;
649                 case NL80211_CHAN_HT40PLUS:
650                         chanmode = CHANNEL_A_HT40PLUS;
651                         break;
652                 case NL80211_CHAN_HT40MINUS:
653                         chanmode = CHANNEL_A_HT40MINUS;
654                         break;
655                 }
656                 break;
657         default:
658                 break;
659         }
660
661         return chanmode;
662 }
663
664 static int ath_keyset(struct ath_softc *sc, u16 keyix,
665                struct ath9k_keyval *hk, const u8 mac[ETH_ALEN])
666 {
667         bool status;
668
669         status = ath9k_hw_set_keycache_entry(sc->sc_ah,
670                 keyix, hk, mac, false);
671
672         return status != false;
673 }
674
675 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
676                            struct ath9k_keyval *hk,
677                            const u8 *addr)
678 {
679         const u8 *key_rxmic;
680         const u8 *key_txmic;
681
682         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
683         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
684
685         if (addr == NULL) {
686                 /* Group key installation */
687                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
688                 return ath_keyset(sc, keyix, hk, addr);
689         }
690         if (!sc->sc_splitmic) {
691                 /*
692                  * data key goes at first index,
693                  * the hal handles the MIC keys at index+64.
694                  */
695                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
696                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
697                 return ath_keyset(sc, keyix, hk, addr);
698         }
699         /*
700          * TX key goes at first index, RX key at +32.
701          * The hal handles the MIC keys at index+64.
702          */
703         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
704         if (!ath_keyset(sc, keyix, hk, NULL)) {
705                 /* Txmic entry failed. No need to proceed further */
706                 DPRINTF(sc, ATH_DBG_KEYCACHE,
707                         "Setting TX MIC Key Failed\n");
708                 return 0;
709         }
710
711         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
712         /* XXX delete tx key on failure? */
713         return ath_keyset(sc, keyix + 32, hk, addr);
714 }
715
716 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
717 {
718         int i;
719
720         for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
721                 if (test_bit(i, sc->sc_keymap) ||
722                     test_bit(i + 64, sc->sc_keymap))
723                         continue; /* At least one part of TKIP key allocated */
724                 if (sc->sc_splitmic &&
725                     (test_bit(i + 32, sc->sc_keymap) ||
726                      test_bit(i + 64 + 32, sc->sc_keymap)))
727                         continue; /* At least one part of TKIP key allocated */
728
729                 /* Found a free slot for a TKIP key */
730                 return i;
731         }
732         return -1;
733 }
734
735 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
736 {
737         int i;
738
739         /* First, try to find slots that would not be available for TKIP. */
740         if (sc->sc_splitmic) {
741                 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 4; i++) {
742                         if (!test_bit(i, sc->sc_keymap) &&
743                             (test_bit(i + 32, sc->sc_keymap) ||
744                              test_bit(i + 64, sc->sc_keymap) ||
745                              test_bit(i + 64 + 32, sc->sc_keymap)))
746                                 return i;
747                         if (!test_bit(i + 32, sc->sc_keymap) &&
748                             (test_bit(i, sc->sc_keymap) ||
749                              test_bit(i + 64, sc->sc_keymap) ||
750                              test_bit(i + 64 + 32, sc->sc_keymap)))
751                                 return i + 32;
752                         if (!test_bit(i + 64, sc->sc_keymap) &&
753                             (test_bit(i , sc->sc_keymap) ||
754                              test_bit(i + 32, sc->sc_keymap) ||
755                              test_bit(i + 64 + 32, sc->sc_keymap)))
756                                 return i + 64;
757                         if (!test_bit(i + 64 + 32, sc->sc_keymap) &&
758                             (test_bit(i, sc->sc_keymap) ||
759                              test_bit(i + 32, sc->sc_keymap) ||
760                              test_bit(i + 64, sc->sc_keymap)))
761                                 return i + 64 + 32;
762                 }
763         } else {
764                 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
765                         if (!test_bit(i, sc->sc_keymap) &&
766                             test_bit(i + 64, sc->sc_keymap))
767                                 return i;
768                         if (test_bit(i, sc->sc_keymap) &&
769                             !test_bit(i + 64, sc->sc_keymap))
770                                 return i + 64;
771                 }
772         }
773
774         /* No partially used TKIP slots, pick any available slot */
775         for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax; i++) {
776                 /* Do not allow slots that could be needed for TKIP group keys
777                  * to be used. This limitation could be removed if we know that
778                  * TKIP will not be used. */
779                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
780                         continue;
781                 if (sc->sc_splitmic) {
782                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
783                                 continue;
784                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
785                                 continue;
786                 }
787
788                 if (!test_bit(i, sc->sc_keymap))
789                         return i; /* Found a free slot for a key */
790         }
791
792         /* No free slot found */
793         return -1;
794 }
795
796 static int ath_key_config(struct ath_softc *sc,
797                           const u8 *addr,
798                           struct ieee80211_key_conf *key)
799 {
800         struct ath9k_keyval hk;
801         const u8 *mac = NULL;
802         int ret = 0;
803         int idx;
804
805         memset(&hk, 0, sizeof(hk));
806
807         switch (key->alg) {
808         case ALG_WEP:
809                 hk.kv_type = ATH9K_CIPHER_WEP;
810                 break;
811         case ALG_TKIP:
812                 hk.kv_type = ATH9K_CIPHER_TKIP;
813                 break;
814         case ALG_CCMP:
815                 hk.kv_type = ATH9K_CIPHER_AES_CCM;
816                 break;
817         default:
818                 return -EINVAL;
819         }
820
821         hk.kv_len = key->keylen;
822         memcpy(hk.kv_val, key->key, key->keylen);
823
824         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
825                 /* For now, use the default keys for broadcast keys. This may
826                  * need to change with virtual interfaces. */
827                 idx = key->keyidx;
828         } else if (key->keyidx) {
829                 struct ieee80211_vif *vif;
830
831                 mac = addr;
832                 vif = sc->sc_vaps[0];
833                 if (vif->type != NL80211_IFTYPE_AP) {
834                         /* Only keyidx 0 should be used with unicast key, but
835                          * allow this for client mode for now. */
836                         idx = key->keyidx;
837                 } else
838                         return -EIO;
839         } else {
840                 mac = addr;
841                 if (key->alg == ALG_TKIP)
842                         idx = ath_reserve_key_cache_slot_tkip(sc);
843                 else
844                         idx = ath_reserve_key_cache_slot(sc);
845                 if (idx < 0)
846                         return -EIO; /* no free key cache entries */
847         }
848
849         if (key->alg == ALG_TKIP)
850                 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac);
851         else
852                 ret = ath_keyset(sc, idx, &hk, mac);
853
854         if (!ret)
855                 return -EIO;
856
857         set_bit(idx, sc->sc_keymap);
858         if (key->alg == ALG_TKIP) {
859                 set_bit(idx + 64, sc->sc_keymap);
860                 if (sc->sc_splitmic) {
861                         set_bit(idx + 32, sc->sc_keymap);
862                         set_bit(idx + 64 + 32, sc->sc_keymap);
863                 }
864         }
865
866         return idx;
867 }
868
869 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
870 {
871         ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
872         if (key->hw_key_idx < IEEE80211_WEP_NKID)
873                 return;
874
875         clear_bit(key->hw_key_idx, sc->sc_keymap);
876         if (key->alg != ALG_TKIP)
877                 return;
878
879         clear_bit(key->hw_key_idx + 64, sc->sc_keymap);
880         if (sc->sc_splitmic) {
881                 clear_bit(key->hw_key_idx + 32, sc->sc_keymap);
882                 clear_bit(key->hw_key_idx + 64 + 32, sc->sc_keymap);
883         }
884 }
885
886 static void setup_ht_cap(struct ieee80211_sta_ht_cap *ht_info)
887 {
888 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3       /* 2 ^ 16 */
889 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6          /* 8 usec */
890
891         ht_info->ht_supported = true;
892         ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
893                        IEEE80211_HT_CAP_SM_PS |
894                        IEEE80211_HT_CAP_SGI_40 |
895                        IEEE80211_HT_CAP_DSSSCCK40;
896
897         ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
898         ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
899         /* set up supported mcs set */
900         memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
901         ht_info->mcs.rx_mask[0] = 0xff;
902         ht_info->mcs.rx_mask[1] = 0xff;
903         ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
904 }
905
906 static void ath9k_bss_assoc_info(struct ath_softc *sc,
907                                  struct ieee80211_vif *vif,
908                                  struct ieee80211_bss_conf *bss_conf)
909 {
910         struct ath_vap *avp = (void *)vif->drv_priv;
911
912         if (bss_conf->assoc) {
913                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
914                         bss_conf->aid, sc->sc_curbssid);
915
916                 /* New association, store aid */
917                 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
918                         sc->sc_curaid = bss_conf->aid;
919                         ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
920                                                sc->sc_curaid);
921                 }
922
923                 /* Configure the beacon */
924                 ath_beacon_config(sc, 0);
925                 sc->sc_flags |= SC_OP_BEACONS;
926
927                 /* Reset rssi stats */
928                 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
929                 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
930                 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
931                 sc->sc_halstats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
932
933                 /* Start ANI */
934                 mod_timer(&sc->sc_ani.timer,
935                         jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
936
937         } else {
938                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
939                 sc->sc_curaid = 0;
940         }
941 }
942
943 /********************************/
944 /*       LED functions          */
945 /********************************/
946
947 static void ath_led_brightness(struct led_classdev *led_cdev,
948                                enum led_brightness brightness)
949 {
950         struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
951         struct ath_softc *sc = led->sc;
952
953         switch (brightness) {
954         case LED_OFF:
955                 if (led->led_type == ATH_LED_ASSOC ||
956                     led->led_type == ATH_LED_RADIO)
957                         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
958                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
959                                 (led->led_type == ATH_LED_RADIO) ? 1 :
960                                 !!(sc->sc_flags & SC_OP_LED_ASSOCIATED));
961                 break;
962         case LED_FULL:
963                 if (led->led_type == ATH_LED_ASSOC)
964                         sc->sc_flags |= SC_OP_LED_ASSOCIATED;
965                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
966                 break;
967         default:
968                 break;
969         }
970 }
971
972 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
973                             char *trigger)
974 {
975         int ret;
976
977         led->sc = sc;
978         led->led_cdev.name = led->name;
979         led->led_cdev.default_trigger = trigger;
980         led->led_cdev.brightness_set = ath_led_brightness;
981
982         ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
983         if (ret)
984                 DPRINTF(sc, ATH_DBG_FATAL,
985                         "Failed to register led:%s", led->name);
986         else
987                 led->registered = 1;
988         return ret;
989 }
990
991 static void ath_unregister_led(struct ath_led *led)
992 {
993         if (led->registered) {
994                 led_classdev_unregister(&led->led_cdev);
995                 led->registered = 0;
996         }
997 }
998
999 static void ath_deinit_leds(struct ath_softc *sc)
1000 {
1001         ath_unregister_led(&sc->assoc_led);
1002         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1003         ath_unregister_led(&sc->tx_led);
1004         ath_unregister_led(&sc->rx_led);
1005         ath_unregister_led(&sc->radio_led);
1006         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1007 }
1008
1009 static void ath_init_leds(struct ath_softc *sc)
1010 {
1011         char *trigger;
1012         int ret;
1013
1014         /* Configure gpio 1 for output */
1015         ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1016                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1017         /* LED off, active low */
1018         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1019
1020         trigger = ieee80211_get_radio_led_name(sc->hw);
1021         snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1022                 "ath9k-%s:radio", wiphy_name(sc->hw->wiphy));
1023         ret = ath_register_led(sc, &sc->radio_led, trigger);
1024         sc->radio_led.led_type = ATH_LED_RADIO;
1025         if (ret)
1026                 goto fail;
1027
1028         trigger = ieee80211_get_assoc_led_name(sc->hw);
1029         snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1030                 "ath9k-%s:assoc", wiphy_name(sc->hw->wiphy));
1031         ret = ath_register_led(sc, &sc->assoc_led, trigger);
1032         sc->assoc_led.led_type = ATH_LED_ASSOC;
1033         if (ret)
1034                 goto fail;
1035
1036         trigger = ieee80211_get_tx_led_name(sc->hw);
1037         snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1038                 "ath9k-%s:tx", wiphy_name(sc->hw->wiphy));
1039         ret = ath_register_led(sc, &sc->tx_led, trigger);
1040         sc->tx_led.led_type = ATH_LED_TX;
1041         if (ret)
1042                 goto fail;
1043
1044         trigger = ieee80211_get_rx_led_name(sc->hw);
1045         snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1046                 "ath9k-%s:rx", wiphy_name(sc->hw->wiphy));
1047         ret = ath_register_led(sc, &sc->rx_led, trigger);
1048         sc->rx_led.led_type = ATH_LED_RX;
1049         if (ret)
1050                 goto fail;
1051
1052         return;
1053
1054 fail:
1055         ath_deinit_leds(sc);
1056 }
1057
1058 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1059
1060 /*******************/
1061 /*      Rfkill     */
1062 /*******************/
1063
1064 static void ath_radio_enable(struct ath_softc *sc)
1065 {
1066         struct ath_hal *ah = sc->sc_ah;
1067         struct ieee80211_channel *channel = sc->hw->conf.channel;
1068         int r;
1069
1070         spin_lock_bh(&sc->sc_resetlock);
1071
1072         r = ath9k_hw_reset(ah, ah->ah_curchan, false);
1073
1074         if (r) {
1075                 DPRINTF(sc, ATH_DBG_FATAL,
1076                         "Unable to reset channel %u (%uMhz) ",
1077                         "reset status %u\n",
1078                         channel->center_freq, r);
1079         }
1080         spin_unlock_bh(&sc->sc_resetlock);
1081
1082         ath_update_txpow(sc);
1083         if (ath_startrecv(sc) != 0) {
1084                 DPRINTF(sc, ATH_DBG_FATAL,
1085                         "Unable to restart recv logic\n");
1086                 return;
1087         }
1088
1089         if (sc->sc_flags & SC_OP_BEACONS)
1090                 ath_beacon_config(sc, ATH_IF_ID_ANY);   /* restart beacons */
1091
1092         /* Re-Enable  interrupts */
1093         ath9k_hw_set_interrupts(ah, sc->sc_imask);
1094
1095         /* Enable LED */
1096         ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1097                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1098         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1099
1100         ieee80211_wake_queues(sc->hw);
1101 }
1102
1103 static void ath_radio_disable(struct ath_softc *sc)
1104 {
1105         struct ath_hal *ah = sc->sc_ah;
1106         struct ieee80211_channel *channel = sc->hw->conf.channel;
1107         int r;
1108
1109         ieee80211_stop_queues(sc->hw);
1110
1111         /* Disable LED */
1112         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1113         ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1114
1115         /* Disable interrupts */
1116         ath9k_hw_set_interrupts(ah, 0);
1117
1118         ath_draintxq(sc, false);        /* clear pending tx frames */
1119         ath_stoprecv(sc);               /* turn off frame recv */
1120         ath_flushrecv(sc);              /* flush recv queue */
1121
1122         spin_lock_bh(&sc->sc_resetlock);
1123         r = ath9k_hw_reset(ah, ah->ah_curchan, false);
1124         if (r) {
1125                 DPRINTF(sc, ATH_DBG_FATAL,
1126                         "Unable to reset channel %u (%uMhz) "
1127                         "reset status %u\n",
1128                         channel->center_freq, r);
1129         }
1130         spin_unlock_bh(&sc->sc_resetlock);
1131
1132         ath9k_hw_phy_disable(ah);
1133         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1134 }
1135
1136 static bool ath_is_rfkill_set(struct ath_softc *sc)
1137 {
1138         struct ath_hal *ah = sc->sc_ah;
1139
1140         return ath9k_hw_gpio_get(ah, ah->ah_rfkill_gpio) ==
1141                                   ah->ah_rfkill_polarity;
1142 }
1143
1144 /* h/w rfkill poll function */
1145 static void ath_rfkill_poll(struct work_struct *work)
1146 {
1147         struct ath_softc *sc = container_of(work, struct ath_softc,
1148                                             rf_kill.rfkill_poll.work);
1149         bool radio_on;
1150
1151         if (sc->sc_flags & SC_OP_INVALID)
1152                 return;
1153
1154         radio_on = !ath_is_rfkill_set(sc);
1155
1156         /*
1157          * enable/disable radio only when there is a
1158          * state change in RF switch
1159          */
1160         if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1161                 enum rfkill_state state;
1162
1163                 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1164                         state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1165                                 : RFKILL_STATE_HARD_BLOCKED;
1166                 } else if (radio_on) {
1167                         ath_radio_enable(sc);
1168                         state = RFKILL_STATE_UNBLOCKED;
1169                 } else {
1170                         ath_radio_disable(sc);
1171                         state = RFKILL_STATE_HARD_BLOCKED;
1172                 }
1173
1174                 if (state == RFKILL_STATE_HARD_BLOCKED)
1175                         sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1176                 else
1177                         sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1178
1179                 rfkill_force_state(sc->rf_kill.rfkill, state);
1180         }
1181
1182         queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1183                            msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1184 }
1185
1186 /* s/w rfkill handler */
1187 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1188 {
1189         struct ath_softc *sc = data;
1190
1191         switch (state) {
1192         case RFKILL_STATE_SOFT_BLOCKED:
1193                 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1194                     SC_OP_RFKILL_SW_BLOCKED)))
1195                         ath_radio_disable(sc);
1196                 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1197                 return 0;
1198         case RFKILL_STATE_UNBLOCKED:
1199                 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1200                         sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1201                         if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1202                                 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1203                                         "radio as it is disabled by h/w\n");
1204                                 return -EPERM;
1205                         }
1206                         ath_radio_enable(sc);
1207                 }
1208                 return 0;
1209         default:
1210                 return -EINVAL;
1211         }
1212 }
1213
1214 /* Init s/w rfkill */
1215 static int ath_init_sw_rfkill(struct ath_softc *sc)
1216 {
1217         sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1218                                              RFKILL_TYPE_WLAN);
1219         if (!sc->rf_kill.rfkill) {
1220                 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1221                 return -ENOMEM;
1222         }
1223
1224         snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1225                 "ath9k-%s:rfkill", wiphy_name(sc->hw->wiphy));
1226         sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1227         sc->rf_kill.rfkill->data = sc;
1228         sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1229         sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1230         sc->rf_kill.rfkill->user_claim_unsupported = 1;
1231
1232         return 0;
1233 }
1234
1235 /* Deinitialize rfkill */
1236 static void ath_deinit_rfkill(struct ath_softc *sc)
1237 {
1238         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1239                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1240
1241         if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1242                 rfkill_unregister(sc->rf_kill.rfkill);
1243                 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1244                 sc->rf_kill.rfkill = NULL;
1245         }
1246 }
1247
1248 static int ath_start_rfkill_poll(struct ath_softc *sc)
1249 {
1250         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1251                 queue_delayed_work(sc->hw->workqueue,
1252                                    &sc->rf_kill.rfkill_poll, 0);
1253
1254         if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1255                 if (rfkill_register(sc->rf_kill.rfkill)) {
1256                         DPRINTF(sc, ATH_DBG_FATAL,
1257                                 "Unable to register rfkill\n");
1258                         rfkill_free(sc->rf_kill.rfkill);
1259
1260                         /* Deinitialize the device */
1261                         ath_detach(sc);
1262                         if (sc->pdev->irq)
1263                                 free_irq(sc->pdev->irq, sc);
1264                         pci_iounmap(sc->pdev, sc->mem);
1265                         pci_release_region(sc->pdev, 0);
1266                         pci_disable_device(sc->pdev);
1267                         ieee80211_free_hw(sc->hw);
1268                         return -EIO;
1269                 } else {
1270                         sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1271                 }
1272         }
1273
1274         return 0;
1275 }
1276 #endif /* CONFIG_RFKILL */
1277
1278 static void ath_detach(struct ath_softc *sc)
1279 {
1280         struct ieee80211_hw *hw = sc->hw;
1281         int i = 0;
1282
1283         DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1284
1285 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1286         ath_deinit_rfkill(sc);
1287 #endif
1288         ath_deinit_leds(sc);
1289
1290         ieee80211_unregister_hw(hw);
1291         ath_rx_cleanup(sc);
1292         ath_tx_cleanup(sc);
1293
1294         tasklet_kill(&sc->intr_tq);
1295         tasklet_kill(&sc->bcon_tasklet);
1296
1297         if (!(sc->sc_flags & SC_OP_INVALID))
1298                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1299
1300         /* cleanup tx queues */
1301         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1302                 if (ATH_TXQ_SETUP(sc, i))
1303                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1304
1305         ath9k_hw_detach(sc->sc_ah);
1306         ath9k_exit_debug(sc);
1307 }
1308
1309 static int ath_init(u16 devid, struct ath_softc *sc)
1310 {
1311         struct ath_hal *ah = NULL;
1312         int status;
1313         int error = 0, i;
1314         int csz = 0;
1315
1316         /* XXX: hardware will not be ready until ath_open() being called */
1317         sc->sc_flags |= SC_OP_INVALID;
1318
1319         if (ath9k_init_debug(sc) < 0)
1320                 printk(KERN_ERR "Unable to create debugfs files\n");
1321
1322         spin_lock_init(&sc->sc_resetlock);
1323         mutex_init(&sc->mutex);
1324         tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1325         tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
1326                      (unsigned long)sc);
1327
1328         /*
1329          * Cache line size is used to size and align various
1330          * structures used to communicate with the hardware.
1331          */
1332         bus_read_cachesize(sc, &csz);
1333         /* XXX assert csz is non-zero */
1334         sc->sc_cachelsz = csz << 2;     /* convert to bytes */
1335
1336         ah = ath9k_hw_attach(devid, sc, sc->mem, &status);
1337         if (ah == NULL) {
1338                 DPRINTF(sc, ATH_DBG_FATAL,
1339                         "Unable to attach hardware; HAL status %u\n", status);
1340                 error = -ENXIO;
1341                 goto bad;
1342         }
1343         sc->sc_ah = ah;
1344
1345         /* Get the hardware key cache size. */
1346         sc->sc_keymax = ah->ah_caps.keycache_size;
1347         if (sc->sc_keymax > ATH_KEYMAX) {
1348                 DPRINTF(sc, ATH_DBG_KEYCACHE,
1349                         "Warning, using only %u entries in %u key cache\n",
1350                         ATH_KEYMAX, sc->sc_keymax);
1351                 sc->sc_keymax = ATH_KEYMAX;
1352         }
1353
1354         /*
1355          * Reset the key cache since some parts do not
1356          * reset the contents on initial power up.
1357          */
1358         for (i = 0; i < sc->sc_keymax; i++)
1359                 ath9k_hw_keyreset(ah, (u16) i);
1360
1361         /* Collect the channel list using the default country code */
1362
1363         error = ath_setup_channels(sc);
1364         if (error)
1365                 goto bad;
1366
1367         /* default to MONITOR mode */
1368         sc->sc_ah->ah_opmode = NL80211_IFTYPE_MONITOR;
1369
1370
1371         /* Setup rate tables */
1372
1373         ath_rate_attach(sc);
1374         ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1375         ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1376
1377         /*
1378          * Allocate hardware transmit queues: one queue for
1379          * beacon frames and one data queue for each QoS
1380          * priority.  Note that the hal handles reseting
1381          * these queues at the needed time.
1382          */
1383         sc->beacon.beaconq = ath_beaconq_setup(ah);
1384         if (sc->beacon.beaconq == -1) {
1385                 DPRINTF(sc, ATH_DBG_FATAL,
1386                         "Unable to setup a beacon xmit queue\n");
1387                 error = -EIO;
1388                 goto bad2;
1389         }
1390         sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1391         if (sc->beacon.cabq == NULL) {
1392                 DPRINTF(sc, ATH_DBG_FATAL,
1393                         "Unable to setup CAB xmit queue\n");
1394                 error = -EIO;
1395                 goto bad2;
1396         }
1397
1398         sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME;
1399         ath_cabq_update(sc);
1400
1401         for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1402                 sc->tx.hwq_map[i] = -1;
1403
1404         /* Setup data queues */
1405         /* NB: ensure BK queue is the lowest priority h/w queue */
1406         if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1407                 DPRINTF(sc, ATH_DBG_FATAL,
1408                         "Unable to setup xmit queue for BK traffic\n");
1409                 error = -EIO;
1410                 goto bad2;
1411         }
1412
1413         if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1414                 DPRINTF(sc, ATH_DBG_FATAL,
1415                         "Unable to setup xmit queue for BE traffic\n");
1416                 error = -EIO;
1417                 goto bad2;
1418         }
1419         if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1420                 DPRINTF(sc, ATH_DBG_FATAL,
1421                         "Unable to setup xmit queue for VI traffic\n");
1422                 error = -EIO;
1423                 goto bad2;
1424         }
1425         if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1426                 DPRINTF(sc, ATH_DBG_FATAL,
1427                         "Unable to setup xmit queue for VO traffic\n");
1428                 error = -EIO;
1429                 goto bad2;
1430         }
1431
1432         /* Initializes the noise floor to a reasonable default value.
1433          * Later on this will be updated during ANI processing. */
1434
1435         sc->sc_ani.sc_noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1436         setup_timer(&sc->sc_ani.timer, ath_ani_calibrate, (unsigned long)sc);
1437
1438         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1439                                    ATH9K_CIPHER_TKIP, NULL)) {
1440                 /*
1441                  * Whether we should enable h/w TKIP MIC.
1442                  * XXX: if we don't support WME TKIP MIC, then we wouldn't
1443                  * report WMM capable, so it's always safe to turn on
1444                  * TKIP MIC in this case.
1445                  */
1446                 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1447                                        0, 1, NULL);
1448         }
1449
1450         /*
1451          * Check whether the separate key cache entries
1452          * are required to handle both tx+rx MIC keys.
1453          * With split mic keys the number of stations is limited
1454          * to 27 otherwise 59.
1455          */
1456         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1457                                    ATH9K_CIPHER_TKIP, NULL)
1458             && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1459                                       ATH9K_CIPHER_MIC, NULL)
1460             && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1461                                       0, NULL))
1462                 sc->sc_splitmic = 1;
1463
1464         /* turn on mcast key search if possible */
1465         if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1466                 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1467                                              1, NULL);
1468
1469         sc->sc_config.txpowlimit = ATH_TXPOWER_MAX;
1470         sc->sc_config.txpowlimit_override = 0;
1471
1472         /* 11n Capabilities */
1473         if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1474                 sc->sc_flags |= SC_OP_TXAGGR;
1475                 sc->sc_flags |= SC_OP_RXAGGR;
1476         }
1477
1478         sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask;
1479         sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask;
1480
1481         ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1482         sc->rx.defant = ath9k_hw_getdefantenna(ah);
1483
1484         ath9k_hw_getmac(ah, sc->sc_myaddr);
1485         if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
1486                 ath9k_hw_getbssidmask(ah, sc->sc_bssidmask);
1487                 ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask);
1488                 ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
1489         }
1490
1491         sc->beacon.slottime = ATH9K_SLOT_TIME_9;        /* default to short slot time */
1492
1493         /* initialize beacon slots */
1494         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
1495                 sc->beacon.bslot[i] = ATH_IF_ID_ANY;
1496
1497         /* save MISC configurations */
1498         sc->sc_config.swBeaconProcess = 1;
1499
1500         /* setup channels and rates */
1501
1502         sc->sbands[IEEE80211_BAND_2GHZ].channels =
1503                 sc->channels[IEEE80211_BAND_2GHZ];
1504         sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1505                 sc->rates[IEEE80211_BAND_2GHZ];
1506         sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1507
1508         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) {
1509                 sc->sbands[IEEE80211_BAND_5GHZ].channels =
1510                         sc->channels[IEEE80211_BAND_5GHZ];
1511                 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1512                         sc->rates[IEEE80211_BAND_5GHZ];
1513                 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1514         }
1515
1516         return 0;
1517 bad2:
1518         /* cleanup tx queues */
1519         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1520                 if (ATH_TXQ_SETUP(sc, i))
1521                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1522 bad:
1523         if (ah)
1524                 ath9k_hw_detach(ah);
1525
1526         return error;
1527 }
1528
1529 static int ath_attach(u16 devid, struct ath_softc *sc)
1530 {
1531         struct ieee80211_hw *hw = sc->hw;
1532         int error = 0;
1533
1534         DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1535
1536         error = ath_init(devid, sc);
1537         if (error != 0)
1538                 return error;
1539
1540         /* get mac address from hardware and set in mac80211 */
1541
1542         SET_IEEE80211_PERM_ADDR(hw, sc->sc_myaddr);
1543
1544         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1545                 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1546                 IEEE80211_HW_SIGNAL_DBM |
1547                 IEEE80211_HW_AMPDU_AGGREGATION;
1548
1549         hw->wiphy->interface_modes =
1550                 BIT(NL80211_IFTYPE_AP) |
1551                 BIT(NL80211_IFTYPE_STATION) |
1552                 BIT(NL80211_IFTYPE_ADHOC);
1553
1554         hw->queues = 4;
1555         hw->max_rates = 4;
1556         hw->max_rate_tries = ATH_11N_TXMAXTRY;
1557         hw->sta_data_size = sizeof(struct ath_node);
1558         hw->vif_data_size = sizeof(struct ath_vap);
1559
1560         hw->rate_control_algorithm = "ath9k_rate_control";
1561
1562         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1563                 setup_ht_cap(&sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1564                 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1565                         setup_ht_cap(&sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1566         }
1567
1568         hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &sc->sbands[IEEE80211_BAND_2GHZ];
1569         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1570                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1571                         &sc->sbands[IEEE80211_BAND_5GHZ];
1572
1573         /* initialize tx/rx engine */
1574         error = ath_tx_init(sc, ATH_TXBUF);
1575         if (error != 0)
1576                 goto detach;
1577
1578         error = ath_rx_init(sc, ATH_RXBUF);
1579         if (error != 0)
1580                 goto detach;
1581
1582 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1583         /* Initialze h/w Rfkill */
1584         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1585                 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1586
1587         /* Initialize s/w rfkill */
1588         if (ath_init_sw_rfkill(sc))
1589                 goto detach;
1590 #endif
1591
1592         error = ieee80211_register_hw(hw);
1593
1594         /* Initialize LED control */
1595         ath_init_leds(sc);
1596
1597         return 0;
1598 detach:
1599         ath_detach(sc);
1600         return error;
1601 }
1602
1603 int ath_reset(struct ath_softc *sc, bool retry_tx)
1604 {
1605         struct ath_hal *ah = sc->sc_ah;
1606         struct ieee80211_hw *hw = sc->hw;
1607         int r;
1608
1609         ath9k_hw_set_interrupts(ah, 0);
1610         ath_draintxq(sc, retry_tx);
1611         ath_stoprecv(sc);
1612         ath_flushrecv(sc);
1613
1614         spin_lock_bh(&sc->sc_resetlock);
1615         r = ath9k_hw_reset(ah, sc->sc_ah->ah_curchan, false);
1616         if (r)
1617                 DPRINTF(sc, ATH_DBG_FATAL,
1618                         "Unable to reset hardware; reset status %u\n", r);
1619         spin_unlock_bh(&sc->sc_resetlock);
1620
1621         if (ath_startrecv(sc) != 0)
1622                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1623
1624         /*
1625          * We may be doing a reset in response to a request
1626          * that changes the channel so update any state that
1627          * might change as a result.
1628          */
1629         ath_cache_conf_rate(sc, &hw->conf);
1630
1631         ath_update_txpow(sc);
1632
1633         if (sc->sc_flags & SC_OP_BEACONS)
1634                 ath_beacon_config(sc, ATH_IF_ID_ANY);   /* restart beacons */
1635
1636         ath9k_hw_set_interrupts(ah, sc->sc_imask);
1637
1638         if (retry_tx) {
1639                 int i;
1640                 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1641                         if (ATH_TXQ_SETUP(sc, i)) {
1642                                 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1643                                 ath_txq_schedule(sc, &sc->tx.txq[i]);
1644                                 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1645                         }
1646                 }
1647         }
1648
1649         return r;
1650 }
1651
1652 /*
1653  *  This function will allocate both the DMA descriptor structure, and the
1654  *  buffers it contains.  These are used to contain the descriptors used
1655  *  by the system.
1656 */
1657 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1658                       struct list_head *head, const char *name,
1659                       int nbuf, int ndesc)
1660 {
1661 #define DS2PHYS(_dd, _ds)                                               \
1662         ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1663 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1664 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1665
1666         struct ath_desc *ds;
1667         struct ath_buf *bf;
1668         int i, bsize, error;
1669
1670         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1671                 name, nbuf, ndesc);
1672
1673         /* ath_desc must be a multiple of DWORDs */
1674         if ((sizeof(struct ath_desc) % 4) != 0) {
1675                 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1676                 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1677                 error = -ENOMEM;
1678                 goto fail;
1679         }
1680
1681         dd->dd_name = name;
1682         dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1683
1684         /*
1685          * Need additional DMA memory because we can't use
1686          * descriptors that cross the 4K page boundary. Assume
1687          * one skipped descriptor per 4K page.
1688          */
1689         if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1690                 u32 ndesc_skipped =
1691                         ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1692                 u32 dma_len;
1693
1694                 while (ndesc_skipped) {
1695                         dma_len = ndesc_skipped * sizeof(struct ath_desc);
1696                         dd->dd_desc_len += dma_len;
1697
1698                         ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1699                 };
1700         }
1701
1702         /* allocate descriptors */
1703         dd->dd_desc = pci_alloc_consistent(sc->pdev,
1704                               dd->dd_desc_len,
1705                               &dd->dd_desc_paddr);
1706         if (dd->dd_desc == NULL) {
1707                 error = -ENOMEM;
1708                 goto fail;
1709         }
1710         ds = dd->dd_desc;
1711         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1712                 dd->dd_name, ds, (u32) dd->dd_desc_len,
1713                 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1714
1715         /* allocate buffers */
1716         bsize = sizeof(struct ath_buf) * nbuf;
1717         bf = kmalloc(bsize, GFP_KERNEL);
1718         if (bf == NULL) {
1719                 error = -ENOMEM;
1720                 goto fail2;
1721         }
1722         memset(bf, 0, bsize);
1723         dd->dd_bufptr = bf;
1724
1725         INIT_LIST_HEAD(head);
1726         for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1727                 bf->bf_desc = ds;
1728                 bf->bf_daddr = DS2PHYS(dd, ds);
1729
1730                 if (!(sc->sc_ah->ah_caps.hw_caps &
1731                       ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1732                         /*
1733                          * Skip descriptor addresses which can cause 4KB
1734                          * boundary crossing (addr + length) with a 32 dword
1735                          * descriptor fetch.
1736                          */
1737                         while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1738                                 ASSERT((caddr_t) bf->bf_desc <
1739                                        ((caddr_t) dd->dd_desc +
1740                                         dd->dd_desc_len));
1741
1742                                 ds += ndesc;
1743                                 bf->bf_desc = ds;
1744                                 bf->bf_daddr = DS2PHYS(dd, ds);
1745                         }
1746                 }
1747                 list_add_tail(&bf->list, head);
1748         }
1749         return 0;
1750 fail2:
1751         pci_free_consistent(sc->pdev,
1752                 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1753 fail:
1754         memset(dd, 0, sizeof(*dd));
1755         return error;
1756 #undef ATH_DESC_4KB_BOUND_CHECK
1757 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1758 #undef DS2PHYS
1759 }
1760
1761 void ath_descdma_cleanup(struct ath_softc *sc,
1762                          struct ath_descdma *dd,
1763                          struct list_head *head)
1764 {
1765         pci_free_consistent(sc->pdev,
1766                 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1767
1768         INIT_LIST_HEAD(head);
1769         kfree(dd->dd_bufptr);
1770         memset(dd, 0, sizeof(*dd));
1771 }
1772
1773 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1774 {
1775         int qnum;
1776
1777         switch (queue) {
1778         case 0:
1779                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1780                 break;
1781         case 1:
1782                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1783                 break;
1784         case 2:
1785                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1786                 break;
1787         case 3:
1788                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1789                 break;
1790         default:
1791                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1792                 break;
1793         }
1794
1795         return qnum;
1796 }
1797
1798 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1799 {
1800         int qnum;
1801
1802         switch (queue) {
1803         case ATH9K_WME_AC_VO:
1804                 qnum = 0;
1805                 break;
1806         case ATH9K_WME_AC_VI:
1807                 qnum = 1;
1808                 break;
1809         case ATH9K_WME_AC_BE:
1810                 qnum = 2;
1811                 break;
1812         case ATH9K_WME_AC_BK:
1813                 qnum = 3;
1814                 break;
1815         default:
1816                 qnum = -1;
1817                 break;
1818         }
1819
1820         return qnum;
1821 }
1822
1823 /**********************/
1824 /* mac80211 callbacks */
1825 /**********************/
1826
1827 static int ath9k_start(struct ieee80211_hw *hw)
1828 {
1829         struct ath_softc *sc = hw->priv;
1830         struct ieee80211_channel *curchan = hw->conf.channel;
1831         struct ath9k_channel *init_channel;
1832         int r, pos;
1833
1834         DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1835                 "initial channel: %d MHz\n", curchan->center_freq);
1836
1837         /* setup initial channel */
1838
1839         pos = ath_get_channel(sc, curchan);
1840         if (pos == -1) {
1841                 DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n", curchan->center_freq);
1842                 return -EINVAL;
1843         }
1844
1845         sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1846         sc->sc_ah->ah_channels[pos].chanmode =
1847                 (curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A;
1848         init_channel = &sc->sc_ah->ah_channels[pos];
1849
1850         /* Reset SERDES registers */
1851         ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1852
1853         /*
1854          * The basic interface to setting the hardware in a good
1855          * state is ``reset''.  On return the hardware is known to
1856          * be powered up and with interrupts disabled.  This must
1857          * be followed by initialization of the appropriate bits
1858          * and then setup of the interrupt mask.
1859          */
1860         spin_lock_bh(&sc->sc_resetlock);
1861         r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
1862         if (r) {
1863                 DPRINTF(sc, ATH_DBG_FATAL,
1864                         "Unable to reset hardware; reset status %u "
1865                         "(freq %u MHz)\n", r,
1866                         curchan->center_freq);
1867                 spin_unlock_bh(&sc->sc_resetlock);
1868                 return r;
1869         }
1870         spin_unlock_bh(&sc->sc_resetlock);
1871
1872         /*
1873          * This is needed only to setup initial state
1874          * but it's best done after a reset.
1875          */
1876         ath_update_txpow(sc);
1877
1878         /*
1879          * Setup the hardware after reset:
1880          * The receive engine is set going.
1881          * Frame transmit is handled entirely
1882          * in the frame output path; there's nothing to do
1883          * here except setup the interrupt mask.
1884          */
1885         if (ath_startrecv(sc) != 0) {
1886                 DPRINTF(sc, ATH_DBG_FATAL,
1887                         "Unable to start recv logic\n");
1888                 return -EIO;
1889         }
1890
1891         /* Setup our intr mask. */
1892         sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX
1893                 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1894                 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1895
1896         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_GTT)
1897                 sc->sc_imask |= ATH9K_INT_GTT;
1898
1899         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
1900                 sc->sc_imask |= ATH9K_INT_CST;
1901
1902         /*
1903          * Enable MIB interrupts when there are hardware phy counters.
1904          * Note we only do this (at the moment) for station mode.
1905          */
1906         if (ath9k_hw_phycounters(sc->sc_ah) &&
1907             ((sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) ||
1908              (sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC)))
1909                 sc->sc_imask |= ATH9K_INT_MIB;
1910         /*
1911          * Some hardware processes the TIM IE and fires an
1912          * interrupt when the TIM bit is set.  For hardware
1913          * that does, if not overridden by configuration,
1914          * enable the TIM interrupt when operating as station.
1915          */
1916         if ((sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
1917             (sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) &&
1918             !sc->sc_config.swBeaconProcess)
1919                 sc->sc_imask |= ATH9K_INT_TIM;
1920
1921         ath_cache_conf_rate(sc, &hw->conf);
1922
1923         sc->sc_flags &= ~SC_OP_INVALID;
1924
1925         /* Disable BMISS interrupt when we're not associated */
1926         sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1927         ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
1928
1929         ieee80211_wake_queues(sc->hw);
1930
1931 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1932         r = ath_start_rfkill_poll(sc);
1933 #endif
1934         return r;
1935 }
1936
1937 static int ath9k_tx(struct ieee80211_hw *hw,
1938                     struct sk_buff *skb)
1939 {
1940         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1941         struct ath_softc *sc = hw->priv;
1942         struct ath_tx_control txctl;
1943         int hdrlen, padsize;
1944
1945         memset(&txctl, 0, sizeof(struct ath_tx_control));
1946
1947         /*
1948          * As a temporary workaround, assign seq# here; this will likely need
1949          * to be cleaned up to work better with Beacon transmission and virtual
1950          * BSSes.
1951          */
1952         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1953                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1954                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1955                         sc->tx.seq_no += 0x10;
1956                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1957                 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1958         }
1959
1960         /* Add the padding after the header if this is not already done */
1961         hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1962         if (hdrlen & 3) {
1963                 padsize = hdrlen % 4;
1964                 if (skb_headroom(skb) < padsize)
1965                         return -1;
1966                 skb_push(skb, padsize);
1967                 memmove(skb->data, skb->data + padsize, hdrlen);
1968         }
1969
1970         /* Check if a tx queue is available */
1971
1972         txctl.txq = ath_test_get_txq(sc, skb);
1973         if (!txctl.txq)
1974                 goto exit;
1975
1976         DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
1977
1978         if (ath_tx_start(sc, skb, &txctl) != 0) {
1979                 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
1980                 goto exit;
1981         }
1982
1983         return 0;
1984 exit:
1985         dev_kfree_skb_any(skb);
1986         return 0;
1987 }
1988
1989 static void ath9k_stop(struct ieee80211_hw *hw)
1990 {
1991         struct ath_softc *sc = hw->priv;
1992
1993         if (sc->sc_flags & SC_OP_INVALID) {
1994                 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
1995                 return;
1996         }
1997
1998         DPRINTF(sc, ATH_DBG_CONFIG, "Cleaning up\n");
1999
2000         ieee80211_stop_queues(sc->hw);
2001
2002         /* make sure h/w will not generate any interrupt
2003          * before setting the invalid flag. */
2004         ath9k_hw_set_interrupts(sc->sc_ah, 0);
2005
2006         if (!(sc->sc_flags & SC_OP_INVALID)) {
2007                 ath_draintxq(sc, false);
2008                 ath_stoprecv(sc);
2009                 ath9k_hw_phy_disable(sc->sc_ah);
2010         } else
2011                 sc->rx.rxlink = NULL;
2012
2013 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2014         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2015                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2016 #endif
2017         /* disable HAL and put h/w to sleep */
2018         ath9k_hw_disable(sc->sc_ah);
2019         ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2020
2021         sc->sc_flags |= SC_OP_INVALID;
2022
2023         DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2024 }
2025
2026 static int ath9k_add_interface(struct ieee80211_hw *hw,
2027                                struct ieee80211_if_init_conf *conf)
2028 {
2029         struct ath_softc *sc = hw->priv;
2030         struct ath_vap *avp = (void *)conf->vif->drv_priv;
2031         enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2032
2033         /* Support only vap for now */
2034
2035         if (sc->sc_nvaps)
2036                 return -ENOBUFS;
2037
2038         switch (conf->type) {
2039         case NL80211_IFTYPE_STATION:
2040                 ic_opmode = NL80211_IFTYPE_STATION;
2041                 break;
2042         case NL80211_IFTYPE_ADHOC:
2043                 ic_opmode = NL80211_IFTYPE_ADHOC;
2044                 break;
2045         case NL80211_IFTYPE_AP:
2046                 ic_opmode = NL80211_IFTYPE_AP;
2047                 break;
2048         default:
2049                 DPRINTF(sc, ATH_DBG_FATAL,
2050                         "Interface type %d not yet supported\n", conf->type);
2051                 return -EOPNOTSUPP;
2052         }
2053
2054         DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VAP of type: %d\n", ic_opmode);
2055
2056         /* Set the VAP opmode */
2057         avp->av_opmode = ic_opmode;
2058         avp->av_bslot = -1;
2059
2060         if (ic_opmode == NL80211_IFTYPE_AP)
2061                 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2062
2063         sc->sc_vaps[0] = conf->vif;
2064         sc->sc_nvaps++;
2065
2066         /* Set the device opmode */
2067         sc->sc_ah->ah_opmode = ic_opmode;
2068
2069         if (conf->type == NL80211_IFTYPE_AP) {
2070                 /* TODO: is this a suitable place to start ANI for AP mode? */
2071                 /* Start ANI */
2072                 mod_timer(&sc->sc_ani.timer,
2073                           jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2074         }
2075
2076         return 0;
2077 }
2078
2079 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2080                                    struct ieee80211_if_init_conf *conf)
2081 {
2082         struct ath_softc *sc = hw->priv;
2083         struct ath_vap *avp = (void *)conf->vif->drv_priv;
2084
2085         DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2086
2087         /* Stop ANI */
2088         del_timer_sync(&sc->sc_ani.timer);
2089
2090         /* Reclaim beacon resources */
2091         if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_AP ||
2092             sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC) {
2093                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2094                 ath_beacon_return(sc, avp);
2095         }
2096
2097         sc->sc_flags &= ~SC_OP_BEACONS;
2098
2099         sc->sc_vaps[0] = NULL;
2100         sc->sc_nvaps--;
2101 }
2102
2103 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2104 {
2105         struct ath_softc *sc = hw->priv;
2106         struct ieee80211_conf *conf = &hw->conf;
2107
2108         mutex_lock(&sc->mutex);
2109         if (changed & (IEEE80211_CONF_CHANGE_CHANNEL |
2110                        IEEE80211_CONF_CHANGE_HT)) {
2111                 struct ieee80211_channel *curchan = hw->conf.channel;
2112                 int pos;
2113
2114                 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2115                         curchan->center_freq);
2116
2117                 pos = ath_get_channel(sc, curchan);
2118                 if (pos == -1) {
2119                         DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n",
2120                                 curchan->center_freq);
2121                         mutex_unlock(&sc->mutex);
2122                         return -EINVAL;
2123                 }
2124
2125                 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
2126                 sc->sc_ah->ah_channels[pos].chanmode =
2127                         (curchan->band == IEEE80211_BAND_2GHZ) ?
2128                         CHANNEL_G : CHANNEL_A;
2129
2130                 if (conf_is_ht(conf)) {
2131                         if (conf_is_ht40(conf))
2132                                 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
2133
2134                         sc->sc_ah->ah_channels[pos].chanmode =
2135                                 ath_get_extchanmode(sc, curchan,
2136                                                     conf->ht.channel_type);
2137                 }
2138
2139                 ath_update_chainmask(sc, conf_is_ht(conf));
2140
2141                 if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0) {
2142                         DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2143                         mutex_unlock(&sc->mutex);
2144                         return -EINVAL;
2145                 }
2146         }
2147
2148         if (changed & IEEE80211_CONF_CHANGE_POWER)
2149                 sc->sc_config.txpowlimit = 2 * conf->power_level;
2150
2151         mutex_unlock(&sc->mutex);
2152         return 0;
2153 }
2154
2155 static int ath9k_config_interface(struct ieee80211_hw *hw,
2156                                   struct ieee80211_vif *vif,
2157                                   struct ieee80211_if_conf *conf)
2158 {
2159         struct ath_softc *sc = hw->priv;
2160         struct ath_hal *ah = sc->sc_ah;
2161         struct ath_vap *avp = (void *)vif->drv_priv;
2162         u32 rfilt = 0;
2163         int error, i;
2164
2165         /* TODO: Need to decide which hw opmode to use for multi-interface
2166          * cases */
2167         if (vif->type == NL80211_IFTYPE_AP &&
2168             ah->ah_opmode != NL80211_IFTYPE_AP) {
2169                 ah->ah_opmode = NL80211_IFTYPE_STATION;
2170                 ath9k_hw_setopmode(ah);
2171                 ath9k_hw_write_associd(ah, sc->sc_myaddr, 0);
2172                 /* Request full reset to get hw opmode changed properly */
2173                 sc->sc_flags |= SC_OP_FULL_RESET;
2174         }
2175
2176         if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2177             !is_zero_ether_addr(conf->bssid)) {
2178                 switch (vif->type) {
2179                 case NL80211_IFTYPE_STATION:
2180                 case NL80211_IFTYPE_ADHOC:
2181                         /* Set BSSID */
2182                         memcpy(sc->sc_curbssid, conf->bssid, ETH_ALEN);
2183                         sc->sc_curaid = 0;
2184                         ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
2185                                                sc->sc_curaid);
2186
2187                         /* Set aggregation protection mode parameters */
2188                         sc->sc_config.ath_aggr_prot = 0;
2189
2190                         DPRINTF(sc, ATH_DBG_CONFIG,
2191                                 "RX filter 0x%x bssid %pM aid 0x%x\n",
2192                                 rfilt, sc->sc_curbssid, sc->sc_curaid);
2193
2194                         /* need to reconfigure the beacon */
2195                         sc->sc_flags &= ~SC_OP_BEACONS ;
2196
2197                         break;
2198                 default:
2199                         break;
2200                 }
2201         }
2202
2203         if ((conf->changed & IEEE80211_IFCC_BEACON) &&
2204             ((vif->type == NL80211_IFTYPE_ADHOC) ||
2205              (vif->type == NL80211_IFTYPE_AP))) {
2206                 /*
2207                  * Allocate and setup the beacon frame.
2208                  *
2209                  * Stop any previous beacon DMA.  This may be
2210                  * necessary, for example, when an ibss merge
2211                  * causes reconfiguration; we may be called
2212                  * with beacon transmission active.
2213                  */
2214                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2215
2216                 error = ath_beacon_alloc(sc, 0);
2217                 if (error != 0)
2218                         return error;
2219
2220                 ath_beacon_sync(sc, 0);
2221         }
2222
2223         /* Check for WLAN_CAPABILITY_PRIVACY ? */
2224         if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2225                 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2226                         if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2227                                 ath9k_hw_keysetmac(sc->sc_ah,
2228                                                    (u16)i,
2229                                                    sc->sc_curbssid);
2230         }
2231
2232         /* Only legacy IBSS for now */
2233         if (vif->type == NL80211_IFTYPE_ADHOC)
2234                 ath_update_chainmask(sc, 0);
2235
2236         return 0;
2237 }
2238
2239 #define SUPPORTED_FILTERS                       \
2240         (FIF_PROMISC_IN_BSS |                   \
2241         FIF_ALLMULTI |                          \
2242         FIF_CONTROL |                           \
2243         FIF_OTHER_BSS |                         \
2244         FIF_BCN_PRBRESP_PROMISC |               \
2245         FIF_FCSFAIL)
2246
2247 /* FIXME: sc->sc_full_reset ? */
2248 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2249                                    unsigned int changed_flags,
2250                                    unsigned int *total_flags,
2251                                    int mc_count,
2252                                    struct dev_mc_list *mclist)
2253 {
2254         struct ath_softc *sc = hw->priv;
2255         u32 rfilt;
2256
2257         changed_flags &= SUPPORTED_FILTERS;
2258         *total_flags &= SUPPORTED_FILTERS;
2259
2260         sc->rx.rxfilter = *total_flags;
2261         rfilt = ath_calcrxfilter(sc);
2262         ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2263
2264         if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
2265                 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
2266                         ath9k_hw_write_associd(sc->sc_ah, ath_bcast_mac, 0);
2267         }
2268
2269         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2270 }
2271
2272 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2273                              struct ieee80211_vif *vif,
2274                              enum sta_notify_cmd cmd,
2275                              struct ieee80211_sta *sta)
2276 {
2277         struct ath_softc *sc = hw->priv;
2278
2279         switch (cmd) {
2280         case STA_NOTIFY_ADD:
2281                 ath_node_attach(sc, sta);
2282                 break;
2283         case STA_NOTIFY_REMOVE:
2284                 ath_node_detach(sc, sta);
2285                 break;
2286         default:
2287                 break;
2288         }
2289 }
2290
2291 static int ath9k_conf_tx(struct ieee80211_hw *hw,
2292                          u16 queue,
2293                          const struct ieee80211_tx_queue_params *params)
2294 {
2295         struct ath_softc *sc = hw->priv;
2296         struct ath9k_tx_queue_info qi;
2297         int ret = 0, qnum;
2298
2299         if (queue >= WME_NUM_AC)
2300                 return 0;
2301
2302         qi.tqi_aifs = params->aifs;
2303         qi.tqi_cwmin = params->cw_min;
2304         qi.tqi_cwmax = params->cw_max;
2305         qi.tqi_burstTime = params->txop;
2306         qnum = ath_get_hal_qnum(queue, sc);
2307
2308         DPRINTF(sc, ATH_DBG_CONFIG,
2309                 "Configure tx [queue/halq] [%d/%d],  "
2310                 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2311                 queue, qnum, params->aifs, params->cw_min,
2312                 params->cw_max, params->txop);
2313
2314         ret = ath_txq_update(sc, qnum, &qi);
2315         if (ret)
2316                 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2317
2318         return ret;
2319 }
2320
2321 static int ath9k_set_key(struct ieee80211_hw *hw,
2322                          enum set_key_cmd cmd,
2323                          const u8 *local_addr,
2324                          const u8 *addr,
2325                          struct ieee80211_key_conf *key)
2326 {
2327         struct ath_softc *sc = hw->priv;
2328         int ret = 0;
2329
2330         DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n");
2331
2332         switch (cmd) {
2333         case SET_KEY:
2334                 ret = ath_key_config(sc, addr, key);
2335                 if (ret >= 0) {
2336                         key->hw_key_idx = ret;
2337                         /* push IV and Michael MIC generation to stack */
2338                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2339                         if (key->alg == ALG_TKIP)
2340                                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2341                         ret = 0;
2342                 }
2343                 break;
2344         case DISABLE_KEY:
2345                 ath_key_delete(sc, key);
2346                 break;
2347         default:
2348                 ret = -EINVAL;
2349         }
2350
2351         return ret;
2352 }
2353
2354 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2355                                    struct ieee80211_vif *vif,
2356                                    struct ieee80211_bss_conf *bss_conf,
2357                                    u32 changed)
2358 {
2359         struct ath_softc *sc = hw->priv;
2360
2361         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2362                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2363                         bss_conf->use_short_preamble);
2364                 if (bss_conf->use_short_preamble)
2365                         sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2366                 else
2367                         sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2368         }
2369
2370         if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2371                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2372                         bss_conf->use_cts_prot);
2373                 if (bss_conf->use_cts_prot &&
2374                     hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2375                         sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2376                 else
2377                         sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2378         }
2379
2380         if (changed & BSS_CHANGED_ASSOC) {
2381                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2382                         bss_conf->assoc);
2383                 ath9k_bss_assoc_info(sc, vif, bss_conf);
2384         }
2385 }
2386
2387 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2388 {
2389         u64 tsf;
2390         struct ath_softc *sc = hw->priv;
2391         struct ath_hal *ah = sc->sc_ah;
2392
2393         tsf = ath9k_hw_gettsf64(ah);
2394
2395         return tsf;
2396 }
2397
2398 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2399 {
2400         struct ath_softc *sc = hw->priv;
2401         struct ath_hal *ah = sc->sc_ah;
2402
2403         ath9k_hw_reset_tsf(ah);
2404 }
2405
2406 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2407                        enum ieee80211_ampdu_mlme_action action,
2408                        struct ieee80211_sta *sta,
2409                        u16 tid, u16 *ssn)
2410 {
2411         struct ath_softc *sc = hw->priv;
2412         int ret = 0;
2413
2414         switch (action) {
2415         case IEEE80211_AMPDU_RX_START:
2416                 if (!(sc->sc_flags & SC_OP_RXAGGR))
2417                         ret = -ENOTSUPP;
2418                 break;
2419         case IEEE80211_AMPDU_RX_STOP:
2420                 break;
2421         case IEEE80211_AMPDU_TX_START:
2422                 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2423                 if (ret < 0)
2424                         DPRINTF(sc, ATH_DBG_FATAL,
2425                                 "Unable to start TX aggregation\n");
2426                 else
2427                         ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2428                 break;
2429         case IEEE80211_AMPDU_TX_STOP:
2430                 ret = ath_tx_aggr_stop(sc, sta, tid);
2431                 if (ret < 0)
2432                         DPRINTF(sc, ATH_DBG_FATAL,
2433                                 "Unable to stop TX aggregation\n");
2434
2435                 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2436                 break;
2437         case IEEE80211_AMPDU_TX_RESUME:
2438                 ath_tx_aggr_resume(sc, sta, tid);
2439                 break;
2440         default:
2441                 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2442         }
2443
2444         return ret;
2445 }
2446
2447 static struct ieee80211_ops ath9k_ops = {
2448         .tx                 = ath9k_tx,
2449         .start              = ath9k_start,
2450         .stop               = ath9k_stop,
2451         .add_interface      = ath9k_add_interface,
2452         .remove_interface   = ath9k_remove_interface,
2453         .config             = ath9k_config,
2454         .config_interface   = ath9k_config_interface,
2455         .configure_filter   = ath9k_configure_filter,
2456         .sta_notify         = ath9k_sta_notify,
2457         .conf_tx            = ath9k_conf_tx,
2458         .bss_info_changed   = ath9k_bss_info_changed,
2459         .set_key            = ath9k_set_key,
2460         .get_tsf            = ath9k_get_tsf,
2461         .reset_tsf          = ath9k_reset_tsf,
2462         .ampdu_action       = ath9k_ampdu_action,
2463 };
2464
2465 static struct {
2466         u32 version;
2467         const char * name;
2468 } ath_mac_bb_names[] = {
2469         { AR_SREV_VERSION_5416_PCI,     "5416" },
2470         { AR_SREV_VERSION_5416_PCIE,    "5418" },
2471         { AR_SREV_VERSION_9100,         "9100" },
2472         { AR_SREV_VERSION_9160,         "9160" },
2473         { AR_SREV_VERSION_9280,         "9280" },
2474         { AR_SREV_VERSION_9285,         "9285" }
2475 };
2476
2477 static struct {
2478         u16 version;
2479         const char * name;
2480 } ath_rf_names[] = {
2481         { 0,                            "5133" },
2482         { AR_RAD5133_SREV_MAJOR,        "5133" },
2483         { AR_RAD5122_SREV_MAJOR,        "5122" },
2484         { AR_RAD2133_SREV_MAJOR,        "2133" },
2485         { AR_RAD2122_SREV_MAJOR,        "2122" }
2486 };
2487
2488 /*
2489  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2490  */
2491 static const char *
2492 ath_mac_bb_name(u32 mac_bb_version)
2493 {
2494         int i;
2495
2496         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2497                 if (ath_mac_bb_names[i].version == mac_bb_version) {
2498                         return ath_mac_bb_names[i].name;
2499                 }
2500         }
2501
2502         return "????";
2503 }
2504
2505 /*
2506  * Return the RF name. "????" is returned if the RF is unknown.
2507  */
2508 static const char *
2509 ath_rf_name(u16 rf_version)
2510 {
2511         int i;
2512
2513         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2514                 if (ath_rf_names[i].version == rf_version) {
2515                         return ath_rf_names[i].name;
2516                 }
2517         }
2518
2519         return "????";
2520 }
2521
2522 static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2523 {
2524         void __iomem *mem;
2525         struct ath_softc *sc;
2526         struct ieee80211_hw *hw;
2527         u8 csz;
2528         u32 val;
2529         int ret = 0;
2530         struct ath_hal *ah;
2531
2532         if (pci_enable_device(pdev))
2533                 return -EIO;
2534
2535         ret =  pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2536
2537         if (ret) {
2538                 printk(KERN_ERR "ath9k: 32-bit DMA not available\n");
2539                 goto bad;
2540         }
2541
2542         ret = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
2543
2544         if (ret) {
2545                 printk(KERN_ERR "ath9k: 32-bit DMA consistent "
2546                         "DMA enable failed\n");
2547                 goto bad;
2548         }
2549
2550         /*
2551          * Cache line size is used to size and align various
2552          * structures used to communicate with the hardware.
2553          */
2554         pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
2555         if (csz == 0) {
2556                 /*
2557                  * Linux 2.4.18 (at least) writes the cache line size
2558                  * register as a 16-bit wide register which is wrong.
2559                  * We must have this setup properly for rx buffer
2560                  * DMA to work so force a reasonable value here if it
2561                  * comes up zero.
2562                  */
2563                 csz = L1_CACHE_BYTES / sizeof(u32);
2564                 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
2565         }
2566         /*
2567          * The default setting of latency timer yields poor results,
2568          * set it to the value used by other systems. It may be worth
2569          * tweaking this setting more.
2570          */
2571         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
2572
2573         pci_set_master(pdev);
2574
2575         /*
2576          * Disable the RETRY_TIMEOUT register (0x41) to keep
2577          * PCI Tx retries from interfering with C3 CPU state.
2578          */
2579         pci_read_config_dword(pdev, 0x40, &val);
2580         if ((val & 0x0000ff00) != 0)
2581                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2582
2583         ret = pci_request_region(pdev, 0, "ath9k");
2584         if (ret) {
2585                 dev_err(&pdev->dev, "PCI memory region reserve error\n");
2586                 ret = -ENODEV;
2587                 goto bad;
2588         }
2589
2590         mem = pci_iomap(pdev, 0, 0);
2591         if (!mem) {
2592                 printk(KERN_ERR "PCI memory map error\n") ;
2593                 ret = -EIO;
2594                 goto bad1;
2595         }
2596
2597         hw = ieee80211_alloc_hw(sizeof(struct ath_softc), &ath9k_ops);
2598         if (hw == NULL) {
2599                 printk(KERN_ERR "ath_pci: no memory for ieee80211_hw\n");
2600                 goto bad2;
2601         }
2602
2603         SET_IEEE80211_DEV(hw, &pdev->dev);
2604         pci_set_drvdata(pdev, hw);
2605
2606         sc = hw->priv;
2607         sc->hw = hw;
2608         sc->pdev = pdev;
2609         sc->mem = mem;
2610
2611         if (ath_attach(id->device, sc) != 0) {
2612                 ret = -ENODEV;
2613                 goto bad3;
2614         }
2615
2616         /* setup interrupt service routine */
2617
2618         if (request_irq(pdev->irq, ath_isr, IRQF_SHARED, "ath", sc)) {
2619                 printk(KERN_ERR "%s: request_irq failed\n",
2620                         wiphy_name(hw->wiphy));
2621                 ret = -EIO;
2622                 goto bad4;
2623         }
2624
2625         ah = sc->sc_ah;
2626         printk(KERN_INFO
2627                "%s: Atheros AR%s MAC/BB Rev:%x "
2628                "AR%s RF Rev:%x: mem=0x%lx, irq=%d\n",
2629                wiphy_name(hw->wiphy),
2630                ath_mac_bb_name(ah->ah_macVersion),
2631                ah->ah_macRev,
2632                ath_rf_name((ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR)),
2633                ah->ah_phyRev,
2634                (unsigned long)mem, pdev->irq);
2635
2636         return 0;
2637 bad4:
2638         ath_detach(sc);
2639 bad3:
2640         ieee80211_free_hw(hw);
2641 bad2:
2642         pci_iounmap(pdev, mem);
2643 bad1:
2644         pci_release_region(pdev, 0);
2645 bad:
2646         pci_disable_device(pdev);
2647         return ret;
2648 }
2649
2650 static void ath_pci_remove(struct pci_dev *pdev)
2651 {
2652         struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2653         struct ath_softc *sc = hw->priv;
2654
2655         ath_detach(sc);
2656         if (pdev->irq)
2657                 free_irq(pdev->irq, sc);
2658         pci_iounmap(pdev, sc->mem);
2659         pci_release_region(pdev, 0);
2660         pci_disable_device(pdev);
2661         ieee80211_free_hw(hw);
2662 }
2663
2664 #ifdef CONFIG_PM
2665
2666 static int ath_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2667 {
2668         struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2669         struct ath_softc *sc = hw->priv;
2670
2671         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2672
2673 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2674         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2675                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2676 #endif
2677
2678         pci_save_state(pdev);
2679         pci_disable_device(pdev);
2680         pci_set_power_state(pdev, 3);
2681
2682         return 0;
2683 }
2684
2685 static int ath_pci_resume(struct pci_dev *pdev)
2686 {
2687         struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2688         struct ath_softc *sc = hw->priv;
2689         u32 val;
2690         int err;
2691
2692         err = pci_enable_device(pdev);
2693         if (err)
2694                 return err;
2695         pci_restore_state(pdev);
2696         /*
2697          * Suspend/Resume resets the PCI configuration space, so we have to
2698          * re-disable the RETRY_TIMEOUT register (0x41) to keep
2699          * PCI Tx retries from interfering with C3 CPU state
2700          */
2701         pci_read_config_dword(pdev, 0x40, &val);
2702         if ((val & 0x0000ff00) != 0)
2703                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2704
2705         /* Enable LED */
2706         ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
2707                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
2708         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2709
2710 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2711         /*
2712          * check the h/w rfkill state on resume
2713          * and start the rfkill poll timer
2714          */
2715         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2716                 queue_delayed_work(sc->hw->workqueue,
2717                                    &sc->rf_kill.rfkill_poll, 0);
2718 #endif
2719
2720         return 0;
2721 }
2722
2723 #endif /* CONFIG_PM */
2724
2725 MODULE_DEVICE_TABLE(pci, ath_pci_id_table);
2726
2727 static struct pci_driver ath_pci_driver = {
2728         .name       = "ath9k",
2729         .id_table   = ath_pci_id_table,
2730         .probe      = ath_pci_probe,
2731         .remove     = ath_pci_remove,
2732 #ifdef CONFIG_PM
2733         .suspend    = ath_pci_suspend,
2734         .resume     = ath_pci_resume,
2735 #endif /* CONFIG_PM */
2736 };
2737
2738 static int __init init_ath_pci(void)
2739 {
2740         int error;
2741
2742         printk(KERN_INFO "%s: %s\n", dev_info, ATH_PCI_VERSION);
2743
2744         /* Register rate control algorithm */
2745         error = ath_rate_control_register();
2746         if (error != 0) {
2747                 printk(KERN_ERR
2748                         "Unable to register rate control algorithm: %d\n",
2749                         error);
2750                 ath_rate_control_unregister();
2751                 return error;
2752         }
2753
2754         if (pci_register_driver(&ath_pci_driver) < 0) {
2755                 printk(KERN_ERR
2756                         "ath_pci: No devices found, driver not installed.\n");
2757                 ath_rate_control_unregister();
2758                 pci_unregister_driver(&ath_pci_driver);
2759                 return -ENODEV;
2760         }
2761
2762         return 0;
2763 }
2764 module_init(init_ath_pci);
2765
2766 static void __exit exit_ath_pci(void)
2767 {
2768         ath_rate_control_unregister();
2769         pci_unregister_driver(&ath_pci_driver);
2770         printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2771 }
2772 module_exit(exit_ath_pci);